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Non-stationary Navier-Stokes Equations with Mixed

Boundary Conditions

By Tujin Kim∗ and Daomin Cao†

Abstract. In this paper we are concerned with the initial bound-
ary value problem of the 2, 3-D Navier-Stokes equations with mixed
boundary conditions including conditions for velocity, static pressure,
stress, rotation and Navier slip condition together. Under a compat-
ibility condition at the initial instance it is proved that for the small
data there exists a unique solution on the given interval of time. Also,
it is proved that if a solution is given, then there exists a unique so-
lution for small perturbed data satisfying the compatibility condition.
Our smoothness condition for initial functions in the compatibility
condition is weaker than one in such a previous result.

1. Introduction

For the Navier-Stokes equations

−ν∆v + (v · ∇)v + ∇p = f, ∇ · v = 0 in Ω ⊂ Rl, l = 2, 3;

and
∂v

∂t
− ν∆v + (v · ∇)v + ∇p = f, ∇ · v = 0 in Ω

different natural and artificial boundary conditions are considered. For ex-

ample on solid walls, homogeneous Dirichlet condition v = 0 is often used.

On a free surface a Neumann condition 2νε(v)n − pn = 0 may be useful.

Here and in what follows ε(v) denotes the so-called strain tensor with the

components εij(v) = 1
2(∂xivj +∂xjvi) and n is the outward normal unit vec-

tor. For simulations of flows in the presence of rough boundaries, the Navier

∗Partially supported by AMSS in Chinese Academy of Sciences.
†Partially supported by NSFC grants (No. 11271354 and No. 11331010) and Beijing

Center for Mathematics and Information Interdisciplinary Sciences.
2010 Mathematics Subject Classification. 35Q30, 35A02, 35A15, 76D03, 76D05.
Key words: Navier-Stokes equations, Pressure, Stress, Rotation, Slip, Mixed bound-

ary conditions, Mixed problem, Unique existence.

159



160 Tujin Kim and Daomin Cao

slip-with-friction boundary conditions v · n = 0, (νεnτ (v) + αvτ )|Γ5 = 0 is

also used, where εnτ (v) and vτ are, respectively, the tangent components

of ε(v)n and v. Combination of the condition vn = 0 and the tangential

component of the friction (slip condition for uncovered fluid surfaces) or the

condition vτ = 0 and the normal component of the friction (condition for

in/out-stream surfaces) are frequently used. At the outlet of a channel “do

nothing” condition ν ∂v
∂n −pn = 0, i.e. the outlet boundary condition, is also

used. Rotation boundary condition has been fairly extensively studied over

the past several years. Also, for inlet or outlet of flow one deals with the

static pressure p or total pressure (Bernoulli’s pressure) 1
2 |v|2+p. For papers

dealing with the problems mentioned above one can refer to Introduction

of [13].

In practice we deal with mixture of some kind of boundary conditions.

For a channel flow a mixture of Dirichlet condition v = 0 on the wall and

“do nothing” condition on the outlet is used. But for a channel flow with

a rough boundary surface a mixture of Dirichlet condition, the Navier slip-

with-friction boundary condition and “do nothing” condition may be used.

For a flow in a vessel with in/outlet a mixture of Dirichlet condition v = 0

on the wall and pressure conditions on the inlet/outlet is used. But for

the flow in a vessel with in/outlet and a free surface a mixture of Dirichlet

condition, a Neumann condition 2νε(v)n − pn = 0 and pressure conditions

may be used.

There are vast literatures for the Stokes and Navier-Stokes problems

with mixed boundary conditions and several variational formulations are

used for them, but two possible examples above are not considered except

[13]. With exception [13] mixtures of boundary conditions for Navier-Stokes

equations may be divided into three groups according to what bilinear form

is used for a variational formulation (for more concrete one can refer to

Introduction of [13]).

To include more different boundary conditions together, in [13] the re-

lations among strain, rotation, normal derivative of vector field and shape

of boundary surface are obtained and applied to the stationary and non-

stationary Navier-Stokes problems with mixture of seven kinds of boundary

conditions. However, for the non-stationary Navier-Stokes problems we only

were concerned with a mixed boundary condition including total pressure

(not static pressure), total stress (not stress) and so on. Thus, in this paper
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we will study the non-stationary problems with a mixed boundary condition

including static pressure (not total pressure), stress (not total stress) and

so on.

On the other hand, when one of static pressure (instead of total pres-

sure), stress (instead of total stress) or the outlet boundary condition is

given on a portion of boundary, for the initial boundary value problems of

the Navier-Stokes equations existence of a unique local-in-time solution and

a unique solution on a given interval for small given data (in what follows

we call it a solution for small data) are proved. In the mathematical point of

view the main difficulty of such problems consists in the fact that in priori

estimation the inertial term is not canceled, and in the mechanical point

of view it is in the fact that the kinetic energy of fluid is not controlled by

the data and uncontrolled “backward flow” can take place at the portion of

boundary(cf. preface in [2]).

The Navier-Stokes equations with mixture of Dirichlet condition and

stress condition are studied. In [15] under smoothness condition and a

compatibility condition of data at the initial instance existence of a unique

local-in-time solution to the 3-D Navier-Stokes equations is studied. In [2]

for the Navier-Stokes equations on the polyhedral domain with mixture of

Dirichlet condition, Navier slip condition and stress condition a local-in-

time solution is studied. Here smoothness of solutions to the corresponding

steady Stokes problem is used essentially.

The Navier-Stokes equations and the Boussinesq equations with mixture

of Dirichlet condition and the outlet boundary condition are studied. For

2-D Navier-Stokes equations a local-in-time solution in [7] and a solution

for small data in [8] are studied. Here also smoothness of solutions to the

corresponding 2-D steady linear problem is important. For the Boussinesq

systems a local-in-time strong solutions in [3] on 2-D channel and in [6] on

3-D channel are studied. Here smoothness of solutions to the corresponding

steady linear problems, respectively, in [5] and [1] is the key. In [14] it is

proved that if under a compatibility condition at initial instance there ex-

ists a unique solution, then so does for small perturbed data. This result

shows that under the compatibility condition there exists a unique solution

for small data. In [20] for the Boussinesq equations it is proved that un-

der a compatibility condition there exists a unique local-in-time solution,

which is similar to the result in [15]. Smoothness of initial function in the
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compatibility condition of [14] is stronger than one in [15] and [20].

The 2-D Navier-Stokes equations with mixture of Dirichlet condition

and pressure is studied. In [16] existence of a unique solution for small data

is proved.

The Navier-Stokes equations with mixture of Dirichlet condition, outlet

condition and tangent stress condition is studied. In [4] existence of a unique

solution for small perturbation data of the given solution is studied. Here

also smoothness of solutions to the corresponding steady linear problem is

the key.

In the present paper as a continuation of [13], we are concerned with

the non-steady Navier-Stokes equations with mixed boundary conditions in-

volving conditions for Dirichlet, static pressure, rotation, stress and normal

derivative of velocity together. Owing to the relations among strain, rota-

tion, normal derivative of velocity and shape of boundary surface obtained

in [13] (Theorems 2.1, 2.2), we can consider all these boundary conditions

together.

In general, the solution of the Stokes problem with mixed boundary con-

ditions has singularities on the intersections of surfaces for different bound-

ary conditions and the leading singular exponent of the solution is a function

of the intersection angle (cf. [19]). For the problem with Dirichlet condition

and “do nothing” condition if the intersection angle is π/2, then under some

conditions for data the solution belongs to H2(Ω) (cf. [5]). For the prob-

lem with Dirichlet condition and stress conditions, for similar results refer

to subsection 5.5 of [17] and section 10.3 of [18]. In our case the bound-

ary conditions are more complicated than others, and there is no result

for smoothness of solutions to the corresponding steady linear problems.

Thus, we prove existence of a unique weak solution for small data under a

compatibility condition at initial instance. We also prove that if a solution

smooth as in [14] is given, then under the compatibility condition for the

small perturbed data there exists a unique solution.

We are concerned with two problems distinguished according to bound-

ary conditions. Using relations among strain, rotation, normal derivative

of vector field and shape of boundary surface, which are obtained in [13],

we reflect all these boundary conditions into variational formulations for

problems.

This paper consists of 5 sections. In the end of this section the method
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in this paper is compared with another one.

In Section 2, the formulations of problems and some results for defi-

nitions of weak solutions are given. According to bilinear forms used for

variational formulations for problems, the involved boundary conditions are

slightly different. Thus, difference between our two problems is explained

(Remark 2.1).

In Section 3, first, for the Navier-Stokes problems with seven kinds of

boundary conditions a variational formulation, which is based on the bilinear

form

a(v, u) = 2Σi,j(εij(v), εij(u))L2(Ω) for v, u ∈ H1(Ω),(1.1)

is given. Next, by a transformation of the unknown function, the problem

is reduced to an equivalent problem in which the linear main operator is

positive definite. Then, studying properties of linear operator differential

equations and using a local diffeomorphism theorem of nonlinear operator,

we prove that under a compatibility condition similar to one in [14], [15],

[20] there exists a unique solution for small data (Theorem 3.8).

In Section 4 for the Navier-Stokes problems with six kinds of boundary

conditions, which is a little different from one in Section 3, a variational

formulation based on the bilinear form

a(v, u) = (∇v,∇u)L2(Ω) for v, u ∈ H1(Ω)(1.2)

is given. Also, by a transformation of the unknown function, the problem is

reduced to another equivalent problem in which the linear main operator is

positive definite. The result similar to one in Section 3 is obtained (Theorem

4.2).

