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The Zero-Temperature Limit of the Free Energy
Density in Many-FElectron Systems at Half-Filling

By Yohei KASHIMA

Abstract. We prove by means of a renormalization group
method that in weakly interacting many-electron systems at half-filling
on a periodic hyper-cubic lattice, the free energy density uniformly
converges to an analytic function of the coupling constants in the
infinite-volume, zero-temperature limit if the external magnetic field
has a chessboard-like flux configuration. The spatial dimension is al-
lowed to be any number larger than 1. The system covers the Hub-
bard model with a nearest-neighbor hopping term, on-site interactions,
exponentially decaying density-density interactions and exponentially
decaying spin-spin interactions. The magnetic field must be included
in the kinetic term by the Peierls substitution. The flux configuration
and the sign of the nearest-neighbor density-density/spin-spin inter-
actions can be adjusted so that the free energy density is minimum
among all the flux configurations. Consequently, the minimum free
energy density is proved to converge to an analytic function of the cou-
pling constants in the infinite-volume, zero-temperature limit. These
are extension of the results on a square lattice in the preceding work
([Kashima, Y., “The special issue for the 20th anniversary”, J. Math.
Sci. Univ. Tokyo. 23 (2016), 1-288]). We refer to lemmas proved in
the reference in order to complete the proof of the main results of this
paper. So this work is a continuation of the preceding work.
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1. Many-Electron Systems and the Main Results

1.1. Introduction

Rigorous construction of many-electron systems in low temperature is
a frontier of mathematical physics. Especially reaching the infinite-volume,
zero-temperature limit from a formulation in finite volume and positive
temperature appears to be a mathematical challenge. As considered as the
simplest possible model of interacting electrons, the Hubbard models have
been the central objectives in the constructive theories based on multi-
scale Grassmann integration. Among them, substantial progress has been
made in the zero-temperature construction of the 1-dimensional models.
See [5], [6] for the latest results. As for the 2-dimensional Hubbard mod-
els, there have been attempts to develop low-temperature theories since the
2000s (see [26], [2], [3], [4], [25]). There was also a thorough construction
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of 2-dimensional Fermion systems in spatial continuum at zero tempera-
ture by Feldman, Knorrer and Trubowitz [10], [11]. As yet we have seen
few examples of reaching the zero-temperature limit in the concrete lattice
models in spatial dimension > 2. One pioneering example of taking the
zero-temperature limit in 2 dimension was reported by Giuliani and Mas-
tropietro in [13] where the half-filled Hubbard model on the honeycomb
lattice was specifically considered. Beneath the model-dependent details,
the work of Giuliani and Mastropietro seems to suggest an effective rem-
edy for the temperature-dependency of the constructive theories. The hint
from [13] was explored and another example of the 2-dimensional Hubbard
model which admits the infinite-volume, zero-temperature limit was given
in our previous work [19]. In more detail the model studied in [19] was the
half-filled Hubbard model on a square lattice, containing an external mag-
netic field whose flux is 7 (mod 27) per plaquette and 0 (mod 27) through
the large circles around the periodic lattice. Recently, Giuliani and Jauslin
reported a zero-temperature construction of the free energy density and the
two-point Schwinger function of an interacting Fermion model on a bilayer
honeycomb lattice in [12].

Since the focus of [19] was on presenting a pile of lemmas leading to the
zero-temperature limit in a self-contained manner, possibility of applying
its framework to other models was not fully investigated there. As a contin-
uation of [19], here we focus on providing other examples of many-electron
systems where the analyticity at zero-temperature can be proven essentially
within the same framework. The main results of this paper can be seen as
a generalization of the results of [19]. We will establish a theorem stating
that the free energy density of a weakly interacting many-electron system
at half-filling uniformly converges with respect to the amplitude of inter-
action in the infinite-volume, zero-temperature limit. Here we allow the
spatial dimension to be any number larger than 1. The system is defined
on a periodic hyper-cubic lattice. The kinetic term of the Hamiltonian is
determined by the nearest-neighbor hopping of electrons and contains an
external magnetic field by means of the Peierls substitution. The magnetic
flux is assumed to change its sign at plaquette alternately like a chessboard.
The flux 7 (mod 27) per plaquette is a special case of such configurations.
The magnetic flux through the large circles winding around the periodic
lattice is assumed to be either uniformly 0 (mod 27) or uniformly = (mod
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27). The interacting part of the Hamiltonian has a general form satisfying
a number of invariant properties and a decay property which is faster than
any polynomial order and slower than an exponential order. The interaction
covers on-site interactions, exponentially decaying density-density interac-
tions and exponentially decaying spin-spin interactions as special cases. The
whole Hamiltonian has a symmetry which ensures that the system is at half-
filling. The magnetic flux and the interacting term can be chosen so that the
free energy density of the system is minimum among all flux configurations,
according to Lieb’s result on the flux phase problem ([20]). Thus, it follows
that the minimum free energy density in the flux phase problem on a hyper-
cubic lattice uniformly converges in the infinite-volume, zero-temperature
limit. We will explain how these results generalize the main results of [19]
in Remark 1.8 after officially stating the main theorem and its corollary in
Subsection 1.4.

The key strategy of our construction is to view the hyper-cubic lattice as
a composition of some sparser hyper-cubic lattices. The original one-band
Hamiltonian is accordingly formulated into a multi-band Hamiltonian. More
precisely, we transform the one-band Hamiltonian on a d-dimensional hyper-
cubic lattice into a 2%-band Hamiltonian. This procedure is a generalization
of the formulation in [19] where the one-band Hamiltonian on a square lat-
tice was formulated into a 4-band Hamiltonian. The multi-band formulation
makes it feasible to study symmetric properties and spectral properties of
the hopping matrix. We prove that the modulus of the band spectrum of
the hopping matrix is bounded from below by a non-negative function of
momentum variable vanishing at a single point. In fact the hopping ma-
trix in momentum space fails to be invertible only at the point. Therefore,
this point times zero time-momentum is the only singular point of the free
covariance in the zero-temperature limit. The Hamiltonian has sufficient
symmetries to guarantee that the singular point of the free covariance re-
mains to be the singular point of the effective covariance during infrared (IR)
integration. Therefore, the same renormalization technique as in [19], which
was motivated by [13], applies to this model as well. The power-counting
in the IR integration depends on the spatial dimension quantitatively. The
power in the norm estimation of Grassmann polynomials contains the spa-
tial dimension d as a parameter. By substituting d = 2 we can recover
the same power-counting as in the IR integration process [19, Section 7].
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However, our multi-scale integration is qualitatively unaffected by the gen-
eralization of the spatial dimension in the sense that Grassmann monomials
of degree > 4 are irrelevant at every iteration of the IR integration if the
spatial dimension is larger than 1. We follow steps, which are seen essen-
tially parallel to the stories of [19] in the eyes of abstraction, to complete
the proof of the main theorem. We will refer to the relevant parts of [19]
from time to time to fill the proofs of necessary lemmas. For this reason
this work should be strictly considered as a continuation of [19].

Nonetheless the generalization of the spatial dimension and the gen-
eralization of the interaction cause some technical details to be different
from the previous construction in [19]. The generalization in terms of the
spatial dimension requires the multi-band formulation to be constructed
inductively. This part is explained in Subsection 2.1. In addition to the
new 2%band formulation procedure in Subsection 2.1, we will present other
sections which are largely affected by the generalization of the interaction
without significant omission. These are the symmetric Grassmann integral
formulation in Subsection 2.2, the Matsubara ultra-violet (UV) integration
in Section 3 and the time-continuum, infinite-volume limit of the truncated
Grassmann integral formulation in Appendix C. Moreover, in the belief that
the inductive arguments in [19, Section 7] are not seen trivial at present,
we make this occasion to present a more organized version of the IR inte-
gration process than [19, Section 7] in order to convince the readers of the
true validity of the mathematical renormalization group method.

As for a relevance to the contemporary physical research, one can find
the Fermionic Hamiltonian with magnetic flux in a mean-field theory of the
Heisenberg-Hubbard model simulating the high-Tc superconducting mate-
rials ([1]). More recently, the half-filled Hubbard model with flux 7 per
plaquette together with the half-filled Hubbard model on the honeycomb
lattice tends to be studied by means of numerical computation in order
to describe the metal-insulator transition driven by the electron-electron
interaction ([23], [8], [15], [28], [9], [24] and so on). These numerical stud-
ies commonly start with a speculation that in the m-flux Hubbard model
at half-filling, unlike in the 0-flux Hubbard model at half-filling, the semi-
metal phase remains in a weak-coupling region so that the metal-insulator
transition is detectable in a middle (not the edge) of the phase diagram with
the horizontal axis of the coupling strength. The main result of this paper
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suggests that there is no phase transition caused by the weak electron inter-
action not only in the w-flux Hubbard model but also in a class of electron
models with staggered flux. This should provide a theoretical support for
numerical studies into the metal-insulator transition away from the edge of
the phase diagram in these models yet to appear in physical literature.

The contents of this paper are outlined as follows. In the rest of this
section we define the Hamiltonian operators, see what kind of interaction is
actually covered by our general definition and state the main results of this
paper. In Section 2 we transform the one-band Hamiltonian into a multi-
band Hamiltonian and formulate the multi-band Hamiltonian by means of
finite-dimensional Grassmann integration. In Section 3 we construct the
Matsubara UV integration both at a fixed temperature and at 2 different
temperatures. In Section 4 we carry out the IR integration and complete
the proof of the main theorem. In Appendix A we provide a lemma con-
cerning reordering in a non-commutative C-algebra, which is conveniently
used in the proof that our many-electron system is at half-filling in Subsec-
tion 1.2. In Appendix B we restate Lieb’s result on a d-dimensional flux
phase problem in order to facilitate the derivation of the corollary about the
minimum free energy density from the main theorem. Finally in Appendix
C we prove that each truncation of the Taylor series of the Grassmann inte-
gral formulation of the free energy density converges in the time-continuum,
infinite-volume limit. A flow chart of our construction showing the depen-
dency between the sections of this paper and the lemmas of the previous
work [19] is given in Figure 1. We also attach a list of notations for sake
of the readers in the end. However, this list only contains notations which
were not used in [19] or were used in [19] with different meanings and thus
need additional remarks. The readers should refer to the more comprehen-
sive list in [19] for notations which are not contained in the supplementary
list of this paper.

1.2. Hamiltonians

We let the number d (> 2) denote the spatial dimension throughout
this paper. For L € N we define the d-dimensional spatial lattice I'(L)
by T'(L) := {0,1,--- ,L — 1}4. In this subsection we introduce a class of
Hamiltonians on the Fermionic Fock space Fy(L*(T'(2L) x {T,1})). For a
technical reason we define the Hamiltonians in the spatial lattice of even
length 2. Our Hamiltonians contain an external magnetic field by means
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Section 1 Appendix A
Appendix B
t
19 Lemma A.2, Lemma A .4,
[19] Theorem A.5.
Lemma 2.1, Lemma 2.2,
. 19 Lemma 2.4, Lemma 2.8,
] SeCtlon 2 [19] Lemma 2.10, Lemma B.1,

Lemma B.2, Lemma B.3.

Lemma 3.1, Lemma 3.8,
Lemma 3.9, Lemma 4.1,
[19] Lemma 4.6, Lemma 5.1,
Lemma 5.3, Lemma 6.1,
Lemma 6.2, Lemma 6.3.

Iy

Section 3

Appendix C
Lemma 3.9, Proposition 5.6,
Proposition 5.9, Proposition 6.4 (2),(3),
Lemma 7.4, Lemma 7.5,

[19] Lemma 7.6 (1),(2), Lemma 7.13 (3),(4),

| Lemma 7.18 (3), Proof of Theorem 1.1,
Ly Lemma C.3, Lemma E.1,

SeCtion 4 Lemma E.2.

Fig. 1. Flow chart of our construction, where the arrows mean major dependency.

of the Peierls substitution. The phase 07, : Z% x Z% — R is assumed to
satisfy that

(11> GL(va) = _QL(yvx) (mOd 27T)7
d
O | x+ 2Lijej,y =0r(x,y) (mod 27),
j=1

(Vx,y GZd,mj €Z(j=1,2,---,4d)).
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Fig. 2. The chessboard-like flux configuration.

Here e; is the vector of 7% whose j-th entry is 1 and the other entries are 0.
The free energy of the system with the periodic boundary condition is known
to be dependent on the magnetic field only by the flux per plaquette and
the flux through large circles winding around the periodic lattice. Thus, it
is important to specify these fluxes in advance. Let 6; ;. € R, qL € {0,1} for
j, kL€ {1,2,---,d} with j < k. We allow £ to change its value depending
on L and assume that ] =0 (VI € {1,2,--- ,d}). We assume that

(1.2) Or(x+ej,x)+0L(x+ej+e,x+ej)
+0r(x+ep,x+e +ey)+0r(x,x+e)
— (~1)F+r0,, (mod 2r),
201

(1.3) Z Or(x + (m + 1)e;, x +me)) =eFr (mod 27),
m=0

(Vx = (21,22, - ,2q) € 29§, k1 € {1,2, - ,d} with j < k).

The condition (1.2) determines the flux per plaquette. When d = 2, the con-
dition (1.2) requires the flux per plaquette to be arranged like a chessboard
as pictured in Figure 2. The condition (1.3) states that the flux through

the closed contour parallel to e is efm (mod 27) for any [ € {1,2,--- ,d}.
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Our analysis will be made on the quantitative assumption that

1 m—1 . d . .
(1.4) 5, max Z |14 eim| 4 Z 114 emi| | <1.

Let t; € Ryg (j = 1,2,---,d) be the hopping amplitudes. The free
Hamiltonian Hg is defined by

Ho := Z Z 13]’6{1,2,--- ,d} s.t. x—y=e; or —e; in (Z/2LZ)4
x,yel'(2L) o€{1,1}

-t 0L (x,y)w)*wwym

where 1), is the annihilation operator and 1%, is its adjoint operator called
creation operator. The function 1p returns 1 if a proposition P is true, 0
otherwise. For any x € Z% we define 1x,, ¥, by identifying x with the site
x' of I'(2L) satisfying that x' = x in (Z/2LZ)%. The condition (1.1) ensures
that Hg is self-adjoint.

To define the interacting part, we introduce the kernel functions. For any
set A, B let Map(A, B) denote the set of maps from A to B. Take n, € N,
N, € N>o. We assume that V¥ € Map(C"™,C), V.2 € Map(C™, Map((Z? x
{1,1)™ x (2% x {1,1})™,C)) (m=1,2,---, N,) satisfy the following con-
ditions.

(i)
U~V (U): C™ - C,
U Vi(U) : C™ — Map((2 x {1, [})" x (¢ x {1,1})™, C)
are linear.
(ii)

(15) V'nlz/(U)((XbX?a aXm)a(YhY?v aYm))
= sgn(n) sgn(§)
VO (Xpays Xn@)s X)) Yeys Ye@) > Yem)))s

(\V/vayvj EZd X {T7~L} (.7 = 1721"' ’m)vU € Cn“ﬂ%ﬁ GSm>7
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where S, is the set of all permutations over {1,2,--- m}.
(iii)
(1.6) Vi (U)(((x1,01),- s (Kimy o)), (Y1, 71) - (Yims )
= (- 1)2 1(loy=1+17;=1)
: Vn[z/(U)(((Xla 01)7 T (XM7UW))7 ((ylle)’ T (Ym,Tm))),
(V(xj,05), (y,75) €24 x {1,1} (j =1,2,--- ,m), U € C™).
(iv)
(1'7) Vﬁ(U)(((Xhal)v T (Xﬂ% Um))v ((ylaTl)v T (ymv Tm)))
= Vn%(U)(((Xh _01)7 ) (XWH _Um))7 ((YI7 _7_1)7 B (}’m, _Tm)))>
(V(Xj,o'j), (YJ?TJ) € Zd X {T?l} (.] =12, am)vU € (Cnv)

(v)
(1.8) Vn%(U)(((XLUl)a'“ (K> 7))y (Y15 71)5 -+ 3 (Y 7))
=V (U)((x1,01),- - ( som))s (175 s (Vi 7))
(Vx1 ><]2,y]1,y]2 ezt Satlsfylng X1 J,y]l = y]2- in (Z/2L7),
o, €{T,1} G=1,2,---,m),U e C™).
(vi)

(1.9) VWLL(U)(((Xl +2z,01), (X + 22,0m)),
((y1+22,71), - (Y +22,7m)))
= Vo (U)((1,01), -+ 5 (%my 0m))s (71, 71) -+ 5 (Y 7))
(V(xj,09), (vj,75) € 2 x {1,1} (j =1,2,--- ,m),z € Z*, U € C™),

(vii)
(1'10) Vrg(U)(((X1701)v T (XWH Um)): ((ylaTl)v T (ymv Tm)))
= Vn%(U)(((_Xl?Ul)ﬂ B (_Xmaam))7

(=y1, 1), (=Ym: ™)),
V(xj,09), (v5,75) €ZEx {1,1} (j=1,2,--- ,m),U € C™).
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(viii) For any 6 € Map(Z%,R) satisfying that 0(x) = 0(y) (vVx,y € Z? with
x =y in (Z/2L7)%),

(1'11) VL(U)(((XhUl)v T (va Um))v ((ylaTl)v T (Ym7 Tm)))
(2 521 0(x5) =2 52, 0(y5))

’ VWI;(U)(((XbUl)v' o ,(Xm,O'm)), ((ylaTl)v' o 7(ym77—m)))7
(V(xj,09), (vj,75) € 2 x {1,1} (j =1,2,--- ,m),U e C™).

(ix)
(1.12) ViH(U) = VED), V(U)X Y) = VEO)(Y,X),
(VX,Y € (24 x {1,1})™, U eC™).
(x)
(1.13) ViU (X,Y)

Ny—m
m (m—i—l)l' Z

1=0 (zj,m)eF(2L)X{T 1}
(G=1,2,+,1)

VI (U)X, ((21,m), (22,m2), -, (z1,m))),
(((Zlanl)v (Zl—lvnl—l)a ) (Zla nl))aY))v
(VX,Y € (24 x {1,11)™, U e C™).

(xi) For any j € {1,2,--- ,n,}, X, Y € (Z¢ x {1, | )™

1 0
lim — U), lim —VE(U)X,Y
Llfolo L4 0U; a0 (0, Lo 8Ujvm( )X, Y)
LeN Le
converge.
(xii) For any ¢ € R>,
(1.14) sup sup sup Sup

(J:1727 7n’U) k€{1)27 7d}
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>

(xj,05)€T(2L)x{1,]}
(j=1,2,---,2m—1)

. £|ei%<xfxq,ek> o 1| + 1 GZ ?:1(5%|ei%<x—xpyej>_1‘)1/2
s
' ‘Vé(U)(((Xa U)v (le 01)7 Tty (mela O'mfl))y

((Xm7 Um)7 (Xm+17 Um+1)7 Ty (X2m—17 O—Qm—l)))‘ < oo,
where (-, -) is the standard inner product.

For U € R™ we define the interacting part of the Hamiltonian by

Ny

(1.15) V=) >

m=0 (xjao'j)v(yjoj)EF(2L)X{Tvl}
j:1a27"' 7m)

’ Vn%(U)(((le Ul)? B (Xm7 Um))? ((y17 7—1)7 T (Ym7 Tm)))

Vo Yxmom yim Py

By the property (1.12) the operator V is self-adjoint. The Hamiltonian H

is defined by H := Hg + V. Note that H is a self-adjoint operator in the

Fermionic Fock space Fr(L?(T'(2L) x {1, |})).

The main results of this paper concern analyticity and convergent prop-

erties of the free energy density

1
~5En)! log(Tr e~ PH),

where 5 € Ry is the inverse temperature. Since the phase is an important

parameter, we sometimes write Ho(6z), H(f1) in place of Hy, H respectively.
The many-electron system is half-filled in the following sense.

LEMMA 1.1. For any (x,0) € I'(2L) x {1, ]},

Tr(eiﬁHwiawxa) _ 1

Tre—BH )
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PROOF. Let €y, denote the vacuum of the Fock space Fy(L?*(T'(2L) x
{1,1})). Define the transform A on Fy(L*(I'(2L) x {1,]})) by

AQap =[] (Wivs))Qor,

xel(2L)
A(wilal T w;nanQQL)
" d e * gk
= (_1)2 j=1 2=t (x5 k>wx101 - wxnon H (wawxl)Q2L

xel'(2L)

for any (x;,0;) € I'(2L) x {1,1} (j =1,2,--- ,n), and by linearity. We can
see that A is a unitary transform and AHg(0z)A* = Ho(—60r). Moreover,
by using the properties (1.11), (1.13), (1.12), (1.5) and Lemma A.1 proved
in Appendix A in this order,

AV A*

Ny
-y 3 (—1)E 7o Dl bty en)

m=0 (x;,0;),(y;,7)€L(2L)x{T1,]}
(J 1 27 o 7m)

’ Vﬂ%(U)(((Xl, Ul)a Ty (Xm’ Um))’ ((ylv Tl)a Tty (yma Tm)))

ror  PxmomWorry -

Ny Ny—m ey 2
D DS > (M)

m=0 =0 (x;,0;), (YJ:TJ)EF( L)x{1,l} (Z]ﬂ?g) rL)x{1,l}

(j=1,2, j=1,2,--,1)
’ Vrr[{Jrl(U)((((Xl?a-l): T (Xma Um))a ((Z
(((ze,m), -+ (z1,m)), (¥
wxlgl wxmo'mwlel ' w;me

_ i 3 3 (—1)m ( ’l” >2u

0 (x5,05),(y;,m5)€T(2L)x{T,1} (Z],nj)eli(QL)X{T L}
(

1 nl)a B} (Zl,ﬁl)))
1,71

) (Yms Tm))))

3
O
Iy

(.] 1a27 M= l) (.7 2) o 7l)

’ Vn[{(U)((((YIﬂ—l): ) (Ym—laTm—l) ) (Z1>771)> ) (Zlanl)))a
(((Zlvnl)7 ) (Z177’1))a ((le 0-1)7 ) (Xm—la Um—l))))

* *
’ wxla'l T wxm—lo'm—lw}’lTl T w)’mfl‘rmfl
=V,
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where we set

Ny

ey Y

m=0 (x;,0;),(y;,7)€L(2L)x{T1,]}
(j:1727"' 7m)

: Vrg(U)(«(leO’l)v R (XWH Um))v ((Yle): T (YmaTm)))

: w;lal e w;mamwlel T wYm'Tm’

Thus, we have for any (x,0) € I'(2L) x {1, |} that

Tr(eiﬁHd})*cowa) Tr(eiﬁ(Ho(70L)+V)A¢;U¢XUA*)
Tre—AH - Ty e—B(Ho(=01)+V)
Tr(e M0y i)
L ey

Then, by considering that

Tr e=BHo(=02)+V) _ Ty o=BH — Ty ¢ —AH

)

Tr(eiﬁ(HO(iaL)Jrv)Q/);o—wxa) = TY(G_BH@UI/JXU) = Tr(eiﬁHwiawxa),

we obtain the claimed equality. U

REMARK 1.2. There was unfortunately a flaw in the definition of the
unitary transform in [19, Remark 1.4] which was intended to demonstrate a
proof of the same claim as the above lemma. By using the unitary transform
A we can correct [19, Remark 1.4]. It is simpler to confirm the equalities
AHo(0p)A* = Ho(—0r), AVA* = V for the free Hamiltonian Hy(fy) and
the on-site interaction V of [19]. Then, the conclusion of [19, Remark 1.4]
follows from the same argument as the last part of the above proof.

1.3. Examples

Let us see that the interaction V covers some relevant models of inter-
acting electrons. To shorten formulas, let v,,(c) denote the left-hand side
of the inequality (1.14) for m € {1,2,--- , N, } and ¢ € R>g. Moreover, set

L L
Vg 1= sup sup — Vo (U)].
LeN  UeC with L
|U]|§1(j:172a ,'qu;)
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Ezample 1.3 (The on-site interaction). Let g € Map({1,—1}4,{1,2,
3,---,2%}). With the coupling constants U, = (Uy(1),U,(2),Uy(3),--- ,
Uy(2%)) the on-site interaction V, is defined by

V, =

D0 Uslg((=)™, (<), (=1)") (w;zw - %) @?’éwm - %) |

x€I'(2L)

The operator V, is equivalently written as follows.

V, = > V(Uo) (X1, Xa), (Y1, Y2))Uk, ¥y oy oy,
X;,Y;€er(2L)x{1,1}
(j:172)

+ > VA (U)X, Y)Wty + Vi (U,)
X,Yer(2L)x{1,l}

with
Voo (Uo)(((x1,01), (x2,02)), ((y1,71), (y2,72)))
= iUo(g((_l)xlyl’ (_1)‘%1727 ) (_1)xl’d))1x1:x2:y1:y2 in (Z/2LZ)%

“(Lor,00)=(1,1) — Lon,02)=(1,1) Lrm)=(11) = Lemm)=(1,1)):

Vo1(Uo)((x,0), (y, 7))
1 x T z
= _§Uo(g((_1) 1 (_1) SPRE <_1) d))l(x,a):(y,f) in (Z/2LZ)*x{T1,|}>
L Ld
Vo,O(UO) = o Z Uo(9(x)).
xe{l,—-1}4

We can check that the kernels V(f] (j = 0,1,2) satisfy the conditions (i),
(i), - -+, (xi) with N, = 2, n, = 2%. We can estimate the factors vy, v, (c)
(m = 1,2) for this interaction as follows.

vy < 29472,

v2(c) < vi(c) <

bl

N | =

1
57
The operator V, — VO%(UO) is also one example of the interaction V and it
is equal to the interaction treated in [19] when d = 2 and g is bijective.
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Ezample 1.4 (The density-density interaction). Let fy be a real-valued
continuous function on R satisfying that

Ja(0) =0, |fa(x)] < cre™ =51 (vx € RY),
where c1, co € Rsg are fixed constants. We define the periodic function de
on R4 by
L s L ;T L | T
0 = fa (F1eE 1), Lt ) Zjees 1))
™ T s
and the density-density interaction Vg by
Vai=Us D [ =)Wt + 0k ey — V(5181 + U5ty — 1),
x,y€I'(2L)
where Uy is the coupling constant. We can write as follow.
Va= Y VAU)((X1, Xa), (M, Y)Wk, ¥k, Uy by,

X;,¥;€P L)% {11}
(=1,2)

+ > VA (U)X, Y )y + Vi(Ua)
X,Yer(2L)x{1,l}

with the bi-anti-symmetric kernels VdLJ. (j =0,1,2) defined by

Vi (Ua)(((x1,01), (x2,02)), ((y1,71), (y2, 72)))

= iUdde(xl —%2) Y sgn(n)sgn(€)
n,EESy

1(xn(1),0,7(1))=(y§(2),T5(2)) in (Z/2LZ)2x{1,1}
l(xn(z),Un(z))=(>’g(1)ﬁg<1)) in (Z/2LZ)2x{1,1}>
‘ci%l(Ud)((X?U)a (y?T)) = _2Ud1(x,a):(y,r) in (Z/2LZ)2x{1,|} Z fc%(z)7

zel'(2L)
Vio(Ua) = 2L)"Ua Y fi(2).
zel'(2L)
The kernels Vdfj (j = 0,1,2) satisfy the conditions (i), (ii), ---, (xi) with

N, = 2, n, = 1. The factors vy, v;,(c) (m = 1,2) can be estimated as
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follows.

va(c) < 2sup  sup

LeNje{1,2,-,d} xeT(2L)

L s d Ly ifx; /
| <;l 1)+ 1) R (]

d
< 2¢; (Z(!w! - 1)€(C|w|)1/2—02%|$|> ,

ze,
d
vi(e) <2 ) [fi(2)] < 201 (Z 6—02%le> ,
z€l'(2L) x€Z
d
vy < Qdcl (Z 6_02%|x|> .
xeZ,

17

The density-density interaction only between nearest-neighbor sites has par-
ticular importance for the flux phase problem, since it can be dealt within
the framework of repeated reflection. Such a model is one special case of
the interactions introduced above. To see this, let us choose a continuous

function f on [0, 00) satisfying that
(1.16) f(z) €[0,1] (Vx € [0,00)),

[ 1 ifzel31],
f(""”)_{o if 2 € {0} U2, o00)

and set

d
fax) = F ) |zl |, (x €z
j=1

It follows that

4
™

(1.17) £200) =0, |fa(x)] <ere = lml (vx € 7).,

Moreover, for any x € Z¢,

L 1 if3j€{1,2,---,d} st. x=e; or —e; in (Z/2L7)*
fa(x) =

0 otherwise



18 Yohei KASHIMA

and thus,

Vg =Uq Z 13j€{1,2,--- ,d} s.t. x—y=e; or —e; in (Z/2LZ)
x,y€I'(2L)

(st + k) — D0y ¢y1 + by vy — 1)

In this case the above estimation of vy(c), v1(c), vo holds with ¢; = e,
Co — 1.

Ezample 1.5 (The spin-spin interaction). Let us choose real-valued
continuous functions fs; ( = 1,2,3) on RY satisfying that

Foi(0) =0, |fo;(x)] < creeZimlml (yx e RY),

with constants c¢1,co € Rsg. Then, set

L

Pt 1), 2 - Dt ))
T

L) =1 (£

-, —
s

for x € RY. With the Pauli matrices

1) _ 0 1 2) _ 0 — 3) _ 1 0
P=(Vo) P05 ) P (h 4

and the coupling constants U, ; (j = 1,2, 3), the spin-spin interaction Vj is
defined as follows.

V, = Vs,

M-

1

J

(1.18) Voji=Usj 3. > thx-y)
x,y€l'(2L) o,m,u, e{T,1}
(W POr) (85, POy,
(j=1,2,3).

The operators V, ; (j = 1,2,3) can be rewritten as

Ve, = > ViE o (Us ) (X1, X2), (Y1, Y2))Uk, ¥k, ¥ri ¥va

)
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with the kernels ng 5 (j =1,2,3) defined by

VE o(Us i) (((x1,01), (%2,02)), (¥1,71), (y2, 72)))
1

T4
: Z Sgn(n) Sgn(f)l Xp(1)=Ye(2) in (Z/2L7)4 aly n(2)=Ye(1) in (Z/2L7)4
€Sy
pU) prY)

In(1):Te(2) " Tn(2):TE()”

Us,j fuj(x1 = x2)

The kernel VE 5.2 satisfies (i), (ii) -+, (xi) with N, =2, n, = 1 and so does

the whole kernel VS ZJ 1 VL 2 with N, = 2, n, = 3. For VX 5 an upper
bound on va(c) is obtained as follows

va(c)

<6sup sup Z <7T’ez T 1|+1> (L|eL i-1]) 1/2|fL( )’

LGN] E{l d}

hell 2.4y XEPCD)
1 d
< 6c (Z(’g)’ + 1)6(C$)2_02%x> ‘
z€l

Again by using a continuous non-negative function f on [0,00) satisfying
(1.16) we can formulate the spin-spin interaction between nearest-neighbor
sites. By setting

foi(x (Z |xk|>

’Lx L 'Ll' L 'L:U
L(x) = fs,j<—|€ g Bty R d—1|)
(1 =1,2,3),

the operator V ; defined in (1.18) reads

VSJ :Usaj Z Z 1Elk€{1,2,~~~ ,d} s.t. x—y=ey, or —ey, in (Z/2LZ)%
x,y€T'(2L) o,7,u,Ae{T, |}

(wxo' UTwXT)(¢yuP(])¢yA)
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Moreover, the upper bound on vs(c) derived above holds with ¢; = e%,
co = 1 since f, ; satisfies (1.17) in this case.

In summary, the operator V,+V;+V, is one example of the interactions
treated in this paper.

1.4. The main results

For ¢ € Ry let D(c) denote the disk {z € C | |z| < c¢}. Recall that
for m € {1,2,--- | Ny}, vp(c) denotes the left-hand side of the inequality
(1.14). For any non-empty compact set K of C™, C(K;C) denotes the
Banach space of all complex-valued continuous functions on K, equipped
with the uniform norm. Remind us that the norm of f € C'(K;C) is equal
to sup,c | f(z)|. The following theorem is the main result of this paper.

