Uniformization of Cyclic Quotients of Multiplicative A-singularities

By Kenjiro Sasaki and Shigeru Takamura

Abstract

This work is motivated by the canonical model of degenerations of Riemann surfaces. For a quotient space A_{d-1} / Γ of a 'multiplicative' A-singularity A_{d-1} in \mathbb{C}^{n+1} under a certain cyclic group action Γ on A_{d-1}, we explicitly construct a small finite abelian subgroup G of $G L(n, \mathbb{C})$ such that $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$. A resolution of \mathbb{C}^{n} / G gives a decomposition of the monodromy (a higher-dimensional fractional Dehn twist) of a degeneration $A_{d-1} / \Gamma \rightarrow \mathbb{C}$ into subtwists along the exceptional set (it seems that T. Ashikaga's work on resolutions is related to this). Moreover: (1) We give a numerical criterion for a certain subgroup of $G L(n, \mathbb{C})$ to be small. (2) For a certain family of subgroups of $G L(n, \mathbb{C})$, we show that if one subgroup of this family is small, then all subgroups of this family are small (equi-smallness theorem).

1. Introduction

Let d be a positive integer and consider the following two complex varieties:

$$
\begin{aligned}
& V=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in \mathbb{C}^{n+1}: x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=t^{d}\right\} \\
& W=\left\{\left(z_{1}, z_{2}, \ldots, z_{n}, t\right) \in \mathbb{C}^{n+1}: z_{1} z_{2} \cdots z_{n}=t^{d}\right\} .
\end{aligned}
$$

We say that V is an additive A-singularity and W is a multiplicative A singularity. If $n=2$, they are isomorphic via $\left(x_{1}, x_{2}\right)=\left(z_{1}+\mathrm{i} z_{2}, z_{1}-\mathrm{i} z_{2}\right)$. In contrast if $n \geq 3$, they are not isomorphic: The singular locus of V is isolated, while that of W is not isolated - the former is the origin, while the latter is the union of ${ }_{n} C_{2}$ hyperplanes $H_{i j}=\left\{z_{i}=z_{j}=t=0\right\}$, $1 \leq i<j \leq n$.

2010 Mathematics Subject Classification. Primary 32Q30; Secondary 14D05.
Key words: Uniformization of singularity, monodromy, degeneration of Riemann surfaces, fractional Dehn twist, small group, pseudo-reflection group.

Now let $f: V \rightarrow \mathbb{C}$ and $g: W \rightarrow \mathbb{C}$ be projections $f\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=$ $t, g\left(z_{1}, z_{2}, \ldots, z_{n}, t\right)=t$. A smooth fiber $f^{-1}(s)\left(\right.$ resp. $\left.g^{-1}(s)\right)$, as $s \rightarrow 0$, degenerates to the singular fiber $f^{-1}(0)$ (resp. $\left.g^{-1}(0)\right)$. When $n=2$, the topological monodromy of $f: V \rightarrow \mathbb{C}$ (and $g: W \rightarrow \mathbb{C}$) is a $(-d)$-Dehn twist (Figure 1.1). When $n \geq 3$, the topological monodromy of $f: V \rightarrow \mathbb{C}$ is a generalized Dehn twist, and is described by using the double covering method (see [AGV], p.6). The topological monodromy of $g: W \rightarrow \mathbb{C}$ is another generalization of a Dehn twist. In what follows, we exclusively consider W, and write it as A_{d-1}.

Fig. 1.1. (1) The topological monodromy of $f: V \rightarrow \mathbb{C}$. (2) It is a ($-d$)-Dehn twist.

We next introduce a fractional Dehn twist. Where a and $m(0<a<$ $m)$ and b and $n(0<b<n)$ are two pairs of relatively prime integers, an $\left(\frac{a}{m}, \frac{b}{n}\right)$-fractional Dehn twist is a self-homeomorphism of an annulus $[0,1] \times S^{1}$ illustrated in Figure 1.2. It is explicitly given by $\left(t, e^{\mathrm{i} \theta}\right) \mapsto$ $\left(t, e^{2 \pi \mathrm{i}\{(1-t) a / m-t b / n\}} e^{\mathrm{i} \theta}\right)$.

More generally, where κ is an integer, an $\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$-fractional Dehn twist is defined as the composite map of a $(+\kappa)$-Dehn twist and an $\left(\frac{a}{m}, \frac{b}{n}\right)$ fractional Dehn twist (Figure 1.3). If $\frac{a}{m}+\frac{b}{n}+\kappa>0$, the $-\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$ fractional Dehn twist appears as the topological monodromy of a degeneration: Set $c:=\operatorname{gcd}(m, n), m^{\prime}:=m / c, n^{\prime}:=n / c$ and $d:=n^{\prime} a+$ $m^{\prime} b+m^{\prime} n^{\prime} c \kappa$, or $d=m^{\prime} n^{\prime} c\left(\frac{a}{m}+\frac{b}{n}+\kappa\right)$. Let Γ be the cyclic group acting on A_{d-1} generated by an automorphism $\gamma:(z, w, t) \in A_{d-1} \mapsto$ $\left(e^{2 \pi \mathrm{i} a / m} z, e^{2 \pi \mathrm{i} \mathrm{b} / n} w, e^{2 \pi \mathrm{i} / m^{\prime} n^{\prime} c} t\right) \in A_{d-1}$. The induced map $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$

Fig. 1.2. An $\left(\frac{a}{m}, \frac{b}{n}\right)$-fractional Dehn twist.

Fig. 1.3. An $\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$-fractional Dehn twist.
by a Γ-invariant map $\Phi:(z, w, t) \in A_{d-1} \mapsto t^{m^{\prime} n^{\prime} c} \in \mathbb{C}$ is a degeneration whose topological monodromy is the $-\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$-fractional Dehn twist.

We point out that $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$ arises as a local model of a degeneration of Riemann surfaces; recall that a proper surjective holomorphic map $\pi: M \rightarrow \Delta$ from a smooth complex surface M to $\Delta:=\{s \in \mathbb{C}:|s|<1\}$ is a degeneration of Riemann surfaces (of genus g) if $\pi^{-1}(0)$ is singular and $\pi^{-1}(s)$ for $s \neq 0$ is a Riemann surface (of genus g). Figure 1.4 (1) illustrates an example of a singular fiber, which consists of cores, branches and a trunk. Contracting the branches and the trunk of this singular fiber yields the canonical model $\pi^{\prime}: M^{\prime} \rightarrow \Delta$ of $\pi: M \rightarrow \Delta$; the branches and the trunk become cyclic quotient singularities of M^{\prime} (because the contraction of a chain of projective lines yields a cyclic quotient singularity). The singular fiber $\left(\pi^{\prime}\right)^{-1}(0)$ is thus as illustrated in Figure 1.4 (2). Let $p \in \pi^{-1}(0)$ be
(1)

Fig. 1.4. Intersections of irreducible components are transversal. The positive integer on an irreducible component denotes the multiplicity of that component. The five bold points on $\left(\pi^{\prime}\right)^{-1}(0)$ denote the cyclic quotient singularities of M^{\prime}.
the point resulting from the contraction of the trunk. A neighborhood of $p \in M^{\prime}$ is then isomorphic to A_{d-1} / Γ (for $a / m=4 / 11, b / n=3 / 5, \kappa=0$). Moreover the restriction $\left.\pi^{\prime}\right|_{A_{d-1} / \Gamma}$ coincides with $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$, and the topological monodromy of $\left.\pi^{\prime}\right|_{A_{d-1} / \Gamma}$ is a $-\left(\frac{4}{11}, \frac{3}{5}, 0\right)$-fractional Dehn twist.

More generally, for any trunk (see Figure 1.5), the same holds: A neighborhood of its contraction is isomorphic to A_{d-1} / Γ (for some a/m, b/n, $\kappa)$, and the local topological monodromy is $a-\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$-fractional Dehn twist, and A_{d-1} / Γ is a cyclic quotient singularity.

In the above, the contraction of a trunk yields A_{d-1} / Γ, which is a cyclic quotient singularity. In fact, for any Γ (that is, for any $a / m, b / n, \kappa$), the quotient A_{d-1} / Γ is a cyclic quotient singularity, that is, $A_{d-1} / \Gamma \cong \mathbb{C}^{2} / G$ for some cyclic group $G=\langle g\rangle$, where g is of the form $(u, v) \mapsto\left(e^{2 \pi \mathrm{i} / l} u, e^{2 \pi \mathrm{i} q / l} v\right)$ where l and q are some relatively prime positive integers. This is the starting point of our present work - we generalize it to the higher-dimensional case in order to apply it to degenerations of complex manifolds.

Let a_{i} and $m_{i}(i=1,2, \ldots, n)$ be relatively prime integers such that $0<a_{i}<m_{i}$. Set $c:=\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ and $m_{i}^{\prime}:=m_{i} / c$. Take an

Fig. 1.5. A trunk is a chain of projective lines connecting cores. $\left(k_{0}, k_{1}, \ldots, k_{\delta+1}\right.$ are multiplicities.)
integer κ such that $\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{n}}{m_{n}}+\kappa>0$, and set

$$
d:=\left(\sum_{i=1}^{n} a_{i} m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}\right)+m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c \kappa
$$

where \check{m}_{i}^{\prime} means the omission of m_{i}^{\prime}. Or

$$
\begin{equation*}
d=m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\left(\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{n}}{m_{n}}+\kappa\right) \tag{1.1}
\end{equation*}
$$

Now let γ be an automorphism of \mathbb{C}^{n+1} given by

$$
\gamma:\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / m_{1}} x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{n} / m_{n}} x_{n}, e^{2 \pi \mathrm{i} / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} t\right)
$$

Then (1.1) ensures that γ preserves $A_{d-1}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in \mathbb{C}^{n+1}\right.$: $\left.x_{1} x_{2} \cdots x_{n}=t^{d}\right\}$. Let Γ be the cyclic group generated by γ. Let Φ : $A_{d-1} \rightarrow \mathbb{C}$ be a Γ-invariant holomorphic map given by $\Phi\left(x_{1}, x_{2}, \cdots, x_{n}, t\right)=$ $t^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}$, and $\bar{\Phi}$ denote the holomorphic map on A_{d-1} / Γ induced by Φ. The topological monodromy of $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$ is called a $-\left(\frac{a_{1}}{m_{1}}, \frac{a_{2}}{m_{2}}, \cdots\right.$, $\left.\frac{a_{n}}{m_{n}}, \kappa\right)$-fractional Dehn twist. This will be described in [SaTa].

The present paper shows that the cyclic quotient A_{d-1} / Γ is uniformized by a small abelian group. Here a finite subgroup of $G L(n, \mathbb{C})$ is small if it contains no pseudo-reflections. The following was originally proved by the second author:
(i) Uniformization theorem for dimension 2 There exists a small cyclic group $G \subset G L(2, \mathbb{C})$ such that $A_{d-1} / \Gamma \cong \mathbb{C}^{2} / G$ (Theorem 2.1). (This ensures that the minimal resolution of A_{d-1} / Γ is obtained by the Hirzebruch-Jung resolution.)
(ii) Moreover under this isomorphism, $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$ corresponds to the $\operatorname{map} \bar{\phi}: \mathbb{C}^{2} / G \rightarrow \mathbb{C}$ induced by the G-invariant $\operatorname{map} \phi: \mathbb{C}^{2} \rightarrow \mathbb{C}$, $\phi(u, v)=u^{n} v^{m}($ Lemma 2.4).

