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Proof of Unsolvability of q-Bessel Equation Using

Valuations

By Seiji Nishioka

Abstract. In this paper, we prove unsolvability of the q-Bessel

equation associated with one of the q-Bessel functions, J
(3)
ν , using the

notion of the difference field extension of valuation ring type.

1. Introduction

The unsolvability of the Bessel equation with the value of the parameter

ν satisfying ν − 1/2 /∈ Z is well-known. On the other hand, we know the

unsolvability of the q-Bessel equation associated with one of the q-Bessel

functions only when the value of ν is a rational number, for a transcendental

number q. Here the q-Bessel function is written as

J (3)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

xν 1ϕ1(0; qν+1; q, qx2)

=
(qν+1; q)∞

(q; q)∞
xν
∑
n≥0

(−1)nqn(n−1)/2

(qν+1, q; q)n
(qx2)n,

and satisfies the q-Bessel equation,

gν(qx) + (x2/4 − qν − q−ν)gν(x) + gν(xq
−1) = 0, gν(x) = J (3)

ν (xqν/2; q2).

The q-Bessel functions are introduced in the book [5] by G. Gasper and M.

Rahman, and they are q-difference counterparts of the Bessel function. In

this paper, we study the unsolvability of the above q-Bessel equation with

an arbitrary value of ν.

The unsolvability of a differential equation means that any non-trivial

solution cannot be contained in a differential field extension over C(x)

obtained by successive adjoining algebraic elements, primitive functions
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and/or exponential of primitive functions. This extension is called a Li-

ouville extension (see [6, 12]). For the unsolvability of the Bessel equation,

Galois-theoretical proof is well-known. E. R. Kolchin proved in his paper

[7] that the Galois group of the Bessel equation is SL2(C) iff. ν − 1/2 /∈ Z.

In the case ν − 1/2 ∈ Z, we find a fundamental system of solutions which

are exponential over C(x) (cf. [7]).

There is another approach to unsolvability, which uses valuation rings.

This idea originated with M. Rosenlicht [13]. The proof of unsolvability of

the Bessel equation which uses valuation rings will be seen in K. Nishioka’s

book [9] written in Japanese. In that proof, she defined a differential field

extension of valuation ring type, which is a generalization of the Liouville

extension, and proved that there is no non-trivial solution contained in

such an extension. By the general results on the extension of valuation ring

type, we only have to prove that there is no algebraic solution to the Riccati

equation associated with the Bessel equation.

For difference equations, C. H. Franke developed his Galois theory of

linear difference equations and defined a difference counterpart of the Li-

ouville extension in his papers [3, 4]. In this paper, the unsolvability of a

difference equation means that any non-trivial solution cannot be contained

in Franke’s Liouvillian extension over C(x). The author proved in his paper

[11] that the above q-Bessel equation is unsolvable when the value of ν is

a rational number, for a transcendental number q. As in the case of dif-

ferential equations, he developed a general result by using valuation rings

and proved that there is no algebraic solution to the iterated difference Ric-

cati equations associated with the q-Bessel equation. A difference Riccati

equation is a equation of the form,

y(τ(x)) =
a(x)y(x) + b(x)

c(x)y(x) + d(x)
, τ(x) = x + 1, qx, etc.

However, there was a technical problem to prove the non-existence of alge-

braic solutions for an arbitrary value of ν.

The solution we adopt here is to use the fact that α = qν + q−ν has

only finitely many zeros and poles when it is algebraic over the rational

function field Q(q). We will study the algebraic independence of gν(qx)

and gν(x) over Franke’s Liouvillian extension, and prove that the q-Bessel

equation with an arbitrary value of the parameter ν is unsolvable, for a

transcendental number q.
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We use the notion of the difference field extension of valuation ring type,

which was introduced in the author’s paper [11] and advanced in the paper

[10] by K. Nishioka and the author. In those papers, almost all the difference

fields are assumed to be inversive. Since such requirements are not essential

and they restrict the functions contained in the extension of valuation ring

type, we will eliminate them.

Notation. Throughout the paper every field is of characteristic zero.

When K is a field and τ is an isomorphism of K into itself, namely an

injective endomorphism, the pair K = (K, τ) is called a difference field.

We call τ the (transforming) operator and K the underlying field. For a

difference field K, K often denotes its underlying field. For a ∈ K, the

element τna ∈ K (n ∈ Z), if it exists, is called the n-th transform of a

and is sometimes denoted by an. If τK = K, we say that K is inversive.

For an algebraic closure K of K, the transforming operator τ is extended

to an isomorphism τ of K into itself, not necessarily in a unique way. We

call the difference field (K, τ) an algebraic closure of K. For p ∈ Z>0, K(p)

denotes the difference field (K, τp). For difference fields K = (K, τ) and

K′ = (K ′, τ ′), K′/K is called a difference field extension if K ′/K is a field

extension and τ ′|K = τ . In this case, we say that K′ is a difference overfield

of K and that K is a difference subfield of K′. For brevity we sometimes

use (K, τ ′) instead of (K, τ ′|K). We define a difference intermediate field in

the proper way. Let K be a difference field, L = (L, τ) a difference overfield

of K and B a subset of L. The difference subfield K〈B〉L of L is defined

to be the difference field (K(B, τB, τ2B, . . . ), τ) and is denoted by K〈B〉
for brevity. A solution of a difference equation over K is defined to be an

element of some difference overfield of K which satisfies the equation.

When R is a ring and τ is an isomorphism of R into itself, the pair

R = (R, τ) is called a difference ring. Let R = (R, τ) and R′ = (R′, τ ′)
be difference rings. A homomorphism φ of R to R′ is called a difference

homomorphism of R to R′ if φτ = τ ′φ (cf. the books [2, 8]).