THEOREM 1.6. There exists a constant c(d, Ny) € Rsq depending only

on d and N, such that the following statements hold true with the quantity
R defined by

Ny -1
R:= (Z c(d, Ny)'vy(c(d, Nv)))

=1

QU

Ny

d 2

1 m—1 ' 4
1— = a 1 'LOJ"m 1 z@m,j
7 meEX ;I +efim] 4 37 14 e

Nyd 1-Nyd
. min _t; max tj .
j€{1>27"'ad} j€{1727"'1d}

(1) There exists F(8,L) € C(D(R)"";C) parameterized by 3 € Rsq and
L € N satisfying L > max{ti,to, -+ ,tq}B such that F(3,L) is analytic
in D(R)™ and

Jj=m+1

F(8. L)(U) =~y og(Tre ™),

(YU € D(R)" NR™, 3 € Ry,
L € N satisfying L > max{ti,to, - ,tq}0).
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(2) There exists F(3) € C(D(R)";C) parameterized by 3 € Rsq such that

phm F(8,L) = F(B) in C(D(R)"";C).
with L>max{t1,t2, ,tq}0

(3) There exists F € C(D(R)";C) such that

li F(3) = F in C(D(R)":C).
pom, F(B)=Fin C(D(R) 5 C)

If we restrict the interaction V to have a special form and choose the
phase 07, to satisfy a certain condition, the free energy density considered in
Theorem 1.6 becomes the minimum free energy in the flux phase problem.
More precisely, we assume that

(1.19) V =U, Z <¢;T¢xT - %) <¢;¢¢xl - %)
)

xel'(2L

+Uq Z 13k€{172,--~ ,d} s.t. x—y=ey, or —ey, in (Z/2L7Z)4
x,y€l'(2L)

(¥t + Vi xl — D (Wyrtyr + by ty) — 1)

?é%jEZ >

) 13k€{1,2,~-- ,d} s.t. x—y=ey or —ey in (Z/2LZ)4
(U Pr ) (W, POy )

with the Pauli matrices PY) (j = 1,2,3) and U, € R, Uy Us; € Rsg
(j = 1,2,3). The interaction V has a form to which the reflection positivity
lemma [20, Lemma] is applicable. As studied in the previous subsection,
the factors vy, vi(c), v2(c) for this interaction are bounded from above by a
constant depending only on ¢ and d.

Recall that for a phase ¢ : Z¢ x Z% — R satisfying (1.1) we set

(1.20)  Ho(yp) = Z Z 13j€{1,2,~-- ,d} s.t. x—y=e; or —e; in (Z/2L7)%
x,y€l'(2L) oe{1,1}

-t elP(x:y) @Z)Q'Zg?/Jya,
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and H(¢) = Ho(¢) + V. The flux phase problem is to find a phase ¢ which
minimizes the free energy —(1/3)log(Tr e #"(#)). Theorem B.4, which is a
simple extension of Lieb’s theorem [20], stated in Appendix B implies that
if the phase 67, satisfies (1.1), (1.2) with 0, = = for all j,k € {1,2,--- ,d}
with j < k and (1.3) with ef = 177 for all | € {1,2,--- ,d}, then

- % log(Tre=PHOL))

1
= min {_B log(Tre PH@)) | o : 2% x 79 — R satisfying (1.1)} .

Combined with Theorem 1.6, we obtain the following corollary.

COROLLARY 1.7.  There exists a constant ¢(d) € Rsqo depending only
on d such that the following statements hold with the quantity R defined by

2d 1-2d
R = c(d) ( min tj> < max t]) _
16{1’27’d} j€{17277d}

(1) There exists F(B,L) € C(D(R)B;C) parameterized by B € Rso and
L € N satisfying L > max{ti,to, - ,tq}5 such that F(3,L) is analytic
in D(R)® and

F(ﬂv L)(Um Ud7 U5,17 U5,27 US,S)

1
= min {_W log(Tre PHW)) | o : 79 x 7% — R satisfying (1.1)} ,

(WU, € D(R) (R, (U, Us1, U2, Us3) € D(R)' R,
B € Ry, L € N satisfying L > max{ty,ta,- - ,tq}0).

(2) There exists F(B) € C’(D(R)5; C) parameterized by 3 € R such that

. , — 5
i P D),
with L>max{t1,ta, tq}3

(3) There exists F' € C(D(R)S;C) such that

)
li F(B)=F in C(D(R) ;C).
, Jm F(8) = F in C(D(R)’sC)
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REMARK 1.8. Let us explain how Theorem 1.6 and Corollary 1.7 gen-
eralize [19, Theorem 1.1, Corollary 1.2]. Both in Theorem 1.6 and Corollary
1.7 the spatial dimension d is any number larger than 1, while it was fixed
to be 2 in [19, Theorem 1.1, Corollary 1.2]. In Theorem 1.6 we assume
the flux conditions (1.2), (1.3), which are more general than the condi-
tions [19, (1,2)] requiring that the flux per plaquette is © (mod 27) and
the flux through the large circles around the periodic square lattice is 0
(mod 27). As we saw in Example 1.3, the interaction V covers the on-site
interaction considered in [19, Theorem 1.1] as a special case. Concerning
the spatial dimension and the flux configuration, therefore, Theorem 1.6 is
more general than [19, Theorem 1.1]. However, here the hopping amplitude
depends only on the direction and thus the whole hopping amplitudes are
described by the d parameters t1,to, - ,tg, while in [19, Theorem 1.1] the
hopping amplitude is constant in each direction and is allowed to vary al-
ternately and thus the whole hopping amplitudes are described by the 4
parameters “tp e, th o, toestv,o’ as it was 2-dimensional. See [19, Figure 2]
for the configuration of the hopping amplitudes. Theorem 1.6 is less gen-
eral than [19, Theorem 1.1] only in this sense. In this paper we do not
stick to the generalization of the hopping amplitudes in the interest of
simplicity. If we assume that the hopping amplitude depends only on the
direction in [19, Theorem 1.1], then the factor “f¢” determining the pos-
sible magnitude of the coupling in [19, Theorem 1.1] becomes the factor
(min{tq, t2})*(max{t1,t2}) "3 included in R in Theorem 1.6. In this setting,
therefore, Theorem 1.6 naturally extends [19, Theorem 1.1]. As for Corol-
lary 1.7, the apparent generality is that the interaction includes not only
the on-site interaction but also the density-density interaction and the spin-
spin interaction as defined in (1.19). Moreover, the number L can be both
odd and even, while it was restricted to be odd in [19, Corollary 1.2]. This
generalization is due to the fact that here the magnetic flux through the
large circles around the lattice can be uniformly 0 (mod 27) or uniformly 7
(mod 27) depending on the parity of L and thus the free energy density in
Theorem 1.6 can be the minimum in the flux phase problem in both cases,
according to the known sufficient condition restated in Theorem B.4.

REMARK 1.9. It is not trivial to make explicit the dependency of the
constants ¢(d, Ny), ¢(d) on d, N,. We can see from our construction that
it would require a wide range of additional calculations to do so. Not to
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lengthen the paper further, we decide not to tackle this clarification.

REMARK 1.10. The condition (1.4) requires the flux per plaquette 6;
not to vanish for any j,k € {1,2,---,d} with j < k. In 2-dimensional
case the constraint (1.4) is fulfilled if 61 2 # 0 (mod 27). This means that
the infinite-volume, zero-temperature limit of the free energy density can
be taken if the system contains an arbitrarily thin magnetic field having a
chessboard-like flux pattern over the square lattice and the interaction is
accordingly weak.

REMARK 1.11. The exponent 1/2 in (1.14) stems from the fact that
we use a Gevrey-class cut-off function ¢ satisfying that

sup 10" ()| < 2™(n!)?, (Vn e NU{0})
TE

(see the beginning of Subsection 3.1). We can prove the similar results for
the interactions satisfying (1.14) with the exponent r € (0,1) in place of
1/2 by using a cut-off function ¢ satisfying that

sup [¢(™ (z)] < const”(n!)%, (Vn e NU{0}).

zeR
However, this generalization will bring the extra parameter r into the major
part of the construction since other parameters need to be tuned depending
on r. In this paper we choose not to pursue this generalization for simplicity.

2. Multi-Band Formulation

In this section we introduce a 2%-band Hamiltonian operator whose free
energy density is equal to that governed by the 1-band Hamiltonian H.
Then, we will focus on the 2¢-band model and derive the finite-dimensional
Grassmann integral formulation of the partition function. The Grassmann
integral formulation of the 2¢-band model will be the major objective of our
multi-scale analysis in the following sections.

2.1. Multi-band Hamiltonian
We will define the hopping matrix of the multi-band Hamiltonian by
induction with respect to the spatial dimension. To this end, we need some
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notations. For n € N let Mat(n,C) denote the set of all n x n complex
matrices and let I, denote the n X n unit matrix. Set

T,(L):={0,1,---,L—1}", B,:={1,2,3,---,2"}.

Note that for any p € B, there uniquely exists (p1,p2, - ,pn) € {0,1}"
such that p = Z?:_ol pj+127 + 1. Thus, we can define b, € Map(B,, {0,1}")
by b, (p) := (p1,p2, -, pn). The map b, is bijective. We will suppress the
index n of I'),(L), By, by after fixing n to be the spatial dimension d. We
keep showing the dependency on n while we argue inductively with respect
ton. For n € N and (§;)1<j<n € R" we define the matrix U, ((§)1<j<n) €
Mat (2", C) parameterized by (§;)1<j<n as follows. Set

Ui(&1) := ( (1) 6?51 >

Assume that we have defined Up,((&)1<j<m) € Mat(2™,C). Then, define
Upm+1((&5)1<j<m+1) € Mat(2™+1,C) by

( Un((€)1<j<m) 0 > .

Um+1((§j)1§j§m+l) = 19) ei€m+1 Um((fj)1<j<m)

LEMMA 2.1. For anyn € N,

Un((E)1<j<n)(pym) = €= 3= 000G s 0 (Yp, € By).

PrROOF. The claim holds for n = 1 by definition. Assume that it holds
for some n € N. Let p,n € Bpi1. If byyi(p)(n + 1) # bpr1(n)(n + 1),

Un+1((§5)1<j<n+1)(psm) = 0 by definition. If by1(p)(n + 1) = bupt1(n)(n +
1) = 0, by the hypothesis of induction,

Uns1((€)12j<n1)(p.1) = Un((€1<j<n) (. ) = €/ Zi= 0 D65,
AT b () )8
I2UN

If bpr1(p)(n+1) = byy1(n)(n+ 1) = 1, by the hypothesis of induction,

Up+1((€)1<i<nt1)(p,n) = €1 U, ((€)1<5<n) (p — 2,1 — 27)
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— T bn(p—2")(j)£j+i€n+15p_2n7,7_2n
— T b () Spr

Thus, the result holds for n + 1. By induction, the claim holds for any
neN. O

Let vjr € R for j,k € {1,2,--- ,n} with j < k. Then, let (v;r)1<j<k<n
denote the vector

n(n—1)

(71,2771,3,’72,3,’)’1,47’72,4,73,47‘" 7'7n—1,n) eR 2.
For n € N we define M, ((aj)1<j<n, (Vjk)i1<j<k<n) € Mat(2",C) parameter-

. n(n—-1)
ized by (aj)lgjgn e Cr, (’Yj,k)lgj<k§n eR 2 as follows.

L 0 al
Ml(al) = (a_l 0 >
Assume that we have defined My, ((aj)1<j<m, (Vjk)1<j<k<m) € Mat(2™,C).
Then, define Mm11((a;)1<j<m+1, (Vir)1gj<hzm+1) € Mat(2mH, C) by

M y1((a))1<j<ms1, (Vjk)1<j<k<mo1)
— < M ((aj)1<j<m, (Vik)i<j<k<m) — @me1Un((jme1)1<i<m) >
Ot 1Um((Vjm+1)1<i<m)™ Mm((a5)1<j<m, (Vi k)1<j<k<m)

We can see from the definition that M,((a;)i<j<n,(Vjk)i<j<k<n) is
hermitian. The matrix M, ((a;)1<j<n, (Vjk)1<j<k<n) i meant to be a
generalization of the hopping matrix in momentum space. Before substi-
tuting the physical parameters, let us summarize its general properties.
For any M € Mat(n,C) let |[M|nxn denote its operator norm

SUPyeCr with ||v]cn=1 ||MV||C”
LEMMA 2.2.
(1) For any p,n € By,

(2.1)  Mu((aj)r<j<ns (Vi)r<i<h<a) (0 )

= 13j€{1’2,"'7n} s.t. b (p)(F)<bn (M) () A bn(p)(k)=bn(n)(k) (VkE{1,2,-- ,n}\{j})
. eiliz2 = {;11 bn(P)(l)’YL.jaj

T 15je{1,2, n} st b (p)(G)>ba(MG)A bu(p)(k)=bn (n)(k) (VEE{L,2,-,n}\{j})
. e—i1j22 = {:—11 bn(”l)(l)’YL,ja—j.
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(2) For any (§j)1<j<n € R",

Un((&)1<j<n) Mn((aj)1<i<ns (Ve )1<j<k<n)Un((&5)1<j<n)”

= My ((e" ™ aj)1<j<n, (Vik)1<j<k<n)-

n

1Mo ((a5)1<5<n (Vik)1<ichan) 2nxan < lag]-
j=1

inf || Mn((a)1<j<ns (Vik)1<j<ksn) V[gen

1 m—1 ' n '
> | 1—=1p>2 14 €em| + 14 e"m
w2y max | ST(Leeim e BT [1+enm)
j=1 j=m+1
n

Y lagl

Jj=1

PROOF. (1): Assume that the result is true for p,n € B, with p < n.
Then, the result for p,n € B, with p > n follows from the hermiticity of
M,,. Thus, it suffices to prove the equality for p,n € B, with p < n. It
holds for n = 1 by definition. Assume that it is true for some n € N. Take
p, 1 € By satisfying p < n. It follows that b,11(p)(n+1) < bpt1(n)(n+1).
If bptr1(p)(n+1) = bpt1(n)(n+1), by setting m := by4+1(p)(n+ 1)2" we see
that

Mpi1((ag)1<i<n+1, (Vr)1<i<k<n+1) (P, 1)
= My, ((aj)1<j<n, (Vjk)1<j<k<n)(p —m,n —m)
= 13je(1,2, 1} sit. bu(p=m) () <bn(n—m)() A b (p—m)(k)=b (n—m)(k) (VkE{L,2,- ,n}\{5})
eilize X {2 b (p—m) (D a;
= 13je{1.2, nt1} st bug1(0)(@)<bat1 (MG A bugr ()(B)=bn i1 (m)(k) (VRE{1,2, m+1]\{5})
eilize X {2 busa(P) (W a;

= (the right-hand side of (2.1)).
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If bpr1(p)(n+1) < bpyi(n)(n+ 1), by Lemma 2.1,

My1((aj)i<j<ntt, (Vjk)i<j<k<nt1)(p,n)

= a1 Un((Vjna1)1<i<n) (0,0 — bpy1(n)(n + 1)27)

o ix b l
==t tn1e, ez n g

ei z ;L:1 bn(p)(l)'ﬂ,n-H

= Lo 1 () ()=t 1 () (k) (FRE{1,2, n}) An+1

= (the right-hand side of (2.1)).

Thus, the results hold for n 4+ 1. The induction with n proves the claim for
any n € N.

(2): The equality for n = 1 can be confirmed by a direct calculation.
Assume that it is true for some n € N. By the definition and the hypothesis
of induction,

Un+1((§)1<j<n+1) Mni1((a5)1<i<nr1: (k) 1<j<hnt1)Uns1((§)1<i<nt1)”
_ ( Un((&)1<i<n) Mn((a5)1<5<n, (Vik)1<j<k<n)Un((§5)1<j<n)”

€18 1 Un ((Vjnt1)1<5<n) ™

Un((§5)1<j<n) Mn((aj)1<j<ns (Vik)1<i<k<n)Un((&)1<i<n)

= Mp1((e7™ a;)1<j<nt1: (Vik)1<jck<n+1)-

et an 1 Un((Vjmr1)1<j<n) )

Thus, by induction the equality holds for any n € N.

(3): We can see from the definition that the inequality holds for n =
1. Assume that it holds for some n € N. By the unitary property of
Un((7jn+1)1<j<n) and the claim (2) we have that

Mpi1((a)1<j<nt1s (Vi) 1<jh<ntt)? =

M((aj)1<<n; (Vik)r<j<ksn)” + lants 2 on
A 1Un((Vjma1)1<i<n) M (((1 4 e 7m0 ) ag) 1<i<ns (Vik) 1<j<k<n)

ant1 My (((1+ €504 )a5)1<<n, (Vi) 1<j<k<n) Un(Vin+1)1<j<n)
M ((aj)1<j<ns (Vjk)1<j<k<n)? + lant1|*Ian

Thus, for any vy, vy € C?",
2

C2n+1

Vv
(2.2) “Mn+1((aj)1§13n+1, (Vik)1<j<k<n+1) < v; )




The Zero-Temperature Limit of Many-FElectron Systems 29

2
Z Vi, M ((a5)1<j<ns (Vi) 1<j<k<n) Vi + |ant1 > Vi) con
=1

+ 2Re (v,
an1 M (1 + €0 ) ag)1<j<n, (Vk)1<j<k<n)
Un((Vjnt1)1<isn) Vo) con-
It follows from (2.2) and the hypothesis of induction that

[ Mg ((a;)1<i<nt 1, (Vi) 1<j<k<n+1)][ans1 ggnrt
< [ Mn((a5)1<j<n, (Vi) 1<j<k<n) lanxan + [ans1]®
+ 2]ant [[[Mn (1 + e )aj)1<j<ns (Vik)1<j<h<n)[2nx2n

sup [villcen [[vallcr
V1,V2€(C2n with
Vi 20 +v2 20 =1

< | Mn((aj)1<j<n, (Vik)1<j<kzn)l3nxon + lant1]?

Flant1 | Ma (1 + €4 )a5) 1< jn, (Vik)1<j<kzn)ll2nxon
2

n n
Do lagl | Flan’ 4 langal Y 11+ e lay]
: po

n+1

< | D lal
j=1

Thus, the inequality holds for n + 1. The induction with n ensures the
result.
(4): First let us prove that
(2.3) inf | Ma((aj)1<i<ns (Vi) 1<j<kzn) VIin
veC?” with
[[v]lcen =1

n n m—1
> g = Lnz2 Y lam| Y [1+ € a).
j=1 m=2 7j=1
We can check that the inequality (2.3) holds for n = 1. Assume that it
holds for some n € N. By (2.2), the induction hypothesis and the claim (3),

., nf M1 ((aj)1<i<nt1s (Vik)1<j<hent 1)V [ Eonin
veC? with HVH(CQ"+1:1
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> inf [ Ma((a)1<i<ns (Vi) 1<j<kzn)ViEen
veC?" with
Vllen =1

+lans1l® = lanta || Mn(((1+ €75 az)1<i<n, (Vi) 1<j<hzn) [[2n xon
n n m—1 .
> ajl? = Lnze Y lam| > 11+ €97 |ay]
j=1 m=2 j=1

n
+lans1|? = Jant1] Y11+ €571 |ay)

j=1
n+1 n+1 m—1 .
= g = Y laml 3 11+ € fay).
j=1 m=2 j=1

Thus, the inequality (2.3) holds for n + 1. By induction it holds true for
any n € N.
Define S € Mat(n, C) by

S+ eMik| if § <k,
S(j k) =< 1+emi| if j >k,
0 if j = k.

It follows from the inequality (2.3) that

il}f HMn((aj)lSan, (’7j,k)1§j<k§n)VH%j2”
veC?" with
V]l gen =1
n n n n
> ol = 1az2 Y > S Rlagllar] = (1= LzallSllxn) D lagl*.
J=1 j=1k=1 j=1
It remains to prove that
1 m—1 n
2.4 S <= 1+ efim 14 emi
@A) Slen <5 max | SO 3T (L em]
j=1 j=m+1

Though the inequality of this form is well-known (see e.g. [7, Lemma 3.1.1]),
we give the proof for completeness. Let oo € R be an eigen value of .S such
that |a| = [|S|laxn. Let v = (v1,--+,v,)" € C" be its eigen vector. We can



The Zero-Temperature Limit of Many-FElectron Systems 31

choose [ € {1,2,--- ,n} so that |vj| = max;jcgya.. ny [vj]. Then,

| =

HS||nxn =

S j)os| < D ISUJ)I < max }Z\Sm,j)!,
= j=1 =1

me{1,2,-

<

1 =

7j=1

which is (2.4). O

Now we fix d € N>o and use the notations I'(L), B, b instead of I'y(L),
B, by respectively. Here we formulate the hopping matrix of our multi-band
model. Set 7 := (m,7,---,m) € R% For parameters e = (€j)1<j<d € R,
v = (Vjk)1<j<k<d € RUI=1D/2 we define E(e,~) € Map(R%, Mat(2%,C)) by

- ) 1\ Le=1
Ble,v)(k) = M, (g(uarfj—zkj)(g) ) o kerd)
1<5<d

We will see that E(e,~) is equal to the hopping matrix of our multi-band
Hamiltonian in momentum space if we replace €, ~ by the actual parameters.
The next lemma follows from Lemma 2.2 and the definition of E(e, ).

LEMMA 2.3. The following statements hold for any k € R%, e € RY,
~ € RAd-1)/2,

(1)
Ug(m)E(e,v)(k)Ug(m)* = —E(e,v) (k).
(2)
T 2 T O\ *

U, (—ze) Ua(k)E(e, ) <—k n fe> Ua(k)* Uy <_Z )

= E(e,7)(k).
(3) )

1E (e, 7)(K)[lgaxae <2t
j=1

(4)

S t]v (Vj € {172a 7d}7m GNEI)'

2dx2d
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(5)
inf B, 7) (V]|
veC?" with
M pa =1
1 m—1 d 2
>(1-2 1 4 eim 1+ rmi
- Qme{lil,%}.c..7d} Z| € |+Z 1+e |
j=1 j=m—+1

) d 3
-=  min ;- 14ezathy2)

We define v € Map(B x I'(L),I'(2L)) by v((p,x)) := 2x + b(p). Note
that v is bijective. The momentum lattice I'(L)*, dual to I'(L), is defined
by

(L) = {o, 2% ,%”(L _ 1)}d.

With the physical parameters & € {0,1}, 0, € R (I,j,k € {1,2,--- ,d}
with j < k) introduced in Subsection 1.2, we set e’ := (&“]L)lgjgd, 0 =
(0j)1<j<k<d- Then, we define F(e”,0) € Map((B x I'(L))?,C), G(e*,0) €
Map(T'(2L)?%, C), which formulate the hopping matrices, as follows.

1 i
F(e",0)((p.%). (0.y)) = 75 Y e YHEE"0) ) (p.n),
kel(L)*
(V(p,x), (n,y) € Bx (L)),
G, 0)(x,y) = F(e",0) (v (x),v (y)), (vx,y € [(2L)).
Moreover, we define ¢ € Map(Z? x Z4, R) by
(=1 M 22 77 Lnyeaz by + Lojeazfe]
if 3j€{1,2,--- ,d}st. x—y=ejin (Z)2L7.)4,
P y) = (1" o Y0 Lozl — Loyeazi Tef
if 3 € {1,2,---,d} s.t. x —y = —e; in (Z/2LZ),
0 otherwise.

Note that ¢ satisfies (1.1).
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LEMMA 2.4.

(1)
G(e",0)(x.y) = |G(e",0)(x,y)[e**Y), (¥x,y € T'(2L)).

(2)

G (e, 60)(x,y)]
_ { t; if3je{1,2,---,d} s.t. x—y=e; or —e; in (Z/2L7),
0 otherwise,

(Vx,y € I'(2L)).

(3)
p(x+e,x)+px+e +ex+e)+p(x+erx+e+eg)
+¢(X)x+ek)
= (1%, (Vx € 2% 4,k € {1,2,--,d} with j < k).
(4)

2L—-1
Z SD(X—}_ (m+ 1)ej7x+mej) = 5]['/71" (VX € Zdaj € {1a27' o ’d})

PRrROOF. (1), (2): Take x,y € T'(2L). Let (p,%),(n,y) (€ B x T'(L))
be such that (p,%X) = v~ 1(x), (n,y) = v~ !(y). Moreover, let b(p) =

(p1,p2, + ,pda), b(n) = (nm,n2, -+ ,nq4). By Lemma 2.2 (1) and the as-
sumption that ell =0 W e{1,2,---,d}),

G(e",0)(x,y)

1 i(x—y.k
- ﬁ Z € < v > (13j€{1727"' 7d} s.t. p;<nj N Pm="m (Vm6{1,2,~~~ 7d}\{]})
kel'(L)*

; j-1 n L 1\ 1=
ce iz X, Pz9z,jtj(1 4+ e'T%; —”“J') <§>

+ 13]6{1727 7d} s.t. pj>77j A Pm="m (vme{1727 7d}\{J})
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1an i1y 0 N A 1\ =t
Leixe =1 m l,jtj(l —i—e_zfsf +1 J) (§>

= l3je{1,2,.d} st. pj<nj A pm=nm (Yme{1.2, dN\{5})

. lp=1
cemze S by (1. i . E
(&4 = = J =1 e q;J:y]—i—]_ (modL) 2

d
I =i
m=1

m#j

+ 13j€{1,2,-~~ ,d} s.t. p;j>n; A pm=nm (VmG{l,Q,m 7d}\{.7})

. 1L=1
o S5 mOsy. (1. + —iTei E

d
I ten=im
m=1

m#j

- —’il,'>22j:11 2 lel,' .
= 15je{1,2, d} st. x—y=e; or —e; in (Z/2LT)I A zye22€ o0 1= ST,

- L 1 =1
17 E;
: (1x—y:—ej in (Z/202)1 T 1x—y=e; in (z/202)2€ ) (5)

15525 {2 1o e2z101,5 4
+13je{1.2, ,d) s.t. x—y=e; or —e; in (Z/2L)d \ je2z41€ 27T I=T TSI,

- T EL 1 1=
izl
- (1x—y:ej in (Z/202)¢ + 1x—y=—e; in (z/207)0€ "7 ) (2>

_ i(—1)% M s i 01,5
= 1L:113je{1,2,...,d} s.t. x—y=e; in (Z/2L7)4€ (=1 3224 1=1 ‘o €22+1 ,th

+ 1L22 (13j€{1,2,-~~ ,d} s.t. x—y=e; in (Z/2LZ)%
Z(—1)1]+11]22 ) ‘Z:_ll 1wl622,+191,j+i1wj€22%8§'t )
J
+ 1Elj€{1,2,~~~ ,d} s.t. x—y=—e; in (Z/2LZ)%
ei(—1)1j+11j22 > ‘Z:_ll 1“"l€22’+1911j_i17;j€2z+1 %SJL tj) )
This implies the claims (1), (2).
(3): Take j,k € {1,2,---,d} with j < k and x € Z?. By definition,

o(x+€,X) + (X + e+ ep, X+ €;) + p(x + e, X + € + )
+ p(x,x + e)
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7—1
. s
= (—1)"150 Y ayeozibiy + 1zj+1ezzz€f
=1
Jj—1 k—1
+ (=)™ weoziabik + Loy rrcozi1bik + > luyeoziabik
1=1 I=j+1
T . T
+ 1Ik+1EQZZ<€£ + (=1 0 > lyeoziabyy — 1Z‘j62Z+IZE§/
=1
k—1 i
1 L
+ (=)™t zz; Loe2z410k — Lage2zi1 €%

= (=1)" 1, 1e0z41050 + (1) g coz 1050
= (=1)"F "0, 1.

Thus, the claim (3) holds.
(4): The equality follows from the definition of ¢. [J

Since we have constructed the hopping matrix, we can readily define
the 2%-band Hamiltonian. Using the creation, annihilation operators on the
Fermionic Fock space Fy(L*(B x T'(L) x {1,1})), we set

Hy := > > F(e".0)((p.%), (0, ¥) oYy
(Pﬁx)’(W’Y)GBXF(L) GG{T:‘L}
Ny

vy >

m=0 (p;,x;,0;),(n;,y,75)EBXT(L)x{T,1}
(j=1,2,--,m)

: VWILl(U)((V(plv Xl)O’l, T 7V(pm7 Xm)UM)7 (V(nla Y1)7—17 B V(nm7 y'm>7-m))
’ ¢;1X10'1 e w;mxmam ¢771Y17'1 T wnmyme?
H = HO —|— V
for U € R™. The operator H is defined in Fy(L*(B x T'(L) x {1,]})) and
self-adjoint. The following lemma suggests that we can focus on the free

energy density governed by the Hamiltonian H in order to prove Theorem
1.6.

LEMMA 2.5.
Tre PH = Tre PH,
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PROOF. Let us define the operators H, H on Fy(L*(I'(2L) x {1, }))
by

H6 = Z Z E 0 X Y)wxawylﬂ

x,yel'(2L) oe{1,1}
H = H) + V.

Moreover, define the map W from Ff(L*(B x I'(L) x {1,1})) to
Fy(L*(T(2L) x {1,1})) by

W(Qr) == Qoar,

(¢;1X101 o 'Q/};nxnanQL) = Q/};’;(/)1)(1)01 o ‘¢§(pnxn)U7LQ2L

and by linearity. Here €, denotes the vacuum of Fy(L*(BxI'(L) x {T,1})).
We can see that W is unitary, WHW* = H' and thus Tre P = Tre A
Since the phases 67, ¢ satisfy (1.1), (1.2) and (1.3), Lemma B.3 in Appendix
B ensures that Tre " = Tre=#"". Thus, we obtain the claimed equality. (J

From here until the proof of Theorem 1.6 in Subsection 4.2 we mainly
study Tre A instead of TreAH.

2.2. Grassmann integral formulation

In this subsection we derive finite-dimensional Grassmann integral for-
mulations of the quantity log(Tre ?# / Tre=#H0), Most of the lemmas in
this subsection are based on the same ideas as in [19, Subsection 2.2, 2.3,
2.4, 2.5]. To avoid unnecessary repetition, we only provide parts of the
proofs which need to be clarified.

With the parameter h € (2/5)N the index set I of the basis of Grass-
mann algebra is defined by

I:=Bx (L) x {1, 1} x [0, ) x {1,~1},

where [0,53), = {0,1/h,2/h,--- 3 — 1/h}, a discrete version of the in-
terval [0,3). Let N denote 29+2L93h, the cardinality of I. Let V be the
complex vector space spanned by the abstract basis {1)x}xer. Then, let
/\V denote the direct sum of anti-symmetric tensor products of V. We
call AV Grassmann algebra generated by {¢x } xer. Apart from minor dif-
ferences between the index sets, the basic description of finite-dimensional
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Grassmann integral in [19, Subsection 2.2] applies in this paper as well. We
follow the same notational rules concerning Grassmann polynomials set in
[19, Subsection 2.2]. The Grassmann polynomial V' (¢), the analogue of the
interaction V' in AV is defined by

Ny
(2.5) V() =) >

m=0 (pj 7xj7aj)7(nj7yj77j)€BXF(L)X{T:l}
(j:1727 7m)

' anzl(U)((V(ply X1)0’1, ey, V(Pm, Xm)gm)7
(V(nl, Y1)7—1’ Ty V(Tlm, Ym)Tm)>

: ¢p1x10'13 e wpmxmoms¢n1y17'15 te '¢anmeS

SIS

>
s€[0,6)n

with U € C™. We can expand a Grassmann polynomial f(¢)) € AV by
using the anti-symmetric kernels f,, : I™ — C (m =1,2,--- , N) as follows.

N 1 m
f) =t S (E) S fm(X)ex,

Xel™m

where f() S C, '(/JX = ’l/JXl'l/JXQ e 'szm for X = (Xl,XQ, s ,Xm) e I"™. For
any function g on I"™ its L'-norm ||g| 1 is defined by

ol = (3) X lo0L

Xel™m

It will be convenient to let ||go||;1 denote |go| for go € C as well. Set
Umaz = MaXje(12.... n,} |Uj|.- The anti-symmetric kernels of V(1)) can be
estimated as follows.