Section 5 is considered in comparison with [14] rather than practical

models. Existence of a unique solution for the small data perturbed from a

given solutions is proved under a compatibility condition (Theorem 5.7).

The compatibility conditions in Sections 3, 4 and 5 are similar to one in

[15], [20] and [14]. In point of view of smoothness of the initial functions,

the conditions are the same with one in [15], [20] concerning with local-in-

time solutions (cf. Remark 3.4), but weaker than one in [14] concerning

with solutions for small data as our case (cf. Remarks 4.2, 5.2). In [14] the

main results for the nonlinear problem as perturbation of a linear problem
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is obtained by a local diffeomorphism theorem relying on the properties of

the corresponding linear problem, and so is it in our paper.

Then, let us consider why smoothness of the initial functions in our

compatibility conditions is weaker than one in [14].

Let Hk = (W k
2 (Ω))l be a Sobolev spaces on Ω with dimension l, V be a

divergence-free subspace of H1 satisfying appropriate boundary conditions,

H - the closure of V in (L2(Ω))l, V ∗- the adjoint space of V , V r0(Ω) =

V ∩ Hr0(Ω), where r0 > l/2, � = {w ∈ L2(0, T ;V );w′ ∈ L2(0, T ;V ), w′′ ∈
L2(0, T ;V ∗)}, � = {w ∈ L2(0, T ;V ∗);w′ ∈ L2(0, T ;V ∗)} and A : V → V ∗-
the Stokes operator.

Considering a linear problem{
u′(t) + Au(t) = f(t),

u(0) = ϕ,

in [14] the author proved the fact that a map u → {u(0), Lu ≡ u′ + Au}
is linear continuous one-to-one from X = {u ∈ � : u(0) ∈ V r0(Ω)} onto

Y = {[ϕ, h] : ϕ ∈ V r0(Ω), h ∈ �, h(0) − Aϕ ∈ H} (Theorem 3.1 in [14]).

Then, starting from this fact, the author studied a nonlinear problem{
u′(t) + (A + B)u(t) = f(t),

u(0) = ϕ,
(1.3)

where B : V → V ∗ is defined by 〈Bu, v〉 = 〈(u · ∇)u, v〉 for u, v ∈ V . To

this end, it was proved that the inverse of a nonlinear map u → {u(0), L̃u ≡
u′+(A+B)u} is one-to-one from a neighborhood of 0Y onto a neighborhood

of 0X . From this fact the author obtained that under the compatibility

condition f(0) − Aϕ ∈ H,ϕ ∈ V r0(Ω) and smallness of data, there exists a

unique solution to (1.3).

However, we prove that for a modified operator A a map u → {u′(0),

Lu ≡ u′ +Au} is linear continuous one-to-one from � onto H×� (Lemmas

3.3, 4.3). Then using this fact, we prove that for a modified operator B(t)

the inverse of a nonlinear map u → {u′(0), L̃u ≡ u′+(A+B(t))u} is one-to-

one from a neighborhood of 0H×� onto a neighborhood of 0�. By this under

the compatibility condition f(0)−Aϕ−B(0)ϕ ∈ H without ϕ ∈ V r0(Ω) and

smallness of data, we get existence of unique solution to (1.3) (Theorems 3.8,

4.2, 5.7, 5.8). Since B(0)ϕ = (ϕ · ∇)ϕ, for ϕ ∈ V l/2(Ω) we get B(0)ϕ ∈ H,

and so our condition is weaker than one in [14].
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2. Problems and Preliminaries

Throughout this paper we will use the following notation.

Let Ω be a connected bounded open subset of Rl, l = 2, 3. ∂Ω ∈ C0,1,

∂Ω = ∪N
i=1Γi, Γi ∩ Γj = ∅ for i �= j, Γi ∈ C2 for i = 2, 3. For Problems

I and II stated below we assume, respectively, Γ7 ∈ C2 and Γ5 ∈ C2. Let

n(x) and τ(x) be, respectively, outward normal and tangent unit vectors at

x in ∂Ω. When X is a Banach space, X = X l and X∗ is the dual of X. Let

W k
α(Ω) be Sobolev spaces, Hk(Ω) = W k

2 (Ω), and so H1(Ω) = {H1(Ω)}l.
Q = Ω × (0, T ), Σi = Γi × (0, T ), 0 < T < ∞.

An inner product and a norm in the space L2(Ω) are denoted, respec-

tively, by (· , ·) and ‖ · ‖; and 〈· , ·〉 means the duality pairing between a

Sobolev space X and its dual one. Also, (· , ·)Γi is an inner product in the

L2(Γi) or L2(Γi); and 〈· , ·〉Γi means the duality pairing between H
1
2 (Γi) and

H− 1
2 (Γi) or between H

1
2 (Γi) and H− 1

2 (Γi). The inner product and norms

in Rl, respectively, are denoted by (· , ·)Rl and | · |. Sometimes a · b is used

for inner product in Rl between a and b. When X is a Banach space, the

zero element of X is denoted by 0X and �M (0X) means M -neighborhood of

0X.

In this paper for the Navier-Stokes problem
∂v
∂t − ν∆v + (v · ∇)v + ∇p = f, in Q,

∇ · v = 0,

v(0) = v0

(2.1)

we are concerned with the problems I and II, which are distinguished accord-

ing to boundary conditions. Problem I is one with the boundary conditions

(1) v|Γ1 = h1,

(2) vτ |Γ2 = 0, −p|Γ2 = φ2,

(3) vn|Γ3 = 0, rot v × n|Γ3 = φ3/ν,

(4) vτ |Γ4 = h4, (−p + 2νεnn(v))|Γ4 = φ4,

(5) vn|Γ5 = h5, 2(νεnτ (v) + αvτ )|Γ5 = φ5,

(6) (−pn + 2νεn(v))|Γ6 = φ6,

(7) vτ |Γ7 = 0, (−p + ν
∂v

∂n
· n)|Γ7 = φ7,

(2.2)
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and Problem II is one with the conditions

(1) v|Γ1 = h1,

(2) vτ |Γ2 = 0, −p|Γ2 = φ2,

(3) vn|Γ3 = 0, rot v × n|Γ3 = φ3/ν,

(4) vτ |Γ4 = h4, (−p + 2νεnn(v))|Γ4 = φ4,

(5) vn|Γ5 = h5, 2(νεnτ (v) + αvτ )|Γ5 = φ5,

(6) (−pn + ν
∂v

∂n
)|Γ7 = φ7,

(2.3)

together Γ6 = ∅. Here and in what follows un = u·n, uτ = u−(u·n)n, ε(v) =

{εij(v)}, εn(v) = ε(v)n, εnn(v) = (ε(v)n, n)Rl , εnτ (v) = ε(v)n − εnn(v)n,

and hi, φi are functions or vector functions of x, t defined on Γi × (0, T ).

Remark 2.1. The condition (6) of (2.3) (with φ7 = 0) is “do nothing”

condition, but (7) of (2.2) (with φ7 = 0) is rather different from “do nothing”

condition and we can not unify two problems.

First, let us consider why (7) of (2.2) is not changed with (6) of (2.3).

In Section 3 relying on the bilinear form (1.1) and integrating by parts

(−ν∆v + ∇p, u), we get boundary integral (−2ν(ε(v)n, u)∂Ω + (p, u · n)∂Ω.

Then, in order to reflect the boundary conditions into Formulation 3.1,

using vτ = 0 or vn = 0 and applying Theorems 2.1 or 2.2, we transform

the boundary integrals on Γi, i = 2, 3, 7. (cf. (3.1)-(3.3)). Concretely, under

conditions vτ |Γ7 = 0 we have〈
− pn + ν

∂v

∂n
, u

〉
Γ7

∀u with uτ = 0.(2.4)

Usually, vτ = 0 does not imply ∂v
∂n · τ = 0, but by virtue of the conditions

uτ = 0 and (7) of (2.2) we have〈
− pn + ν

∂v

∂n
, u

〉
Γ7

=
〈
− p + ν

∂v

∂n
n, un

〉
Γ7

= 〈φ7, un〉Γ7
∀u with uτ = 0.

(2.5)

Thus, substituting
〈
−pn+ν ∂v

∂n , u
〉
Γ7

with 〈φ7, un〉Γ7
, we reflect the boundary

condition (7) of (2.2) into Formulation 3.1.

Changing (7) of (2.2) by (−pn + ν ∂v
∂n)|Γ7 = φ7 with a vector φ7 and

substituting
〈
− pn + ν ∂v

∂n , u
〉
Γ7

with 〈φ7, u〉Γ7
, we can come to a formal
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variational formulation. But when a solution v is smooth enough, trying to

convert from the formal variational formulation to the original problem, we

come to

(−pn + ν
∂v

∂n
, u)Γ7 = 〈φ7, u〉Γ7

∀u, uτ = 0(2.6)

on Γ8. If we have (2.6) without uτ = 0, then from (2.6) we can get −pn +

ν ∂v
∂n = φ7 on Γ8. But owing to uτ = 0 we only get (−pn + ν ∂v

∂n , n)Γ7 =<

φ7, n >Γ7 . This shows that the formal variational formulation is not equiva-

lent to the original condition on Γ7 and equivalent to (−p+ν ∂v
∂nn)|Γ7 = φ7 ·n.

(Thus, (7) of (3.3) in [13] was corrected. See Erratum to: [13].)

