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Non-stationary Navier-Stokes Equations with Mixed

Boundary Conditions

By Tujin KiM* and Daomin Caof

Abstract. In this paper we are concerned with the initial bound-
ary value problem of the 2, 3-D Navier-Stokes equations with mixed
boundary conditions including conditions for velocity, static pressure,
stress, rotation and Navier slip condition together. Under a compat-
ibility condition at the initial instance it is proved that for the small
data there exists a unique solution on the given interval of time. Also,
it is proved that if a solution is given, then there exists a unique so-
lution for small perturbed data satisfying the compatibility condition.
Our smoothness condition for initial functions in the compatibility
condition is weaker than one in such a previous result.

1. Introduction

For the Navier-Stokes equations
—vAv+ (v-V)v+Vp=f, V-v=0 inQc R, 1=23;

and

%—I/AU—F(Q%V)U—}-VPZﬁ V-v=0 in{

different natural and artificial boundary conditions are considered. For ex-
ample on solid walls, homogeneous Dirichlet condition v = 0 is often used.
On a free surface a Neumann condition 2ve(v)n — pn = 0 may be useful.
Here and in what follows e(v) denotes the so-called strain tensor with the
components £;;(v) = 3(9y,v; + Oz,;v;) and n is the outward normal unit vec-

tor. For simulations of flows in the presence of rough boundaries, the Navier
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slip-with-friction boundary conditions v -n = 0, (ven-(v) + av;)|p, = 0 is
also used, where €,.(v) and v, are, respectively, the tangent components
of e(v)n and v. Combination of the condition v, = 0 and the tangential
component of the friction (slip condition for uncovered fluid surfaces) or the
condition v, = 0 and the normal component of the friction (condition for
in/out-stream surfaces) are frequently used. At the outlet of a channel “do
nothing” condition I/g—z —pn = 0, i.e. the outlet boundary condition, is also
used. Rotation boundary condition has been fairly extensively studied over
the past several years. Also, for inlet or outlet of flow one deals with the
static pressure p or total pressure (Bernoulli’s pressure) %|v|2—|—p. For papers
dealing with the problems mentioned above one can refer to Introduction
of [13].

In practice we deal with mixture of some kind of boundary conditions.
For a channel flow a mixture of Dirichlet condition v = 0 on the wall and
“do nothing” condition on the outlet is used. But for a channel flow with
a rough boundary surface a mixture of Dirichlet condition, the Navier slip-
with-friction boundary condition and “do nothing” condition may be used.
For a flow in a vessel with in/outlet a mixture of Dirichlet condition v = 0
on the wall and pressure conditions on the inlet/outlet is used. But for
the flow in a vessel with in/outlet and a free surface a mixture of Dirichlet
condition, a Neumann condition 2ve(v)n — pn = 0 and pressure conditions
may be used.

There are vast literatures for the Stokes and Navier-Stokes problems
with mixed boundary conditions and several variational formulations are
used for them, but two possible examples above are not considered except
[13]. With exception [13] mixtures of boundary conditions for Navier-Stokes
equations may be divided into three groups according to what bilinear form
is used for a variational formulation (for more concrete one can refer to
Introduction of [13]).

To include more different boundary conditions together, in [13] the re-
lations among strain, rotation, normal derivative of vector field and shape
of boundary surface are obtained and applied to the stationary and non-
stationary Navier-Stokes problems with mixture of seven kinds of boundary
conditions. However, for the non-stationary Navier-Stokes problems we only
were concerned with a mixed boundary condition including total pressure
(not static pressure), total stress (not stress) and so on. Thus, in this paper
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we will study the non-stationary problems with a mixed boundary condition
including static pressure (not total pressure), stress (not total stress) and
SO on.

On the other hand, when one of static pressure (instead of total pres-
sure), stress (instead of total stress) or the outlet boundary condition is
given on a portion of boundary, for the initial boundary value problems of
the Navier-Stokes equations existence of a unique local-in-time solution and
a unique solution on a given interval for small given data (in what follows
we call it a solution for small data) are proved. In the mathematical point of
view the main difficulty of such problems consists in the fact that in priori
estimation the inertial term is not canceled, and in the mechanical point
of view it is in the fact that the kinetic energy of fluid is not controlled by
the data and uncontrolled “backward flow” can take place at the portion of
boundary(cf. preface in [2]).

The Navier-Stokes equations with mixture of Dirichlet condition and
stress condition are studied. In [15] under smoothness condition and a
compatibility condition of data at the initial instance existence of a unique
local-in-time solution to the 3-D Navier-Stokes equations is studied. In [2]
for the Navier-Stokes equations on the polyhedral domain with mixture of
Dirichlet condition, Navier slip condition and stress condition a local-in-
time solution is studied. Here smoothness of solutions to the corresponding
steady Stokes problem is used essentially.

The Navier-Stokes equations and the Boussinesq equations with mixture
of Dirichlet condition and the outlet boundary condition are studied. For
2-D Navier-Stokes equations a local-in-time solution in [7] and a solution
for small data in [8] are studied. Here also smoothness of solutions to the
corresponding 2-D steady linear problem is important. For the Boussinesq
systems a local-in-time strong solutions in [3] on 2-D channel and in [6] on
3-D channel are studied. Here smoothness of solutions to the corresponding
steady linear problems, respectively, in [5] and [1] is the key. In [14] it is
proved that if under a compatibility condition at initial instance there ex-
ists a unique solution, then so does for small perturbed data. This result
shows that under the compatibility condition there exists a unique solution
for small data. In [20] for the Boussinesq equations it is proved that un-
der a compatibility condition there exists a unique local-in-time solution,
which is similar to the result in [15]. Smoothness of initial function in the
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compatibility condition of [14] is stronger than one in [15] and [20].

The 2-D Navier-Stokes equations with mixture of Dirichlet condition
and pressure is studied. In [16] existence of a unique solution for small data
is proved.

The Navier-Stokes equations with mixture of Dirichlet condition, outlet
condition and tangent stress condition is studied. In [4] existence of a unique
solution for small perturbation data of the given solution is studied. Here
also smoothness of solutions to the corresponding steady linear problem is
the key.

In the present paper as a continuation of [13]|, we are concerned with
the non-steady Navier-Stokes equations with mixed boundary conditions in-
volving conditions for Dirichlet, static pressure, rotation, stress and normal
derivative of velocity together. Owing to the relations among strain, rota-
tion, normal derivative of velocity and shape of boundary surface obtained
in [13] (Theorems 2.1, 2.2), we can consider all these boundary conditions
together.

In general, the solution of the Stokes problem with mixed boundary con-
ditions has singularities on the intersections of surfaces for different bound-
ary conditions and the leading singular exponent of the solution is a function
of the intersection angle (cf. [19]). For the problem with Dirichlet condition
and “do nothing” condition if the intersection angle is 7/2, then under some
conditions for data the solution belongs to H?(f2) (cf. [5]). For the prob-
lem with Dirichlet condition and stress conditions, for similar results refer
to subsection 5.5 of [17] and section 10.3 of [18]. In our case the bound-
ary conditions are more complicated than others, and there is no result
for smoothness of solutions to the corresponding steady linear problems.
Thus, we prove existence of a unique weak solution for small data under a
compatibility condition at initial instance. We also prove that if a solution
smooth as in [14] is given, then under the compatibility condition for the
small perturbed data there exists a unique solution.

We are concerned with two problems distinguished according to bound-
ary conditions. Using relations among strain, rotation, normal derivative
of vector field and shape of boundary surface, which are obtained in [13],
we reflect all these boundary conditions into variational formulations for
problems.

This paper consists of 5 sections. In the end of this section the method
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in this paper is compared with another one.

In Section 2, the formulations of problems and some results for defi-
nitions of weak solutions are given. According to bilinear forms used for
variational formulations for problems, the involved boundary conditions are
slightly different. Thus, difference between our two problems is explained
(Remark 2.1).