Let F/K be an algebraic function field of one variable. A place P of F/K

is the maximal ideal of some valuation ring of F/K. The valuation ring and

the normalized discrete valuation associated with P is denoted by OP and

vP , respectively. A discrete valuation of F/K is a function v : F → Z∪{∞}
with the following properties.

(i) v(x) = ∞ ⇐⇒ x = 0.
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(ii) v(xy) = v(x) + v(y) for all x, y ∈ F .

(iii) v(x + y) ≥ min{v(x), v(y)} for all x, y ∈ F .

(iv) There exists an element z ∈ F× with v(z) �= 0 (v(z) = 1 for a normal-

ized discrete valuation).

(v) v(a) = 0 for all 0 �= a ∈ K.

For a rational function field K(x)/K, Pα, α ∈ K, denotes the place which

has the prime element x− α.

In Section 2, we define a notation representing difference Riccati equa-

tions. In Section 3 and 4, we define the refined difference field extension of

valuation ring type and study a solution of a difference Riccati equation in

it. In the final section, we study the unsolvability of the q-Bessel equation.

2. Difference Riccati Equation

For a second-order linear difference equation,

y2 + ay1 + by = 0,

by setting z = y1/y, we obtain the following first-order difference equation,

z1 =
−az − b

z
.

We call this the difference Riccati equation associated with the above equa-

tion. By iterations, we can express zi in terms of z such as

z2 =
(a1a− b1)z + a1b

−az − b
.

Here, we introduce a notation about those iterations.

Let K = (K, τ) be a difference field, and let

A =

(
a b

c d

)
∈ M2(K),

Ai =

(
a(i) b(i)

c(i) d(i)

)
= (τ i−1A)(τ i−2A) · · · (τA)A (i = 1, 2, . . . ).
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In this paper, Eq(A, i)/K denotes the equation over K,

yi(c
(i)y + d(i)) = a(i)y + b(i).

We easily see the following.

Lemma 1. If f is a solution of Eq(A, k)/K in a difference field exten-

sion L/K, f ∈ L is also a solution of Eq(A, ki)/K (i = 1, 2, . . . ).

Lemma 2. Let B = Ak and Bi = (τk(i−1)B)(τk(i−2)B) · · ·B (i =

1, 2, . . . ). Then Bi = Aki.

Lemma 3. For any k, l,m ∈ Z>0,

f ∈ L is a solution of Eq(Ak, lm)/K(k)

⇐⇒f ∈ L(l) is a solution of Eq(Akl,m)/K(kl),

where L is a difference overfield of K(k).

3. Difference Field Extension of Valuation Ring Type

The following is the definition of the difference field extension of valua-

tion ring type.

Definition 4. Let N/K be a difference field extension, where N =

(N, τ). We say that N/K is of valuation ring type if there exists a chain of

difference field extension,

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn−1 ⊂ Kn = N ,

such that each Ki/Ki−1 satisfies one of the following.

(i) Ki/Ki−1 is algebraic.

(ii) Ki/Ki−1 is an algebraic function field of one variable, and there exists

a place P of Ki/Ki−1 such that τ jP ⊂ P for some j ∈ Z>0.

Remark. The above definition differs from the one in the author’s

former paper [11]. In that paper, the second condition is the following.
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Ki and Ki−1 are inversive, Ki/Ki−1 is an algebraic func-

tion field of one variable, and there exists a valuation ring O of

Ki/Ki−1 such that τ jO ⊂ O for some j ∈ Z>0.

Since Ki and Ki−1 are inversive, τ jO ⊂ O implies τ jO = O. Hence the

maximal ideal P of O satisfies τ jP = P . As a result, the former extension

is of valuation ring type in the sense here.

In the following proposition and corollary, we introduce some elementary

examples of difference field extensions of valuation ring type.

Proposition 5. Let K be a difference field, and let

A =

(
a b

c d

)
∈ GL2(K),

Ai =

(
a(i) b(i)

c(i) d(i)

)
= (τ i−1A)(τ i−2A) · · ·A (i = 1, 2, . . . ).

Suppose b(k) = 0 or c(k) = 0 for some k ∈ Z>0. Let f be a solution of

Eq(A, 1)/K transcendental over K, and let L = (L, τ) = K〈f〉. Then we

obtain the following.

(i) L/K is an algebraic function field of one variable.

(ii) There is a place P of L/K such that τkP ⊂ P .

(iii) L/K is of valuation ring type.

Proof. The proof is essentially the same as the proof of Proposition

5 in [11], except that we take

P = {p/q | p, q ∈ K[g], deg q − deg p > 0},

where g = f if c(k) = 0 or g = 1/f if c(k) �= 0. �

Corollary 6. Let K be a difference field, and f a solution of y1 =

ay+b, a, b ∈ K, a �= 0, transcendental over K. Then K〈f〉/K is of valuation

ring type.



Unsolvability of q-Bessel Equation 769

Proof. Letting

A =

(
a b

0 1

)
,

we find the required by Proposition 5. �

We will show a theory of reduction.

Lemma 7. Let L/K be a difference field extension such that L/K is an

algebraic function field of one variable and there exists a place P of L/K

satisfying τ jLP ⊂ P for some j ∈ Z>0, where L = (L, τL). Let L = (L, τ) be

an algebraic closure of L and K the algebraic closure of K in L. Let

A =

(
a b

c d

)
∈ M2(K),

Ai =

(
a(i) b(i)

c(i) d(i)

)
= (τ i−1A)(τ i−2A) · · ·A (i = 1, 2, . . . ).