LEMMA 2.6.

’Vb| < ﬁLdUmax'UOa
Vol < 27 BL WU nazvm (0),  (Vm € {1,2,---  N,}),
HVmHLl :07 (va{l,Q, 7N}\{2747 aZNU})
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PrROOF. The bounds on |Vpl, ||[Vinllrr (m € {1,2,--- ,N}\{2,4,---,
2N, }) follow from definition. Let m € {1,2,---, N,}. By [19, Lemma B.1],
the bijectivity of v and the definition of v,,(0) we have that

Va1

<p > Vi (U) (%101, XimOm), (Y171, -+, Y Tim) )|

(%5,05),(y5,m5)€EL(2L)x{T,1}
(]:1,27 7m)

< 2T 3L, 020 (0). O

The free covariance C' is defined as follows. For (p,x,0,x), (n,y,7,y) €

B xT(L) x{T1,1} x [0, 8),

(2.6) C(pxox,nyTy)

Tr(e_BHO(1x2y¢;xa(w)¢nyr(y) - 1w<y¢77y7 (y)wzxa(w)))
Tr e—AHo ’

where 1/1[(,;)0(56) = erHowﬁ(,;)Ue_mHO. Let M denote the set of the Matsubara
frequency (7w/(3)(2Z + 1). We introduce the finite subset M, of M by

My ={w e M| |w| < 7h}.

If we restrict the time variables to the discrete set [0, )y, the covariance
can be written as a sum over My x I'(L)*. Set

Iy =B x (L) x{T,1} x [0, B)n-

For (p>X7 0-73:)7 (777}’77'72/) € IOa

g

ba,r 1(x— i(x—y)w
(2.7) C(pxox,nyTy) = ard Z et (x—y k) Fi(z—y)
(w,k)EMp, xT(L)*

T (Iye — e TR RER) T (o,
where £ € Map(R?, Mat(2¢,C)) is defined by

E(k) := E(—e*, —0)(k).
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Let us briefly explain how to derive (2.7). It is implied by [19, Lemma 2.1]
that

607’ —i(x— i(r—y)w
C(pxox,nyTy) = I:d Z e~ ix—y k) +i(z—y)

(w,k)EM, xT(L)*

. h_1 (IQd o e—i%IQd'f‘%E(EL,O)(k))71(p7 77)

Then, by using that F(ek, 0)(k) = E(—e”, —0)(—k) we obtain (2.7).

The next lemma states that the quantity log(Tr e / Tr e=8H0) is equal
to the time-continuum limit of the Grassmann Gaussian integral with the
covariance C. Despite the generalization of the interaction, its proof is
parallel to [19, Lemma 2.2, which was built upon the idea that the dis-
cretization of the integrals over [0, 5) inside the perturbative expansion of
Tr e‘ﬁH/Tr e PHo converges well as the step size is sent to zero. For any
z € C\R<g we define logz € C by the principal value log |z| + i with
0 € (—m, ) satisfying z = |z]e??. See [19, Subsection 2.2] for the definition
of the Grassmann Gaussian integral [ -duc(v).

LEMMA 2.7.

(1) For any r € Rsq there exists hg € R such that

Re [V duc(w) >0,

(VU € D(r)" NR™, h € (2/B)N with h > hg).

(2) For any r € Ry,

Y 1 ( Tre PH )
im sup og | ———+
i __sup —BH
B2 HNUED) R Tremotio

—log (/ Cv(w)dﬂc(w)>‘ =

Next we connect the above formulation to another Grassmann inte-
gral formulation which has better symmetric properties from a technical
view point of infrared integration process. The general estimation in [19,
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Appendix B] underlies the analysis in the rest of this section. Let y be
a compactly supported smooth function on R satisfying that x(x) € [0,1]
(Vx € R). This section proceeds without imposing more conditions on
X- The function x will be specified after this section. Using x as a cut-
off function, we introduce the covariances C’io, C’;ro, C%, C2os C:é ),
T € Map(1Z,C) as follows. For (p,x,0,z),(n,y,7,y) € o,

Cy(pxox, nyTy)
_ 62; Z ei(x—y,k)—f—i(w—y)w
(w,k)EM), xT(L)*
X(hIL = €T A (e — 7 it TRE0) T (p, ),
(28)  CIy(pxox,nyTy)
6077 i(x—y,k)+i(z—y)w
(w,K)eEM XD (L)*
1= X(A|1 = &% [)h ™" (Ipa — e~ 5 Dat €0 =L (p ),
CSo(pxoz, nyTy)
6(22 Z pHx—y k) +i(z—y)w
(w,k)EM), xT(L)*
x(Jw)) (iwlys — E(K)) " (p, n),
(2.9)  CSy(pxox,nyTy)
_ 6(27('1 Z ei(x—y,k)—i—i(x—y)w
(w,kK)eEMp xT(L)*
(1= x(h[1 = e F) R (e 72020 — 1,1)7 1 (p,),
T M (pxox, nyTy)
= CLy(pxoz, nyTy)
4 PX0)=0y,T) (PX(T 17y7') Z z(a: Y)w h\l—e’%\)
WEM,

L(pxox,nyTy) = 1(px.0.0)=(ny,7y)-

@
=~

One can derive from the definitions that

h _
(2.10) Cié )(pxom, nyTy) = Clo(pxox,nyTy) + I(pxox, nyTy),
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(Y(p,x,0,2),(n,y,7,y) € Ip).

The next lemma can be proved by applying Gram’s inequality and the
Cauchy-Binet formula in the same way as in the proof of [19, Lemma 2.4].

LEMMA 2.8. There exist (3,L,d, x,E)-dependent, h-independent con-
stants hg, c1 € Rsqg such that the following inequalities hold for any h €

(2/B8)N with h > hy.

| det(Co(X54,Y)))1<ij<n| < T,
det(CTW(x. vy — T (X, Y: o <ln
| det( >0 (Xi, J) >0( is J))1§1,1§”|— hcl’
1

| det(CZ, (X3, Y)) — CZ(Xi, Y)) i<ij<n| < 7t
(VneN,X;,Y;ely (j=1,2,--- ,n))
Jor Co =C, C—Si_o; CIO; C%%? C;Of Ci(gh)'

In the following we assume that h > hg so that the results of Lemma 2.8
are available. Define the Grassmann polynomials V™ (v), V= (¢), ST (3),

S (¥), S°(¥) € AV by
(2.11) V(@) =V (),

Ny

Vo)=Y > 2, ="

m=0 (p;,x;,05),(n;,y,75)EBXT(L)x{T,l}  s€[0,0)n
(7=1,2,--,m)

SES

: Vrﬁ((y(pb X1)O’1, Tty V(pma Xm)am)y
(V(nlv Zl)’rlv T 7V(77m7 Ym)Tm))

’ mexuns o 'wpmxmamswmyﬂls o '1/177MYme5’

S i= [V O g (61, (@ € +,-D),

S0 i= [V e (1),
>0

For conciseness let g(a) denote

N’U
BLYo + 271 BLT Y " (a + 1) ¢ v (0)

m=1
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for o € R>q, where ¢ is the constant appearing in Lemma 2.8.

LEMMA 2.9.
M d
|Sg _ 6*VO| S eUmazg(O) _ eUmaz,BL 'UO’ (v(s c {+, _’0})
(2)
N m
> e |98 < et (Va € Ry, 6 € {+,—,0}).
m=0
(3)

N
m 1
Do amep |85 = Sl < g (et - UnesBli), (o € Reg).
m=0
(4)

N
m _ 1 o
E , el ||y, — S?nHLl = %(Umaa;g(a) - UmaxﬁLdUO)QeUmmg( )7
m=0

(VO& S Rzo).

PrRoOOF. Combination of Lemma 2.6, Lemma 2.8 and [19, Lemma B.2
(1),(2),(4)] yields the inequalities in (1), (2), (3).

Let us prove the inequality in (4), which is a generalization of [19, Lemma
2.6]. Define the functions W¢ (6 = +,—, m=1,2,--- ,N,) on (BxT'(L) x
{1, L™ x (B x (L) x {1, L™ by

Wh(((p1,x1,01), -+ (P Xmy 0m)), (11, 71, 71)5 5 (s Yms 7o)
= (Lo=y + Ls=—(=1)")

) V#((V(pl, X1)01, 5 V(Pms Xm)om), (01, Y1) 715+ V(M Ym) Tm) )
(V(pj,x5,05), (0, y5,75) € BXT(L) x {1,1} (G =1,2,--- ,m)).

For any s € [0,0)n, X = (X1,X2, - ,Xm) € (BxTI'(L) x {T,_l})m_ we
abbreviate (Xmamelv” : aXl)a ((Xl’s)v (XQ’S)v" : a(Xmas))v leszgs
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..-Exms, Vx,sWxps VX, s tO )NC, Xs, 1x,, ¥xs respectively. For s €
[0, ), we define Wo(y) € AV (6 = +,—) by

Ny

m=1X,Ye(BxT(L)x{1,})™

Take s1,s2,---, s, € [0, 5)y, satisfying s; # s (Vj,k € {1,2,--- ,n} with
j # k). By the invariance (1.13), the equality (2.10) and anti-symmetry,

@12 [TIWE@+ e (01)
j=1

= [TIW: @+ 6"+ 02z () ()
j=1

n N, mj s 2
J(ES, oz ()
=L Am=LG=0 X Y e (BXD(L)x{1,1)™9 7"
W e(BXT(L)x{1,1})"

Wi (X5, W5), (W), X))
’ (E + El)Xij (1/} + lpl)YijE%Vjsj lb%;jsj)

dpz(V?)dpg (1)

n NU mj 2
JR(EEx (n)
y o)
3= Am;=11;=0x; v e(BxT(L)x{1,{})™i i !
W, e(BxT(L)x{1,1})"
— —

) W%j((Xja Wj)? (ij YJ))(¢ +¢ )stj (¥ + wl)YJ'SJ'>

: d:uc;o (wl)

= [TLWs @+ o) ).
j=1
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" Lujvke(1,2, n}(j#k—s; #si) H1 wy
Then, the equality (2.12) implies that
[ @@+ o) = [ Q@+ 0D, (1),
Therefore,
213)  S°0) = 5~() = [V - Qv ()
= [V G g (),
Let us set
300y = [V O - QY + 0 g0 (01)

For any m € {0,1,--- , N} we can characterize SO (1), the m-th order part
of S9(¢)) as follows.

Z W%_]((XJ’X;%(YJ?Y;))>
X;E(BXD(L)x{1,1})™3 " X, e(BxT(L)x{1,1})"
Y E(BXD(L)x{1,1})™ "3, Y e(BXT(L)x{1,1})"

l3jake{1,2, m)(izknsj=si) IS 7 k=S =mEx

-1 1 7l 1 -1 1 1
' /wX151wY181wX2821/}Y282 o .¢Xn5n¢)Y7L37LdHCIéh> (w )
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VX5 UV s VX VY sy XY 5, VY D50

where the factor ex € {1,—1} depends only on mj,k;,l; (j =1,2,---, n).
From this equality, Lemma 2.8, [19, Lemma B.1] and the inequality that

n 1 n ﬁnfl
H Z Z L3jake{1,2, n}(j£kns =si) = ( 9 > o (Vn € N>a),
j: Sje[o’ﬁ)h

we can deduce that
TS

N 1 n
159, IIpx < eIy~ =
nl\ 2
n=2 m;=1k;=01;=0

5 |vn5j<x,v>|c?>c;?1z;1kjzm%-

X, Ye(T(2L)x{1,1})™
Thus, for any a € R>,
N/2

N

mo ~
Y " ame Sl = ™S5,
m=0 m=0

e}

1 Umaa:/ngU 1 d n
= 2p1° ’ n; (=21 (Umazg(@) = UnazBL%00)
1
= max — Unmaz L%un)? Umazg(a)'
26h( g(a) = UmazBLv0) e

The Grassmann polynomial

[ O - Qw6 1)

can be estimated in the same way as above. By combining these bounds
with the equality (2.13) we can derive the claimed inequality. [J

LEMMA 2.10. Let o« € R>g and e € (0,1). Assume that

ey

Umamg(a) < 10g ( PR

Then, the following inequalities hold.
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_ €
55— < —, (Y6 e {+ -0,

N
sup Z a2 S8\l <e  inf  |S§].

ProOoOF. (1): It follows from Lemma 2.9 (1) and the assumption that
for 6 € {+, —, 0},

Sé _ Vo < Umazg(o) _ 1 < € .

[Sp —e [ <e =19
(2): The assumption implies that

(2.14) Umazd(@) < (g 4 1)(2 — Umasd(@)),

Moreover, by Lemma 2.9 (1) and the inequality that

le™V0 —1] < UmazBLMv0 _ 1
we see that
(2.15) 158 = 1) < |8 — e 0| + eV — 1] < Vmaza(®) _ g
for any 6 € {+,—,0}. Thus,

(2.16) 2 — eUmaadg(®) < inf |89,
6e{+,—,0}

Using Lemma 2.9 (2), (2.14) and (2.16), we have that

N

sup e ||S8 || < eUmasgle) —inf |88 <e  inf |SS|. O
6e{+,,0}mz::1 L sef+,—0p 0 se{+.—0y

LEMMA 2.11. Let a € R>q, € € (0,1). Assume that

2(65J:L21)) .

Unazg(a+ 1) <log <

Set RO(¢) := log S®(v)), (6 € {+,—,0}). Then, the following inequalities
hold for any h € (2/8)N satisfying h > max{1/2,2/3, ho}.
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2
|R8| < log (%) . (V6 e{+,—,0}).

N
> amef |R | < —log(l—¢), (V6 € {+,—,0}).

m=1

|RS — RY| < —log (1 —max{l, %} %) . (V6 e{+, ).

N
m 4 1
E 1 0
m_lamcf HRm_RmHLl Smax{l,ﬁ}m, (\V/(SE {+,_})

Proor. It follows from (2.15) and the assumption that
€
SE—1< —— <1, (Vé6e{+,—,0}).
SE-1ls S5 <1 (W€ (+,-,0)

This means that the assumption of [19, Lemma B.3] is satisfied and thus we
can apply it. The claims can be proved in a way close to the proof of [19,
Lemma 2.8]. We only explain which lemmas are necessary to prove each
claim. We use the assumption, (2.15) and [19, Lemma B.3 (1)] to prove
the claim (1). The assumption and Lemma 2.10 (2) enable us to apply [19,
Lemma B.3 (2)] to prove the claim (2). We use the assumption, Lemma 2.9
(3),(4), (2.16) and [19, Lemma B.3 (3)] to prove the claim (3). By combining
the assumption, Lemma 2.9 (3),(4), Lemma 2.10 (2) and (2.16) with [19,
Lemma B.3 (4)] we can deduce the claim (4). O

Here we reach the lemma stating that the Grassmann integral formula-
tion in Lemma 2.7 can be approximated by another formulation which will
turn out to have a desirable symmetry later in Section 4. We will mainly
deal with this formulation in the infrared multi-scale analysis in Section 4.

LEMMA 2.12.  There exist (5, L,d, g(2), x, €)-dependent, h-independent
constants hg,ca,c3 € Rsqg such that the following statements hold for any
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h € (2/B)N satisfying h > ho and U € C™ satisfying |U;j| < ca (Vj €
{1,2,--+ ,ny}).
(1)

Re [V duc(u) >0,
Re / AR ) gy () > 0.

(2)

log </ e—v(w)duc(w)) — log </ e%(R+(¢)+R(¢))dMC?O(w))‘ < %03_

PrOOF. Take € € (0,2/5). Assume that

2(e+1)

e+2 > '
Then, all the inequalities claimed in Lemma 2.11 hold with @ = 2 and
h € (2/8)N satisfying h > max{1/2,2/3,ho}. Note that the inequalities
proved in Lemma 2.11 have exactly the same form as those proved in [19,
Lemma 2.8]. Based on these inequalities and [19, Lemma B.2|, we only need
to follow the same argument as in the proof of [19, Lemma 2.10] to obtain
the results. O

Upaz < 9(3) ' log <

3. The Matsubara Ultra-Violet Integration

In this section we carry out a multi-scale integration over the large Mat-
subara frequency. In the first subsection we summarize properties of the co-
variances with the Matsubara UV cut-off. Most of these properties have al-
ready been proved in [19, Lemma 6.2, Lemma 6.3]. We only provide proofs
for claims which are not directly implied by [19, Lemma 6.2, Lemma 6.3].
Using these results, we will establish upper bounds on Grassmann poly-
nomials produced by the Matsubara UV integration in Subsection 3.2 and
Subsection 3.3. Though these subsections are aimed at achieving the same
goal as in [19, Subsection 5.1, Subsection 5.2, Section 6], the generalization
of the interaction creates different aspects which cannot be skipped without
proof. We will provide the full construction of the Matsubara UV integra-
tion.
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3.1. Covariances with the Matsubara ultra-violet cut-off
From now till the proof of Theorem 1.6 in Subsection 4.2 we assume
that

3.1 tj=1.
(3.1) jeltseeay

Theorem 1.6, the main theorem of this paper, can be deduced from that
proved under this condition. It follows from Lemma 2.3 (3),(4) and (3.1)

that
() e

In [19, Lemma 6.1], which was based on [14, Theorem 1.3.5], we introduced
a function ¢ € C*°(R) satisfying that

¢(I) =1, (Vx € (—00,772/6]),
¢(w) =0, (VCE € [772/3?00))7

%gb(x) <0, (¥ €R),

(%)kw)

We keep using this function to construct cut-off functions in this paper as
well.

The inequality (3.2) suggests that the general results in [19, Subsection
6.1] hold with “Ey; = 2d”, “Ey = 1”7 for our covariances if we define the
cut-off functions in the same manner as in [19, Subsection 6.1]. Let us do
so for simplicity. With M € R+, set

24/6
Myy = T\/_(QGH‘ 1),

—(k IO [}

log M

(3.2) sup  sup
J€{1,2,- ,d} keRd

<2d, (YneNU{0}).

2d x 2d

< 2F(kN?, (Vz € R,k € NU{0}).

Here |x| denotes the largest integer not exceeding x for z € R. It follows
that
G(MG2M2np?1 — efi|?) =1, (Vw € R).
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We define the cut-off function xp; : R — R>o ({ =0,1,---,Nj) by

Xno(w) i= G(Myph?[1 — €5 [?),
Xt (@) = (M ML = &' [7) — (Mg M2 VR L — '),
(weRle{l,2,--- | Np}).

These functions have the properties described in [19, (6.3), (6.4)]. Using

these functions, we define the covariances with the Matsubara UV cut-off
Cﬁ, C; I —C(=0,1,---,Np) as follows.

607’ 2(xX— (r—y)w
C;_(pxg'x, nyTy) = ﬁ[:d Z e (x—y.k)+i(z—y) Xh,l(w)
(w,k)EM, xD(L)*

BT (I — TR REWN) T (g,
607 i (x— i(o—
Cl_ (pxa';[;’nyfry) = ﬁl:d Z e’L(X v.k)+i(x y)thJ(w)
(w,k)eEMp xT(L)*
M (R0 — L) (o),
((pv X, 0, l‘), (77’ Y, T, y) € IO)

Here let us introduce some notations which will be used to study the
decay properties of the covariances in this section and for many other pur-
poses in the rest of this paper. For any (p,x,0,z,0),(n,y,7,y,§) € I,
j€{0,1,---,d}, set

d]((ﬂ’ X7 0-7 x? 0)7 ("77 y7 7_7 y7 é‘))
B i i2Zy o
_ ﬁ|eﬂ —e 7 if =0,
%W%(X,ey‘) _ ei%’rmeﬂ‘ if j e€{1,2,---,d}.
For any x € (1/h)Zlet rg(x) € [0, B)n, ng(x) € Z be such that x = ng(x)3+
rg(x). This defines the maps rg : (1/h)Z — [0, B)n, ng : (1/h)Z — Z. We
will assume that

(33) Blaﬁ? S N7 ﬁl < 627 h e 4N7

when we need to estimate differences between anti-symmetric functions de-
fined at 2 different temperatures. Here (31, B2 are meant to be the 2 different
inverse temperatures. Though the inverse temperature originally belongs to
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R+, we will later see that the convergence property of the free energy den-
sity as B — oo (8 € Rsg) can be deduced from the convergent property as
B — oo (B € N). On the assumption (3.3), set

ooy _f A b b k2 6L
[Z’Z)h'_{ A h}'

Note that 0 € [-01/4, 81/4)r. We define the index sets I, 1, I3, 1I° by

Iy :=BxT(L) x {1,]} x [—@,@) . I:=1Iyx{1,-1},
474 ),

I :=BxT(L)x{1,1} x {0}, I°:=1I0x{1,-1}.

For any (p,X,O’,ﬂZ,G), (777}’77',.%5) € j? j € {0717 7d}7 set

dj((paxaaa €T, 0)7 (777Y77-7y7£))
__{ &~y it j =0,

LT x0s) — T 00)| if j e {1,2,-- ,d}.

In fact these notations were used in [19]. We add the notation () to the
right side of a temperature-dependent object when we want to show its

temperature dependency explicitly. For example we sometimes write Iy(3)
instead of Iy and C;"(8) : Iy(3)? — C instead of C}" : Ig — C.

LEMMA 3.1. Assume that h > e*®. There exists a constant co € Ryq,
which depends only on d, M, and a constant ¢, € (0,1] independent of
any parameter such that the following statements hold for any 6 € {+,—},
le{l,2,---,Np}.

(1)
(3.4) | det((Pi, @j)cm CF (X4, Y5))1<i j<nl < b,

(vm7n € Na Pi, Qi € C™ with ||sz(Cm> Hq’L”(Cm < 17
Xivl/; € IO (Z = 1727“' 7n))
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(3.5)  [det((pi, aj)en C7 (Xis 5), (Yjs 8)))1<ijn] < (M7" 4+ MTN0)ef,
Xivyvi € B x F(-L) X {Tal} (Z = 1727”' 7”)58 € [07/8)]1)

(3)
(3.6) sup sup l Z(dj’ (X,Y) + 1)62 ?:O(Cw(d+1)*2M*2dj(X,Y))1/2
5'€{0,1,,d}y XeI 0 777
O (XY
S M_ZC().

(4) On the assumption (3.3),

(3.7) | det((pi, aj)on CF (B) (pixicir g, (x:), 15y 57578, (4;)))1<i j<n
— det((pi, ;) CF (B2) (pixioir gy (i), 155 7578, (45)) )1 <isj<n
< B P M b,
(Ym,n € N, pi,q; € C™ with ||pilcm, ||aillcm <1,
(piyXiy 0y i)y (Miy Viy Tis Yi) € I (i=1,2,---,n)).

(5) On the assumption (3.3),

(38) Sup l Z ez ?:0(%Cw(d+1)_2M_2dj(Xv(n7Y7T7y’£)))l/2
Xelo h R
(ny,my.6)el
|CP(B)(X, nyTrs, (9)€) — CP(Ba) (X, ny T, (y)E)|
_1
< 51 2M7ZCQ.

In (3), (5), 5;/5 : I? — C denotes the anti-symmetric extension of C? defined
by

(39)  CN(X,0),(Y,€))
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1
=5 (1.0, (XY) = Log—1.)CT (Y, X)),

(VX,Y € 1,0, € {1,—-1}).

REMARK 3.2. There are unfortunately insufficiencies in the estimation
of the difference between the determinants defined at 1, B2 in the proofs
of [19, Lemma 6.3, Lemma 7.14], though the results themselves hold true.
Here we prove (3.7) in a way that it recovers the insufficient parts of the
proofs of the related inequalities in [19, Lemma 6.3, Lemma 7.14].

ProOr OoF LEMMA 3.1. First of all, let us note that the condition
“h > e*F1” required in [19, Lemma 6.2, Lemma 6.3] is equal to h > e*?
in this case because of (3.2). Thus, we can refer to these lemmas in the
following.

(1): This was proved in [19, Lemma 6.2].

(2): Let us confirm that there exists a constant ¢(d, M) € Rso depending
only on d and M such that

(3.10) |CO(pxas,nyTs)| < c(d, M)(M“=Ne 4 M,
(V(p,x,0), (n,y,7) € BxT(L) x{1,1},5 €0, B)n).

By periodicity, for any j € {1,2,--- ,d},

L _on
%(e—z%(x—%eﬁ —1)Cf (xox, -yTy)

50’7’ o . L 27 /L
=2 Z et (x—y k) +i(z y)th,l(W)—/ dp
0

pLA 27
(w,k)EMpXT(L)*
8 W 1
. _h—1(12d . e—zEIQd—i-ES(k—i-pej))—l
dp
_ bor i(x—y k) +i(a—y)w L
BLA ) ¢ Xn(w) 5 /0 dp

(w,k)EMy xT(L)*

ch Y (I — et € (ktpe;)) 1 (gph(eiﬂgﬁig(kwej) _ ]2d))

. h—l(IQd o e—i%IQd—l—%g(k—i—pej))—l_
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Using the inequalities [19, (6.7), (6.10), (6.14)], we can derive from the above
equality that

L 2n
2—(6_’2?<x_y’ej> —1)C (xoz, yTYy) < e(d, MYM~".
s 2d w92d
This inequality implies that
(3.11) |CF (pxoz, nyTy)| < e(d, M)M ™,

(V(p.x,0,7),(n,y,7,y) € lo with x #y).
In the final part of the proof of [19, Lemma 6.2] we proved that
(3.12) |C;F(-000,-000)||gay9a < c(M)(M'=Nr + M~

with a constant ¢(M) € Rsy depending only on M. The inequalities (3.11),
(3.12) imply (3.10) for 6 = 4. The proof for § = — is parallel. The
determinant bound (3.5) can be obtained by combining the determinant
bound (3.4) with (3.10).

(3),(5): These were essentially proved in [19, Lemma 6.2, Lemma 6.3].
Recall that the weight “w(0)” was given by

cw(d+1) "2 min{Myy, (Es + 1)1} M 2

with a constant ¢,, € (0, 1] independent of any parameter in [19, Lemma 6.2].
Since E5 = 1 in the present case, min{ My, (Fs +1)"'} = 1/2. We can
replace (1/2)¢,, in the weight “w(0)” in [19, Lemma 6.2, Lemma 6.3] by ¢,
to obtain the weight c,,(d 4+ 1)72M =2 with some ¢,, € (0, 1] and thus (3.6)
and (3.8) follow.

(4): The inequality [19, (6.27)] implies that

(3.13) [ (B1)(pxars, (z), myTrs, (y)) — Cf (B2) (px0rs, (), nyTrs, ()]

_1 ~
S C(da M)ﬁl 2M_é7 (V(P7X: 0-737)7 (77;}’;77 y) € IO)

Take any (p;, X;, 04, %;), (13, Vi, Ti, i) € Ip and py, q; € C™ satisfying ||p;||cm,
llaillcm <1 (i =1,2,--- ,n). Define Cy,Cy € Mat(n,C) by

Co = (i 4j) cn O) (Ba) (pixi0ir5, (20), 155 5776, (Y))1<ijen, (@ = 1,2).
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Since

I,
Ci—Co=(C In)<_02>,

the Cauchy-Binet formula yields that

det(Cy — Cy) = > det (v 1o ) (16:90))) 15 <

7:{1,27“-,TL}—>{1,2,~-~,2TL}
I, N
ae(( fp Yowsn)
2 1<i,j<n

with v(1)<y(2)<---<v(n)
By using (3.4) and assuming that v(0) =n, vy(n + 1) = n + 1 we see that

(3’14) ’det(cl - 02)| < Z z 17(m)§n<7(m+1)68108_m

m=0 7{1727 7n}_){1727"' ,271}
with v(1)<vy(2)<:--<v(n)

n
_ n n n 2n.n
_E <m><n_m>c0§2 co-
m=0

By expanding along the 1st column and using (3.13), (3.14) we have

(3.15) |det(Cy — Co)| < o(d, M)B; "M~ 3

s=1

det((Cy — Co)(i,7))1<ij<n
1#£8,77£1

_1
<ec(d,M)p, ? M_%n22("_1)cgfl.

By applying the Cauchy-Binet formula once more and substituting (3.4),
(3.15),

| det Cl — det CQ|

~v:{1,2,-- ,;n}—{1,2,-- 2n}
with v(1)<y(2)<--<y(n), r(1)<n

cdet (( C1=Co In ) (5,79(7))) < <, det << C];’T; ) (V(i)’j)>1§i,j§n

n

< > Lym)<n<y(my1)c(d; M)
m=1~:{1,2,-- ,n}—{1,2,~- ,2n}
with v(1)<v(2)<---<v(n)
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. ﬁ*%M*%mf(m*l)cgl_lcg_m
< B73M 3 (c(d, M)eo)"

Thus, we obtained the determinant bound of the form (3.7) for 6 = +. The
bound for 6 = — can be proved in the same way. [

3.2. Isothermal bounds

Our multi-scale analysis at fixed temperature is built on estimation of
kernels of Grassmann polynomials with respect to scale-dependent (semi-
Jnorms. Let us define the (semi-)norms at this point. Set

w(0) := cp(d +1)2M 2

with the constant ¢,, € (0,1] appearing in Lemma 3.1. For [ € Z<, set

w(l) := w(0)M!. For an anti-symmetric function f on I™ (m > 2) we
define || f]l0, [[fll1,1 by
m—1
(3-16) [ flli.0 := sup (%) > e oo (W(Dd; (Y1) /2
Xel Y=(Y1,Y2, ,Ypp_1)elm—1
[RAlIS!
= sup sup sup
j'€{0,1,-- ,d} q€{1,2,-- , m—1} X€l
1\ x4 1)d;(X,Y1))'/?
Y=(Y1,Ya, ,Yin_1)elm—1
XYL

In our Matsubara UV integration, anti-symmetric kernels are measured by
|l - llo; (t =0,1). The measurement with || - [j;+ (I <0, ¢t = 0,1) will be
necessary in the infrared integration in Section 4. From now we assume that

so that the results of Lemma 3.1 are available. The inequality (3.6) implies
that

(317)  [|CPllos < coM™', (VL€ {1,2,--+ Np}.6 € {+,—},t € {0,1}).
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Fix 6 € {+,—} and set

Ny
FNh .
X

bl*—‘

OZ) (pj’xj’gj)(nj7yj7TZJ)€BXF( Lyx{1,1}
(7=1,2,--,m)

(L=t + Lo=—(=1)™)

VRO ((w(pr,x1)o1, - v(pmy Xm)om),

(v, y1) T v(1ms Ym) )

’ w,ﬂlxlals T wpmxmamswm}ﬂﬁs e w"]m}’me57
TNe () =0,

I (1) = FNe ()

with U € C™. We input J™* (1)) into the Matsubara UV integration process
as the initial data. We define F'(y), T'(¢), J'(¥) € AV (1=0,1,--- , N}, —
1) inductively as follows. Assume that we have J1()) € AV for some
le€{0,1,--- Ny —1}. Set

Fiw)i= [0+ 0 gy, (1),

n 1 o\" o 1
: z=0

for n € N>o. Then, set

)= ThM (), J(¢) = F'(y) + T'(v)
n=2

on the assumption that > 2, T4 (1) converges. See [19, Subsection 2.2]
for the notion of convergence and differentiation of Grassmann polynomials.
Note that FNe () = =V () + BV if § = +, FNr () = —V = (¢) + BVE if
6 = —. Also, an inductive argument based on [19, Lemma 3.9 (1)], parallel
to the proof of [19, Lemma 5.1] ensures that if $°°, 74" (1)) converges for
any [ € {0,1,--- , Ny — 11},

ThHM () = Fl, () =0,
(Vie{0,1,--- ,Np},m e {0,1,--- ,N}N (2N +1),n € N>9).



58 Yohei KASHIMA

LEMMA 3.3.

Fi oy < Ule™ 20, (w(0)),
1Pz llos < e - [Ukle vm(w(0))

34yt 3Ny

(Vm e {1,2,--- Ny}, t € {0,1}).