In Section 3, first, for the Navier-Stokes problems with seven kinds of
boundary conditions a variational formulation, which is based on the bilinear
form

(1.1) a(v,u) = 2% j(gij(v),€i5(u)) o) for v,u € H'(Q),

is given. Next, by a transformation of the unknown function, the problem
is reduced to an equivalent problem in which the linear main operator is
positive definite. Then, studying properties of linear operator differential
equations and using a local diffeomorphism theorem of nonlinear operator,
we prove that under a compatibility condition similar to one in [14], [15],
[20] there exists a unique solution for small data (Theorem 3.8).

In Section 4 for the Navier-Stokes problems with six kinds of boundary
conditions, which is a little different from one in Section 3, a variational
formulation based on the bilinear form

(1.2) a(v,u) = (Vv,Vu)p,q forv,ue H'(Q)

is given. Also, by a transformation of the unknown function, the problem is
reduced to another equivalent problem in which the linear main operator is
positive definite. The result similar to one in Section 3 is obtained (Theorem
4.2).

Section 5 is considered in comparison with [14] rather than practical
models. Existence of a unique solution for the small data perturbed from a
given solutions is proved under a compatibility condition (Theorem 5.7).

The compatibility conditions in Sections 3, 4 and 5 are similar to one in
[15], [20] and [14]. In point of view of smoothness of the initial functions,
the conditions are the same with one in [15], [20] concerning with local-in-
time solutions (cf. Remark 3.4), but weaker than one in [14] concerning
with solutions for small data as our case (cf. Remarks 4.2, 5.2). In [14] the
main results for the nonlinear problem as perturbation of a linear problem
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is obtained by a local diffeomorphism theorem relying on the properties of
the corresponding linear problem, and so is it in our paper.

Then, let us consider why smoothness of the initial functions in our
compatibility conditions is weaker than one in [14].

Let H* = (W§(Q))! be a Sobolev spaces on © with dimension I, V be a
divergence-free subspace of H! satisfying appropriate boundary conditions,
H - the closure of V in (L%(Q))!, V*- the adjoint space of V, V70(Q) =
VNH™(Q), where ro > 1/2, ¥ = {w € L2(0,T;V);w' € Ly(0,T;V),w” €
Ly (0,7;V*) 1Y = {w € Lo(0,T;V*);w' € Lo(0,T;V*)} and A: V — V*-
the Stokes operator.

Considering a linear problem

?ﬂﬂ+AMﬂ—f@%
u(0) = o,

in [14] the author proved the fact that a map v — {u(0), Lu = v’ + Au}
is linear continuous one-to-one from X = {u € ¥ : u(0) € V™ (Q)} onto
Y =A{[p,h] : ¢ € VO(Q),h € Y,h(0) — Ap € H} (Theorem 3.1 in [14]).
Then, starting from this fact, the author studied a nonlinear problem

{M®+M+BW®=f®,
u(0) = ¢,

where B : V. — V* is defined by (Bu,v) = ((u-V)u,v) for u,v € V. To
this end, it was proved that the inverse of a nonlinear map u — {u(0), Lu=
v +(A+ B)u} is one-to-one from a neighborhood of 0y onto a neighborhood
of Ox. From this fact the author obtained that under the compatibility
condition f(0) — Ap € H,p € V() and smallness of data, there exists a
unique solution to (1.3).

However, we prove that for a modified operator A a map u — {u/(0),
Lu = v+ Au} is linear continuous one-to-one from & onto H x ¥ (Lemmas
3.3, 4.3). Then using this fact, we prove that for a modified operator B(t)
the inverse of a nonlinear map u — {u/(0), Lu = u/ + (A+ B(t))u} is one-to-
one from a neighborhood of 0g«q onto a neighborhood of Oy. By this under
the compatibility condition f(0)—Ap—B(0)¢ € H without ¢ € V™(Q) and
smallness of data, we get existence of unique solution to (1.3) (Theorems 3.8,
4.2, 5.7, 5.8). Since B(0)p = (¢ - V), for ¢ € V/2(Q) we get B(0)p € H,
and so our condition is weaker than one in [14].

(1.3)
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2. Problems and Preliminaries

Throughout this paper we will use the following notation.

Let © be a connected bounded open subset of R!, I = 2,3. 9Q € C%1,
o0 =UN T, I,NT; =@ fori # j, T; € C? for i = 2,3. For Problems
I and II stated below we assume, respectively, I'; € C? and I's € C?. Let
n(x) and 7(x) be, respectively, outward normal and tangent unit vectors at
x in 0. When X is a Banach space, X = X! and X* is the dual of X. Let
WE(Q) be Sobolev spaces, H*(2) = WE(Q2), and so H(Q) = {H'(Q)}.
Q=0x(0T),%=T;%x(0,T),0<T < 0.

An inner product and a norm in the space La(2) are denoted, respec-
tively, by (-,-) and || - ||; and (-,-) means the duality pairing between a
Sobolev space X and its dual one. Also, (-,-)r, is an inner product in the
Lo(T;) or Lo(I';); and (-, -)r, means the duality pairing between H: (T';) and
H_%(Fi) or between H%(FZ) and H_%(Fi). The inner product and norms
in R!, respectively, are denoted by (-,-)z and | - |. Sometimes a - b is used
for inner product in R' between a and b. When X is a Banach space, the
zero element of X is denoted by Ox and Op;(0x) means M-neighborhood of
Ox.

In this paper for the Navier-Stokes problem

%—VAU—F(U'V)U—FV]D:f, in Q,
(21) v U = O’
v(0) = vo

we are concerned with the problems I and II, which are distinguished accord-
ing to boundary conditions. Problem I is one with the boundary conditions

1
2
3) wnlry =0, rotv X njr, = ¢3/v,

(1)
(2)
(3)
(2.2) (4)  vrlry = ha, (=p+ 2vepn(v))|r, = é4,
(5)
(6)
(7)

vlr, = hy,

vrlr, = 0, —plr, = P2,

5)  vnlry = hs, 2(ven: (v) + avs)|p; = ¢s,
6) (—pn+2ven(v))|rs = Pe,

ov
7 Urh"?:O, (—p—i—lf%'n)hwzﬁb?:
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and Problem II is one with the conditions

(1) U’F1 :h17

(2) vrlr, =0, —plr, = 02,
(3) wnlry =0, rotv X n|p, = ¢3/v,
(2:3) (4) vrlr, = ha, (—p + 200 (0))lr, = b4,
(5)  walrs = hs, 2(vens(v) + avs)|rs = ¢s,
ov
(6) (—Pn+V8—n)|r7 = ¢r,

together I's = @. Here and in what follows u,, = u-n, ur = u—(u-n)n, e(v) =

{eij(v)}, en(v) = e(V)n, enn(v) = (e(V)n,N) R, Enr(v) = e(v)n — enn(v)n,
and h;, ¢; are functions or vector functions of z, ¢ defined on I'; x (0,7).

REMARK 2.1. The condition (6) of (2.3) (with ¢7 = 0) is “do nothing”
condition, but (7) of (2.2) (with ¢7 = 0) is rather different from “do nothing”
condition and we can not unify two problems.

First, let us consider why (7) of (2.2) is not changed with (6) of (2.3).
In Section 3 relying on the bilinear form (1.1) and integrating by parts
(—vAv + Vp, u), we get boundary integral (—2v(e(v)n,u)aq + (p,u - n)sq-
Then, in order to reflect the boundary conditions into Formulation 3.1,
using v, = 0 or v, = 0 and applying Theorems 2.1 or 2.2, we transform
the boundary integrals on I';,i = 2,3,7. (cf. (3.1)-(3.3)). Concretely, under
conditions v;|pr, = 0 we have

ov .
(2.4) {(—pn+ Vo u>F7 Vu with u, = 0.