This is generalized as follows (a diagonal matrix $\left(\begin{array}{ccc}\lambda_{1} & & O \\ & \ddots & \\ O & & \lambda_{n}\end{array}\right)$ is denoted by $\left.\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)$:

Main Theorem A. (i) There exists a small finite abelian group $G \subset$ $G L(n, \mathbb{C})$ such that $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$ (Theorem 6.3), where G is cyclic only when $n=2$. Next set $l_{i}:=\frac{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}}{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)}$ where \check{m}_{i}^{\prime} means the omission of m_{i}^{\prime}. Then l_{i} is a positive integer (Remark 3.1) and G is generated by the diagonal matrices $Q, R_{1}, R_{2}, \ldots, R_{n-1}$ given by
$Q=\operatorname{diag}\left(e^{2 \pi \mathrm{i} l_{1} a_{1} / c d}, e^{2 \pi \mathrm{i} l_{2} a_{2} / c d}, \ldots, e^{2 \pi \mathrm{i} l_{n-1} a_{n-1} / c d}, e^{2 \pi \mathrm{i} l_{n}\left(a_{n}+m_{n} \kappa\right) / c d}\right)$ and
$R_{i}=\operatorname{diag}\left(1, \ldots, 1, e^{2 \pi \mathrm{i} l_{i} m_{i}^{\prime} / d}, 1, \ldots, 1, e^{-2 \pi \mathrm{i} l_{n} m_{n}^{\prime} / d}\right)$, where $e^{2 \pi \mathrm{i} l_{i} m_{i}^{\prime} / d}$ lies in the ith place (Corollary 7.13).
(ii) Under the isomorphism in (i), $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$ corresponds to the map $\bar{\phi}: \mathbb{C}^{n} / G \rightarrow \mathbb{C}$ induced by the G-invariant map $\phi: \mathbb{C}^{n} \rightarrow \mathbb{C}$, $\phi\left(v_{1}, v_{2}, \ldots v_{n}\right)=v_{1}^{k_{1}} v_{2}^{k_{2}} \ldots v_{n}^{k_{n}}$ where $k_{i}:=\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) c$ (Theorem $6.6(2))$.

Remark. A resolution of \mathbb{C}^{n} / G gives a decomposition of the monodromy (a higher-dimensional fractional Dehn twist) of $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$ into subtwists along the exceptional set. It seems that T. Ashikaga's work on resolutions [Ash], [AsIs] is related to this.

The construction of G in Main Theorem A uses the following diagram of coverings:

where p, q and r are covering maps given by

- $p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(X_{1}^{d}, X_{2}^{d}, \ldots, X_{n}^{d}, X_{1} X_{2} \cdots X_{n}\right)$ (note: $p \quad$: $\widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$ is the universal covering of A_{d-1}),
- $q\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(X_{1}^{m_{1}^{\prime}}, X_{2}^{m_{2}^{\prime}}, \ldots, X_{n}^{m_{n}^{\prime}}\right)$,
- $r\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\left(u_{1}^{l_{1}}, u_{2}^{l_{2}}, \ldots, u_{n}^{l_{n}}\right)$, where l_{i} is the positive integer appearing in Main Theorem A.

We lift and descend Γ with respect to the diagram (1.2): Lift Γ to a group $\widetilde{\Gamma}$ (acting on \widetilde{A}_{d-1}), and then descend $\widetilde{\Gamma}$ to a group H (acting on \mathbb{C}^{n}), and next descend H to a group G (acting on \mathbb{C}^{n}). Then $A_{d-1} / \Gamma \cong$ $\widetilde{A}_{d-1} / \widetilde{\Gamma} \cong \mathbb{C}^{n} / H \cong \mathbb{C}^{n} / G$ and $G \subset G L(n, \mathbb{C})$ is a small finite abelian group. We remark that in the case $n=2, H$ is always small, so the descent with respect to r is actually unnecessary. Even for $n \geq 3$, it may occur that H is small. Indeed:

Main Theorem B (Theorem 5.14 (2)). The finite abelian group H is small if and only if $\operatorname{gcd}\left(m_{i}^{\prime}, m_{j}^{\prime}\right)=1$ for any i, j such that $i \neq j$.

Next let P be the pseudo-reflection subgroup of H, that is, P is generated by all pseudo-reflections of H. Regard κ as a 'parameter', and write $\widetilde{\Gamma}, H, P$ as $\widetilde{\Gamma}_{\kappa}, H_{\kappa}, P_{\kappa}$. Then the following holds:

Main Theorem C (Lemma 6.7 and Theorem 6.8).
(1) The pseudo-reflection subgroup P_{κ} of H_{κ} does not depend on κ : Let κ_{0} denote the least integer among κ in the definition of d, then

$$
P_{\kappa_{0}}=P_{\kappa_{0}+1}=\cdots=P_{\kappa}=\cdots
$$

(2) (Equi-smallness) If $H_{\kappa_{0}}$ is small, then H_{κ} is small for any κ, and if $H_{\kappa_{0}}$ is not small, then H_{κ} is not small for any κ.

2. Uniformization Theorem for Dimension 2

Let a and $m(0<a<m)$ and b and $n(0<b<n)$ be two pairs of relatively prime integers, and set $c:=\operatorname{gcd}(m, n), m^{\prime}:=\frac{m}{c}, n^{\prime}:=\frac{n}{c}$. (Note that m^{\prime} and n^{\prime} are integers.) Take an integer κ such that $\frac{a}{m}+\frac{b}{n}+\kappa>0$, and set $d:=a n^{\prime}+b m^{\prime}+m^{\prime} n^{\prime} c \kappa$. Let γ be the automorphism of \mathbb{C}^{3} given by $\gamma:(z, w, t) \mapsto\left(e^{2 \pi \mathrm{i} a / m} z, e^{2 \pi \mathrm{i} b / n} w, e^{2 \pi \mathrm{i} / m^{\prime} n^{\prime} c} t\right)$. Then γ preserves $A_{d-1}:=$ $\left\{z w=t^{d}\right\}$ in \mathbb{C}^{3}. Let Γ be the cyclic group generated by γ. Then:

Theorem 2.1 (Uniformization theorem [Tak]). There exists a small cyclic group $G \subset G L(2, \mathbb{C})$ such that $A_{d-1} / \Gamma \cong \mathbb{C}^{2} / G$. Here G is explicitly given as follows: Let $a^{*}\left(0<a^{*}<m\right)$ be the integer such that $a a^{*} \equiv 1 \bmod m$, and let $\mathrm{q}(0<\mathrm{q}<c d)$ be the integer such that $\mathrm{q} \equiv$ $\frac{a^{*} d-n^{\prime}}{m^{\prime}} \bmod c d$ (the right hand side is indeed an integer; see Remark 2.2 below). Then G is generated by the automorphism g of \mathbb{C}^{2} given by $g:(u, v) \mapsto\left(e^{2 \pi \mathrm{i} / c d} u, e^{2 \pi \mathrm{iq} / c d} v\right)$.

REMARK 2.2. Substituting $d:=a n^{\prime}+b m^{\prime}+m^{\prime} n^{\prime} c \kappa$ into $\frac{a^{*} d-n^{\prime}}{m^{\prime}}$ yields $\frac{a a^{*}-1}{m^{\prime}} n^{\prime}+a^{*} b+a^{*} n^{\prime} c \kappa$. Here since $a a^{*} \equiv 1 \bmod m$, we may write $a a^{*}-1=$ $K m\left(=K m^{\prime} c\right)$, where K is an integer. Then $\frac{a^{*} d-n^{\prime}}{m^{\prime}}=K n^{\prime} c+a^{*} b+a^{*} n^{\prime} c \kappa$.

Proof. Note first that the universal covering $p: \widetilde{A}_{d-1}\left(=\mathbb{C}^{2}\right) \rightarrow A_{d-1}$ of A_{d-1} is a d-fold covering given by $p(X, Y)=\left(X^{d}, Y^{d}, X Y\right)$. Next let $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{2}$ be an $m^{\prime} n^{\prime}$-fold covering given by $q(X, Y)=\left(X^{m^{\prime}}, Y^{n^{\prime}}\right)$, and consider the following diagram:

Let $\widetilde{\Gamma}$ be the lift of Γ with respect to p, and G be the descent of $\widetilde{\Gamma}$ with respect to q. Then $A_{d-1} / \Gamma \cong \widetilde{A}_{d-1} / \widetilde{\Gamma} \cong \mathbb{C}^{2} / G$.

We next show that G is generated by g. For $j=1,2, \ldots, m^{\prime} n^{\prime} c$ and $k=1,2, \ldots, d$, let $\widetilde{\gamma}_{j, k}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ be the automorphism given by $\widetilde{\gamma}_{j, k}:(X, Y) \mapsto\left(e^{2 \pi \mathrm{i}(j a+k m) / m d} X, e^{2 \pi \mathrm{i}\{j(b+n \kappa)-k n\} / n d} Y\right)$, and $g_{j, k}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be the automorphism given by $g_{j, k}:(u, v) \mapsto\left(e^{2 \pi \mathrm{i}(j a+k m) / c d} u\right.$, $\left.e^{2 \pi \mathrm{i}\{j(b+n \kappa)-k n\} / c d} v\right)$. Then for each $j=1,2, \ldots, m^{\prime} n^{\prime} c$, the set of all lifts of $\gamma^{j} \in \Gamma$ with respect to p is $\left\{\widetilde{\gamma}_{j, k}: k=1,2, \ldots, d\right\}$, and for any j, k, the descent of $\widetilde{\gamma}_{j, k}$ with respect to q is $g_{j, k}$. Hence $\widetilde{\Gamma}$ and G are explicitly given by

$$
\begin{aligned}
& \widetilde{\Gamma}=\left\{\widetilde{\gamma}_{j, k}: j=1,2, \ldots, m^{\prime} n^{\prime} c, k=1,2, \ldots, d\right\} \\
& G=\left\{g_{j, k}: j=1,2, \ldots, m^{\prime} n^{\prime} c, k=1,2, \ldots, d\right\}
\end{aligned}
$$

Therefore G is generated by the following two automorphisms α, β :

$$
\begin{aligned}
\alpha:(u, v) & \longmapsto\left(e^{2 \pi \mathrm{i} a / c d} u, e^{2 \pi \mathrm{i}(b+n \kappa) / c d} v\right) \\
\beta:(u, v) & \longmapsto\left(e^{2 \pi \mathrm{i} m^{\prime} / d} u, e^{-2 \pi \mathrm{i} n^{\prime} / d} v\right)
\end{aligned}
$$

Let $l(0<l<c d)$ be the integer such that $l \equiv \frac{1-a a^{*}}{m} \bmod c d$. Then by Corollary 7.17,

$$
\alpha^{a^{*}} \beta^{l}=g, \quad g^{a}=\alpha, \quad g^{m}=\beta .
$$

Hence $g \in G$ and G is generated by g.
We next show that G is small. Recall that G is generated by $g:(u, v) \mapsto$ $\left(e^{2 \pi \mathrm{i} / c d} u, e^{2 \pi \mathrm{iq} / c d} v\right)$. Here q and $c d$ are relatively prime (Lemma 2.3 (2) below), so G is small.