Similarly, relying on the form (1.2), we can reflect “do nothing” con-

dition into Formulation 4.1, but can not do (6) of (2.2). (cf. (4.1)-(4.3)).

Therefore, two problems are not unified.

“Do nothing” boundary condition results from variational formulation

based on (1.2) and does not have a real physical meaning, but is rather used

in truncating large physical domains to smaller computational domains by

assuming parallel flow. If the flow is parallel in a near the boundary, then

(7) of (2.2) is same with “do nothing” condition.

For variational formulations of Problems I, II we need the following.

Let Γ be a surface (curve for l = 2) of C2 and v be a vector field of C2 on

a domain of Rl near Γ. In what follows the surface is a piece of boundary of

3-D or 2-D bounded connected domains, and so we can assume the surface

is oriented.

Theorem 2.1 (Theorem 2.1 in [13]). Suppose that v · n|Γ = 0. Then,

on the surface Γ the followings hold.

(ε(v)n, τ)Rl =
1

2
(rot v × n, τ)Rl − (Sṽ, τ̃)Rl−1 ,(2.7)

(rot v × n, τ)Rl =

(
∂v

∂n
, τ

)
Rl

+ (Sṽ, τ̃)Rl−1 ,(2.8)

(ε(v)n, τ)Rl =
1

2

(
∂v

∂n
, τ

)
Rl

− 1

2
(Sṽ, τ̃)Rl−1 ,(2.9)
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where S is the shape operator of the surface Γ for l = 3, i.e.

S =

(
L K

M N

)
,

L =

(
e1,

∂n

∂e1

)
Rl

, K =

(
e2,

∂n

∂e1

)
Rl

,

M =

(
e1,

∂n

∂e2

)
Rl

, N =

(
e2,

∂n

∂e2

)
Rl

,

and the curvature of Γ for l = 2. Here ei are the unit vectors in a local

curvilinear coordinates on Γ and ṽ, τ̃ are expressions of the vectors v, τ in

the coordinate system.

Theorem 2.2 (Theorem 2.2 in [13]). If vτ |Γ = 0 and div v = 0, then

on the surface Γ the following holds.

(ε(v)n, n)Rl =

(
∂v

∂n
, n

)
Rl

= −(k(x)v, n)Rl

where k(x) = divn(x).

Remark 2.2 (cf. [13]). k(x) = divn(x) = Tr(S(x)) = 2 × mean cur-

vature.

If Γ is a piece of ∂Ω, then since ∂Ω ∈ C0,1 and Γ ∈ C2, elements of S

belong to C(Γ̄) and so does k(x).

3. Existence of a Unique Solution to Problem I

We use the following notation.

V = {u ∈ H1(Ω) : divu = 0, u|Γ1 = 0, uτ |Γ2∪Γ4∪Γ7 = 0, un|Γ3∪Γ5 = 0}
and VΓ237(Ω) = {u ∈ H1(Ω) : divu = 0, uτ |Γ2∪Γ7 = 0, un|Γ3 = 0}. Denote

by H the completion of V in the space L2(Ω). Through this paper Ṽ =

{u ∈ H1(Ω) : divu = 0}.
By Theorems 2.1 and 2.2 we have that for v ∈ H2(Ω) ∩ VΓ237(Ω) and
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u ∈ V

−(∆v, u) = 2(ε(v), ε(u)) − 2(ε(v)n, u)∪7
i=2Γi

= 2(ε(v), ε(u)) + 2(k(x)v, u)Γ2 − (rot v × n, u)Γ3

+ 2(Sṽ, ũ)Γ3 − 2(εn(v), u)∪7
i=4Γi

= 2(ε(v), ε(u)) + 2(k(x)v, u)Γ2 − (rot v × u, u)Γ3

+ 2(Sṽ, ũ)Γ3 − 2(εnn(v), u · n)Γ4 − 2(εnτ (v), u)Γ5

− 2(εn(v), u)Γ6 −
(

∂v

∂n
, u

)
Γ7

+ (k(x)v, u)Γ7 .

(3.1)

Also, for p ∈ H1(Ω) and u ∈ V we have

(∇p, u) = (p, u · n)∪7
i=2Γi

= (p, u · n)Γ2 + (p, u · n)Γ4 + (pn, u)Γ6∪Γ7 ,(3.2)

where the fact that un|Γ3∪Γ5 = 0 was used.

Let

� = {w ∈ L2(0, T ;V);w′ ∈ L2(0, T ;V), w′′ ∈ L2(0, T ;V∗)},
‖w‖� = ‖w‖L2(0,T ;V) + ‖w′‖L2(0,T ;V) + ‖w′′‖L2(0,T ;V∗),

� = {w ∈ L2(0, T ;V∗);w′ ∈ L2(0, T ;V∗)},
‖w‖� = ‖w‖L2(0,T ;V∗) + ‖w′‖L2(0,T ;V∗),

� = {w ∈ L2(0, T ; Ṽ);w′ ∈ L2(0, T ; Ṽ), w′′ ∈ L2(0, T ; Ṽ
∗
)},

‖w‖� = ‖w‖
L2(0,T ;Ṽ)

+ ‖w′‖
L2(0,T ;Ṽ)

+ ‖w′′‖
L2(0,T ;Ṽ

∗
)
.

Here and in what follows w′ means the derivative of w(t) with respect to t.

For Problem I, we use the following assumptions.

Assumption 3.1. f, f ′ ∈ L2(0, T ;V∗), φi, φ
′
i ∈ L2(0, T ;H− 1

2 (Γi)),

i = 2, 4, 7, φi, φ
′
i ∈ L2(0, T ; H− 1

2 (Γi)), i = 3, 5, 6, αij ∈ L∞(Γ5), where

αij are components of the matrix α, and Γ1 �= ∅.

Assumption 3.2. There exists a function U ∈ � such that

divU = 0, U |Γ1 = h1, Uτ |Γ2∪Γ7 = 0, Un|Γ3 = 0, Uτ |Γ4 = h4, Un|Γ5 = h5.

Also, U(0, x) − v0 ∈ V.
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Remark 3.1. In practical situations h4, h5 = 0, and in the cases if for

every fixed t h1(t, x) ∈ H
1
2
00(Γ1),

∫
Γ1

h1(t, x) · ndx = 0 and ‖h1(t, x)‖
H

1
2 (Γ1)

is smooth enough with respect to t, then there exists such a function U .

Taking (3.1) and (3.2) into account, we get the following variational

formulation for Problem I:

Formulation 3.1. Find v such that

v − U ∈ L2(0, T ;V),

v(0) = v0,

〈v′, u〉 + 2ν(ε(v), ε(u)) + 〈(v · ∇)v, u〉 + 2ν(k(x)v, u)Γ2

+ 2ν(Sṽ, ũ)Γ3 + 2(α(x)v, u)Γ5 + ν(k(x)v, u)Γ7

= 〈f, u〉 +
∑

i=2,4,7

〈φi, un〉Γi +
∑

i=3,5,6

〈φi, u〉Γi for all u ∈ V.

(3.3)

Taking Assumption 3.2 into account, put v = z +U . Then, we have the

following problem equivalent to Formulation 3.1:

Find z such that

z ∈ L2(0, T ;V),

z(0) = z0 ≡ v0 − U(0) ∈ V,

〈z′, u〉 + 2ν(ε(z), ε(u)) + 〈(z · ∇)z, u〉 + 〈(U · ∇)z, u〉 + 〈(z · ∇)U, u〉
+ 2ν(k(x)z, u)Γ2 + 2ν(Sz̃, ũ)Γ3 + 2(α(x)z, u)Γ5

+ ν(k(x)z, u)Γ7

= −(U ′, u) − 2ν(ε(U), ε(u)) − 〈(U · ∇)U, u〉 − 2ν(k(x)U, u)Γ2

− 2ν(SŨ, ũ)Γ3 − 2(α(x)U, u)Γ5 − ν(k(x)U, u)Γ7 + 〈f, u〉
+

∑
i=2,4,7

〈φi, un〉Γi +
∑

i=3,5,6

〈φi, u〉Γi for all u ∈ V.

(3.4)

Now, define an operator A0 : V → V∗ by

〈A0y, u〉 =2ν(ε(y), ε(u)) + 2ν(k(x)y, u)Γ2 + 2ν(Sỹ, ũ)Γ3

+ 2(α(x)y, u)Γ5 + ν(k(x)y, u)Γ7 for all y, u ∈ V.
(3.5)
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Lemma 3.1. ∃δ > 0, ∃k0 ≥ 0; 〈A0u, u〉 ≥ δ‖u‖2
V−k0‖u‖2

H for all u ∈
V.

Proof. By Korn’s inequality

2ν(ε(u), ε(u)) ≥ β‖u‖2
V ∃β > 0, for all u ∈ V.(3.6)

By Remark 2.2 and Assumption 3.1, there exists a constant M such that

‖S(x)‖∞, ‖k(x)‖∞, ‖α(x)‖∞ ≤ M,

and so there exists a constant c0 (depending on β) such that

|2ν(k(x)z, z)Γ2 + 2ν(Sz̃, z̃)Γ3 + ν(k(x)z, z)Γ7 + 2(α(x)y, u)Γ5 |

≤ β

2
‖z‖2

H1(Ω) + c0‖z‖2
H dt for all z ∈ V

(3.7)

((cf. Theorem 1.6.6 in [9] or (1), p. 258 in [11])). Put δ = β
2 , k0 = c0. Then,

by (3.6), (3.7) we come to the asserted conclusion. �

Remark 3.2. In process of proof of Lemma 3.1, we see that if Γi =

∅, i = 2, 3, 7, or these are unions of pieces of planes (segments in case of

2-D)and Γ5 = ∅ or α(x) = 0, then we can take k0 = 0.

