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Clifford Quartic Forms and Local Functional

Equations of Non-Prehomogeneous Type

By Takeyoshi Kogiso∗ and Fumihiro Sato∗

Abstract. It is known that one can associate local zeta functions
satisfying a functional equation to the irreducible relative invariant of
an irreducible regular prehomogeneous vector space. We construct
polynomials of degree 4 (called Clifford quartic forms) that cannot
be obtained from prehomogeneous vector spaces, but for which one
can associate local zeta functions satisfying functional equations. The
Clifford quartic form is defined for each finite dimensional represen-
tation of the tensor product of the Clifford algebras of two positive
definite real quadratic forms and cannot be a relative invariant of any
prehomogeneous vector space except for a few low dimensional cases.
We also classify the exceptional cases of small dimension, namely, we
determine all the prehomogeneous vector spaces with Clifford quartic
forms as a relative invariant.

Introduction

Let (G, ρ,V) be an irreducible regular prehomogeneous vector space de-

fined over R and let (G, ρ∗,V∗) be the dual of (G, ρ,V). Then, there exists

an irreducible homogeneous polynomial P (v) (resp. P ∗(v∗)) on V (resp. V∗)
such that the complement Ω (resp. Ω∗) in V (resp. V∗) of the hypersurface

defined by P (v) (resp. P ∗(v∗)) is a single G-orbit. Let Ω1, . . . ,Ων (resp.

Ω∗
1, . . . ,Ω

∗
ν) be the connected components of Ω∩V(R) (resp. Ω∗ ∩V∗(R)).

For a rapidly decreasing function Φ (resp. Φ∗) on V(R) (resp. V∗(R)) and

i = 1, . . . , ν, the local zeta functions are defined by

ζi(s,Φ) =

∫
Ωi

|P (v)|s Φ(v) dv, ζ∗i (s,Φ∗) =

∫
Ω∗

i

|P ∗(v∗)|s Φ∗(v∗) dv∗.
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These integrals are absolutely convergent for �(s) > 0 and can be continued

to meromorphic functions of s in C. The fundamental theorem in the theory

of prehomogeneous vector spaces ([30], [23], [17]) states that the local zeta

functions satisfy a functional equation

ζ∗i (s, Φ̂) =

ν∑
j=1

γij(s)ζi

(
−n
d
− s,Φ

)
,(0.1)

where Φ̂ is the Fourier transform of Φ, n = dimV, d = degP , and the

gamma-factors γij(s) are meromorphic functions of s independent of Φ.

Since the local zeta functions can be defined for an arbitrary polynomial

P , it is natural to ask whether there are any polynomials other than the

ones obtained from the theory of prehomogeneous vector spaces satisfying

a functional equation of the form (0.1). Such polynomials, if exist, should

be analytically and arithmetically interesting objects.

In [8, Chapter XVI], Faraut and Koranyi constructed polynomials having

a functional equation of the form (0.1) from representations of Euclidean

Jordan algebras and observed that the polynomials cannot be obtained from

prehomogeneous vector spaces for the simple Euclidean Jordan algebras of

rank 2 (apart from some low-dimensional exceptions). This result gives the

first example of non-prehomogeneous polynomials satisfying local functional

equations. However it seems still unclear when the polynomials are actually

non-prehomogeneous.

In [25], the second author considered the pullback of local functional

equation by non-degenerate dual quadratic mappings. Let P (resp. P ∗) be

a homogeneous polynomial of degree d on a C-vector space V (resp. V∗)
with R-structure V (resp. V ∗). Here V∗ is the vector space dual to V.

Let Q : W → V and Q∗ : W∗ → V∗ be non-degenerate dual quadratic

mappings (in the sense explained in §1). If the local zeta functions attached

to P and P ∗ satisfy a local functional equation of the form (0.1), then the

local zeta functions attached to the pullbacks P̃ = P ◦Q and P̃ ∗ = P ∗ ◦Q∗

also satisfy a similar functional equation (see Theorem 1.2). This generalizes

the earlier result of Faraut and Koranyi (see [25, §2.2]).

In this paper, we examine the case where dimV = p + q ≥ 3 and

P (v) = v2
1 + · · · + v2

p − v2
p+1 − · · · − v2

p+q and classify the self-dual non-

degenerate quadratic mappings Q to the quadratic space (V, P ). As a

result, we can obtain many examples of polynomials having local functional
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equations, but they are not obtained from prehomogeneous vector spaces.

Our main results are summarized as follows:

• The self-dual quadratic mappings to (V, P ) defined over R are in one

to one correspondence to (not necessarily irreducible) representations

of Cp⊗Cq, where Cp and Cq are the real Clifford algebras of the posi-

tive definite quadratic forms v2
1+· · ·+v2

p and v2
p+1+· · ·+v2

p+q (Theorem

2.2). For a representation ρ of Cp ⊗ Cq on a real vector space W =

W(R) = R
m, we may assume that the images Si = ρ(ei) of the stan-

dard basis e1, . . . , ep+q are symmetric matrices. Then the quadratic

mapping Q : W → V given by Q(w) = (twS1w, . . . ,
twSp+qw) is

self-dual, and we call the polynomial

P̃ (w) = P (Q(w)) =

p∑
i=1

(twSiw)2 −
p+q∑

j=p+1

(twSjw)2,

the Clifford quartic form associated with ρ. In the special case where

(p, q) = (1, q) and S1 is the identity matrix, P̃ coincides with the

polynomial that Faraut-Koranyi [8] obtained from a representation of

the simple Euclidean Jordan algebra of rank 2.

• The quadratic mapping Q given above is non-degenerate, if and only

if the associated Clifford quartic form P̃ does not vanish identically,

and then the local zeta functions for P̃ satisfy functional equations of

the form (0.1) (Theorem 2.13). For simplicity we give here an explicit

formula for the functional equation for p ≥ q ≥ 2. For a rapidly

decreasing function Ψ on W , the local zeta functions are defined by

ζ̃+(s,Ψ) =

∫
P̃ (w)>0

∣∣∣P̃ (w)
∣∣∣s Ψ(w) dw,

ζ̃−(s,Ψ) =

∫
P̃ (w)<0

∣∣∣P̃ (w)
∣∣∣s Ψ(w) dw,

and they satisfy the functional equation
ζ̃+

(
s, Ψ̂

)
ζ̃−

(
s, Ψ̂

)

 = 24s+m/2π−4s−2−m/2Γ(s+ 1)Γ

(
s+

n

2

)

× Γ

(
s+ 1 +

m− 2n

4

)
Γ
(
s+

m

4

)
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× sinπs

(
sinπ

(
s+ q−p

2

)
−2 sin πp

2 cos πq
2

−2 sin πq
2 cos πp

2 sinπ
(
s+ p−q

2

))

×
(
ζ̃+

(
−m

4 − s,Ψ
)

ζ̃−
(
−m

4 − s,Ψ
)) ,

where m = dimW and Ψ̂ is the Fourier transform of Ψ. The degen-

erate cases, in which P̃ (w) ≡ 0, appear only for

(p, q,m)

= (2, 1, 2), (3, 1, 4), (5, 1, 8), (9, 1, 16), (2, 2, 4), (3, 3, 8), (5, 5, 16)

(Theorem 3.1).

• We completely determine when the Clifford quartic form P̃ (w) be-

comes a relative invariant of some prehomogeneous vector space (The-

orem 3.2). In particular, if p+ q ≥ 12, then, there exist no prehomo-

geneous vector spaces having P̃ as a relative invariant. If p + q ≤ 4,

then, P̃ is always a relative invariant of some prehomogeneous vector

space. If 5 ≤ p+ q ≤ 11 and p+ q �= 6, then, P̃ is a relative invariant

of a prehomogeneous vector space only for very low-dimensional cases.

Thus most of the Clifford quartic forms are non-prehomogeneous.

• To classify the cases related to prehomogeneous vector spaces, we need

solid knowledge on the group of symmetries of the Clifford quartic

form P̃ . The group contains Spin(p, q)×Hp,q(ρ) where Hp,q(ρ) is the

intersection of the orthogonal groups O(S1), . . . , O(Sp+q). Except for

a few low-dimensional cases, the Lie algebra of the group of symmetries

of P̃ coincides with so(p, q) × Lie(Hp,q(ρ)) (Theorem 3.3), and the

structure of Lie(Hp,q(ρ)) can be determined explicitly (Theorem 3.4).

Thus our results show that the class of homogeneous polynomials that

satisfy local functional equations of the form (0.1) is broader than the class

of relative invariants of regular prehomogeneous vector spaces. The charac-

terization of such polynomials is an interesting open problem. In relation to

this characterization problem (in a more general form), Etingof, Kazhdan,

and Polishchuk ([7]) considered the following condition for a homogeneous

rational function f on a finite-dimensional vector space V:

v �→ grad f(v) defines a birational mapping of P(V) −→ P(V∗).



Clifford Quartic Forms 795

They called this condition the projective semiclassical condition (PSC). A

function satisfying PSC is often called homaloidal. It is observed that the

condition PSC is closely related to the existence of local functional equation.

For example, regular prehomogeneous vector spaces have homaloidal relative

invariant polynomials, and it is difficult to construct non-prehomogeneous

homaloidal polynomials. The classification of homaloidal polynomials is a

difficult problem and of considerable interest in algebraic geometry ([3], [5],

[6]).

For a homaloidal homogeneous rational function f , there exists a ratio-

nal function f∗ satisfying the identity f∗(grad log f(v)) = 1/f(v), which is

called the multiplicative Legendre transform of f . In [7], the authors raised

the following question and answered it affirmatively for cubic forms:

“Is it true that any homaloidal polynomial whose multiplicative

Legendre transform is also a polynomial is a relative invariant

of a prehomogeneous vector space?”

However, it can be easily proved (Theorem 2.14) that every Clifford quartic

form is homaloidal and its multiplicative Legendre transform coincides with

the original Clifford quartic form (up to a constant multiple). Thus, the

answer to the question above is negative, since Clifford quartic forms are

nonprehomogeneous in general.

The organization of this paper is as follows: In §1, we will recall the

pullback theorem of local functional equations in [25]. In §2, we introduce

Clifford quartic forms, and calculate the functional equations satisfied by

the local zeta functions of the Clifford quartic forms. In §3, we formulate the

main theorems (Theorems 3.1, 3.2) and describe an outline of the proofs.

The proofs of the main theorems will be given in §4, §5, §6 and §7. In §4,

we classify the degenerate cases. In §5 and §6, we make a precise investiga-

tion on the group of symmetries of Clifford quartic forms. Classification of

prehomogeneous cases will be done in §7.

As in the case of relative invariants of prehomogeneous vector spaces, the

Clifford quartic forms are expected to enjoy rich arithmetic properties. In

fact, with the Clifford quartic forms, we can associate global zeta functions

satisfying a functional equation, which are analogues of genus zeta functions

of quadratic forms. For the polynomials constructed by Faraut-Koranyi,

Achab defined global zeta functions and proved their functional equations

([1], [2]). In her argument, it is crucial that Q−1(v)R (P (v) �= 0) is compact.
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Her method does not apply to our general setting. Our method is based on

the theory of automorphic pairs of distributions on prehomogeneous vector

spaces ([32], [33]). We discuss the global zeta functions in a separate paper

([26]).

Acknowledgment . We thank H. Ochiai for helpful discussions and his

suggestions for improvements in exposition. We also thank H. Ishi and

T. Yoshino for informing us their works [11] and [18], respectively, and for

interesting discussions.

Notation. We denote by R,C and H, respectively, the field of real num-

bers, the field of complex numbers and the Hamilton quaternion algebra.

For K = R,C,H, we write

M(m; K) for the matrix algebra of size m over K,

M(m,n; K) for the set of m by n matrices with entries in K,

Sym(m; K) =
{
X ∈M(m; K)

∣∣ tX = X
}
,

Alt(m; K) =
{
X ∈M(m; K)

∣∣ tX = −X
}
.

For a w ∈ R
m and an S ∈ Sym(m,R), we put S[w] := twSw. We say

that the signature of S (or of the quadratic form S[w]) is (p, q), if S is non-

degenerate and has exactly p positive and q negative eigenvalues. For square

matrices A ∈ M(m; K) and B ∈ M(n; K), we put A ⊥ B :=

(
A 0

0 B

)
∈

M(m+n; K). The identity matrix and the zero matrix of sizem are denoted

by 1m and 0m, respectively. We write 1p,q for 1p ⊥ −1q. We put e[z] :=

exp(2π
√
−1z). For a real vector space V , we denote the space of rapidly

decreasing functions on V by S(V ). We use the same symbols as those in [9,

Chapter X, §2.1] to denote real classical Lie algebras. When we consider a

complex classical group as a linear algebraic group, we use the corresponding

bold face letters; e.g., GL(m) = GL(m,C).

1. Pullback of Local Functional Equations by Quadratic Map-

pings

In this section, we recall the main result of [25].

Let V (resp. W) be a complex vector space of dimension n (resp. m)

with real-structure V (resp. W ) and V∗ (resp. W∗) the vector space dual
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to V (resp. W). The dual vector space V ∗ (resp. W ∗) of the real vector

space V (resp. W ) can be regarded as a real-structure of V∗(resp. W). Let

P (resp. P ∗) be an irreducible homogeneous polynomial of degree d on V

(resp. V∗) defined over R. We put

Ω = {v ∈ V | P (v) �= 0} , Ω = Ω ∩ V,
Ω∗ = {v∗ ∈ V∗ | P ∗(v∗) �= 0} , Ω∗ = Ω∗ ∩ V ∗.

We assume that

(A.1) there exists a biregular rational mapping φ : Ω → Ω∗ defined over

R.

Let

Ω = Ω1 ∪ · · · ∪ Ων , Ω∗ = Ω∗
1 ∪ · · · ∪ Ω∗

ν

be the decomposition of Ω and Ω∗ into connected components. Note that

(A.1) implies that the numbers of connected components of Ω and Ω∗ are

the same and we may assume that

Ω∗
j = φ(Ωj) (j = 1, . . . , ν).

Suppose that we are given quadratic mappings Q : W → V and

Q∗ : W∗ → V∗ defined over R. The mappings BQ : W × W → V and

BQ∗ : W∗ ×W∗ → V∗ defined by

BQ(w1, w2) := Q(w1 + w2)−Q(w1)−Q(w2),

BQ∗(w∗
1, w

∗
2) := Q∗(w∗

1 + w∗
2)−Q∗(w∗

1)−Q∗(w∗
2)

are bilinear. For given v ∈ V and v∗ ∈ V∗, the mappings Qv∗ : W → C

and Q∗
v : W∗ → C defined by

Qv∗(w) = 〈Q(w), v∗〉, Q∗
v(w

∗) = 〈v,Q∗(w∗)〉

are quadratic forms on W and W∗, respectively.

Let q(w) and q∗(w∗) be non-degenerate quadratic forms on W and W ∗,
respectively. Fix a basis of W and the basis of W ∗ dual to it and denote by

S and S∗ the matrices of q and q∗, respectively. We say that q∗ is dual to
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q(w), if S∗ = S−1. Duality for quadratic forms can be extended to quadratic

mappings.

Definition 1.1. (1) The quadratic mapping Q (resp. Q∗) is said to be

non-degenerate, if the open set Ω̃ := Q−1(Ω) (resp. Ω̃∗ = Q∗−1(Ω∗)) is not

empty and the rank of the differential of Q (resp. Q∗) at every w ∈ Ω̃ (resp.

w∗ ∈ Ω̃∗) is equal to n. (It is obvious that m ≥ n, if Q is non-degenerate.)

(2) The quadratic mapping Q∗ is said to be dual to Q with respect to

the biregular mapping φ in (A.1), if the quadratic form Q∗
v(w

∗) on W ∗ is

dual to the quadratic form Qφ(v)(w) on W for any v ∈ Ω.

We assume that

(A.2) Q and Q∗ are non-degenerate and dual to each other with respect to

the biregular mapping φ in (A.1).

Remark 1.1. (1) By the assumption, there exist non-zero constants

α, β satisfying

det(Q∗
v) = αP (v)m/d, det

(
∂φ(v)i
∂vj

)
= βP (v)−2n/d.

(2) In [25], the assumptions (A.1) and (A.3) (= (A.2) in the present pa-

per) are erroneously formulated only by referring to real structure. Moreover

Ω and Ω∗ in [25, p.167, Lines 21 and 22] should be Ω and Ω∗.

The main result in [25] is that, in the above setting, if P (v) and P ∗(v∗)
satisfy a local functional equation, then the pull backs P̃ (w) := P (Q(w))

and P̃ ∗(w∗) := P ∗(Q∗(w∗)) also satisfy a local functional equation. Let us

give a precise formulation.

For an s ∈ C with �(s) > 0, we define a continuous function |P (v)|sj on

V by

|P (v)|sj =

{
|P (v)|s , v ∈ Ωj ,

0, v �∈ Ωj .

The function |P (v)|sj can be extended to a tempered distribution depending

on s in C meromorphically. Similarly we define |P ∗(v∗)|sj (s ∈ C).
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We denote the spaces of rapidly decreasing functions on the real vector

spaces V and V ∗ by S(V ) and S(V ∗), respectively. For Φ ∈ S(V ) and

Φ∗ ∈ S(V ∗), we define the local zeta functions by setting

ζi(s,Φ) =

∫
V
|P (v)|si Φ(v) dv,

ζ∗i (s,Φ∗) =

∫
V ∗
|P ∗(v∗)|si Φ∗(v∗) dv∗ (i = 1, . . . , ν).

It is well-known that the local zeta functions ζi(s,Φ), ζ∗i (s,Φ∗) are abso-

lutely convergent for �(s) > 0, and have analytic continuations to mero-

morphic functions of s in C. We assume the following:

(A.3) A local functional equation of the form

ζ∗i (s, Φ̂) =

ν∑
j=1

Γij(s)ζj(−
n

d
− s,Φ) (i = 1, . . . , ν)(1.1)

holds for every Φ ∈ S(V ), where Γij(s) are meromorphic functions on

C not depending on Φ with det(Γij(s)) �= 0 and

Φ̂(v∗) =

∫
V

Φ(v) exp(−2π
√
−1〈v, v∗〉) dv,

the Fourier transform of Φ.

We put

P̃ (w) = P (Q(w)), P̃ ∗(w∗) = P ∗(Q∗(w∗))

Ω̃i = Q−1(Ωi), Ω̃∗
i = Q∗−1(Ω∗

i ) (i = 1, . . . , ν).

Some of Ω̃i’s and Ω̃∗
i ’s may be empty. We define

∣∣∣P̃ (w)
∣∣∣s
i

and
∣∣∣P̃ ∗(w∗)

∣∣∣s
i

in

the same manner as above. For Ψ ∈ S(W ) and Ψ∗ ∈ S(W ∗), we define the

zeta functions associated with P̃ and P̃ ∗ by

ζ̃i(s,Ψ) =

∫
W

∣∣∣P̃ (w)
∣∣∣s
i
Ψ(w) dw, ζ̃∗i (s,Ψ∗) =

∫
W ∗

∣∣∣P̃ ∗(w∗)
∣∣∣s
i
Ψ∗(w∗) dw∗.