Usually, v; = 0 does not imply g—z -7 = 0, but by virtue of the conditions
ur = 0 and (7) of (2.2) we have
ov v
(—pn+ o u>r7 =(-p+ Vo, un>r7
= <¢7,un)r7 Yu with u, = 0.

(2.5)

Thus, substituting {—pn+v 92, u>F7 with (¢7, un)p., we reflect the boundary
condition (7) of (2.2) into Formulation 3.1.

Changing (7) of (2.2) by (—pn + V%)\n = ¢7 with a vector ¢7 and
substituting ( — pn + I/g—z,u>r7 with (¢7,u)p,, we can come to a formal
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variational formulation. But when a solution v is smooth enough, trying to
convert from the formal variational formulation to the original problem, we
come to

ov
(2.6) (—pn + o u)r, = (¢7,u)p,  Vu,ur =0

on I's. If we have (2.6) without u, = 0, then from (2.6) we can get —pn +
yg—z = ¢7 on I's. But owing to u, = 0 we only get (—pn + Vg—;jb,n)r7 =<
¢7,n >1,. This shows that the formal variational formulation is not equiva-
lent to the original condition on I'; and equivalent to (—p—i—vg—fln) I, = ¢7-n.
(Thus, (7) of (3.3) in [13] was corrected. See Erratum to: [13].)

Similarly, relying on the form (1.2), we can reflect “do nothing” con-
dition into Formulation 4.1, but can not do (6) of (2.2). (cf. (4.1)-(4.3)).
Therefore, two problems are not unified.

“Do nothing” boundary condition results from variational formulation
based on (1.2) and does not have a real physical meaning, but is rather used
in truncating large physical domains to smaller computational domains by
assuming parallel flow. If the flow is parallel in a near the boundary, then
(7) of (2.2) is same with “do nothing” condition.

For variational formulations of Problems I, IT we need the following.

Let T be a surface (curve for [ = 2) of C? and v be a vector field of C? on
a domain of R' near I'. In what follows the surface is a piece of boundary of
3-D or 2-D bounded connected domains, and so we can assume the surface
is oriented.

THEOREM 2.1 (Theorem 2.1 in [13]). Suppose that v-n|r = 0. Then,
on the surface I' the followings hold.

1
(2.7) (e()n, T)p = 5(7“07521 xn,T)pt — (S0, T)pi-1,
ov -
(2.8) (rotv X n,T)p = (—,7’) + (S0, 7) g1,
3n Rl

(2.9) (e(v)n, ™)t = % <%,T> - %(5@,%)3171,
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where S is the shape operator of the surface I' for [ =3, i.e.

L K
5= (i %)
L= 617@ , K= 627% ;
861 R! 561 Rl

M = el,a—n 5 N = 62’@ 9
862 R! 862 Rl

and the curvature of I' for | = 2. Here e; are the unit vectors in a local
curvilinear coordinates on I' and 0,7 are expressions of the vectors v, T in
the coordinate system.

THEOREM 2.2 (Theorem 2.2 in [13]). If v;|r = 0 and divv = 0, then
on the surface I' the following holds.

(e(w)n,n)p = <%,n) N = —(k(x)v,n)p
where k(zx) = divn(x).

REMARK 2.2 (cf. [13]). Ek(x) =divn(z) = Tr(S(z)) = 2 X mean cur-
vature.

If T is a piece of J9, then since 92 € C%! and T' € C?, elements of S
belong to C(I') and so does k().

3. Existence of a Unique Solution to Problem I

We use the following notation.

V = {u S Hl(Q) divu = 0, U|F1 =0, uT‘FQUF4UF7 =0, un‘rgurs = 0}
and Vra37(Q) = {u € HY(Q) : divu = 0, u,|rour, = 0, un|r; = 0}. Denote
by H the completion of V in the space Ly(2). Through this paper V =
{u e HY(Q) : divu = 0}.

By Theorems 2.1 and 2.2 we have that for v € H?(2) N Vra37(Q) and
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u€eV
—(Av,u) = 2(e(v), e(u)) — 2(e(v)n, u)y7_r,
=2(e(v),e(u)) + 2(k(z)v,u)r, — (rot v X n,u)r,
+ 2(567 a)l—é - 2(671(”)7 u)Ul_4FZ
(3.1) = 2(c(v), e(w)) + 2(k(x)v, u)r, — (rot v X u, u)p,
+2(50, )y — 2(epn(v),u-n)r, — 2(ens(v), u)r,
—2(en(v),u)rg — <a—z,u + (k(x)v,u)r,.
I'z

Also, for p € H'(Q2) and u € V we have

(32) (va u) = (p7u ' n)UZ=2Fi = (p7u : n)Fz + (p7 u- n)F4 + (pn>u)F6UF77

where the fact that u,|r,ur; = 0 was used.
Let

X ={we Ly(0,T;V);w' € Ly(0,T; V), w"” € Ly(0,T; V¥)},
lwlle = |wllL,0,1:v) + ||w/”L2(0,T;V) + Hw//HLz(O,T;V*)a
Y ={w e Ly(0,T; V¥);w' € La(0,T; V¥)},
l|wl|ey = ||w||L2(0,T;V*) + ||w/”L2(O,T;V*)7
W = {w € Ly(0,T; V);w' € Ly(0,T; V), w" € Ly(0,T;V")},

ol = ol oz + 10 aagoirovy + 197007y

Here and in what follows w’ means the derivative of w(t) with respect to t.
For Problem I, we use the following assumptions.

ASSUMPTION 3.1. f, f' € Lo(0,T5V*), ¢i, ¢, € Ly(0,T; H 2(T;)),
i = 2,4,7, ¢i, ¢, € Ly(0,T; H 2(I})),i = 3,5,6, ctij € Loo(Ts), where
a;j are components of the matriz a, and I'y # 0.

ASSUMPTION 3.2. There exists a function U € W such that
divU =0, Ulr, = h1, Ur|rour, = 0, Unlry =0, Urlr, = ha, Unlry = hs.

Also, U(0,z) —vg € V.
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REMARK 3.1. In practlcal situations hy4, hs = 0, and in the cases if for
every fixed ¢ hy(t,z) € Hoo (T1), Jp, h(t,z) -ndr =0 and |h(t, ] et by

is smooth enough with respect to ¢, then there exists such a function U.

Taking (3.1) and (3.2) into account, we get the following variational
formulation for Problem I:

FORMULATION 3.1. Find v such that
v —U € Ly(0,T; V),
v(0) = v,
(3.3) W u) +2v(e(w),e(u)) + {(v- V)v,u) + 2v(k(x)v, u)r,
+ 2v(50,4)ry + 2(a(z)v, u)r, + v(k(z)v,u)r,
= (f,u) + Z (Gisun)T; + Z (i, u)p, for allu e V.

i=2,4,7 i=3,5,6

Taking Assumption 3.2 into account, put v = Z+ U. Then, we have the
following problem equivalent to Formulation 3.1:
Find Zz such that

zZ € Lo(0,T5V),
Z(0)=zp=vo—U(0) € V,
(Z, u) +2v(e(z),e(u) + ((z- V)z,u) + (U - V)z,u) + ((z- V)U,u)
+ 2u(k(z)Z,u)r, + 2v(SZ, @), + 2(a(2)Z, u)r,
(3.4) + v(k(z)Z, u)r,

(k(z)z, u)
= —(U",u) = 2v(e(U),e(u)) — (U - V)U,u) — 2v(k(z)U, u)r,
—20(SU, @), — 2(a(z)U, u)ry — v(k(z)U,u)r, + (f,u)

+ Z (Pi un)r, + (i, u)1, for all u € V.
i=2,4,7 i=3,5,6

Now, define an operator Ag : V — V* by

<A0y7 u> :2V(€(y)7 E(U)) + QV(k(x)yv U)Fz + 2V(5g7 ﬂ)Fg

3.5
(35 4 2(ale)ywr, + v(k(z)y, wr, for all y.u € V.