When k0 > 0, if k0 is not small enough, then the operator defined by

(3.5) is not positive, and so let us transform the unknown function to get a

positive operator A in (3.9) bellow. Now, let k0 be the constant in Lemma

3.1 and put z = e−k0tz. Then, since e−k0tz′ = z′ + k0z, we get the following

problem equivalent to problem (3.4):
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Find z such that

z ∈ L2(0, T ;V),

z(0) = v0 − U(0) ∈ V,

〈z′(t), u〉 + 2ν(ε(z(t)), ε(u)) + ek0t〈(z(t) · ∇)z(t), u〉
+ 〈(U(t) · ∇)z(t), u〉 + 〈(z(t) · ∇)U(t), u〉 + k0(z(t), u)

+ 2ν(k(x)z(t), u)Γ2 + 2ν(Sz̃(t), ũ)Γ3 + 2(α(x)z(t), u)Γ5

+ ν(k(x)z(t), u)Γ7

= e−k0t
[
− (U ′(t), u) − 2ν(ε(U(t)), ε(u)) − 〈(U(t) · ∇)U(t), u〉

− 2ν(k(x)U(t), u)Γ2 − 2ν(SŨ(t), ũ)Γ3 − 2(α(x)U(t), u)Γ5

− ν(k(x)U(t), u)Γ7 + 〈f(t), u〉 +
∑

i=2,4,7

〈φi(t), un〉Γi

+
∑

i=3,5,6

〈φi(t), u〉Γi

]
for all u ∈ V.

(3.8)

Define operators A, AU (t) : V → V∗ by

〈Av, u〉 = 〈A0v, u〉 + (k0v, u) for all v, u ∈ V,(3.9)

〈AU (t)v, u〉 = 〈(U(t, x) · ∇)v, u〉
+ 〈(v · ∇)U(t, x), u〉 for all v, u ∈ V,

(3.10)

where A0 is the operator by (3.5) and k0 is one in Lemma 3.1. Since U ∈ �,

we have U ∈ C
(
[0, T ];H1(Ω)

)
and so such a definition is well. Then, the

operator A is positive definite, and this fact is used in future.

Define an operator B(t) : V → V∗ and F (t) ∈ V ∗ by

〈B(t)v, u〉 = ek0t〈(v · ∇)v, u〉 for all v, u ∈ V,(3.11)

〈F (t), u〉 = e−k0t
[
− (U ′(t), u) − 2ν(ε(U)(t), ε(u))

− 〈(U(t) · ∇)U(t), u〉 − 2ν(k(x)U(t), u)Γ2

− 2ν(SŨ(t), ũ)Γ3 − 2(α(x)U(t), u)Γ5

− ν(k(x)U(t), u)Γ7 + 〈f(t), u〉

+
∑

i=2,4,7

〈φi(t), un〉Γi +
∑

i=3,5,6

〈φi(t), u〉Γi

]
for all u ∈ V.

(3.12)



Non-stationary Navier-Stokes Equations with Mixed Boundary Conditions 173

Then, (3.8) is written by

z ∈ L2(0, T ;V),

z(0) = v0 − U(0) ∈ V,

z′(t) + (A + AU (t) + B(t)) z(t) = F (t).

(3.13)

Now, define operators L, ÃU , LU , B̃ : � → �, C : �×� → � and F ∈ �
by

〈(Lz)(t), u〉 = 〈z′(t), u〉 + 〈Az(t), u〉 for all z ∈ �, for all u ∈ V,

〈(ÃUz)(t), u〉 = 〈AU (t)z(t), u〉 for all z ∈ �, for all u ∈ V,

〈(LUz)(t), u〉 = 〈z′(t), u〉 + 〈(A + AU (t))z(t), u〉
for all z ∈ �, for all u ∈ V,

〈(B̃z)(t), u〉 = 〈B(t)z(t), u〉 for all z ∈ �, for all u ∈ V,

〈C(w, z)(t), u〉 = ek0t〈(w(t) · ∇)z(t), u〉 + ek0t〈(z(t) · ∇)w(t), u〉
for all w, z ∈ �, for all u ∈ V,

(F )(t) = F (t).

(3.14)

Lemma 3.2. C is a bilinear continuous operator such that �×� → �.

Under Assumptions 3.1 and 3.2, ÃU is a linear continuous operator such

that � → � and F ∈ �.

Proof. Obviously, C is bilinear. When w ∈ �,

w ∈ L∞(0, T ;V), ‖w‖L∞(0,T ;V) ≤ c
[
‖w‖L2(0,T ;V) + ‖w′‖L2(0,T ;V)

]
and by virtue of Hölder inequality and the imbedding theorem∣∣ek0t〈(w · ∇)z, u〉 + ek0t〈(z · ∇)w, u〉

∣∣
≤ c(‖w‖L3‖∇z‖L2‖u‖L6 + ‖z‖L3‖∇w‖L2‖u‖L6) ≤ c‖w‖V‖z‖V‖u‖V

for all w, z, u ∈ V.

Thus,

‖C(w, z)‖L2(0,T ;V∗) ≤ c‖w‖L∞(0,T ;V)‖z‖L2(0,T ;V) ≤ c‖w‖� · ‖z‖�.(3.15)
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Also, since

|〈C(w, z)′(t), u〉| = ek0t
∣∣k0〈(w · ∇)z, u〉 + k0〈(z · ∇)w, u〉 + 〈(w′ · ∇)z, u〉

+ 〈(w · ∇)z′, u〉 + 〈(z′ · ∇)w, u〉 + 〈(z · ∇)w′, u〉
∣∣,

taking (3.15) into account we have

‖C(w, z)′‖L2(0,T ;V∗) ≤ c‖C(w, z)‖L2(0,T ;V∗)

+ c
[(
‖w′‖L2(0,T ;V) + ‖w‖L∞(0,T ;V))

× (‖z′‖L2(0,T ;V) + ‖z‖L∞(0,T ;V)

)]
≤ c‖w‖� · ‖z‖�.

(3.16)

(3.15) and (3.16) imply

‖C(w, z)‖� ≤ c‖w‖� · ‖z‖�.(3.17)

By the same argument above, we have

‖ÃUz‖� ≤ c‖U‖� · ‖z‖�.(3.18)

By Assumption 3.1, Remark 2.2 and the trace theorem, we can see that

F ∈ �. �

Lemma 3.3. The operator L defined by Lz = (z′(0), Lz) for z ∈ � is a

linear continuous one-to-one operator from � onto H × �.

Proof. The linearity of L is obvious. The fact z ∈ � implies that

z′ ∈ C([0, T ];H), ‖z′‖C([0,T ];H) ≤ c‖z‖�, and so we see that a map z ∈ � →
z′(0) ∈ H is continuous.

Clearly, ‖z′‖� ≤ c‖z‖�. Also, by Assumption 3.1, Remark 2.2 and the

trace theorem,

|〈Av, u〉| ≤ c‖v‖V · ‖u‖V for all v, u ∈ V.(3.19)

Formula (3.19) implies that the mapping z ∈ � → Az ∈ � is continuous.

Therefore, L is continuous.

Let us show that L is a one-to-one and surjective operator from � onto

H × �.
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First, let us prove that this operator is injective. For this, it is enough

to prove that the inverse image of (0H , 0�) ∈ H × � by the operator L is

0�. By Lemma 3.1 and (3.9), we get

〈Av, v〉 ≥ δ‖v‖2
V ∃δ > 0, for all v ∈ V.(3.20)

By (3.19), (3.20) for any q ∈ V∗ there exists a unique solution y ∈ V to the

following problem

Ay = q.(3.21)

Let z ∈ � be the inverse image of (0H , 0�) ∈ H × � by L. Then since

z′(0) = 0H , putting t = 0 in the first equation of (3.14) we get

〈Az(0), u〉 = 0 for all u ∈ V,

where z(0) = z(0, x). This means that z(0) is a unique solution to (3.21)

for q = 0V∗ , i.e. z(0) = 0V. Putting w = z′, we get w(0) = z′(0) = 0H .

Taking Lz = 0 into account and differentiating the first equation of (3.14),

we have

〈w′(t), u〉 + 〈Aw(t), u〉 = 0 for all u ∈ V.(3.22)

The operator A in (3.22) satisfies all conditions of Theorem 1.1, ch. 6 in

[12]. Thus, for problem (3.22) with an initial condition w(0) ∈ H there

exists a unique solution w such that w ∈ L2(0, T ;V), w′ ∈ L2(0, T ;V∗).
Since w(0) = 0H , we have w = 0, which means z = 0� since z(0) = 0V.

Let us prove that L is surjective. Let (w0, g) ∈ H × �. Since g ∈ �, we

have g(0) ∈ V∗. Then, by (3.19) and (3.20), there exists a unique solution

z0 ∈ V to problem

Az0 = g(0) − w0.(3.23)

Let us consider problem {
w′ + Aw = g′,

w(0) = w0.
(3.24)
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There exists a unique solution w such that w ∈ L2(0, T ;V), w′ ∈
L2(0, T ;V∗) to problem (3.24) (cf. Theorem 1.3 of ch. 6 in [12]). Now,

put

z = z0 +

∫ t

0
w(s) ds,(3.25)

where z0 is the solution to (3.23). Then, z′ = w and z ∈ �. Integrating two

sides of the first one in (3.24) from 0 to t and using (3.25), we have

〈w(t), u〉 + 〈Az(t), u〉 − [〈w0, u〉 + 〈Az0, u〉]
= 〈g(t), u〉 − 〈g(0), u〉 for all u ∈ V.