We denote by Ψ̂ the Fourier transform of Ψ:

Ψ̂(w∗) =

∫
W

Ψ(w) exp(2π
√
−1〈w,w∗〉) dw.
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Theorem 1.2 ([25], Theorem 4). Under the assumptions (A.1), (A.2),

(A.3), the zeta functions ζ̃i(s,Ψ) and ζ̃∗i (s,Ψ∗) satisfy the local functional

equation

ζ̃∗i
(
s, Ψ̂

)
=

ν∑
j=1

Γ̃ij(s)ζ̃j

(
−m

2d
− s,Ψ

)
,

where the gamma factors Γ̃ij(s) are given by

Γ̃ij(s) = 22ds+m/2 |α|1/2 |β|−1
ν∑

k=1

e

[
pk − qk

8

]
Γik(s)Γkj

(
s+

m− 2n

2d

)
,

where α, β are the constants defined in Remark 1.1 (1) and (pk, qk) is the

signature of the quadratic form Q∗
v for v ∈ Ωk.

Remark 1.2. (1) The signature (pk, qk) of Q∗
v(w

∗) does not depend on

the choice of v, since Ωk is connected.

(2) In [25], the theorem is formulated for multi-variable zeta functions.

Here we restrict ourselves to single variable zeta functions for simplicity.

The theory of prehomogeneous vector spaces (see [28], [30], [23], [17])

provides a lot of examples of P and P ∗ satisfying (A.1) and (A.3). There-

fore, if one can construct dual non-degenerate quadratic mappings to a

prehomogeneous vector space, then by Theorem 1.2, one obtains a new lo-

cal functional equation. In [8, Chapter XVI], Faraut and Koranyi proved

that, starting from a representation of a Euclidean Jordan algebra, one can

construct polynomials satisfying local functional equations (see also Clerc

[4]). Theorem 1.2 generalizes their result (see [25, §2.2]).

The Faraut-Koranyi construction is especially interesting in the case of

the simple Euclidean Jordan algebras of rank 2, since the polynomials P̃

obtained in this case are not relative invariants of prehomogeneous vector

spaces except for some low-dimensional cases, as is noticed in [4] (without

specifying the low-dimensional exceptions explicitly). Let us explain this

non-prehomogeneous example without referring to Jordan algebra. Let V

be the q + 1-dimensional real quadratic space of signature (1, q). We fix a

basis {e0, e1, . . . , eq} of V , for which the quadratic form is given by

P (v) = v2
0 − v2

1 − · · · − v2
q .
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Denote by Cq the Clifford algebra of the positive definite quadratic form

v2
1 +· · ·+v2

q and consider a representation S : Cq →M(m; R) of Cq on anm-

dimensional R-vector space. We may assume that Si := S(ei) (i = 1, . . . , q)

are symmetric matrices. We denote by W = R
m the representation space

of S, and define a quadratic mapping Q : W → V by

Q(w) = (tww)e0 +

q∑
i=1

Si[w]ei.

Then, if P̃ (w) = P (Q(w)) = (tww)2−
∑q

i=1(Si[w])2 does not vanish identi-

cally, Q is a self-dual non-degenerate quadratic mapping and, by Theorem

1.2, P̃ satisfies a local functional equation. In the next section, we gener-

alize this construction by classifying the self-dual non-degenerate quadratic

mappings to real non-degenerate quadratic spaces of arbitrary signature.

Remark 1.3. In [11], Ishi proved that, if V is the underlying vec-

tor space of a semisimple (not necessarily Euclidean) Jordan algebra, P

is the determinant of the Jordan algebra and Q : W → V is a self-dual

non-degenerate quadratic mapping, then the mapping v �→ Q∗
v induces a

representation of the Jordan algebra V .

2. Local Functional Equations of Clifford Quartic Forms

2.1. Self-dual quadratic mappings and representations of Clifford

algebras

Let p, q be non-negative integers, V a real p+q-dimensional vector space

and consider a quadratic form P (v) of signature (p, q) on V . We often write

n = dimV = p + q. We assume that n = p + q ≥ 3. Then the quadratic

form P (v) is absolutely irreducible. Fix a basis {e1, . . . , ep+q} of V , which

is called the standard basis, satisfying

P

(
p+q∑
i=1

viei

)
=

p∑
i=1

v2
i −

q∑
j=1

v2
p+j .

We identify V with R
p+q with the standard basis, and also with its dual

vector space via the standard inner product (v, v∗) = v1v
∗
1 + · · ·+ vp+qv

∗
p+q.

Put Ω = V \ {P = 0}. We determine the quadratic mappings Q : W → V
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that are self-dual with respect to the biregular mapping φ : Ω −→ Ω defined

by

φ(v) :=
1

2
grad logP (v) =

1

P (v)
(v1, . . . , vp,−vp+1, . . . ,−vp+q).

By a quadratic mappingQ ofW = R
m to V = R

p+q, we mean a mapping

defined by

Q(w) = (S1[w], . . . , Sp+q[w])

for some real symmetric matrices S1, . . . , Sp+q of size m. For v =

(v1, . . . , vp+q) ∈ R
p+q, we put

S(v) =

p+q∑
i=1

viSi.

Then, by definition, the mapping Q is self-dual with respect to φ if and only

if

S(v)S(φ(v)) = 1m (v ∈ Ω).

If we put

εi =

{
1 (1 ≤ i ≤ p),
−1 (p+ 1 ≤ i ≤ p+ q),

(2.1)

this condition is equivalent to the polynomial identity

p∑
i=1

v2
i S

2
i −

q∑
j=1

v2
p+jS

2
p+j +

∑
1≤i<j≤p+q

vivj (εjSiSj + εiSjSi) = P (v)1m.

This identity holds if and only if

S2
i = 1m (1 ≤ i ≤ p+ q),(2.2)

SiSj =

{
SjSi (1 ≤ i ≤ p < j ≤ p+ q or 1 ≤ j ≤ p < i ≤ p+ q)

−SjSi (1 ≤ i, j ≤ p or p+ 1 ≤ i, j ≤ p+ q).
.(2.3)

This means that the linear map S : V → Sym(m; R) can be extended to a

representation of the tensor product of the Clifford algebra Cp of v2
1+· · ·+v2

p



Clifford Quartic Forms 803

and the Clifford algebra Cq of v2
p+1+· · ·+v2

p+q. We denote the tensor product

Cp ⊗ Cq by Rp,q.

Conversely, if we are given a representation ρ : Rp,q → M(m; R), then

we can obtain a self-dual quadratic mapping Q : W = R
m → V . Indeed,

the images of the standard basis S1 = ρ(e1), . . . , Sp+q = ρ(ep+q) satisfy the

relations above. (We always identify ei⊗1 (resp. 1⊗ei) with ei for 1 ≤ i ≤ p
(resp. p+ 1 ≤ i ≤ p+ q).) Moreover, since Rp,q is semisimple, ρ is a direct

sum of irreducible representations. Any irreducible representation of Rp,q is

a tensor product of an irreducible representation of Cp and an irreducible

representation of Cq. Hence, Si is of the form (ρ1 ⊗ ρ′1)(ei) ⊥ · · · ⊥ (ρr ⊗
ρ′r)(ei) for some representations ρ1, . . . , ρr of Cp and some representations

ρ′1, . . . , ρ
′
r of Cq. Therefore, by the following lemma (applied to the positive

definite case), we may take symmetric matrices as S1, . . . , Sp+q (by taking

conjugate, if necessary), and then the mappingQ(w) = (S1[w], . . . , Sp+q[w])

is self-dual.

Lemma 2.1. Let P be a quadratic form on V = R
p+q of signature

(p, q) and let e1, . . . , ep+q be the standard basis of V such that P (

p+q∑
i=1

viei) =

p∑
i=1

v2
i −

q∑
j=1

v2
p+j . Denote by Cp,q the Clifford algebra of the quadratic form

P and let ρ : Cp,q → M(m; R) be a representation of Cp,q. Then, in the

equivalence class of ρ, there exists a representation with the property that

ρ(ei) is a symmetric matrix for 1 ≤ i ≤ p and a skew-symmetric matrix for

p+ 1 ≤ i ≤ p+ q.

Proof. By the definition of the Clifford algebra Cp,q, we have

e2i = 1 (1 ≤ i ≤ p), e2i = −1 (p+ 1 ≤ i ≤ p+ q),

eiej = −eiej (i �= j).

Hence, the multiplicative group G generated by {−1, e1, . . . , ep+q} is a finite

group and ρ gives a group-representation of G on R
m. Therefore, if we

replace ρ by an equivalent representation if necessary, we may assume that

every element in G is represented by an orthogonal matrix. Then ρ(ei) =

ρ(ei)
−1 = tρ(ei) for 1 ≤ i ≤ p, and ρ(ei) = −ρ(ei)−1 = −tρ(ei) for p + 1 ≤

i ≤ p+ q. �
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Thus we have proved the following theorem on the correspondence be-

tween self-dual quadratic mappings and representations of Rp,q.

Theorem 2.2. Self-dual quadratic mappings Q of W = R
m to the

quadratic space (V, P ) correspond to representations ρ of Rp,q = Cp ⊗ Cq

such that ρ(V ) is contained in Sym(m; R).

We call the symmetric matrices S1 = ρ(e1), . . . , Sp+q = ρ(ep+q) the basis

matrices of ρ.

Remark 2.1. The construction above is a generalization of the

quadratic mappings obtained from representations of simple Euclidean Jor-

dan algebra of rank 2 in the theory of Faraut-Koranyi [8]. In the case

(p, q) = (1, q), we have C1
∼= R ⊕ R and R1,q = C1 ⊗ Cq

∼= Cq ⊕ Cq.

Hence representations of R1,q can be identified with the direct sum of two

Cq-modules W+ and W−. On W+ (resp. W−), e1 acts as multiplication

by +1 (resp. −1). The quadratic mappings given by the Faraut-Koranyi

construction correspond to representations of R1,q for which W− = {0}.

Later we need the following lemma on canonical forms of basis matrices.

Lemma 2.3. Assume that p ≥ 2 and let ρ be a representation of Rp,q.

Then the dimension m of ρ is even. Put d = m/2. Let S1 = ρ(e1), . . . ,

Sp+q = ρ(ep+q) be the basis matrices of ρ. Then the signature of Si (1 ≤ i ≤
p) is (d, d) and (by replacing ρ by an equivalent representation, if necessary,)

we can take the basis matrices of the form

S1 =

(
1d 0

0 −1d

)
, Si =

(
0 Bi

tBi 0

)
(2 ≤ i ≤ p),

Sp+j =

(
Aj 0

0 Aj

)
(1 ≤ j ≤ q).

Here A1, . . . , Aq are the basis matrices of some d-dimensional representation

of R0,q = Cq, B2 = 1d, and B3, . . . , Bp are orthogonal and skew symmetric

matrices. Moreover they satisfy the commutation relations

AiAj = −AjAi (1 ≤ i < j ≤ q), BiBj = −BjBi (3 ≤ i < j ≤ p),
AiBj = BjAi (1 ≤ i ≤ q, 3 ≤ j ≤ p).
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Proof. Since S2
1 = 1m, we may assume that S1 = 1r,m−r. Then, by

the anti-commutativity SiSj = −SjSi, the symmetric matrices Si (2 ≤ i ≤
p) are of the form

Si =

(
0r Bi
tBi 0m−r

)
, Bi ∈M(r,m− r; R).

Since S2
i = 1m, we have r = m − r and Bi is orthogonal. This shows that

m is even and the signatures of S1, . . . , Sp are equal to (d, d) (d = m/2).

Put B̃2 = tB2 ⊥ 1d. By replacing all the Si by B̃2SiB̃
−1
2 , we may assume

that S1 = 1d,d and B2 = 1d. The commutation relations S2Si = −SiS2

(3 ≤ i ≤ p) imply that Bi (3 ≤ i ≤ p) are skew-symmetric. The remaining

part of the lemma is also a straightforward consequence of the commutation

relations (2.2) and (2.3). �

2.2. Structure of Rp,q

It is well-known that the structure of Cp depends on p mod 8 as the

following lemma shows (see [21], [22], [34]):

Lemma 2.4. The structure of Cp is given by the following table:

p Cp

p ≡ 0 (mod 8) M(2p/2; R)

p ≡ 1 (mod 8) M(2(p−1)/2; R)⊕M(2(p−1)/2; R)

p ≡ 2 (mod 8) M(2p/2; R)

p ≡ 3 (mod 8) M(2(p−1)/2; C)

p ≡ 4 (mod 8) M(2(p−2)/2; H)

p ≡ 5 (mod 8) M(2(p−3)/2; H)⊕M(2(p−3)/2; H)

p ≡ 6 (mod 8) M(2(p−2)/2; H)

p ≡ 7 (mod 8) M(2(p−1)/2; C)

We denote by R+
p,q the subalgebra of Rp,q consisting of all the even

elements, namely, the subalgebra generated by eiej (1 ≤ i < j ≤ p + q).

The structure of Rp,q and R+
p,q is easily seen from Lemma 2.4.
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Lemma 2.5. Put n = p + q. Then the structure of Rp,q and R+
p,q is

given by the following table:

Type (Rp,q, R
+
p,q) - r (K,K′) {p mod 8, q mod 8}

2n/2 2n/2−1 (R,C) {0, 2}, {4, 6}

I (T, T ′)
2(n−1)/2 2(n−1)/2 (C,R) {0, 7}, {2, 3}, {3, 4}, {6, 7}
2(n−1)/2 2(n−1)/2−1 (C,H) {0, 3}, {2, 7}, {3, 6}, {4, 7}
2n/2−1 2n/2−1 (H,C) {0, 6}, {2, 4}

II (T, 2T ′)
2n/2 2n/2−1 (R,R) {0, 0}, {2, 2}, {4, 4}, {6, 6}

2n/2−1 2n/2−2 (H,H) {0, 4}, {2, 6}
2(n−1)/2 2(n−1)/2 (R,R) {0, 1}, {1, 2}, {4, 5}, {5, 6}

III (2T, T ′) 2n/2−1 2n/2−1 (C,C) {1, 3}, {1, 7}, {3, 5}, {5, 7}
2(n−3)/2 2(n−3)/2 (H,H) {0, 5}, {1, 4}, {1, 6}, {2, 5}

IV (2T, 2T ′)
2n/2−1 2n/2−1 (C,R) {3, 3}, {7, 7}
2n/2−1 2n/2−2 (C,H) {3, 7}

V (4T, 2T ′)
2n/2−1 2n/2−1 (R,R) {1, 1}, {5, 5}
2n/2−2 2n/2−2 (H,H) {1, 5}

where T (resp. T ′) denotes the matrix algebra M(-; K) (resp. M(r; K′)), and

2T (resp. 2T ′, 4T ) denotes T ⊕ T (resp. T ′ ⊕ T ′, T ⊕ T ⊕ T ⊕ T ).

The number of inequivalent irreducible representations of Rp,q is equal

to the number of simple components, namely, 1 for type I and II , 2 for

type III and IV, and 4 for type V. The dimension over R of the irreducible

representations of Rp,q is given by -dimRK, which is a power of 2. As in

Lemma 2.1, we denote by Cp,q the Clifford algebra of the quadratic form P

and by C+
p,q the subalgebra of Cp,q of even elements. Then the algebra R+

p,q

is isomorphic to C+
p,q, while Rp,q is not necessarily isomorphic to Cp,q. The

isomorphism of R+
p,q to C+

p,q is given by eiej �→ εj ẽiẽj , where ẽi denotes the

element ei ∈ V viewed as an element in Cp,q and εi’s are the same as in

(2.1).

Let kp,q be the real vector space spanned by eiej (1 ≤ i < j ≤ p + q).

Then kp,q is a Lie subalgebra of Rp,q with bracket product [X,Y ] := XY −
Y X.
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Lemma 2.6. The Lie algebra kp,q is isomorphic to

so(p, q) =
{
X ∈M(p+ q; R)

∣∣ tX1p,q + 1p,qX = 0
}

and a representation ρ of Rp,q on a vector space W induces a Lie algebra

representation of kp,q, which is a direct sum of real (half-) spin representa-

tions of so(p, q). The self-dual quadratic map Q : W → V corresponding

to ρ is Spin(p, q)-equivariant. Here, Spin(p, q) denotes the real spin group,

which is a double covering group of the identity component of the orthogonal

group SO(p, q).

Proof. For Y ∈ kp,q, we have

d

dt
Sk[exp(tρ(Y ))w]

∣∣∣∣
t=0

= (tρ(Y )Sk + Skρ(Y ))[w] (w ∈W ).

In case Y = eiej (i �= j), the relations (2.2) and (2.3) imply that

tρ(Y )Sk + Skρ(Y ) = t(SiSj)Sk + Sk(SiSj) =




0 (k �= i, j),

2Sj (k = i),

−2εiεjSi (k = j).

This shows that a Lie algebra isomorphism f of kp,q onto so(p, q) is defined

by

f(eiej) = Xij := 2Eij − 2εiεjEji (1 ≤ i < j ≤ p+ q)

(Eij is the matrix unit) and Q satisfies the identity

d

dt
Q(exp(tρ(Y ))w)

∣∣∣∣
t=0

=
d

dt
exp(tf(Y ))Q(w)

∣∣∣∣
t=0

.

This shows that Q is Spin(p, q)-equivariant, since Spin(p, q) is connected

for p + q ≥ 3 (see [34, Theorem 5.4.7]). The representation of kp,q on W

generates the representation ρ of the algebra R+
p,q which is isomorphic to

the even Clifford algebra C+
p,q. Hence the representation of kp,q on W is

equivalent to a direct sum of real (half-) spin representations. �

The following distinction between representations will play an important

role later.
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Definition 2.7. For a representation ρ of Rp,q, denote by ρC the com-

plexification of ρ, which is a representation of Rp,q ⊗ C. ρ is called pure, if

the restriction of ρC to R+
p,q⊗C is isotypic, namely, it is a direct sum of sev-

eral copies of a single irreducible representation of R+
p,q ⊗ C. If ρC contains

inequivalent irreducible representations of R+
p,q ⊗ C, then ρ is called mixed.

2.3. Clifford quartic forms and local zeta functions

Let p, q be non-negative integers satisfying n = p+ q ≥ 3. Since Rp,q is

isomorphic to Rq,p and the results are symmetric with respect to p and q,

it is sufficient to describe our results only for the case where p ≥ q.
Let S1, . . . , Sp+q be the basis matrices of an m-dimensional representa-

tion ρ of Rp,q, and define the quadratic mapping Q : W = R
m → V = R

p+q

by

Q(w) = (S1[w], . . . , Sp+q[w]) (w ∈W ).

We put

P (v) =

p∑
i=1

v2
i −

q∑
j=1

v2
p+j , P̃ (w) = P (Q(w)) =

p∑
i=1

Si[w]2 −
q∑

j=1

Sp+j [w]2.

We call the polynomial P̃ (w) of degree 4 the Clifford quartic form associated

with ρ.

Lemma 2.8. The quadratic mapping Q is non-degenerate if and only

if the Clifford quartic form P̃ (w) does not vanish identically.