Non-stationary Navier-Stokes Equations with Mized Boundary Conditions 171

LEMMA 3.1. 3§ >0, 3ko > 0; (Agu, u) > §||ul|3,—kollull3, for allu e
V.

Proor. By Korn’s inequality
(3.6) 2w(e(u),e(u)) > Bllul|yy 33> 0,foralluec V.
By Remark 2.2 and Assumption 3.1, there exists a constant M such that
15 (@) [oos 1K(2)lloos [ler()[|oo < M,
and so there exists a constant ¢y (depending on [3) such that

|21/(l€($)2’, Z)Fz + 2V(S'§7 2)F3 + V(k(ﬂ?)z, Z)F7 + Q(Q(x)y7 U)F5|
(3.7) 3
< 5\\2]\%{1(9) +collz||3 dt forall z€V

((cf. Theorem 1.6.6 in [9] or (1), p. 258 in [11])). Put ¢ = g, ko = co. Then,
by (3.6), (3.7) we come to the asserted conclusion. [J

REMARK 3.2. In process of proof of Lemma 3.1, we see that if I'; =
0,1 = 2,3,7, or these are unions of pieces of planes (segments in case of
2-D)and I's = () or a(z) = 0, then we can take kg = 0.

When kg > 0, if kg is not small enough, then the operator defined by
(3.5) is not positive, and so let us transform the unknown function to get a
positive operator A in (3.9) bellow. Now, let ky be the constant in Lemma
3.1 and put z = e %'z, Then, since e %'z’ = 2/ + koz, we get the following

problem equivalent to problem (3.4):
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Find z such that

= 2v(k(2)U (1), w)r, — 2v(SU (1), @)r, — 2(a(x)U(t), u)rs
—v((@)U (@), w)r, + (f(8),u) + Y (6ilt),un)r,

i=2,4,7
+ Y <¢i(t),u>pi} for all u € V.
i=3,5,6
Define operators A, Ay(t) : V. — V* by
(3.9) (Av,u) = (Agv,u) + (kov,u) for all v,u € V,

(Au(t)v,u) = ((U(t,z) - V)v,u)

3.10
(3.10) +((v-V)U(t,x),u) forallv,u €V,

where A is the operator by (3.5) and ko is one in Lemma 3.1. Since U € W,

we have U € C ([0,T]; H'(Q)) and so such a definition is well. Then, the
operator A is positive definite, and this fact is used in future.
Define an operator B(t) : V. — V* and F(t) € V* by

(3.11) (B(t)v,u) = ek ((v- V)v,u) for all v,u €V,
(F (1), u) = | = (U'(8), u) = 20(e(U) (2), 2(w))
—(U @) - V)U(t),w) = 2v(k(z)U (1), w)r,
(312 — 2(ST(1), D)y — 2Aa@)U(0), W),
— v(k(2)U(?), U) +(f(t),u)
(@i(t), un)r; + (i(t) pl} for all uw € V.

1=2,4,7 1=3,5,6
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Then, (3.8) is written by

z € Ly(0,T;V),
(3.13) z2(0) =v9 —U(0) € V,

Z(t) + (A+ Ay (t) + B(t)) 2(t) = F(t).

Now, define operators L, /TU, Ly, B:% — Y C: XxX —Yand Fey
by
(L2)(t),u) = (' (t),u) + (Az(t),u) for all z € ¥, for allu € V,
)(t),u) = (Ay(t)z(t),u) for all z € &, for all u € V,
(Lu2)(t),u) = ('(t),u) + ((A+ Au(t))z(t), u)
for all z € &, for all u € V,
((B2)(t),u) = (B(t)z(t),u) forall z € ¥, for allu €V,
(Clw, 2)(t),u) = M {(w(t) - V)2(t), u) + M ((2(t) - V)w(t), u)
for all w,z € &, for all u € V,

(3.14)

LEMMA 3.2. C is a bilinear continuous operator such that X x ¥ — %Y.
Under Assumptions 3.1 and 3.2, Ay is a linear continuous operator such
that X — Y and F € %Y.

PROOF. Obviously, C is bilinear. When w € &,
w € Loo(0,T5V), wllroorv) < cllwllpoorvy + 1w Ly 0.7v)]
and by virtue of Holder inequality and the imbedding theorem

"ot ((w - W)z, u) + (2 - V)w, u)|
< c([|wllus [Vl lullug + [[2]lLs [[Vwllu, ullie) < cllwllv]lz]lvlulv
for all w, z,u € V.

Thus,

3.15)  C(w, )l Lo0,r:v+) < ellwllLwcorv)llzllLo0,15v) < cllwlla - [12]]a-



174 Tujin KM and Daomin CAO

Also, since

{C(w, 2)'(t),u)| = ekot‘k()((w V) z,u) + ko((z - VIw,u) + {(w - V)2, u)
+{(w- V)2 u) + (2 VIw,u) + {(z- V)w',u)

)

taking (3.15) into account we have

1C(w, 2)' | Ly 0,m3v) < cllC(w, 2)|| Ly 0,15v+)
+ C[(Hw/”LQ(O,T;V) + Wl 0,7:v))
X (”Z/HLQ(O,T;V) + HZHLOO(O,T;V)”
< cllwlle - [12]lg-

(3.16)

(3.15) and (3.16) imply

(3.17) 1C(w, 2) [l < ellwllee - |2l
By the same argument above, we have

(3.18) 1Av 2l < ellUllw - [12le-

By Assumption 3.1, Remark 2.2 and the trace theorem, we can see that
Fey O

LEMMA 3.3. The operator L defined by Lz = (2'(0), Lz) for z € ¥ is a
linear continuous one-to-one operator from & onto H x %Y.

PROOF. The linearity of L is obvious. The fact z € ¥ implies that
2" e C([0,T); H), |2 leom;my < cllzlle, and so we see that a map z € ¥ —
Z'(0) € H is continuous.

Clearly, ||2/||ly < ¢||lz|l#. Also, by Assumption 3.1, Remark 2.2 and the
trace theorem,

(3.19) |(Av,u)| < ¢|lv||v - |Jullv  for all v,u € V.

Formula (3.19) implies that the mapping z € ¥ — Az € Y is continuous.
Therefore, L is continuous.

Let us show that L is a one-to-one and surjective operator from ¥ onto
H x %Y.
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First, let us prove that this operator is injective. For this, it is enough
to prove that the inverse image of (0g,0q) € H x ¥ by the operator L is
Oy. By Lemma 3.1 and (3.9), we get

(3.20) (Av,v) > §||v||3, 36 > 0,for all v € V.

By (3.19), (3.20) for any ¢ € V* there exists a unique solution y € V to the
following problem

(3.21) Ay =q.

Let z € & be the inverse image of (0f,0y) € H x MY by L. Then since
2'(0) = Og, putting ¢ = 0 in the first equation of (3.14) we get

(Az(0),u) =0 forallueV,

where 2z(0) = 2z(0,z). This means that z(0) is a unique solution to (3.21)
for ¢ = Oy~, i.e. 2(0) = Oy. Putting w = 2/, we get w(0) = 2/(0) = 0g.
Taking Lz = 0 into account and differentiating the first equation of (3.14),
we have

(3.22) (w'(t),u) + (Aw(t),u) =0 for all u € V.

The operator A in (3.22) satisfies all conditions of Theorem 1.1, ch. 6 in
[12]. Thus, for problem (3.22) with an initial condition w(0) € H there
exists a unique solution w such that w € Ly(0,T;V), w' € Ly(0,T;V*).
Since w(0) = 0g, we have w = 0, which means z = Oy since z(0) = Oy.

Let us prove that L is surjective. Let (wg,g) € H x ¥. Since g € Y, we
have ¢g(0) € V*. Then, by (3.19) and (3.20), there exists a unique solution
2o € V to problem

(3.23) Az = g(0) — wo.