(3.26)

Taking (3.23), (3.25) into account, from (3.26) we get

〈z′(t), u〉 + 〈Az(t), u〉 = 〈g(t), u〉 for all u ∈ V.(3.27)

This means that z ∈ � defined by (3.25) is the inverse image of (w0, g) ∈
H × � by the operator L, i.e. L is surjective. Therefore, L is an epimor-

phism. �

Lemma 3.4. Under Assumption 3.2, let ‖U(0, x)‖
Ṽ

be small enough.

The operator LU defined by LUz = (z′(0), LUz) for z ∈ � is a linear con-

tinuous one-to-one operator from � onto H × �.

Proof. When z ∈ �, z ∈ C([0, T ];V) and

‖z‖C([0,T ];V) ≤ c
[
‖z‖L2(0,T ;V) + ‖z′‖L2(0,T ;V)

]
.

By virtue of this fact and Lemma 3.2, the operator AU ∈ (� → H × �)

defined by AUz = (0H , ÃUz) is continuous. Thus, the operator LU defined

on � is linear continuous.

As in Lemma 3.5 of [14] it is proved that the operator ÃU ∈ (� → �) is

compact. Thus, AU ∈ (� → H × �) is also compact. Since LU = L + AU ,

by virtue of Theorem 3.4 in [14] and Lemma 3.3 we know that in order to

prove that the operator LU is one-to-one from � onto H×� it is enough to

prove that LU is one-to-one from � into H × �. To prove the last fact it is

enough to show that the inverse image of (0H , 0�) by LU is 0�. By Hölder

inequality and imbedding theorem∣∣〈(U(t, x) · ∇)v, v
〉

+
〈
(v · ∇)U(t, x), v

〉∣∣
≤ K0‖v‖V‖U(t, x)‖H1‖v‖V.

(3.28)
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Thus, if ‖U(0, x)‖
Ṽ

is so small that ‖U(0, x)‖H1 ≤ δ
2K0

, then (3.19), (3.20)

and (3.28) imply∣∣〈(A + AU (0)
)
v, u

〉∣∣ ≤ c‖v‖V · ‖u‖V,〈(
A + AU (0)

)
v, v

〉
≥ δ

2
‖v‖2

V for all v, u ∈ V.
(3.29)

By (3.29) for any q ∈ V∗ there exists a unique solution y ∈ V to

(A + AU (0))y = q.(3.30)

Let z ∈ � be the inverse image of (0H , 0�) by L. Then z′(0) = 0H , and

putting t = 0 from the third one in (3.14) we get〈(
A + AU (0)

)
z(0), u

〉
= 0 for all u ∈ V,

where z(0) = z(0, x). This means that z(0) is the unique solution to (3.30)

with q = 0V∗ , i.e. z(0) = 0V. Therefore, z ∈ � satisfies{
z′(t) +

(
A + AU (t)

)
z(t) = 0,

z(0) = 0V.
(3.31)

Now, making duality pairing with z(t) on two sides of

z′(t) + Az(t) = −AU (t)z(t)

and taking (3.20) into account and using Gronwall’s inequality, we can prove

z = 0� as in Lemma 3.8 of [14]. It is finished to prove the Lemma. �

Lemma 3.5. Under Assumption 3.2 the operator T defined by Tz =(
z′(0), (LU +B̃)z

)
for z ∈ � is continuously differentiable, T (0�) = (0H , 0�)

and the Frechet derivative of T at 0� is LU .

Proof. It is easy to verify that T (0�) = (0H , 0�). Since the operator

LU is linear, its Frechet derivative is the same with itself. Therefore, if B̃

is continuously differentiable, then so is T .

For any w, z ∈ �,(
B̃(w + z) − B̃w

)
(t) = ek0t

(
w(t) · ∇

)
z(t) + ek0t

(
z(t) · ∇

)
w(t) + (B̃z)(t).
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By (3.17), we get

lim
‖z‖�→0

‖B̃z‖�

‖z‖�
≤ lim

‖z‖�→0

c‖z‖2
�

‖z‖�
= 0.

Then, put

C(w, z)(t) ≡ ek0t
(
w(t) · ∇

)
z(t) + ek0t

(
z(t) · ∇

)
w(t) = (B̃′

wz)(t).

By Lemma 3.2 B̃′
w ∈ (� → �) is continuous, and it is the Frechet derivative

of B̃ at w and also continuous with respect to w. Thus, T is continuously

differentiable. Also from the formula above we can see that the Frechet

derivative of B̃ at 0� is zero. Therefore, the Frechet derivative of T at 0�

is LU . �

Let us consider problem(
A + AU (0) + B(0)

)
u = q.(3.32)

Lemma 3.6. Assume that ‖U(0, x)‖
Ṽ

is small enough. If the norm of

q ∈ V ∗ is small enough, then there exists a unique solution to (3.32) in

some �M (0V).

Proof. Since ‖U(0, x)‖
Ṽ

is small enough, by (3.29), for any fixed

z ∈ V there exists a unique solution to problem(
A + AU (0)

)
w = q −B(0)z.(3.33)

On the other hand,

|〈B(0)w1 −B(0)w2, u〉| ≤ KM‖w1 − w2‖V · ‖u‖V

for all wi ∈ �M (0V), for all u ∈ V.
(3.34)

Owing to (3.29) the solution w to (3.33) is estimated as follows

‖w‖V ≤ 2

δ

(
‖q‖V∗ + ‖B(0)z‖V∗

)
≤ 2

δ

(
‖q‖V∗ + KM2

)
.

Thus, if ‖q‖V∗ and M are small enough, then the operator (z → w) maps

�M (0V) into itself and by (3.34) this operator is strictly contract. Therefore,
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in �M (0V) there exists a unique solution to (3.33). Thus, we come to the

asserted conclusion. �

For proof of unique existence of a solution to Problem I, we use the

following

Proposition 3.7 (cf. Theorem 4.1.1 in [10]). Let X,Y be Banach

spaces, G an open set in X, f : X → Y continuously differentiable on G.

Let the derivative f ′(a) be an isomorphism of X onto Y for a ∈ G. Then

there exist neighborhoods U of a, V of f(a)such that f is injective on U ,

f(U) = V.

One of main results of this paper is the following

Theorem 3.8. Suppose that Assumptions 3.1 and 3.2 hold. Assume

that ‖U‖� and the norms of f, f ′, φi, φ
′
i in the spaces where they belong to

are small enough.

If

w0 ≡ F (0) − (A + AU (0) + B(0))z0 ∈ H,(3.35)

where z0 = v0 − U(0, ·), and ‖w0‖H is small enough, then there exists a

unique solution to (3.3) in the space �.

Proof. First, let us prove existence of a solution.

If ‖U‖� and the norms of f, f ′, φi, φ
′
i in the spaces they belong to are small

enough, then ‖F‖� is also small enough. By virtue of Lemmas 3.4, 3.5 and

Proposition 3.7, for any R1 > 0 small enough if ‖F‖�, R are small enough

and w1 ∈ �R(0H), there exists a unique z ∈ �R1(0�) such that

z′(t) +
(
A + AU (t) + B(t)

)
z(t) = F (t), z′(0) = w1 ∈ �R(0H).(3.36)

Putting t = 0 in (3.36), we get

F (0) −
(
A + AU (0) + B(0)

)
z(0) = w1 ∈ �R(0H).

On the other hand, if ‖U‖� is small enough, then so is ‖U(0, x)‖
Ṽ

.

Thus, when ‖F (0) − w1‖V ∗ is small enough, by Lemma 3.6 there exists a

unique solution z0 ∈ �R2(0V ) for some R2 > 0 to(
A + AU (0) + B(0)

)
z0 = F (0) − w1.(3.37)
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Since ‖z(0)‖V ≤ c‖z‖�, we can choose R1 such that z(0) ∈ �R2(0V ), and we

have z(0) = z0. Therefore, if ‖F‖� is small enough, F (0) −
(
A + AU (0) +

B(0)
)
z0 belongs to H and its norm is small enough, then z ∈ �, the solution

to (3.36), is a solution to problem{
z′(t) +

(
A + AU (t) + B(t)

)
z(t) = F (t),

z(0) = z0.
(3.38)

By definitions of A,AU (t), B(t), F, the solution z of (3.38) is also a solution

to (3.8) which is equivalent to (3.3). Thus, ek0tz + U ∈ � is a solution to

(3.3).

Second, let us prove uniqueness.

Let v1, v2 be two solutions to (3.3) corresponding to the same data. Putting

w = v1 − v2, we have

w ∈ L2(0, T ;V),

w(0) = 0,

〈w′, u〉 + 2ν(ε(w), ε(u)) + 〈(v1 · ∇)w, u〉 + 〈(w · ∇)v2, u〉
+ 2ν(k(x)w, u)Γ2 + 2ν(Sw̃, ũ)Γ3 + 2(α(x)w, u)Γ5

+ ν(k(x)w, u)Γ7 = 0 for all u ∈ V.