Explicit form of $A_{d-1} / \Gamma \xrightarrow{\cong} \mathbb{C}^{2} / G$: Since $\widetilde{\Gamma}$ is the lift of Γ with respect to p, the map p induces an isomorphism $\bar{p}: \widetilde{A}_{d-1} / \widetilde{\Gamma} \rightarrow A_{d-1} / \Gamma$, and since G is the descent of $\widetilde{\Gamma}$ with respect to q, the map q induces an isomorphism $\bar{q}: \widetilde{A}_{d-1} / \widetilde{\Gamma} \rightarrow \mathbb{C}^{2} / G$. The isomorphism $A_{d-1} / \Gamma \cong \mathbb{C}^{2} / G$ in the uniformization theorem (Theorem 2.1) is then given by $\Psi:=\bar{q} \circ$ $\bar{p}^{-1}: A_{d-1} / \Gamma \longrightarrow \cong_{\mathbb{C}^{2}} / G$. We show that this map is explicitly given by

$$
\begin{equation*}
\Psi([x, y, t])=\left[x^{m^{\prime} / d}, y^{n^{\prime} / d}\right] \tag{2.2}
\end{equation*}
$$

where $[x, y, t] \in A_{d-1} / \Gamma$ and $\left[x^{m^{\prime} / d}, y^{n^{\prime} / d}\right] \in \mathbb{C}^{2} / G$ denote the images of $(x, y, t) \in A_{d-1}$ and $\left(x^{m^{\prime} / d}, y^{n^{\prime} / d}\right) \in \mathbb{C}^{2}$ respectively. To see (2.2), first note that since $p(X, Y)=\left(X^{d}, Y^{d}, X Y\right)$, we have $\bar{p}([X, Y])=\left[X^{d}, Y^{d}, X Y\right]$, so $\bar{p}^{-1}([x, y, t])=\left[x^{1 / d}, y^{1 / d}\right]$. Next since $q(X, Y)=\left(X^{m^{\prime}}, Y^{n^{\prime}}\right)$, we have $\bar{q}\left(\left[x^{1 / d}, y^{1 / d}\right]\right)=\left[x^{m^{\prime} / d}, y^{n^{\prime} / d}\right]$. Hence $\bar{q} \circ \bar{p}^{-1}([x, y, t])=\left[x^{m^{\prime} / d}, y^{n^{\prime} / d}\right]$.

Supplement Let $a^{*}\left(0<a^{*}<m\right)$ be the integer such that $a a^{*} \equiv 1 \bmod$ m, and let $\mathrm{q}(0<\mathrm{q}<c d)$ be the integer such that $\mathrm{q} \equiv \frac{a^{*} d-n^{\prime}}{m^{\prime}} \bmod c d$, where the right hand side is indeed an integer (Remark 2.2). Similarly let b^{*} $\left(0<b^{*}<n\right)$ be the integer such that $b b^{*} \equiv 1 \bmod n$, and let $\mathrm{r}(0<\mathrm{r}<c d)$ be the integer such that $r \equiv \frac{b^{*} d-m^{\prime}}{n^{\prime}} \bmod c d$, where the right hand side is an integer as for q .

Lemma 2.3.
(1) $\mathrm{qr} \equiv 1 \bmod c d$, that $i s, \mathrm{r}=\mathrm{q}^{*}$.
(2) q and cd are relatively prime.

Proof. (1): It suffices to show that $\frac{a^{*} d-n^{\prime}}{m^{\prime}} \frac{b^{*} d-m^{\prime}}{n^{\prime}} \equiv 1 \bmod c d$. Here

$$
\frac{a^{*} d-n^{\prime}}{m^{\prime}} \frac{b^{*} d-m^{\prime}}{n^{\prime}}=d\left(\frac{a a^{*}-1}{m^{\prime}} b^{*}+\frac{b b^{*}-1}{n^{\prime}} a^{*}+a^{*} b^{*} c \kappa\right)+1
$$

Write $a a^{*}-1=K m\left(=K m^{\prime} c\right)$ and $b b^{*}-1=\operatorname{Ln}\left(=L n^{\prime} c\right)$. Then

$$
\begin{aligned}
\frac{a^{*} d-n^{\prime}}{m^{\prime}} \frac{b^{*} d-m^{\prime}}{n^{\prime}} & =c d\left(K b^{*}+L a^{*}+a^{*} b^{*} \kappa\right)+1 \\
& \equiv 1 \bmod c d
\end{aligned}
$$

(2): Since $\mathrm{qr} \equiv 1 \bmod c d$, $\mathrm{qr}=1+M c d$ for some integer M. Then $\mathrm{qr}-M c d=1$. Here $\operatorname{gcd}(\mathrm{q}, c d)$ divides the left hand side, so divides 1 , thus $\operatorname{gcd}(\mathbf{q}, c d)=1$.

Correspondence between functions Let $\Phi: A_{d-1} \rightarrow \mathbb{C}$ be a holomorphic map given by $\Phi(z, w, t)=t^{m^{\prime} n^{\prime} c}$. Then Φ is Γ-invariant, so induces a holomorphic map $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$. As explained in \S Introduction, the topological monodromy of $\bar{\Phi}$ is a $-\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$-fractional Dehn twist.

Under the isomorphism $\Psi: A_{d-1} / \Gamma \xrightarrow{\cong} \mathbb{C}^{2} / G$ in the uniformization theorem, the holomorphic map $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$ corresponds to a holomorphic map on \mathbb{C}^{2} / G. This map is explicitly given. First let $\phi: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a holomorphic map defined by $\phi(u, v)=u^{n} v^{m}$. Then ϕ is G-invariant. To see this, recall that by Theorem 2.1, the cyclic group G is generated by $g:(u, v) \mapsto\left(e^{2 \pi \mathrm{i} / c d} u, e^{2 \pi \mathrm{iq} / c d} v\right)$, where $\mathrm{q}(0<\mathrm{q}<c d)$ is the integer such that $\mathrm{q} \equiv \frac{a^{*} d-n^{\prime}}{m^{\prime}} \bmod c d$. Then

$$
\begin{aligned}
\phi \circ g(u, v) & =\phi\left(e^{2 \pi \mathrm{i} / c d} u, e^{2 \pi \mathrm{i} \mathbf{q} / c d} v\right)=e^{2 \pi \mathrm{i} c\left(n^{\prime}+m^{\prime} \mathbf{q}\right) / c d} u^{n} v^{m} \\
& =e^{2 \pi \mathrm{i} c a^{*} d / c d} u^{n} v^{m} \quad \text { by } n^{\prime}+m^{\prime} \mathbf{q} \equiv a^{*} d \bmod c d \\
& =e^{2 \pi \mathrm{i} a^{*}} u^{n} v^{m}=u^{n} v^{m} \\
& =\phi(u, v) .
\end{aligned}
$$

Thus ϕ is G-invariant, so induces a holomorphic map $\bar{\phi}: \mathbb{C}^{2} / G \rightarrow \mathbb{C}$.
LEMMA 2.4 ([Tak]). Under the isomorphism $\Psi: A_{d-1} / \Gamma \xrightarrow{\cong} \mathbb{C}^{2} / G$ given by (2.2), $\bar{\Phi}$ corresponds to $\bar{\phi}$, that is, $\bar{\Phi}=\bar{\phi} \circ \Psi$.

Proof. Note first that

$$
\begin{aligned}
\bar{\phi} \circ \Psi([x, y, t]) & =\bar{\phi}\left(\left[x^{m^{\prime} / d}, y^{n^{\prime} / d}\right]\right) \\
& =x^{m^{\prime} n / d} y^{n^{\prime} m / d}=(x y)^{m^{\prime} n^{\prime} c / d}
\end{aligned}
$$

Here $x y=t^{d}$ (because $\left.(x, y, t) \in A_{d-1}\right)$, so $\bar{\phi} \circ \Psi([x, y, t])=t^{m^{\prime} n^{\prime} c}$. Thus $\bar{\phi} \circ \Psi([x, y, t])=\bar{\Phi}([x, y, t])$.

Where $\mathfrak{r}: R \rightarrow A_{d-1} / \Gamma$ is the minimal resolution of A_{d-1} / Γ, the composite map $\pi:=\bar{\Phi} \circ \mathfrak{r}: R \rightarrow \mathbb{C}$ is a degeneration. As we see immediately, thanks to the uniformization theorem, the degeneration $\pi: R \rightarrow \mathbb{C}$ is isomorphic to a degeneration which is easy to describe.

Where $\mathfrak{r}^{\prime}: R^{\prime} \rightarrow \mathbb{C}^{2} / G$ is the minimal resolution of \mathbb{C}^{2} / G, the composite $\operatorname{map} \pi^{\prime}:=\bar{\phi} \circ \mathfrak{r}^{\prime}: R^{\prime} \rightarrow \mathbb{C}$ is a degeneration. Since A_{d-1} / Γ and \mathbb{C}^{2} / G are isomorphic (Theorem 2.1), two minimal resolutions $\mathfrak{r}: R \rightarrow A_{d-1} / \Gamma$ and $\mathfrak{r}^{\prime}: R^{\prime} \rightarrow \mathbb{C}^{2} / G$ are isomorphic, that is, there exists an isomorphism $\widetilde{\Psi}: R \rightarrow R^{\prime}$ that makes the following diagram commute:

TheOrem 2.5. The following diagram commutes:

Hence two degenerations $\pi:=\bar{\Phi} \circ \mathfrak{r}: R \rightarrow \mathbb{C}$ and $\pi^{\prime}:=\bar{\phi} \circ \mathfrak{r}^{\prime}: R^{\prime} \rightarrow \mathbb{C}$ are isomorphic.

Proof. By Lemma 2.4, the following diagram commutes:

Combining the commutative diagrams (2.3) and (2.5) yields the commutative diagram (2.4).

The degeneration $\pi^{\prime}:=\bar{\phi} \circ \mathfrak{r}^{\prime}: R^{\prime} \rightarrow \mathbb{C}$ may be described as follows: Since G is cyclic, \mathbb{C}^{2} / G has a (unique) cyclic quotient singularity, which is resolved by a chain of projective lines (Hirzebruch-Jung resolution). Accordingly the singular fiber $\left(\pi^{\prime}\right)^{-1}(0)$ of $\pi^{\prime}: R^{\prime} \rightarrow \mathbb{C}$ is as illustrated in Figure 2.1 (see also Remark 2.6).