Suppose b(i) �= 0 and c(i) �= 0 for i = 1, 2, . . . . If Eq(A, 1)/K has a solution

f ∈ L, then Eq(A, k)/K has a solution in K for some k ∈ Z>0.

Proof. The solution f satisfies (τf)(cf+d) = af+b. We may suppose

f �∈ K. Then f is transcendental over K. Since we supposed c �= 0, we

find τf = (af + b)/(cf + d) ∈ K(f) ⊂ L(f). Let M = L〈f〉. Since L/K

is an algebraic function field of one variable and M = L(f) ⊂ L, M/K and

MK/K are algebraic function fields of one variable. Choose a place P of

L/K such that τ jP ⊂ P for some j ∈ Z>0.

Step 1. We prove that there exists a place P ′ of MK/K such that

P ′ ⊃ P and τkP ′ ⊂ P ′ for some k ∈ Z>0. Let P1, . . . , Pn (n ≥ 1) be all

of the places of MK/K such that Pi ⊃ P . Note that τ j(MK)/τ jK is an

algebraic function field of one variable. Let vi = vPi |τj(MK), then vi is a

discrete valuation of τ j(MK)/τ jK. In fact, for a prime element t ∈ L of P ,

it follows that τ jt ∈ τ jP ⊂ P ⊂ Pi, which implies vi(τ
jt) = vPi(τ

jt) > 0.

Let P̌i = Pi ∩ τ j(MK), then P̌i is the place of τ j(MK)/τ jK associated

with vi. We find

τ jP ⊂ P ∩ τ jL ⊂ Pi ∩ τ j(MK) = P̌i.
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Since τ jP1, . . . , τ
jPn are all of the places of τ j(MK)/τ jK such that τ jPi ⊃

τ jP , we obtain the sequence,

P̌1 = τ jPl1 , P̌l1 = τ jPl2 , . . . (1 ≤ li ≤ n).

Let l0 = 1. For any i ∈ Z>0, τ
jPli = P̌li−1

⊂ Pli−1
. Choose m,m′ ∈ Z≥0

such that lm = lm′ and m < m′. Then we find

τ (m′−m)jPlm′ ⊂ τ (m′−m−1)jPlm′−1
⊂ · · · ⊂ Plm = Plm′ .

Step 2. Let P ′ be the place in the previous step. Then τkP ′ ⊂ P ′ for

some k ∈ Z>0. We prove τkOP ′ ⊂ OP ′ . Assume τkOP ′ �⊂ OP ′ . There exists

x ∈ τkOP ′ \ OP ′ , which satisfies vP ′(x) < 0. Let s be a prime element for

τkP ′. By s ∈ τkP ′ ⊂ P ′, we obtain vP ′(s) = n ≥ 1, and so

vP ′(xns) = nvP ′(x) + vP ′(s) ≤ −n + n = 0.

This implies xns �∈ P ′. On the other hand, we have x ∈ τkOP ′ and s ∈ τkP ′,
which imply xns ∈ τkP ′ ⊂ P ′. We obtained a contradiction.

Step 3. Let t be a prime element for P ′, and let e = vP ′(τkt) ≥ 1.

We prove that for any x ∈ MK, vP ′(τkx) = evP ′(x). We may suppose

x �= 0. Let x = tnu, n ∈ Z, u ∈ O×
P ′ . By u, u−1 ∈ OP ′ , we obtain

τku, (τku)−1 = τku−1 ∈ τkOP ′ ⊂ OP ′ , and so τku ∈ O×
P ′ . Hence

vP ′(τkx) = vP ′((τkt)nτku)

= nvP ′(τkt) + vP ′(τku)

= en + 0

= evP ′(x).

Step 4. Let φ : MK → K((t)) be the embedding, and let φ(τkt) =∑∞
i=e rit

i, ri ∈ K, re �= 0. Then φ : (MK, τk) → (K((t)), σ) is a difference

isomorphism, where

σ

( ∞∑
i=0

αit
i

)
=

∞∑
i=0

τk(αi)

( ∞∑
l=e

rlt
l

)i

.
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Since f ∈ L is a solution of Eq(A, 1)/K, f ∈ L is also a solution of

Eq(A, k)/K. Hence f satisfies

fk(c
(k)f + d(k)) = a(k)f + b(k).

If we assume vP ′(f) < 0, we find vP ′(fk) = evP ′(f) < 0. On the other hand,

the above equation implies

evP ′(f) + vP ′(f) ≥ vP ′(f),

a contradiction. Hence we conclude vP ′(f) ≥ 0.

Let φ(f) =
∑∞

i=0 hit
i, hi ∈ K. Then

φ(fk) = σ(φ(f)) =

∞∑
i=0

τk(hi)

( ∞∑
l=e

rlt
l

)i

.

Comparing the coefficients of t0 of the equation,

φ(fk)(c
(k)φ(f) + d(k)) = a(k)φ(f) + b(k),

we obtain

τk(h0)(c
(k)h0 + d(k)) = a(k)h0 + b(k).

This implies h0 ∈ K is a solution of Eq(A, k)/K. �

Theorem 8. Let K = (K, τK) be a difference field, and let

A =

(
a b

c d

)
∈ M2(K),

Ai =

(
a(i) b(i)

c(i) d(i)

)
= (τ i−1

K A)(τ i−2
K A) · · ·A (i = 1, 2, . . . ).

Suppose b(i) �= 0 and c(i) �= 0 for i = 1, 2, . . . . Let k ∈ Z>0. Suppose

Eq(A, k)/K has a solution in a certain difference field extension N/K of

valuation ring type. Then Eq(A, ki)/K has a solution in K for some i ∈ Z>0,

where K is the algebraic closure of K in an algebraic closure N of N .