Proof. The only if part is obvious. Let us prove the if part. By

Lemma 2.6, GL(1)×Spin(p, q) acts on V (resp.W ) as the vector representa-

tion (resp. (a direct sum of several copies of) the spin representation) and Q

is GL(1)×Spin(p, q)-equivariant. Moreover the action of GL(1)×Spin(p, q)

on V gives a prehomogeneous vector space and the open orbit Ω is given by

{v ∈ V |P (v) �= 0}. Hence, the if part follows from [25, Lemma 6]. �

By Theorem 1.2 and Lemma 2.8, if the Clifford quartic form P̃ does not

vanish identically, then the local zeta functions of P̃ satisfy a local functional

equation with an explicit gamma factor. We see later in Theorem 3.1 that

the quadratic mapping Q corresponding to anm-dimensional representation
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of Rp,q is non-degenerate and P̃ does not vanish identically, if and only if

(p, q,m) is different from any one of

(2, 1, 2), (3, 1, 4), (5, 1, 8), (9, 1, 16), (2, 2, 4), (3, 3, 8), (5, 5, 16).

Now we describe the explicit formula for the local functional equations.

Lemma 2.9. For p ≥ q ≥ 0 with p+ q ≥ 3, we put

Ω =
{
v ∈ R

p+q
∣∣ P (v) �= 0

}
, P (v) =

p∑
i=1

v2
i −

q∑
j=1

v2
p+j .

Then, the decomposition of Ω into connected components is given as follows:

(1) If (p, q) = (p, 0) with p ≥ 3, then Ω is connected and we have Ω =

Ω+ := {v ∈ R
p | P (v) > 0}.

(2) If (p, q) = (p, 1) with p ≥ 2, then we have Ω = Ω+ ∪ Ω−,+ ∪ Ω−,−,

where

Ω+ =
{
v ∈ R

p+1
∣∣ P (v) > 0

}
,

Ω−,+ =
{
v ∈ R

p+1
∣∣ P (v) < 0, vp+1 > 0

}
,

Ω−,− =
{
v ∈ R

p+1
∣∣ P (v) < 0, vp+1 < 0

}
.

(3) If p, q ≥ 2, then we have Ω = Ω+ ∪ Ω−, where

Ω+ =
{
v ∈ R

p+q
∣∣ P (v) > 0

}
, Ω− =

{
v ∈ R

p+q
∣∣ P (v) < 0

}
.

Put Ω̃± = Q−1(Ω±) and Ω̃−,± = Q−1(Ω−,±). Then, for Ψ ∈ S(W ), the

local zeta functions of the Clifford quartic form P̃ is defined by

ζ̃±(s,Ψ) =

∫
Ω̃±

∣∣∣P̃ (w)
∣∣∣s Ψ(w) dw,

ζ̃−,±(s,Ψ) =

∫
Ω̃−,±

∣∣∣P̃ (w)
∣∣∣s Ψ(w) dw.

(2.4)
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By the general theory in §1, the local zeta functions ζ̃±(s; Ψ), ζ̃−,±(s; Ψ)

can be continued to meromorphic functions of s in C, and satisfy the func-

tional equations in Theorem 1.2. Let us calculate several constants appear-

ing in the gamma factors Γ̃ij(s) in Theorem 1.2.

For v ∈ R
p+q with P (v) �= 0, the signature of the symmetric matrix

S(v) =
∑p+q

i=1 viSi depends only on the connected component to which v

belongs. For each connected component Ωη, Ω−,η (η = ±1) we define γ =

γη, γ−,η by

γ = e

[
σ+ − σ−

8

]
,

where σ+ and σ−, respectively, are the numbers of positive and negative

eigenvalues of S(v) for a point v ∈ Ωη or Ω−,η. An explicit formula for the

constants γ is given by the following lemma.

Lemma 2.10. Assume that p ≥ q ≥ 0.

(1) If p ≥ 3, q = 0, then γ = 1.

(2) If p ≥ 2, q = 1, then

γ+ = 1, γ−,η =




(
√
−1)η(k+−k−) (p = 2)

(−1)k+−k− (p = 3)

1 (p ≥ 4)

(η = ±),

where k+ (resp. k−) is the multiplicity in ρ of the irreducible repre-

sentations of Rp,1 for which ep+1 acts as multiplication by +1 (resp.

−1).

(3) If p ≥ q ≥ 2, then γ+ = γ− = 1.

Proof. The constant γ does not depend on the choice of a representa-

tive v of Ωητ . Hence we may take v = t(±1, 0, . . . , 0) or v = t(0, . . . , 0,±1).

Then S(v) = ±S1 or ±Sp+q.

(1) If p ≥ 2, by Lemma 2.3, the signature of S1 is (m2 ,
m
2 ). Hence we

have γ = 1.

(2) The proof of γ+ = 1 is quite the same as that for (1). Let d be the

dimension of irreducible representations of Cp. (Note that all the irreducible
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representations are of the same dimension.) Then Sp+1 = Idk+,dk− and we

have σ+− σ− = d(k+− k−). Since d = 2 for p = 2, d = 4 for p = 3, and 8|d
for p ≥ 3, this implies the fourth assertion.

(5) The last assertion is obvious from Lemma 2.3. �

Lemma 2.11. The constants α, β defined in Remark 1.1 (1) are given

by

α = ±1, β = (−1)q+1.

Proof. Put n := p + q = dimV . For v ∈ V , we put εv =

(ε1v1, . . . , εnvn), where εi’s are given by (2.1). Then, by (2.2) and (2.3),

we have S(v)S(εv) = P (v)1m and detS(v) detS(εv) = P (v)m. Since

detS(v) = αP (v)m/2, and detS(εv) = αP (εv)m/2 = αP (v)m/2, this proves

that α = ±1. The Jacobian

det

(
∂φ(v)i
∂vj

)

= det




1

P (v)



ε1 0 · · · 0

0 ε2
. . .

...
...

. . .
. . . 0

0 · · · 0 εn




− 2

P (v)2




(ε1v1)
2 (ε1v1)(ε2v2) · · · (ε1v1)(εnvn)

(ε2v2)(ε1v1) (ε2v2)
2

. . .
...

...
. . .

. . . (εn−1vn−1)(εnvn)
(εnvn)(ε1v1) · · · (εnvn)(εn−1vn−1) (εnvn)2







is an SO(p, q)-invariant homogeneous rational function of degree −2n and

is equal to βP (v)−n. We can obtain β easily by taking v = t(1, 0, . . . , 0). �

We define the local zeta functions for the quadratic form P (v) by (the

analytic continuations of) the integrals

ζ±(s,Φ) =

∫
Ω±

|P (v)|s Φ(v) dv,

ζ−,±(s,Φ) =

∫
Ω−,±

|P (v)|s Φ(v) dv (Φ ∈ S(Rn)).
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Lemma 2.12. For any Φ ∈ S(Rn) (n = p+ q), the following functional

equations hold:

(1) Assume that (p, q) = (n, 0). Then

ζ+

(
s, Φ̂

)
= −π−(2s+n/2+1)Γ(s+ 1)Γ

(
s+

n

2

)
sin (sπ) ζ+

(
−s− n

2
,Φ

)
.

(2) Assume that (p, q) = (n− 1, 1). Then

ζ+

(
s, Φ̂

)
ζ−,+

(
s, Φ̂

)
ζ−,−

(
s, Φ̂

)

 = π−(2s+n/2+1)Γ(s+ 1)Γ

(
s+

n

2

)

×


− cos (sπ) − cos

(
nπ
2

)
− cos

(
nπ
2

)
1
2

1
2e

[
−2s+n

4

]
1
2e

[
2s+n

4

]
1
2

1
2e

[
2s+n

4

]
1
2e

[
−2s+n

4

]



×


 ζ+

(
−s− n

2 ,Φ
)

ζ−,+

(
−s− n

2 ,Φ
)

ζ−,−
(
−s− n

2 ,Φ
)

 .

(3) Assume that p, q ≥ 2 and put n = p+ q. Then
ζ+

(
s, Φ̂

)
ζ−

(
s, Φ̂

)

 = π−(2s+n/2+1)Γ(s+ 1)Γ

(
s+

n

2

)

×


− sin

(
(2s+q)π

2

)
sin

(pπ
2

)
sin

( qπ
2

)
− sin

(
(2s+p)π

2

)



×
(
ζ+

(
−s− n

2 ,Φ
)

ζ−
(
−s− n

2 ,Φ
)) .

Proof. The first and the third functional equations are well-known

(see, e.g., [17, §4.2]). The second functional equation can be derived from

the two-variable functional equations given in [20, §, Theorem 2] or [24,

Theorem 3.6] by specialization of a variable. (It is also contained in [31].) �



Clifford Quartic Forms 813

Now we have all the necessary data for the description of the local func-

tional equations satisfied by the Clifford quartic forms.

For simplicity, we give explicit formulas for the local functional equations

under the assumption that

“the constants γ are equal to 1 and m = dimW ≥ 8.”(2.5)

Theorem 2.13. If Q is non-degenerate and the assumption (2.5) is

satisfied, then the local zeta functions ζ̃±(s,Ψ), ζ̃−,±(s,Ψ) (Ψ ∈ S(W ))

satisfy the following local functional equations:

(1) Assume that (p, q) = (n, 0). Then

ζ̃+

(
s, Ψ̂

)
= 24s+m/2π−4s−2−m/2Γ(s+ 1)Γ

(
s+

n

2

)
× Γ

(
s+ 1 +

m− 2n

4

)
Γ
(
s+

m

4

)
× sin(πs) sinπ

(
s− n

2

)
ζ̃+

(
−m

4
− s,Ψ

)
.

(2) Assume that (p, q) = (n− 1, 1). Then



ζ̃+

(
s, Ψ̂

)
ζ̃−,+

(
s, Ψ̂

)
ζ̃−,−

(
s, Ψ̂

)



= 24s+m/2π−4s−2−m/2Γ(s+ 1)Γ
(
s+

n

2

)
Γ

(
s+ 1 +

m− 2n

4

)
Γ
(
s+

m

4

)

× sinπs


− sinπ

(
s− n

2

)
0 0

− sin
(
nπ
2

)
− sinπ

(
s+ n

2

)
0

− sin
(
nπ
2

)
0 − sinπ

(
s+ n

2

)



×


 ζ̃+

(
−m

4 − s,Ψ
)

ζ̃−,+

(
−m

4 − s,Ψ
)

ζ̃−,−
(
−m

4 − s,Ψ
)

 .
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(3) Assume that p, q ≥ 2 and put n = p+ q. Then
ζ̃+

(
s, Ψ̂

)
ζ̃−

(
s, Ψ̂

)



= 24s+m/2π−4s−2−m/2Γ(s+ 1)Γ
(
s+

n

2

)
Γ

(
s+ 1 +

m− 2n

4

)
Γ
(
s+

m

4

)
× sinπs

(
sinπ

(
s+ q−p

2

)
−2 sin πp

2 cos πq
2

−2 sin πq
2 cos πp

2 sinπ
(
s+ p−q

2

))(
ζ̃+

(
−m

4 − s,Ψ
)

ζ̃−
(
−m

4 − s,Ψ
)) .

Remark 2.2. The non-degenerate cases that are excluded by the as-

sumption (2.5) are

(p, q) = (2, 1), (3, 1) and (p, q,m) = (3, 0, 4).

In these cases, the Clifford quartic forms are relative invariants of preho-

mogeneous vector spaces of rather simple structure (see Theorems 3.1 and

3.2) and the local functional equations are well-known. As we shall see in

Theorem 3.2, the Clifford quartic form is not a relative invariant of any pre-

homogeneous vector space except for some low-dimensional cases, for which

the local functional equations are new.

2.4. The Clifford quartic forms are homaloidal

A homogeneous rational function f on a finite-dimensional vector space

V is called homaloidal, if

the mapping P(V) −→ P(V∗) defined by v �→ grad f(v) is bira-

tional, equivalently,

the mapping V −→ V∗ defined by v �→ grad log f(v) is bira-

tional.

For a homaloidal homogeneous rational function f , there exists a ratio-

nal function f∗ satisfying the identity f∗(grad log f(v)) = 1/f(v), which

is called the multiplicative Legendre transform of f . Following [6], we call

a polynomial f a homaloidal EKP-polynomial if f is homaloidal and its

multiplicative Legendre transform f∗ is also a polynomial.

By definition, a regular prehomogeneous vector space has homaloidal

relatively invariant polynomials. As we mentioned in the introduction, it
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is rather difficult to construct homaloidal polynomials that are not relative

invariants of prehomogeneous vector spaces and the classification of homa-

loidal polynomials has been done only for some special cases:

• Cubic homaloidal EKP-polynomials are classified by Etingof-

Kazhdan-Polishchuk ([7]).

• Homaloidal polynomials in 3 variables without multiple factors are

classified by Dolgachev ([6]).

• In [3]. Bruno determined when a product of linear forms is homaloidal.

All the homaloidal polynomials classified in these works are relative in-

variants of prehomogeneous vector spaces, and Etingof, Kazhdan and Pol-

ishchuk ([7, §3.4, Question 1]) asked whether homaloidal EKP-polynomials

are relative invariants of regular prehomogeneous vector spaces.

The following theorem shows that the Clifford quartic forms are counter

examples of degree 4 to the question raised by Etingof, Kazhdan and Pol-

ishchuk, since most of Clifford quartic forms are non-prehomogeneous as

will be shown in Theorem 3.2.

Theorem 2.14. Let S1, . . . , Sp+q be the basis matrices of a represen-

tation Rp,q. Then the Clifford quartic form

P̃ (w) =

p∑
i=1

Si[w]2 −
q∑

j=1

Sp+j [w]2

is a homaloidal EKP-polynomials, unless it vanishes identically. The mul-

tiplicative Legendre transform of P̃ coincides with P̃ itself up to a constant

factor.

Proof. Since gradSi[w] = 2Siw, we have

grad P̃ (w) = t

(
∂P̃

∂w1
(w), . . . ,

∂P

∂wm
(w)

)
= 22

p+q∑
i=1

εiSi[w]Siw,

where εi (1 ≤ i ≤ p+ q) are defined by (2.1). Let us calculate

P̃ (grad P̃ (w)) =

p+q∑
i=1

εiSi[grad P̃ (w)]2
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For any i, we have

2−4Si[grad P̃ (w)] = Si


p+q∑
j=1

εjSj [w]Sjw




=

p+q∑
j=1

Sj [w]2(SjSiSj) [w]

+
∑

1≤j<k≤p+q

εjεkSj [w]Sk[w](SjSiSk + SkSiSj) [w] .

From the commutation relations (2.2) and (2.3), it follows that

SjSiSj =

{
Si (i = j),

−εiεjSi (i �= j),

SjSiSk + SkSiSj =




0 (j �= k, j �= i, k �= i),

2Sj (k = i),

2Sk (j = i).

Hence

2−4Si[grad P̃ (w)] = Si[w]3 − εiSi[w]
∑
j �=i

εjSj [w]2 + 2εiSi[w]
∑
j �=i

εjSj [w]2

= Si[w]3 + εiSi[w]
∑
j �=i

εjSj [w]2

= εiSi[w]P̃ (w).

Thus we obtain

P̃ (grad P̃ (w)) = 28P̃ (w)3.

In other words,

P̃ (grad(log P̃ )(w)) = P̃ (P̃ (w)−1grad P̃ (w)) = 28P̃ (w)−1.

This shows that the multiplicative Legendre transform of P̃ coincides with

P̃ itself (up to a constant factor). Consequently, by [7, Proposition 3.6], P̃

is a homaloidal EKP-polynomial. �
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Remark 2.3. Some examples of non-prehomogeneous homaloidal

polynomials are constructed by Ciliberto, Russo, and Simis ([5, §3]). Other

examples of non-prehomogeneous (reducible) homaloidal rational functions

are given by Letac and Massam ([19]).

3. Clifford Quartic Forms and Prehomogeneous Vector Spaces

3.1. Main results

Let ρ be a representation of Rp,q on an m-dimensional real vector space

W and let P̃ (w) be the associated Clifford quartic forms. Then, P̃ (w) is

not a relative invariant of any prehomogeneous vector space except for some

low-dimensional cases, and the local functional equation satisfied by P̃ (w)

in Theorem 2.13 is not covered by the theory of prehomogeneous vector

spaces. In this section we determine when P̃ (w) is a relative invariants of a

prehomogeneous vector space.

The main results are the following:

Theorem 3.1. The quadratic mapping Q associated to ρ is non-degen-

erate (equivalently, the Clifford quartic form does not vanish identically), if

and only if

(p, q,m) �= (2, 1, 2), (3, 1, 4), (5, 1, 8), (9, 1, 16), (2, 2, 4), (3, 3, 8), (5, 5, 16).

Theorem 3.2. (1) A Clifford quartic form is not a relative invariant

of any prehomogeneous vector space if and only if


p+ q = 5, m > 8;

p+ q = 6, m > 16 and ρ is mixed;

p+ q = 7, 8, 9, m > 16;

p+ q = 10, m > 32, or m = 32 and ρ is mixed;

p+ q = 11, m > 32;

p+ q ≥ 12.

(For the definition of mixed representation, see Definition 2.7.)

(2) The prehomogeneous vector spaces having Clifford quartic forms as

a relative invariant are the spaces listed in Table 1 in p.819. In Table 1, we

denote by Λ1 the standard representation of gl(k,K) on K
k for K = R,C,H.
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We also denote by Λ1 the representations of classical groups obtained from

the following natural inclusions

SO(k1, k2) ↪→ GL(k1 + k2,R), SO(k,C) ↪→ GL(k,C),

SO∗(2k) ↪→ GL(k,H),

Sp(k1, k2) ↪→ GL(k1 + k2,H), Sp(k,R) ↪→ GL(2k,R),

Sp(k,C) ↪→ GL(2k,C),

U(k1, k2) ↪→ GL(k1 + k2,C),

and by Λe (resp. Λo) the even (resp. odd) spin representation of Spin(p, q).

Moreover the action of GL(1,R) is the scalar multiplication.

(3) The Clifford quartic forms are absolutely irreducible, if and only if

(p+ q,m) �= (3, 2), (3, 4), (4, 4), (4, 8), (5, 8), (6, 8), (8, 16), (9, 16), (10, 16).

3.2. Structure of the groups of symmetries of Clifford quartic

forms and strategy of the proofs of Main theorems

For the proofs of Theorems 3.1 and 3.2, it is necessary to determine the

structure of the group

Gp,q(ρ) :=
{
g ∈ GL(W )

∣∣∣ P̃ (gw) = P̃ (w)
}
,

the group of symmetries of P̃ . If (GL(1,R)×Gp,q(ρ),W ) is not (a real form

of ) a prehomogeneous vector space, then there exist no prehomogeneous

vector spaces with P̃ as a relative invariant.

Let gp,q(ρ) be the Lie algebra of Gp,q(ρ). Differentiating the identity

P̃ (exp(tX)w) = P̃ (w) (X ∈ gl(W )), we have

gp,q(ρ) =

{
X ∈ gl(W )

∣∣∣∣∣
p+q∑
i=1

εiSi[w](tXSi + SiX)[w] = 0

}
,

where εi’s are as in (2.1).

First note that the group Spin(p, q) is contained in Gp,q(ρ), since, by

Lemma 2.6, we have

P̃ (gw) = P (Q(gw)) = P (gQ(w)) = P (w) (g ∈ Spin(p, q)).
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Table 1. Prehomogeneous vector spaces having Clifford quartic forms as a relative in-
variant.