REMARK 2.6. The multiplicities of the singular fiber $\left(\pi^{\prime}\right)^{-1}(0)$ in Figure 2.1 is explicitly determined from m, n, a, b, κ. Let a^{*} and $b^{*}\left(0<a^{*}<\right.$ $\left.m, 0<b^{*}<n\right)$ be the integers such that $a a^{*} \equiv 1 \bmod m$ and $b b^{*} \equiv 1 \bmod n$. Define then two sequences of integers $m_{0}>m_{1}>\cdots>m_{\lambda}=1$ and

Fig. 2.1. The positive integers $k_{0}, k_{1}, \ldots, k_{\delta+1}$ are multiplicities. They are explicitly determined from Γ, more specifically, from m, n, a, b, κ (Remark 2.6).
(1) $\kappa \geq 0$

(2) $\kappa=-1$

Fig. 2.2. The singular fibers for (1) $\kappa \geq 0$ and (2) $\kappa=-1$. A circle stands for \mathbb{P}^{1} and a hemicircle for \mathbb{C}. (Each intersection is a node.)
$n_{0}>n_{1}>\cdots>n_{\nu}=1$ inductively by the division algorithm with negative residues:

$$
\begin{aligned}
& \left\{\begin{array}{l}
m_{0}:=m, \quad m_{1}:=a^{*}, \\
m_{i-1}=s_{i} m_{i}-m_{i+1}
\end{array} \quad\left(0<m_{i+1}<m_{i}\right), \quad i=1,2, \ldots, \lambda-1,\right. \\
& \left\{\begin{array}{l}
n_{0}:=n, \quad n_{1}:=b^{*}, \\
n_{i-1}=t_{i} n_{i}-n_{i+1}
\end{array} \quad\left(0<n_{i+1}<n_{i}\right), \quad i=1,2, \ldots, \nu-1 .\right.
\end{aligned}
$$

Then:
(i) If $\kappa \geq 0$, then $\left(\pi^{\prime}\right)^{-1}(0)$ is as illustrated in (1) of Figure 2.2.
(ii) If $\kappa=-1$, then there exists a unique pair of integers λ_{0} and $\nu_{0}(0<$ $\left.\lambda_{0}<\lambda, 0<\nu_{0}<\nu\right)$ such that $m_{\lambda_{0}+1}+n_{\nu_{0}+1}=m_{\lambda_{0}}=n_{\lambda_{0}}$, and $\left(\pi^{\prime}\right)^{-1}(0)$ is as illustrated in (2) of Figure 2.2.

3. Lifting and Descent

3.1. Diagram of covering maps

We generalize the uniformization theorem for dimension 2 (Theorem 2.1) to an arbitrary dimension. First let a_{i} and $m_{i}(i=1,2, \ldots, n)$ be
relatively prime integers such that $0<a_{i}<m_{i}$. If κ is an integer satisfying $\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{n}}{m_{n}}+\kappa>0$, then

$$
\begin{equation*}
\kappa \geq-n+1 \tag{3.1}
\end{equation*}
$$

Indeed since $0<a_{i}<m_{i}$, we have $0<\frac{a_{i}}{m_{i}}<1(i=1,2, \ldots, n)$, so $\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{n}}{m_{n}}<n$, thus $\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{n}}{m_{n}}+\kappa<n+\kappa$. Here the left hand side is positive by assumption, so $0<n+\kappa$, that is, $-n+1 \leq \kappa$.

Next set $c:=\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right), m_{i}^{\prime}:=m_{i} / c$ and

$$
\begin{equation*}
d:=\left(\sum_{i=1}^{n} a_{i} m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}\right)+m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c \kappa \tag{3.2}
\end{equation*}
$$

where \check{m}_{i}^{\prime} means the omission of m_{i}^{\prime}. Note that $d>0$, indeed

$$
\begin{equation*}
d=m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\left(\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{n}}{m_{n}}+\kappa\right)>0 \tag{3.3}
\end{equation*}
$$

Rewrite the equation on the left hand side as

$$
\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{n}}{m_{n}}=\frac{d}{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}-\kappa
$$

Then $e^{2 \pi \mathrm{i}\left(a_{1} / m_{1}+a_{2} / m_{2}+\cdots+a_{n} / m_{n}\right)}=e^{2 \pi \mathrm{i} d / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}$. Here $e^{-2 \pi \mathrm{i} \kappa}=1$, so

$$
\begin{equation*}
e^{2 \pi \mathrm{i}\left(a_{1} / m_{1}+a_{2} / m_{2}+\cdots+a_{n} / m_{n}\right)}=e^{2 \pi \mathrm{i} d / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} . \tag{3.4}
\end{equation*}
$$

Now let γ be an automorphism of \mathbb{C}^{n+1} given by

$$
\gamma:\left(x_{1}, \ldots, x_{n}, t\right) \mapsto\left(e^{2 \pi \mathrm{i} a_{1} / m_{1}} x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{n} / m_{n}} x_{n}, e^{2 \pi \mathrm{i} / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} t\right)
$$

Then γ preserves $A_{d-1}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in \mathbb{C}^{n+1}: x_{1} x_{2} \cdots x_{n}=t^{d}\right\}$, that is, γ maps A_{d-1} to itself. Namely if $x_{1} x_{2} \cdots x_{n}=t^{d}$, then

$$
\left(e^{2 \pi \mathrm{i} a_{1} / m_{1}} x_{1}\right)\left(e^{2 \pi \mathrm{i} a_{2} / m_{2}} x_{2}\right) \cdots\left(e^{2 \pi \mathrm{i} a_{n} / m_{n}} x_{n}\right)=\left(e^{2 \pi \mathrm{i} / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} t\right)^{d}
$$

that is, $e^{2 \pi \mathrm{i}\left(a_{1} / m_{1}+a_{2} / m_{2}+\cdots+a_{n} / m_{n}\right)} x_{1} x_{2} \cdots x_{n}=e^{2 \pi \mathrm{i} d / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} t^{d}$. This indeed holds by (3.4). Now let Γ be the cyclic group generated by the automorphism γ of A_{d-1}.

The universal covering $p: \widetilde{A}_{d-1}\left(=\mathbb{C}^{n}\right) \rightarrow A_{d-1}$ of A_{d-1} is a d^{n-1}-fold covering given by $p:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \mapsto\left(X_{1}^{d}, X_{2}^{d}, \ldots, X_{n}^{d}, X_{1} X_{2} \cdots X_{n}\right)$.

Consider the following diagram of coverings:

where

- $q:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \mapsto\left(X_{1}^{m_{1}^{\prime}}, X_{2}^{m_{2}^{\prime}}, \ldots, X_{n}^{m_{n}^{\prime}}\right)$ is an $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime}$-fold covering,
- $r:\left(u_{1}, u_{2}, \ldots, u_{n}\right) \mapsto\left(u_{1}^{l_{1}}, u_{2}^{l_{2}}, \ldots, u_{n}^{l_{n}}\right)$ is an $l_{1} l_{2} \cdots l_{n}$-fold covering. Here

$$
l_{i}:=\frac{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}}{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)} \quad(i=1,2, \ldots, n)
$$

where \check{m}_{i}^{\prime} means the omission of m_{i}^{\prime}. Note that l_{i} is a positive integer (see Remark 3.1 below).

REMARK 3.1. $\quad l_{i}:=\frac{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}}{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)}$ is a (positive) integer, because from the definition of 1 cm , the denominator $\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)$ divides the numerator $m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}$.

Now let $\widetilde{\Gamma}$ be the lift of Γ with respect to the covering p, H be the descent of $\widetilde{\Gamma}$ with respect to the covering q, and G be the descent of H with respect to the covering r. We will show that G is a small finite abelian group such that $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$ (the uniformization theorem). We begin with some preparation.

3.2. $\widetilde{\Gamma}, H$ and G are finite groups

We first show that $\widetilde{\Gamma}$ is a group.
(i) $\underset{\sim}{1} \in \widetilde{\Gamma}$: This is the trivial lift of $1 \in \Gamma$ (that is the identity map of \widetilde{A}_{d-1}).
(ii) $\xi \in \widetilde{\Gamma} \Rightarrow \xi^{-1} \in \widetilde{\Gamma}$: If ξ is a lift of $\gamma^{j} \in \Gamma$, then ξ^{-1} is a lift of $\gamma^{-j} \in \Gamma$.
(iii) $\xi_{1}, \xi_{2} \in \widetilde{\Gamma} \Rightarrow \xi_{1} \xi_{2} \in \widetilde{\Gamma}$: If ξ_{1}, ξ_{2} are lifts of γ^{j}, $\gamma^{k} \in \Gamma$, then $\xi_{1} \xi_{2}$ is a lift of $\gamma^{j+k} \in \Gamma$.

We next show that H is a group as follows (similarly we can show that G is a group):
(i)' $1 \in H$: This is the descent of $1 \in \widetilde{\Gamma}$.
(ii)' $h \in H \Rightarrow h^{-1} \in H$: If h is the descent of $\xi \in \widetilde{\Gamma}$, then h^{-1} is the descent of $\xi^{-1} \in \widetilde{\Gamma}$.
(iii)' $h_{1}, h_{2} \in H \Rightarrow h_{1} h_{2} \in H$: If h_{1}, h_{2} are the descents of $\xi_{1}, \xi_{2} \in \widetilde{\Gamma}$, then $h_{1} h_{2}$ is the descent of $\xi_{1} \xi_{2} \in \widetilde{\Gamma}$.

The orders of $\widetilde{\Gamma}, H$ and G are determined as follows (below, $|\widetilde{\Gamma}|,|H|$ and $|G|$ denote the orders):

Order of $\widetilde{\Gamma}$: Since $\widetilde{\Gamma}$ is the lift of Γ with respect to the d^{n-1}-fold covering p, we have $|\widetilde{\Gamma}|=d^{n-1}|\Gamma|$. Here $|\Gamma|=m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$, so $|\widetilde{\Gamma}|=m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c d^{n-1}$.

Order of H : Since H is the descent of $\widetilde{\Gamma}$ (or $\widetilde{\Gamma}$ is the lift of H) with respect to the $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime}$-fold covering q, we have $|\widetilde{\Gamma}|=$ $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime}|H|$. Here $|\widetilde{\Gamma}|=m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c d^{n-1}$ so $|H|=c d^{n-1}$.

Order of G : Since G is the descent of H (or H is the lift of G) with respect to the $l_{1} l_{2} \cdots l_{n}$-fold covering r, we have $|H|=l_{1} l_{2} \cdots l_{n}|G|$. Here $|H|=c d^{n-1}$, so $|G|=\frac{c d^{n-1}}{l_{1} l_{2} \cdots l_{n}}$. (This is indeed an integer. See Remark 3.3 below.)

The results obtained in this section are summarized as follows:
Proposition 3.2. Let $\widetilde{\Gamma}$ be the lift of Γ with respect to the covering p. Let H be the descent of $\widetilde{\Gamma}$ with respect to the covering q, and let G be the descent of H with respect to the covering r. Then:
(1) The lift $\widetilde{\Gamma}$ of Γ is a finite group of order $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c d^{n-1}$. (In fact, $\widetilde{\Gamma}$ is abelian. See Lemma 4.7.)
(2) The descent H of $\widetilde{\Gamma}$ is a finite group of order $c d^{n-1}$. (In fact, H is abelian. See Lemma 4.8 (3).)
(3) The descent G of H is a finite group of order $\frac{c d^{n-1}}{l_{1} l_{2} \cdots l_{n}}$. (In fact, G is abelian. See Lemma 6.1 (C).)