PROOF. By the uniqueness of the anti-symmetric kernel we have that
for any (pj?xjvo-j75j70j) el (] = 172a to 72m)7

FQZ\#Z (p1x1015161, -+, pamX2mO2mS2mbam)
_1 m
= W(LS:Jr + 1= (=1)™)
Y sV (W(pe(rys Xe(1))Te 1)+ V(Pe(amys Xe(2m))Te@m))
£€Sam

’ h2m71131:“'282m1(95(1)7"' ’05(2m)):(1’ 1,—1, 7_1)'
If x,y € T'(2L), (p,x),(n,y) € B x I'(L) satisfy x = v(p,x), ¥y = v(n,y),
then
L

ox L .x/s
Q—\el%x—%eﬂ 1) < 2l TEve) 1|41, (Ve {1,2,---,d}).
T T

Using this inequality and the invariances (1.5), (1.12), we observe that for
te{0,1},

N

[ Eo ot

<  max |Ug| sup sup sup
ke{1727 ,’I’L»U} UED(l)nU p7q6{1727 ,277’7,—1} (p7X7U)eBXF(L)X{T7l}

j,€{1727"' 7d}

t
Z (;’ei%(x—xq,e]ﬁ _ 1‘)
T

(Pj 7xjvaj)€BXF(L)X{T7l}
(]:1727 ,QM71)

- 27 .
e ?:1(W(O)%|31T<X7XP’67>—1|)1/2

' ‘Vrg(U)((V(m X)Uv V(pl’ X1)O’1, HR) V(pm—lv Xm—l)am—l)’

(V(pm7 Xm)Uma V(Pm+1, Xm+1)0m+17 ) V(p2m717 X2m71)0-2m71))|



The Zero-Temperature Limit of Many-FElectron Systems 59

< U le™ ' 0)). O
= ke [ (0D
The main purpose of this subsection is to prove the following lemma.
We will refer to [19, Lemma 3.8] as the main tool in the proof.

LEMMA 3.4. Let o« € R>1 and let co be the constant appearing in
Lemma 3.1. There exists a constant ¢ € R~q independent of any parameter
such that if

(3.18) M>cN, a>cMz
and

1
3.19 U dw(0)1/2 m 2m 0 <=
(3.19) seuex  [Ujle Z cq 0) < 5.

the following inequalities hold for any | € {0,1,--- N}, t € {0,1}.

h
(3.20) ~ (1Fol + I Tgl) < a7,

2Ny
(3.21) S cg @™ (1FL llos + 1T o) <

m=1

_ Ny N L 1
(3.22) M™w=T Y e oM (| F mllog) <1
m=1

Moreover, for anyl € {0,1,--+- N, — 1}, m € {1,2,--- | N},

- L(n)
3.23 su T U)| < 0,
VN L
‘U |<Umaz(a M) (] 1, )
(3.24) Z sup 1T (U) 0,0 < oe,
UcC™ with
‘U |<Umaac(a M) (.7 1, )

where

1
Unmaz(a, M) := (2 dw(0)'/® Z e 2y O))) .
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REMARK 3.5. We claim (3.23), (3.24) in order to emphasize the uni-
form convergent property of 3.°°, T"(")(3)) with respect to the coupling
constants. We should have explicitly claimed the uniform convergent prop-
erties of the infinite series of the Grassmann polynomials produced by the
tree expansions in [19, Proposition 5.2, Proposition 5.6, Proposition 6.4],
though these properties are obvious from the proofs. Strictly speaking,
the previous deduction of the regularity with the coupling constants [19,
Proposition 6.4 (2)] from the point-wise convergent properties [19, Proposi-
tion 6.4 (1)] is incomplete. The claim [19, Proposition 6.4 (2)] is rigorously
proved by additionally remarking the uniform convergent properties such as
(3.23), (3.24) in [19, Proposition 6.4 (1)]. With the aim of convincing the
readers of the validity of the construction, in this paper we intend to make
clear the deduction of the regularity with the coupling constants from the
uniform convergent properties. The clarification will be specifically made in
the proof of Lemma 4.9 (1) and Lemma 4.10.

PrOOF OF LEMMA 3.4. During the proof the symbol ¢ denotes a
generic constant independent of any parameter. We replace ¢ by a larger
generic constant denoted by the same symbol from time to time with-
out any comment. However, such replacements do not affect the conclu-
sions of the proof. We prove the claimed inequalities by induction with
1 €{0,1,---, Ny}. By assumption and Lemma 3.3,

Ny, Nupy
(3.25) ([Fo "+ [T5"]) =0,

gZIv

m
cg o™ (| Epllos + I T3
1

1
O,t) < 57

3
I

N
N, m L
MR N e E o M N (| EN o, + 1T [l0,0)

m=1
2Ny m 1
< e a™Fat s <50 (VE€{0,1}).
m=1 2

Thus, the inequalities (3.20), (3.21), (3.22) hold for [ = N},.
Assume that [ € {0,1,--- , N, —1} and for any j € {{+1,{+2,--- , Ny},
t € {0,1} the inequalities (3.21), (3.22) hold.
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Let us prepare a couple of inequalities. By the hypothesis of induction,
for any ¢t € {0,1},

N
m
(3.26) Z 252 ™| JE o 4
m=2
2N,
<™ 3 GF a2 o,
m=2
Not+l 4 ol = 1
—|—cN"’M_Nv_1(+ ) Z 002 amMQNv—Qm‘|J£,:L’_1HO,t
m=2N,+2

<M,
N m .
(3‘27) Z 22m602 amMZNv72m||Jf7jfl||0,t
m=2

N
_ 1 m 1+1 _ 1 Ny 1
< eMTRT Y o oM oy < oM Mot TNy o1 (D)

m=2

where we especially used the condition that M > ¢Vv.
By combining (3.4), (3.17), (3.26) with [19, Lemma 3.8 (1)] we obtain
that for any n € N>,

N n
ny N _ —I—1\n— =
|Té7( )’ < —cy n+1(COM l l)n 1 (Z 22mco2 H‘]rl:brlH0,0)
h
m=2
S %MZ+I(CN”M_l_1Oé_2)n.
Thus, on the assumption M > ¢Vv, (3.23) holds and
h
(3.28) ﬁmﬂ < N
By (3.4), (3.17) and [19, Lemma 3.8 (2)], for any m € {2,3,--- ,N}, t €

{0,1}, n € N>o,

(3.29)  [ITH™ oy < 2727ey 2 "

1

n
JI{22 I 2D | o aemrgr=

i=1 \¢;=0/ j=2 \r;=0
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. (COMflfl)nfl
n N my,
. H Z 23mkco2 HJ’rlr—LZI H(),qk 12 ;L:l mj—2n+2>m-
k=1 mk:2

Moreover, by substituting (3.26),

N m
> i @™ oy
m=2

1

< 24n—4M—(l+1)(n_1)a_2”+2 ﬁ Z ﬁ Z Iy e Gt g =t

i=1 \¢;=0/ j=2 \r;=0

n my,

N
I 20 2me” o™ 15 o

k=1 mk:2

S Ml+la2<ch Mﬁl*1a72)n,

which implies on the assumption M > ¢ that (3.24) holds and

N
(3.30) > e oI T o < MM a2 (vt € {0,1)).

m=2

Also, by (3.29) and (3.27),

N
N m !
_7\4_sz1[ E COQ a™M 2Nv*2m||T7lﬁ(n)”0,t
m=2

N l
S C”Mf szllf(l+1+ Nop—1 )(nfl)oé_2n+2

1

n n
H Z H Z 12?:1!11--1-2;?:273:75

n N my ,

mg .2 My — Mg || 7l+1
L | 20 2me” am™ Mo 7 o g,
k=1 mk:2

< Ml—(l+1+—Nvl71)na72n+2(cM——NU1,1+—NI:31(H‘l))n

= Ma?(ca™?)™
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Thus, on the assumption o > ¢,

_ _No g N Y ANy A | _9
(3.31) MR TN ef oM I E|T] o < eMa™?, (vt € {0,1}).
m=2

To establish upper bounds on the free part F'(¢), we introduce the
Grassmann polynomials FJ(¢) (j =1,1+1,--- , Np) inductively as follows.
Set F'Ne (1)) := 0. Assume that I’ € {I,1+1,---, N, —1} and we have F7 (1))
G=U+11I+2---,Np). For any m € {0,2N, + 1,2N, + 2,--- | N},
EV () := 0. For any m € {1,2,--- ,2N,},

(3.32) FL () ==F} () — FN» ()
2N,

YAy

j=U+1 n=m+2
[ Fw+ 1) - B + 6 duey (),
where P, : AV — A™V is the standard projection. It follows that for

any I € {l,l+1,--- ,Np}, me {1,2,--- ,2N,}, (pj,%xj,05,85,0;) € I (j =
1727"' am)7

(3.33) 13)3ke (1,2, m} (ks £sx)
) (Frlr/L(plxlalslela to 7memO'm3m9m)
- Frlr/L(plxlalslela t 7memUm3m9m)) = 0.

In fact, the equality (3.33) is true for I’ = N}, by definition. Assume that it
holds true for any j € {l'+ 1,I' +2,--- , Ni}. Since

(330) FL(X)~ Fl(X) = B (X)
Np 2Ny 1\ ™
2 26 L
J=U+1n=m+2 mn Ye[n-—m
(FIRY) = BIRY)) [ s (0°),
(¥m e {1,2,--- 2N, },X € I'™),

the equality (3.33) holds for I’ as well. Thus, by induction the equality
(3.33) is true for any I’ € {l,l+1,--- , N, }.
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Let us prove that for any I’ € {l,l+1,--- , Ny}, t € {0,1},

2Ny
(3.35) ZCO ™| EV oy < @ 2M ™ =g

m=2

This inequality is true for I’ = Nj by definition. Assume that I’ € {l,1 +
, N, — 1} and (3.35) holds for any j € {I"+ 1,I' +2,---, N}. Note
that for any m € {2,3,--- ,2N,},

2N,
/

FL() = FL 7 ) + TH () + P D / I Ry (TRE Vs (W)
n=m-+2
2Ny

+Pm /T”WW Jucy, (8"

+1
n= m+2

S [ A 0Ny, (@),

n=2N,+2

and thus,

(3.36) EL () = EL () + TH ()
2N,

#P Y [ B @ ey, ()
n=m-42
2N,

$Pu Y [T+ g, ()

n=m-42 s
S [+ gy, @),
n=2N,+2

It follows from this equality and an estimation similar to [19, Lemma 3.1]
that

2N,

IEE o < ZQnCO CIEL o
2N1, B B
+Z2"co I o Z 2% [ o

n=2N,+2
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Using (3.22), (3.30), (3.35) for I’ + 1 and the conditions a > ¢, M > o
we have that

2Ny
Zco ™| Efllo.s
2Nv 2N, 2Ny 2N,
! pia
DI I LA ED S W1
2Nv N . Yaa
+ ZQQNU+2 m—2N, =2 1~ EL (Ny+1) Z Cogaan%QnHJpp”Ot
n )
m=2 n=2N,+2

N, 9 Ul P
<cva M N1 < ‘M N1,

Thus, the inequality (3.35) for I’ holds. By induction, (3.35) holds for all
I'e{l,l+1,---,Np}.
By (3.5), (3.33) and (3.34), for any m € {2,3,--- ,2N,}, t € {0,1},

IEL o <IEL o + 1 FN®lo,:
N, 2N,

Y 2T M e (1o + 1E o).
j=l4+1n=m+2

Moreover, by (3.21) for I" € {l + 1,14+ 2,---, Np}, (3.25), (3.35) for ' €
{l,l+1,---, Ny} and the assumption that o > 2, M > 2,

2N’v 2Nv 2]\[’U
(3.37) Z ¢ ™| los < ZCO || Ey llo,e + Z 5 | FNM o
2N, Np ' '
+ Z Z 2m+2a—2(M—] +M]—Nh)
m=2 j=I+1
2N, n
> a"(I1E o + 1] llo,e)
n=m-+2

+ Nva ™2

IA
|
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This also yields that

2N,
__Ny Iom ! 1
(3.38) M™% " eg oM M B o < 3 + cMNva?
m=2

On the other hand, for m € {2N, + 2,2N, +3,--- , N},

FL) = J0) 4 P 3 [ R @ g )

n=m-2

and thus by (3.4),
17l < Z 27 (75 o,

Moreover, by (3.22) for I + 1 and the condition M > ¢™v,

N
S cf am M FL o,
m=2N,+2

N n
! man n
< E E a™MENe=2"2" e 2 || T

n=2Ny+2 m=2N,+2

N
n [
S° 2 atMEEE S o,

n=2N,-+2
N. +1 N n +1
N v 2 .n ny pl+1
PMTNST Y e a M| T o
n=2N,+2

NUM %ﬁ+i+N (l+1)
or

N. N m 1 1

— v - -
(3.39) MM N g oM™ FL g < N M TN
m=2N,+2

It remains to deal with Fé. Note that

2Ny
R= 1 3 [ R ey, )
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2N, 2Ny

> SO @)~ B @)y, () + ) J T @iy, ()

N
b [ @, W)

m=2N,+2

Then, by (3.4), (3.5), (3.21), (3.22), (3.28), (3.30), (3.35) for I € {I + 1,1+
2,--+,Np} and (3.33),

2N,

N m o,
(340)  [Fol < IF™ I +IT57  + 5 Y e I oo
m=2
N 2N, m
+ Do M e ([ Fp oo + 1E5 l0.0)
m=2
2N, N
N« m N m
+o > e ITE oo + " > e 175 oo
m=2 m=2N,+2

N SNES
(FEH + SeMra (M1 N

IA

N N szh_l —j—-1 J+1—N; -t
—ca S (M M v M Ne-T)

IA

j=I

N 5 9
< —c"a .
~ h

Finally we sum up (3.28), (3.30), (3.31), (3.37), (3.38), (3.39) and (3.40)
to deduce that for any ¢ € {0,1},

h

2R T < Vo2
SR+ 178 < a7,

2Ny m 1

> ci o™ (1Fhlloe + I Thlo) < 5 +a™?,
m=1

l

— DNy al % m m l l
M™R=T N e o M= (| Fhllog + 1T,
m=1

1
+ Mot eMa 2+ N M-I,

0t)

<

N | =
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Recall that so far we have used the conditions a > ¢, M > ¢ and (3.19).
Now we can see that under the conditions (3.18) with a sufficiently large
generic constant ¢ the inequalities above imply (3.20), (3.21), (3.22) for [.
Therefore, by induction these inequalities hold true for alll € {0,1,--- , N3},
t € {0,1} on the conditions (3.18), (3.19). O

3.3. Anisothermal bounds

Our result concerning the existence of the zero-temperature limit of the
free energy density is made out of a series of estimates on the differences be-
tween Grassmann polynomials defined at 2 different temperatures. As one
part of these analysis, here we focus on establishing temperature-dependent
upper bounds on Grassmann polynomials produced by the Matsubara UV
integration. In addition to the notations already introduced in Subsec-
tion 3.1 and Subsection 3.2, let us define some notations necessary for our
anisothermal measurements. These notations are essentially same as those
introduced in the beginning of [19, Section 4].

For any X = ((pla X1,01, 51)7 (PQ, X2,02, 32)7 T (pm7 Xm, Om;, Sm)) S
(BxT(L) x{1,1} x (1/h)Z)™, we define Rg(X) € Ij*, N3(X) € Z by

Rﬁ(X) = ((plaxhalvrﬁ(sl))v T ,(pm,xmam,rﬁ(sm))),

N5(X) = ng(s))-
j=1

Though this is admittedly abuse of notation, we let Rg(X), N3(X) denote
((Pl,xh o1, rﬁ(sl)a 91)7 Tty (p’rrHXTrL? Om, Tﬂ(Sm), em)) (6 Im)7
m
> ns(sy) (€ 2)
j=1
respectively, for X = ((p1,%X1,01,51,01),"  » (PmsXms Oy Sm, 0m)) €
(BxT(L) x{1,1} x (1/h)Z x {1,—1})™ as well.
For X = ((p17X1701751a91)7"' a(pmaxmaamvsﬂ’hem)) S (B X F(L) X
{1, 1} x (1/h)Z x {1,-1})", s € (1/h)Z, we let X + s denote
((plaxhalv S1 + S, 91)5 Y (pmaXTrH Om>y Sm + S, Hm))

in order to shorten formulas.
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In the rest of this subsection we always assume (3.3). Set

b Py [l b L B _
[Zaﬁa_z)h-_{é‘:v 4 +h7 aﬁa 4 h}a ((1—1,2)

We measure the difference between anti-symmetric functions f(5,)
I(B4)™ — C (a = 1,2,m € N>g) by the quantify |f(81) — f(52)|;, which is
defined by

|f(B1) — f(B2)li

1 m—1 4 ) . "
= sup (—) E o j—o(Fw)d; (X, Y1)/
o\ h R
Xel (Y1,Ya, -, Ym_1)eim—1

|f(B) (R, (X, Y1, Y1) — f(B2)(Rpy (X, Y1, -+, Yin—1))|-

In this subsection we estimate Grassmann polynomials by using | - — - |o.
The infrared analysis in Section 4 will largely use | - — - |; with [ € Z.

With these notations we have for any [ € {1,2,--- ,Np}, 6 € {+,—}
that

(3.41) CB(B,)(X) = (=1) o KT)CB(8,) (Rg, (X + 5)),
(VX € I(Ba)% s € (1/h)Z,a € {1,2}),
(342) P8 — CP(B)lo < By M,

The inequality (3.42) is due to (3.8).

Fix 6 € {+,—} and for a = 1,2 let F'(8,)(¥), T"(Ba)(¥), J'(Ba)(¥) €
AV(Ba) (I = 0,1,---,Np) be the Grassmann polynomials defined in the
beginning of the previous subsection at the inverse temperature (3,.

By anti-symmetry, for any f(61)(v) € AV(B1) and m € {N(51) +
I, N(B1)+2,--- ,N(B2)}, fm(B1)(¥)) = 0. Keeping this fact in mind, we can

write that £(51)(¥) = S0 fin(B1)(#).

LEMMA 3.6.

FlL(Ba)(X) = (=1)Nee XHIFL (8,)(Rg, (X + 5)),
TH™M (82)(X) = (—1)Nee AT (B,) (Rg, (X + 5)),
(Vi€ {0,1,--- ,Np},n € N>o,a € {1,2}, m € {1,2,--- ,N(B2)},
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X € I(B.)™, s € (1/h)Z).

PROOF. We can see from the definition that the claimed equalities
hold for I = Nj. Then, by (3.41) the same inductive argument based on
[19, Lemma 3.9 (1)] as in the proof of [19, Lemma 5.3] ensures the results. [J

The invariant property summarized in Lemma 3.6 is one of the basic
assumptions in the general theory [19, Section 4]. The rest of the assump-
tions in [19, Section 4] are the bound properties of the covariances which we
prepared in Lemma 3.1. Thus, we can apply [19, Lemma 4.1, Lemma 4.6]
in the proof of the following lemma.

LEMMA 3.7. Let o € R>1 and let ¢y be the constant appearing in
Lemma 3.1. There exists a constant ¢ € R independent of any parameter
such that if (3.18) holds with ¢ and (3.19) holds, the following inequalities
hold for any 1 € {0,1,--- , Np}.

h o h h h
(3.43) ‘WFo(ﬁl) - WFO(/B2> + ‘WT()(ﬂl) - W%(ﬁz)
<pr7a L,
ON, )
(344) Y e a™(|FL(B1) — Fl(B2)lo + 1T}, (B1) — Th(B2)lo) < By 2,
m=2
~ N(B2) m )
(3.45) M Wt Z ¢ Q" M=
m=2
(1F, (1) = FL(B2)lo + | Th(81) — Tr(B2)lo)
<42

PrROOF. We assume the conditions (3.18), (3.19) with a constant ¢’ €
R~ so that the results of Lemma 3.4 hold for 8; and (2. Let us make
clear the logic. During the proof we do not touch the initial constant ¢’. In
the end of the proof we will see that all the estimations are justified if the
initial constant ¢’ is sufficiently large. In the following we use the symbol
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¢ to express a generic positive constant independent of any parameter and
will replace it by a larger constant denoted by the same symbol from time
to time. This notational convention helps to simplify the arguments. Not
to confuse, we should stress that a constant denoted by ¢ does not depend
on ¢, either.

We prove the claims by induction with [ € {0,1,---, N;}. By definition
the left-hand sides of the claimed inequalities for [ = N}, vanish. Thus, the
results hold for | = Ny,

Assume that [ € {0,1,--- , N, —1} and for any j € {{+1,0+2,--- , Np}
the inequalities (3.44), (3.45) hold. In the same way as in the derivation of
(3.26), (3.27) we can derive from the hypothesis of induction that

N(B2) )
(3.46) Z 2med o™ JE(By) — T (By)]o < B 2,
N(ﬁ2)
(3.47) S 22med am M| JE (6)) — T (Bo)lo
m=2

< CM N'u 1+N l+1)/61 s

on the assumption that M > ¢
Substitution of (3.4), (3.7), (3.17), (3.26), (3.42), (3.46) into the inequal-
ity in [19, Lemma 4.6 (1)] yields that for any n € N>,

h B h 1,(n)
‘N(ﬁl) ") (ﬂ)T “)I

2
< @~ DD Z 2% c > NIIE T (Ba)lloo

N(B2) .
3 g 2([31 S S I G s + (S >—J;:1<ﬂ2>|o)
m=2

b=1 t=0

< ﬁl_%MH—I(CN“M_l_lOé_Q)n.
Moreover, on the assumption that M > ¢Mo

h

Nv 7%M7l71 74‘
N(Gy) 0 g o

(3.48) T(Br) — T5(B2)| <

)
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By (3.4), (3.7), (3.17), (3.42) and [19, Lemma 4.6 (2)] we have for any
m e {2,3, s ,N(ﬁg)}, n c NZQ that

(3.49) T (By) — T (B2)]o

< 272m607%M7(l+1)(n71)

n [ N(B2)
T3 o’ Z 735" (Ballo.
j=2 \m;=2

a=1
N(B2) iy L2 01
. Z 24m162< 75 ZZ|JZ+1 Bb ||0t

mi1=2 b=1 t=0
|Jl+1( ) Jl+l(/82)| )

’ 12 by mj—2n+2>m-

Then, by (3.26) and (3.46),

2Ny m
> g T (B1) = T (B2)lo
m=2
N(B2) 2 n-l
< CnM—(l—i—l)(n—l)a—Qn—i—Q 92m,, 2 mz HJH—I /8& ”00
m=2 a=1
N(B2) . L2 1
Z 2%"eg o (51_5 YD I Bo)llos + 175 (Br) = Jﬁfl(ﬂz)b)
b=1 t=0

< Bl_ﬁMl—HaZ(CNUM—l—la—Q)n‘

Thus, on the assumption M > ¢V we have that

2N, 1
(3.50) Z e a™|TL (B) — TS (Bo)lo < By 2N M~ 1a2,

Also, it follows from (3.49) and (3.27), (3.47) that

N(B2)
MRS 3 of am MAETHO (1) — THO (B)lo

m=2
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Ny l
< MM NI I=(+1+ 5= )(n—l)a72n+2

N(2) S T -
Z 22mam602 M 3N, —2™ Z HJVZ,JLA(ﬂa)HO,O
m=2 a=1

(B2) m .
LY 2P MM
m=2

1 2 1
' (ﬁfi DD I Bo)lloe + 175 (Br) — Jﬁ%ﬁz)lo)
b=1 t=0

1
<p? le(l+1+ﬁ)na—2n+2(CM*ﬁJr%(lJrl))n

_1
= B, 2Ma?(ca™2)™.
Thus, by the assumption a > ¢,

(B2) " 1
(351) M™%EL ST of amMITETL () — T (Bo)lo < By 2 Ma2,

m=2

In order to find upper bounds on the difference between F!(£;)(+) and
FY(32)(x)), we need to establish upper bounds on the difference between
FY(B31) () and F'(B2)(1). To this end, first we need to confirm that

(3.52) Ef(Ba)(X) = (=1)NaXH) L (B,)(Rg, (X + 9)),
V' e {l,i+1,--- ,Np},ae{1,2},m e {1,2,--- ,2N,},

X € 1(8,)",s € (1/h)2),
where FY(8,)(X) (m = 1,2,---,2N,) are the kernels of F'(8,)(¢)) €
AV(B.) defined in (3.32). By definition, (3.52) holds for I’ = Nj. Assume
that I’ € {I,14+1, -, Np—1} and (3.52) is true for j € {I'+1,I'4+2,--- , N }.
Take any s € (1/h)Z. 1t follows from (3.41) that for any a € {1,2}, n € N,
Y el(Ba), je{l +1,I'4+2,---, Ny},

353 [ Ungoveadicsa @) = CD¥OT [ uydien (@),

By using this equality, Lemma 3.6, (3.34) and the induction hypothesis we
have that for any X € I(8,)™,

(—1)No X+ B (B,)(Rg, (X + 5))
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= FL(82)(X) — FN"(82)(X)

XS (6T, E e

j=l'+1n=m+2 YeI(Bq)—m
(FJ(Ba) (R, (X +5),Y) = F(Ba) (R, (X +5),Y))

‘/w‘lifdﬂcf(ﬁa)(wl)
= F}(B2)(X) = BN (82)(X)

Ny, 2N, n—m
- Z Z < )( > (—1)Noa (X+8)+ N5, (Y+s)

j=l'+1n=m+2 Yel(Bg) ™
- (F}(Ba)(Rp, (X + 5), Rg, (Y + 5))
— FJ(8a)(Rg,(X + 5), Rg, (Y + 5)))

'/w%{dﬂcf(ﬂa)(fﬁl)
= L (Ba)(X).

Thus, by induction the equality (3.52) holds for all I’ € {l,l+1,--- , N}.
Let us prove that for any I’ € {I,l+1,---, N},

2Ny . ,
(3.54) > e a™|EL(B) — EL(B)lo < By oM wT,

m=2

For I = N}, the inequality (3.54) holds since its left-hand side is zero.
Assume that " € {l,l +1,--- N, — 1} and (3.54) holds for all j € {I' +
LI'+2,---N,}. By (3.4), (3.7), (3.36) and the estimation parallel to [19,
Lemma 4.1 (2)],

[EL(81) — EL(B2)o

< EVFY(By) — FEFY(Bo) o + |TE(B1) — T (Ba) o
2N1)

+e Z 22n = <‘Fl+1( )_Frll’+1(62)|0

n=m-+2

1 1 2 ~ 7/ ! '
8230 B Ba)lloe + ITH T (B) = T (Ba)lo

t=0 a=1
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1 1 2 ,
+6°D0 \\T#l(ﬁa)uo,t)

t=0 a=1
N(B2) e
e Y 2 ? (Ugﬂ(ﬁl)—ﬂﬂ(@)\o
n=2N,+2

1 1 2 )
+6 2 Y \\J#l(ﬁa)uo,t).

t=0 a=1

On the assumption o > ¢, M > CNE, insertion of (3.22), (3.30), (3.35),
(3.45), (3.50), (3.54) for I' + 1 yields that

2N,

> g o™ EL(B1) — EL(B2)lo
m=2

2N, 2N,

<c)y 22" ) cfa” (lﬁé’“(ﬁﬂ — EYFYBy)lo + TV (B1) — TV (B2)lo
m=2 n=m

L1 2 . _1 ! 2 /
DD IE T Ba)llos + 8y 0D ||T£ﬁ1<ﬂa>||o,t>

t=0 a=1 t=0 a=1
2N, N(B2)
+e Y oot gmo2N2y L (Ny+1) 3 o o MR
m=2 n=2N,+2
1 2
41 V41 -3 I'4+1
: (W (Br) = T B0+ By 2 Y D IIJY (ﬂa)llo,t>
t=0 a=1

N ,% g U4l S S
<cvp oM N1 < B o M Ne-T,
Therefore, the induction concludes that (3.54) holds for all " € {l,1 +
1, , Ny}
We can see from (3.33) and (3.34) that for any Xo € I°, X € I~
a€{l,2}, me{2,3,---,2N,},
Fyn(Ba)(Xo, B, (X))
= F7,(Ba) (X0, Rg, (X)) + F" (Ba) (Xo, R, (X))
Np, 2Ny n 1 n—m
226 L2

j=l+1n=m+42 Ye(10)n—m
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- (F(B2) (X0, R, (X, Y)) = F(Ba)(Xo, R, (X, Y)))
[ ey @)
Then, by (3.5), (3.7),

| F(B1)(Xo, Rg, (X)) = Fy, (82) (Xo, R, (X))
< |Fy(B1)(Xo, R, (X)) — Ep, (B2)(Xo, R, (X))

RS IG R

j=l4+1n=m+2
(| F(81)(Xo, Rp, (X,Y)) = Fi(82)(Xo, Rs, (X, Y))]
1B (81) (X0, Ry (X, Y)) — F(82)(Xo, R (X, Y))])
(M MIN) e

EELO7

S

Jj=l4+1n=m+2 Ye(10)n—m
(IFJ(ﬁz)(Xo,RﬁQ( Y)| + [E7(B2)(Xo, R, (X, Y))])
-ﬁl M_ic0 2

Thus,

IF),(B1) — FL(B2)lo
< |F£1(51) - F&(ﬁz)\o

Np,
+ Y (M 4 TN
j=l+1
2N, nm
S 2%y (IF(B) — Fi(Ba)lo + [EL(B) — FL(Ba)o)
n=m-+2
2N, nem
Z M3 ST 2 (1FB)lloo + I B2 (B2)lloo).
Jj=l+1 n=m--2

Moreover, by substituting (3.21), (3.35), (3.44) for j € {I4+1,14+2,--- , N3},
(3.54) for j € {l,l+1,--- ,Np} and using the condition o > ¢ we deduce
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that

ZNU m
(355) Y cg a™Fh(B1) — FlL(Ba2)lo
m=2
2N, m . A
<> g a™EL(B) — EL(B2)lo
m=2
2N, Ny ‘ '
+3 0> 2R H (M + M
m=2 j=[+41
2N, n ' ' ' '
ST g a™(FI(B) — Fi(Ba)lo + | FL(B) — Fi(B)lo)
n=m-+2
L 2N, N ,
+5;§ Z Z 2m+2a72M7%
m=2 j=[+1
2Ny n . .
S g a™(IFL(B)lloo + 1L (B2)

n=m-+2

0,0)

_1
< 51 QCNUO‘_Qa

which also implies that

2N,
_NN%J % m 2Nl72m l _ F! 7% No =2
(3.56) M~ FT' N e " MEIETFL(B1) — Fr(B2)lo < By 2cMra,

m=2
It follows from (3.4), (3.7) and [19, Lemma 4.1 (2)] that for m € {2N, +
2>2Nv + 3’ e 7N(52)}>
[Fa(B1) = Fr(B2)lo
< (B) = T (B2)lo

(B2) n—m
te Y 2 (lJfL“(ﬂl)—Jffl(ﬂz)|o

n=m-+2
1 2 1
+02Y ||JL+1<ﬂa>||o,t>.

a=1 t=0
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Then, by (3.22), (3.45) for [ + 1 and the conditions M > ¢, a > ¢,

N(B2) m .
3N o ML (Br) — FL(B2)lo
m=2N,+2
(B2) n N z
<c > Y 2MegamMEET
n=2N,+2 m=2N,+2

1 2 1
: (!J#l(ﬁl) — JEN B0+ B 2D D IIIEH(Ba) o,t>
a=1 t=0
N(B2)

n l
<c Y oMW"
n=2N,+2

1 2 1
: (!Jffl(ﬁl) — I Bl + 512D > 13 (Ba) o,t)
a=1 t=0

_ Np+1 N. _1
< AN M N5—1+quil(l+1)ﬁl 2

and thus
Ny N(ﬂQ) m 1
(3.57) MRS N ™M AN FL(B) — FlL(B2)lo
m=2N,+2

A
< NopTRET] 2

Finally, let us estimate the difference between F}((;) and E¢(32). Note
that

(3.58)  Fy(Ba) = Fy ™ (Ba) + T (Ba)
2N,

3 JE @) - B G @) ducy,, 5,(%)

2N,

+ Y [ B, 3 @)
m=2

2N,

# 3 [T e, 0 )
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+ Z / TEF () (W)dicy, (5) ().

m=2Ny,+2

By (3.33), Lemma 3.6, (3.52), (3.53),

JER @) - B G @) dnes,, (@)

I+1

1) L L Y ey )

S€[0,8a)n XEIOYEI(Bg)™ 1

— FHY(8,)(X, Ry, (Y — 5) / Ux Ry, (Y-) s, (5.) (V)

m—1
— 6, (%) SO (FRE)XY) - B8 (X,Y)

XeldYe(10)m—1
[ exvvducy 50)

Combined with (3.5) and (3.7), this equality implies that

(3.59)

'N(hﬁl) /(anﬂ(ﬂl)w) — Fﬁl(ﬂl)(w))dﬂc&(&)(w

h ) -
"N / (B (B) (W) = E (B2) (W) by, ) ()

< (IEFNBy) — B (B)lo + 1B (B1) — EEH(Ba2)lo)
,(Mflq 4 MZH’N’L)CO%

~ 41 lom
+ (1F T (B2)lloo + 1 E5 (B2)llo0) M~ By et

By applying the same estimation as [19, Lemma 4.1 (1)] to (3.58) and using

(3.4), (3.7), (3.21), (3.22), (3.30), (3.35), (3.44), (3.45), (3.48), (3.50), (3.54),
(3.59) for ' e {l+ 1,1+ 2,---, N} we observe that

(3.60) $(B1) — F(2)

ok

h
N(By) "

Rl () —

N(B2)

< ' NG Fgt(82)
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(hﬂ 1o T (B) — % 15 (B2)
i: M—l—1+Mz+1—Nh)CO%
TR — B Gl + B ) — B B0l
+§5M e : e (1L (B2) oo + | F5(B2) lo.0)
2Nv

m
2

+022m

[EEH(B) — FL (B2)]o

1
5 Z D IER (Ba)llos

a=1 t=0
+ TN (B — T (B2)o

L2 1
62y D ||Tfn“(ﬂa)|!o,t>

a=1 t=0
N(B2) m
te Y 2 ('Jﬁl(ﬁl)—Jﬁl(ﬂz)\o
m=2N,+2
1 2 1
+0 2 ||J7Z7T1(/8a)||0,t>
a=1 t=0
<' SFE () - ! l“(ﬂz)
= IN(B ( 2)
+ch57 *2<M + MTNT 4 DNy
! +1 Jj+1 .
< Mgy o Z S Ve N VEASER

< cN”ﬂl 2072.
By putting (3.48), (3.50), (3.51), (3.55), (3.56), (3.57), (3.60) together

we obtain that

h
N(B2) °

(3.61)

LB — T3 (82)

h h h
N O~ gy Tl + ‘N(ﬁ)
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_1
CNva_2/81 2 )

v

A

(3:62) Y e a™(IFL(B1) — Fl(B)lo + ITL (1) — T, (B2)]o)

(]

2
1
CNva_Zﬁl 27
N N(B2) m )
(3.63) M Wity g am M=
m=2

(1 (B1) = Fr(B2)lo + | T, (61) = Tp,(B2)]o)
< (Ma?+eMa?+ cN”M_ﬁ)ﬂ;%.