(p, q) prehomogeneous vector space

(3, 0) (GL(1,H) × SO∗(2k),Λ1 ⊗ Λ1)

(2, 1) (GL(2,R) × SO(k1, k2),Λ1 ⊗ Λ1)

(4, 0) (GL(1,H) ×GL(1,H) ×GL(k,H), (Λ1 ⊗ 1 ⊗ Λ1) ⊕ (1 ⊗ Λ1 ⊗ Λ∗
1))

(3, 1) (GL(2,C) × SU(k1, k2),Λ1 ⊗ Λ1)

(2, 2) (GL(2,R) ×GL(2,R) × SL(k,R), (Λ1 ⊗ 1 ⊗ Λ1) ⊕ (1 ⊗ Λ1 ⊗ Λ∗
1))

(5, 0) (GL(1,R) × SO(8),Λ1)

(4, 1) (GL(1,R) × SO(4, 4),Λ1)

(3, 2) (GL(1,R) × SO(4, 4),Λ1)

(6, 0) (GL(2,C) × SU(4),Λ1 ⊗ Λ1)

(5, 1)
(GL(2,H) × Sp(k1, k2),Λ1 ⊗ Λ1) (k1 + k2 ≥ 2)

(GL(1,R) × SL(2,H) × SU(2) × SU(2), (Λ1 ⊗ Λ1 ⊗ 1) ⊕ (Λ∗
1 ⊗ 1 ⊗ Λ1))

(4, 2) (GL(2,C) × SU(2, 2),Λ1 ⊗ Λ1)

(3, 3)
(GL(4,R) × Sp(k,R),Λ1 ⊗ Λ1) (k ≥ 2)

(GL(1,R) × SL(4,R) × SL(2,R) × SL(2,R), (Λ1 ⊗ Λ1 ⊗ 1) ⊕ (Λ∗
1 ⊗ 1 ⊗ Λ1))

(7, 0) (GL(2,R) × SO(8),Λ1 ⊗ Λ1)

(6, 1) (GL(1,H) × SO∗(8),Λ1 ⊗ Λ1)

(5, 2) (GL(1,H) × SO∗(8),Λ1 ⊗ Λ1)

(4, 3) (GL(2,R) × SO(4, 4),Λ1 ⊗ Λ1)

(8, 0) (GL(1,R) × SO(8),Λ1 ⊗ 1) ⊕ (GL(1,R) × SO(8),Λ1 ⊗ 1)

(7, 1) (GL(1,C) × SO(8,C),Λ1)

(5, 3) (GL(1,C) × SO(8,C),Λ1)

(4, 4) (GL(1,R) × SO(4, 4),Λ1 ⊗ 1) ⊕ (GL(1,R) × SO(4, 4),Λ1 ⊗ 1)

(9, 0) (GL(1,R) × SO(16),Λ1)

(8, 1) (GL(1,R) × SO(8, 8),Λ1)

(5, 4) (GL(1,R) × SO(8, 8),Λ1)

(9, 1) (GL(2,R) × Spin(9, 1),Λ1 ⊗ Λ�) (� = e, o)

(7, 3) (GL(1,H) × Spin(7, 3),Λ1 ⊗ Λ�) (� = e, o)

(5, 5) (GL(2,R) × Spin(5, 5),Λ1 ⊗ Λ�) (� = e, o)

(10, 1) (GL(1,R) × Spin(10, 2),Λ�) (� = e, o)

(9, 2) (GL(1,R) × Spin(10, 2),Λ�) (� = e, o)

(6, 5) (GL(1,R) × Spin(6, 6),Λ�) (� = e, o)
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Hence the Lie algebra kp,q ( ∼= so(p, q)) of Spin(p, q) is contained in gp,q(ρ).

Here we identify kp,q with the image ρ(kp,q) ⊂ gl(W ), which is the Lie

subalgebra of gl(W ) spanned by {SiSj | 1 ≤ i < j ≤ p+ q}.
There exists another group contained in Gp,q(ρ). Put

Hp,q(ρ) := {g ∈ GL(W ) | Si[gw] = Si[w] (1 ≤ i ≤ p+ q)} =

p+q⋂
i=1

O(Si).

Then, it is obvious that Hp,q(ρ) is also contained in Gp,q(ρ). Since g �→
Si

tg−1Si (1 ≤ i ≤ p+q) are involutions commuting with each other, Hp,q(ρ)

is a reductive Lie group. The Lie algebra hp,q(ρ) of Hp,q(ρ) is given by

hp,q(ρ) =
{
X ∈ gl(W )

∣∣ tXSi + SiX = 0 (i = 1, . . . , p+ q)
}
.

Since SiSjX = XSiSj for any X ∈ hp,q(ρ), we have [kp,q, hp,q(ρ)] = {0}.
Moreover, from Lemma 2.6 it follows that kp,q ∩ hp,q(ρ) = {0}. We define

the subalgebra g′p,q(ρ) of gp,q(ρ) by

g
′
p,q(ρ) = kp,q + hp,q(ρ) ∼= so(p, q)⊕ hp,q(ρ).

The following two theorems are the key to the proof of our main results.

Theorem 3.3. Let ρ be an m-dimensional representation of Rp,q.

Then, we have

gp,q(ρ) = g
′
p,q(ρ)

except for the following low dimensional cases.

p+ q 3 4 5 6 7 8 9 10 11

m 2, 4 4, 8 8 8, 16 16 16 16 16, 32 32

Theorem 3.4. The Lie algebra hp,q(ρ) is isomorphic to the reductive
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Lie algebra given in the following table:

(Rp,q, R
+
p,q) (K,K′) {p mod 8, q mod 8} hp,q(ρ)

(R,C) {0, 2}, {4, 6} so(k,C)

(T, T ′)
(C,R) {0, 7}, {2, 3}, {3, 4}, {6, 7} sp(k,R)

(C,H) {0, 3}, {2, 7}, {3, 6}, {4, 7} so∗(2k)

(H,C) {0, 6}, {2, 4} sp(k,C)

(T, 2T ′)
(R,R) {0, 0}, {2, 2}, {4, 4}, {6, 6} gl(k,R)

(H,H) {0, 4}, {2, 6} gl(k,H)

(R,R) {0, 1}, {1, 2}, {4, 5}, {5, 6} so(k1, k2)

(2T, T ′) (C,C) {1, 3}, {1, 7}, {3, 5}, {5, 7} u(k1, k2)

(H,H) {0, 5}, {1, 4}, {1, 6}, {2, 5} sp(k1, k2)

(2T, 2T ′)
(C,R) {3, 3}, {7, 7} sp(k1,R)⊕ sp(k2,R)

(C,H) {3, 7} so∗(2k1)⊕ so∗(2k2)

(4T, 2T ′)
(R,R) {1, 1}, {5, 5} so(k1, k2)⊕ so(k3, k4)

(H,H) {1, 5} sp(k1, k2)⊕ sp(k3, k4)

Here k, k1, k2, k3, k4 are the multiplicities of irreducible representations in

ρ. More precisely, if Rp,q = T , then Rp,q has only one irreducible represen-

tation ρ1 and k is the multiplicity of ρ1 in ρ; if Rp,q = T ⊕ T , then Rp,q

has two irreducible representations ρ1, ρ2 and k1, k2 are the multiplicities of

ρ1, ρ2 in ρ; if Rp,q = T ⊕ T ⊕ T ⊕ T , then Rp,q has four irreducible rep-

resentations ρ1, ρ2, ρ3, ρ4 and R+
p,q has two irreducible representations (the

even and the odd half-spin representations) Λe, Λo. We may assume that

ρ1|R+
p,q

= ρ2|R+
p,q

= Λe and ρ3|R+
p,q

= ρ4|R+
p,q

= Λo. Then, k1, k2, k3, k4 are

the multiplicities of ρ1, ρ2, ρ3, ρ4 in ρ.

For the proofs of Theorems 3.1 and 3.2, we have to know how the Lie

algebra so(p, q) ⊕ hp,q(ρ) acts on W . To describe the result, we need some

notational preliminaries. We denote by Λ1 the standard representation of

gl(k,K) on K
k for K = R,C,H. We also denote by Λ1 the representations

of the classical Lie algebras obtained from the following natural inclusions

so(k1, k2) ↪→ gl(k1 + k2,R), so(k,C) ↪→ gl(k,C), so
∗(2k) ↪→ gl(k,H),

sp(k1, k2) ↪→ gl(k1 + k2,H), sp(k,R) ↪→ gl(2k,R), sp(k,C) ↪→ gl(2k,C),

u(k1, k2) ↪→ gl(k1 + k2,C).
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In case R+
p,q is a simple algebra, then we denote by Λ the representation

of kp,q
∼= so(p, q) induced by the unique irreducible representation of R+

p,q.

Namely Λ is the spin representation. In case R+
p,q is the direct sum of two

simple algebras, then we denote by Λe and Λo the irreducible representations

of kp,q
∼= so(p, q) induced by the two irreducible representations of R+

p,q.

Namely Λe and Λo are the even and odd half-spin representations. Moreover

we denote by 1 the trivial representation of a Lie algebra.

Theorem 3.5. Put g′p,q(ρ) = so(p, q) ⊕ hp,q(ρ). Then g′p,q(ρ) acts on
the representation space W of ρ as follows.

(Rp,q, R
+
p,q) (K,K ′) {p mod 8, q mod 8} Representation of g

′
p,q(ρ)

(R,C) {0, 2}, {4, 6} (so(p, q) ⊕ so(k,C),Λ ⊗ Λ1)

(T, T ′)

(C,R) {0, 7}, {2, 3}
{3, 4}, {6, 7} (so(p, q) ⊕ sp(k,R),Λ ⊗ Λ1)

(C,H) {0, 3}, {2, 7}
{3, 6}, {4, 7} (so(p, q) ⊕ so

∗(2k),Λ ⊗ Λ1)

(H,C) {0, 6}, {2, 4} (so(p, q) ⊕ sp(k,C),Λ ⊗ Λ1)

(T, 2T ′)
(R,R) {0, 0}, {2, 2}

{4, 4}, {6, 6} (so(p, q) ⊕ gl(k,R),Λe ⊗ Λ1 + Λo ⊗ Λ∗
1)

(H,H) {0, 4}, {2, 6} (so(p, q) ⊕ gl(k,H),Λe ⊗ Λ1 + Λo ⊗ Λ∗
1)

(R,R) {0, 1}, {1, 2}
{4, 5}, {5, 6} (so(p, q) ⊕ so(k1, k2),Λ ⊗ Λ1)

(2T, T ′) (C,C) {1, 3}, {1, 7}
{3, 5}, {5, 7} (so(p, q) ⊕ u(k1, k2),Λ ⊗ Λ1)

(H,H) {0, 5}, {1, 4}
{1, 6}, {2, 5} (so(p, q) ⊕ sp(k1, k2),Λ ⊗ Λ1)

(2T, 2T ′)

(C,R) {3, 3}, {7, 7} (so(p, q) ⊕ sp(k1,R) ⊕ sp(k2,R),

Λe ⊗ Λ1 ⊗ 1 + Λo ⊗ 1 ⊗ Λ1)

(C,H) {3, 7} (so(p, q) ⊕ so
∗(2k1) ⊕ so

∗(2k2),

Λe ⊗ Λ1 ⊗ 1 + Λo ⊗ 1 ⊗ Λ1)

(4T, 2T ′)

(R,R) {1, 1}, {5, 5} (so(p, q) ⊕ so(k1, k2) ⊕ so(k3, k4),

Λe ⊗ Λ1 ⊗ 1 + Λo ⊗ 1 ⊗ Λ1)

(H,H) {1, 5} (so(p, q) ⊕ sp(k1, k2) ⊕ sp(k3, k4),

Λe ⊗ Λ1 ⊗ 1 + Λo ⊗ 1 ⊗ Λ1)

The remaining sections §4 – 7 are devoted to the proofs of Theorems 3.1

– 3.5. The outline of the proofs is as follows. First we prove the “if”-part of

Theorem 3.1 in §4. Theorem 3.3 is proved in §5. We shall prove Theorem

3.4 in §6. From the proof of Theorem 3.4, we can easily read how the Lie
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algebra so(p, q) ⊕ hp,q(ρ) acts on W . So Theorems 3.4 and 3.5 are proved

at the same time.

The proofs of the “only if”-part of Theorems 3.1 and Theorem 3.2 are

given in §7. In the proof we distinguish the following three cases:

(I) (p, q,m) = (2, 1, 2), (3, 1, 4), (5, 1, 8), (9, 1, 16), (2, 2, 4), (3, 3, 8),

(5, 5, 16).

(II) (p+ q,m) = (3, 4), (4, 8), (5, 8), (6, 16), (7, 16), (8, 16), (9, 16), (10, 32),

(11, 32).

(III) The remaining cases.

For Case (I), we prove in §7.1 that the gl(1,R)⊕g′p,q(ρ)-module W gives

a prehomogeneous vector space with no non-trivial relative invariants. Since

the Clifford quartic form is a relative invariant of the prehomogeneous vector

space, it vanishes identically. This proves the “only if”-part of Theorem 3.1.

For Case (II), we prove in §7.2 that gp,q(ρ) is strictly larger than g′p,q(ρ)
and the gl(1,R) ⊕ gp,q(ρ)-module W gives a prehomogeneous vector space

except when p+ q = 10,m = 32 and ρ is mixed.

For Case (III), we have gp,q(ρ) = g′p,q(ρ), since the union of Case (I)

and Case (II) is precisely the exceptional parameters (p, q,m) in Theorem

3.3. So, by the results of the classification of (not necessarily irreducible)

prehomogeneous vector spaces ([29], [12], [13], [14], [15]), we can characterize

the cases where the gl(1,R) ⊕ gp,q(ρ)-module W gives a prehomogeneous

vector space. This is done in §7.3.

Finally, in §7.4, we prove the irreducibility result (Theorem 3.2 (3)). The

proof is based on the classification in Theorem 3.2 (2) and the calculation

of the multiplicative Legendre transform in §2.4. This completes the proof

of Theorem 3.2.

3.3. Non-prehomogeneous example: (p, q) = (3, 2)

By Theorem 3.2, non-prehomogeneous Clifford quartic forms appear

first for p + q = 5. We consider here this non-prehomogeneous case for

(p, q) = (3, 2) in some detail. The algebra R3,2 has a unique irreducible

representation ρ0 of degree 8. We may choose the basis matrices Si = ρ0(ei)
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(1 ≤ i ≤ 5) as follows:

S1 =




0 0 0 12

0 0 −12 0

0 −12 0 0

12 0 0 0


 , S2 =




0 0 J 0

0 0 0 −J
−J 0 0 0

0 J 0 0


 ,

S3 =




0 0 0 J

0 0 J 0

0 −J 0 0

−J 0 0 0


 , S4 =




0 0 0 H

0 0 −H 0

0 −H 0 0

H 0 0 0


 ,

S5 =




0 0 0 K

0 0 −K 0

0 −K 0 0

K 0 0 0


 ,

where we put J =

(
0 −1

1 0

)
, H =

(
−1 0

0 1

)
, K =

(
0 1

1 0

)
. Then we have

ρ0(k3,2) =

{(
X 0

0 X

) ∣∣∣∣ X ∈ sp(2,R)

}
,

sp(2,R) =
{
X ∈M(4; R)

∣∣ tXJ2 + J2X = 0
}
,

where k3,2 is the Lie algebra spanned by eiej (1 ≤ i < j ≤ 5) and J2 =

J ⊥ J . We identify the representation space W0 of ρ0 with M(4, 2; R) by

w =

(
u

v

)
�→ (uv). Then the action of k3,2 is given by the left multiplication

of sp(2,R). Consider a reducible representation ρ = ρ⊕k
0 . If k ≥ 2, then by

Theorems 3.1 and 3.2, the Clifford quartic form

P̃ (w) =
3∑

i=1

S
(k)
i [w]2 −

5∑
i=4

S
(k)
i [w]2, S

(k)
i =

k︷ ︸︸ ︷
Si ⊥ · · · ⊥ Si

is non-prehomogeneous and satisfies the functional equation (Theorem 2.13)
ζ̃+

(
s, Ψ̂

)
ζ̃−

(
s, Ψ̂

)

 = 24s+4k−1π−4s−4k−2Γ(s+ 1)Γ

(
s+

5

2

)

× Γ

(
s+ 2k − 3

2

)
Γ (s+ 2k)
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×
(
− sin(2πs) −4 sin(πs)

0 sin(2πs)

)(
ζ̃+ (−2k − s,Ψ)

ζ̃− (−2k − s,Ψ)

)
.

In this case, the Clifford quartic form has an expression in terms of more

popular invariants. By Theorems 3.3, 3.4 and 3.5, P̃ is invariant under the

action of the group G3,2(ρ) with Lie algebra

g3,2(ρ) = sp(2,R)⊕ sp(k,R),

sp(k,R) =
{
X ∈M(2k; R)

∣∣ tXJk + JkX = 0
}
,

where Jk =

k︷ ︸︸ ︷
J ⊥ · · · ⊥ J . We identify the representation space of ρ with

M(4, 2k; R). Then the action on M(4, 2k; R) is given by w �→ Xw + w tY

(x ∈ sp(2,R), Y ∈ sp(k,R)) (see §6.2).

In the following lemma, we use the symbols M(4, 2k) and Alt(4), re-

spectively, to denote M(4, 2k; C) and Alt(4; C) viewed as the affine spaces

of dimension 8k and 6.

Lemma 3.6. We define the polynomials P1, P2 on M(4, 2k) by

P1(w) = the Pfaffian of wJk
tw, P2(w) = tr(J2wJk

tw).

Then the ring C[M(4, 2k)]Sp(2)×Sp(k) of Sp(2) × Sp(k)-invariants is

generated by P1, P2 and is isomorphic to the polynomial ring of 2

variables.

Proof. The Sp(2)-equivariant mapping φ : M(4, 2k) → Alt(4)

(φ(w) = wJk
tw) induces an isomorphism M(4, 2k)//Sp(k) ∼= Alt(4),

namely, φ∗ : C[Alt(4)] → C[M(4, 2k)]Sp(k) is a C-algebra isomorphism.

Hence, φ∗ : C[Alt(4)]Sp(2)
∼=−→ C[M(4, 2k)]Sp(2)×Sp(k). Put V1 = CJ2

and V2 = {Y ∈ Alt(4) | tr(J2Y ) = 0}. Then V1 and V2 are simple Sp(2)-

modules and Alt(4) = V1 ⊕ V2. It is known that (GL(1) × GL(1) ×
Sp(2),Alt(4)) is a regular prehomogeneous vector space and the funda-

mental relative invariants are given by the Pfaffian Pf(Y ) and tr(J2Y )

(see [12]). Here the first (resp. second) factor of GL(1) × GL(1) acts of

V1 (resp. V2) as scalar multiplication. This shows that C[M(4, 2k)]Sp(2) =

C[Pf(Y ), tr(J2Y )] and hence C[M(4, 2k)]Sp(2)×Sp(k) = C[P1, P2], since

P1 = φ∗(Pf(Y )) and P2 = φ∗(tr(J2Y )). The fundamental relative in-

variants are algebraically independent ([29, §4, Lemma 4], [17, Lemma 2.8])
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and this implies that C[M(4, 2k)]Sp(2)×Sp(k) is isomorphic to the polynomial

ring of 2 variables. �

The polynomial P1 is of degree 4 and the polynomial P2 is a quadratic

form of signature (4k, 4k). By Lemma 3.6, the Clifford quartic form is

written as a linear combination of P1 and P 2
2 . Indeed we have

P̃ (w) = −16P1(w) + P2(w)2.