REMARK 3.3. The fact that $|G|=\frac{c d^{n-1}}{l_{1} l_{2} \cdots l_{n}}$ is an integer is reconfirmed as follows (we show this only for $n=3$): Using

$$
\left\{\begin{array}{l}
d=m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c\left(\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\frac{a_{3}}{m_{3}}+\kappa\right) \quad(\text { see }(3.3)) \\
l_{1}:=\frac{m_{2}^{\prime} m_{3}^{\prime}}{\operatorname{lcm}\left(m_{2}^{\prime}, m_{3}^{\prime}\right)}, l_{2}:=\frac{m_{1}^{\prime} m_{3}^{\prime}}{\operatorname{lcm}\left(m_{1}^{\prime}, m_{3}^{\prime}\right)}, l_{3}:=\frac{m_{1}^{\prime} m_{2}^{\prime}}{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}\right)}
\end{array}\right.
$$

rewrite $|G|=\frac{c d^{2}}{l_{1} l_{2} l_{3}}$ as

$$
\begin{aligned}
|G| & =c\left\{\prod_{i \neq j} \operatorname{lcm}\left(m_{i}^{\prime}, m_{j}^{\prime}\right)\right\} c^{2}\left(\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\frac{a_{3}}{m_{3}}+\kappa\right)^{2} \\
& =c \prod_{i \neq j} \operatorname{lcm}\left(m_{i}^{\prime}, m_{j}^{\prime}\right)\left\{(c \kappa)^{2}+\sum_{i=1}^{3}\left(\frac{2 a_{i} c \kappa}{m_{i}^{\prime}}+\frac{a_{i}^{2}}{\left(m_{i}^{\prime}\right)^{2}}\right)+\sum_{i \neq j} \frac{2 a_{i} a_{j}}{m_{i}^{\prime} m_{j}^{\prime}}\right\} .
\end{aligned}
$$

Here $\prod_{i \neq j} \operatorname{lcm}\left(m_{i}^{\prime}, m_{j}^{\prime}\right)=\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}\right) \operatorname{lcm}\left(m_{1}^{\prime}, m_{3}^{\prime}\right) \operatorname{lcm}\left(m_{2}^{\prime}, m_{3}^{\prime}\right)$ is divisible by $m_{i}^{\prime},\left(m_{i}^{\prime}\right)^{2}, m_{i}^{\prime} m_{j}^{\prime}$, so the last expression is indeed an integer.

4. Determination of H

We keep the notation concerning the diagram (3.5). Moreover we adopt the following notation: For $j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$,

- $\operatorname{Lift}^{(j)}$: The set of all lifts of $\gamma^{j} \in \Gamma$ with respect to the covering map $p: \widetilde{A}_{d-1} \rightarrow A_{d-1}$.
- $q_{*}\left(\operatorname{Lift}^{(j)}\right)$: The descent of $\operatorname{Lift}^{(j)}$ with respect to the covering map $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$.
- $r_{*} \circ q_{*}\left(\operatorname{Lift}^{(j)}\right)$: The descent of $q_{*}\left(\operatorname{Lift}^{(j)}\right)$ with respect to the covering map $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

Then

- $\widetilde{\Gamma}=\bigcup_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \ldots m_{n}^{\prime} c} \operatorname{Lift}^{(j)}$ is the lift of Γ with respect to the covering map $p: \widetilde{A}_{d-1} \rightarrow A_{d-1}$.
- $H=\bigcup_{j=1}^{m_{1}^{\prime}} \bigcup_{m_{2}^{\prime} \cdots m_{n}^{\prime} c} q_{*}\left(\operatorname{Lift}^{(j)}\right)$ is the descent of $\widetilde{\Gamma}$ with respect to the covering map $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$.
- $G=\bigcup_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} r_{*} \circ q_{*}\left(\operatorname{Lift}^{(j)}\right)$ is the descent of H with respect to the covering map $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

Actually, $\widetilde{\Gamma}=\bigcup_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} \operatorname{Lift}^{(j)}$ is a disjoint union. Namely, if $j \neq k$, then $\operatorname{Lift}^{(j)} \cap \operatorname{Lift}^{(k)}=\emptyset$. On the other hand, $H=\bigcup_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} q_{*}\left(\operatorname{Lift}^{(j)}\right)$ and $G=\bigcup_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} r_{*} \circ q_{*}\left(\operatorname{Lift}^{(j)}\right)$ are not disjoint unions. In fact, a descent of an element of $\operatorname{Lift}{ }^{(j)}$ may coincide with that of an element of $\operatorname{Lift}^{(k)}(j \neq k)$. In this case, $q_{*}\left(\operatorname{Lift}^{(j)}\right) \cap q_{*}\left(\operatorname{Lift}^{(k)}\right) \neq \emptyset$, and moreover, $r_{*} \circ q_{*}\left(\operatorname{Lift}^{(j)}\right) \cap r_{*} \circ$ $q_{*}\left(\operatorname{Lift}^{(k)}\right) \neq \emptyset$.

In what follows, we write $\widetilde{\Gamma}$ as a disjoint union: $\widetilde{\Gamma}=\coprod_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} \operatorname{Lift}^{(j)}$.

4.1. The lifts of each element of Γ

We next determine the set Lift ${ }^{(j)}$ of all lifts of $\gamma^{j} \in \Gamma$ with respect to the covering p. For $j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$, we first define a set $\Lambda^{(j)}$ of n-tuples of integers as follows:

$$
\begin{equation*}
\Lambda^{(j)}:=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{Z}^{n}: 0 \leq p_{i}<d, \sum_{i=1}^{n} \frac{p_{i}}{d} \equiv \frac{j \kappa}{d} \bmod \mathbb{Z}\right\} \tag{4.1}
\end{equation*}
$$

Lemma 4.1. The number of elements of $\Lambda^{(j)}$ is d^{n-1}.
Proof. Setting $\Xi:=\left\{\left(p_{1}, p_{2}, \ldots, p_{n-1}\right) \in \mathbb{Z}^{n-1}: 0 \leq p_{i}<d\right\}$, consider a map $\varphi: \Lambda^{(j)} \rightarrow \Xi$ given by $\left(p_{1}, p_{2}, \ldots, p_{n-1}, p_{n}\right) \longmapsto\left(p_{1}, p_{2}, \ldots\right.$, $\left.p_{n-1}\right)$. Here Ξ consists of d^{n-1} elements, thus it suffices to show that φ is bijective.

Surjectivity: We show that for any $\left(p_{1}, p_{2}, \ldots, p_{n-1}\right) \in \Xi$, the inverse image $\varphi^{-1}\left(p_{1}, p_{2}, \ldots, p_{n-1}\right)$ is not empty. Set $N:=j \kappa-\sum_{i=1}^{n-1} p_{i}$ and let $p_{n}(0 \leq$ $\left.p_{n}<d\right)$ be the integer such that $p_{n} \equiv N \bmod d$. Then $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}$. Moreover $\varphi\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\left(p_{1}, p_{2}, \ldots, p_{n-1}\right)$, thus $\varphi^{-1}\left(p_{1}, p_{2}, \ldots, p_{n-1}\right)$ is not empty.

Injectivity: We show that for any $\left(p_{1}, p_{2}, \ldots, p_{n-1}\right) \in \Xi$, the inverse image $\varphi^{-1}\left(p_{1}, p_{2}, \ldots, p_{n-1}\right)$ is a single point. Note that $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is contained in $\varphi^{-1}\left(p_{1}, p_{2}, \ldots, p_{n-1}\right)$ precisely when p_{n} satisfies $\sum_{i=1}^{n} \frac{p_{i}}{d} \equiv$ $\frac{j \kappa}{d} \bmod \mathbb{Z}$, that is, $p_{n} \equiv j \kappa-\sum_{i=1}^{n-1} p_{i} \bmod d$. Such an integer $p_{n}\left(0 \leq p_{n}<d\right)$ is unique, so $\varphi^{-1}\left(p_{1}, p_{2}, \ldots, p_{n-1}\right)$ is a single point.

Let $\Lambda^{(j)}$ be the set given by (4.1). For each $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}$, define an automorphism $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ by

$$
\begin{aligned}
& \left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto \\
& \quad\left(e^{2 \pi \mathrm{i}\left(j a_{1}+m_{1} p_{1}\right) / m_{1} d} X_{1}, e^{2 \pi \mathrm{i}\left(j a_{2}+m_{2} p_{2}\right) / m_{2} d} X_{2}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{n}+m_{n} p_{n}\right) / m_{n} d} X_{n}\right) .
\end{aligned}
$$

Lemma 4.2. For any $\left(p_{1}, p_{2}, \ldots, p_{n}\right),\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right) \in \Lambda^{(j)}$, the following hold:
(1) For $i=1,2, \ldots, n$,

$$
e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d}=e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}^{\prime}\right) / m_{i} d} e^{2 \pi \mathrm{i}\left(p_{i}-p_{i}^{\prime}\right) / d} .
$$

(2) If $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \neq\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right)$, say $p_{i} \neq p_{i}^{\prime}$ for some i, then $e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} \neq e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}^{\prime}\right) / m_{i} d}$.
(3) If $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \neq\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right)$, then $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \neq \widetilde{\gamma}_{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}}^{(j)}$.

Proof. (1): From $\frac{j a_{i}+m_{i} p_{i}}{m_{i} d}-\frac{j a_{i}+m_{i} p_{i}^{\prime}}{m_{i} d}=\frac{p_{i}-p_{i}^{\prime}}{d}$, we have $\frac{j a_{i}+m_{i} p_{i}}{m_{i} d}=\frac{j a_{i}+m_{i} p_{i}^{\prime}}{m_{i} d}+\frac{p_{i}-p_{i}^{\prime}}{d}$, which yields the equation in assertion.
(2): Since $0 \leq p_{i}<d$ and $0 \leq p_{i}^{\prime}<d, p_{i} \neq p_{i}^{\prime}$ implies $p_{i} \not \equiv p_{i}^{\prime} \bmod d$, accordingly $\frac{p_{i}-p_{i}^{\prime}}{d} \not \equiv 0 \bmod \mathbb{Z}$. Hence $e^{2 \pi \mathrm{i}\left(p_{i}-p_{i}^{\prime}\right) / d} \neq 1$ in (1), implying that $e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} \neq e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}^{\prime}\right) / m_{i} d}$.
(3): This follows from (2).

We next show the following:
COROLLARY 4.3. The number of elements of $\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots\right.\right.$, $\left.\left.p_{n}\right) \in \Lambda^{(j)}\right\}$ is d^{n-1}.

Proof. By (3) of Lemma 4.2, the number of elements in the set $\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\}$ coincides with that of $\Lambda^{(j)}$, and by Lemma 4.1, it is d^{n-1}.

Recall that $d=m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\left(\sum_{i=1}^{n} \frac{a_{i}}{m_{i}}+\kappa\right)($ see $(3.3))$, so

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{a_{i}}{m_{i}}=\frac{d}{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}-\kappa \tag{4.2}
\end{equation*}
$$

LEMMA 4.4. For any $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}$,

$$
\sum_{i=1}^{n} \frac{j a_{i}+m_{i} p_{i}}{m_{i} d} \equiv \frac{j}{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} \bmod \mathbb{Z}
$$

Proof. Using (4.2), the left hand side is rewritten as

$$
\sum_{i=1}^{n} \frac{j a_{i}+m_{i} p_{i}}{m_{i} d}=\frac{j}{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}-\frac{j \kappa}{d}+\sum_{i=1}^{n} \frac{p_{i}}{d}
$$

Here $\sum_{i=1}^{n} \frac{p_{i}}{d} \equiv \frac{j \kappa}{d} \bmod \mathbb{Z} \quad$ (because $\left.\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right)$, so $\sum_{i=1}^{n} \frac{j a_{i}+m_{i} p_{i}}{m_{i} d} \equiv \frac{j}{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} \bmod \mathbb{Z}$

Corollary 4.5. For each j, let $\operatorname{Lift}^{(j)}$ be the set of all lifts of $\gamma^{j} \in \Gamma$ with respect to the covering $p: \widetilde{A}_{d-1} \rightarrow A_{d-1}$. Then the following hold:
(1) The number of elements of $\operatorname{Lift}{ }^{(j)}$ is d^{n-1}.
(2) For any $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}, \widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in \operatorname{Lift}{ }^{(j)}$.
(3) $\operatorname{Lift}^{(j)}=\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\}$.