(3.39)

Putting w = e−k0tw, where k0 is the constant in Lemma 3.1, we get

e−k0tw′ = w′ + k0w. Then, we have

w ∈ L2(0, T ;V),

w(0) = 0,

〈w′, u〉 + 2ν(ε(w), ε(u)) + 〈(v1 · ∇)w, u〉 + 〈(w · ∇)v2, u〉 + k0(w, u)

+ 2ν(k(x)w, u)Γ2 + 2ν(Sw̃, ũ)Γ3 + 2(α(x)w, u)Γ5

+ ν(k(x)w, u)Γ7 = 0 for all u ∈ V,

(3.40)

which is equivalent to (3.39). By Lemma 3.1,

2ν(ε(w), ε(w)) + k0(w,w) + 2ν(k(x)w,w)Γ2 + 2ν(Sw̃, w̃)Γ3

+ 2(α(x)w,w)Γ5 + ν(k(x)w,w)Γ7 ≥ δ‖w‖2
V.

Taking it into account, we can prove w = 0� as in Lemma 3.8 of [14]. Thus,

uniqueness of a solution is proved, and we finished proof of the theorem. �
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Remark 3.3. Let us consider more precisely the condition that F (0)−(
A + AU (0) + B(0)

)
z0 belongs to H and its norm is small enough. By

(3.9)∼(3.14) we have〈
F (0) −

(
A + AU (0) + B(0)

)
z0, u

〉
=[

− (U ′(0, x), u) − 2ν(ε(U(0, x)), ε(u)) − 〈(U(0, x) · ∇)U(0, x), u〉

− 2ν(k(x)U(0, x), u)Γ2 − 2ν(SŨ(0), ũ)Γ3 − 2(α(x)U(0, x), u)Γ5

− ν(k(x)U(0, x), u)Γ7 + 〈f(0), u〉

+
∑

i=2,4,7

〈φi(t), un〉Γi +
∑

i=3,5,6

〈φi(t), u〉Γi

]
−

[
2ν(ε(z0), ε(u)) + 2ν(k(x)z0, u)Γ2 + 2ν(Sz̃0, ũ)Γ3

+ 2(α(x)z0, u)Γ5 + ν(k(x)z0, u)Γ7

]
−

[
〈(U(0, x) · ∇)z0, u〉 + 〈(z0 · ∇)U(0, x), u〉

]
− 〈(z0,∇)z0, u〉 for all u ∈ V.

(3.41)

Taking into account the fact that U(0, x)+z0 = v0, U
′(0, x) ∈ L2(Ω) and its

norm is small enough, from (3.41) we can see that the condition mentioned

above is equivalent to the condition w0 ∈ �R(0H) for R > 0 small enough,

where w0 is defined by

〈w0, u〉 ≡ 〈f(0), u〉 +
∑

i=2,4,7

〈φi(0, x), un〉Γi +
∑

i=3,5,6

〈φi(0, x), u〉Γi

−
[
2ν(ε(v0), ε(u)) + 2ν(k(x)v0, u)Γ2 + 2ν(Sṽ0, ũ)Γ3

+ 2(α(x)v0, u)Γ5 + ν(k(x)v0, u)Γ7 + 〈(v0 · ∇)v0, u〉
+ k0(v0, u)

]
for all u ∈ V.

(3.42)

Remark 3.4. If Γi = ∅, i = 2 ∼ 5, 7, then the problem is reduced to

one in [15] where a local-in-time solution was studied. In this case k0 = 0

(cf. Remark 3.2), and the condition (3.35) is the same with (25) in [15].

And our condition for U is also the same with one in [15].

4. Existence of a Unique Solution to Problem II

Let V1 = {u ∈ H1(Ω) : divu = 0, u|Γ1 = 0, uτ |(Γ2∪Γ4) = 0, un|(Γ3∪Γ5) =

0} and VΓ2−5(Ω) = {u ∈ H1(Ω) : divu = 0, uτ |(Γ2∪Γ4) = 0, un|(Γ3∪Γ5) = 0}.
Denote by H1 the completion of V1 in the space L2(Ω).
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By Theorems 2.1 and 2.2, for v ∈ H2(Ω) ∩ VΓ2−5(Ω) and u ∈ V1 we

have that

−(∆v, u) = (∇v,∇u) −
(

∂v

∂n
, u

)
∂Ω

= (∇v,∇u) + (k(x)v, u)Γ2 − (rot v × n, u)Γ3 + (Sṽ, ũ)Γ3

− (εn(v), u)Γ4 − 2(εn(v), u)Γ5 − (Sṽ, ũ)Γ5

−
(

∂v

∂n
, u

)
Γ7

= (∇v,∇u) + (k(x)v, u)Γ2 − (rot v × n, u)Γ3 + (Sṽ, ũ)Γ3

− (εnn(v), u · n)Γ4 − 2(εnτ (v), u)Γ5 − (Sṽ, ũ)|Γ5

−
(

∂v

∂n
, u

)
Γ7

.

(4.1)

Also, for p ∈ H1(Ω) and u ∈ V1 we get

(∇p, u) = (p, u · n)∪7
i=2Γi

= (p, u · n)Γ2 + (p, u · n)Γ4 + (pn, u)Γ7 ,(4.2)

where the fact that u · n|Γ3∪Γ5 = 0 was used.

Let

�1 = {w ∈ L2(0, T ;V1);w
′ ∈ L2(0, T ;V1), w

′′ ∈ L2(0, T ;V∗
1)},

‖w‖�1
= ‖w‖L2(0,T ;V1) + ‖w′‖L2(0,T ;V1) + ‖w′′‖L2(0,T ;V∗

1),

�1 = {w ∈ L2(0, T ;V∗
1);w

′ ∈ L2(0, T ;V∗
1)},

‖w‖�1
= ‖w‖L2(0,T ;V∗

1) + ‖w′‖L2(0,T ;V∗
1).

Unlike problem I, for problem II we do not require the condition vτ |Γ7 = 0,

and so instead of Assumptions 3.1 and 3.2, we use the following assumptions.

Assumption 4.1. Assumption 3.1 holds with φ7, φ
′
7 ∈

L2(0, T ;H− 1
2 (Γ7)) instead of φ7, φ

′
7 ∈ L2(0, T ;H− 1

2 (Γ7))

Assumption 4.2. There exists a function U ∈ � such that

divU = 0, U |Γ1 = h1, Uτ |Γ2 = 0, Un|Γ3 = 0, Uτ |Γ4 = h4, Un|Γ5 = h5,

where � is the same as in the previous section. Also, U(0, x) − v0 ∈ V1.
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Taking into account (4.1), (4.2), we get the following variational formu-

lation for Problem II:

Formulation 4.1. Find v such that

v − U ∈ L2(0, T ;V1),

v(0) = v0,

〈v′, u〉 + ν(∇v,∇u) + 〈(v · ∇)v, u〉 + ν(k(x)v, u)Γ2

+ ν(Sṽ, ũ)Γ3 + 2(α(x)v, u)Γ5 − ν(Sṽ, ũ)Γ5

= 〈f, u〉 +
∑
i=2,4

〈φi, un〉Γi +
∑

i=3,5,7

〈φi, u〉Γi for all u ∈ V1.

(4.3)

Taking into account Assumption 4.2 and putting v = z + U , we get the

following problem which is equivalent to Formulation 4.1:

Find z such that

z ∈ L2(0, T ;V1),

z(0) ≡ v0 − U(0) ∈ V1,

〈z′, u〉 + ν(∇z,∇u) + 〈(z · ∇)z, u〉 + 〈(U · ∇)z, u〉 + 〈(z · ∇)U, u〉
+ ν(k(x)z, u)Γ2 + ν(Sz̃, ũ)Γ3 + 2(α(x)z, u)Γ5 − ν(Sz̃, ũ)Γ5

= −〈U ′, u〉 − ν(∇U,∇u) − 〈(U · ∇)U, u〉 − ν(k(x)U, u)Γ2

− ν(SŨ, ũ)Γ3 − 2(α(x)U, u)Γ5 + ν(SŨ, ũ)Γ5 + 〈f, u〉
+

∑
i=2,4

〈φi, un〉Γi +
∑

i=3,5,7

〈φi, u〉Γi for all u ∈ V1.

(4.4)

Define an operator A01 : V1 → V∗
1 by

〈A01y, u〉 = ν(∇y,∇u) + ν(k(x)y, u)Γ2 + ν(Sỹ, ũ)Γ3

+ 2(α(x)y, u)Γ5 − ν(Sỹ, ũ)Γ5 for all y, u ∈ V1.
(4.5)

By virtue of the same argument used to prove Lemma 3.1 we get

Lemma 4.1. ∃δ > 0, ∃k1 ≥ 0:

〈A01u, u〉 ≥ δ‖u‖2
V1

− k1‖u‖2
H1

for all u ∈ V1.
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Putting z = e−k1tz, where k1 is the constant in Lemma 4.1, and using

the fact that e−k1tz′ = z′ + k1z, we get the following problem which is

equivalent to (4.4):

Find z such that

z ∈ L2(0, T ;V1),

z(0) = z0 ≡ v0 − U(0) ∈ V1,

〈z′(t), u〉 + ν(∇z,∇u) + ek1t〈(z(t) · ∇)z(t), u〉 + 〈(U(t) · ∇)z(t), u〉
+ 〈(z(t) · ∇)U(t), u〉 + k1(z(t), u) + ν(k(x)z(t), u)Γ2

+ ν(Sz̃(t), ũ)Γ3 + 2(α(x)z(t), u)Γ5 − ν(Sz̃(t), ũ)Γ5

= e−k1t
[
− (U ′(t), u) − ν(∇U,∇u) − 〈(U(t) · ∇)U(t), u〉

− ν(k(x)U(t), u)Γ2 − ν(SŨ(t), ũ)Γ3 − 2(α(x)U(t), u)Γ5

− ν(SŨ(t), ũ)Γ5 + 〈f(t), u〉 +
∑
i=2,4

〈φi(t), un〉Γi

+
∑

i=3,5,7

〈φi(t), u〉Γi

]
for all u ∈ V1.