IA 3

Recall that in the derivation of the above inequalities we assumed the con-
ditions o« > ¢, M > ¢Vi with a constant ¢ € R< o independent of any
parameter including ¢/. If we start by the conditions (3.18) and (3.19)
with a sufficiently large constant ¢/, then the conditions a@ > ¢, M > Vi

are satisfied, the right-hand side of (3.61) is less than ﬁl_l/2oz_1 and the

right-hand sides of (3.62), (3.63) are less than 3, 12, Therefore, we obtain
(3.43), (3.44), (3.45) for [ on the assumptions (3.18), (3.19) with a generic
constant ¢/, which does not depend on any parameter. The induction with
1 €{0,1,---, Np} now concludes the proof. OJ

4. The Infrared Integration

In this section we perform the multi-scale analysis around the singular
point of the covariance in momentum space, namely the infrared analysis.
The output of the Matsubara ultra-violet integration is substituted into the
infrared integration as the initial data. So the infrared integration is the
second step of the whole multi-scale integration process. Conservation of
symmetries is essential to validate the iteration of the integration. We have
to keep track of the preserved symmetries as well as analyticity and scale-
dependent bound properties of Grassmann polynomials during the iteration.
For this purpose it is convenient to organize sets of Grassmann polynomials
having the relevant properties and define maps between these sets resem-
bling the real renormalization group maps in advance. We plan to do so
in the first subsection. In the second subsection we will complete the proof
of Theorem 1.6 by making use of the tools developed in the preceding sub-



82 Yohei KASHIMA

section. We should remark that in principle one can reach our main result
by combining the materials prepared so far in this paper with calculations
parallel to those presented in [19, Section 7]. Apart from proving the theo-
rem itself, this section is aimed at providing a more organized construction
of the infrared integration than the previous version [19, Section 7] so that
the readers can confirm the validity of the infrared integration more clearly.

Throughout this section we assume that
M=>2, h>e L>p,

unless stated otherwise.

4.1. General lemmas
Let n € N and let D be a bounded domain of C" satisfying that z € D
for any z € D, where D denotes the closure of D. Set

c (E;/\v)

= {J € Map <5, /\V) | U J(U)(¥) is continuous in ﬁ} ,

¢ (Ds \v)

= {J € Map <D, /\V) | U J(U)(¥) is analytic in D} .

See [19, Subsection 2.2] for the meaning of continuity and analyticity of
Grassmann polynomials. We are going to define a subset of C(D; A V)N
C¥(D; A\'V) to which Grassmann polynomials dealt in our infrared analysis
belong. To describe symmetric properties of Grassmann polynomials, let us
fix some notational conventions. Let S be a bijective map from [ to I and
@ be a map from [ to R. The maps Sy, : I"™ — I, Qp, : "™ — R (m € N)
are defined by

S (X1, Xo, -+, Xim) 1= (9(X1), 5(X2), -+, S(Xm)),

Qum (X1, Xo, -+, Xpp) 1= ZQ(Xj)'
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For f(¢) = S —o()™ Xxern fm(X)x € AV, define f(R), f(v) € AV

fRe) = 3 (%) S fn(X)ei@n Sy

m=0 Xelm
N m
=3 (3) T e
m=0 Xelm

In fact these notational rules have been introduced in [19, Subsection 3.3].
In addition, for x € Z? we let 71 (x) denote a site of I'(L) satisfying x =
rp(x) in (Z/LZ)%.

Now, for parameters cg, a € R>1, M € R>9, | € Z<o we define the sub-
set S(D, co, o, M)(1) of C(D; ANV)NC¥(D; \V) as follows. J € C(D; \V)
NCY(D; AV) belongs to S(D, cp, e, M)(1) if and only if J satisfies the fol-
lowing properties.

(i)
h (d+3) -1
. N 1J0 = ’
(4.1) N|J(U)\<M 2y

N
(4.2) M-S (2 0 ME| 1, (U) e < 1, (YU € Dt € {0,1}).

m=2

(ii)
J(U)(y) = J(U)(Ry), (VU € D),
for each S: I — I and @ : I — R defined as follows.

(4.3) S((p,x,0,2,0)) := (p,x,0,2,0),
Q((p7X7 0-71'7‘9)) = %97 (V(IO7 X, 0-73;70) € I)

(4.4) S((p,x,0,2,0)) := (p,x,0,z,0),
Q(p,x,0,2,0)) :=7l,—1, (V(p,x,0,2,0) € I).

(4.5) S((p,x,0,2,0)) = (p,x, —0,x,0),
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Q((p,x,0,2,0)) :=0, (V(p,x,0,z,0) € I).

(4.6) S((p,x,0,2,0)) = (p,rr.(x+2),0,rg(x + s),0),
Q(p,x,0,2,0)) :==mng(rglx —s) +s), (V(p,x,0,2,0) € I),

where z € Z¢ and s € (1/h)Z are arbitrarily taken and fixed.

(A7) S((px,0,2.6)) == (p,r1(~x — b(p)), 7,2, ),
Q((p,x,0,2,0)) := 0(x, (2r/L)e") + 6{b(p), (m/L)e"),
(V(p,x,0,2,0) € I).

(iii) _ B

J(U)(®) = J(U)(Ry), (VU € D),
for each S: I — I and @ : I — R defined as follows.

(4.8) S((p,x,0,2,0)) = (p,x,0,r3(—x),—0),
Q(p,x,0,2,0)) :=7m(lg=1 + 1z20), (V(p,x,0,2,0) € I).

(4.9) S((p,x,0,2,0)) := (p,x,0,2,—0),
Q(p,x,0,2,0)) == (b(p),m), (V(p,x,0,,0) € I).

Moreover, on the assumption (3.3) we define the subset S(D, co, a, M)(1)
of S(D,co,a, M)(1)(B1) x S(D, co, cr, M)(1)(B2) as follows. (J(51), J(B2))
€ S(D,co,a, M)(1)(51) x S(D, co, 0, M)(1)(B2) belongs to S(D, co, e, M)(1)
if and only if

h —2 ppld+ )~
(410) ’mJO(IBl)(U)_mJO(B2)(U) Sﬂl M + o 1>
) N(B2) .
(411)  MTEIENT e oM (81)(U) = T (52) (U],
m=2

_1 __
<2, (VU e D).

We will later define a set designed to contain kernels of quadratic Grass-
mann polynomials belonging to S(D, ¢y, a, M)(1). Since one criterion to be
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an element of the set involves cut-off functions for the infrared integration,
let us define the cut-off functions at this stage. Set

1 1 m—1
== 21— 1+ eilim
ft 4pe{1105121n " p< 2me{r{1§>< d}<jz_:| + e*%im|

1
2

\/_
M]RZ 7(3MUV+CZ> 5

Nj := min { rog (5 (jgﬁﬁm)_l)J ,o}.

By the assumption (3.1), fy < 1/4. Using the function ¢ introduced in
Subsection 3.1, we define the functions x; : R¥*! — R (I € Z) by

xi1(w, k)

= QZ)(MU‘Q/(UQ) ¢ MI_RQM*2(1+1) w 4 ft Z |1 + 62 &5 —Hk

7=1
d
_(b MI—R2M72l w2+ft2|1+el TE; +Zk7|2
j=1
We can check that
o (aaar2 [ 3o pe g ) ) 2o

7j=1
(Vw € R with ¢(Miw?) # 0,k € R?),

d
(4.12) cb MfRQM‘QNﬁ UJ2 +ftz |1 +ezLa] +zkj‘2 =0,
j=1
(Vw € R with |w| > 7/8,k € RY).
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These equalities imply that
lewk M;2w?), (Yw € M,k € RY).

The support property of x; is described as follows.

(

N[

=0, if (w2+ftzjl|1+e““’“|)
< ZMpM',

V6
€ [0,1], if %MIRMI

(413)  xi(w,k) < (wQ—l—ftZ 1€t ik 7] )

< %]\41_}:5]\4#}—17

=0, if (w2—|—ft Z?:l 1+ €29 ks d )

> %MIRMH—I-

(SIS

1
2

We define the functions y<; : R — R (I € Z with | > Nj), Y<m : R —
R (m € Z) by

X<i(w, k) ZXJ

d
— ¢(MU\2/W2)¢ MI_R2M_2(m+1) w2 + £ Z ‘1 + elLEJ Ltik; ,
j=1

(V(w, k) € RTH),

Here let us list properties of these cut-off functions for later use. For simplic-
ity we write 0/0kg in place of the differential operator 9/0w in the following.
Note that the condition L > [ is necessary in the proof of the item (5) of
the next lemma.
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LEMMA 4.1.

(1) Assume that 0 < 81 < (2. Then,

XSl(ﬁlﬂka) = XSI(B2)(W7 k) = Xﬁl(wﬂ k)v
(V(w, k) € R with |w| > 7/B1, | € Z with | > Ng,).

X<i(w, k) =0, (V(w,k) € R with |w| > 7h, 1 € Z).

(3) There exists a constant ¢, € Rs( independent of any parameter such
that

(o) tatend] | (50 ) ] < @@
(V(w, k) € R n e NU{0},5 € {0,1,---,d},1 €{0,~1,--- ,Ng}).

(4) If there exists (w,k) € R with |w| > 7/B such that X<o(w,k) # 0,
then
l < MIRMNQ+1‘
p
(5) Assume that 1/3 < MgMNstl.  Then, there exists a constant
c¢(M,d) € Rsg depending only on M, d such that the following inequal-
ities hold for any | € Z with | > Np, (o', k') € R+,

ﬁ Z Ly (whw ktkyz0 < ¢(M, d) fi 2 M(d+1)l
k)eMxT(L)*
/ Z L3y (w k)20 < c(M, d)f 2M(d+1)
keF (L)*
1
_d Z X<i(w k+k')#£0 < c(M d)f szz
er(L

PROOF. (1): The claim follows from (4.12).
(2): The assumption h > e*? and the support property of ¢( U‘Z/wQ)
imply that result.
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(3): The proof for this claim is essentially same as the proof for [19,
Lemma 7.4]. Here we especially need to use the fact fy < 1.

(4): This was essentially proved in [19, Lemma 7.5].

(5): We can derive the claimed inequalities from the support property
of Y<; and the assumptions 1/8 < MpMNstt [ > 3.0

Set
C*° (R Mat (24, C))
= {f:R"" — Mat(2%,C) | f(-)(p,n) € C(RM;C) (Vp,n € B)}.
Here we define the subset IC(D, o, M)(1) of Map(D, C*=(R*+1; Mat (2%, C)))
which is designed to contain kernels of relevant quadratic Grassmann poly-
nomials. Let | € Z<o and ¢, be the constant appearing in Lemma 4.1 (3).

W € Map(D, C>®(R¥*1; Mat(2¢,C))) belongs to K(D, a, M)(l) if and only
if W satisfies the following conditions.

(i) U — W(U)(w,k)(p,n) is continuous in D, analytic in D for any
(wak) < Rd+17 p,nE B.

(ii)
W(U)(w, k) = W(U)(w,p),
(VU € D,w € R, k,p € R? with k = p in (R/27Z)%).
(iii)
W(U)(w, k) = W(U)(~w, k)",
(VU € D, (w, k) € M x ((2r/L)Z)%).
(iv)
Ua(m)W (U)(w, k)Ug(m)* = =W (U)(w, k)",
(VU € D, (w, k) € M x ((2r/L)Z)%).
(v)

s () o ) (o= e vt ()

= W(U)(w, k), (YU € D, (w, k) € M x ((2r/L)Z)%).
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(vi)

]ZO n; =0 p:0

(4.14) 3 SRLGER NI SRR
VI X (55) o) T (5E) W sies
' 12 gzo ng>0
<a*M!, (YU e D, (w,k) e R pneB).
(vii)
(4.15) 15, @i 20W (U) (@, k) (p, )| < a2 M,
(VU € D, (w, k) € R p,np € B,j € Z with j > Np).

On the assumption (3.3) we define the subset K(D,a, M)(l) of
K(D,a, M)(1)(B1) x K(D,o, M)(1)(B2) as follows. (W(b1), W(B2)) €
K(D, o, M)(1)(61) x K(D, e, M)(1)(B2) belongs to K(D, a, M)(1) if and only
if

gy 1\ w(l)v
(4.16) 1;[0 (njo (20x+7T2> (an)!)

(—mewmmwwmm—W%MMmmmm

< B a”?, (VU €D, (w, k) e R p,n e B).

Let us make an inequality which will enable us to substitute an element
of K(D,a, M)(l) into the denominator of the free covariance.

LEMMA 4.2. There ezists a constant c¢(d) € Rsq depending only on
d such that if o > c(d), the following inequality holds for any W €
K(D, o, M)(1).

|(iwTpa — E(k) = W(U) (@, k) [lganoe < M7V,

(V' € Z with I > Ng, (w, k) € R*™ satisfying xy(w, k) # 0,U € D).
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PrOOF. By Lemma 2.3 (5) and (4.13),

NI

d
(iwlys — E0)lgaxor < | W+ fo D L+l E ik 2
j=1
V6

< XMt
— IR

Thus, by (4.15),
I(iwIya — E(k) = W(U)(w, %))~ lpa o0

< |(iwlya — E(K)) ™ gaxga E [ (iwIpa — E(K) ™ W (U)(w,k)|[5ay 00
\/_ -l -

< — M~ "< M~

= Mg E:

In order to derive the last inequality, we used the condition a > ¢(d). O

At every step of the iterative IR integration we receive a Grassmann
polynomial from the preceding IR integration and substitute the kernel of
its quadratic term into the covariance. Our aim here is to construct lemmas

which justify this process. Let us define the maps 77 : [ B) — [-5/2,8/2),
:[0,L) — [-L/2,L/2), 7% - [0,L) — [-L/2,L/2)% b
() x if x € 0,§>a sp() - { x ifz e [0,%),
= L =
s c—8 ifze %ﬁ)a z—L ifxe 5 L),

rp(x) := (sp(x1),s0(x2), -+, sp(%a)).

Let | € {07_17"' 7Nﬁ} and (Jov‘]ila"' 7Jl) € HLZOS(D,CO,a,M)(j).
For U € D, (w,k) € R p.n € B, set

(4.17) W7 (U)(w,k)(p,n)
_ % 3 ¢ ilIrL G0 =i (5) (1 yma(r ()
( )EF )X[Ovﬁ)h

(L
Jg( )((p7x7 T’ S’_]‘)’(Tl707 T707 1))7
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(4.18) E(U)(w, k) (p,)

In fact J7 mimics the output of the infrared integration at one scale. The
kernel of its quadratic part is characterized as in (4.17) and substituted
into the covariance. The covariance at scale [ contains a collection of the
kernels of the form (4.18). We are going to prove that E; € (D, a, M)(l)
and (Ey(61), E)(82)) € K(D,a, M)(I) on the assumption (3.3), which is
important information for the validity of the process. We need the next
lemma.

LEMMA 4.3.

Td[ i V) o) WO
= 2n3)! ok, A
D

| l

p
2 7(w7k) GRdJrlapvneB)'

(2) Assume that (3.3) holds. Then,

d 0 ; NG
{2 (%) G
d np
H( ) W (60) (U) (@, k) (p.1) — WH(B2) (U) (. ) (s )

< 2|J5(81)(U) = J5(82)(U z+—ZHJ2 Ba)(U)]l1,1,

(VU € D, (w, k) € R*™ p 5 e B).
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PrROOF. (1): Note that

jﬁ)((W)% n> ﬁ(;) W' (U)(w, k)(p: )

p=0
<

d W(
IT (st 15,0, (1.0,1.0.1))
(

S

(x,s)€T(L)x[0,8) j=0
' ‘J2( )(( X, T7 S, 1)7

This inequality leads to the result.

(2):

(IR

j=0

,0,1,0,1))[.

X7S)6F(L)X[_/Bl/4,ﬁ1/4)h
1 W(l) g N
: <<2ij <T) di((p,x,1,5.~1),(1,0,1,0,1)) >

‘]é( )(U)(Rﬁl((pvxaT787_1)a(nvovTaO71)))
— J5(B2)(U)(Rg, ((p, %, 1,5,—1), (n,0,1,0,1)))|
2 o 2\™
G 2 G
a=1 (x,5)€T(L) x[0,8a)n

s|™0 5 — B
lse[fﬁ a . < +1 1 | d )

B1 Ba ™ Ba g _B1 o
12 )(g_:rlelé_“s _ 1‘)7@0—&-1 s€[ 2 ,Ba 1 ) (g_:rlezg—as _ 1Dno+1

m&

j
|

’ ‘dO(ﬁa)«an: 1,8, _1)7 (777 0,7,0, 1))’

w(l)" n;
jl;[ <(2nj)!dj(ﬂa)((p7vavsv_1)7 (n)()?TvOal)) J)
’ |Jé(ﬂa)(U)((p7X7 Ta S, _1)7 (777 0, Ta 0, 1))‘
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The result follows from the above inequality. [
In the following ¢, is the constant appearing in Lemma 4.1 (3).

LEMMA 4.4. There exists a constant c¢(d, M, cy,cy) € Rso depending
1

only on d, M, ¢y, ¢, such that if co > c(d, M, cy,cy) fy 2, the following state-
ments hold.

(1)
E, € K(D,a, M)(1).

(2) Assume that (3.3) holds, | € {0,—1,--- ,Ng } and (J(31),J7(B2)) €

~

S(D>CO>Q7M)(j) (.7 =0,-1,--- 7l) Then:
(Ei(B1), Ei(Ba)) € K(D, o, M)(1).
PROOF. (1): It suffices to consider the case that 1/8 < MypM™Ns+L,

The continuity and analyticity with U is clear. Let us prove the invariant
properties. The periodicity claimed in (ii) follows from the definition. Since

. . . 27
X<j (ka) = Xﬁj(_w7k) = X< <wa -k — st) ) (V(w, k) € Rd+1)a
it is sufficient to confirm the invariances of W7 (5 € {0,—1,--- ,1}) to prove

the invariances of Fj. The proof for the invariance of W7 claimed in (iii),
(iv), (v) is parallel to the proof for [19, Lemma 7.6 (2), (7.25), (7.26),
(7.27)] respectively. Here we only provide the sketch of the proof. The
invariance in (iii) is proved by combining the anti-symmetry of JU)(),
the invariance J3(U)(¢) = J3(U)(Ry) for S: I — I, Q : I — R defined in

(4.6) and the invariance JJ(U)(¢) = JJ(U)(Ry) for S: 1 —1,Q: 1 —R
defined in (4.8). The invariance in (iv) follows from the anti-symmetry of
JJ(U)(-), the invariance J3(U)(¢)) = JJ(U)(Ry) for S: I - 1,Q: I — R

defined in (4.6) and the invariance Jg(U)(w) = J% (U)(Ry) for S : T — 1,
Q : I — R defined in (4.9). The invariance in (v) is due to the invariance
J(U) () = J3(U)(Ry) for S: I — I, Q : I — R defined in (4.6) and (4.7).
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Next let us show the bound property (vi). Take ng,ny,--- ,ng € NU{0}

satisfying E?:o nj > 0. Using (4.2), Lemma 4.1 (3) and Lemma 4.3 (1), we
can derive that for any (w,k) € R+,

(4.19) 11(‘;;?), (8%)) Eu(w,K)(p, )

e (£ ()

q:O mqZO
d 6 me d 8 Ns—MmMs
. 1;[ <8_kT> K<p(w, k) Sl;[g(@ S) WP(w, k) (p, n)
S T (N TS (7
! _ q
<My M pH<(2n.)l>H 2 <m >
p=0 J=0 1777 q=0 \mq=0 !
d
AT e e) ™) (m,)?
r=0
d T )\ s | P
I <§W(p) ) (2(ns — ms))!| 2[5 |p,0
s=0
<2M S MBI [T | D < mjj )CXJ <§)
p=0 Jj=0 \m;=0
B BN Y.
T1-ME VY2 " ,

which implies that

(55 () 2 ) () o

’ 12 Z:o ng>0
9d+1 9d+1
S - Cala_le 0 —1 —2Ml
1-M"2 1-— 2_7

(VU € D, (w,k) € R™™, p,n € B),
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where we used the condition M > 2. Thus, if ¢g > 29+2/( 2_%), E;

satisfies the inequality in (vi).
It remains to prove the bound property (vii). Take p,n € B. If

¢! 0(P)=b(n),T) — 1 the invariances (iii), (iv) imply that

El(U> (w’ k) (P, 77) = _EZ(U)(_wv k) (p’ 77)7
(VU € D, (w, k) € M x ((2n/L)Z)%).

Thus, by (4.19),

) (1)

X))

—1 72

N———

]Elw ) - B

N |

(4.20) | Ey(w, k) (p,n)| <

+ ‘El(Wk (p,n) — Ei

| =

—_
Qlﬁ

d, M, cy,cy) | |w] +
< cfd. Mocysca) (Jol + 5

(V(w,k) € M x ((21/L)Z)%),

where ¢(d, M, ¢y, ) € Ry is a constant depending only on d, M, ¢y, ¢,p. If
¢! 0(P)=b(n).T) — _1 the invariance (v) and the periodicity (ii) yield that

EZ(U)(wv 71')([), 77) = _ei<b(p)_b(n)7%€L>El(U) <w’ ™= 2%€L> (p7 77),
(YU e D,w e M).

Thus, by using the bound (4.2), Lemma 4.3 (1) and (4.19) we have that

(4‘21) |El(w7k)(p7n)’ <
2T

‘Ez(w,k)(p,n) — B <w ™€ > (p, ?7)‘

faor- )

d
1
c(d, M, cy, cuw) Z \k; — 7| + 17 cgta™?

+ | = A

El(w’ k)(p, 77) - El(wv TI')(p, 77)’
1
2

(V(w, k) € M x ((2r/L)Z)%).
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By coupling (4.20) with (4.21) we obtain

d
1 1 1 _
|Ey(w, k) (p,n)| < c(d, M, ¢y, cw) \w|+Z|/€j—W|+B+E cgta?,
j=1

(V(w, k) € M x ((2x/L)Z)%, p,n € B).

For any (w,k) € R¥! there exists (&,k) € M x ((2r/L)Z)* such that
lw— | < 7/B, |k —k||ga < Vdnr/L. By taking into account this fact, we
can deduce from the above inequality for (w, k) and (4.19) that

-1 -2

d
1 1
B0, ) (o) < eld, M. ex0) | ol + Dy =+ 5+ 7 | ga™
j=1

(V(w, k) € R™ p,n € B).

Then, by using the periodicity of Ej(w, k) with k, the support property of
X<j, the assumption 1/L < 1/8 < M;pMYs*+! and the fact f; < 1 we reach

the inequality that

|EZ(U)(w7k)(paTl)| S C(d7 M7 vacw)ft
(YU € D, j € Z with j > Ng,
(w, k) € R satisfying y<;(w, k) # 0, p,n € B).

N

0510F2MJ,

Thus, E; satisfies the property (vii) under the assumption that ¢y >
1

c(d, M, ey, cu)fy 2.
(2): Take ng,ni1,---,nqg € NU{0}. By (4.2), (4.11), Lemma 4.1 (3),

Lemma 4.3 (2) and the assumption M > 2,

[ (W(l)nj (i)nj> (E1(Br)(w, k) (p,n) — Ei(B2)(w, k) (p, 77))‘

ST (e 2, () T 3) s
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: H( 0 ) . T(Wp(ﬁl)(wak)(/?ﬂ?)—Wp(ﬁz)(w,k)(ﬂ,ﬁ))‘

I () ()

-<2|J§<ﬂ1> T5(B)lp + ZI!J” Ba)

)

2

Yiony ! 1
< <Cx + %) 2(251 Qcala_zMg + 471'51_105104_2M§)
p=0
2\ X foon
T J 24+4r _, _o, -1
§<0x+7> 1_2_%00104 26, 2.

This inequality implies that

Il > () oy
726 \ro 2¢, + 2 (2n;)!

d Np
T (%) (Ey(B1)(U)(w, k) (p, n) — Ei(B2)(U)(w, k) (p, 1))
p=0

2d+1(2 + 47r)

_1 _
1 B (WUeDpneB (k) eRM.

Thus, the claim holds true if co > 29+1(2 + 47) /(1 — 2_%). O

In the next lemma we summarize properties of a function of U € D
which resembles the final output of the infrared integration. In the following
C¥(D;C) denotes the set of analytic functions in D.

LEMMA 4.5. Assume that | € {0,—1,--- ,Ng}, G; € K(D,a, M)(1),
Gi1 € K(D,a, M)(1+ 1) ifl < =1, Gj41 = 0 if L = 0. Moreover, assume
that

G1(U)(w,k) — G141 (U)(w, k) = O,
(VU € D, (w, k) € RT with y<;(w, k) = 0).
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Define the function Hy : D — C by

[ p— Z log(det(12d — (iwIQd — 5(1{) - Gl—i—l(U) (w’ k))_l

(Gi(U)(w, k) = G141(U) (w, k)))).

Then, there exist a constant c(d) € Rsq depending only on d and a constant
c(d, M, ey, cy) € Rsg depending only on d, M, ¢, ¢, such that the following
statements hold true if a > ¢(d).

(1)
H, € C(D;C)NC¥(D;C).
(2) )
|H(U)| < e(d, M, ey, cy) f; 2MHD"2 (vU € D).

(3) In addition, assume that (3.3) holds, | € {0,—1,---,Ng},

(Gi(B1),Gi(B2)) € K(D,a,M)(l) and (Giy1(51),Gi1(B2)) €

'~

K(D,a,M)(l+1) if I < —1. Then,

[H1(61)(U) = Hi(52)(U)]
< ¢(d, M, cw,cx)ﬁ;%f;gMdla*Q, (VU € D).

Proor. (1), (2): Take j € {l,l —1,---,Ng}. It follows from Lemma
4.2 and (4.15) that for any (w,k) € R+ satisfying x;(w,k) # 0,

(4.22) (iwlya — E(w,k) = Grea(w. k) lptxos < M7,
(4.23) 1G1(w, k) = Gri1(w, k) [lgax00 < e(d)a™ M,

on the assumption that « is larger than a positive constant depending only
on d. By using the above inequalities and Lemma 4.1 (1),(4),(5) we see that

Ng
1
CENNEAYTES" 2D IND D NRer
(w,K)EMXI(L)* j=l
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Yl det(Tpa — (iwlya — E(K) — Giia(U)(w, k)"
n=1

: (GZ(U)(w k) — G141 (U)(w, k))) —1["

1
SﬁT > lem ¢OZ

K)EMxD(L)*

<ec(d, M)f, 2M<d+1>l “2 (YU eD).

This implies (2). Take j € {l,l —1,---,Ns} and (w,k) € R™! satisfying
X;j(w, k) # 0. Since

(4.25) (z‘wIQd —&(k) — Gy1(U)(w, k)t

—Z (iwlya — E(K)) T G (U)(w, k) (iwlps — E(K)) !

and this series converges uniformly with U,

(iwlh — E(k) = Gra(-)(w, k) (p,n) € C(D;C) N C¥(D;C),
(Vp,m € B).

Thus,

det(Ipa — (iwlya — E(k) = Gra1 () (w, k) " (Gi()(w, k) = Gip1 () (w, k)))
€ C(D;C)NC¥(D;C).