Proof. (1): Since the covering p is d^{n-1}-fold, for each $j, \gamma^{j} \in \Gamma$ has d^{n-1} lifts, so Lift ${ }^{(j)}$ consists of d^{n-1} elements.
(2): It suffices to show that the following diagram commutes:

For $\left(X_{1}, \ldots, X_{n}\right) \in \widetilde{A}_{d-1}$,

$$
\begin{aligned}
& p \circ \widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}\left(X_{1}, \ldots, X_{n}\right) \\
& =p\left(e^{2 \pi \mathrm{i}\left(j a_{1}+m_{1} p_{1}\right) / m_{1} d} X_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{n}+m_{n} p_{n}\right) / m_{n} d} X_{n}\right) \\
& =\left(e^{2 \pi \mathrm{i} j a_{1} / m_{1}} X_{1}, \ldots, e^{2 \pi \mathrm{i} j a_{n} / m_{n}} X_{n}, e^{2 \pi \mathrm{i} \sum_{i=1}^{n}\left\{\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d\right\}} X_{1} X_{2} \cdots X_{n}\right) .
\end{aligned}
$$

Here $e^{2 \pi \mathrm{i} \sum_{i=1}^{n}\left\{\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d\right\}}=e^{2 \pi \mathrm{i} j / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}$ by Lemma 4.4, thus

$$
\begin{aligned}
& p \circ \widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}\left(X_{1}, \ldots, X_{n}\right) \\
& \quad=\left(e^{2 \pi \mathrm{i} j a_{1} / m_{1}} X_{1}, \ldots, e^{2 \pi \mathrm{i} j a_{n} / m_{n}} X_{n}, e^{2 \pi \mathrm{i} j / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} X_{1} X_{2} \cdots X_{n}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \gamma^{j} \circ p\left(X_{1}, \ldots, X_{n}\right) \\
& \quad=\left(e^{2 \pi \mathrm{i} j a_{1} / m_{1}} X_{1}, \ldots, e^{2 \pi \mathrm{i} j a_{n} / m_{n}} X_{n}, e^{2 \pi \mathrm{i} j / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} X_{1} X_{2} \cdots X_{n}\right) .
\end{aligned}
$$

Hence $p \circ \widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}=\gamma^{j} \circ p$, confirming the assertion.
(3): From (2), $\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\} \subset \operatorname{Lift}^{(j)}$. Here " \subset " is " $=$ ", because the numbers of elements of both sets are equal, indeed they consist of d^{n-1} elements ((1) and Corollary 4.3).

The following will be used in later discussion:
Corollary 4.6. $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ descends to γ^{j}. Moreover if $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ is of the form $\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \mapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} X_{i}, \ldots, X_{n}\right)$, then it descends to γ^{j} of the form

$$
\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(x_{1}, \ldots, e^{2 \pi \mathrm{i} j a_{i} / m_{i}} x_{i}, \ldots, x_{n}, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} t\right)
$$

Proof. The first statement follows from Corollary 4.5 (3). The second one is restated as $p \circ \widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}=\gamma^{j} \circ p$, which is confirmed as follows:

$$
\begin{aligned}
p \circ & \widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \\
& =p\left(X_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} X_{i}, \ldots, X_{n}\right) \\
& =\left(X_{1}^{d}, \ldots, e^{2 \pi \mathrm{i} j a_{i} / m_{i}} X_{i}^{d}, \ldots, X_{n}^{d}, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} X_{1} X_{2} \cdots X_{n}\right) \\
& =\gamma^{j} \circ p\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) .
\end{aligned}
$$

By Corollary $4.5(3), \operatorname{Lift}^{(j)}=\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\}$. Since $\widetilde{\Gamma}=\coprod_{j=1}^{m_{1}^{\prime}}{ }_{m_{2}^{\prime} \cdots m_{n}^{\prime} c} \operatorname{Lift}^{(j)}$ (disjoint union), we have

$$
\widetilde{\Gamma}=\coprod_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\}
$$

Or

$$
\widetilde{\Gamma}=\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}, j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\right\}
$$

We thus obtain:
LEMMA 4.7. The lift $\widetilde{\Gamma}$ of Γ consists of the automorphisms $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$: $\widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ given by

$$
\left(X_{1}, \ldots, X_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i}\left(j a_{1}+m_{1} p_{1}\right) / m_{1} d} X_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{n}+m_{n} p_{n}\right) / m_{n} d} X_{n}\right)
$$

where $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}$ and $j=1,2, \ldots m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$. (In particular, any two elements of $\widetilde{\Gamma}$ commute, so $\widetilde{\Gamma}$ is abelian.)

4.2. Determination of H

Recall that $\widetilde{\Gamma}=\coprod_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} \operatorname{Lift}^{(j)}$, where Lift ${ }^{(j)}$ denotes the set of all lifts of $\gamma^{j} \in \Gamma$ with respect to the covering $p: \widetilde{A}_{d-1} \rightarrow A_{d-1}$. Accordingly $H=\bigcup_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} q_{*}\left(\operatorname{Lift}^{(j)}\right)$, where $q_{*}\left(\operatorname{Lift}^{(j)}\right)$ is the descent of Lift ${ }^{(j)}$ with respect to the covering $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$. We determine $q_{*}\left(\operatorname{Lift}^{(j)}\right)$. To that end, for $j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$ and $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}$, define an automorphism $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by

$$
\left(u_{1}, \ldots, u_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i}\left(j a_{1}+m_{1} p_{1}\right) / c d} u_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{n}+m_{n} p_{n}\right) / c d} u_{n}\right)
$$

Lemma 4.8.
(1) $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ is the descent of $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ with respect to the covering q :
(2) $q_{*}\left(\operatorname{Lift}^{(j)}\right)=\left\{h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\}$.
(3) $H=\left\{h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}, j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\right\}$. (Thus any two elements of H commute, that is, H is abelian.)

Proof. (1): Indeed since $\left(e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d}\right)^{m_{i}^{\prime}}=e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / c d}$, the following diagram commutes:

(2): By Corollary $4.5(3), \operatorname{Lift}^{(j)}=\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\}$, accordingly by $(1), q_{*}\left(\operatorname{Lift}^{(j)}\right)=\left\{h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\}$.
(3): This follows from $H=\bigcup_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} q_{*}\left(\operatorname{Lift}^{(j)}\right)$ and (2).

5. The Pseudo-Reflection Subgroup of H

5.1. Cyclic subgroups Γ_{i} of Γ and $\widetilde{\Gamma}_{i}$ of $\widetilde{\Gamma}$

Let $\gamma: A_{d-1} \rightarrow A_{d-1}$ be the automorphism given by

$$
\begin{align*}
& \gamma:\left(x_{1}, \ldots, x_{n}, t\right) \tag{5.1}\\
& \quad \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / m_{1}} x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{n} / m_{n}} x_{n}, e^{2 \pi \mathrm{i} / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} t\right)
\end{align*}
$$

(The order of γ is $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$.) Consider the cyclic group Γ generated by γ :

$$
\Gamma=\left\{\gamma^{j}: j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\right\}
$$

Let $\Gamma_{i}(i=1,2, \ldots, n)$ be the subgroup of Γ consisting of automorphisms of the form

$$
\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}, t\right) \longmapsto\left(x_{1}, \ldots, e^{2 \pi \mathrm{i} j a_{i} / m_{i}} x_{i}, \ldots, x_{n}, e^{2 \pi \mathrm{i} j / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} t\right)
$$

that is,
$(\sharp) \quad e^{2 \pi \mathrm{i} j a_{k} / m_{k}}=1 \quad(k=1,2, \ldots, \check{i}, \ldots, n)$.

Lemma 5.1. For $j \in \mathbb{Z}$,

$$
\gamma^{j} \in \Gamma_{i} \Longleftrightarrow j \text { is a multiple of } \operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) c
$$

PROOF. \Longrightarrow : If $\gamma^{j} \in \Gamma_{i}$, then from $(\sharp), j a_{k}$ is divisible by $m_{k}(k=$ $1,2, \ldots, \check{i}, \ldots, n)$. Here a_{k} and m_{k} are relatively prime, so j is divisible by $m_{k}(k=1,2, \ldots, \check{i}, \ldots, n)$. In particular, j is a multiple of $\operatorname{lcm}\left(m_{1}, \ldots\right.$, $\left.\check{m}_{i}, \ldots m_{n}\right)=\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots m_{n}^{\prime}\right) c$.
\Longleftarrow : If j is a multiple of $\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots m_{n}^{\prime}\right) c$, then j is divisible by $m_{k}(k=1,2, \ldots, \check{i}, \ldots, n)$, so $\frac{j a_{k}}{m_{k}}$ is an integer. Thus $e^{2 \pi \mathrm{i} k a_{k} / m_{k}}=1$ $(k=1,2, \ldots, \check{i}, \ldots, n)$, so $\gamma^{j} \in \Gamma_{i}$.

From Lemma 5.1, the following holds:

Corollary 5.2. $\quad \Gamma_{i}$ is generated by $\gamma_{i}:=\gamma^{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) c}$.

This element is explicitly given by

$$
\begin{aligned}
\gamma_{i}:\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}, t\right) & \longmapsto \\
& \left(x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{i} \operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) / m_{i}^{\prime}} x_{i}, \ldots, x_{n}\right. \\
& \left.e^{2 \pi \mathrm{ilcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime}} t\right) .
\end{aligned}
$$

Here $e^{2 \pi \mathrm{ilcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime}}=e^{2 \pi \mathrm{i} / m_{i}^{\prime} l_{i}}$, because

$$
\frac{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)}{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime}}=\frac{1}{m_{i}^{\prime}} \frac{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)}{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}}=\frac{1}{m_{i}^{\prime} l_{i}}
$$

Thus

$$
\begin{aligned}
\gamma_{i}:\left(x_{1}, \ldots,\right. & \left.x_{i}, \ldots, x_{n}, t\right) \\
& \longmapsto \\
& \left(x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{i} \operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) / m_{i}^{\prime}} x_{i}, \ldots, x_{n}, e^{2 \pi \mathrm{i} / m_{i}^{\prime} l_{i}} t\right) .
\end{aligned}
$$

Set $L_{i}:=\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)$, then

$$
\gamma_{i}:\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{i} L_{i} / m_{i}^{\prime}} x_{i}, \ldots, x_{n}, e^{2 \pi \mathrm{i} / m_{i}^{\prime} l_{i}} t\right)
$$

For $k \in \mathbb{Z}$,

$$
\gamma_{i}^{k}:\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}, t\right) \longmapsto\left(x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{i} L_{i} k / m_{i}^{\prime}} x_{i}, \ldots, x_{n}, e^{2 \pi \mathrm{i} k / m_{i}^{\prime} l_{i}} t\right)
$$

In particular,

$$
\gamma_{i}^{k}=\mathrm{id} \text { if and only if } e^{2 \pi \mathrm{i} a_{i} L_{i} k / m_{i}^{\prime}}=1 \text { and } e^{2 \pi \mathrm{i} k / m_{i}^{\prime} l_{i}}=1
$$

Here:
(A) $e^{2 \pi \mathrm{i} a_{i} L_{i} k / m_{i}^{\prime}}=1$ if and only if $\frac{L_{i} k}{m_{i}^{\prime}}$ is an integer (because a_{i} and m_{i}^{\prime} are relatively prime).
(B) $e^{2 \pi \mathrm{i} k / m_{i}^{\prime} l_{i}}=1$ if and only if $\frac{k}{m_{i}^{\prime} l_{i}}$ is an integer.