Let us consider problem

/ /
+Aw=g,
(3.2) {w w=s

w(0) = wyp.
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There exists a unique solution w such that w € Ly(0,T;V), w' €
Ly(0,T;V*) to problem (3.24) (cf. Theorem 1.3 of ch. 6 in [12]). Now,
put

t
(3.25) z=2z0+ / w(s) ds,

0
where 2 is the solution to (3.23). Then, 2’ = w and z € . Integrating two

sides of the first one in (3.24) from 0 to ¢ and using (3.25), we have

(w(t),u) + (Az(t), u) — [(wo, u) + (Azo,u)]
= (g(t),u) — (g(0),u) forall u e V.

Taking (3.23), (3.25) into account, from (3.26) we get
(3.27) (2 (t),u) + (Az(t),u) = (g(t),u) forallu e V.

(3.26)

This means that z € & defined by (3.25) is the inverse image of (wp,g) €
H x % by the operator L, i.e. L is surjective. Therefore, L is an epimor-
phism. [J

LEMMA 3.4.  Under Assumption 3.2, let [|[U(0,x)|5, be small enough.
The operator Ly defined by Lyz = (2(0), Lyz) for 2 € ¥ is a linear con-
tinuous one-to-one operator from & onto H x Y.

PrROOF. When z € ¥, z € C([0,T]; V) and

1zllcomivy < c[llzllLaorivy + 112 | Lo0mv]-

By virtue of this fact and Lemma 3.2, the operator Ay € (¥ — H x %)
defined by Apyz = (0g, AVUZ) is continuous. Thus, the operator Ly defined
on & is linear continuous.

As in Lemma 3.5 of [14] it is proved that the operator Ay € (¥ — ¥) is
compact. Thus, Ay € (¥ — H x %) is also compact. Since Ly = L + Ay,
by virtue of Theorem 3.4 in [14] and Lemma 3.3 we know that in order to
prove that the operator Ly is one-to-one from ¥ onto H x % it is enough to
prove that L is one-to-one from ¥ into H x %Y. To prove the last fact it is
enough to show that the inverse image of (0g,0q) by Ly is Og. By Holder
inequality and imbedding theorem

(Ut z)- V)v,0) +{(v VUt 2),v)]

(3.28)
< Kollvllv U (E, ) [a lv]lv-
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Thus, if ||U(0, )|y is so small that ||U(0, )|z < %, then (3.19), (3.20)
and (3.28) imply
[((A+ Au(0)v,u)| < cllvllv - ullv,

(3.29) §
((A+ Ay(0))v,v) > iHvH%, for all v,u € V.

By (3.29) for any g € V* there exists a unique solution y € V' to
(3.30) (A+ Au(0))y = q.

Let z € ¥ be the inverse image of (0z,0q) by L. Then 2/(0) = 0p, and
putting ¢ = 0 from the third one in (3.14) we get

<(A + AU(O))z(O),u> =0 forallueV,

where z(0) = 2z(0, ). This means that z(0) is the unique solution to (3.30)
with ¢ = Oy~, i.e. 2(0) = Oy. Therefore, z € & satisfies

{ Z(t) + (A+ Au(t))2(t) =0,

(3.31) £(0) = 0y

Now, making duality pairing with z(¢) on two sides of
2(t) + Az(t) = —Ap(t)z(t)

and taking (3.20) into account and using Gronwall’s inequality, we can prove
z = Og as in Lemma 3.8 of [14]. It is finished to prove the Lemma. [J

LEMMA 3.5.  Under Assumption 3.2 the operator T' defined by Tz =
(2/(0), (Ly +B)z) for z € % is continuously differentiable, T (0x) = (0p, Ony)
and the Frechet derivative of T at Oy is L.

PROOF. It is easy to verify that T'(0y) = (0m,Oy). Since the operator
Ly is linear, its Frechet derivative is the same with itself. Therefore, if B
is continuously differentiable, then so is T

For any w,z € ¥,

(B(w+ z) — Ew) (t) = ekot(w(t) - V)z(t) + ekot(z(t) - V)w(t) + (Bz)(t).
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By (3.17), we get

B2l o cllzlF

lelg—o T2l lellg—0 N2l
Then, put
Cl(w, 2)(t) = ot (w(t) - V) z(t) + ekt (2(t) - V)w(t) = (Bly2)(t).

By Lemma 3.2 B, € (¥ — %) is continuous, and it is the Frechet derivative
of B at w and also continuous with respect to w. Thus, T is continuously
differentiable. Also from the formula above we can see that the Frechet
derivative of B at Og is zero. Therefore, the Frechet derivative of T" at Oy
is LU. O

Let us consider problem

(3.32) (A+ Ay(0) + B(0))u = q.

LEMMA 3.6.  Assume that [|U(0, )5, is small enough. If the norm of
q € V* is small enough, then there exists a unique solution to (3.32) in
some Opr(0v).

PROOF. Since ||U(0,z)[, is small enough, by (3.29), for any fixed
z € 'V there exists a unique solution to problem

(3.33) (A+ Ay(0))w = g — B(0)z.
On the other hand,

[(B(0)wr = B(O)wz, w)| < KM|lwy — wallv - [|ullv

(3.34)
for all w; € O/(0v), for all u € V.

Owing to (3.29) the solution w to (3.33) is estimated as follows

2 2
lwlv < =(lalv- +1B0)zllv+) < Z(llgllv- + KM?).

Thus, if ||¢||v+ and M are small enough, then the operator (z — w) maps
O (Ov) into itself and by (3.34) this operator is strictly contract. Therefore,
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in Op7(0v) there exists a unique solution to (3.33). Thus, we come to the
asserted conclusion. [J

For proof of unique existence of a solution to Problem I, we use the
following

PrROPOSITION 3.7 (cf. Theorem 4.1.1 in [10]). Let X,Y be Banach
spaces, G an open set in X, [ : X — Y continuously differentiable on G.
Let the derivative f'(a) be an isomorphism of X ontoY for a € G. Then
there exist neighborhoods U of a, V of f(a)such that f is injective on U,
fu) =v.

One of main results of this paper is the following

THEOREM 3.8. Suppose that Assumptions 3.1 and 3.2 hold. Assume
that ||U||w and the norms of f, f', ¢i, d; in the spaces where they belong to
are small enough.

If
(3.35) wo = F(0) — (A+ Ay (0) + B(0))z € H,

where zg = vg — U(0,-), and ||wo| g is small enough, then there exists a
unique solution to (3.3) in the space W

PrRoOF. First, let us prove existence of a solution.

If |U||w and the norms of f, f/, ¢;, ¢ in the spaces they belong to are small
enough, then || F||y is also small enough. By virtue of Lemmas 3.4, 3.5 and
Proposition 3.7, for any R; > 0 small enough if ||F||oy, R are small enough
and w; € Or(0g), there exists a unique z € Og, (Og) such that
(3.36) /() + (A+ Au(t) + B(t))z(t) = F(t), 2'(0) =w1 € Or(0g).
Putting t = 0 in (3.36), we get

F(0) — (A+ Ay (0) + B(0))2(0) = wy € Or(0g).

On the other hand, if ||Ul|y is small enough, then so is [|U(0,z)|y-
Thus, when [|[F(0) — w;||y~= is small enough, by Lemma 3.6 there exists a
unique solution zg € Og,(0y) for some Ry > 0 to

(3.37) (A+ Ay (0) + B(0)) 20 = F(0) — wy.
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Since [|z(0)||v < ¢||z||%, we can choose Ry such that z(0) € Og,(0y ), and we
have z(0) = 2. Therefore, if ||[Fy is small enough, F(0) — (4 + Ay (0) +
B(()))zo belongs to H and its norm is small enough, then z € &, the solution
0 (3.36), is a solution to problem

{ Z(t) + (A+ Ap(t) + B(t)2(t) = F(t),

(3.38) (0 = 2.