Moreover, an estimation similar to (4.24) implies that the series

>l

n=1

ni

(det(Ipa—(iwlya — E(k) — G111 (U)(w, k)™

(G1(U)(w, k) = G141 (U)(w, k))) = 1)"
converges uniformly with U and thus

log(det(Ipa — (iwlya — E(K) — Gpon () (w, k)™

(G0 (W, k) = Gy () (w; k))))
€ C(D;C)nC¥(D;C).
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Therefore, the claim (1) holds true.
(3): Let us prepare a couple of necessary inequalities. By (4.14),

< C(d7 M, cy, Cx),

2d x 2d

@%)k%@@—am—ammmw%w

0
(420 | CHA )0 = Graa (5) (U)K
< c(d, M, ¢y, cx)of2,
(VU € D, (w, k) € R™ q € {1,2}).
Then, define the functions H;(8,) : D — C (a = 1,2) by

—& wh
1(8.)(U) ::ﬁ 3 (/_ h dw+/L dw)

kel'(L) Ba
log(det(Ips — (iwlya — E(k) — Gre(Ba)(U)(w, k)™
(Gi(Ba)(U)(w, k) = Gi11(Ba) (U) (w, k)))).-
By using Lemma 4.1 (1),(2),(4),(5), (4.22), (4.23), (4.26) and (4.27) we
deduce that

(4.28)  [Hi(Ba)(U) - Hz(ﬁa)(U)\

ZZ

keF L)y m=0

Bl—i-é” (m~+1) w
. dw/ dn
FrkEm s,

Ba

2dx2d

. (% log(det(lya — (inlya — E(k) — Gl+1(/8a)(77,k))_1

(Gi(Ba) (n, k) = Gry1(Ba) (n, k))))‘
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. 9 log(det(Ipa — (iwlya — E(k) — Gri1(Ba)(w, k)™

Ow
(G 1)~ Gra (), k))))'
Ng, ,BL
e ([ [
- c(d)H%((md —£00 — Graa(B)(w. k)~
(Gl ~ Cra(B@ )|,
< 1 Z % /ﬂhdw—i—/_%dw 1
= 3.1d S = o xj (w,k)#0

' <C(d)||(iw12d — E(K) = Gry1(Ba) (@, k)3, 00

. Ha%(iwIQd — g(k) - GH—l(ﬂa)(w’k))

NGi(Ba)(w; k) = Gri1(Ba) (@, K) |20 00
+c(d)]| (iwlpa — E(k) = Gry1(Ba) (@, %)) ™ [laax2a

2d><2d>

2dx2d

(G1(Ba)(w, k) — Gi11(Ba) (w, k))

Jla

Ngq
_d :
< e(d, M, cw, cx) By fy 2™y MY

J=l

_4a
< c(d, M, cw,cx)ﬁl_lft 22 MY,

Take j € {[,l —1,--- ,Ng } and (w,k) € R¥*! with y;(w,k) # 0. Note
that for any a,b € C\R<g with |a —1| <1/2, |b—1]| <1/2, |loga —logb| <
2|a—0b|. Using this inequality, (4.16), (4.22), (4.23) as well as the assumption
a > ¢(d), we can justify the following calculation.

|log(det(Ipa — (iwlya — E(k) — Gi1(B1)(w, k)™
(Gi(B1)(w, k) = Gi41(B1)(w, k))))



102 Yohei KASHIMA

— log(det(Iys — (iwlya — E(K) — Gi1(Bo)(w, k)
(G1(B2)(w, k) — Gi11(B2)(w, k))))|
< 2| det(Iya — (iwlp — E(k) — Grs1 (1) (w, k)~
(Gi(B1)(w, k) — Gi11(B1) (w, k)))
— det(Ipa — (iwlya — E(K) — Giy1(f2)(w, k)™
(G1(B2)(w, k) — Gi41(B2) (w, k)))|
< co(d)||(iwlya — E(K) — Gry1(61) (w, k)"
(Gi(B1)(w, k) — Gr11(51)(w, k)
— (iwlya — E(k) — Gry1(B2) (w, k)~
(Gi(B2)(w, k) — Gr41(B2) (W, k) |24 20
< e(d) || (iwlya — E(k) = Giia(B1)(w, k) lzaypa
N(iwlpa — E() = Gry1(B2)(w, k) lgaxod
(G (B)(w, k) = Gria(B2) (w, k) [|ga 20
[IGi(B1) (W, k) — Gi41(B1)(w, k) [| 2 x 24
+ c(d)|| (iwly — E(k) — Gry1(B2)(w, k) lgaxoa
([1G1(B1)(w, k) — Gi(B2)(w, k) |24 x 24
+ |Gr41(B1) (w, k) — Gry1(B2) (w, k) [| 20 24)

1
<c(dM3, 2a 2
It follows from this inequality, Lemma 4.1 (1),(4),(5), (4.22) and (4.23) that

(4.29)  |Hi(51)(U) — Hi(52)(U))

1 7% Th Nﬁl
< ond 2 / d+ / dw | 3 1y, (wr20
_ o

kel(L)* mh By
- [log(det(lya — (iwlpe — E(k) — Giy1(61)(w, k))
(Gi(Br)(w, k) = Gr11(Br) (w, k))))
— log(det (15 — (iwl — E(k) — Gry1(fa)(w, k)"
(Gi(B2)(w, k) — Gr11(B2) (w. k))))|

-1

_ e Np,
1 Ba 81
+ 27 LA Z </ . dw + /7r dw) Z 1Xj(ka)750
kel'(L)* \" " Br By J=l
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| log(det(Ipa — (iwlpa — E(k) — Griq(F2)(w, k) 7!
(Gi(B2)(w, k) — Giy1(B2)(w, k))))|

S +/”hd
b w w
~ 2wLd . _rh T

kel (L) By
Nﬂl
Z Ly (wk)20c(d) M~ ]51
3=l
1 -7 Al
P (/_ o [ d“’) 2 Dy wigoc(d
kel'(L)* 51

1 d
<e(d, M)B, 2 f; 2a 2 M,
By coupling (4.28) with (4.29) we obtain the claimed inequality. (]

Here we introduce sets of covariances. In the next subsection we will see
that the actual covariances in the infrared integration belong to these sets.
For | € Z<o we define the subset R(D, co, M)(l) of Map(D,Map(1Z,C)) as
follows. C' € Map(D, Map(I2,C)) belongs to R(D, co, M)(1) if and only if
the following statements hold.

(i) C()(X) € C(D;C) N C¥(D;C), (VX € I2).

(i)
(4.30) | det ((Pi; 4;)cn C(U) (X3, V) 1<ijzn| < (coM¥)",
(Vm,n S N7pi7qi S (Cm with HPzH(Cm, HQzHCm S 17
X, Yiely(i=1,2,---,n),U€ D).
(iii)
(4.31) IC(U)[1—14 < coM ™", (Vt € {0,1},U € D),

where C(U) : I2 — C is the anti-symmetric extension of C'(U) defined
as in (3.9).
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C(U)(X) = e@(=XNO(U)(82(X)), (VX € I2,U € D),
foreach S: I — I, Q : I — R defined in (4.3), (4.4), (4.5), (4.6), (4.7).

C(U)(X) = e @ERECU)(5(X)), (vX € %, U € D),
for each S: 1 — I, Q : I — R defined in (4.8), (4.9).

It will be important to measure the difference between the covariances
defined at different temperatures. For this purpose we introduce the
subset R(D, co, M) (1) of R(B1)(D,co, M)(1) x R(B2)(D,co, M)(I) on the
assumption (3.3) as follows. (C(81),C(B2)) € R(B1)(D,co, M)(l) x
R(32)(D, co, M)(1) belongs to R(D,co, M) (1) if and only if the following
statements hold true.

(i)
(4.32) | det((pi> 4j)cn C(61) (U)(Rp, (X4, Y))))1<ij<n
— det((pi, ;) cm C(82) (U) (Rp, (X4, Yj)))1<i j<n|
S ﬁ;%Mfl(conl)n’
(vman € N,quZ’ S Cm Wlth sz”(cma ||%||(Cm S 1,
X, Yiely(i=1,2,---,n),UeD).
(ii)
(4.33) IC(31)(U) = C(B) (U1 < By FeoM 2, (VU € D).

Take any [ € {0,—1,---,Ng} and G; € K(D,a,M)(l). The same

estimation as in Lemma 4.2 ensures that we can define C; € Map(D,
Map(/3,C)) by

607’ i(x— (r—y)w
(4:34)  Ci(U)(pxox,nyry) =575 Yoo etyltilyey (v k)

(w,K)EMXT(L)*
(iwlye — E(k) — Gi(U)(w, k) (p, ).
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In fact Cj is intended to be a generalization of the actual covariance ap-
pearing in the infrared integration process which we perform in the next
subsection. Let us summarize properties of Cfj.

LEMMA 4.6. Assume that
(4.35) M > 8(d+1)*(cy + (1 +V2)*(8c, + 47)).

Then, there exist a constant c(d, M, cy,cy) € Rsg depending only on d,
M, cy, ¢ and a constant c(d) € Rsq depending only on d such that the

_d
following statements hold if co > c(d, M, cy, ¢y ) fy * and o > ¢(d).

(1)
Cy € R(D, co, M)(1).

(2) Assume in addition that (3.3) holds, | € {0,—1,---,Ng} and
(Gi(B1), Gi(B2)) € K(D, o, M)(I). Then,

(Cl(ﬁl)a Cl(/gQ)) € ﬁ(Da €0, M)(l)

REMARK 4.7. To guarantee that Cj, (Cy(81),Ci(0B2)) satisfy (4.31),
(4.33) respectively, we use the condition (4.35). The bound properties
(4.31), (4.33) are crucially important for changing the measurement with
the scale [ to that with the next scale [ — 1 at every step of the infrared in-
tegration. We prefer to make explicit a sufficient condition for M to justify
the crux of our RG regime. Also, recall that the only condition of M apart
from the basic condition M > 2 so far is M > Nz for some generic constant
¢ € Ry¢ in (3.18). The inequality (4.35) is the second nontrivial condition
imposed on M.

The next lemma will be useful in the proof of Lemma 4.6.

LEMMA 4.8. Let A;,B,C € R>¢ (j = 0,1,---,d), D € Ry and as-
sume that A7 B < CD"(n!)?, (Vj € {0,1,--- ,d},n € NU{0}). Then,

d A 1/2
B < ace” "S-l @)
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PrROOF. By assumption,

1 [ A;\2
—(Z) " B
n! <4D)

By summing both sides over n € NU {0} and squaring them we obtain

N|—=
N|—=

<cC (%)n (Vi € {01, ,d}.n € NU{0}).

(4"
e D B <4C, (Vje{0,1,---,d}),
which leads to the result. OJ

PrROOF OF LEMMA 4.6. (1): The expansion of the integrand of Cj as
in (4.25) converges uniformly with respect to U € D. This implies that C;
satisfies the property (i) of R(D,co, M)(I). Let us check that C; satisfies
the invariant properties. The invariance with S : I — I, @ : I — R defined
in (4.3), (4.4), (4.5) is clear. The invariance with S, @ defined in (4.6)
straightforwardly follows from the definitions. We can refer to the proof of
the same invariance in [19, Lemma 7.13 (3)]. For (p,x,0,),(n,y,7,y) € Io,
UeD,

Cl(U)((pri(=x = b(p)), 0, 2), (n,rr(=y — b(n)),7,))
i =x—b(p) ZEEL)+ilb(p), T EL) iy —b(n) EEL)~i(b(n), T EL)

) . . 27 s
_ o1 2 : i(x—y k) +i(z—y)w 1 2t L P
BL (w,k)EMxT(L)* ‘ X <W7 ) L° > Va <L€ ) Ua(k)

, 2 2 -
. <zw[2d - & (—k - %5L> — G1(U) (w, -k — %6L>>

Ua(k)* Uy (%EL)* )
= C(U)((p, x,0,%), (n,y,T,9)),

where we used the facts x;(w,—k — (2r/L)el) = xi(w,k), k) =
E(—€’,—0)(k), Lemma 2.3 (2) and the invariance (v) of (D, a, M)(1).
The above equality implies the invariance with S : I — I, Q : [ — R de-
fined in (4.7). Thus, we have checked that all the invariances in the item
(iv) of R(D, co, M)(l) hold.

An argument based on the invariances £(k) = £(k)*, G;(U)(w, k) =
G1(U)(~w,k)* (YU € D, (w,k) € M x ((2r/L)Z)%), parallel to the proof of
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[19, Lemma 7.13 (4)] shows the invariance

CIU)(X) = e—iQ2(S2(X))W

with S, @) defined in (4.8).
For (p7 X, 0, .Z‘), (7]7 Y, T, Z/) € IO:

e blo).T)+ib().T) 0y (T (pxox, nyTy)

_ 607; Z ei(y—x,k)—&—i(y—x)wxl(w’k)
ﬂL (w,k)EMXT(L)*

- )T T (T4 — E(k) — Gi(T)(w, k)*) " (1, p)
= —C(U)(nyry, pxox),

where we used Lemma 2.3 (1) and the invariance in (iv) of K(D, o, M)(I).
This equality leads to the invariance with S : I — I, @ : I — R de-
fined in (4.9). Thus, C; satisfies the invariances stated in the item (v) of
R(D,co, M)(1).

By combining Lemma 4.1 (4),(5), Lemma 4.2 with the standard appli-
cation of Gram’s inequality we can show that

(4.36) ’det((Pi,%’)(Cmcl(U)(XuYJ))lﬁi,an’ < (e(d, M) f, 2Mdl)
X, Yie€ly(i=1,2,---,n),Uec D).

This means that C; satisfies the determinant bound (4.30) for any ¢y >
_d
C(da M)ft :
It remains to prove (4.31). Take j € {0,1,---,d}. By Lemma 2.3 (4),

(4.14), the facts that ||Al|yay0e < 2¢max, cp|A(p,n)| (VA € Mat(2¢,C)),
(2n)! < 227(nN)? (Vn € N), w(0) < 1 and the condition a? > 2¢ we have

(4.37) H <£>n (whe —E(k) =~ Gilw X))

< 14 2% 2 MY (2¢, + 7)"w(l) 7" (2n)!
< 2M (8¢, + 4m)"w(l) ()%, (Vn € N>1, (w, k) € R,
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and Lemma 4.2

Take any (w,k) € R satisfying x;(w, k) # 0. By )
2M, r = (8cy +

(4
we can apply [19, Lemma C.3 (2)] with s = M~ ¢
4m)w(l)~1, t = 2 to deduce that

37

(4.38) H < ) (iwlya — E(K) — Gy(w, k)t
M~ 21 2Ml
(1 (ML 2Mb)2)2
(Bey + 4m)w(l) (1 + (M- 2M1)2)2) " (n))?
_l((l +V2)%(8¢, + 47T)W(l)_1)n(n!)2, (Vn e NU{0}).

2d x 2d

Moreover, by Lemma 4.1 (3),

(439 H (%) xi(w, k) (iwlp — £(k) — Gilw, k))_l 2d x 9d
< M7 (e + (1 +V2)2(8cy + 4m))w(l) 1) " (nl)?,
(Vn € NU {0}, (w, k) € R¢L),

By using the above inequality and Lemma 4.1 (4),(5) we can estimate as
follows.

(g) (e DT _ 1)y (xow, -yry)
T 2d x 2d
n 21
1 b ’
< 3Ll E : I%SMIRMWrl H (ﬁf dwj)
(w,k)EMXT(L)* = '
5 _
(o) et s = 010 - Gty
» 2dx2d | n
w'=w+> j=1%j

< M~ ((ex + (14 V2)%(8ey + 4m))w(l) ™) " (n!)?
) H %/0 dwj> W Z 11SM1RMN5H Ly (s " k)40

(W) eEMxT(L)*

_d n
< (M, d)fy * M™ ((cy + (1+ V2 (8ey +4m)w(l) )" (n).
By repeating the same procedure as above we have that

|d;(X)"Cu(X)
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< (M, d)f[%Mdl((cx +(1+ V22 (Bey +4m))w(l) )" (n!)?,
(Vj € {0,1,---,d},n € NU{0},X € I?).

Here we can apply Lemma 4.8 to derive that

_vd ( w(l)d; (X) )1/2
(4'40) ‘Cl( )\ < C(M d)f Mdl J=0N (d+1)2Z (cx +(1+V2)2 (8cy +47)) 7

(VX € I?).

Moreover, on the assumption (4.35),

CUX)| < e(M, d) fy 2 MlemV2E oG (yx ¢ 12y,

which implies that

ICH(U)imvs < (M. d,co) f; 2M1, (Ve € {0,1},U € D).
Thus, if ¢ > co(M,d,cy)f,
(4.31).

(2): First note that the assumption [, > 1 implies that 1/5, <
MrM7Nsa?! (q = 1,2) and thus the results of Lemma 4.1 (5) for 81, (2
are available. For [ € {0,—1,--- ,Ng,}, a € {1,2}, define Cpp1(8s) €
Map(D, Map(/3,C)) by

[NJISH

, the covariance C) satisfies the inequality

Cont,1(8a)(U)(pxox, nyTy)

607’
= (— 1)”%( )+ns, y) Z / hdwelx ykotila—y)w “xi(w, k)
keF(L o

- (iwlya — E(k) = Gi(Ba)(U) (w,k)) " (p, )

By taking into account Lemma 4.1 (2) we can justify the following trans-
formation. For any (x,,2), (y,7,y) € T(L) x {1, 1} x [~B1/4, B1/O)n,

Cont1(Ba) (X0@, -yTY) — C1Ba) (X075, (2), yT75,(Y))
—71'}1———&—27r (m+1)

(1)@, @) o Z Cix-y k) Z/ do

s 21
keF mhegetE ™
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: / i -2 (D (1, k) e — EK) — Gr() (1)) L),
—wh— 2 ou
Then, by Lemma 4.1 (5) and (4.39),
(441)  |[Cont1(Ba)(xox, -yTYy) — Ci(Ba) (%073, (), Y778, (4)) |20 20
< cld M, e )07y M — gl + 217,
Calculation parallel to that leading to (4.40) yields that

(4.42) |Cont,i(Ba) (X)]

d s d ( w(l)d;(X) ) 1/2
2 B = 2(c 2(8¢ p
<co(M,d)f, MU 70N GG 0VRIEocm) )

(VX e I?).

By using the inequality d;(Rg, (X)) > (Q/F)Cij (X) (VX € I?) we can derive
from (4.40) that

(4.43) 1Ci(Ba) (R, (X))
4 xe 2w(hd;(X) )1/2

< o(M,d)f, > MUe 770N TERROAERAE o)

(VX € I?).
By putting (4.41), (4.42), (4.43) together,
(4.44) |Cont,1(8a)(X) — Ci(Ba) (R, (X))]

_1 _4d ~
< c(d, M, ey, cx) By 2 fr 2 M (do(X)2 + M~2)

s ( w()d; (X) )1/2
e J=0N 270 (d+1)2 (ex +(1+V2)2 (8cy +4))
_1 _d (d—1)
S C(d7M7cwch)ﬂ1 2ft 2M 2

s ( w()d; (X) )1/2
e J=0N 47 (d+1)2 (ex +(1+V2)2 (8cy +47))

(VX € I%,a € {1,2}).

We need to establish a decay bound on Cypt 1(81) — Cont,i(B2). Remark
that

Cont,l(ﬂl)('xo-xv 'YTy) - Oont,l(/BQ)('Xo-xa 'yTy)
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- (—1)1I<0+1y<0 bo.r Z / dwex—y K tilz—y)w Xi(w, k)

ker(L
(iwly — E(k) — Gi(B1)(w, k) " (Gi(B1)(w, k) — Gi(B2)(w, k))
(iwlya — E(k) — Gi(B2)(w, k)~

Then, by Lemma 4.1 (5), (4.16), (4.38), (4.39) and the fact (n!)? < (2n)! <
227(n!)? we have that for j € {0,1,--- ,d}, X € I2,

dj(X)"|Cont. (B1)(X) —%(ﬁzxxn

< o(M,d)f 2 MEDIgT3 02
. Z ( 7:;1 > ((exy + (1 + V2)2(8c, + 47r))vv(l)_1)m1 (mq!)?

m1=0

P <n;z;n 1 )<<20x+7f2>w<l>1>m2<2m2>!

mo=0
(14 V2)*(8ey + 47r) (l)‘l)"‘ml‘"”((n —my —my)!)?
< o(M,d)f; T MU 02(2n)!
. ((CX (1+ \/_) (SCX +4m))w(l)” Ly (2¢ + 7T2)W(l)_1
+ (1+f)2<8cx+47r> om="
< o(M,d)f, T MU 02 (nt)?
(47 ey + (1 + V2)(8cy + 4m))w(l) )",

which combined with Lemma 4.8 implies that

(4.45) |Cont1 (B1)(X >—6;E<ﬁ2>< X)|
< o(M,d)f 2 M7 02

s ( w(h)d; (X) )1/2
IJ=0N 47 (d+1)2 (ex +(1+V2)2 (8ey +47))

On the assumption (4.35), the inequalities (4.44), (4.45) yield that

(4.46)  |Ci(B)(U)(R5, (X)) = Ci(B2)(U) (R, (X))
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1/2

< o(d, M, oy e) 2 £ 2 MVl VIE fo (31 (X))
(VX € I, U € D),

)

and thus,

el 1

C(B)(U) = CulB2)(U) i1 < e(d, M, ewe) fy 20y *M ™, (VU € D).

[Nl

Therefore, the inequality (4.33) holds for ¢ > c(d, M, cy,cy)f; 2. By us-
ing (4.36), (4.46) and applying the Cauchy-Binet formula as in the proof of
d

Lemma 3.1 (4) we can prove that (4.32) holds for c¢g > c(d, M, ¢y, cy) f; 2. 0

We conclude this subsection by describing the recursive structure of the
infrared integration in terms of the scale-dependent sets of Grassmann poly-
nomials and covariances introduced so far. The proof of the following lemma
is essentially based on the general results [19, Lemma 3.9, Proposition 5.6,
Proposition 5.9]. See [19, Subsection 2.2] for the meaning of uniform con-
vergence of a sequence of Grassmann polynomials.

LEMMA 4.9. There exists a constant ¢ € Rsq independent of any pa-
rameter such that if

3
2

(4.47) M2 >¢ a> chJr%,

the following statements hold true.
(1) Ifl € Z<07
T e (D, co, o MY(I+1),  Ciyr € R(D,co, M)(1+1),

then,

[e.°]

> ()

n=0

N 1+1
g < / oSN IO gy, (U)(w1)>

uniformly converges with U € D. Let J' denote it. Then,

J' e S(D, co, a, M)(1).
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(2) In addition, assume that (3.3) holds and

(JHYBY), JHH(B2)) € S(D, co, o, M)(1 4 1),

(Ci41(B1), Ciy1(B2)) € R(D, co, M)(1 +1).

Then, R
(Jl(ﬁl)v JZ(IBQ)) € S(Dv €o, &, M)(l)

PrROOF. (1): Let us define F!, Th(") € Map(D, A V) (n € N>3) by

d Ly N gl 1
0 log (/ > m=4 Im (U)(¢+¢ )d/"‘CH_l(U) (wl)) ,

FUU) () = o

T (U) ()
1 d " 2 N 1+1 1
= ﬁ <%) o ].Og </e Zm:4 Jm (U)("/H"‘/’ )d/j’cl+1(U)(1/}1)> '

It is implied by [19, Proposition 5.6] with a1 =d, as =1, a3 =1, ay = 1/2
that on the assumption (4.47)

h o il (n 3
N(!Fé(U)\ + 311" )<U>r) < Ml
n=2
3 N m dp
TN g am M (IIF HerIITl ||u) <1,
m=2

(YU € D, t €{0,1}).

Moreover, it is clear from the derivation of the inequalities “(5.63)”, “(5.66)”
in the proof of [19, Proposition 5.6] that

o0
ZSHB(ITé r+Z||T”“> m)

n=2 UebD

Thus, F!' + 3%, T4 uniformly converges with respect to U € D. By
the definition of the free integration and the tree formula (see, e.g. [27,
Theorem 3]), F!, T4 (n € Nsjy) consist of finite sums and products of
JH Cpyq. Thus, FL TR € C(D; AV) N C¥(D; A V) (Vn € Nsg). There-
fore, the uniform convergent property ensures that J! € C(D;A\V) N
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C¥(D; A\'V). The above inequalities imply the bound properties (4.1), (4.2).
We can apply [19, Lemma 3.9] to prove that J ! inherits the invariant prop-
erties claimed in the items (ii), (iii) of S(D, cg, &, M)(I) from J** and Cy 1.
Therefore, J! € S(D, co, o, M)(1).

(2): On the assumption (4.47) the claim follows from [19, Proposition
59] with al = d, ag = 1, a3z = 1, aq = 1/2. O

4.2. Completion of the infrared integration

Here we implement the infrared integration scheme to prove Theorem
1.6. Most of the necessary tools for justifying the multi-scale integration
have already been prepared in the preceding sections. By putting together
these lemmas and a lemma separately made in Appendix C we will reach the
proof of Theorem 1.6. First of all let us describe properties of the output
of the Matsubara UV integration in terms of the sets S(D,co,a, M)(0),
S(D, o, a, M)(0). In the following C¢, : I? — C (§ = +,—) are the
covariances defined in (2.8), (2.9) with the cut-off function ¢(Mgh%[1 —
e/"2) in place of x(h|1 — e™/"|).

LEMMA 4.10. There exist a constant ¢ € Rsq independent of any pa-
rameter and a constant ¢(M,d) € R>1 depending only on M, d such that if
(3.18) holds with c, the following statements hold for any cy > ¢(M,d) and
r € Rsg satisfying

(448) dW(O 1/2 Z Cm 2m )) S

N~

(1) There exist r(3,L) € Rso dependent on [, L, independent of h and
J% € S(D(r)™, co,, M)(0) such that

(4.49) JO(U) () = % Z log </ e—V5(U)(¢+w1)ducio(¢1)>

se{+,—}
+ BV (U),
(YU € D(r(8,L))"").

(2) On the assumption (3.3),

(J2(B1), J°(B2)) € S(D(r)"™, co, , M)(0).
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PROOF. There exists a constant ¢(M,d) € R>; depending only on
M, d such that the conclusions of Lemma 3.1 hold for any ¢y > ¢(M,d).
Fix such ¢p. Let FNh’6(¢)7 TNM(S(Q/})’ JNh’é(w)a Flﬁ("ﬁ)a Th5(m) (¥), Jlﬁ(w) (€
AV) (6 € {+,—-},1 € {0,1,--- | N, — 1},n € N>3) be defined as in the
beginning of Subsection 3.2. Here we explicitly show the dependency on
the parameter 6, while we concealed it in Subsection 3.2 and Subsection
3.3. Then, set JO(v) := (JOF () + J%~(1))/2. By Lemma 3.4 and Lemma
3.7 there exists a constant ¢ € Ry independent of any parameter such that
if (3.18) holds with ¢, the following bounds hold with any r € R+ satisfying
(4.48).

h _
SR <a,

7 v

N
Y g @™ I (U)os <1, (vEe{0,1},Ue D(r)™).

On the assumption (3.3),

_h __h
'N(ﬂl)‘]“(ﬁ V)~ 55
N(f2)

S ed a8 (B)(U) — J0(B)(U)o < B2, (VU e D)™).
m=2

Jg(ﬁz)(U)‘ < B %,

Moreover, by Lemma 3.4

[e.e]

(4.50) Z sup Z (Té’é’(n )|+ Z HTl‘5 U)o, 0> < 00,

n=2UeD(")" se(+ -}
(VI € {0,1,-- , N, — 1}).

Let us prove that

(51) S ec (DO AV)ne (D) \V) (6 e {+,-))

forany ! € {0,1,---, Np}. It is clear from the definition that (4.51) holds for
| = Nj,. Assume that (4.51) holds for I+1. Then, by definition F0, Th%(") ¢
C(DE) " \V) N C¥(D(r)™; AV) (V6 € {+,—},n € Ns3). The bound
property (4.50) implies that Y7, T' L8:() yniformly converges. Thus (4.51)
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holds for . By induction, (4.51) holds for any ! € {0,1,---,N,}. We
especially have that JO € C(D(r)""; A V) N C¥(D(r)™; A V).

By the same argument as in the proof of [19, Proposition 6.4 (3)] we can
conclude that there exists 7(3, L) € R~ depending on /3, L and independent
of h such that

oe{+,—}
(VU € D(r(3,L))"").

We can see from the properties of V?(U)(v)), ViF(U) and the definition of
logarithm of Grassmann polynomial (see, e.g. [19, Subsection 2.2]) that the
right-hand side of (4.52) is equal to that of (4.49) if max;cgi 9. n,y |Uj] is
sufficiently small. The inequality (2.15) implies that there exists (3, L) €
R<o dependent on 3, L, independent of h such that the right-hand side
of (4.49) is analytic with U in D(r(8,L)")"™. Thus, by using the identity
theorem and continuity and taking r(/3, L) smaller 1ndependently of h if
necessary we obtain the equality (4.49) for U € D(r(3,L)) "

It remains to check that JO satisfies the invariant properties. Recall the
definitions (2.5), (2.11). The invariance

(4.53) = VA(U)(RY) + BV5(U) = =V (U)(¥) + BV (U),

(YU € D(r)™",6 € {+,-})
for S : I — I, Q : I — R defined in (4.3), (4.4), (4.5), (4.6) follows
from the definition of V%, (1.6), (1.7), (1.8) and (1.9) respectively. The

properties (1.8), (1.10) and (1.11) imply (4.53) for S, @ defined in (4.7) as
well. Moreover, the property (1.12) ensures that

(4.54) ~ VO(U)(RY) + BVE(U) = —VE(U)(v) + BV (U),
(VU € D(r) oe{+,—})

for S: 1 —1,Q:I— R defined in (4.8). It also follows from the definition
of V9(¢), (1.11) and (1.12) that

(4.55) — VO(U)(Ry) + BVE(U) = —V 2 (U)(y) + BV (U),
(VU e D(r)",§ e {+, -}
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for S: 1 —1,Q:I— R defined in (4.9).

Next let us confirm some invariances involving the covariances Cio, Co-

Let S: I —I,Q:I— R be one of those defined in (4.3), (4.4), (4.5), (4.6),
(4.7). It is the same procedure as in the proof of Lemma 4.6 (1) to prove
that

Q5308 ()(X)) = 02 (X), (VX €126 € {+ -}

Moreover, we can see that for any X € I, § € {+,—},

_ o Cver C(Mnly
@56) [ usducs (6 = e T oMy

_y e—iQa(S2(Y)EE (y)—_ 0
—e YU >0 a5,

i mSTVLX
. iQm(Sm ))¢Sm<x>‘¢zo

_ _ZYeﬂéiO(Y)% R ‘
e Y (Ry)x 40

= [Ruixdics (0).

Let S: 1 —I,Q: 1 — R be defined in (4.8). By repeating the argument
parallel to the proof of [19, Lemma 7.13 (4)] we obtain that

e~ i@(2X) 00 (Sy(X)) = €2, (X), (VX €I%6€ {+.—}).
Moreover, for any X € I, § € {+, -},

X yer2 eiQQ(SQ(Y))Ozo(Y) awsa —1
_ ) o~ iQm (Sm (X)) ‘
/ xdpcs (Y) = e 2Me Vs, (X) o

—e Eyerz CEO(Y)%e_iQm(Sm(X))wS (X) ‘
m w:(]

_ /6iQm(sMX))wSm(X)duC—io(w}’

or

(1.57) [ xdugev) = [ (Ru)xducs (0.
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For S, @ defined in (4.9) and (p,x,0,z,0), (n,y,7,y,§) € 1,

(458) e—iQ2(S2(PXUx9ﬂ7yTy€))CQO(SQ (pxo’me, ’)”y’]’yf))

L ito(p),m0)+i(b(n), )

prmnd ——ei

2
(L.6)=(1,-1)CLo(nyTy, pxox) — L e)=(—1,1)Co(pxoz, nyTY)).

Moreover, by Lemma 2.3 (1),

eI T+ TV T o, nyTy)
Sor Z Iy =Xk Hily—a)o (] Xho(w))

(w,k)EMhXF(L)*
- 0N i) T) =1 ([ ) — P Lt €M =1, )
60:7' iW(y—x i(y—x)w —
~ BL Yo ST g o)k
(w,k)EM), xI(L)*
Ug(m) (Ia — € 5P RN T, ()% (1, p)

=—Cy(nyTy, pxoz).

This implies that for 6 € {+, -1},

6i<b(p)’7r>+i<b(")’7r>(7i0 (pxox,nyTYy) = —C;g(nyTy, pXoT).

By substituting this equality into (4.58) we obtain

e~ QXN d (6)(X)) = CE(X), (VX el’be{+ -}

Furthermore, based on this equality, transformations parallel to the deriva-
tion of (4.57) yield

@59 [ vxdige () = [(ROxducs(0). (K™ ae (+.-))

Fix U € D(r(3,L))"". Let S, Q be one of those defined in (4.3), (4.4),
(4.5), (4.6), (4.7). By (4.52), (4.53) and (4.56),

1 _
JO(U)(Rw) — 5 Z IOg </€ V6(U)(R’IZ}'FRT/Jl)"‘ﬁVOL(U)dMCgO (wl))
se{+,—}
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= J(U)(&).
Let S, @ be defined by (4.8). By (4.52), (4.54) and (4.57),

TR =5 3 tog ([ O IG p (01)

be{+,—}

= J2(U)(¥).
Finally, let S, @ be defined by (4.9). By (4.52), (4.55) and (4.59),

PORY) =5 S log (/ VAORGERG O gy, <w1>>

se{+,—}

= J(U)(v).