Proof. The proof is essentially the same as the proof of Theorem 2

in [11]. The place P plays the same role as the valuation ring O did. �
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The following lemma is used in the next section. Afterwards, we intro-

duce Franke’s Liouvillian extension (cf. the papers [3, 4]). We recall that

K(p) denotes the difference field (K, τp) for K = (K, τ).

Lemma 9. Let N/K be a difference field extension, and let p ∈ Z>0.

If N/K is of valuation ring type, then N (p)/K(p) is also of valuation ring

type.

Proof. By definition, there exists the chain of difference field exten-

sions,

K = K0 ⊂ · · · ⊂ Kn = N .

We think of the chain,

K(p) = K(p)
0 ⊂ · · · ⊂ K(p)

n = N (p).

In the case that Ki/Ki−1 satisfies the condition (i) in Definition 4, namely

Ki/Ki−1 is algebraic, K(p)
i /K(p)

i−1 satisfies the same condition. In the case

that Ki/Ki−1 satisfies the condition (ii), Ki/Ki−1 is an algebraic function

field of one variable, and there exists a place P of Ki/Ki−1 such that τ jP ⊂
P for some j ∈ Z>0. Then (τp)jP = (τ j)pP ⊂ P , which implies that

K(p)
i /K(p)

i−1 satisfies the condition (ii). Hence N (p)/K(p) is of valuation ring

type. �

In the following definition, the symbol ∗ is used. For a inversive dif-

ference field K and an element e, K〈e〉∗ denotes the difference overfield of

K whose underlying field is K(. . . , e−2, e−1, e, e1, e2, . . . ). It is called the

inversive closure of K〈e〉.

Definition 10. Let N/K be a difference field extension of inversive

difference fields. We say that N/K is a generalized Liouvillian extension

(GLE) if there exists a chain of extensions of inversive difference fields,

K = K0 ⊂ · · · ⊂ Kn = N ,

such that for each i = 1, 2, . . . , n, Ki = Ki−1〈e(i)〉∗, where e(i) satisfies one

of the following.
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(i) e(i) is algebraic over Ki−1,

(ii) e
(i)
1 = e(i) + β for some β ∈ Ki−1,

(iii) e
(i)
1 = αe(i) for some α ∈ Ki−1.

Let p ∈ Z>0. We say that N/K is a pLE if N (p)/K(p) is a GLE.

Lemma 11. Let N/K be a difference field extension of inversive dif-

ference fields. If N/K is a GLE, then N/K is of valuation ring type.

Proof. This is proved in the same way as Lemma 6 in [11]. �

4. Algebraic Independence

In this section, we will show a theory of algebraic independence for

solutions of a system of linear difference equations.

Let K = (K, τK) be a difference field, and let

A =

(
a b

c d

)
∈ GL2(K),

Ai =

(
a(i) b(i)

c(i) d(i)

)
= (τ i−1

K A)(τ i−2
K A) · · ·A (i = 1, 2, . . . ).

Suppose b(i) �= 0 and c(i) �= 0 for i = 1, 2, . . . .

Definition 12. Let M = (M, τM ) be a difference overfield of K, and

R = M [Y,Z] a polynomial ring. We define the homomorphism TM : R → R

by TM|M = τM and (
TMY

TMZ

)
= A

(
Y

Z

)
.

Since we supposed detA �= 0, it follows that M [TMY, TMZ] = M [Y,Z].

Hence TMY and TMZ are algebraically independent over M , which implies

that TM is injective. By(
T i
MY

T i
MZ

)
= Ai

(
Y

Z

)
(i = 1, 2, . . . )(1)
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and detAi �= 0, we find that T i
MY and T i

MZ are algebraically independent

over M .

Lemma 13. Let M = (M, τM ) be a difference overfield of K, R =

M [Y,Z] a polynomial ring, and let P ∈ R \M satisfy TMP = ωP , ω ∈ M .

Then there exist i ∈ Z>0 and a solution (f, g) �= 0 of the equation over M(i),(
y1

z1

)
= Ai

(
y

z

)
,

such that P (f, g) = 0.

Proof. Let T denote TM for brevity, and let P = P r1
1 . . . P rn

n be an

irreducible decomposition of P . Then

ωP = TP = (TP1)
r1 · · · (TPn)rn .

Hence TP1, . . . , TPn are the irreducible components of P . This implies that

there exists i ∈ Z>0 such that T iP1 = ω1P1, ω1 ∈ M×. Since (P1) is a prime

ideal, R/(P1) is an integral domain. Let L be its quotient field. Note that

L/M is a field extension. Let τ : R/(P1) → R/(P1) be the homomorphism

such that Q �→ T iQ. We will show that τ is injective. Suppose T iQ = 0,

namely T iQ ∈ (P1). There exists D ∈ R such that T iQ = DP1. By

T iP1 = ω1P1, we find

ω1T
iQ = DT iP1,

and so

ω−1
1 D =

T iQ

T iP1
∈ (τ iMM)(T iY, T iZ).

We also find

ω−1
1 D ∈ R = M [Y,Z] ⊂ M [T iY, T iZ].

Hence it follows that ω−1
1 D ∈ (τ iMM)[T iY, T iZ], which implies that T iE =

ω−1
1 D for some E ∈ R. From the above equations, we obtain

T iQ = ω−1
1 DT iP1 = (T iE)(T iP1) = T i(EP1),

Q = EP1 ∈ (P1).
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This implies Q = 0, and that τ is injective.

Extend τ to the quotient field L. Then τ is an isomorphism of L into

itself. Let L = (L, τ), which is a difference overfield of M(i). By P 1 = 0,

we find

P (Y ,Z) = P = P
r1
1 · · ·P rn

n = 0.