We restate (A). First write $\frac{L_{i}}{m_{i}^{\prime}}$ as $\frac{L_{i}^{\prime}}{m_{i}^{\prime \prime}}$ where L_{i}^{\prime} and $m_{i}^{\prime \prime}$ are relatively prime positive integers $\left(\operatorname{or}, L_{i}^{\prime}:=\frac{L_{i}}{\operatorname{gcd}\left(L_{i}, m_{i}^{\prime}\right)}\right.$ and $\left.m_{i}^{\prime \prime}:=\frac{m_{i}^{\prime}}{\operatorname{gcd}\left(L_{i}, m_{i}^{\prime}\right)}\right)$. Then $\frac{L_{i} k}{m_{\text {as: }}^{\prime}}\left(=\frac{L_{i}^{\prime} k}{m_{i}^{\prime \prime}}\right)$ is an integer if and only if $m_{i}^{\prime \prime}$ divides k. Thus (A) is restated
(A)' $e^{2 \pi \mathrm{i}_{i} L_{i} k / m_{i}^{\prime}}=1$ if and only if $m_{i}^{\prime \prime}$ divides k.

From (A)' and (B),
$\gamma_{i}^{k}=\mathrm{id}$ if and only if k is a common multiple of $m_{i}^{\prime \prime}$ and $m_{i}^{\prime} l_{i}$.
Here m_{i}^{\prime} is a multiple of $m_{i}^{\prime \prime}$ (because $m_{i}^{\prime \prime}:=\frac{m_{i}^{\prime}}{\operatorname{gcd}\left(L_{i}, m_{i}^{\prime}\right)}$. Thus any common multiple of $m_{i}^{\prime \prime}$ and $m_{i}^{\prime} l_{i}$ is necessarily a multiple of $m_{i}^{\prime} l_{i}$. Therefore:

Lemma 5.3. $\gamma_{i}^{k}=\mathrm{id}$ if and only if k is a multiple of $m_{i}^{\prime} l_{i}$. In particular, the order of γ_{i} is $m_{i}^{\prime} l_{i}$.

We summarize the above results (Corollary 5.2 and Lemma 5.3) as follows:

Corollary 5.4. For each $i=1,2, \ldots, n$, let Γ_{i} be the subgroup of Γ consisting of automorphisms of the form

$$
\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}, t\right) \longmapsto\left(x_{1}, \ldots, e^{2 \pi \mathrm{i} j a_{i} / m_{i}} x_{i}, \ldots, x_{n}, e^{2 \pi \mathrm{i} j / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} t\right) .
$$

Then Γ_{i} is a cyclic group of order $m_{i}^{\prime} l_{i}$ generated by the automorphism

$$
\gamma_{i}:\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}, t\right) \longmapsto\left(x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{i} L_{i} / m_{i}^{\prime}} x_{i}, \ldots, x_{n}, e^{2 \pi \mathrm{i} / m_{i}^{\prime} l_{i}} t\right),
$$

where $L_{i}:=\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)$ and $l_{i}:=\frac{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}}{L_{i}}$.
Let $p: \widetilde{A}_{d-1}\left(=\mathbb{C}^{n}\right) \rightarrow A_{d-1}$ be the covering of A_{d-1} given by

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(X_{1}^{d}, X_{2}^{d}, \ldots, X_{n}^{d}, X_{1} X_{2} \cdots X_{n}\right),
$$

and $\widetilde{\Gamma}$ be the lift of Γ with respect to p. Next let $\xi_{i}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ be the automorphism given by

$$
\begin{equation*}
\xi_{i}:\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i} / m_{i}^{\prime} l_{i}} X_{i}, \ldots, X_{n}\right) . \tag{5.2}
\end{equation*}
$$

Then:
Lemma 5.5.
(1) The order of ξ_{i} is $m_{i}^{\prime} l_{i}$. (The order of γ_{i} is also $m_{i}^{\prime} l_{i}$ by Lemma 5.3.)
(2) $\xi_{i} \in \widetilde{\Gamma}$. In fact, ξ_{i} is a lift of $\gamma_{i} \in \Gamma_{i}(\subset \Gamma)$, that is, the following diagram commutes:

Proof. (1) is clear. We show (2). It suffices to show that $p \circ \xi_{i}=\gamma_{i} \circ p$. Note first that

$$
\begin{aligned}
& p \circ \xi_{i}\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \\
& \quad=\left(X_{1}^{d}, \ldots, e^{2 \pi \mathrm{i} d / m_{i}^{\prime} l_{i}} X_{i}^{d}, \ldots, X_{n}^{d}, e^{2 \pi \mathrm{i} / m_{i}^{\prime} l_{i}} X_{1} X_{2} \cdots X_{n}\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \gamma_{i} \circ p\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \\
& \quad=\left(X_{1}^{d}, \ldots, e^{2 \pi \mathrm{i} a_{i} L_{i} / m_{i}^{\prime}} X_{i}^{d}, \ldots, X_{n}^{d}, e^{2 \pi \mathrm{i} / m_{i}^{\prime} l_{i}} X_{1} X_{2} \cdots X_{n}\right)
\end{aligned}
$$

Thus to show that $p \circ \xi_{i}=\gamma_{i} \circ p$, it suffices to show that $e^{2 \pi \mathrm{i} d / m_{i}^{\prime} l_{i}}=$ $e^{2 \pi \mathrm{i} a_{i} L_{i} / m_{i}^{\prime}}$, that is,

$$
\begin{equation*}
\frac{d}{m_{i}^{\prime} l_{i}} \equiv \frac{a_{i} L_{i}}{m_{i}^{\prime}} \bmod \mathbb{Z} \tag{5.3}
\end{equation*}
$$

Since $d=m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\left(\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{n}}{m_{n}}+\kappa\right)$ and $l_{i}=\frac{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}}{L_{i}}$, the left hand side of (5.3) is

$$
\begin{aligned}
\frac{d}{m_{i}^{\prime} l_{i}} & =\frac{a_{1} L_{i}}{m_{1}^{\prime}}+\frac{a_{2} L_{i}}{m_{2}^{\prime}}+\cdots+\frac{a_{n} L_{i}}{m_{n}^{\prime}}+c \kappa L_{i} \\
& \equiv \frac{a_{1} L_{i}}{m_{1}^{\prime}}+\frac{a_{2} L_{i}}{m_{2}^{\prime}}+\cdots+\frac{a_{n} L_{i}}{m_{n}^{\prime}} \bmod \mathbb{Z}
\end{aligned}
$$

Here $L_{i}:=\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)$ is divisible by $m_{k}^{\prime}(k=1,2, \ldots$, $\check{i}, \ldots, n)$, so $\frac{a_{k} L_{i}}{m_{k}^{\prime}} \in \mathbb{Z}$, that is, $\frac{a_{k} L_{i}}{m_{k}^{\prime}} \equiv 0 \bmod \mathbb{Z}(k=1,2, \ldots, \check{i}, \ldots, n)$, hence $\frac{d}{m_{i}^{\prime} l_{i}} \equiv \frac{a_{i} L_{i}}{m_{i}^{\prime}} \bmod \mathbb{Z}$, confirming (5.3).

As we saw in the paragraph above Lemma 4.7,

$$
\widetilde{\Gamma}=\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}, j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\right\}
$$

where $\Lambda^{(j)}=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{Z}^{n}: 0 \leq p_{i}<d, \sum_{i=1}^{n} \frac{p_{i}}{d} \equiv \frac{j \kappa}{d} \bmod \mathbb{Z}\right\}$ and $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ is the automorphism given by

$$
\left(X_{1}, \ldots, X_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i}\left(j a_{1}+m_{1} p_{1}\right) / m_{1} d} X_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{n}+m_{n} p_{n}\right) / m_{n} d} X_{n}\right)
$$

Here Corollary 4.6 states that (i) $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ descends to γ^{j} and (ii) moreover if $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ is of the form $\left(X_{1}, \ldots, X_{n}\right) \mapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} X_{i}\right.$, $\left.\ldots, X_{n}\right)$, then it descends to γ^{j} of the form

$$
\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(x_{1}, \ldots, e^{2 \pi \mathrm{i} j a_{i} / m_{i}} x_{i}, \ldots, x_{n}, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} t\right)
$$

Note the following:
LEMMA 5.6. In the case of (ii), there exists an integer s_{i} such that $e^{2 \pi \mathrm{i} a_{i} / m_{i}}=e^{2 \pi \mathrm{i} a_{i} L_{i} s_{i} / m_{i}^{\prime}}$ and $e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d}=e^{2 \pi \mathrm{i} s_{i} / m_{i}^{\prime} l_{i}}$.

Proof. Since the γ^{j} in (ii) is an element of Γ_{i}, and Γ_{i} is generated by γ_{i} (Corollary 5.4), there exists an integer s_{i} such that $\gamma^{j}=\gamma_{i}^{s_{i}}$. Here
$\left\{\begin{array}{l}\gamma^{j}:\left(x_{1}, \ldots, x_{n}, t\right) \mapsto\left(x_{1}, \ldots, e^{2 \pi \mathrm{i} j a_{i} / m_{i}} x_{i}, \ldots, x_{n}, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} t\right), \\ \gamma_{i}^{s_{i}}:\left(x_{1}, \ldots, x_{n}, t\right) \mapsto\left(x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{i} L_{i} s_{i} / m_{i}^{\prime}} x_{i}, \ldots, x_{n}, e^{2 \pi \mathrm{i} s_{i} / m_{i}^{\prime} l_{i}} t\right),\end{array}\right.$
so $e^{2 \pi \mathrm{i} j a_{i} / m_{i}}=e^{2 \pi \mathrm{i} a_{i} L_{i} s_{i} / m_{i}^{\prime}}$ and $e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d}=e^{2 \pi \mathrm{i} s_{i} / m_{i}^{\prime} l_{i}}$.
Let $\xi_{i}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ be the automorphism given by

$$
\xi_{i}:\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i} / m_{i}^{\prime} l_{i}} X_{i}, \ldots, X_{n}\right) .
$$

Then $\xi_{i} \in \widetilde{\Gamma}$ (Lemma 5.5 (2)). In fact, $\xi_{i} \in \widetilde{\Gamma} \cap \Xi_{i}$, where $\Xi_{i}(i=1,2, \ldots, n)$ is the multiplicative group of automorphisms consisting of scalar multiplication of the i th coordinate of $\widetilde{A}_{d-1}\left(=\mathbb{C}^{n}\right)$:

$$
\Xi_{i}:=\left\{\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, \lambda X_{i}, \ldots, X_{n}\right): \lambda \in \mathbb{C}^{\times}\right\}
$$

Setting $\widetilde{\Gamma}_{i}:=\widetilde{\Gamma} \cap \Xi_{i}$, we claim that ξ_{i} in fact generates $\widetilde{\Gamma}_{i}$, that is, any element of $\widetilde{\Gamma}_{i}$ is a power of ξ_{i}. To see this, note that $\widetilde{\Gamma}_{i}$ consists of $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ of the form

$$
\begin{aligned}
& \widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \\
& \quad \longmapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} X_{i}, \ldots, X_{n}\right) .
\end{aligned}
$$

Here for each $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in \widetilde{\Gamma}_{i}$, there exists an integer s_{i} such that $e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d}=e^{2 \pi \mathrm{i} s_{i} / m_{i}^{\prime} l_{i}}$ (Lemma 5.6). Then

$$
\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i} s_{i} / m_{i}^{\prime} l_{i}} X_{i}, \ldots, X_{n}\right)
$$

so $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}=\xi_{i}^{s_{i}}$, confirming that ξ_{i} generates $\widetilde{\Gamma}_{i}$. Here the order of ξ_{i} is $m_{i}^{\prime} l_{i}$ (Lemma $\left.5.5(1)\right)$, so the order of the cyclic group $\widetilde{\Gamma}_{i}$ is $m_{i}^{\prime} l_{i}$.