Note that P1(w) is the irreducible relative invariant of the prehomogeneous

vector space (GL(4)×Sp(k),Λ1⊗Λ1,M(4, 2k)) and is viewed as the Clifford

quartic form for (p, q) = (3, 3). Hence P1 also satisfies a local functional

equation. The polynomial P 2
2 also satisfy a local functional equation, since

P2 is a quadratic form. We define the local zeta functions ζ̃1,±(f ; s,Ψ)

(resp. ζ̃2,+(f ; s,Ψ)) for P1 (resp. P 2
2 ) as in §2. Then we obtain the following

functional equations from Theorem 2.13 for P1 and Theorem 2.12 for P 2
2 :

ζ̃1,+
(
s, Ψ̂

)
ζ̃1,−

(
s, Ψ̂

)

 = 24s+4kπ−4s−4k−2Γ(s+ 1)Γ (s+ 3)

× Γ (s+ 2k − 2) Γ (s+ 2k)

×
(

sin(πs)2 0

0 sin(πs)2

)(
ζ̃1,+ (−2k − s,Ψ)

ζ̃1,− (−2k − s,Ψ)

)
;

ζ̃2,+

(
s, Ψ̂

)
= −24s+4k−1π−4s−4k−2Γ

(
s+

1

2

)
Γ (s+ 1)

× Γ (s+ 2k) Γ

(
s+ 2k +

1

2

)
× sin(2πs)ζ̃2,+ (−2k − s,Ψ) .

4. Proof of the “If”-Part of Theorem 3.1

The “if”-part of Theorem 3.1 is an immediate consequence of Lemma

2.8 and Lemma 4.1 below.

Lemma 4.1. If the Clifford quartic form P̃ (w) vanishes identically,

then (p, q,m) is equal to one of

(2, 1, 2), (3, 1, 4), (5, 1, 8), (9, 1, 16), (2, 2, 4), (3, 3, 8), (5, 5, 16).
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Proof. Assume that P̃ (w) vanishes identically. Then, by differentiat-

ing P̃ (w), we obtain

∂P̃

∂wj
(w) = 2

p∑
i=1

Si[w]
∂

∂wj
Si[w]− 2

p+q∑
i=p+1

Si[w]
∂

∂wj
Si[w] ≡ 0.

Since Si[w] are non-degenerate, ∂
∂wj
Si[w] are non-zero linear forms. Hence

it is sufficient to prove that, if there exist non-zero linear forms fi(w) (i =

1, . . . , p+ q) satisfying the identity

p+q∑
i=1

Si[w]fi(w) ≡ 0,(4.1)

then (p, q,m) belongs to the list in the lemma.

We may assume that p ≥ q and p ≥ 2. Then, by Lemma 2.3, m is even.

Put d = m/2 and we may assume that S1, . . . , Sp+q are of the form given

in Lemma 2.3. Then the identity (4.1) takes the form

0 ≡ (u2 − v2)f1(w) + 2

p∑
i=2

(u,Biv)fi(w)(4.2)

−
q∑

j=1

(Aj [u] +Aj [v])fp+j(w),

where we put w =

(
u

v

)
(u, v ∈ R

d) and (u, v) = tuv, u2 = (u, u), v2 = (v, v).

If q = 0, then the term that does not contain the variable v (resp. u) is

given by u2f1(u, 0) (resp. v2f1(0, v)). Hence, by (4.2), we have f1(u, 0) =

f1(0, v) = 0 and f1(w) = f1(u, 0) + f1(0, v) = 0. This contradicts the

assumption that f1(w) �= 0. Therefore the relations of the form (4.1) implies

that q ≥ 1.

Consider the case where q = 1. Moreover we may assume that (p, q,m) �=
(2, 1, 2). Then m = 2d ≥ 4. Since f1(w) �= 0, we have f1(u, 0) �= 0 or

f1(0, v) �= 0. Let us assume that f1(0, v) �= 0, since the case f1(u, 0) �= 0 can

be treated quite similarly. Comparing the terms of degree 3 with respect to

v on the left- and right-hand sides of the identity

0 ≡ (u2 − v2)f1(w) + 2

p∑
i=2

(u,Biv)fi(w)− (A1[u] +A1[v])fp+1(w),(4.3)
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we obtain

−v2f1(0, v)−A1[v]fp+1(0, v) = 0.

Since d ≥ 2 and v2 is an irreducible polynomial over R, v2 divides A1[v].

Moreover it follows from the relation A2
1 = 1d that

A1 = ±1d, fp+1(0, v) = ∓f1(0, v).(4.4)

Now compare the terms of degree 2 and 1 with respect to u and v, respec-

tively, in (4.3). Then we get

0 = u2f1(0, v) + 2

p∑
i=2

(u,Biv)fi(u, 0)−A1[u]fp+1(0, v).

From (4.4), it follows that

u2f1(0, v) = −
p∑

i=2

(u,Biv)fi(u, 0).

Since f1(0, v) �= 0, we can choose v ∈ R
d such that f1(0, v) > 0. Then, for

such a v, the quadratic form of u on the left-hand side is positive definite

and of rank d. The number of positive eigenvalues of the quadratic form of

u on the right-hand side is not greater than p− 1. Thus we get

d ≤ p− 1 and m = 2d ≤ 2(p− 1).

Note that S1, . . . , Sp defines a representation of the Clifford algebra Cp, and

the dimension d0 of irreducible representations of Cp is given by the table,

p 2 3 4 5 6 7 8 9 10 ≤ p
d0 2 4 8 8 16 16 16 16 2(p−1)/2 ≤ d0

2(p− 1) 2 4 6 8 10 12 14 16 2(p− 1)

which we can get easily from Lemma 2.4. If p ≥ 10, then 2(p−1)/2 > 2(p−1).

Hence, the possibilities of p ≥ 2 and m for q = 1 are

(2, 1, 2), (3, 1, 4), (5, 1, 8), (9, 1, 16),
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which are precisely the cases for p ≥ 2 and q = 1 found on the list in Lemma

4.1.

Finally we consider the case for p, q ≥ 2. Look at the terms in (4.2)

including only u or only v to get

0 = u2f1(u, 0)−
q∑

j=1

Aj [u]fp+j(u, 0),

0 = −v2f1(0, v)−
q∑

j=1

Aj [v]fp+j(0, v).

One of these 2 identities should give a non-trivial relation for the d-

dimensional representation of Rq,1 defined by Sj = Aj (j = 1, . . . , q) and

Sq+1 = 1d. By what we have proved for q = 1, this implies that

q ≥ 2 and d = 2, q ≥ 3 and d = 4, q ≥ 5 and d = 8, q ≥ 9 and d = 16.

But, if d = 2, (resp. 4, 8, 16), then q ≤ 2 (resp. 4, 8, 16). Hence we have

(q, d) = (2, 2), (3, 4), (5, 8), (9, 16). If we change the role of p and q, we also

have (p, d) = (2, 2), (3, 4), (5, 8), (9, 16). Hence the possibilities of (p, q,m)

are

(2, 2, 4), (3, 3, 8), (5, 5, 16), (9, 9, 32).

The case (9, 9, 32) cannot occur, since the dimension of the irreducible rep-

resentations of R9,9 is equal to 28 (see Lemma 2.5), much bigger than 32.

Thus we have obtained the list of (p, q,m) in Lemma 4.1. �

5. Proof of Theorem 3.3

The following lemma gives a sufficient condition for gp,q(ρ) to coincide

with g′p,q(ρ) = kp,q ⊕ hp,q(ρ).

Lemma 5.1. Let ρ be a representation of Rp,q such that the quadratic

mapping associated to ρ is non-degenerate. If the basis matrices S1, S2, . . . ,

Sp+q of ρ satisfy the condition (=) below, then gp,q(ρ) = g′p,q(ρ):
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(=) if

p+q∑
i=1

Si[w]Xi[w] ≡ 0 for X1, . . . , Xp+q ∈ Sym(m; R) (m = deg ρ), then

we have Xi =

p+q∑
j=1

aijSj (i = 1, 2, . . . , p + q) for some aij with aij =

−aji.

Proof. First note that, if ρ is non-degenerate, then S1, . . . , Sp+q are

linearly independent. If not, the image of the associated quadratic mapping

is contained in a hypersurface and the quadratic mapping can not be non-

degenerate. For X ∈ gp,q(ρ), the assumption (=) implies that

tXSi + SiX =

p+q∑
j=1

aijSj (i = 1, . . . , p+ q),

aij = −εiεjaji (1 ≤ i < j ≤ p+ q).

The coefficients aij defines an element (aij) in so(p, q) and the mapping

f : gp,q(ρ) −→ so(p, q), X �→ (aij)

gives a Lie algebra homomorphism. The mapping so(p, q)  (aij) �→∑
i<j aijSiSj ∈ ρ(kp,q) is a section of f (see Lemma 2.6). It is obvious

that

Ker(f) = {X ∈ gp,q(ρ)| tXSi + SiX = 0 (1 ≤ i ≤ p+ q)} = hp,q(ρ).

This proves that gp,q = g′p,q. �

Theorem 3.3 is an immediate consequence of Lemma 5.1 and the follow-

ing lemma.

Lemma 5.2. If p ≥ q ≥ 0, p + q ≥ 3 and m > 4(p + q) − 8, then the

condition (=) in Lemma 5.1 holds for every m-dimensional representation

of Rp,q.

Indeed, denoting by m0 the smallest dimension of representations of

Rp,n−p (p = 0, 1, . . . , n), we have by Lemma 2.5 the following table.

n = p+ q 3 4 5 6 7 8 9 10 11 12 · · ·
4(p+ q)− 8 4 8 12 16 20 24 28 32 36 40 · · ·

m0 2 4 8 8 16 16 16 16 32 64 · · ·
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Moreover m0 > 4(p+ q)− 8 for n = p+ q ≥ 12. By Lemma 4.1 (“if”-part of

Theorem 3.1), if p+ q ≥ 3 and m > 4(p+ q)− 8, then the quadratic map-

ping defined by an m-dimensional representation of Rp,q is non-degenerate.

Hence Theorem 3.3 follows immediately from Lemma 5.2.

We prove Lemma 5.2 by induction on n = p+ q. Though we are inter-

ested in the case p + q ≥ 3, we need the cases p + q = 1, 2 as the starting

point of the inductive argument. Namely, we later use the fact that

the condition (=) in Lemma 5.1 holds for p + q = 1, 2, unless

p = q = 1 and S1 = ±S2.

For p + q = 1, this is obvious. For p + q = 2, this follows from that S1[x]

and S2[x] are coprime in R[W ] unless p = q = 1 and S1 = ±S2.

Now we consider the case p+q ≥ 3 with p ≥ q ≥ 0 and m > 4(p+q)−8.

Since p ≥ 2, we may choose the basis matrices S1, . . . , Sp+q as given in

Lemma 2.3. Then, the assumption
∑p+q

i=1 Si[w]Xi[w] = 0 in (=) can be

written as follows:

{(u, u)− (v, v)}X1[w] + 2

p∑
i=2

(u,Biv)Xi[w](5.1)

+

q∑
j=1

(Aj [u] +Aj [v])Yj [w] = 0,

where we put w =

(
u

v

)
(u, v ∈ R

d) with d = m/2 and Yj = Xp+j . We write

the matrices X1, . . . , Xp, Y1, . . . , Yq in the form

Xi =

(
X

(1)
i X

(2)
i

tX
(2)
i X

(3)
i

)
, X

(1)
i , X

(3)
i ∈ Sym(d,R), X

(2)
i ∈M(d,R),

Yj =

(
Y

(1)
j Y

(2)
j

tY
(2)
j Y

(3)
j

)
, Y

(1)
j , Y

(3)
j ∈ Sym(d,R), Y

(2)
j ∈M(d,R).

Then the identity (5.1) is equivalent to the following 5 identities:

(u, u)X
(1)
1 [u] +

q∑
j=1

Aj [u]Y
(1)
j [u] = 0,(5.2)
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−(v, v)X
(3)
1 [v] +

q∑
j=1

Aj [v]Y
(3)
j [v] = 0,(5.3)

(u, u)X
(3)
1 [v]− (v, v)X

(1)
1 [u] + 4

p∑
i=2

(u,Biv)(u,X
(2)
i v)

+

q∑
j=1

(Aj [u]Y
(3)
j [v] +Aj [v]Y

(1)
j [u]) = 0,

(u, u)(u,X
(2)
1 v) + (u, v)X

(1)
2 [u] +

p∑
i=3

(u,Biv)X
(1)
i [u](5.4)

+

q∑
j=1

Aj [u](u, Y
(2)
j v) = 0,

−(v, v)(u,X
(2)
1 v) + (u, v)X

(3)
2 [v] +

p∑
i=3

(u,Biv)X
(3)
i [v](5.5)

+

q∑
j=1

Aj [v](u, Y
(2)
j v) = 0.

It is convenient to rewrite the third identity as follows:

− 4

p∑
i=2

(u,Biv)(u,X
(2)
i v)(5.6)

= (u, u)X
(3)
1 [v]− (v, v)X

(1)
1 [u] +

q∑
j=1

(Aj [u]Y
(3)
j [v] +Aj [v]Y

(1)
j [u]).

The following lemma is a consequence of the identities (5.2), (5.3) and

(5.6).

Lemma 5.3. There exist aij ∈ R satisfying aij + aji = 0 and

X

(1)
1 =

q∑
j=1

a1,p+jAj ,

Y
(1)
j = ap+j,11d +

q∑
k=1

ap+j,p+kAk (1 ≤ j ≤ q),
(5.7)
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X

(3)
1 =

q∑
j=1

a1,p+jAj ,

Y
(3)
j = −ap+j,11d +

q∑
k=1

ap+j,p+kAk (1 ≤ j ≤ q),
(5.8)

X
(2)
i =

p∑
j=2

aijBj (2 ≤ i ≤ p).(5.9)

Proof. First note that, from (5.7) and (5.8), we see that the right-

hand side of (5.6) is identically zero and

p∑
i=2

(u,Biv)(u,X
(2)
i v) = 0.

This implies the identity (5.9), since, by the induction assumption, the

condition (=) holds for the 2d-dimensional representation of Cp−1 determined

by S2, . . . , Sp. Hence it is sufficient to prove the identities (5.7), (5.8). In

the subsequent discussion, we have to distinguish two cases, namely, the

case where q = 1 and A1 = ±1d and the case where q �= 1 or A1 �= ±1d. We

refer to the first case as Case A and the second case as Case B.

Case A: We put A1 = ε1d (ε = ±1). Then the identities (5.2) and (5.3)

become

(u, u)X
(1)
1 [u] + ε(u, u)Y

(1)
1 [u] = 0, −(v, v)X

(3)
1 [v] + ε(v, v)Y

(3)
1 [v] = 0.

This implies that

Y
(1)
1 = −εX(1)

1 , Y
(3)
1 = εX

(3)
1 .(5.10)

We substitute (5.10) to (5.6) to get

−2

p∑
i=2

(u,Biv)(u,X
(2)
i v) = (u, u)X

(3)
1 [v]− (v, v)X

(1)
1 [u].

Fix v and consider the left-hand side of this identity as a quadratic form

of u. Then the rank of the quadratic form is not greater than 2(p − 1).
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Since d > 2(p + 1) − 4 = 2(p − 1) by the assumption of Lemma 5.2, it is a

degenerate quadratic form of u. Hence by the expression on the right-hand

side we have det(X
(3)
1 [v]1d− (v, v)X

(1)
1 ) = 0. Since v is arbitrary, this shows

that X
(3)
1 = λ1d for some eigenvalue λ of X

(1)
1 , namely, X

(3)
1 is a scalar

matrix. Similarly we can prove that X
(1)
1 is also a scalar matrix and we get

X
(1)
1 = a1,p+1A1, X

(3)
1 = b1,p+1A1

for some constants a1,p+1, b1,p+1. Then, since (u, u)X
(3)
1 [v]− (v, v)X

(1)
1 [u] is

degenerate, we have

a1,p+1 = b1,p+1.

Furthermore (5.10) implies that

Y
(1)
1 = −εa1,p+1A1 = −a1,p+11d, Y

(3)
1 = εa1,p+1A1 = a1,p+11d.

Hence putting ap+1,1 = −a1,p+1, we obtain

Y
(1)
1 = ap+1,11d, Y

(3)
1 = −ap+1,11d

and ap+1,p+1 = bp+1,p+1 = 0. This proves the identities (5.7) and (5.8).

Case B: In this case, since q > 1 or A1 �= ±1d, by the induction hypothe-

sis, we may assume that the d-dimensional representation of R1,q determined

by 1d, A1, . . . , Aq satisfies the condition (=). Indeed, if q = 1 and A1 �= ±1d,

we have already seen it. If q ≥ 2, then it is enough to note that the quadratic

mapping defined by 1d, A1, . . . , Aq is non-degenerate. This is a consequence

of the inequality d > 4q − 4 = 4(q + 1) − 8 and Lemma 4.1 (“if”-part of

Theorem 3.1) applied to the case (q, 1). Hence from the identities (5.2) and

(5.3) we have 

X

(1)
1 =

q∑
j=1

a1,p+jAj ,

Y
(1)
j = ap+j,11d +

q∑
k=1

ap+j,p+kAk (1 ≤ j ≤ q),
(5.11)



X

(3)
1 =

q∑
j=1

b1,p+jAj ,

Y
(3)
j = −bp+j,11d +

q∑
k=1

bp+j,p+kAk (1 ≤ j ≤ q),
(5.12)
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where aij , bij satisfy that aij + aji = 0, bij + bji = 0. We rewrite the

right-hand side of (5.6) by using (5.11) and (5.12) to get

−4

p∑
i=2

(u,Biv)(u,X
(2)
i v)(5.13)

= −(u, u)

q∑
j=1

(ap+j,1 + b1,p+j)Aj [v]

+

q∑
j=1

Aj [u]

{
(a1,p+j + bp+j,1)(v, v)

−
q∑

k=1

(ap+j,p+k + bp+k,p+j)Ak[v]

}
.

As in Case A, the quadratic form of u (for an arbitrarily fixed v) defined

by the left-hand side of (5.13) is degenerate. Indeed, if q = 0, then the

right-hand side vanishes, and if q > 0, then the rank of the quadratic form

is not greater than 2(p−1) ( ≤ 2(p+ q)−4 < d). The linear combination of

(u, u), A1[u], . . . , Aq[u] on the right-hand side of (5.13) is degenerate, only

when 
 q∑

j=1

(ap+j,1 + b1,p+j)Aj [v]


2

(5.14)

−
q∑

j=1

{
(a1,p+j + bp+j,1)(v, v)

−
q∑

k=1

(ap+j,p+k + bp+k,p+j)Ak[v]

}2

= 0.

If q = 1 and A1 �= ±1d, then this follows from that c1A1[u] − c2(u, u) is

degenerate only when c1 = ±c2, since the eigenvalues of A1 are ±1. If

q ≥ 2, then, since the quadratic mapping defined by 1d, A1, . . . , Aq is non-

degenerate and self-dual, this follows from the identity

det


c01d +

q∑
j=1

cjAj


 = ±


c20 − q∑

j=1

c2j


d/2

,
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which is obtained by Remark 1.1 (1) and the proof of Lemma 2.11. Fur-

thermore in Case B, the quadratic forms (u, u), A1[u], . . . , Aq[u] are alge-

braically independent. Indeed, as we have already noted, if q > 1, then

the quadratic mapping defined by 1d, A1, . . . , Aq is non-degenerate. Since

the image of a non-degenerate quadratic mapping can not be contained in

a low-dimensional algebraic set, this implies the algebraic independence. If

q = 1, then A2
1 = 1d and A1 �= ±1d. Hence it is obvious that (u, u) and

A1[u] is algebraically independent. Therefore, comparing the coefficients of

(v, v)2 on the both sides of (5.14), we obtain

q∑
j=1

(a1,p+j + bp+j,1)
2 = 0.