From the equation (1), it follows that(
T iY

T iZ

)
= Ai

(
Y

Z

)
,

which yields (
τY

τZ

)
= Ai

(
Y

Z

)
.

Hence (Y ,Z) ∈ L2 is a solution of the equation over M(i),(
y1

z1

)
= Ai

(
y

z

)

Finally, we will show (Y ,Z) �= 0. Assume (Y ,Z) = 0. Then we obtain

P1 | Y and P1 | Z, which imply P1 ∈ M , a contradiction. �

Theorem 14. Suppose that for any i ∈ Z>0, Eq(Ai, 1)/K(i) has no

solution algebraic over K. Let U = (U, τ) be a difference overfield of K, and

(f, g) �= 0 a solution in U of the equation over K,(
y1

z1

)
= A

(
y

z

)
.

Let N/K be a difference field extension in U of valuation ring type. Then

f and g are algebraically independent over N .

Proof. Assume that f and g are algebraically dependent over N .

Since they satisfy (
f1

g1

)
=

(
a b

c d

)(
f

g

)
, b �= 0, c �= 0,
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and (f, g) �= 0, we find f �= 0 and g �= 0.

(i) In the case that both f and g are algebraic over N , let h = f/g.

Then

h1 =
f1

g1
=

af + bg

cf + dg
=

ah + b

ch + d
.

Hence h ∈ U is a solution of Eq(A, 1)/K. Since h is algebraic over N , the

extension N〈h〉/N is algebraic, which implies that N〈h〉/K is of valuation

ring type. By Theorem 8, there exists i ∈ Z>0 such that Eq(A, i)/K has

a solution algebraic over K. Hence Eq(Ai, 1)/K(i) has a solution algebraic

over K (see §2). This contradicts the assumption of this theorem.

(ii) In the case tr.degN(f, g)/N = 1, there exists an irreducible poly-

nomial P ∈ N [Y,Z] \ {0} such that P (f, g) = 0. It follows that

(TNP )(f, g) = (P τ (aY + bZ, cY + dZ))(f, g)

= P τ (af + bg, cf + dg)

= P τ (f1, g1) = τ(P (f, g))

= 0,

where P τ denotes the polynomial whose coefficients are the first transforms

of corresponding coefficients of P . Hence we find P | TNP . By the definition

of TN , we obtain deg TNP ≤ degP , and so TNP = ωP , ω ∈ N . Let

m = degP (≥ 1), and let F be the sum of the terms of degree m of P . It

follows that TNF = ωF . By Lemma 13, there exist i ∈ Z>0 and a solution

(f̂ , ĝ) �= 0 of the equation over N (i),(
y1

z1

)
= Ai

(
y

z

)
,

satisfying F (f̂ , ĝ) = 0. Since F is homogeneous, we find

F (f̂/ĝ, 1) = 0,(2)

where we note that ĝ �= 0 is obtained from c(i) �= 0. Let h = f̂/ĝ. The

above equation (2) implies that h is algebraic over N . Since h satisfies

h1 =
f̂1

ĝ1
=

a(i)f̂ + b(i)ĝ

c(i)f̂ + d(i)ĝ
=

a(i)h + b(i)

c(i)h + d(i)
,
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h is a solution of Eq(Ai, 1)/N (i) algebraic over N . By Lemma 9, we find

that N (i)/K(i) is of valuation ring type, and so N (i)〈h〉/K(i) is of valuation

ring type. This implies that Eq(Ai, 1)/K(i) has a solution in N (i)〈h〉. Hence

by Theorem 8, there exists j ∈ Z>0 such that Eq(Ai, j)/K(i) has a solution

algebraic over K. Therefore we conclude that Eq(Aij , 1)/K(ij) has a solution

algebraic over K, a contradiction.

In any case, we obtained a contradiction. Thus f and g are algebraically

independent over N . �

Corollary 15. Under the same conditions as in Theorem 14, let

N/K be a difference field extension in U such that N is inversive, and that

N/K∗ is a pLE, where K∗ is the inversive closure in N . The underlying

field of K∗ is

{x ∈ N | τ ix ∈ K for some i}.

Then f and g are algebraically independent over N .

Proof. Since N/K∗ is a pLE, N (p)/K∗(p) is a GLE, and is of valuation

ring type. Let B = Ap and

Bi = (τp(i−1)B)(τp(i−2)B) · · ·B (i = 1, 2, . . . ).

Then we obtain Bi = Api (see §2). Note that for any i ∈ Z>0,

Eq(Bi, 1)/K(pi) has no solution algebraic over K.

We will show that for any i ∈ Z>0, Eq(Bi, 1)/K∗(pi) has no solution alge-

braic over K∗. Assume that there exists i ∈ Z>0 such that Eq(Bi, 1)/K∗(pi)

has a solution h algebraic over K∗. Since h is algebraic over K∗, there

exists P ∈ K∗[X] \ {0} such that P (h) = 0. The polynomial P satisfies

P τpij ∈ K[X] \ {0} for some j ∈ Z>0. By P τpij (hj) = 0, we find that hj is

algebraic over K. Since h satisfies

h1(c
(pi)h + d(pi)) = a(pi)h + b(pi),

it follows that

h =
−d(pi)h1 + b(pi)

c(pi)h1 − a(pi)
∈ K(h1),
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which implies that hj−1 ∈ K(hj) is algebraic over K. In the same way,

we find that hj , hj−1, . . . , h are algebraic over K inductively. Hence

Eq(Bi, 1)/K(pi) has a solution h algebraic over K. We obtained a con-

tradiction.