Since U +— JO(U)(v), U — JO(U)(Ry), U JO( )(R4)) are continuous
in D(r)"" and analytic in D(r)™, the identity theorem and the continuity
ensure the claimed invariances for any U & D(r)n”. O

Note that we can choose a constant ¢(d) € R~ depending only on d, a
constant c(d, ¢y, Ny) € Rsg depending only on d, ¢,, N, so that if

h>e', L>8 M>c(dcy,Ny), a>c(dMits,

all the assumptions imposed on h, L, 3, a, M in Lemma 4.4, Lemma 4.5,
Lemma 4.6, Lemma 4.9, Lemma 4.10 are satisfied. Then, there exists a
constant ¢(d, M, ¢y, cy) € R depending only on d, M, ¢, ¢, such that
the conclusions of Lemma 4.4, Lemma 4.6, Lemma 4.10 hold for ¢y :=

_d
c(d, M, cy, cy) fy . With this cp, set

T'mazx ‘= ( 0)1/2 Z Cm 2y ))) :

To make clear, let us sum up these assumptions. From now we assume that

(4.60) h>e' L>8, M>c(dey,N,), o>c(dMits,
d

Co = C(dv Ma Cw, CX)ftiia
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N, —1
1 w(0)1/2 - m _2m
T"max = 5 (ed © Z Co a2 Um(W(O))> :

Recall that in Lemma 2.12 we derived the Grassmann integral formula-

tion
log </e%(R+(w)+R(¢))dﬂczoo(¢)>

assuming that the coupling constants are sufficiently small, where
_yvé 1
RY(y) = log ( / eV )ducgo(@bl)) (6=+-).

Here we consider the cut-off functions y(h|1—e™/"|), x(|w]) inside C¢, C
as ¢(M5‘2/h2|1 — ew/h|2), gb(M(j‘Q/wQ) respectively. The next lemma shows
how we can analytically continue this Grassmann integral formulation by
means of the iterative infrared multi-scale integration or the renormalization

group method.

LEMMA 4.11.  The following statements hold true.

(1) There exist

Mo

Jb € S(D(rmaz)™, co, a, M) (1) N C(D(Fmaz)
(ZZO,—]_, 7Nﬁ_1)7
El EK(D(rmaI)nvvavM)(l) (l:O>_1)"' 7N5)

;C)

and r(B, L) € Ry depending on 3, L, independent of h such that

(4.61) Ej(U)(w, k) — Er41(U)(w, k) = O,

-, n

(V€ {0,~1,--- N3}, U € D(rsnaz)
(w, k) € R with g<i(w, k) = 0),
1

1 _
(4.62) - alos ( / AR OO O gy (¢)>

Nz—1

1
= 5L > J(U)
1=0
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Ng 9
DS
1=0 (w,k)EMXT(L)*
log(det(Iya — (iwlya — E(k) — Epy1(U)(w, k)™
(E(U)(w, k) = Ei31(U)(w, k))))

+VHU), (VU € DB D)),

where we set B := 0.

(2) In addition, assume (3.3). Then, J}(Ba), Ei(Ba) introduced in (1) for
a = 1,2 satisfy that

(J5(Br), J5(B2))

€ S(D(rmaz)™, co, o, M)(1) N (C(D(Fmaz)
(Vl € {0,—1,--- ,Ng, — 1}),

(Ei(B1), Ei(B2)) € K(D(rmaz)™, 0, M)(I), (V1€ {0,—1,--, Ng,}).

Ny Ny

;C) x C(D(rmaz) 5C)),

PROOF. (1): By Lemma 4.10 (1) there exist J° € S(D(rpmaz)™,
co, 0, M)(0) and r(3,L) € R~ depending on (3, L, independent of h such
that (4.49) holds. Let I € {0,—1,---,Ng} and assume that we have
(JO, 71 T € TT—gS(D(rmaz)™, co, o, M)(j). Define Wi, E; €
Map(D(Fmaz) » Map(R! Mat(24,C))) (j = 0,—1,--- ,1) by (4.17), (4.18)
respectively. By Lemma 4.4 (1), E; € K(D(rmaz)™,a, M)(l). Define
C) € Map(D(rmM)nU,Map(Ig,C)) by (4.34) with E; in place of G;. We
can apply Lemma 4.6 (1) to conclude that C; € R(D(rmaz)™, co, M)(1).
Define J!=! € Map(D(rmm)nv,/\V) by

J7HU) ()
S ) (o).

By Lemma 4.9 (1), J'=! € S(D(rmaz)™, co,, M)(I — 1). Thus, we have
inductively created J! € 8( (Pmaz)™ co,a M)(l) (l=0-1,---,Ng —
1), E; € K(D(rmaz)™, o, M)(1) (I = 0,—1,---,Ng). It is clear from the
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definition (4.18) that Ej satisfies (4.61). Note that by (4.49) and taking
r(B, L) smaller independently of h if necessary the left-hand side of (4.62)
is equal to

1 0 1
_Wlog </ e’ (U>(¢)dm%(¢)> + EVOL(U)

for any U € D(r(3,L))"". Then, we can expand the first term in the same
way as in the proof of [19, Lemma 7.18 (3)] by taking r(53, L) smaller if
necessary again and obtain the equality (4.62).

(2): By Lemma 4.10 (2), (JO(B1), J2(B2)) € S(D(rmaz)™ , co, a, M)(0).

Assume that [ € {0,— Ngl} and (J9(B1), J7(B2)) € S(D(rmas)™,
co, r, M)(j) for all j € {0 -,1}. By Lemma 4.4 (2), (E;(p1), E1(32)) €
IC(D(rmax)”” a, M) (1). Then, by Lemma 4.6 (2), (C;(p1),Ci(B2)) €

R(D(rmaz)™,co, M)(1). Then, by Lemma 4.9 (2) (Jl 1(ﬁ1),Jl 1(ﬁ2))
S(D(Fmaz)™, co, o, M)(I — 1). The induction with I ensures that the result
holds true. OJ

REMARK 4.12. In fact the derivation of (4.62) well describes how to
update the covariance and integrate the Grassmann polynomial by using
the updated covariance at every step of the IR integration. Despite its
conceptional importance, here we only refer to the corresponding part of
[19, Lemma 7.18 (3)] without reproducing it, since this paper is intended to
be a continuation of [19]. However, we should remark that we need to use
the relation

1 60,7‘ i(k,x— tw(r—
HCIOEI=IEDY 7PN

(p7x70-7w)7(777y77—7y)610 (ka)th XF(L)*
’ Wl(U) (wv k) (pv n)wpxascwnyryy
(U € D(rmaz) ")

to update the covariance by substituting W'. To derive this equality, we use
the invariance J4(U)(v) = JL(U)(Rep) with S : I — I, Q : I — R defined
n (4.3), (4.4), (4.5), (4.6), embodied in S(D(rmaz)™, co, ¢, M)(1). See [19,
Lemma 7.6 (1)] for the derivation of the same relation.

Define Jeng € Map(D(rmaz) ,C) by the right-hand side of (4.62). An-
alyticity and convergent properties of the free energy density follow from
the properties of J,,4. Let us summarize them in the next two lemmas.
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LEMMA 4.13.  There exists a constant ¢/ (d, M, ¢y, ¢y) € Rso depending
only on d, M, c,, ¢, such that the following statements hold true.

(1)
Jend € C(D(rmaz) 3 C) N CY(D(rmae)™; C).

(2)

-, N

a !+ vormaz, (VYU € D(rmaz) )-

d
2

|‘]€7ld(U)| S cl(d7 M7 Cw, CX)f;
(3) In addition, assume (3.3). Then,

Tena(81) (U) = Jena(B2)(U)| < €(d, M, e, )y 2 f 2o,

e

(VYU € D(rmaz) )-

REMARK 4.14. Since we have fixed the (d, M, ¢y, ¢y )-dependent con-
stant ¢(d, M, ¢y, ¢y) in (4.60), we use the different notation ¢'(d, M, ¢y, ¢y)
to express a positive constant depending only on d, M, ¢y, c.

PrROOF OF LEMMA 4.13. Since (4.61) holds, Lemma 4.5 (1) implies
the claim (1). Moreover, by (4.1) and Lemma 4.5 (2),

| Jena(U)]
Nz—1 Ny
< ¢(d) Z M@+Dln-1 + d(d, M, cy, cy) Z f,:i]\/.l'(‘f”l)lof2 + Vo max

=0 1=0
-, N

_d .
<d(d, M, Cws Cx) [ 207 + 00T maz, (VU € D(rmaz) )-

Thus, the claim (2) is true.
To prove the claim (3), assume (3.3). By (4.1), (4.10) and Lemma 4.5

(2),(3),

| Jend(B1)(U) = Jena(B2)(U)]
Ng, —1 Ng, —1

1 1
<\ ; B(BU) - 57 ; J6(52)(0)
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Ng,
1

+ﬂLd Z | J5(62)(U)]
25 =Ny, 2

Ng,
_1 _d
+ d(d, M, e,y )Py 2 fy 2 z:M”lloz_2
=0

N,
_d
+ d(d, M, ey, cy) fy 2 Z M@HDI =2
I=Ng, —1
1 d

— = —_n

<d(d, M, cy,cy) B th_ioz_l, (VU € D(rmaz) ). O

LEMMA 4.15. Let K be a non-empty compact set of C™ satisfying K C
D(7maz)™ . Then, the following statements hold.

(1) For any 8 € Rsg, L € Nwith L > 3, Jena(0, L, h) converges in C(K;C)
as h — oo(h € (2/B)N).

(2) Set J(B,L) := limy_o0 ne(2/8)N Jena(B; L, h). Then, for any B € R,
J(B,L) converges in C(K;C) as L — oo(L € N).

(3) Set J(B) :=limy oo, eNJ (B, L). Then, J(B) converges in C(K;C) as
B — oo(f €N).

PrROOF. Though the proof is parallel to the proof of [19, Lemma 7.20],
we present it for completeness. Take 9 € (0, 7q,) and € € (0,7¢). Since
Jend € C¥(D(Tmaz)™;C) by Lemma 4.13 (1), we have that for any U €
D(To — €)nv,

2=0

(4.63) Jena(8, L, )(U) = > % (%)n Jena(B, L, 1) (2U)

n=0

By Lemma 4.13 (2),

(4.64) swp | L <§> Jond (5, L )(2U)

UED(T‘()—S)

n!

Ny

z=0’
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= sup
UeD(ro—e) "’

1 % dZJend(ﬂ7L7h)(ZU)
|z|=r0/(r0—¢)

2mi zntl

_d
2

n
g — € _
< < 07“0 > (¢ (d, M, CusCx) [y 1 + V0T maz)s

(Vn e NU{0}).

By Lemma 2.12 (1) and Lemma 4.11 (1) there exist h-independent con-
stants hg, ¢ € Ry such that for any h € (2/8)N with h > hy and
UeDrg—e) ",

(4.65) ! <3> ' Jend(B; L, h)(2U)

n!

0z z=0
1 1
= — Z—
; 1
271 |z|=c1 Zn+

1 5 z (2
. <_ g (/e;w( U)@)+R( U)(w))ducgoow))
1 —Vi(z
+ Wk’g (/6 4 U)(w)duc(?ﬁ)))
1 a\" .
" BLAn (a‘) o (/ ‘ V(U)(w)d“("(w))

Here we used that V(U)(%)) is linear with U. By Lemma 2.12 (2) the first
term of the right-hand side of (4.65) uniformly converges to 0 with respect
to U € D(rg — 6)% as h — o0o. By Lemma C.3 proved in Appendix C
the second term of the right-hand side of (4.65) uniformly converges with
U e D(rg—¢) " as we send h — oo and then send L — co. Therefore,

2=0

. 1 /90\"

hh—>nolo E <£> Jend(ﬁw[/ah)(z) z:O’
he(2/8)N
im tm = (L) g, L) (=)
D e nl \ 9z ) end\ I EY]

L—oo
LeN he(2/8)N

Ny

converge in C(D(rg—e) ;C). Since the right-hand side of (4.64) is
summable over n € NU{0}, we can apply the dominated convergence theo-
rem in [*(NU{0}; C(D(ro — ) *;C)) to the expansion (4.63) and conclude
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that
lim  Jepa(B,L,h), lim  lim  Jenq(B, L, h)
h—o00 L—oo h—oo
he(2/8)N LeN he(2/B)N

Ny

converge in C(D(rg—e) ;C). Set

J(B):= lim lm Jepa(B, L, h).

L—oo h—oo

LeN he(2/B)N
By taking the limits in the inequality obtained in Lemma 4.13 (3) we see
that (J(8))gen is a Cauchy sequence in C(D(rg— £)":C).  Thus,
limg_,0 geN J () converges in this Banach space. For any compact set K of
C™ satisfying K C D(Tmaz)™ we can choose 1o € (0, 7mqz) and € € (0,79)
so that K C D(rg — ) . Thus, the claimed convergence results in C(K; C)
follow from the above arguments. [

Before proceeding to the proof of Theorem 1.6 we state a couple of neces-
sary lemmas, which are close to [19, Lemma E.2, Lemma E.3]. In the proofs
of these lemmas || - ||(r,) denotes the operator norm for linear operators

on Fp(L*(Bx (L) x {1, 1})).

LEMMA 4.16. For any 3 € R>q,
1 Tre PH 1 Tre~AIH
log - log
IBLd Tr e*,BHO LﬁJ Ld Tr e‘LﬁJ Hy
</B i 1 1 Tre H
= Sy 2L P8\ Tr e

Ny
d
4—<v%€“@axU}KM-F2+1§:UAO) max  |U

s 4yttt T ]:1 l€{1729'"anv

+ﬂ”mwm&@mmwwkg§@)
keRe Lﬂj

PROOF.  Since [ s, = I[xllogry) = L (VX € Bx T(L) x {1, 1}),

Ny

Vv < L% ma Uy| +20t1pd v;(0 ma U;l.
1V, < ole{m}m}l 1] > s )16{1,2,.3(,%}' 1l

Jj=1
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By using this inequality in place of the inequality “(E.3)” and straightfor-
wardly following the proof of [19, Lemma E.2], we can derive the claimed
inequality. [J

We may consider U inside the operator H as complex variables.

LEMMA 4.17. For any r € Ry there exists a domain O of C such that
(—r,7) C O and log(Tre A1) is analytic with respect to U in O™ .

PROOF. Take any r € Ryg, a € [-1,1]™, U € [—r,7]™ and 6 € [0, 1].
Note that

| Tr e~ B(Ho+V(U+ita)) _ . 6*5(H0+V(U))|
5
< / e di Ty o—B(Ho+V (U)+icV (a))
0

£
d d H, V(U %
S 6ﬁ22 +1r HV(a)H%(Ff)eﬁ(” 0||SB(F‘f)+|| ( )HEB(FJ:)""” (a)HSB(Ff))’

where we used the linearity of V' with respect to the coupling constants.
Thus,

Re Tr ¢~ B(Ho+V (U+isa))

> Ty e PH+V(U))

2d+1rd

— 562 P UHoll 5y IV (D)l i) +IV (@)l wry))

> efﬁLdrvo

IV (@) lls(ry)

H V(z V(b
LSBT qup (V)| N HV Dl IV )y

z€[—r,r]™
be[—1,1]™

>0, (VUEe€/[-rr]", ac|[-1,1]™),

if ¢ is sufficiently small. Therefore, there exists 6 € Rsg such that
log(Tre=#H) is analytic with respect to U in the domain {z + iy | =z €
(_T7T)7y € (_67 6)}7%‘ D

Here we can give the proof of Theorem 1.6.

PROOF OF THEOREM 1.6. Assume that the condition (4.60) holds. By
Lemma 4.15 there exist

J(B,L).7(9). ] € C(D(rmaz/2)"'sC) N C*(D(rmas/2)"™: C)
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such that

(4.66)  m  Jena(8,L,h) = J(3,L), (V8 € Rsg,L € N with L > ),
he@/BN

(4.67) Llim J(B,L)=J(B), (VB€Rs),
7eN

(4.68) lim J(8) =J

p—o0

BeN

in C(D(rmaz/2)";C). By Lemma 2.7 (2), Lemma 2.12 (2), Lemma 4.11
(1) and (4.66) there exists a constant ¢; € Rs( independent of h such that
for any U € D(c1) * NR™,

(4.69) J(B,L)(U)

. 1 1 :
~  lim <_ Sralos < / AR U)W)+R wxw))duogg(@)

h—o00
+ ﬁ log < / e—”UW)duc(w)) )

he(2/B)N
: 1 V(U
—  lim Wlog (/e ( )W)ducﬁﬂ))

h—o00

he(2/8)N
= _L log <—Tr e " >
3L Tre—AHo |~
By Lemma 4.17 there exists a domain O C C™ such that D(rma./ 2)nv N
R™ C O and the right-hand side of (4.69) is analytic with U in O. Thus,
by the identity theorem and continuity the equality (4.69) holds for any

U € D(rmaz/2) “NR™, B € Ryg, L € N with L > 8. Then, by Lemma 2.3
(3), Lemma 4.13 (2) and Lemma 4.16,

(4.70) 11 Tre BH 1 " Tre B1H
1 BLd 8\ Tre ) T [B]Ld % \ Tre-181Ho
o

B 1 d
S / d’)/_ <cl(d7 M7 Cwacx)ft Qa_l + _Tmaw>
B 2

Ny
+ %O'r’mag; + 24 Z 05 (0)rmaz + 24+3 log (%)
=1
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d No
< (d M Cw, Cx)f + VO maz 1 2 Z Uj Tmaa: + 2d+3d

j=1
m(@)

for any U € D(rmae/2)  NR™, 3 € R>1, L € N with L > 8.
Let aﬁ(k) (p € B) denote the eigen values of E(e”,0)(k) for k ¢
['(L)*. Then, by [19, Lemma E.1],

5L dz Z log(1+e™ ﬁa())

pEBKED(L)*

log(Tr e PHo) =

1
~ B(2L)

2 L
=— log det(Ipa + e PEE K],
a 2, logdet(l;
A2L) kel(L)*

We can deduce from the definition that lim,_.. ren E(€”, 0)(k)(p,n) con-
verges for any k € R% p,n € B and if we set E(0)(k) := limy_ oo eN
E(ef,0)(k), E(0)(k)* = E(0)(k) (Vk € R?). Let a,(k) (p € B) be the
eigen values of E(0)(k) for k € RY. Then, by Lemma 2.3 (3), |a,(k)| < 2d
(Vp € B,k € R?%). By considering these facts we can apply the dominated
convergence theorem to prove that

1

(4.71) lim (—

Lep\ AeLY

= —L/ dk log det (I 4 e PEOIK)
[0,27]4

7 log(Tre BHO))

B(4m)?
2
= dk > " log(1 + e Pk
B(4m)d /[0,27r]d Z og(l+e )

pEB

li li !
1m 11m —
B—o0 LH&O ,8(2[/)

BERso L

2
= Ty /[O - dk > " 1a,00<00p(K).

pEB

_log(Tre™ ﬁHO))

Let us define F(3,L), F(3), F € C(D(rmaz/2) " ; C)NC® (D (Fmaz/2)™
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C) (B € Rso, L € Nwith L > 3) b

F(B,L):=2"%J(8,L) — _log(Tre 10),

F(B) = lim F(B, L),

LeN
= lim F(f).
B—o00
BeN

1
2Ly

By (4.67), (4.68), (4.70) and the fact that (4.69) holds for any U €
D(rmax/Q)nU NR™, 3 € R>1, L € Nwith L > 3 we see that

[F(5)(U) - F(U)|
< 27J(B)(U) - J(1B))(U)] + 27 J(18])(U) - J(U)|

1 1
BHo\ BHy
* 1520 B(2L)4 zlog(Tre ™) — Jim - im =g B(2L) 7 log(Tre™)
BeRso LEN
Ny

_d
< C/(M, d, cy, CX>2_dft a7t + 2_d'UO7ﬂmaw + Z Uy (O)Tmar + 2%d

B
'm<w>
+274.7(18))(U) — J(O)

1 1
li log(Tre PHoy — lim i log(Tr ¢~ PHo
+ L BRLY! og(Tre ™) — Jlim - lim 27 log(Tre )|,
BeRsq LeN

(\V/U S D(’I“mam/2) HR”“,B € Rzl).

Then, (4.68) and (4.71) imply that limg .. gerR., F(8) = F in
C(D(rmaz/ 2)"" N R™;C). By the same basic argument as the final part
of [19, Proof of Theorem 1.1, Section 7] we can deduce from the above con-
vergence property that limg_.o ger., F(f) = F in C(D(rmaz/2)""; C).

To conclude the proof of the theorem under the assumption (3.1), we
may conceal the dependency on the artificial parameters a, M, ¢y, ¢, in
(4.60). Then, we can read from the conditions (4.60) and 4 f; < 1 that there
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exists a constant ¢(d, N,) € R~ depending only on d, N, such that

N, -1
(XF@MWmmmmﬁ (1) < =5

m=1
The left-hand side of the above inequality is equal to R set in Theorem 1.6
if (3.1) holds. By recalling Lemma 2.5 we see that the above arguments
have proved the theorem under the assumption (3.1).

Let us show that the theorem in the general case follows from the the-
orem proved under (3.1). Let us temporarily write Ry in place of R. Set
tmaz = MaXjc(12... g} tj. By the theorem for the Hamiltonian ﬁHQ +V,
there exist F'(8,L), F(B), F € C<D(Rt/tma—z)nv;(C) N C¥(D(Ryyy,,.)™;C)
such that

1 1
F(8,L)(U) = ————— log(Tr e *limaz 1o tV)
(8.L)(U) = = 5 low(Tre )
(YU € D(Ryp,,,,)" " NR™,B € Rog, L € N with L > ),

Jim F(5,L) = F(8) in C(D(Reyt,,,.,) 3C);
LeN
Jim F(8) = F in C(D(Repi,,) " C).
BER0
Then, by the linearity of V.2 (U)(-) with U,
1 1
F(tmaxﬂ, L) <tmaaz U) B _tmamﬁ@l’)d
(VU € (tmaeD(Resr,,.))  NR™, 3 € Rug, L € N with L > trnasf3).

Since tmaz D(Ryst,,,,) = D(Rt),

log(Tre=#1),

tmaxF(tmaaxﬂa L) ( > S C(D(Rt)nv§ C) N CW(D<Rt)nv; (C)

max

and

lim tmaxF(tmaxﬁa L) ( L > = tmaxF(tma:cﬁ> < ! > )

LLZI%IO tmaa: tmax

, 1 (R N —

lim tmaxF(tmaxﬁ) o) = tma c]m C(D<Rt) ,(C)
B—00 tmaz tmax
BER>o

Thus, the theorem has been proved. [
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Appendix A. Reordering in a Non-Commutative C-Algebra

Here we prove a lemma which is used in the proof of Lemma 1.1.
Though the actual problem involves the Fermionic creation/annihilation
operators, we set up the problem in a non-commutative C-algebra for sim-
plicity. Let n € N. Let A be a C-algebra spanned by products of the
elements aj,az, - ,ap, aj, a3, - ,a, satisfying the relation

(A1) ajag +agaj = Ok, ajay +agaj =0,
djaj, + apa; = 0. (Vi k€ {1,2,--- ,n}).

Set S := {1,2,---,n}. We call a function f,, : S™ x ™ — C bi-anti-
symmetric if

fm((xg(l)) To(2)s" " 7‘770'(m))7 (yT(1)7 Yr(2), - 7yT(m)))
= sgn(o) sgn(7) fn (21, T2, X)), (Y1,¥2, 5 Ym)),s
(VO'7T S SWH (.’131,(1','2, Tt 7xm)7 (917927 e 7ym) S Sm)

For X = (z1,29,- - ,2y) € S™ let ax, ax denote ay ag,---ag,,
ay ay, ---a; respectively. Moreover, let X denote (zpm, Tm—1,--- ,21).

LEMMA A.1.  For any bi-anti-symmetric function fp, : ™ x ™ — C,

Z fm (X, Y)axay

X, Yesm

m 2
=3 ¥ (—1)ml<7;‘> U fm((X,Z),(Z,Y))aydk.

=0 X, yesm-!
ZesS!

Proor. We prove the claim by induction with m. The equality for
m = 1 follows from the relation (A.1). Assume that the claim is true for
somem € N. Let fy, 41 : S™H x 8™+ — C be a bi-anti-symmetric function.
By the hypothesis of induction,

> fan(X,Y)akay
X, Yesm+1
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m 2
= Z Z (—l)m_l < TlTL ) l!fm+1((x7X> Z),(Z,Y,y))

Moreover, by (A.1) and the bi-anti-symmetric property of f,11,

Z fm+1 (XaY)‘ﬁ(aY

X, Yesm+l

m 2
> X o (1) thax2).@ )
1=0 X, yesm+1-l

ZeS!

* *
€2 ax'me»laym_l"'l

m 2
Z Z < 17 ) l!fm+1((X7 Z)? (27 Y))ayl T aym—l—la%aym_l

*
Clg Ay Ay, @

2
£ X et () (X2, @ Y)
I=0 X,;yesm+1i-I
ZcS!

* *
C Oy Ay Oyp 0 Ay, G U 11 WYm—141

m 2
2 Z Z < 7? ) l'fm+1((X7 Z)> (z’ Y))ayl o aymflflaaaymil

=0 X,YESmfl
Zes!it!

m 2
£ X o (V) (X2, Y)

=0 X,yesm+i-i

*
2

ZcS!
* * *
: aylay2a$1ay3 T a/y'mfla/fl‘Q e aiBm_l+1a/y'mfl+1
m m 2
> ( l ) Hm =1 fn1((X, Z),(Z,Y))
=0 X,yesm-l!

Zesl+1

*
Tyt Gy, AX Ay
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m 2
m o *
+ Z Z ( I ) l!ferl((Xa Z)a (Za Y))ayl Oy XAy
I=0 X, yegm+1-
ZeS!

:nil 3 <1l21<l’_”1 >2(l—1)!(m+1—l)+1l§m< " >2z1)

=0 X Yesmti-i
ZeS!

: fm+1((X7 Z), (27 Y))aw o 'aym—lCL;(aym—H—l‘

Set

D(@,m) == 1,2, < 1T1 )2(1—1)!(m+1—5)+1,§m ( ”; >2u.

Then, by considering that D(m + 1, m) = 0,

Y fmn(X,Y)dkay

X, Yesm+l
= Z Z D(l’ m)ferl((Xv Z)? (Z7 Y))ayl T aym71a§(aym71+1
=0 X,;yesm+i-i
Zes!
= Z Z (_1)m_lD(lam)fm+l((X7Z)a(sz))aYa§(
=0 X, yesm—t
ZeS!
+> Y (=)DUm) fmii((X,2),(Z,Y))
=0 X, yesm+1-t
VAL
’ ayl e aymfla:J T a’;m_l_la;m_laymfﬂrla’:}m_l_‘_l
=Y > )" m =1+ 1)DAm) fmia (X, Z), (Z,Y))ayak
=0 X, yesm!
ZeS!H!
+ Z Z (_1)m_l+1D(l? m)fm—l—l((Xa Z): (27 Y))aYa;(
I=0 X,;yesm+i-!

ZcS!
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m—+1

=> > (=)™ m+2-1)D( - 1,m)

=0 X,YESm+1*l
ZcS!

+ (_1)m+1_lD(la m))fm+1((X7 Z)v (27 Y))CLY(L;(‘
By calculation we can derive that
Lo (1) (m+2 =)D — 1,m) + (=1)™" "' D(l,m)

2
= (—m < ml“ ) I,

which implies the claimed equality for m + 1. The induction with m con-
cludes the proof. [

Appendix B. The Flux Phase Problem on a Periodic Hyper-
Cubic Lattice

In order to deduce Corollary 1.7 from Theorem 1.6, we need to know
when the free energy density is minimum in the flux phase problem on the
hyper-cubic lattice T'(2L) with the periodic boundary condition. A suffi-
cient condition was essentially proved by Lieb in [20]. It was also claimed by
Macris and Nachtergaele in [22]. In [19, Appendix A] we restated Lieb’s the-
orem on a periodic square lattice with supplementary arguments which were
not explicit in the letter [20]. In order to assist the readers in deriving Corol-
lary 1.7 from Theorem 1.6, here we restate Lieb’s theorem on the flux phase
problem on the periodic hyper-cubic lattice with explanations of how to
extend the arguments in [19, Appendix A] into the d-dimensional case. Not
to confuse the problem, we should make clear the dependency between the
original article [20], the preceding section [19, Appendix A] and this section.
In this section we admit the basic lemmas [19, Lemma A.2, Lemma A.4] and
the contents of the proof of [19, Theorem A.5] which was based on the origi-
nal key lemma [20, Lemma]. For those who know how to apply the reflection
positivity lemma [20, Lemma] well, there is no need to follow the proof of
Theorem B.4 below. However, we should remark that Lemma B.3 claimed
below itself is necessary to prove not only Theorem B.4 but also Theorem
1.6. In fact Lemma B.3 is referred in the proof of Lemma 2.5 in Section 2.
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First let us extend [19, Lemma A.2] into the d-dimensional case. Assume
that phases o1, @9 : Z¢ x Z% — R satisfy (1.1) and

pi(x+ej,x)+oi(x+ej+e,x+ej)
+oi(x+ep,x+e +e;)+ pi(x,x+ep)

=pa(x+e€j,x)+ pa(x+ej+epx+ej)
+pa(x+ep,x+ej+ey)+ p2(x,x+e;) (mod 2m),

2L-1 2L-1
Z p1(x+ (m+1)ej,x + me;j) = Z w2(x + (m + 1)ej, x + me;j)
m=0 m=0

(mod 27), (Vxe€Z%j,ke{l1,2,---,d}).

For x,y € Z% we simply write (¢1 — 2)(x,y) in place of p1(x,y) —
@Q(Xa Y>

LEMMA B.1. Assume that n > 2, x1,X3, -+ ,X, € ['(2L) and for any
j€{1,2,--- ,n} there exists p € {1,2,--- ,d} such that x; — X141 =€, or
—e, in (Z/ZLZ)d, where X, 11 := X1. Then,

n

(B.1) > (01— p2)(Xj41,%j) =0 (mod 2m).
j=1

Proor. It follows from [19, Lemma A.2] that if there are p,q € {1, 2,
.-+ ,d} such that for any j € {1,2,--- ,n} x; — X;j41 is equal to one of e,
—e,, e,, —e, in (Z/2L7Z)%, then (B.1) holds. Let us call this property (x).

As hypothesis of induction, let us assume that there exists [ € {1,2,--,
d — 1} such that if for any j € {1,2,---,n} x; — x;41 is equal to one
of e, —eq, ey, —ey, -+, e, —e; in (Z/2LZ)%, then (B.1) holds. Let
X1,Xg, -+ ,Xp, € I'(2L) satisfy that for any j € {1,2,--- ,n}, x; — xj41
is equal to one of e;, —ej, e, —ea, ---, €41, —€+1 in (Z/2LZ)%. Let us
prove (B.1) for xi,x2, -+ ,%xp. If X; —x;41 is equal to €41 or —e;4 in
(Z/2L7)? for any j € {1,2,--- ,n}, then (B.1) follows from (). Assume
that there exist ki, ka, -+, km € {1,2,--- ,n} such that

k‘1<k‘2<"'<km,
X), — Xk, +1 # €11, —€i+1 in (Z/2LZ)*  (Vp € {1,2,--- ,m}),
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Xj — Xj11 = €1 or — ey in (Z/2L7)"
(Vje{1,2,--- ,n}\{ki, ko, - ,km})-

If m = 1, again (B.1) follows from (*). Assume that m > 2. Define the map
P:T(2L) — T'(2L) by

P(X) = (X<1)7 T 7X<l)7xl(l + 1)7X(l + 2)7 T 7X(d))
For any j € {1,2,--- ,m — 1} we can choose y;1,y;2,  *,¥jq € ['(2L)
so that yj1 = Xg;11, ¥jq = P(Xk41), ¥jp — Yjp+1 = €41 OF —€pyq in

(Z/2LZ)* (Vp € {1,2,--- ,q; — 1}). By (%),

(B:2) (o1 = 2) (P(Xpy41),%1)

k1 q1—1
= (o1 = 92)(Xri1, %) + Y (01 = 92) (Y1p41,¥1p)  (mod 27).
r=1 p=1

Moreover, by (x), for any j € {1,2,--- ,m — 2},

(B.3) (1 — p2) (P(Xkj 1 +1)s P(Xkj41))

q;—1 kit
== (1= ) Wipr1,¥ip) + D (1 —2)(xr41, %)
p=1 T:kj—‘rl
qj+1—1
+ Y (o1 = 92)(¥it1pi1,Yjr1p)  (mod 27),
p=1
(B.4) (1 = p2)(Xnt1, P(Xky,_y+1))
qm-1—1
= (901 - 902)(Ym—1,p+17Ym—1,p)
p=1
n

+ Z ((101 - 902)(Xr+17 Xr) (mOd 27I')
r=km—1+1

By adding (B.2), (B.3), (B.4) together,

m—2

(B'5) (Qpl - 802)(P(X7€1+1)7X1) + Z((‘Ol - 902)(P(ij+1+1)7p(xkj+1))
j=1
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+ ((PI - (PQ)(XHJ!‘I? P(inrnfl‘i’l))

= Z(@l —2)(Xr4+1,%,)  (mod 27).
r=1

By the hypothesis of induction the left-hand side of (B.5) is 0 (mod 27) and
thus (B.1) holds.
The induction with [ € {1,2,--- ,d} concludes the proof. [J

The next lemma is the d-dimensional version of [19, Lemma A.3]. How-
ever, the content is essentially same as [21, Lemma 2.1].