Since the constants a1,p+j , bp+j,1 are real numbers, we have

a1,p+j + bp+j,1 = 0 (1 ≤ j ≤ q).

and, by the skew-symmetry of aij , bij ,

ap+j,1 + b1,p+j = 0 (1 ≤ j ≤ q).

Hence, by (5.14), we get

q∑
j=1

{
q∑

k=1

(ap+j,p+k + bp+k,p+j)Ak[v]

}2

= 0.

This implies

q∑
k=1

(ap+j,p+k + bp+k,p+j)Ak[v] = 0 (1 ≤ j ≤ q).

Since the basis matrices A1, . . . , Aq are linearly independent, we have

ap+j,p+k + bp+k,p+j = 0 (1 ≤ j, k ≤ q).

By using the skew-symmetry of aij , bij , we also have

ap+j,1 = bp+j,1, ap+j,p+k = bp+j,p+k.(5.15)
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Now the identities (5.7) and (5.8) follow from (5.11), (5.12) and (5.15). �

To proceed further, we need the following lemma.

Lemma 5.4. We assume that the identity

X[u](u, v)− (u, u)(u,Xv) =
r∑

i=1

Yi[u](u,Biv)(5.16)

holds for X,Y1, . . . , Yr ∈ Sym(d,R) and B1, . . . , Br ∈ Alt(d,R). Let s be the

number of symmetric matrices Yi that are not scalar matrices. If d > 2s,

then X is a scalar matrix and the both sides of (5.16) are identically zero.

Proof. We may assume that X is a diagonal matrix with diagonal

entries λ1 ≥ · · · ≥ λd. Then, since

(X[u]1d − (u, u)X)u = −
r∑

i=1

Yi[u]Biu,

by comparing the k-th entries of the left- and right-hand sides, we have
∑

i�=k

(λi − λk)u2
i


uk = −

r∑
i=1

Yi[u]ψik(u),

where ψik(u) is the linear form of u that gives the k-th entry of Biu. The

left-hand side of this identity is of degree 1 with respect to uk. Since Bi

is a skew-symmetric matrix, uk does not appear in ψik(u). We consider

Yi[u] as a quadratic polynomial of uk and denote by φik(u) the linear form

of u1, . . . , uk−1, uk+1, . . . , ud appearing as the coefficient of uk. We may

assume that Yi are scalar matrices for i ≥ s + 1. Then φik(u) = 0 for

i ≥ s+ 1 and we have

∑
i�=k

(λi − λk)u2
i = −

s∑
i=1

ψik(u)φik(u).

Note that the number of positive eigenvalues and that of negative eigenval-

ues of the quadratic form on the right-hand side are smaller than or equal to

s. Consider the case where k = 1. Then the left-hand side of this identity is
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negative semidefinite. Hence the multiplicity of λ1 is not smaller than d−s.
Similarly, if we consider the case where k = d, the left-hand side of this

identity is positive semidefinite and the multiplicity of λd is at least d − s.
Therefore, if X has distinct eigenvalues, then d ≥ 2(d − s) namely 2s ≥ d.
This contradicts the assumption d > 2s. Hence, X is a scalar matrix and

the both sides of (5.16) are identically zero. �

Let us return to the proof of Lemma 5.2 and examine the identities (5.4)

and (5.5). Substitute v = u to (5.4) and (5.5). Then, since Bi (i ≥ 3) are

skew-symmetric matrices and hence (u,Biu) = 0, we obtain

(u, u)(X
(2)
1 +X

(1)
2 )[u] +

q∑
j=1

Aj [u]Y
(2)
j [u] = 0,(5.17)

(u, u)(X
(3)
2 −X(2)

1 )[u] +

q∑
j=1

Aj [u]Y
(2)
j [u] = 0.(5.18)

Here we have to treat Case A and Case B separately as in the proof of

Lemma 5.3.

Case A: In this case, q = 1, A1 = ε1d (ε = ±1) and the identities (5.17)

and (5.18) become

(u, u)(X
(2)
1 +X

(1)
2 + εY

(2)
1 )[u] = 0, (u, u)(X

(3)
2 −X(2)

1 + εY
(2)
1 )[u] = 0.

Hence, putting

Z+ = X

(2)
1 + εY

(2)
1 , Z− = X

(2)
1 − εY (2)

1 ,

Z±
s =

1

2
(Z± + tZ±), Z±

a =
1

2
(Z± − tZ±),

(5.19)

we have

Z+
s = −X(1)

2 , Z−
s = X

(3)
2 .

This yields that

X
(2)
1 = Z+

a −X(1)
2 − εY (2)

1 = Z−
a +X

(3)
2 + εY

(2)
1 .(5.20)
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By substituting (5.20) to (5.4) and (5.5), we get

(u, u)(u, Z+
a v) + (u, v)X

(1)
2 [u]− (u, u)(u,X

(1)
2 v) +

p∑
i=3

(u,Biv)X
(1)
i [u] = 0,

−(v, v)(u, Z−
a v) + (u, v)X

(3)
2 [v]− (v, v)(u,X

(3)
2 v) +

p∑
i=3

(u,Biv)X
(3)
i [v] = 0.

We rewrite these identities as follows:

(u, v)X
(1)
2 [u]− (u, u)(u,X

(1)
2 v) = −(u, u)(u, Z+

a v)−
p∑

i=3

(u,Biv)X
(1)
i [u],

(u, v)X
(3)
2 [v]− (v, v)(u,X

(3)
2 v) = (v, v)(u, Z−

a v)−
p∑

i=3

(u,Biv)X
(3)
i [v].

Lemma 5.4 can apply to these identities, since s in Lemma 5.4 is not greater

than p− 2 and d > 2(p+ q)− 4 > 2s. Thus we obtain for some α, β

X
(1)
2 = α1d, X

(3)
2 = β1d,(5.21)

(u, u)(u, Z+
a v) +

p∑
i=3

(u,Biv)X
(1)
i [u] = 0,(5.22)

(v, v)(u, Z−
a v)−

p∑
i=3

(u,Biv)X
(3)
i [v] = 0.(5.23)

Summing (5.22) (resp. (5.23)) and the identity obtained by exchanging u

and v in (5.22) (resp. (5.23)), we get

{(u, u)− (v, v)} (u, Z+
a v) +

p∑
i=3

(u,Biv)(X
(1)
i [u]−X(1)

i [v]) = 0,(5.24)

{(u, u)− (v, v)} (u, Z−
a v)−

p∑
i=3

(u,Biv)(X
(3)
i [u]−X(3)

i [v]) = 0.(5.25)

Since the condition (=) holds for the 2d-dimensional representation of Rp−1,0

determined by S1, S3, . . . , Sp by induction hypothesis, there exist constants



840 Takeyoshi Kogiso and Fumihiro Sato

γi,1, γ1,i, δi,1, δ1,i ∈ R (3 ≤ i ≤ p) satisfying γi,1 = −γ1,i, δi,1 = −δ1,i and

Z+
a =

p∑
i=3

γ1,iBi, Z−
a =

p∑
i=3

δ1,iBi,(5.26)

X
(1)
i = γi,11d, X

(3)
i = −δi,11d (3 ≤ i ≤ p).(5.27)

From (5.20), (5.21) and (5.26), we have

Z+ = −α1d +

p∑
i=3

γ1,iBi, Z− = β1d +

p∑
i=3

δ1,iBi.

Then, since X
(2)
1 = 1

2(Z+ + Z−), Y
(2)
1 = ε

2(Z+ − Z−), we obtain

X
(2)
1 =

p∑
i=2

a1,iBi, Y
(2)
1 =

p∑
i=2

ap+1,iBi,(5.28)

where we put

a1,2 =
1

2
(β − α), ap+1,2 = −ε

2
(α+ β)

a1,i =
1

2
(γ1,i + δ1,i), ap+1,i =

ε

2
(γ1,i − δ1,i) (3 ≤ i ≤ p).

Now the identity (5.27) takes the form
X

(1)
i = (a1,i + εap+1,i)1d,

X
(3)
i = (−a1,i + εap+1,i)1d (3 ≤ i ≤ p).

(5.29)

Furthermore, by (5.21), we have

X
(1)
2 = −a1,21d − ap+1,2ε1d, X

(3)
2 = a1,21d − ap+1,2ε1d.

Then, putting a2,1 = −a1,2, a2,p+1 = −ap+1,2, we obtain

X
(1)
2 = a2,11d + a2,p+1ε1d, X

(3)
2 = −a2,11d + a2,p+1ε1d.(5.30)

Lemma 5.2 for Case A follows from Lemma 5.3, (5.28), (5.29) and (5.30).
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Case B: We consider (5.17) and (5.18) for Case B, namely, under the

assumption q �= 1 or A1 �= ±1d. Put

X
(2)
1,s =

1

2
(X

(2)
1 + tX

(2)
1 ), X

(2)
1,a =

1

2
(X

(2)
1 − tX

(2)
1 ),

Y
(2)
i,s =

1

2
(Y

(2)
i + tY

(2)
i ), Y

(2)
i,a =

1

2
(Y

(2)
i − tY

(2)
i ).

Since, by the induction assumption, the condition (=) holds for d-dimensional

representations of R1,q for Case B, we have from (5.17) and (5.18)



X

(2)
1,s +X

(1)
2 = X

(3)
2 −X(2)

1,s =

q∑
j=1

αjAj ,

Y
(2)
i,s = −αi1d +

q∑
j=1

αijAj (αij = −αji).

(5.31)

By substituting (5.31) to (5.4) and (5.5), we obtain

(u, u)(u,X
(2)
1,av) + (u, u)(u,X

(2)
1,s v)− (u, v)X

(2)
1,s [u](5.32)

+

p∑
i=3

(u,Biv)X
(1)
i [u] +

q∑
i=1

Ai[u](u, Y
(2)
i,a v)

+

q∑
i,j=1

αijAi[u](u,Ajv) = 0,

−(v, v)(u,X
(2)
1,av)− (v, v)(u,X

(2)
1,s v) + (u, v)X

(2)
1,s [v](5.33)

+

p∑
i=3

(u,Biv)X
(3)
i [v] +

q∑
i=1

Ai[v](u, Y
(2)
i,a v)

+

q∑
i,j=1

αijAi[v](u,Ajv) = 0.

Let us prove that

αij = 0 (1 ≤ i, j ≤ q).

Denote by f1(u, v) (resp. f2(u, v)) the left-hand side of (5.32) (resp. (5.33))
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and consider f1(u, v) + f1(v, u) + f2(u, v) + f2(v, u). Then we obtain

2
(
(u, u)− (v, v)

)
(u,X

(2)
1,av)

+

p∑
i=3

(u,Biv){(X(1)
i −X(3)

i )[u]− (X
(1)
i −X(3)

i )[v]}

+ 2

q∑
i,j=1

αij(Ai[u] +Ai[v])(u,Ajv) = 0

This can be written as

S1[w]T1[w] +

p∑
i=3

Si[w]Ti[w] +

q∑
j=1

Sp+j [w]Tp+j [w] = 0,

T1 =

(
0 X

(2)
1,a

tX
(2)
1,a 0

)
,

Ti =


1

2

(
X

(1)
i −X(3)

i

)
0

0 −1
2

(
X

(1)
i −X(3)

i

)

 (3 ≤ i ≤ p),

Tp+j =

q∑
k=1

αjk

(
0 Ak

Ak 0

)
(1 ≤ j ≤ q).

Since, by the induction assumption, the condition (=) holds for 2d-dimen-

sional representations of Rp−1,q, every Ti (i �= 2) is a linear combination

of S1, S3, . . . , Sp+q. Then, for j (1 ≤ j ≤ q), the matrix
∑q

k=1 αjkAk, the

off-diagonal block of Tp+j , is a linear combination of B3, . . . , Bp, which is

skew-symmetric. Since
∑q

k=1 αjkAk is symmetric, this equals 0. The linear

independence of A1, . . . , Aq implies that αjk = 0 (1 ≤ j, k ≤ q). Moreover,

from (5.31), we get

Y
(2)
i,s = ap+i,21d,(5.34)

where we write ap+i,2 for −αi. By αij = 0, the identities (5.32) and (5.33)

become

(u, v)X
(2)
1,s [u]− (u, u)(u,X

(2)
1,s v)

= (u, u)(u,X
(2)
1,av) +

p∑
i=3

(u,Biv)X
(1)
i [u] +

q∑
i=1

Ai[u](u, Y
(2)
i,a v),
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− (u, v)X
(2)
1,s [v] + (v, v)(u,X

(2)
1,s v)

= −(v, v)(u,X
(2)
1,av) +

p∑
i=3

(u,Biv)X
(3)
i [v] +

q∑
i=1

Ai[v](u, Y
(2)
i,a v).

We can apply Lemma 5.4 to these identities, since s in Lemma 5.4 is not

greater than p+ q − 2 and d > 2(p+ q − 2) ≥ 2s. Therefore we have

X
(2)
1,s = a121d(5.35)

for some constant a12, and

(u, u)(u,X
(2)
1,av) +

p∑
i=3

(u,Biv)X
(1)
i [u] +

q∑
i=1

Ai[u](u, Y
(2)
i,a v) = 0

−(v, v)(u,X
(2)
1,av) +

p∑
i=3

(u,Biv)X
(3)
i [v] +

q∑
i=1

Ai[v](u, Y
(2)
i,a v) = 0.

Summing these two identities, we obtain

(
(u, u)− (v, v)

)
(u,X

(2)
1,av) +

p∑
i=3

(u,Biv)(X
(1)
i [u] +X

(3)
i [v])

+

q∑
i=1

(Ai[u] +Ai[v])(u, Y
(2)
i,a v) = 0.

We can rewrite this as follows:

S1[w]Z1[w] +

p+q∑
i=3

Si[w]Zi[w] = 0,

Z1 =

(
0 X

(2)
1,a

tX
(2)
1,a 0

)
, Zi =

(
X

(1)
i 0

0 X
(3)
i

)
(3 ≤ i ≤ p),

Zp+j =

(
0 Y

(2)
j,a

tY
(2)
j,a 0

)
(1 ≤ j ≤ q).

Since any 2d-dimensional representation of Rp−1,q satisfies the condition (=)

by the induction assumption, we obtain

Zi =

p+q∑
j=1

j �=2

aijSj (i = 1, 3, . . . , p+ q)
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for some constants aij with aij = −aji. This identity together with Lemma

5.3, (5.31), (5.34) and (5.35) implies Lemma 5.2 for Case B.

6. Proof of Theorems 3.4 and 3.5

In this section we calculate the Lie algebra hp,q(ρ) and prove Theorems

3.4 and 3.5. Our calculation is based on the following Lemma.

Lemma 6.1. Let ρ : Rp,q → M(m; R) be a representation of Rp,q such

that the basis matrices Si = ρ(ei) (1 ≤ i ≤ p + q) are symmetric matrices.

Put

A = Ap,q(ρ) :=
{
X ∈M(m; R)

∣∣ ρ(Y )X = Xρ(Y ) (∀Y ∈ R+
p,q)

}
.

If r ∈ (Rp,q)
× is an odd element, then we have

hp,q(ρ) =
{
X ∈ A

∣∣ tXρ(r) + ρ(r)X = 0
}
.

Proof. By the definition of hp,q(ρ),

hp,q(ρ) =
{
X ∈M(m; R)

∣∣ tXSi + SiX = 0 (1 ≤ i ≤ p+ q)
}
.

If X ∈ hp,q(ρ), then

SiSjX = −SitXSj = XSiSj .

Since SiSj (1 ≤ i < j ≤ p) generate ρ(R+
p,q), X is in A. Thus hp,q(ρ) ⊂ A.

Put r′ = eir. Then r′ is an element of (R+
p,q)

×. Hence, for X ∈ A, we have

tXρ(r) + ρ(r)X = tXρ(ei)ρ(r
′) + ρ(ei)ρ(r

′)X

= tXρ(ei)ρ(r
′) + ρ(ei)Xρ(r

′)

=
(
tXSi + SiX

)
ρ(r′).

Thus, if X ∈ A, we have

tXρ(r) + ρ(r)X = 0 ⇐⇒ tXSi + SiX = 0 for some i

⇐⇒ tXSi + SiX = 0 for all i⇐⇒ X ∈ hp,q(ρ).

This proves the lemma. �
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Note that, we may take r = ei. Then we have ρ(r)2 = 1 and the

map X �→ −ρ(r) tXρ(r)−1 = −Si tXSi is an involutive automorphism of

A. Hence (A, hp,q(ρ)) is a symmetric Lie algebra, if we regard A as a Lie

algebra (see (6.1) below).

Let T ′ and K
′ be as in Theorem 3.4. It is often convenient to consider

the representation space W = R
m as a K

′-vector space. Then the algebra

A is of the form

A =



M(k; K′) = gl(k,K′) if R+

p,q = T ′,

M(k1; K
′)⊕M(k2; K

′) = gl(k1,K
′)⊕ gl(k2,K

′)

if R+
p,q = T ′ ⊕ T ′,

(6.1)

where k, k1, k2 are the multiplicities of irreducible representations corre-

sponding to the simple components of R+
p,q in ρ|R+

p,q
. In the sequel we denote

the transpose of X ∈ A as a matrix inM(m; R) by TX to distinguish it from

the transpose as a matrix in M(k; K′). Then TX corresponds to X∗ = tX̄

in M(k; K′), where X �→ X̄ denotes the conjugate in K
′.

We put

êp = e1 · · · ep f̂q = ep+1 · · · ep+q.

Then it is easy to check the following identities

ê2p =

{
1 (p ≡ 0, 1 (mod 4)),

−1 (p ≡ 2, 3 (mod 4)),

f̂2
q =

{
1 (q ≡ 0, 1 (mod 4)),

−1 (q ≡ 2, 3 (mod 4)),

(6.2)


eiêp = (−1)p−1êpei (i = 1, . . . , p),

ep+if̂q = (−1)q−1f̂qep+i (i = 1, . . . , q),
(6.3)

ep+iêp = êpep+i (i = 1, . . . , q), eif̂q = f̂qei (i = 1, . . . , p).

Now we are in a position to prove Theorems 3.4 by case by case exam-

ination. Theorem 3.5 on the action of g′p,q(ρ) is an immediate consequence

of the description of hp,q(ρ) below.



846 Takeyoshi Kogiso and Fumihiro Sato

6.1. The case: (T, T ′), (K,K′) = (R,C)

In this case, {p̄, q̄} = {0, 2}, {4, 6} and

Rp,q = M(2n/2; R) ⊃ R+
p,q = M(2(n−2)/2; C) (n = p+ q).

We may assume that p ≡ 0 (mod 4) and q ≡ 2 (mod 4). Then ê2p = 1, f̂2
q =

−1. The center of R+
p,q, which is isomorphic to C, is given by R + Ri

(i := êpf̂q), since i2 = −1 and i is a central element of R+
p,q. Let W0 be a

simple Rp,q-module (unique up to isomorphism). Then W0 is simple also

as an R+
p,q-module and naturally identified with C

2(n−2)/2
. More generally,

a not necessarily simple Rp,q-module W =

k︷ ︸︸ ︷
W0 ⊕ · · · ⊕W0 is identified with

M(2(n−2)/2, k; C). Under the identification, A = M(k,C) and the action of

X ∈ A on w ∈W is given by

X · w = (w1, . . . , wk)
tX̄

(X ∈ A = M(k,C), w = (w1, . . . , wk) ∈W = M(2(n−2)/2, k,C)).