By definitions of A, Ay (t), B(t), F, the solution z of (3.38) is also a solution
to (3.8) which is equivalent to (3.3). Thus, e*o'z + U € W is a solution to
(3.3).

Second, let us prove uniqueness.
Let vy, v2 be two solutions to (3.3) corresponding to the same data. Putting
w = v, — vy, We have

w e LQ(O, T, V),
w(0) =0,
(3.39) @', u) + 2v(e(w), e(u)) + ((v1 - VYW, u) + {(W - V)va, )
+ 2v(k(x)w, u)r, + 2v(SW, @)ry + 2(a(z)w, u)r,
+ v(k(x)w,u)r, =0 forall ue V.

—kot

Putting w = e ""w, where kg is the constant in Lemma 3.1, we get

e ko'’ = w' + kow. Then, we have
w € Ly(0,T; V),
w(0) =0,
(3.40) (W', u) 4+ 2v(e(w),e(u)) + {(v1 - V)w,u) + ((w - V)va, u) + ko(w, u)
+ 21/( (ﬂf)w U)Fg + 2V(Sw U)Fg + 2( ( )w,u)p5
+ v(k(x)w,u)r, =0 forall u € V,

which is equivalent to (3.39). By Lemma 3.1,

2v(e(w), e(w)) + ko(w, w) + 2v(k(x)w, w)r, + 2v(SW, W)r,
+2(a(z)w, w)r; + v(k(@)w, w)r, 2 8wl

Taking it into account, we can prove w = Oy as in Lemma 3.8 of [14]. Thus,
uniqueness of a solution is proved, and we finished proof of the theorem. [
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REMARK 3.3. Let us consider more precisely the condition that F'(0) —
(A + Ay(0) 4+ B(0))zo belongs to H and its norm is small enough. By
(3.9)~(3.14) we have

(F(0) — (A+ Ay(0) 4+ B(0))z0, u) =
[— (U0, 2),u) = 2v((U(0,2)), &(u)) = ((U(0, ) - V)U(0, ), u)
— 2v(k(2)U(0, ), u)r, — 2v(SU(0), @)r, — 2(a(z)U(0, ), u)r,
= v(k(z)U(0, ), u)r; + (f(0), >
(3.41) + ) (gilt)un)r, + D (0 }
i=2,4,7 i=3,5,6
— [2v(e(20), e(w)) + 2v(k(x) 20, u)r, + 2v(SZ0, W)y
+ 2(a(x)z0, u)r,; + v(k(z)20, u)r, |

— [{(U(0,2) - V)z0,u) + ((20 - V)U(0, ), u)]

— (20, V)zp,u) forallue V.
Taking into account the fact that U(0, z)+ 29 = v, U'(0,z) € Ly(Q) and its
norm is small enough, from (3.41) we can see that the condition mentioned

above is equivalent to the condition wy € Or(0f) for R > 0 small enough,
where wy is defined by

(@o, u) = (£(0),u) + > (¢i(0,2),un)r, + Y ($i(0,2),u)r,
i=2,4,7 i=3,5,6
(3.42) — [2v(e(vo), e(uw)) + 2v(k(x)vo, w)r, + 2v(STo, @)r,
+ 2(a(x)vo, u)rs + v(k(x)ve, w)r, + ((vo - V)vg, w)
+ ko(vo, u)] for all u € V.

REMARK 3.4. IfI'; = @,i =2 ~ 5,7, then the problem is reduced to
one in [15] where a local-in-time solution was studied. In this case kg = 0
(cf. Remark 3.2), and the condition (3.35) is the same with (25) in [15].
And our condition for U is also the same with one in [15].

4. Existence of a Unique Solution to Problem II

Let V1 = {u € HI(Q) divu = 0, ’LL|F1 = 0, u7|(p2ur4) = 0, un\(rgup5) =
0} and Vo _5(Q) = {u € HY(Q) : divu = 0, uT\(p2Up4) =0, un\(pgups) =0}.
Denote by H; the completion of V7 in the space Ly ().
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By Theorems 2.1 and 2.2, for v € H%(Q) N Vra_5(Q) and u € V; we
have that

v
—(Av,u) = (Vu,Vu) — (a—n,u) o
= (Vu,Vu) + (k(z)v,u)r, — (rotv x n,u)pr, + (S0, 4)r,
- (ETL(U)7 U)F4 - 2(£”(”)7 U)F5 - (5{}7 ﬂ)rs
v
-y (),
= (Vv,Vu) + (k(z)v,u)r, — (rotv X n,u)r, + (S0, 4)r,

— (enn(v),u-n)r, — 2(epns(v), u)r; — (Sf},fj
ov
().,

Also, for p € H'(Q) and u € V; we get

)‘Fs

(4.2) (Vp,u) = (p,u- n)UZ:2Fi = (p,u-n)r, + (p,u-n)r, + (pn, w)r,,

where the fact that u - n|r,ur, = 0 was used.
Let

X = {’LU < LQ(O,T;Vl);wI < LQ(O,T;Vl),w” S LQ(O,T; VT)},

[wlloe, = ||w||L2(0,T;V1) + Hw,HLz(O,T;Vl) + ||w”||L2(0,T;V’1‘)7
Yy ={w € Ly(0,T; V]);w' € Ly(0,T;VT)},

[wllay, = ||l Ly0,7:v7) + ||w/HL2(0,T;V;)~

Unlike problem I, for problem II we do not require the condition v.|r, = 0,
and so instead of Assumptions 3.1 and 3.2, we use the following assumptions.

ASSUMPTION 4.1. Assumption 8.1  holds  with  ¢7,¢% €
Ly(0,T; H 2(T;)) instead of ¢7, ¢, € Ly(0,T; H-2(T7))

ASSUMPTION 4.2. There exists a function U € W such that
divU = 0, U‘Fl = hl; UT’FQ =0, Unh'*g =0, UT‘F4 = h4, Un’l"5 = h5>

where W is the same as in the previous section. Also, U(0,z) — vy € V7.
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Taking into account (4.1), (4.2), we get the following variational formu-
lation for Problem II:

FORMULATION 4.1. Find v such that
v—U € Ly(0,T;Vy),
v(0) = vo,
(W' u) +v(Vo, Vu) + {(v - Vv, u) + v(k(z)v, u)r,
+ v(Sv,14)r, + 2(a(z)v, u)r, — v(ST, 4)r,
= (f,u) + Z (@i, un)1; + Z (pi,u)r, for allu € Vy.

i=2.4 i=3,5,7

(4.3)

Taking into account Assumption 4.2 and putting v =Z + U, we get the
following problem which is equivalent to Formulation 4.1:
Find Z such that
Z € Ly(0,T;Vy),
Z(0) = vy — U(0) € Vq,
Z u)y+v(Vz,Vu) + (- V)z,u) + (U - V)z,u) + (- V)U,u)
+ v(k(x)Z,u)r, + v(SZ,@)r, + 2(a(x)Z, u)r, — v(SZ, ).
= —(U',u) — v(VU,Vu) — (U - V)U,u) — v(k(z)U,u)r,
— V(SU,&)FS —2(a(x)U,u)r, + V(SU,&)F5 + (f,u)
+ Z (Gi, un)r; + Z (¢i,u)r, for all u e V.

i=2,4 i=3,5,7

(4.4)

Define an operator Ag; : Vi — V7 by

(4 5) <A01y7u> = V(vy7 V’LL) + V(k‘(.’L‘)y, U)Fz + V(S:lj, a)Fd
‘ + 2(0[(33)];, U)F5 - V(ng a)FE, for all Y,u € Vl-
By virtue of the same argument used to prove Lemma 3.1 we get
LEMMA 4.1. 36 > 0, dk; > 0:

(Agru,u) > 6||uH2V1 - l<;1||u||%[1 for allu € V.
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Putting z = e ¥1*Z, where k; is the constant in Lemma 4.1, and using

the fact that e *1*Z' = 2/ + kiz, we get the following problem which is
equivalent to (4.4):
Find z such that

z € Ls(0,T; V1),

2(0) = 2z = vp — U(0) € Vy,

(2 (1), w) + v(Vz, V) + FH(2(t) - V)2(t),u) + (U(E) - V)z(t), u)
+((=(t) - VU (1), u) + ki (2(8),w) + v(k(z)2(t), w)r,
+ (SE(), @)r, + 2(alz)=(1) EE

(46) =Rt — (U (1),u) = ¥(VU, Vu) = ((

— u(k(2)U (), u)r, — v(ST(), @)r, — 2(a(@)U(t), w)r,
— (ST (), ey + (f(E)u) + > (alt), un)r,

i=2,4
+ Z <¢i(t),u>pi} for all u € Vj.
i=3,5,7
Define operators Ay, Ajy(t) by
(4.7) (Ar1v,u) = (Ag1v,u) + (krv,u)  for all v,u € Vi,

(A1 (t)v,u) = (U(t,z) - V)v,u)

(4.8)
+ ((v-V)U(t,x),u) for all v,u € Vq,

where Ag; is one defined in (4.5). U € W implies U € C ([0,T]; H'(Q2)), and
such definitions have meaning. Also, define an operator By (t) : Vi — V{* by
(4.9) (Bi(t)v,u) = M {(v-V)v,u) for all v,u € V.

Define an element F; € ¥; by

(Fi(t), u) = e~ = (U'(),0) = w(VU (1), Vu)
— (U - V)W), u) ~ v(k@)U (), W), ~ UST(), D),
(4.10) —2a(@)U (), wr, +v(ST(), D, + (f,v)

+ Z<¢iaun r; T Z (i, u)r for all u € Vj.

i=2,4 i=3,5,7
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Now, in the same way as Theorem 3.8 we can prove the following theorem
which is one of the main results of this paper.

THEOREM 4.2. Suppose that Assumptions 4.1 and 4.2 hold. Assume
that ||Ul|lw and the norms of f, ', ¢i, &, in the spaces they belong to are
small enough.

If
(4.11) w; = Fl(O) — (Al + A1U(0) + Bl(O))ZO € Hy,

where zg = vog — U(0,-), and ||w1| g, is small enough, then in the space W
there exists a unique solution to (4.3).

REMARK 4.1. By the same argument as Remark 3.3, we can see that
the condition (4.11) is equivalent to the condition wy € Hi, where Wy € V7
is defined by

<W1,u> = <f(0)7u> + Z <¢i(07$)7 un>Fi + Z <¢i(07m)7 U>Fi
i=2,4 i=3,5,7
(4.12) — [v(Vvo, Vu) + v(k(z)vo, w)r, + (ST, @)r,
+ 2(a(z)vo, w)ry — v(STo, @)rs + ((vo - V)vo, u) + ki(vo, u)]
for all u € V7,

with k1 in Lemma 4.1.

REMARK 4.2. If U =0and I'; = @,i = 2 ~ 5, then problem (4.3) is
reduced to one in [14]. In this case k; = 0. (cf. Remark 3.2). If vy € HY/2(Q),
then (vo - V)vg € La(Q2). Thus, the condition above for w; being in H; is
the same with one of conditions of Theorems 3.5~3.8 in [14], but we do not
demand vy € H™ (), ro > %

5. Existence of a Unique Solution for Perturbed Data

In [14] it is proved that if a solution satisfying smoothness and a com-
patibility condition is given, then there exists a unique solution for small
perturbed data satisfying the compatibility condition. In this section we
get such results for the Problems I and II. In our results the conditions for
a given solution is essentially the same with one in [14], but the smoothness
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condition for the initial functions in the compatibility condition for small
perturbed data is weaker than one in [14](cf. Remark 5.2).
Let V'° = {u € H(Q) : divu = 0}, ro > /2, and

W = {w € Ly(0,T; \~7);w’ € Lo(0,T; \~7),w" € Ly(0,T; v*),w(()) € {7?0} ,
lwllw = llwll 075 + 10103y + 107 0wy + 10(0) [0

Let us consider_ Problem 1.
Let W (z,t) € W be a given solution to Problem I. Let v be the solution
for the data perturbed except h; and put v = Z4+W. Then, we get a problem
for Z:
Find Z such that
Z € L2(07 T; V)7
zZ(0) = 2o = vo — W(0,z) € V,
(7', u) +2v(e(z),e(u) + ((Z - V)Z,u) + (W - V)Z,u)
(5.1) +{((Z- V)W, u) + 2v(k(z)Z,u)r, + 2v(SZ, @)r,
+2( (2)z,u)rs +v(k (x)z, u)r,
(¢

"’ Z d’uun

i=2,4,7 i=3,5,6

w)r, forallueV,

where zg, f, ¢; are perturbations of corresponding data.

REMARK 5.1. Proofs of this section are similar to one in Section 3.
Main difference is that we do not assume smallness of W (0, z) unlike U (0, x)
in Section 3.

Define an operator Ags : V. — V* by
(Ao2y, u) =2v(e(y), (u)) + 2v(k(x)y, u)r, + 2v(57, @)r,
(5.2) + 2(a(z)y, u)r; + v(k(z)y, u)r, + (W(0,z) - V)y, u)
+ ((y - V)W(0,z),u) for all y,u € V.

LEMMA 5.1. There exists 6 > 0 and ko > 0 such that

(Agou, u) > 8||lul|3 — ka||ull?, for allu € V.
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Proor. By Korn’s inequality
(5.3) 2w(e(u),e(u)) > Bllullyy 38> 0,foralluec V.
By Remark 2.2, there exists a constant M such that

15 (@) loos 15(2)lloos [lar(2) [l < M.

Then, there exists a constant ¢y (depend on (3) such that

|2v(k(z)u, uw)p, + 2v(Sa, @), + v(k(z)u, u)r, + 2(a(x)u, u)r;|
(5.4) 3

< _HUH%Il(Q) + collul|?;  for all u € V

(cf. Theorem 1.6.6 in [9]).
Let us estimate (W (0,x)-V)u,u) + ((u- V)W (0, z),u). Since W(0,x) €
C(9Q),

(55 (W (0,2) - V)] < 5l + exllully

Taking divu = 0 into account, we get

oW (0, z)
{((u- VYW (0,2),u) = Z/uj oz, udx

ou
—/89(u-n)(W(0,x)-u)dF—;/Quj%jW(O,x)dx.

On the right hand side of the formula above estimating the first term as in
(5.4) and applying Hélder inequality in the second term, we have

(5.6 (- D)W (0,2, )] < 2l + eallully

Putting 6 = g, ka = co + c1 + c2, from (5.3)-(5.6) we get the asserted
conclusion. [J

—kot —kot—=/

Put z = e7"2'Z, where ks is a constant in Lemma 5.1. Then, e™"2'Z" =

2’ + koz and we have the following problem which is equivalent to (5.1).
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Find z such that

2 € Ly(0,T; V),
z2(0) =z =v9 — W(0) € V,
(' (1)) + 20(e(2)(t), £(u) + €= ((=(t) - V)2(t), u)
+ (W(2) - V)z(t),u) + ((2(t) - VIW(2), u) + k2(2(1),
(5.7) + 2v(k(x)z(t),u)r, + 2v(SZ(t), @)ry + 2(a(x)2(t), u)r,
+ u(k(2)=(8), W),
R ORI EE DR CIORAIES RCIORIIY
i=2,4,7 i=3,5,6
for all u € V.

u)

Define operators Ay, Ay (t) : V. — V* by

<A2y> u> :2V(5(y)> 5(“)) + 21/(]{;('1‘)% u)F2 + 2V(ng a)l"g
(5.8) +2(a(x)y, u)r; + v(k(@)y, u)r, + k2(y, u)
for all y,u € V,

(Aw (t)v,u) = (W (t,x) - V)v,u)

(5.9) +{(v-V)W(t,z),u) forallv,u eV,

where ks is a constant in Lemma 5.1. W € W implies W € C ([0, T; Hl(Q)),
and such definitions are well.
In proof of Lemma 5.1 it is clear that

3
(5.10) (Ao, u) > 2l
Also, by Lemma 5.1
B2
(5.11) ((A2 4+ Aw (0))u,u) > Z||u||v.