(4.6)

Define operators A1, A1U (t) by

〈A1v, u〉 = 〈A01v, u〉 + (k1v, u) for all v, u ∈ V1,(4.7)

〈A1U (t)v, u〉 = 〈(U(t, x) · ∇)v, u〉
+ 〈(v · ∇)U(t, x), u〉 for all v, u ∈ V1,

(4.8)

where A01 is one defined in (4.5). U ∈ � implies U ∈ C
(
[0, T ];H1(Ω)

)
, and

such definitions have meaning. Also, define an operator B1(t) : V1 → V ∗
1 by

〈B1(t)v, u〉 = ek1t〈(v · ∇)v, u〉 for all v, u ∈ V1.(4.9)

Define an element F1 ∈ �1 by

〈F1(t), u〉 = e−k1t
[
− 〈U ′(t), u〉 − ν(∇U(t),∇u)

− 〈(U(t) · ∇)U(t), u〉 − ν(k(x)U(t), u)Γ2 − ν(SŨ(t), ũ)Γ3

− 2(α(x)U(t), u)Γ5 + ν(SŨ(t), ũ)Γ5 + 〈f, u〉

+
∑
i=2,4

〈φi, un〉Γi +
∑

i=3,5,7

〈φi, u〉Γi

]
for all u ∈ V1.

(4.10)
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Now, in the same way as Theorem 3.8 we can prove the following theorem

which is one of the main results of this paper.

Theorem 4.2. Suppose that Assumptions 4.1 and 4.2 hold. Assume

that ‖U‖� and the norms of f, f ′, φi, φ
′
i in the spaces they belong to are

small enough.

If

w1 ≡ F1(0) − (A1 + A1U (0) + B1(0))z0 ∈ H1,(4.11)

where z0 = v0 − U(0, ·), and ‖w1‖H1 is small enough, then in the space �
there exists a unique solution to (4.3).

Remark 4.1. By the same argument as Remark 3.3, we can see that

the condition (4.11) is equivalent to the condition w0 ∈ H1, where w0 ∈ V∗
1

is defined by

〈w1, u〉 = 〈f(0), u〉 +
∑
i=2,4

〈φi(0, x), un〉Γi +
∑

i=3,5,7

〈φi(0, x), u〉Γi

−
[
ν(∇v0,∇u) + ν(k(x)v0, u)Γ2 + ν(Sṽ0, ũ)Γ3

+ 2(α(x)v0, u)Γ5 − ν(Sṽ0, ũ)Γ5 + 〈(v0 · ∇)v0, u〉 + k1(v0, u)
]

for all u ∈ V1,

(4.12)

with k1 in Lemma 4.1.

Remark 4.2. If U ≡ 0 and Γi = ∅, i = 2 ∼ 5, then problem (4.3) is

reduced to one in [14]. In this case k1 = 0. (cf. Remark 3.2). If v0 ∈ Hl/2(Ω),

then (v0 · ∇)v0 ∈ L2(Ω). Thus, the condition above for w1 being in H1 is

the same with one of conditions of Theorems 3.5∼3.8 in [14], but we do not

demand v0 ∈ Hr0(Ω), r0 > l
2 .

5. Existence of a Unique Solution for Perturbed Data

In [14] it is proved that if a solution satisfying smoothness and a com-

patibility condition is given, then there exists a unique solution for small

perturbed data satisfying the compatibility condition. In this section we

get such results for the Problems I and II. In our results the conditions for

a given solution is essentially the same with one in [14], but the smoothness
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condition for the initial functions in the compatibility condition for small

perturbed data is weaker than one in [14](cf. Remark 5.2).

Let Ṽ
r0

= {u ∈ Hr0(Ω) : divu = 0}, r0 > l/2, and

� =
{
w ∈ L2(0, T ; Ṽ);w′ ∈ L2(0, T ; Ṽ), w′′ ∈ L2(0, T ; Ṽ

∗
), w(0) ∈ Ṽ

r0
}

,

‖w‖� = ‖w‖
L2(0,T ;Ṽ)

+ ‖w′‖
L2(0,T ;Ṽ)

+ ‖w′′‖
L2(0,T ;Ṽ

∗
)
+ ‖w(0)‖

Ṽ
r0 .

Let us consider Problem I.

Let W (x, t) ∈ � be a given solution to Problem I. Let v be the solution

for the data perturbed except hi and put v = z+W . Then, we get a problem

for z:

Find z such that

z ∈ L2(0, T ;V),

z(0) = z0 ≡ v0 −W (0, x) ∈ V,

〈z′, u〉 + 2ν(ε(z), ε(u)) + 〈(z · ∇)z, u〉 + 〈(W · ∇)z, u〉
+ 〈(z · ∇)W,u〉 + 2ν(k(x)z, u)Γ2 + 2ν(Sz̃, ũ)Γ3

+ 2(α(x)z, u)Γ5 + ν(k(x)z, u)Γ7

= 〈f, u〉 +
∑

i=2,4,7

〈φi, un〉Γi +
∑

i=3,5,6

〈φi, u〉Γi for all u ∈ V,

(5.1)

where z0, f, φi are perturbations of corresponding data.

Remark 5.1. Proofs of this section are similar to one in Section 3.

Main difference is that we do not assume smallness of W (0, x) unlike U(0, x)

in Section 3.

Define an operator A02 : V → V∗ by

〈A02y, u〉 =2ν(ε(y), ε(u)) + 2ν(k(x)y, u)Γ2 + 2ν(Sỹ, ũ)Γ3

+ 2(α(x)y, u)Γ5 + ν(k(x)y, u)Γ7 + 〈(W (0, x) · ∇)y, u〉
+ 〈(y · ∇)W (0, x), u〉 for all y, u ∈ V.

(5.2)

Lemma 5.1. There exists δ > 0 and k2 ≥ 0 such that

〈A02u, u〉 ≥ δ‖u‖2
V − k2‖u‖2

H for all u ∈ V.
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Proof. By Korn’s inequality

2ν(ε(u), ε(u)) ≥ β‖u‖2
V ∃β > 0, for all u ∈ V.(5.3)

By Remark 2.2, there exists a constant M such that

‖S(x)‖∞, ‖k(x)‖∞, ‖α(x)‖∞ ≤ M.

Then, there exists a constant c0 (depend on β) such that

|2ν(k(x)u, u)Γ2 + 2ν(Sũ, ũ)Γ3 + ν(k(x)u, u)Γ7 + 2(α(x)u, u)Γ5 |

≤ β

4
‖u‖2

H1(Ω) + c0‖u‖2
H for all u ∈ V

(5.4)

(cf. Theorem 1.6.6 in [9]).

Let us estimate 〈(W (0, x) ·∇)u, u〉+〈(u ·∇)W (0, x), u〉. Since W (0, x) ∈
C(Ω),

∣∣〈(W (0, x) · ∇)u, u
〉∣∣ ≤ β

8
‖u‖2

H1(Ω) + c1‖u‖2
H .(5.5)

Taking divu = 0 into account, we get

〈
(u · ∇)W (0, x), u

〉
=

∑
j

∫
Ω
uj

∂W (0, x)

∂xj
u dx

=

∫
∂Ω

(u · n)(W (0, x) · u) dΓ −
∑
j

∫
Ω
uj

∂u

∂xj
W (0, x) dx.

On the right hand side of the formula above estimating the first term as in

(5.4) and applying Hölder inequality in the second term, we have

∣∣〈(u · ∇)W (0, x), u
〉∣∣ ≤ β

8
‖u‖2

H1(Ω) + c2‖u‖2
H .(5.6)

Putting δ = β
2 , k2 = c0 + c1 + c2, from (5.3)-(5.6) we get the asserted

conclusion. �

Put z = e−k2tz, where k2 is a constant in Lemma 5.1. Then, e−k2tz′ =

z′ + k2z and we have the following problem which is equivalent to (5.1).
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Find z such that

z ∈ L2(0, T ;V),

z(0) = z0 = v0 −W (0) ∈ V,

〈z′(t), u〉 + 2ν(ε(z)(t), ε(u)) + ek2t〈(z(t) · ∇)z(t), u〉
+ 〈(W (t) · ∇)z(t), u〉 + 〈(z(t) · ∇)W (t), u〉 + k2(z(t), u)

+ 2ν(k(x)z(t), u)Γ2 + 2ν(Sz̃(t), ũ)Γ3 + 2(α(x)z(t), u)Γ5

+ ν(k(x)z(t), u)Γ7

= e−k2t
[
〈f(t), u〉 +

∑
i=2,4,7

〈φi(t), un〉Γi +
∑

i=3,5,6

〈φi(t), u〉Γi

]
for all u ∈ V.

(5.7)

Define operators A2, AW (t) : V → V∗ by

〈A2y, u〉 =2ν(ε(y), ε(u)) + 2ν(k(x)y, u)Γ2 + 2ν(Sỹ, ũ)Γ3

+ 2(α(x)y, u)Γ5 + ν(k(x)y, u)Γ7 + k2(y, u)

for all y, u ∈ V,

(5.8)

〈AW (t)v, u〉 = 〈(W (t, x) · ∇)v, u〉
+ 〈(v · ∇)W (t, x), u〉 for all v, u ∈ V,

(5.9)

where k2 is a constant in Lemma 5.1. W ∈ � implies W ∈ C
(
[0, T ];H1(Ω)

)
,

and such definitions are well.