Finally, we note that (f, g) �= 0 is a solution in U (p) of the equation over

K∗(p),

(
y1

z1

)
= B

(
y

z

)
.

In fact, we obtain

(
τpf

τpg

)
= Ap

(
f

g

)
= B

(
f

g

)

from (
τf

τg

)
= A

(
f

g

)
.

Hence by Theorem 14, we conclude that f and g are algebraically indepen-

dent over N . �

5. q-Bessel Equation

In the book [5] by G. Gasper and M. Rahman, we find one of the q-Bessel

functions, J
(3)
ν (x; q), and the equation,

gν(qx) + (x2/4 − qν − q−ν)gν(x) + gν(xq
−1) = 0,

where gν(x) = J
(3)
ν (xqν/2; q2). In this section, we study the algebraic inde-

pendence of solutions. Note that the above equation can be rewritten as

follows,

(
gν(qx)

gν(x)

)
=

(
−x2/4 + qν + q−ν −1

1 0

)(
gν(x)

gν(xq
−1)

)
.

Let C be an algebraically closed field, and t a transcendental element
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over C. Let q ∈ C×, K = (C(t), τq : t �→ qt), and

a = − t2

4
+ α, α ∈ C,

A =

(
a −1

1 0

)
∈ GL2(C(t)),

Ai =

(
a(i) b(i)

c(i) d(i)

)
= (τ i−1

q A)(τ i−2
q A) · · ·A (i = 1, 2, . . . ).

We think of the equation over K,(
y1

z1

)
= A

(
y

z

)
.

First of all, we will investigate relations between a(i), b(i), c(i), d(i). We

obtain

A2 = (τqA)A =

(
a1 −1

1 0

)(
a −1

1 0

)
=

(
a1a− 1 −a1

a −1

)
,

and for i ≥ 2,

Ai = (τqAi−1)A =

(
a

(i−1)
1 b

(i−1)
1

c
(i−1)
1 d

(i−1)
1

)(
a −1

1 0

)

=

(
aa

(i−1)
1 + b

(i−1)
1 −a

(i−1)
1

ac
(i−1)
1 + d

(i−1)
1 −c

(i−1)
1

)
,

and

Ai = (τ i−1
q A)Ai−1 =

(
ai−1 −1

1 0

)(
a(i−1) b(i−1)

c(i−1) d(i−1)

)

=

(
ai−1a

(i−1) − c(i−1) ai−1b
(i−1) − d(i−1)

a(i−1) b(i−1)

)
.

Hence we obtain the following relations,


a(i) = ai−1a
(i−1) − c(i−1),

b(i) = −a
(i−1)
1 ,

c(i) = a(i−1),

d(i) = b(i−1),

(i ≥ 2)
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{
a(i) = ai−1a

(i−1) − a(i−2),

d(i) = −a
(i−2)
1 .

(i ≥ 3)

We will prove the following by induction,

a(i) = (−1)i
q(i−1)i

4i
t2i + (a polynomial of deg ≤ 2i− 2).

Since a(1) = a = −t2/4 + α and

a(2) = a1a− 1 =

(
−q2

4
t2 + α

)(
− t2

4
+ α

)
− 1

=
q2

42
t4 + (deg ≤ 2),

the result is true for i = 1, 2. Suppose i ≥ 3 and that the result is true for

smaller numbers. Then it follows that

a(i) = ai−1a
(i−1) − a(i−2)

=

(
−q2(i−1)

4
t2 + α

)(
(−1)i−1 q

(i−2)(i−1)

4i−1
t2i−2 + (deg ≤ 2i− 4)

)

− (deg ≤ 2i− 4)

= (−1)i
qi(i−1)

4i
t2i + (deg ≤ 2i− 2),

the required. Hence we find a(i) �= 0 and deg a(i) = 2i. By the above

relations, we also find b(i) �= 0 and c(i) �= 0 for i = 1, 2, . . . .

Proposition 16. Suppose that q is transcendental over Q. Then for

any i ∈ Z>0, Eq(Ai, 1)/K(i) has no solution algebraic over K.

Proof. Assume that there exists i0 ∈ Z>0 such that Eq(Ai0 , 1)/K(i0)

has a solution f algebraic over K. Let L = K(i0)〈f〉 = (L, τ). Note that

τ |K = τ i0q and τt = τ i0q t = qi0t. We choose i1 ∈ Z>0 in the following way.

When q is transcendental over Q(α), let i1 = 1. When q is algebraic over

Q(α), Q(q, α)/Q is an algebraic function field of one variable. We find that

Q(q, α)/Q is also an algebraic function field of one variable and an algebraic

extension of Q(q)/Q. Since α is non-zero in this case, α has only finitely
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many zeros and poles P (1), . . . , P (ν) in Q(q, α)/Q. There exists i1 ∈ Z>0

such that for any i ≥ i1,

P11/i �= P (1) ∩ Q(q), . . . , P (ν) ∩ Q(q),

where 11/i is the primitive i-th root of unity.

Let k = 3i0i1 and k′ = 3i1. Since f ∈ L is a solution of Eq(Ai0 , 1)/K(i0),

f ∈ L is a solution of Eq(Ai0 , k
′)/K(i0). Hence f ∈ L(k′) is a solution of

Eq(Ak, 1)/K(k), which yields the equation,

(τk
′
f)(c(k)f + d(k)) = a(k)f + b(k).(3)

We obtain detAk = 1 from detA = 1, and so c(k)f + d(k) �= 0 from the

above equation. It implies L = C(t, f, τf, . . . , τk
′−1f), where we note that

f is algebraic over K. Let n = [L : C(t)] < ∞. By Lemma 8 in the

paper [11] by the author, we find L = C(x), xn = t. It follows that x is

transcendental over C. By the following calculation,(τx
x

)n
=

τ(xn)

xn
=

τt

t
= qi0 ,

we find τx/x ∈ C. Let r = τx/x ∈ C×, which yields τx = rx.