Define an operator Ba(t) : V — V* by

(5.12) (By(t)v,u) = e ((v-V)v,u) for all v,u € V.
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Define operators Lo, Ay, Low, B : £ — Y, Cy : £x % — Y and an element
Fr, €Y by
((L22)(t),u) = (2'(), u) + (A2z(t), u)

for all z € &, for all u € V,
(Awz2)(t),u) = (Aw (£)z(t),u) for all z € %, for all u € V,
(Law2)(t), u) = (/(8),u) + {(Az + Aw (£)) 2(8), u)

for all z € &, for all u € V,
((Baz)(t),u) = (Bay(t)z(t),u) for all z € %, for all u eV,
(Co(w, 2)(t),u) = e ((w - V)z,u) + (2 - V)w, u)

for all w, z € &, for all u € V,
(Ba)(8),u) = e |(£(8),uh + Y (0i(t), undr,

i=2,4,7

+ Z <¢z’(7§),u>ri] for all u € V.

i=3,5,6

(5.13)

By the argument as Lemma 3.2 we get

LEMMA 5.2. Cy is a bilinear continuous operator such that & x% — Y.
Under Assumption 3.1 Aw is a linear continuous operator such that X — %Y
and I €Y.

Using (5.10) instead of (3.20), as Lemma 3.3 we get

LEMMA 5.3. The operator Ly defined by Lyz = (2/(0), Loz) for 2 € ¥
s a linear continuous one-to-one operator from X onto H x %Y.

Now, using (5.11) without assuming the fact that ||/ (0, )|/ is small

enough, as Lemma 3.4 we prove the following

v

LEMMA 5.4. The operator Loy defined by Lowz = (2'(0), Lawz) for
z € X is a linear continuous one-to-one operator from & onto H x %Y.

PROOF. As Lemma 3.5 in [14] it is proved that the operator Ay €
(X — %Y) is compact. Thus, Ay € (¥ — H x %) defined by Az =
{0y, Awz} is also compact. Since Loy = Lo + Ay, in order to get the
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asserted conclusion by virtue of Theorem 3.4 in [14] it is enough to prove
that Loy is one-to-one from ¥ into H x Y.

To prove the last fact it is enough to show that the inverse image of
(0g,0aq) by Loy is Og. It is easy to verify that

(5.14) |((A2 + Aw (0))v,u)| < c||v|lv - lullv for all v,u € V.
By (5.11), (5.14) for any ¢ € V* there exists a unique solution y € V' to
(5.15) (A2 + Aw (0))y = ¢.

Let z € % be the inverse image of (0, 0q) by L. Then, 2/(0) = 0g, and
putting ¢ = 0 from the third one in (5.13) we get

((A2 4+ Aw(0))2(0),u) =0 for all u €V,

where z(0) = z(0,x). This means that z(0) is the unique solution to (5.15)
with ¢ = Oy, i.e., 2(0) = Oy. Therefore, z € ¥ satisfies

{ Z(t) + (As + Aw (1)) 2(t) = 0,

(5.16) 2(0) = O,

Now, using (5.16) and Gronwall’s inequality, as in Lemma 3.8 of [14] we can
prove z = Og. It is finished to prove the Lemma. [

By the argument as Lemma 3.5 we get

LEMMA 5.5. The operator Ty defined by Trhz = <z/(0), (Low + Eg)z)

for z € & is continuously differentiable, ToOy = (0g,0q) and the Frechet
derivative of Ty at Oy is Loyy.

Let us consider the following problem
(5.17) (A2 + Aw (0) + B3(0))u = q.

Now, using (5.11) without assuming the fact that || (0, )|, is small

enough, as Lemma 3.6 we can prove

[

LEMMA 5.6. If the norm of ¢ € V* is small enough, then there exists
a unique solution to (5.17) in some Opr(Ov).
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Using Lemmas 5.2~5.6, Proposition 3.7, in the same way as Theorem
3.8 we get

THEOREM 5.7. Suppose that Assumptions 3.1 holds and the norms of
I [, i, @ in the spaces they belong to are small enough.

If
(5.18) Wo = FQ(O) — (A2 + Agw(O) + B2(O))ZO € H,

where zg = vg — U(0,-), and ||wz| g is small enough, then there exists a
unique solution to (5.1) in the space W.

REMARK 5.2. By the same argument as Remark 3.3, we can see that
the condition (5.18) is equivalent to the condition wy € Hj, where wy € V7
is defined by

<w2a u) = <f(0)7u> + Z <¢l(07 x)?un>ri + Z <¢1(07 $)7U>F

i=2,4 i=3,5,7
[2v(e(20), e(uw)) + 2v(k(z) 20, u)r, + 20(SZ0, W),
+ 2(a(x)z0, u)rs + v(k(x)z0, u)r, + (W(0,2) - V)20, u)
+ (20 - V)W (0, ), u) + k2 (20, u) + {(20 - V)z0,u)]
forallu e V

(5.19)

with ko9 in Lemma 5.1.

Let us consider Problem II.

Let W (z,t) € W be given solution to Problem II. Let v be the solution
for the data perturbed except h; and put v = Zz4+W. Then, we get a problem
for z:

Find Z such that

+v(Vz,Vu) + <(E )z, u) + (W - V)z,u) + (- V)W, u)
+ v(k(x)Z,u)r, + v(SZ,@)r, + 2(a(x)Z,u)r, — v(SZ, @),

f) >+ <¢Z7unl—‘l + Z (ybl) u)r; for alluEVh
1=2,4 1=3,5,7

—~
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where zg, f, ¢; are perturbations of corresponding data.
By the same argument as Theorem 5.7 we have

THEOREM 5.8. Suppose that Assumptions 3.1 holds and the norms of
I, f's @i, @l in the spaces they belong to are small enough. Define an element
w3 € V7 by
(w3, u) = (f(0),u) + Z (¢i(0, ), un>Fi + Z (i(0, ), u>Fi
i=2,4 i=3,5,7

[ VZ(), Vu —|— V(k( )Z(), )r2 + V(Sfo,ﬁ)rs

2( ( )ZOv )F5 - V(SZ(Jv )F5 + <(W(07$) ’ V)Zo,u>

+ (20 - VIW(0,2), 1) + k3(20,u) + {(20 - V)20, u)]

for allu € Vyq,

(5.21)

where k3 is a constant determined as in Lemma 5.1.
If ws € Or(0p,) for R > 0 small enough, then there exists a unique
solution to (5.20) in the space W

REMARK 5.3. If I'; = @,i = 2 ~ 5, then problem (5.20) is reduced to
one in [14]. If 29 € HY2(Q), then (20-V)z0, (W (0,2)-V)z0, (20- V)W (0,z) €
L2(Q2) and k3zp € La(2). Thus, the last 4 terms in the right hand side of
(5.21) do not give any effect to the condition for ws being in Hp, and so
the conditions in the Theorem 5.8 is the same with one of conditions of
Theorems 3.5~3.8 in [14]. Thus, Theorem 5.8 guarantees existence of a
unique solution under a condition weaker that one in [14].

Note that putting W (¢,2) = 0 in Theorems 5.7 and 5.8, we can not get
Theorems 3.8 and 4.2, since there h; # 0.
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