In proof of Lemma 5.1 it is clear that

〈A2u, u〉 ≥
3β

4
‖u‖2

V.(5.10)

Also, by Lemma 5.1

〈(
A2 + AW (0)

)
u, u

〉
≥ β

4
‖u‖2

V.(5.11)

Define an operator B2(t) : V → V ∗ by

〈B2(t)v, u〉 = ek2t〈(v · ∇)v, u〉 for all v, u ∈ V.(5.12)
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Define operators L2, ÃW , L2W , B̃2 : � → �, C2 : �×� → � and an element

F2 ∈ � by

〈(L2z)(t), u〉 = 〈z′(t), u〉 + 〈A2z(t), u〉
for all z ∈ �, for all u ∈ V,

〈(ÃW z)(t), u〉 = 〈AW (t)z(t), u〉 for all z ∈ �, for all u ∈ V,

〈(L2W z)(t), u〉 = 〈z′(t), u〉 +
〈(

A2 + AW (t)
)
z(t), u

〉
for all z ∈ �, for all u ∈ V,

〈(B̃2z)(t), u〉 = 〈B2(t)z(t), u〉 for all z ∈ �, for all u ∈ V,

〈C2(w, z)(t), u〉 = ek2t〈(w · ∇)z, u〉 + ek2t〈(z · ∇)w, u〉
for all w, z ∈ �, for all u ∈ V,

〈(F2)(t), u〉 = e−k2t
[
〈f(t), u〉 +

∑
i=2,4,7

〈φi(t), un〉Γi

+
∑

i=3,5,6

〈φi(t), u〉Γi

]
for all u ∈ V.

(5.13)

By the argument as Lemma 3.2 we get

Lemma 5.2. C2 is a bilinear continuous operator such that �×� → �.

Under Assumption 3.1 ÃW is a linear continuous operator such that � → �
and F2 ∈ �.

Using (5.10) instead of (3.20), as Lemma 3.3 we get

Lemma 5.3. The operator L2 defined by L2z = (z′(0), L2z) for z ∈ �
is a linear continuous one-to-one operator from � onto H × �.

Now, using (5.11) without assuming the fact that ‖W (0, x)‖
Ṽ

is small

enough, as Lemma 3.4 we prove the following

Lemma 5.4. The operator L2W defined by L2W z = (z′(0), L2W z) for

z ∈ � is a linear continuous one-to-one operator from � onto H × �.

Proof. As Lemma 3.5 in [14] it is proved that the operator ÃW ∈
(� → �) is compact. Thus, AW ∈ (� → H × �) defined by AW z =

{0H , ÃW z} is also compact. Since L2W = L2 + AW , in order to get the
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asserted conclusion by virtue of Theorem 3.4 in [14] it is enough to prove

that L2W is one-to-one from � into H × �.

To prove the last fact it is enough to show that the inverse image of

(0H , 0�) by L2W is 0�. It is easy to verify that∣∣〈(A2 + AW (0)
)
v, u

〉∣∣ ≤ c‖v‖V · ‖u‖V for all v, u ∈ V.(5.14)

By (5.11), (5.14) for any q ∈ V∗ there exists a unique solution y ∈ V to

(A2 + AW (0))y = q.(5.15)

Let z ∈ � be the inverse image of (0H , 0�) by L. Then, z′(0) = 0H , and

putting t = 0 from the third one in (5.13) we get〈(
A2 + AW (0)

)
z(0), u

〉
= 0 for all u ∈ V,

where z(0) = z(0, x). This means that z(0) is the unique solution to (5.15)

with q = 0V∗ , i.e., z(0) = 0V. Therefore, z ∈ � satisfies{
z′(t) +

(
A2 + AW (t)

)
z(t) = 0,

z(0) = 0V.
(5.16)

Now, using (5.16) and Gronwall’s inequality, as in Lemma 3.8 of [14] we can

prove z = 0�. It is finished to prove the Lemma. �

By the argument as Lemma 3.5 we get

Lemma 5.5. The operator T2 defined by T2z =
(
z′(0), (L2W + B̃2)z

)
for z ∈ � is continuously differentiable, T20� = (0H , 0�) and the Frechet

derivative of T2 at 0� is L2W .

Let us consider the following problem(
A2 + AW (0) + B2(0)

)
u = q.(5.17)

Now, using (5.11) without assuming the fact that ‖W (0, x)‖
Ṽ

is small

enough, as Lemma 3.6 we can prove

Lemma 5.6. If the norm of q ∈ V ∗ is small enough, then there exists

a unique solution to (5.17) in some �M (0V).
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Using Lemmas 5.2∼5.6, Proposition 3.7, in the same way as Theorem

3.8 we get

Theorem 5.7. Suppose that Assumptions 3.1 holds and the norms of

f, f ′, φi, φ′
i in the spaces they belong to are small enough.

If

w2 ≡ F2(0) − (A2 + A2W (0) + B2(0))z0 ∈ H,(5.18)

where z0 = v0 − U(0, ·), and ‖w2‖H is small enough, then there exists a

unique solution to (5.1) in the space �.

Remark 5.2. By the same argument as Remark 3.3, we can see that

the condition (5.18) is equivalent to the condition w2 ∈ H1, where w2 ∈ V∗
1

is defined by

〈w2, u〉 = 〈f(0), u〉 +
∑
i=2,4

〈φi(0, x), un〉Γi +
∑

i=3,5,7

〈φi(0, x), u〉Γi

−
[
2ν(ε(z0), ε(u)) + 2ν(k(x)z0, u)Γ2 + 2ν(Sz̃0, ũ)Γ3

+ 2(α(x)z0, u)Γ5 + ν(k(x)z0, u)Γ7 + 〈(W (0, x) · ∇)z0, u〉
+ 〈(z0 · ∇)W (0, x), u〉 + k2(z0, u) + 〈(z0 · ∇)z0, u〉

]
for all u ∈ V

(5.19)

with k2 in Lemma 5.1.

Let us consider Problem II.

Let W (x, t) ∈ � be given solution to Problem II. Let v be the solution

for the data perturbed except hi and put v = z+W . Then, we get a problem

for z:

Find z such that

z ∈ L2(0, T ;V1),

z(0) = z0 ≡ v0 −W (0, x) ∈ V1,

〈z′, u〉 + ν(∇z,∇u) + 〈(z · ∇)z, u〉 + 〈(W · ∇)z, u〉 + 〈(z · ∇)W,u〉
+ ν(k(x)z, u)Γ2 + ν(Sz̃, ũ)Γ3 + 2(α(x)z, u)Γ5 − ν(Sz̃, ũ)Γ5

= 〈f, u〉 +
∑
i=2,4

〈φi, un〉Γi +
∑

i=3,5,7

〈φi, u〉Γi for all u ∈ V1,

(5.20)
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where z0, f, φi are perturbations of corresponding data.

By the same argument as Theorem 5.7 we have

Theorem 5.8. Suppose that Assumptions 3.1 holds and the norms of

f, f ′, φi, φ
′
i in the spaces they belong to are small enough. Define an element

w3 ∈ V∗
1 by

〈w3, u〉 = 〈f(0), u〉 +
∑
i=2,4

〈φi(0, x), un〉Γi +
∑

i=3,5,7

〈φi(0, x), u〉Γi

−
[
ν(∇z0,∇u) + ν(k(x)z0, u)Γ2 + ν(Sz̃0, ũ)Γ3

+ 2(α(x)z0, u)Γ5 − ν(Sz̃0, ũ)Γ5 + 〈(W (0, x) · ∇)z0, u〉
+ 〈(z0 · ∇)W (0, x), u〉 + k3(z0, u) + 〈(z0 · ∇)z0, u〉

]
for all u ∈ V1,

(5.21)

where k3 is a constant determined as in Lemma 5.1.

If w3 ∈ �R(0H1) for R > 0 small enough, then there exists a unique

solution to (5.20) in the space �.

Remark 5.3. If Γi = ∅, i = 2 ∼ 5, then problem (5.20) is reduced to

one in [14]. If z0 ∈ Hl/2(Ω), then (z0 ·∇)z0, (W (0, x)·∇)z0, (z0 ·∇)W (0, x) ∈
L2(Ω) and k3z0 ∈ L2(Ω). Thus, the last 4 terms in the right hand side of

(5.21) do not give any effect to the condition for w3 being in H1, and so

the conditions in the Theorem 5.8 is the same with one of conditions of

Theorems 3.5∼3.8 in [14]. Thus, Theorem 5.8 guarantees existence of a

unique solution under a condition weaker that one in [14].

Note that putting W (t, x) ≡ 0 in Theorems 5.7 and 5.8, we can not get

Theorems 3.8 and 4.2, since there hi �= 0.
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[16] Marušić, S., On the Navier-Stokes system with pressure boundary condition,
Ann. Univ. Ferrara 53 (2007), 319–311.

[17] Mazya, V. G. and J. Rossmann, Lp estimates of solutions to mixed boundary
value problems for the Stokes system in polyhedral domains, Math. Nachr.
280 (2007), 751–793.

[18] Mazya, V. G. and J. Rossmann, Elliptic Equations in Polyhedral Domains,
Mathematical Surveys and Monographs, vol. 162, American Mathematical
Society, 2010.
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