We have f ∈ C(x)× and Ak ∈ M2(C[xn]). Let f = P/Q, where P,Q ∈
C[x] are relatively prime. From the equation (3), we obtain

Pk′

Qk′
=

a(k) P
Q + b(k)

c(k) P
Q + d(k)

=
a(k)P + b(k)Q

c(k)P + d(k)Q
.

Since Pk′ and Qk′ are relatively prime, the following system of equations is

obtained, {
RPk′ = a(k)P + b(k)Q,

RQk′ = c(k)P + d(k)Q,
R ∈ C[x].(4)

Hence

R

(
Pk′

Qk′

)
=

(
a(k) b(k)

c(k) d(k)

)(
P

Q

)
,

R

(
d(k) −b(k)

−c(k) a(k)

)(
Pk′

Qk′

)
=

(
P

Q

)
.
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Since P and Q are relatively prime, we find R ∈ C×. From the equation

(4), we obtain

degx(a
(k)P + b(k)Q) = degxRPk′ = degx P.

Note that degx a
(k) = 2kn > 0, and we find

degx a
(k)P = degx b

(k)Q,

and so

degxQ− degx P = degx a
(k) − degx b

(k)

= 2kn− 2(k − 1)n

= 2n.

Let

f =
∞∑

i=2n

ei

(
1

x

)i

, ei ∈ C, e2n �= 0.

be the formal power series representation of f . We will show f ∈ C(t).

Assume that there exists i ≥ 2n such that n � i and ei �= 0. Let ln+m (0 <

m < n) be the minimum of such numbers. We will derive a contradiction.

The following degrees are needed,

degx a
(k) = 2kn, degx b

(k) = 2(k − 1)n,

degx c
(k) = 2(k − 1)n, degx d

(k) = 2(k − 2)n.

The first term of

a(k)f + b(k)

= a(k)

(
e2n

(
1

x

)2n

+ · · · + eln

(
1

x

)ln

+ eln+m

(
1

x

)ln+m

+ · · ·
)

+ b(k)

whose exponent is not divisible by n has the exponent

−2kn + (ln + m).
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On the other hand, the first term of

fk′(c
(k)f + d(k))

=

{
e2n

r2nk′

(
1

x

)2n

+ · · · + eln
rlnk′

(
1

x

)ln

+
eln+m

r(ln+m)k′

(
1

x

)ln+m

+ · · ·
}

×
{
c(k)

(
e2n

(
1

x

)2n

+ · · · + eln

(
1

x

)ln

+ eln+m

(
1

x

)ln+m

+ · · ·
)

+ d(k)

}

whose exponent is not divisible by n has the exponent

≥ −2(k − 2)n + (ln + m).

Hence we obtain

−2kn + (ln + m) ≥ −2(k − 2)n + (ln + m),

and so 0 ≥ 4n, a contradiction. We have proved that for any i ≥ 2n, n � i

implies ei = 0. Hence

f ∈ C((1/xn)) ∩ C(1/x) = C(1/xn) = C(1/t) = C(t).

By L = K(i0)〈f〉 and K(i0) = (C(t), τ), we find L = K(i0) and L = C(t),

the latter of which implies n = 1 and x = t. Hence the operators satisfy the

following relations,

τ = τ |K = τ i0q , τk
′
= τ i0k

′
q = τkq .

We will show ej ∈ Q[q, 1/q, α] for j ∈ Z≥2. Note that the degrees of

a(i), b(i), c(i), d(i) ∈ Q[q, α][t] are as follows,

deg a(k) = 2k, deg b(k) = 2(k − 1),

deg c(k) = 2(k − 1), deg d(k) = 2(k − 2).

We have

(τkq f)(c(k)f + d(k)) =

( ∞∑
i=2

ei
qki

(
1

t

)i
)(

c(k)
∞∑
i=2

ei

(
1

t

)i

+ d(k)

)
(5)



784 Seiji Nishioka

and

a(k)f + b(k) = a(k)
∞∑
i=2

ei

(
1

t

)i

+ b(k).(6)

Comparing the coefficients of (1/t)−2k+2, we obtain

0 = (−1)k
q(k−1)k

4k
e2 + (−1)k

q(k−1)k

4k−1
,

and so e2 = −4. Hence the result is true for j = 2. Suppose j ≥ 3 and that

the result is true for smaller numbers. The coefficient of (1/t)−2k+j of the

formula (6) is

(−1)k
q(k−1)k

4k
ej + (an element of Q[q, 1/q, α]),

and the coefficient of (1/t)−2k+j of the formula (5) coincides with that of

(
j−1∑
i=2

ei
qki

(
1

t

)i
)(

c(k)
j−1∑
i=2

ei

(
1

t

)i

+ d(k)

)
,

which belongs to Q[q, 1/q, α]. Hence we find ej ∈ Q[q, 1/q, α], the required.

We define a homomorphism

φ : Q[q, α] → Q[11/k, β],

q �→ 11/k,

α �→ β ∈ C,

in the following way. In the case that q is transcendental over Q(α), let φ be

the homomorphism of the polynomial ring Q[α][q] to Q[α][11/k] substituting

11/k for q. In the case that q is algebraic over Q(α), we use the fact that

k = 3i0i1 ≥ i1. By the definition of i1, we find

P11/k �= P (1) ∩ Q(q), . . . , P (ν) ∩ Q(q).