Let us take e1 as r in Lemma 6.1 and calculate

hp,q =
{
X ∈ A

∣∣ TXρ(r) + ρ(r)X = 0
}
.

For α = a+ bi ∈ C, by (6.3) , we have

e1α = ae1 + be1êpf̂q = ae1 − bêpf̂qe1 = ᾱe1.

From this relation, we have(
TXρ(e1) + ρ(e1)X

)
· (w1, . . . , wk)

= (e1w1, . . . , e1wk)X + e1
(
(w1, . . . , wk)

tX̄
)

= (e1w1, . . . , e1wk)X + (e1w1, . . . , e1wk)
tX

= (e1w1, . . . , e1wk)(X + tX).

Thus we have

TXρ(e1) + ρ(e1)X = 0 ⇐⇒ tX +X = 0 (in M(k; C))

and

hp,q =
{
X ∈M(k; C)

∣∣ tX +X = 0
}

= so(k,C).
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6.2. The case: (T, T ′), (K,K′) = (C,R)

In this case, {p̄, q̄} = {0, 7}, {2, 3}, {3, 4}, {6, 7} and

Rp,q = M(2(n−1)/2; C) ⊃ R+
p,q = M(2(n−1)/2; R).

We may assume that p ≡ 3 (mod 4), q ≡ 0 (mod 2). By (6.2), ê2p = −1.

Since p is odd, i := êp is a central element of Rp,q and the center of Rp,q is

given by C12(n−1)/2 = R + Ri. Let W0 be a simple Rp,q-module. Then W0 =

C
2(n−1)/2

= R
2(n−1)/2

+ iR2(n−1)/2
is a direct sum of simple R+

p,q-modules.

In general a not necessarily simple Rp,q-module W =

k︷ ︸︸ ︷
W0 ⊕ · · · ⊕W0 is

identified with M(2(n−1)/2, 2k; R). Under this identification, A = M(2k; R)

and the action of X ∈ A on w ∈W is given

X · w = (w1, . . . , w2k)
tX

(X ∈ A = M(2k; R), w = (w1, . . . , w2k) ∈W = M(2(n−1)/2, 2k; R))

Since p is odd, we may take i as r in Lemma 6.1 and

hp,q =
{
X ∈ A

∣∣ TXρ(i) + ρ(i)X = 0
}
.

Since

i(u+ iv) = −v + iu (u, v ∈ R
2(n−1)/2

),

the action of r = i on W coincides with the action of

Jk :=

k︷ ︸︸ ︷
J1 ⊥ · · · ⊥ J1 ∈M(2k; R) = A, J1 =

(
0 −1

1 0

)
(6.4)

on W . Thus we have

TXρ(r) + ρ(r)X = 0 ⇐⇒ tXJk + JkX = 0.

Hence,

hp,q =
{
X ∈M(2k; R)

∣∣ tXJk + JkX = 0
}

= sp(k,R).



848 Takeyoshi Kogiso and Fumihiro Sato

6.3. The case: (T, T ′), (K,K′) = (C,H)

In this case, {p̄, q̄} = {0, 3}, {2, 7}, {3, 6}, {4, 7}, and

Rp,q = M(2(n−1)/2; C) ⊃ R+
p,q = M(2(n−3)/2; H).

We may assume that p ≡ 3 (mod 4), q ≡ 0 (mod 2). As in the case of

(K,K′) = (C,R), the center of Rp,q is given by C12(n−1)/2 = R + Ri with

i := êp. We write H = C + Cj. Then αj = jᾱ for α ∈ C.

Let W0 be a simple Rp,q-module. Then W0 = C
2(n−2)/2

and W0 is also

simple as an R+
p,q-module. We identify W0 with H

2(n−3)/2
= C

2(n−3)/2
+

jC2(n−3)/2
. Then a not necessarily simple Rp,q-module W =

k︷ ︸︸ ︷
W0 ⊕ · · · ⊕W0

is identified withM(2(n−3)/2, 2k; C). Then, A = M(k; H) may be considered

as a subalgebra of M(2k; C). Since H is identified with{(
α β̄

−β ᾱ

) ∣∣∣∣ α, β ∈ C

}
=

{
X ∈M(2; C)

∣∣ J1X̄J
−1
1 = X

}
,

we have

A = M(2k; C)σ = {X ∈M(2k; C) | σ(X) = X} , σ(X) = JkX̄J
−1
k ,

where Jk is the skew symmetric matrix given by (6.4). The action of X ∈ A
on w ∈W is then given by

X · w = (w1, . . . , wk)
tX̄.

Since p is odd, we may take i as r in Lemma 6.1 and

hp,q =
{
X ∈ A

∣∣ TXρ(i) + ρ(i)X = 0
}
.

Since

i(u+ jv) = (u− jv)
√
−1 (u, v ∈ C

2(n−3)/2
),

the action of r = i on W coincides with the action of
√
−1Hk ∈ A, where

Hk :=

k︷ ︸︸ ︷(
−1 0

0 1

)
⊥ · · · ⊥

(
−1 0

0 1

)
∈M(2k; C).
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Hence we have

TXρ(r) + ρ(r)X = 0 ⇐⇒ tX̄Hk +HkX = 0.

Therefore

hp,q =
{
X ∈ A

∣∣ tX̄Hk +HkX = 0
}

=
{
X ∈ A

∣∣ tXHkJk +HkJkX = 0
}
.

Put

Uk =

k︷ ︸︸ ︷
1√
2

(
1 1√
−1 −

√
−1

)
⊥ · · · ⊥ 1√

2

(
1 1√
−1 −

√
−1

)
.

Then tUkUk = HkJk. The mapping X �→ Y = UkXU
−1
k stabilizes A =

M(k,H) in M(2k; C) and gives an isomorphism

hp,q
∼=

{
Y ∈ A

∣∣ tY + Y = 0
}

=
{
Y ∈M(2k; C)

∣∣ tY + Y = 0, tȲ Jk + JkY = 0
}

= so
∗(2k).

6.4. The case: (T, T ′), (K,K′) = (H,C)

In this case, {p̄, q̄} = {0, 6}, {2, 4} and

Rp,q = M(2(n−2)/2; H) ⊃ R+
p,q = M(2(n−2)/2; C).

We may assume that p ≡ 0 (mod 4) and q ≡ 2 (mod 4). Then, ê2p = 1, f̂2
q =

−1. Hence i := êpf̂q satisfies that i2 = −1 and the center of R+
p,q is given by

C12(n−1)/2 = R+Ri. Let W0 be a simple Rp,q-module. Then W0 = H
2(n−2)/2

decomposes to the direct sum of two isomorphic simple R+
p,q-modules: W0 =

H
2(n−2)/2

= C
2(n−2)/2

+ C
2(n−2)/2

j. In general, a not necessarily simple Rp,q-

module W =

k︷ ︸︸ ︷
W0 ⊕ · · · ⊕W0 is identified with M(2(n−2)/2, 2k; C). Under

this identification, A = M(2k,C) and the action of X ∈ A on w ∈ W is

given by

X · w = (w1, . . . , wk)
tX̄.
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Since j := j12(n−2)/2 anticommutes with i = êpf̂q, j is an odd element of

Rp,q. Hence we may take j as r in Lemma 6.1 and

hp,q =
{
X ∈ A

∣∣ TXρ(j) + ρ(j)X = 0
}
.

Denote by c the complex conjugation on W = M(2(n−2)/2, 2k; C). Then,

since

j(u+ vj) = −v̄ + ūj (u, v ∈ C
2(n−2)/2

),

the action of r = j on W coincides with the action of Jkc. Hence we have

(TXρ(r) + ρ(r)X) · w = (jw)X + j(w tX̄) = w̄ tJkX + w̄ tX tJk

= w̄(tJkX + tX tJk).

Then we have

TXρ(r) + ρ(r)X = 0 ⇐⇒ tXJk + JkX = 0.

Therefore

hp,q = sp(k,C).

6.5. The case: (T, T ′ ⊕ T ′)
In this case,

{p̄, q̄} =

{
{0, 0}, {2, 2}, {4, 4}, {6, 6} (K = K

′ = R)

{0, 4}, {2, 6} (K = K
′ = H)

and

Rp,q = M(-; K) ⊃ R+
p,q = M(r; K)⊕M(r; K),

where -, r are as in Lemma 2.5.

We have p ≡ q (mod 4). Then

c± =
1

2

(
1± êpf̂q

)
are central orthogonal idempotents of R+

p,q. For an Rp,q-module W , put

W± = c±W . Then W± are the isotypic components of W as R+
p,q-module
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and W = W+ ⊕W−. If W0 is a simple Rp,q-module, the decomposition

W0 = W+
0 ⊕W−

0 gives two (non-isomorphic) simple R+
p,q-modules. Then we

have the following decomposition

W =

k︷ ︸︸ ︷
W0 ⊕ · · · ⊕W0 =

k︷ ︸︸ ︷
W+

0 ⊕ · · · ⊕W+
0 ⊕

k︷ ︸︸ ︷
W−

0 ⊕ · · · ⊕W−
0

and the action of A = M(k; K) on W is given by

(X1, X2) · (w+, w−) = (w+
tX̄1, w−

tX̄2) ((X1, X2) ∈M(k; K)⊕M(k; K)).

Since p is even, we have

e1c
+ = c−e1, e1c

− = c+e1.

Hence ρ(e1) induces a linear isomorphism

φ : W+
0 −→W−

0 , ψ : W−
0 −→W+

0 .

Since e21 = 1, we have ψ = φ−1. Hence the action of e1 on W is given by

e1 · (w+
1 , . . . , w

+
k , w

−
1 , . . . , w

−
k )

= (φ−1(w−
1 ), . . . , φ−1(w−

k ), φ(w+
1 ), . . . , φ(w+

k )).

Taking e1 as r in Lemma 6.1, we have, for X = (X1, X2) ∈ A,

(TXρ(r) + ρ(r)X)(w+, w−)

= (φ−1(w−)X1 + φ−1(w− tX̄2), φ(w
+)X2 + φ(w+ tX̄1).

Hence, we have

TXρ(r) + ρ(r)X = 0 ⇐⇒ X2 = −φ ◦ tX̄1 ◦ φ−1.

Therefore

hp,q(ρ) =
{

(X1,−φ ◦ tX̄1 ◦ φ−1)
∣∣ X1 ∈M(k,K)

} ∼= gl(k,K).
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6.6. The case: (T ⊕ T, T ′)
In this case,

{p̄, q̄} =



{0, 1}, {1, 2}, {4, 5}, {5, 6} (K = K

′ = R)

{1, 3}, {1, 7}, {3, 5}, {5, 7} (K = K
′ = C)

{0, 5}, {1, 4}, {1, 6}, {2, 5} (K = K
′ = H)

and

Rp,q = M(-; K)⊕M(-; K) ⊃ R+
p,q = M(r; K),

where -, r are as in Lemma 2.5. We may assume that p ≡ 1 (mod 4). Then

c± =
1

2
(1± êp)

are central orthogonal idempotents of Rp,q. For an Rp,q-module W , put

W± = c±W . Then W± are the isotypic components as Rp,q-module and

W = W+ ⊕W−. Let W+
0 (resp. W−

0 ) be the simple Rp,q-module contained

in W+ (resp. W−). Then we have

W+ =

k1︷ ︸︸ ︷
W+

0 ⊕ · · · ⊕W+
0 , W− =

k2︷ ︸︸ ︷
W−

0 ⊕ · · · ⊕W−
0

for some k1, k2. Since W+
0 is isomorphic to W−

0 as R+
p,q-module, we have

A = M(k1 + k2; K). The action of A = M(k1 + k2; K) on W is then given

by

X · w = w tX̄, X ∈M(k1 + k2; K).

Since p is odd, we may take êp as r in Lemma 6.1. Then we have

rc± = ±c±

Hence, the action of r on W+ (resp. W−) is +1 (resp. −1) and the action

of r on W coincides with the action of

Ik1,k2 :=

(
1k1 0

0 −1k2

)
∈ A.
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Hence we have

TXρ(r) + ρ(r)X = tX̄Ik1,k2 + Ik1,k2X.

Therefore

hp,q(ρ) =
{
X ∈M(k1 + k2; H)

∣∣ tX̄Ik1,k2 + Ik1,k2X = 0
}

∼=




so(k1, k2) (K = R),

u(k1, k2) (K = C),

sp(k1, k2) (K = H).

6.7. The case: (T ⊕ T, T ′ ⊕ T ′)
In this case,

{p̄, q̄} =

{
{3, 3}, {7, 7} (K,K′) = (C,R)

{3, 7} (K,K′) = (C,H)

and

Rp,q = M(-; K)⊕M(-; K) ⊃ R+
p,q = M(r; K′)⊕M(r; K′),

where -, r are as in Lemma 2.5. Since p ≡ q ≡ 3 (mod 4), we have ê2p =

f̂2
q = −1 and

c± =
1

2

(
1± êpf̂q

)
are central orthogonal idempotents of Rp,q and of R+

p,q. The algebra Rp,q

has two (non-isomorphic) simple modules W+
0 ,W

−
0 which satisfy

c+W+
0 = W+

0 , c+W−
0 = {0}, c−W+

0 = {0}, c−W−
0 = W−

0 .

Similarly R+
p,q has two(non-isomorphic) simple modules W+

1 ,W
−
1 which are

not isomorphic which satisfy

c+W+
1 = W+

1 , c+W−
1 = {0}, c−W+

1 = {0}, c−W−
1 = W−

1 .

In the case where K
′ = R, the Rp,q-simple modules W±

0 are the direct sum

of two copies of the simple R+
p,q-module W±

1 , and, in the case where K
′ = H,

W±
0 are simple as R+

p,q-module:

W±
0 =

{
W±

1 ⊕W±
1 (K′ = R),

W±
1 (K′ = H).
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A (not necessarily simple) Rp,q-module W is written as

W =

k1︷ ︸︸ ︷
W+

0 ⊕ · · · ⊕W+
0 ⊕

k2︷ ︸︸ ︷
W−

0 ⊕ · · · ⊕W−
0

and we have

A =

{
M(2k1; R)⊕M(2k2; R) (K′ = R),

M(k1; H)⊕M(k2; H) (K′ = H).

Since p is odd, we may take êp as r in Lemma 6.1. Then, by the calculation as

in §6.2 or §6.3, the action of r on W coincides with the action of (Jk1 , Jk2) ∈
A or (Hk1 , Hk2) ∈ A according as K

′ = R or K
′ = H. Therefore

hp,q(ρ) =

{
sp(k1,R)⊕ sp(k2,R) (K′ = R),

so∗(2k1)⊕ so∗(2k2) (K′ = H).

6.8. The case: (T ⊕ T ⊕ T ⊕ T, T ′ ⊕ T ′)
In this case,

{p̄, q̄} =

{
{1, 1}, {5, 5} (K = K

′ = R)

{1, 5} (K = K
′ = H)

and

Rp,q = M(-; K)⊕M(-; K)⊕M(-; K)⊕M(-; K)

⊃ R+
p,q = M(r; K)⊕M(r; K),

where -, r are as in Lemma 2.5. Since p ≡ q ≡ 1 mod 4, we have ê2p = f̂2
q =

1 and êp, f̂q are central elements of Rp,q. Put

c±p =
1

2
(1± êp) , c±q =

1

2

(
1± f̂q

)
.

Then the elements

c++ = c+p c
+
q , c+− = c+p c

−
q , c−+ = c−p c

+
q , c−− = c−p c

−
q

give central orthogonal idempotents of Rp,q and the elements

c+ = c++ + c−− =
1

2

(
1 + êpf̂q

)
, c− = c+− + c+− =

1

2

(
1− êpf̂q

)
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give central orthogonal idempotents of R+
p,q. The algebra Rp,q has 4 (non-

isomorphic) simple modules W±±
0 corresponding to the idempotents c±±.

The simple Rp,q-modules W++
0 and W−−

0 (resp. W+−
0 and W−+

0 ) are iso-

morphic and simple as R+
p,q-module. A not necessarily simple Rp,q-module

W is written as

W =

k1︷ ︸︸ ︷
W++

0 ⊕ · · · ⊕W++
0 ⊕

k2︷ ︸︸ ︷
W−−

0 ⊕ · · · ⊕W−−
0 ⊕

k3︷ ︸︸ ︷
W+−

0 ⊕ · · · ⊕W+−
0

⊕
k4︷ ︸︸ ︷

W−+
0 ⊕ · · · ⊕W−+

0 .

Since W++
0

∼= W−−
0 and W+−

0
∼= W−+

0 as R+
p,q-module, we have

A =

{
M(k1 + k2; R)⊕M(k3 + k4; R) (K′ = R),

M(k1 + k2; H)⊕M(k3 + k4; H) (K′ = H).

Since p is odd, we may take êp as r in Lemma 6.1. Then, by the calculation

as in §6.5, the action of r on

W+ :=

k1︷ ︸︸ ︷
W++

0 ⊕ · · · ⊕W++
0 ⊕

k2︷ ︸︸ ︷
W−−

0 ⊕ · · · ⊕W−−
0 ,

W− :=

k3︷ ︸︸ ︷
W+−

0 ⊕ · · · ⊕W+−
0 ⊕

k4︷ ︸︸ ︷
W−+

0 ⊕ · · · ⊕W−+
0

coincides with the action of Ik1,k2 , Ik3,k4 , respectively. Therefore

hp,q(ρ) =

{
so(k1, k2)⊕ so(k3, k4) (K′ = R),

sp(k1, k2)⊕ sp(k3, k4) (K′ = H).

7. Proof of Main Theorems

A prehomogeneous vector space (over C) is, by definition, a triple

(G, π,W) of a connected linear algebraic group G defined over C, a finite-

dimensional complex vector space W and a rational representation π of G

on V with a Zariski-open G-orbit. For basic results on prehomogeneous

vector spaces, refer to [17] and [29]. We say that a finite dimensional repre-

sentation (g, π,W) of a complex Lie algebra g is a prehomogeneous vector
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space, if g = Lie(G) and π is the infinitesimal representation of a preho-

mogeneous vector space (G, π,W). Here, by abuse of notation, we use the

same symbol π to denote the infinitesimal representation.

Denote by τ the representation of g′p,q(ρ) on W given in Theorem 3.5

and consider the triple (gl(1,R)⊕ g′p,q(ρ),Λ1⊗ τ,W ), where gl(1,R) acts on

W as scalar multiplication.

7.1. Case (I)

Let us consider Case (I), namely, the cases

(p+ q,m) = (3, 2), (4, 4), (6, 8), (10, 16).

In these cases, by Theorem 3.5 the triple (gl(1,R)⊕ g′p,q(ρ),Λ1 ⊗ τ,W ) is a

real form of the following prehomogeneous vector space:

(p+ q,m) = (3, 2) (gl(2,C),Λ1,C
2);

(p+ q,m) = (4, 4) (gl(2,C),Λ1,C
2)⊕ (gl(2,C),Λ1,C

2);

(p+ q) = (6, 8) (gl(4,C)⊕ sl(2,C),Λ1 ⊗ Λ1,M(4, 2; C));

(p+ q,m) = (10, 16) (gl(1,C)⊕ so(10,C),Λ1 ⊗ Λ#,C
16)) (= = e, o).