LeMMA B.2 ([21, Lemma 2.1]). There exists a function  : I'(2L) — R
such that for any x,y € I'(2L) satisfying that x —y is equal to one of eq,
—e1, €, —€2, -+, €4, —€¢ m (Z/QLZ)dJ

P1(x,y) = p2(x,y) +0(x) — 0(y) (mod 2).

PROOF. Define 6 : T'(2L) — R by

(21,22, , 2a))

r1—1

= 1:1:121 Z(Sol _902)((.]+1707 70)7<j70"" 70))
j=0

xo—1

+ 11221 Z(@l _902)(($1)]+ 1)07"' a0)7(3:17j507"' 70)) +e
=0
rg—1

+lagz1 Y (o1 —@2) (21, s 2go1, 5 + 1), (21, Ta-1, ).
=0

Then, Lemma B.1 implies that for any x, y € I'(2L) satisfying that x —y
is equal to one of e;, —ey, ey, —€9, -+, €4, —ey in (Z/2L7Z)%,

0(x) + (p1 — p2)(y,x) —0(y) =0 (mod 27). O
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With a phase ¢ : Z¢ x Z? — R satisfying (1.1) we define the free Hamil-
tonian Hop(y) by (1.20) and set H(¢) = Ho(y) + V with the generalized
interaction V defined in (1.15).

LEMMA B.3.
Tr e BH(P1) — Ty o= BH(p2)

PrOOF. By using the function 6 introduced in Lemma B.2 and follow-
ing the proof of [19, Lemma A.4] we can construct the unitary transform B
on Fp(L*(T'(2L) x {1,1})) so that BH(p2)B* = H(y1). Here we need the
invariance (1.11) to ensure that BVB* = V. This implies the result. OJ

Here we can state the sufficient condition to be a minimizer of the flux
phase problem. In the following we restrict the interaction V to have the
reflection positive form (1.19).

THEOREM B.4 ([20]). Assume that the phase 01, satisfies (1.1), (1.2)
with 0 = 7 for any j,k € {1,2,--- ,d} with j < k and (1.3) with e& =
1peoz for any l € {1,2,--- ,d}. Then,

- % log(Tr e~PHOL))

1
= min {—B log(Tre PH@)) | . 78 x 2% — R satisfying (1.1)} .

ProoOF. By Lemma B.3 it is sufficient to prove the existence of a phase
with the claimed properties minimizing the free energy. For any j, k €
{1,2,---,d},xe€Z% scZand n: 7% x Z¢ — R, set

[ik(M)(x) :=n(x+e;,x)+nx+ej+eyx+e;)
+n(x+epx+e +ep)+n(xx+e;),
2L—1

fim(x) ==Y n(x+ (m+1)ej,x + me;),

m=0
1
Hj(s) = {(yla"' 7yj*175+ §7yj+17"' ayd) S Rd
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Y1y 5 Yi—1,Y5+1, ", Yd € R}-

Since the interaction V is assumed to satisfy the positivity convention, we
can apply the reflection positivity lemma [20, Lemma] with respect to the
cutting hyper-plane H;(s). Recall that in the proof of [19, Theorem A.5]
first we did the reflection with the horizontal line {(x,1/2) € R? | z € R}
and secondly we did the reflections with the vertical lines {(s + 1/2,y) €
R? |y € R} (s =0,1,---,L —1). The argument involving the reflections
with the hyper-planes Ho(0), Hi(s) (s = 0,1,---,L — 1), parallel to the
proof of [19, Theorem A.5], proves that there exists a phase ¢ satisfying

(1.1),
hal@)x) =7, fi(@)(x) = f2(¢)(x) = lcont  (mod 27), (Vx € Z7)

and minimizing the free energy. This concludes the proof in the case d = 2.
Let us consider the case that d > 3. As hypothesis of induction, assume
that [ € {2,3,---,d — 1} and there exists a phase ¢ satisfying (1.1),

(B.6) fik(@)(x) =7,  fm(p)(x) =1lreonm (mod 27),
(vx € 2%, j k,m e {1,2,--- 1} with j < k)

and minimizing the free energy. For s € {0,1,---,L — 1} let us define the
map Ref, : Z¢ — Z% by

Refs(x) = (a:lu c T 2s+1— L1, L1425 " ,Q?d).
Then, define the transform Ry on Map(Z? x Z%,R) by

Rs(n)(%,y)
n(Refs(x),Refs(y)) + 7 if I,k e{s+1,s+2,---,s+ L} s.t.
= x(I+1)=j, y(l+1)=k (mod2L),
n(x,y) otherwise,

(x,y € Z%).

Also, for any function 6 : Z¢ — R satisfying that 6(x) = 0(y) for any x,y €
7% with x = y in (Z/2LZ)¢ we define the transform Gy on Map(Z? x Z% R)
by

Go(n)(x,y) == n(x,y) +0(x) = 0(y), (x,y€Z.
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Note that if n € Map(Z? x Z% R) satisfies (1.1) and (B.6), so do Rs(n),
Gg(n). We reform Tr e~PH() by repeating the reflection with respect to the
hyper-planes Hjy1(s) (s =0,1,---,L — 1) and the gauge transformations.
This procedure is parallel to the part of the proof of [19, Theorem A.5]
demonstrating the reflections with respect to the vertical lines {(s+1/2,y) €
R?|y€R} (s=0,1,---,L—1). Here we consider the [ + 1-th coordinate,
the k-th coordinate (k € {1,2,---,l}) as the first coordinate, the second
coordinate respectively in the part of the proof of [19, Theorem A.5] after
the first reflection with the horizontal line {(z,1/2) € R? | + € R}. By
replacing eq, es by e;41, e respectively there we can see that there exists
a phase ¢’ € Map(Z? x Z¢,R) satisfying (1.1),

Teir1(@)(x) =7, fir1(¢')(x) = 1peonm  (mod 27),
(vx e 24k e {1,2,---,1})

and minimizing the free energy. In fact the phase ¢’ is derived by repeatedly
applying the transforms R, Gy with s € {0,1,--- , L—1} and some periodic
functions 6 : Z? — R to the phase ¢ given by the induction hypothesis. As
remarked above, the phase ¢’ still satisfies (B.6). The induction with [
concludes the existence of a phase with the claimed properties. [

Appendix C. Lemmas for the Time-Continuum, Infinite-Volume
Limit

Here we prove that each term of the Taylor expansion of the free energy
density with respect to the amplitude of the interaction converges in the
time-continuum, infinite-volume limit. This fact is used to prove that the
free energy itself converges in these limits in Subsection 4.2. Basic ideas of
this section are not essentially different from those in [17, Appendix B], [18,
Appendix D], [19, Appendix D]. Since we introduced a class of interactions,
which are different from the interactions in the preceding papers and some
properties of our interactions are necessary to prove the fact of concern, we
should again demonstrate the major part of the proof.

For n € NU {0} set

n)(0) =~ (o) o ([ O dev)

9
z=0
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where the Grassmann Gaussian integral is same as that considered in
Lemma 2.7. Our aim here is to prove the uniform convergence prop-
erty of a,(L,h)(U) with the coupling U as h,L — oo. The covariance
C: (BxT(L)x{1,1}x]0,8))* — C was originally defined in (2.6). We can
periodically extend the domain of C into (BxZx {1, ]} x[0,3))2. Then, by
taking into account Lemma 2.3 (3),(4) we can see that the same procedure
as in the derivation of the inequalities [19, (D.3), (D.4), Appendix D] yields
the following results.

LEmMMA C.1.  There exists a constant c(3,d, (t;)i1<j<d) € Rso depend-
ing only on B, d, (tj)1<j<da such that the following inequalities hold.
c(B,d, (t)1<j<d)
L+ Y0 | (T vend — 1)
(V(p,x,0,3), (n,y,7,y) € Bx Z¢ x {1,1} x [0, 8)),
c(B,d, (tj)i<j<a)
d+1
+ ()7 T l(x —y. eyt
(V(p,x,0,2), (n,y,7y) € BxZTx {1,1} x [0,9)
with |(x —y,ej)| < L/2 (Vj € {1,2,--- ,d})).

(C.1) |C(pxox,nyTy)| < ‘dﬂ,

(C.2) |C(pxoz, nyTy)| <

For conciseness we set

J:=BxT(L)x {11} x{1,—-1},
Je =B x [—g g) AT {1, =13,
Jo:=Bx {0} x {1,1} x {1,-1}, Jo:=BxZIx{],1} x{1,-1}.

Using the original kernels V.2 (m = 0,1, --- , N,,) of the interaction, we define
VY € Map(C™,C), V) € Map(C™, Map(J2™,C)) (m =1,2,---,N,) by

Ve (U) := Vi*(U),

‘/QOm(U)((plv X1,01, 01)7 Ty (p2m7 X2m, O2m; 92m)>
1
= (2m)' Z Sgﬂ(g)l(ef(l)v"' :of(m)):(lv“' 71)7(6§(m+1)7“' 795(2777.)):(_17"' 7_1)
€Sy
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Vo (U)((2%¢(1) + b(per))s 1))+ (2Xe(my + b(Pe(m) ) Te(m))):

(2%¢(ma1) + (Pe(m+1))s Te(m1))s > (2Xe(2m) + b(Pe2m))> Te(2m))))-
The next lemma summarizes some properties of V', V), which we will use
later.

LEMMA C.2. For anyr € Rug, m € {1,2,--- , N, } the following state-
ments hold.

(C.3) sup Vo (U)(p1001601, paxaoaba, - -+, pamXam0ombom)|
UeD(m)™

Y S 1 (2l lxpies))?

)

< redv, (1)e” T

(V(ﬂl,O'l,el) € B x {Ta l} X {17_1}7
(pj,%j,04,0;) € JaNJe (7 =2,3,---,2m)).

LdVO V) (X) conwerge in C(D(r) ";C) as L — oo(L € N)

for any X € J*™.

PrROOF. Take any U € D(r)nv, (pj,x4,04,05) € JoNJe (5 = 1,2,
,2m), p € {2,3,---,2m}. Note that

(T ElE T )12 s (L E oD 2oty

<e

By this inequality, the linearity with U, (1.5), (1.12) and (1.14),

d T (x1—Xp,e;) 1/2
Z] 1( |e L 17%p%5) 1)) “/'QOTn(U)(plxlo'leh... 7p2mx2m0—2m92m)‘
< retvp(1).
Thus,
sup |V (U)(p1x10101, - -, prmXomombam)|
UeD(r)™
P27 (e —xo e
< retuy, (1)e™ a1 = o T (Gl T2,

The above inequality implies (C.3). The claimed convergence properties
follow from that U + Vi*(U), U ~ V,£(U)(X) are linear and le a0, ViE(U),

%Vn%(U)(X) converge as L — oo. [
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For convenience in the proof of the next lemma we introduce some more
notations. Define the transform Fy on J7* by

PO(((pth?UL 01)7 ) (Pm7xm70m7 gm)))
= ((,01,0,0'1,91), tee ’(pmaovamuem))-

Define the map P, from J, to Z¢ by Ps((p,x,0,60)) := x. Moreover, define
the map Pr, from JZ? to J™ by

PL(((Pl,Xl, 01, 01)7 Tty (vaxm, Om, em)))
= ((Pl,X/pO’l,Hl)» e a(pmax'/mvo-m79m))>

where x; € I'(L) and x; = x] in (z/LZ)* (j =1,2,--- ,m). We also define
amap from (BxZ?x {1, |} [0, 8) x {1, =1})™ to (Bx (L) x {1, 1} x[0, 8) x
{1,—1})™ in the same way as above and let P;, denote the map, though this

is abuse of notation. For any X = ((p1,%1,01,01), -, (PmsXms Om,0m)) €
Jm, 5 € [0,6) we define (X|s) € (B x Z4 x {1, 1} x [0, 8) x {1, —1})™ by

(XIS) = ((p17X1a0-175701)7 to 7(pm7xma0m7579m))-

Furthermore, for any X = ((p1,X1,01,51,01), , (PmsXms Oms Sm, Om)) €
(BxZ%x{1,1} x[0,8) x {1,=1})™ and x € Z¢ we define X + x € (B x
7% x {1,1} x [0,8) x {1,=1})™ by

X +x = ((p17X1 +X701781791)> e 7(pﬂ’L7Xm +X7O-m>5m50m))-

For any Y € J7 and x € Z¢ we also define Y 4+ x € J7 in the same way.
We use the same notational rules for different power m for simplicity. We
should make clear that the notations introduced above are used only in the
rest of this section, not used anywhere else in this paper.

Here let us note that

Ny
COETAC RS DD DD DI o ST

s€[0,8), m=1 XeJj2m

LEMMA C.3. For any r € Rsg, n € NU{0} the following statements
hold true.
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(1) an(L,h) converges in C(D(r)"";C) as h — oo(h € (2/8)N).

(2) Set an(L) = limp_,o0 pe(2/pNan(L,h).  Then, a,(L) converges in
C(D(F)";C) as L — oo(L € N).

PROOF. Since ag(L,h) = 0, the claims are trivial for n = 0. First let
us prove the claims for n = 1. By the translation invariance (1.9) and the
periodicity (1.8),

m(L.h) = ﬁid [ Vwduets)

Vo dz Z Vo (X /¢X|0 dpc (¢

m=1XeJj2m
1 1 Al
- L LY S vk )
m=1XeJj2m

~/¢PL((xo)_PS(X1))dMC(¢)

LdVO + Z Z Z Vo (X, X) /¢(XXO)dMC(¢)

m=1XeJy XeJj2m—1

= W+ S DD DEEMISENE Y

m=1 XeJo e j2m-1
'/¢PL(((X,X)|O))d,U«C(w)‘
Set
F,(U)(X,X) := 1x j2m-1Va, (U)(X, X) /¢PL (x,X)(0))dpc ().

Note that F, is independent of h. Then, it follows from (C.1), the conver-
gence property of C' as L — oo and Lemma C.2 that

sup | Fy, (U)(X, X))
UeD(r)™

< mle(B, d, (t;)1<5<a)™retvm (1)e” Ta=1 = oot Z5=a (FIPs(Xp).e5) )2
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and limz . reN F, (-)(X, X) converges in C(D(r)";C) for any m € {1,2,
o Ny}, X € Jo, X € J¥~L. Therefore, by the dominated convergence
theorem in L'(Jy x J2m=1 C(D(r)";C)) and the convergence property of
(1/LYVY we see that a;(L, h) has the claimed convergence properties.

Let n > 2. Here we need to recall the tree formula for a,(L,h). We
adopt a version of the tree formula [27, Theorem 3], which states that

(_1)n+1
an(L,h) = W Z H (Ap,q(C) + Agp(C))

TeT, {p,qteT

ope(T, C) H V(y) vizo

J=1 (vj€{1,2,+ ,n})
where T, is the set of all trees over the vertices {1,2,--- ,n},
Ars(C) = — Z C(X, Y)%is, (Vr,s € {1,2,--- ,n})
X,Yel Vx Oy

with the Grassmann left derivatives 8/9¢y, 9/9v%, and
ope(T,C) := / ds Y o(T,€,8)e> ram MTES ) An(C)
[0,1]»—1 £€Su(T)
with a T-dependent subset S,(T) of S,, a (T,&)-dependent function
o(T,¢,-) € C([0,1]"" 1 R>p) satisfying
(C4) / ds )y @(T.&s)=1, (T €Ty),
A" ges,(r)

and a (T,¢)-dependent matrix-valued function M(T,&,-) € C([0,1]*
Mat(n,R)) satisfying

(C.5) |M(T,&,s)(r,s)] <1,
(VT € Tp, €& €Sp(T),s € [0,1]" L, r, s € {1,2,--- ,n}).

The important bound property of the operator ope(T,C') is that

(C.6) ope(T, C)ox, ¥k, V%, wizo
(Vj€{1>2"" m‘})
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{ kaJ )1<]<d)%2’“ 1Tk,
(Vm; e NU{0},X; € I (j=1,2,---,n)),

which follows from (C.1), (C.4) and (C.5). The proof of [16, Lemma 4.5]
essentially shows how to derive (C.6).

Define the anti-symmetric function C (B x z% x {1,1} x [0,8) x
{1,-1})? = Cby

1

C((X,0),(Y,¢)) = 5 Leo=0,1CXY) = 1po=-11)C(Y, X)),
(VX,Y e BxZ3x {1,1} x[0,0),6,¢ € {1,-1}).
Then, we have that
0
Apq(C) + Agpy(C) = =2 " C(X AT
XerI? b
The term a, (L, h) can be expanded as follows.
an(L,h)
2n—1 n 2Ny 1 ~ 0 0
= ) Z H Z Ldope(T ) H Z C(Y)—8¢p EA
oTeT, j=1 \m;=2 {p.ayeT \YeI2 1 7Y,
n 1\ ™k N
k=1 Xy €I™k (Vie{1,2,++,n})

For T € T, and j € {1,2,--- ,n} let d;(T) denote the degree of the vertex
jin T. Fix m; € {2,4,--- ,2N,} (j = 1,2,--- ,n). If d;(T") is larger than
m; for some j, the derivatives along the lines of T" erase the Grassmann
polynomials completely and thus such a tree does not contribute to the
result. Take any T' € T, satisfying d;(T) < m; (Vj € {1,2,---,n}). Then,
set

%@m:%mmmII S a2 0

D 0.1d
{p,g}€T \YeI? awyl 8¢Y2
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n 1 mp
,E <E> > Ve Xk, || Ll

Xpel™k (vie{1,2,,n})

It suffices to prove the convergence properties of a/, (L, h) instead of a,, (L, h).
By changing the numbering if necessary, we may assume that if {p,q} € T
and p < ¢ the length of the shortest path between 1 and p in T is shorter
than that between 1 and ¢g. Then, we can define the map f:{2,3,--- ,n} —
{1,2,--- ,n—1} by f(q) :==pwithp € {1,2,--- ,q—1} satistying {p,q} € T'.

To shorten formulas, we use the notational convention that for integers

I,I+1,---,1+m and objects wy, wir1, - , Witm,
I+m l
[T w. II w
j=l j=l+m
order order
denote

WWi41 - Wim, Wi4mWi4m—1 - W]

respectively. Also, it will be convenient to write X C Y for X € J, Y € J"
if there exists j € {1,2,--- ,n} such that X =Yj. By using the notations in-
troduced so far, anti-symmetry, translation invariance and periodicity from
part to part we can transform as follows.

ay (L, h)
1 (1
= ﬁope(T, C) H 7 Z
Jj=1 5;€[0,8)n
2 0
=~ 0 1
: H Z C((Y|Sf(q))a(Zq|5q))a (@ Z Vm1(X1)¢)(X1|81)
OZ”ZZF Y.Zq€J Ylsp(q) / Xa€J™
0 k
‘ H mp Z mG(zk’Xk)d}(XkISk) PI=0
Ol?r‘ig’r‘ Xk-efmk_l (vj€{1727“'7n})
R | 0
— LI X ] X veeXir Row)
J=1 5;€[0,8)n XoeJ

X1€J"L171



1 1 l
DXl VP (a2 (o)) L1 PP Puxo)lsn)

2 n
0 1 1 l
-ope(T, C) H (W) ¢(X0\31)¢(X1\31) H ¢(xl|sl)
1=2
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H(mq Y Cl(Yylspg) + Po(X0), (Zglsg) + Ps(Xo))

Yo, Zq€J
XqeJma—1

) anbq(Zq + Ps(Xo), X+ PS(XO))>

-ope(T,C) H ( 0 )

f(k)

order

$i=0
(vj€{1127"' 7”})

=2
order

H(,ﬁ z) > v (Ko X)
j=1

Xo€Jo

8]6[07ﬁ)h
XieJJmi—l

H(mq > 5((52\8]0((1))7(qusq))Vngq(Zq,Xq))

q=2 Yy, Zqed

Xq€Jma~1

ok;igr (Yk‘sf(k)) order
“ (1
(h 2. ) > Vi (X0, X))
Jj=1 Sje[o,ﬁ)h Xo€Jo
X1€J'm171
) H (mq Z 5((Yq|3f(q))v(Zq|‘5’q))vnoqq(quXq+Pé>’(Zq))>
q=2 Yy, Zq€d
qujmq—l
= 0
. ope(T, C) H T
k=n w(Yk\Sf(k))

order

149

(VjE{l,Q,“' ’n})
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1 1 [
Dxols¥xalsn) 11 Yruixisrazis)

PIi=0
=2 (Vje{1,2,--,n})
order
(1
=11 (h > ) > V(X0 Xy)
j=1 S]'G[O,,B)h Xo€Jo
X,eJmi—1
: H (mq Z 5((}/:1|Sf(q))v (Zq|sq>)vngq (Po(Zy), Xq))
q=2 Yy, Zq€d
Xq€Jma~1
2 B
. 0]36(1—‘7 C) H QT
o]j"jgr w(Yk ‘Sf(k))
1 1 l
ot Uixatsn T Yrixsrain| iz
=2 (Vje{1,2,--,n})
order
1
=11 (h > ) > V(X0 Xy)
J=1 5;€[0,8)n Xo€Jo
X,eJmi—1
: H (mq Z 5((}/;1‘3f(q))7 (Zg + PS(Yq)ISq))Vngq(PO(Zq)v Xq))
q=2 Yq.Zq€J
Xq€Jma—1
2 B
~ope(T, C) H 78 G
olzjgr w(Yk ‘Sf(k))

1 1 l
Wl ¥xis L Yeoxis i sponisn|  wiso

O%I’Tig’f (v]€{1’277n})
Tl
Ik 2 ] 2 owex
j=1 5;€[0,8)n Xo€Jo

XieJmi—1
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H( Y CYlss): (Zolsa))Vim, (Po(Z), Xq))
Yq

q=2 eJo,Zq€J
X,eJmat

F(( )j 1’X07X17(X )j 2,(19)?:2,(23‘)?:2),

where F' is the function on

[0, 8) x Jo x JI s T aser ™ = Jp=t s it
=2

defined by

F((Sj)?:bXO?le (X )] 25 (Y )] 25 (Z')?:Z)

n 2
= H <mq Z )ope (T,0C) H ()
q=2 yq€l'(L) J=n 5¢ (Ye+yrlss))

1 1 !
-¢(Xo|sl)¢pL((xl|sl)) H ¢PL((X1+PS(Zz)+szSz)) $i=0
olr?lg'r (VjE{l,Q,'",n})

Note that

F(( )] 1,X0,X1,(X )] 27(Y)] 27(Zj)?:2)

:Hmj H ( Z 1YT+YTCPL((XO7X1))>
Jj=2 1)

ref-1 yr€l(L)
n—1
’ H ( H ( Z 1YP+YPCPL(Xq+PS(Zq)+Yq)>)
9=2 \pef~(q) \ypel'(L)
order

-ope(T, C) H (f(k)a)

k=n 8¢(Yk +yklsfr))

order

1 1 [
Yxols) VP (Xalst) L YPu(XesPuztyilsn)
=2
order

pi=0

and thus by (C.6),
(C.7) |F((s5)f=1, X0, X1, (X;) 70, (V))j=a, (Z))j=2)|

151
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Sj]imj 11 m1H H <1iml—n+1>!

ref—1(1) q=2 pef-1 ) —
1
-c(B,d, (t.)1<j<d)§zl:1ml_n+1
dT(J) ( Zmz —n+ 1) c(B,d, (tj)lgjgd)ézglzlml_nﬂ7

( (( )] 17X07X1>(X )] 27(Y)] 2?(Zj);‘z:2)€ [Oﬂﬁ)ZXJOO)'

Here we set

:]:

n

_ i—1 _ _

Joo o= Jo x Tt x [T < Jgt < as .
=2

For any s € [0,3) we let § denote an element of [0, 3);, satisfying s €
[$,8 + 1/h). By periodicity we can rewrite a), (L, h) as follows.

:ﬁ(/ﬂdsj> > Ve (X0, Xy)

j:l 0 Xo€Jo

X1€Jm1 L
-H( S Al sV <P0<z>xq>)
q=2 \ Y €Jo,Z4€J0

mq— 1

Xg€Jo0

lix, V(2T el gl e

: F(( )j 1, X0, X1, (X )j 27(}/3')?:27 (Zj)?:Q)'
By (C.2), (C.3) and (C.7),

€8 sup VO (U)(X0.X0)
ueD(r) "’
: H(a((Yq|§f(q))7 (Zq|§q))vngq (U)(PO(Zq)’ Xq))
q=2
-1

m,;—1 n—
(X p_1o(Z)p_p)ellfy T 7 xe ™!

- F((85) =1, Xo, X1, (Xj) 2 (Y)) 22, (Z)j=2)
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( Zml —n+ 1>
ﬁ (Te Uy r2(1)e(B,d, (¢ )1<]<d)mC’/ mq (@

[\DI»—t

L P R AV ARY [

q=1 Jj=1

T m 1
- € a- y

L yaind (2 <PS(Xq,l):ej>)1/2>

(V((55)j=1, Xo, X1, (Xj)j=2, (Yj)z2s (Z))j=2) € 0, 5)" X Joo).
The right-hand side of (C.8) is integrable with respect to

((Sj)?:h Xo, X1, (Xj)?z% (}/j);'lz% (Zj)?=2)

over [0, )" x Joo

Since F' becomes a finite sum of products of the covariance C after
applying all the Grassmann derivatives to the monomial, the domain of F'
can be naturally extended into [0,3)" x Jo. Moreover, we can see that
the function F' : [0,5)" x Joo — C is independent of h. Since (s,t) —
C((X]s), (Y|t)) is continuous a.e. in [0,3)? for any X,Y € Jo, 50 is s +—
F(s,Z) ae. in [0,0)" for any Z € Jo,. Thus, for any X,Y € Jy, Z € I,

T C((X[3), (V1) = C(X]s), (V]1) ae. (s,) € [0.6)"
he(2/B)N
Tim F((8)]1, 2) = F((s3)}1, 2) ae. (s7)j € 0,0)"
he(2/B)N
Furthermore, by using the fact that limy .o eNC(X) converges for any
X € (BxZ%x{1,1} x[0,3))? we can check that lim,_, reNF(s, Z) con-
verges for any (s, Z) € [0,5)" X Jx
Now we can apply the dominated convergence theorem in L!([0, 3)" x
Joo, C(D(r)""; C)) to prove that a’,(L, h) converges in C(D(r)"";C) as h —
oo(h € (2/6)N) and

(C.9) hh—{go al (L, h)
he(2/8)N
n B
:H(/ dsj> > VR (X0, Xy)
j=1 0 Xo€Jo

Xye it
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11 ( Y Cl(Yalsp): (Zalsg)Vim, (Po(Zy), Xq)>
Yq

q=2 €J0,%qE€Joo
X e ma!

1 -
(X)) (Z) el oy Jo T e

( )j 17X07X17(Xj)j=27(}/})7]'1:27(Zj)?:2)'

Set ap, (L) := limp_,o he(2/8)Nay (L, h). By sending h — oo we obtain the
inequality (C.8) with a.e. (s;)7_; € [0,8)" in place of (8;)]_; in the left-
hand side. Then, by the convergence property of V4, proved in Lemma C.2,
the convergence properties of F' and C in the limit L — oo and that

hm 1 m -1 _
LLZI%IO (X5)71:(Z;3) g ell o xJ¢ !

(\V/((X )] 17 ] 2 € ngj X ngo_1>7

=1,

we can again apply the dominated convergence theorem in L'([0, 3)" x
Joo,C(D(r)"";:C)) to deduce from (C.9) that a/,(L) converges in
C(D(r)";C) as L — oco(L € N). O
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Supplementary List of Notations

Parameters and constants

Notation Description Reference
0 k flux per plaquette Subsection 1.2
(1 <j<k<d

] flux per large circles around Subsection 1.2
(j= -,d) | periodic lattice
tj hopping amplitude Subsection 1.2
(= -, d)
Ny number of coupling constants Subsection 1.2
N, maximal degree of interacting part | Subsection 1.2

of Hamiltonian




The Zero-Temperature Limit of Many-FElectron Systems 155

integral of kernels of interaction

(mym, -, m) e R4

(e i<j<d

(0k)1<j<k<d

242 143h  cardinality of the index
set [

2v/6

== (2d + 1)
cw(d+1)"2M2
parameter depending only on
(ti)i<j<ds (Oir)1<j<k<d

constant appearing in an upper
bound on derivatives of cut-off

beginning of

Subsection 1.3
Subsection 2.1
Subsection 2.1
Subsection 2.1
Subsection 2.2

Subsection 3.1
Subsection 3.2
Subsection 4.1

Lemma 4.1 (3)

functions
Sets and spaces
Notation Description Reference
(L) {0,1,---, L — 1} Subsection 1.2
Map(A, B) set of maps from A to B Subsection 1.2
D(c) {zeC|lz| <¢} Subsection 1.4
C(D;C) set of continuous functions on D | Subsection 1.4
Mat(n, C) set of n X n complex matrices Subsection 2.1
B {1,2,3,--- 29 Subsection 2.1
INOAN {0,22,... 2Z(L —1)}¢ Subsection 2.1
C(D;\V) set of Grassmann polynomials con- | Subsection 4.1
tinuous with z € D
CY(D;\V) set of Grassmann polynomials an- | Subsection 4.1

alytic with z € D

subset of C(D; A\ V)N C¥(D; \V)
subset of S(D,co,a, M)(1)(51)%
S(D7 Co, &, M)(l)(ﬁ2)

subset of

Map(D, C=(R%!; Mat(2¢, C)))

Subsection 4.1
Subsection 4.1

Subsection 4.1
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K(D, o, M)(1)

C¥(D;C)
R(Da €o, M)(l)

~

R(Da €o, M)(l)

Yohei KASHIMA

subset of K(D,a, M)(1)(B1) x
K(D, a, M)(1)(B2)

set of analytic functions in D
subset of Map(D, Map(I2,C))
subset of R(D,co, M)(1)(B1) X
R(D, co, M)(1)(52)

Functions and maps

Subsection 4.1

Subsection 4.1
Subsection 4.1
Subsection 4.1

Notation Description Reference

H 1-band Hamiltonian Subsection 1.2
Ho kinetic part of H Subsection 1.2
V interacting part of H Subsection 1.2
b bijection from B to {0,1}¢ Subsection 2.1
Ua((&)1<j<d) 24 % 2% diagonal unitary matrix Subsection 2.1
v bijection from B x I'(L) to T'(2L) | Subsection 2.1
H 2¢_band Hamiltonian Subsection 2.1
Hy kinetic part of H Subsection 2.1
14 interacting part of H Subsection 2.1
& 2¢ x 2¢9-matrix-valued function Subsection 2.2

Other notations

Notation ‘ Description ‘ Reference

e; standard basis of RY Subsection 1.2
(.7217257d)

|- lnxn operator norm for n X n-matrices | Subsection 2.1
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