Let P ′ be the place of Q(q, α)/Q such that P ′ ⊃ P11/k , and s a prime

element of P ′. Let φ0 : Q[[s]] → Q be the homomorphism sending
∑∞

i=0 his
i
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to h0, ι : OP ′ → Q[[s]] the embedding, and φ the homomorphism defined by

φ = φ0 ◦ ι. Since the values of q− 11/k, q and 11/k are calculated as follows,

vP ′(q − 11/k) = e(P ′|P11/k)vP
11/k

(q − 11/k) = e(P ′|P11/k) ≥ 1,

vP ′(q) = e(P ′|P11/k)vP
11/k

(q) = 0,

vP ′(11/k) = 0,

we find

φ(q) = φ(q − 11/k) + φ(11/k) = 0 + 11/k = 11/k.

If we assume vP ′(α) �= 0, then P ′ = P (i) for some 1 ≤ i ≤ ν, which implies

P11/k = P ′ ∩ Q(q) = P (i) ∩ Q(q),

a contradiction. Hence we find vP ′(α) = 0, and so φ(α) ∈ Q ⊂ C. The

restriction φ|Q[q,α] is the required.

We will extend the homomorphism φ : Q[q, α] → Q[11/k, β]. First, ex-

tend it to the homomorphism of Q[q, 1/q, α] to Q[11/k, (11/k)−1, β] ⊂ C,

and second, to the homomorphism of Q[q, 1/q, α]((1/t)) to C((1/t)) sending∑∞
i=m hi(1/t)

i to
∑∞

i=m φ(hi)(1/t)
i. Then φ is a difference homomorphism

of (Q[q, 1/q, α]((1/t)), t �→ qt) to (C((1/t)), t �→ 11/kt).

Let

f̂ = φ(f), â = φ(a(k)), b̂ = φ(b(k)),

ĉ = φ(c(k)), d̂ = φ(d(k)).

By φ(τkq f) = φ(f), we find the equation,

f̂(ĉf̂ + d̂) = âf̂ + b̂.(7)

We will show f̂ ∈ C(t). By f ∈ C(1/t), there exists s ∈ Z≥0 and m0 ∈ Z≥0

such that

m ≥ m0 ⇒ Ff (m, s) = 0,

where Ff (m, s) = det(em+i+j)0≤i,j≤s is the Hankel determinant of f . Refer

to the book [1] by J. W. S. Cassels for the Hankel determinant. For all
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m ≥ m0,

Ff̂ (m, s) = det(φ(em+i+j))0≤i,j≤s

= φ(det(em+i+j)0≤i,j≤s)

= φ(Ff (m, s))

= φ(0) = 0.

Hence f̂ ∈ C(1/t) = C(t).

Let f̂ = P̂ /Q̂, where P̂ , Q̂ ∈ C[t] are relatively prime. From

φ(a(i)) = (−1)i
(11/k)(i−1)i

4i
t2i + (deg ≤ 2i− 2),

we obtain

deg â = deg φ(a(k)) = 2k,

deg b̂ = deg φ(b(k)) = deg φ(−a
(k−1)
1 ) = deg φ(a(k−1)) = 2(k − 1),

deg ĉ = deg φ(c(k)) = deg φ(a(k−1)) = 2(k − 1),

deg d̂ = deg φ(d(k)) = deg φ(−a
(k−2)
1 ) = deg φ(a(k−2)) = 2(k − 2),

and from detAk = a(k)d(k) − b(k)c(k) = 1,

âd̂− b̂ĉ = φ(1) = 1,

which implies ĉf̂ + d̂ �= 0. Thus from the equation (7),

P̂

Q̂
= f̂ =

âf̂ + b̂

ĉf̂ + d̂
=

âP̂ + b̂Q̂

ĉP̂ + d̂Q̂
.

Since P̂ and Q̂ are relatively prime, the following system of equations is

obtained, {
R̂P̂ = âP̂ + b̂Q̂,

R̂Q̂ = ĉP̂ + d̂Q̂,
R̂ ∈ C[t].

This yields

R̂

(
P̂

Q̂

)
=

(
â b̂

ĉ d̂

)(
P̂

Q̂

)
,(8)
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and so

R̂

(
d̂ −b̂

−ĉ â

)(
P̂

Q̂

)
=

(
P̂

Q̂

)
.

Since P̂ and Q̂ are relatively prime, we find R̂ ∈ C×. Hence the equation

(8) yields

(
â− R̂ b̂

ĉ d̂− R̂

)(
P̂

Q̂

)
=

(
0

0

)
,

which implies

0 = det

(
â− R̂ b̂

ĉ d̂− R̂

)

= 1 − (â + d̂)R̂ + R̂2.

However, this contradicts deg â = 2k > 2(k − 2) = deg d̂. �

Theorem 17. Suppose that q is transcendental over Q. Let U be a

difference overfield of K, and (f, g) �= 0 a solution in U of the equation over

K,

(
y1

z1

)
= A

(
y

z

)
.

Let N/K be a pLE in U . Then f and g are algebraically independent over

N .

Proof. This is straightforwardly proved by Corollary 15. �

Corollary 18. Suppose C = C and that q is a transcendental num-

ber. The q-Bessel equation over K = (C(t), τq : t �→ qt),

y2 + (t2/4 − qν − q−ν)y1 + y = 0,

with an arbitrary value of the parameter ν ∈ C is unsolvable.
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Proof. If g is a non-trivial solution contained in a pLE N/K, (f =

g1, g) �= 0 is a solution in N of the equation over K,

(
y1

z1

)
= A

(
y

z

)
, A =

(
−t2/4 + α −1

1 0

)
, α = qν + q−ν ∈ C.

However, Theorem 17 implies f, g /∈ N , a contradiction. �
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