These prehomogeneous vector spaces have no relative invariants (see [29,

§7]). Thus we have proved the “only if”-part of Theorem 3.1. Since the

“if”-part of the theorem was proved in Lemma 4.1, this completes the proof

of Theorem 3.1.

7.2. Case (II)

Let us consider Case (II), namely, the cases

(p+ q,m) = (3, 4), (4, 8), (5, 8), (6, 16), (7, 16), (8, 16),

(9, 16), (10, 32), (11, 32).

By Theorem 3.5 the complexification of (gl(1,R)⊕ g′p,q(ρ),Λ1⊗ τ,W ) is

given by

(p+ q,m) = (3, 4) (gl(2,C)⊕ so(2,C),Λ1 ⊗ Λ1,M(2; C));

(p+ q,m) = (4, 8) (gl(1,C)⊕ sl(2,C)⊕ sl(2,C)⊕ gl(2,C);

Λ1 ⊗ ((Λ1 ⊗ 1⊗ Λ1)⊕ (1⊗ Λ1 ⊗ Λ∗
1)),
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M(2; C)⊕M(2; C));

(p+ q,m) = (5, 8) (sp(2,C)⊕ gl(2,C),Λ1 ⊗ Λ1,M(4, 2; C));

(p+ q,m) = (6, 16) (gl(4,C)⊕ sp(2,C),Λ1 ⊗ Λ1,M(4; C)), or

(gl(1,C)⊕ sl(4,C)⊕ sl(2,C)⊕ sl(2,C);

Λ1 ⊗ ((Λ1 ⊗ 1⊗ Λ1)⊕ (Λ∗
1 ⊗ Λ1 ⊗ 1)),

M(4, 2; C)⊕M(4, 2; C));

(p+ q,m) = (7, 16) (so(7,C)⊕ gl(2,C),Λ⊗ Λ1,M(8, 2; C));

(p+ q,m) = (8, 16) (gl(1,C)⊕ so(8,C)⊕ gl(1,C),

Λ1 ⊗ ((Λ1 ⊗ Λ1)⊕ (Λ1 ⊗ Λ∗
1)),C

8 ⊕ C
8);

(p+ q,m) = (9, 16) (gl(1,C)⊕ so(9,C),Λ1 ⊗ Λ,C16);

(p+ q,m) = (10, 32) (gl(1,C)⊕ so(10,C),

Λ1 ⊗ (Λe ⊕ Λe),C
16 ⊕ C

16), or

(gl(1,C)⊕ so(10,C),

Λ1 ⊗ (Λo ⊕ Λo),C
16 ⊕ C

16), or

(gl(1,C)⊕ so(10,C),Λ1 ⊗ (Λe ⊕ Λo),C
16 ⊕ C

16);

(p+ q,m) = (11, 32) (gl(1,C)⊕ so(11,C),Λ1 ⊗ Λ#,C
32) (= = e, o).

These representations give prehomogeneous vector spaces except (gl(1,C)⊕
so(10,C),Λ1 ⊗ (Λe ⊕ Λo),C

16 ⊕ C
16). This can be easily seen for p + q =

3, 4, 5, 6, 8 and we have:

(p+ q,m) CQF gp,q(ρ)⊗ C

(3, 4) (detw)2 (w ∈M(2; C)) sl(2,C)⊕ sl(2,C)

(4,8)
detw1 detw2 ((w1, w2) ∈M(2; C) sl(2,C)⊕ sl(2,C)

⊕M(2; C)) ⊕sl(2,C)⊕ gl(1,C)
(5, 8) Pf(J4[w])2 (w ∈M(4, 2; C)) so(8,C)
(6, 16) detw (w ∈M(4; C)) sl(4,C)⊕ sl(4,C)

(6,16)
det(tw1w2) ((w1, w2) ∈M(4, 2; C) sl(4,C)⊕ sl(2,C)

⊕M(4, 2; C)) ⊕sl(2,C)⊕ gl(1,C)
(8, 16) q1(w1)q2(w2) ((w1, w2) ∈ C

8 ⊕ C
8) so(8,C)⊕ so(8,C)⊕ gl(1,C)

Here “CQF” means “Clifford quartic form”, Pf denotes the Pfaffian of an

alternating matrix, J4 =

(
02 −12

12 02

)
, and q1, q2 are quadratic forms in 8

variables.

For p + q = 7 the triple is the prehomogeneous vector space (17) in

[29, §7, I)] and the Clifford quartic form is given by its irreducible relative



858 Takeyoshi Kogiso and Fumihiro Sato

invariant, which is the same as the irreducible relative invariant of the space

(15) in [29, §7, I)]. Hence we have gp,q(ρ)⊗ C ∼= so(8,C)⊕ sl(2,C).

For p+ q = 9 the triple is the prehomogeneous vector space (19) in [29,

§7, I)] and its fundamental relative invariant is a quadratic form. Hence

the Clifford quartic form is the square of a quadratic form and we have

gp,q(ρ)⊗ C ∼= so(16,C).

For p + q = 10, if the two direct summand is equivalent (namely, ρ is

pure over C), then the triple is the prehomogeneous vector space of type

(17) on the list in [12, §3]. Hence the Clifford quartic form is the same as

the irreducible relative invariant of the space (20) in [29, §7, I)] and we have

gp,q(ρ) ⊗ C ∼= so(10,C) ⊕ sl(2,C). If the two direct summand is inequiva-

lent (namely, ρ is mixed), then we have gp,q(ρ) = so(10) ⊕ gl(1) by direct

calculation and hence (gl(1)⊕ gp,q(ρ),Λ1 ⊗ τ,W ) is not a prehomogeneous

vector space (see [12, Proposition 2.24]).

For p + q = 11 the triple is the prehomogeneous vector space (22) in

[29, §7, I)] and the Clifford quartic form is given by its irreducible relative

invariant, which is the same as the irreducible relative invariant of the space

(23) in [29, §7, I)]. Hence we have gp,q(ρ)⊗ C ∼= so(12,C).

Thus we have proved that, in Case (II), gp,q(ρ) is always strictly larger

than g′p,q(ρ). Hence the converse of Theorem 3.3 also holds. Moreover

the triples (gl(1,R)⊕ gp,q(ρ),Λ1 ⊗ τ,W ) are prehomogeneous vector spaces

except the case where (p+ q,m) = (10, 32) and ρ is mixed.

7.3. Case (III)

For Case (III), by Theorem 3.3, we have gp,q(ρ) = g′p,q(ρ). We determine

when (gl(1,R) ⊕ gp,q(ρ),Λ1 ⊗ τ,W ) is a (real form of a) prehomogeneous

vector space.

First we consider the low-dimensional cases p+q ≤ 6 and p+q = 8, where

the (half-) spin representations of so(p, q) are equivalent to the standard or

rather simple tensor representations of classical Lie algebras (see [9, Chapter

X, §6.4]).

The case p+ q = 3

In this case, the representation τ is a real form of the representation

(gl(1,C)⊕ so(3,C)⊕ so(k,C),Λ1 ⊗ Λ⊗ Λ1,M(2, k; C))

∼= (gl(2,C)⊕ so(k,C),Λ1 ⊗ Λ1,M(2, k; C)) (k ≥ 3).
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This representation gives a prehomogeneous vector space of type (15) in [29,

§7 I)]. The fundamental relative invariant is of degree 4 and it is the Clifford

quartic form.

The case p+ q = 4

In this case, the representation τ is a real form of the representation

(gl(1,C)⊕ sl(2,C)⊕ sl(2,C)⊕ gl(k,C),

Λ1 ⊗ ((Λ1 ⊗ 1⊗ Λ1)⊕ (1⊗ Λ1 ⊗ Λ∗
1)),

M(2, k; C)⊕M(2, k; C)), (k ≥ 3).

This representation gives a prehomogeneous vector space and the fundamen-

tal relative invariant is det(w1
tw2) (w = w1, w2) ∈M(2, k; C)⊕M(2, k; C))

and this is the Clifford quartic form.

The case p+ q = 5

In this case, the representation τ is a real form of the representation

(gl(1,C)⊕ so(5,C)⊕ sp(k,C),Λ1 ⊗ Λ⊗ Λ1,C
8k)

∼= (gl(1,C)⊕ sp(2,C)⊕ sp(k,C),

Λ1 ⊗ Λ1 ⊗ Λ1,M(4, 2k; C)), (k ≥ 2).

By the classification of irreducible prehomogeneous vector spaces ([29, §3,

Proposition 21]), this does not give a prehomogeneous vector space.

The case p+ q = 6

In this case, the representation τ is a real form of the representation

(gl(1,C)⊕ sl(4,C)⊕ sp(k1,C)⊕ sp(k2,C),

Λ1 ⊗ ((Λ1 ⊗ Λ1 ⊗ 1)⊕ (Λ∗
1 ⊗ 1⊗ Λ1)),M(4, 2k1; C)⊕M(4, 2k2)).

Note that k1 + k2 ≥ 3 for Case (III). We may assume that k1 ≥ k2. Then

the representations above give prehomogeneous vector spaces only when

k2 = 0, equivalently, the representation ρ is pure over C. In this case the

prehomogeneous vector space is of type (13) in [29, §7 I)] and its funda-

mental relative invariant is the Clifford quartic form. By the classification

of 3-simple prehomogeneous vector spaces in [16] (or direct calculation

using [29, §3, Proposition 21]), one can check that the representation is
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nonprehomogeneous for k2 ≥ 1 (the case where the representation ρ is

mixed).

The case p+ q = 8

In this case, the representation τ is a real form of the representation

(gl(1,C)⊕ so(8,C)⊕ gl(k,R),

Λ1 ⊗ ((Λe ⊗ Λ1)⊕ (Λo ⊗ Λ∗
1)),M(8, k; C)⊕M(8, k; C)).

Note that k ≥ 2 for Case (III). Then, by the classification of 2-simple pre-

homogeneous vector spaces ([13], [14], [15]), these are not prehomogeneous

vector spaces.

The case p+ q = 7 or p+ q ≥ 9

By [29] (see also [13, Theorem 1.5]), the irreducible prehomogeneous vec-

tor spaces (defined over C) containing the spin or half-spin representations

of Spin(p+ q) (p+ q = 7, or ≥ 9) are given by

(Spin(7)×GL(k),Λ⊗ Λ1) (k = 1, 2, 3, 5, 6, 7),

(Spin(9)×GL(k),Λ⊗ Λ1) (k = 1, 15),

(Spin(10)×GL(k),Λ# ⊗ Λ1) (k = 1, 2, 3, 13, 14, 15, = = e, o),

(Spin(11)×GL(k),Λ⊗ Λ1) (k = 1, 31),

(Spin(12)×GL(k),Λ# ⊗ Λ1) (k = 1, 31, = = e, o),

(Spin(14)×GL(k),Λ# ⊗ Λ1) (k = 1, 63, = = e, o),

(Spin(p+ q)×GL(k),Λ# ⊗ Λ1) (k ≥ deg Λ#, = = e, o).

(7.1)

By Theorem 3.5, the complexification of the representation τ of gl(1)⊕
gp,q(ρ) = gl(1)⊕ g′p,q(ρ) on W is equivalent to one of the following:

(a) (gl(1)⊕ so(p+ q)⊕ so(k),Λ1 ⊗ Λe ⊗ Λ1) (p+ q ≡ 1, 3 (mod 8)),

(b) (gl(1)⊕ so(p+ q)⊕ sp(k),Λ1 ⊗ Λe ⊗ Λ1) (p+ q ≡ 5, 7 (mod 8)),

(c) (gl(1) ⊕ so(p + q) ⊕ gl(k),Λ1 ⊗ (Λe ⊗ Λ1 ⊕ Λo ⊗ Λ∗
1)) (p + q ≡ 0, 4

(mod 8)),

(d) (gl(1)⊕ so(p+ q)⊕ so(k1)⊕ so(k2),Λ1 ⊗ (Λe ⊗Λ1 ⊗ 1⊕Λo ⊗ 1⊗Λ∗
1))

(p+ q ≡ 2 (mod 8)),

(e) (gl(1)⊕ so(p+ q)⊕ sp(k1)⊕ sp(k2),Λ1 ⊗ (Λe⊗Λ1 ⊗ 1⊕Λo⊗ 1⊗Λ∗
1))

(p+ q ≡ 6 (mod 8)).
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Assume that (gl(1)⊕ g′p,q(ρ),Λ1 ⊗ τ,W ) is a prehomogeneous vector space.

Then, every direct summand is also a prehomogeneous vector space and it

must coincide with one of the representations in (7.1). Hence, for Cases (a),

(b), and (d), we have

k = 1, p+ q = 9, 11 (Case (a)),

k = 1, p+ q = 7 (Case (b)),

k1, k2 = 0, 1, p+ q = 10 (Case (d)).

These cases belong to Case (I) or Case (II). Therefore the representation

τ belonging to Case (III) does not give a prehomogeneous vector space in

Cases (a), (b) and (d). For Case (e), the direct summand of τ does not

coincide with any one of prehomogeneous vector spaces in (7.1). Hence no

prehomogeneous vector spaces appear in Case (e). Finally let us consider

Case (c). If deg Λe = deg Λo ≤ k, by [14, Proposition 1.15], the representa-

tion does not give a prehomogeneous vector space. If deg Λe = deg Λo > k

and if a direct summand of the representation coincides with one of preho-

mogeneous vector spaces in (7.1), then we have p+ q = 12 and k = 1. This

does not give a prehomogeneous vector space by [12, Proposition 2.32].

Summing up the results in §7.1, §7.2, and §7.3, we obtain Theorem 3.2,

(1) and (2).

7.4. Irreducibility of Clifford quartic forms

Let us prove Theorem 3.2, (3). It is sufficient for the proof to consider

everything over C. As we have seen in Theorem 3.1, the Clifford quartic

form P̃ (w) vanishes identically for (p + q,m) = (3, 2), (4, 4), (6, 8), (10, 16).

The case by case examination in §7.2 shows that P̃ (w) is a product of two

quadratic forms for (p + q,m) = (3, 4), (4, 8), (5, 8), (8, 16), (9, 16). By the

classification of the cases where P̃ (w) is a relative invariant of a prehomo-

geneous vector space (see Table 1), P̃ (w) is absolutely irreducible for the

other prehomogeneous cases.

Now we consider the cases where P̃ (w) is not a relative invariant of any

prehomogeneous vector space, namely Case (III) treated in §7.3 and the

case where (p + q,m) = (10, 32) and ρ is mixed. We prove that P̃ (w) is

absolutely irreducible in these cases. Since deg P̃ (w) = 4, it is sufficient to

prove that

(a) P̃ (w) does not have a linear factor, and
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(b) P̃ (w) is not a product of two irreducible quadratic forms.

(a) Assume that a linear form -(w) divides P̃ (w). Then, -(w) is also

gp,q(ρ)-invariant, and the kernel of -(w) is an invariant subspace of codi-

mension 1. Recall that gp,q(ρ) = g′p,q(ρ) for Case (III), and gp,q(ρ) =

so(p, q) ⊕ gl(1) ⊃ g′p,q(ρ) = so(p, q) for the unique non-prehomogeneous

case (p + q,m) = (10, 32). By Theorem 3.5, no gp,q(ρ)-invariant subspaces

of codimension 1 appear in these cases. This implies that P̃ (w) does not

have a linear factor.

(b) Assume that P̃ (w) = q1(w)q2(w) for irreducible quadratic forms

q1(w) = T1[w], q2(w) = T2[w]. Here T1 and T2 are symmetric matrices of size

m = dimW . If q1(w) and q2(w) are proportional, then P̃ (w) is a relative

invariant of the prehomogeneous vector space (GL(1) × SO(T1),Λ1,W).

Hence we may assume that q1(w) and q2(w) are coprime. It is obvious

that gp,q(ρ) = so(T1) ∩ so(T2). First we show that T1 and T2 are non-

degenerate. If r = rankT1 < m, then there exists some g ∈ GL(m,C) such

that (tgT1g,
tgT2g) is of the form((

T
(1)
1 0

0 0

)
,

(
T

(1)
2 T

(2)
2

tT
(2)
2 T

(3)
2

))
,

T
(1)
1 ∈ Sym(r; C), T

(1)
1 �= 0, T

(1)
2 ∈ Sym(r; C),

T
(2)
2 ∈M(r,m− r; C), T

(3)
2 ∈ Sym(m− r; C).

Since the Hessian of a homaloidal polynomial does not vanish identically, it

follows from Theorem 2.14 that detT
(3)
2 �= 0. Put h =

(
1r −S(2)

2 S
(3)
2

−1

0 1n−r

)
.

Then (t(gh)T1(gh),
t(gh)T2(gh)) is of the form((

Y1 0

0 0

)
,

(
Y2 0

0 Y3

))
, detY1 �= 0, detY3 �= 0,

and the Lie algebra gp,q(ρ) is isomorphic to (so(Y1)∩so(Y2))⊕so(Y3). Hence

gp,q(ρ) has a subalgebra isomorphic to so(Y3) and the restriction to the sub-

algebra of the representation of gp,q(ρ) on W includes the vector represen-

tation of so(Y3). In the cases we are now considering, this can not happen.

Indeed Theorem 3.5 implies that, if p+ q ≥ 5, this can happen only for the
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case (p+ q,m) = (8, 16), which is a case where P̃ (w) is a relative invariant

of a prehomogeneous vector space. Hence T1 and T2 are non-degenerate.

By differentiating the identity P̃ (w) = q1(w)q2(w), we have

grad(P̃ (w)) = q1(w)grad(q2(w)) + q2(w)grad(q1(w))

= 2T1[w]T2w + 2T2[w]T1w.

Hence, by the relation P̃ (grad(P̃ (w))) = 28P̃ (w)3 proved in Theorem 2.14,

we have

T1

[
T1[w]T2w + T2[w]T1w

]
· T2

[
T1[w]T2w + T2[w]T1w

]
= 24T1[w]3T2[w]3.

This implies that there exist an integer i (0 ≤ i ≤ 3) and a non-zero constant

c satisfying

T1

[
T1[w]T2w + T2[w]T1w

]
= cT1[w]iT2[w]3−i.(7.2)

By expanding the left-hand side of this identity, we have

T1[w]2(T2T1T2)[w] + T1[w]T2[w](T 2
1 T2 + T2T

2
1 )[w] + T2[w]2T 3

1 [w](7.3)

= cT1[w]iT2[w]3−i.

By exchanging T1 and T2, if necessary, we may assume that i = 0, 1. Then,

the first term of the left hand side is divided by T2[w]. Since T1[w] and

T2[w] are coprime, T2T1T2[w] is a constant multiple of T2[w]. Hence there

exists a non-zero constant c1 �= 0 such that T2T1T2 = c1T2. Since T2 is

non-degenerate, this implies that T1T2 = c11m, and the relation (7.3) can

be written as

3c1T1[w]2T2[w] + T2[w]2T 3
1 [w] = cT1[w]iT2[w]3−i.

However, since T1[w]2 does not divide the right hand side, this is a con-

tradiction. Thus we have proved that P̃ (w) cannot be a product of two

irreducible quadratic forms. This completes the proof of Theorem 3.2.
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