We formalize the above result as follows:
Proposition 5.7. For each $i=1,2, \ldots, n$, let $\widetilde{\Gamma}_{i}$ be the subgroup of $\widetilde{\Gamma}$ consisting of $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ of the form

$$
\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d} X_{i}, \ldots, X_{n}\right)
$$

Then $\widetilde{\Gamma}_{i}$ is a cyclic group of order $m_{i}^{\prime} l_{i}$ generated by the automorphism

$$
\xi_{i}:\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i} / m_{i}^{\prime} l_{i}} X_{i}, \ldots, X_{n}\right)
$$

where $l_{i}:=\frac{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}}{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)}$.

5.2. Cyclic subgroups H_{i} of H

We have described cyclic subgroups $\widetilde{\Gamma}_{i}(i=1,2, \ldots, n)$ of $\widetilde{\Gamma}$. We next describe subgroups of H corresponding to them. Here H is the descent of $\widetilde{\Gamma}$ with respect to the covering map $q: \widetilde{A}_{d-1}\left(=\mathbb{C}^{n}\right) \rightarrow \mathbb{C}^{n}$ given by

$$
q\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(X_{1}^{m_{1}^{\prime}}, X_{2}^{m_{2}^{\prime}}, \ldots, X_{n}^{m_{n}^{\prime}}\right)
$$

Explicitly H is given by (Lemma 4.8 (3)):

$$
H=\left\{h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}, j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\right\}
$$

where $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the automorphism given by

$$
\left(u_{1}, \ldots, u_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i}\left(j a_{1}+m_{1} p_{1}\right) / c d} u_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{n}+m_{n} p_{n}\right) / c d} u_{n}\right) .
$$

Now let $H_{i}(i=1,2, \ldots, n)$ be the subgroup of H consisting of $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ of the form

$$
\begin{equation*}
\left(u_{1}, \ldots, u_{i}, \ldots, u_{n}\right) \longmapsto\left(u_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / c d} u_{i}, \ldots, u_{n}\right) \tag{5.4}
\end{equation*}
$$

Let $h_{i}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be the automorphism given by

$$
\begin{equation*}
h_{i}:\left(u_{1}, \ldots, u_{i}, \ldots, u_{n}\right) \longmapsto\left(u_{1}, \ldots, e^{2 \pi \mathrm{i} / l_{i}} u_{i}, \ldots, u_{n}\right) . \tag{5.5}
\end{equation*}
$$

Then $h_{i} \in H$. In fact, h_{i} is the descent of $\xi_{i} \in \widetilde{\Gamma}_{i}(\subset \widetilde{\Gamma})$, that is, the following diagram commutes:

Since $\widetilde{\Gamma}_{i}$ is a cyclic group generated by ξ_{i} (Proposition 5.7) and h_{i} is the descent of ξ_{i} with respect to q, the descent of $\widetilde{\Gamma}_{i}$ is a cyclic group generated by h_{i}. As we show subsequently, this cyclic group coincides with H_{i}.

To show this, it suffices to show that for any $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in H_{i}$, there exists an element of $\widetilde{\Gamma}_{i}$ that descends to $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$. Here

$$
\left\{\begin{array}{l}
h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(u_{1}, \ldots, u_{n}\right) \longmapsto\left(u_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / c d} u_{i}, \ldots, u_{n}\right), \\
q:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}^{m_{1}^{\prime}}, X_{2}^{m_{2}^{\prime}}, \ldots, X_{n}^{m_{n}^{\prime}}\right) .
\end{array}\right.
$$

Thus an automorphism $\zeta: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ given by

$$
\begin{equation*}
\zeta:\left(X_{1}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i}\left\{\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d\right\}} X_{i}, \ldots, X_{n}\right) \tag{5.6}
\end{equation*}
$$

descends to $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$. We show that in fact $\zeta \in \widetilde{\Gamma}$ (then from the form of $\zeta, \zeta \in \widetilde{\Gamma}_{i}$, so ζ is a lift of $\left.h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}\right)$.

Step 1. Since $q\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(X_{1}^{m_{1}^{\prime}}, X_{2}^{m_{2}^{\prime}}, \ldots, X_{n}^{m_{n}^{\prime}}\right)$, the set of all lifts of $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(u_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / c d} u_{i}, \ldots, u_{n}\right)$ with
respect to the covering q consists of automorphisms

$$
\begin{aligned}
& \left(X_{1}, \ldots, X_{n}\right) \\
& \quad \mapsto\left(e^{2 \pi \mathrm{i} k_{1} / m_{1}^{\prime}} X_{1}, \ldots, e^{2 \pi \mathrm{i}\left\{\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d+k_{i} / m_{i}^{\prime}\right\}} X_{i}, \ldots, e^{2 \pi \mathrm{i} k_{n} / m_{n}^{\prime}} X_{n}\right)
\end{aligned}
$$

where $k_{1}, k_{2}, \ldots, k_{n}$ are integers.
Step 2. Since $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in \widetilde{\Gamma}$ is a lift of $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ with respect to q (Lemma $4.8(1)), \widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ coincides with one of the automorphisms in Step 1. Namely for some integers $k_{1}, k_{2}, \ldots, k_{n}$,

$$
\begin{aligned}
& \widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \longmapsto \\
& \quad\left(e^{2 \pi \mathrm{i} k_{1} / m_{1}^{\prime}} X_{1}, \ldots, e^{2 \pi \mathrm{i}\left\{\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d+k_{i} / m_{i}^{\prime}\right\}} X_{i}, \ldots, e^{2 \pi \mathrm{i} k_{n} / m_{n}^{\prime}} X_{n}\right)
\end{aligned}
$$

Next for each $k=1,2, \ldots, n$, take the automorphism

$$
\xi_{k}:\left(X_{1}, \ldots, X_{n}\right) \mapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i} / m_{k}^{\prime} l_{k}} X_{k}, \ldots, X_{n}\right)
$$

The composite automorphism $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \xi_{1}^{-l_{1} k_{1}} \xi_{2}^{-l_{2} k_{2}} \ldots \xi_{n}^{-l_{n} k_{n}}$ is then given by

$$
\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i}\left\{\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d\right\}} X_{i}, \ldots, X_{n}\right)
$$

This coincides with the automorphism ζ given by (5.6), thus

$$
\zeta=\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \xi_{1}^{-l_{1} k_{1}} \xi_{2}^{-l_{2} k_{2}} \cdots \xi_{n}^{-l_{n} k_{n}}
$$

Step 3. Since $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in \widetilde{\Gamma}$ and $\xi_{k} \in \widetilde{\Gamma}(k=1,2, \ldots, n)$, we have $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \xi_{1}^{-l_{1} k_{1}} \xi_{2}^{-l_{2} k_{2}} \cdots \xi_{n}^{-l_{n} k_{n}} \in \widetilde{\Gamma}$. Hence $\zeta \in \widetilde{\Gamma}$, confirming the assertion.

We thus obtained the following:
Lemma 5.8. For each $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in H_{i}$, there exists an element of $\widetilde{\Gamma}_{i}$ that descends to it (with respect to the covering q). In fact, the automorphism $\zeta: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ given by $\zeta:\left(X_{1}, \ldots, X_{n}\right) \mapsto\left(X_{1}, \ldots\right.$, $\left.e^{2 \pi \mathrm{i}\left\{\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d\right\}} X_{i}, \ldots, X_{n}\right)$ is an element of $\widetilde{\Gamma}_{i}$ that descends to

$$
h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(u_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / c d} u_{i}, \ldots, u_{n}\right)
$$

Corollary 5.9. H_{i} is the descent of $\widetilde{\Gamma}_{i}$ with respect to the covering q.

The descent of $\widetilde{\Gamma}_{i}$ with respect to the covering q is a cyclic group generated by h_{i} in (5.5). On the other hand, this descent coincides with H_{i} (Corollary 5.9). Thus:

Lemma 5.10. H_{i} is a cyclic group generated by the automorphism h_{i} : $\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(u_{1}, \ldots, e^{2 \pi \mathrm{i} / l_{i}} u_{i}, \ldots, u_{n}\right)$. Thus the order of H_{i} is l_{i}.

5.3. The pseudo-reflection subgroup of H

We retain the notation above. Let H be the descent of $\widetilde{\Gamma}$ with respect to the covering $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$. Let $H_{i}(i=1,2, \ldots, n)$ be the subgroup of H consisting of $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ of the form

$$
\begin{align*}
h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}: & \left(u_{1}, \ldots, u_{i}, \ldots, u_{n}\right) \mapsto \tag{5.7}\\
& \left(u_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / c d} u_{i}, \ldots, u_{n}\right) .
\end{align*}
$$

In fact, H_{i} is a cyclic group of order l_{i} generated by h_{i} (Lemma 5.10). Note that if $i \neq j$, then $H_{i} \cap H_{j}=\{1\}$. In particular,

$$
\begin{equation*}
H_{1} H_{2} \cdots H_{n}=H_{1} \times H_{2} \times \cdots \times H_{n} \tag{5.8}
\end{equation*}
$$

Note also that the set of all pseudo-reflections in H is given by $\left(\bigcup_{i=1}^{n} H_{i}\right)$ \} $\{1\}$.

Here a pseudo-reflection is a diagonalizable matrix such that one of its eigenvalues is a root of unity (distinct from 1) and all other eigenvalues are 1. Note that the identity matrix is not a pseudo-reflection.

Now let P be the pseudo-reflection subgroup of H that is the subgroup generated by all pseudo-reflections in H, that is, by $\left(\bigcup_{i=1}^{n} H_{i}\right) \backslash\{1\}$. Here $H_{i}(i=1,2, \ldots, n)$ is a cyclic group generated by h_{i}, so P is generated by $h_{1}, h_{2}, \ldots, h_{n}$, thus $P=H_{1} H_{2} \cdots H_{n}=H_{1} \times H_{2} \times \cdots \times H_{n}$ (see (5.8)). Since the order of H_{i} is l_{i}, the order of P is $l_{1} l_{2} \cdots l_{n}$. This confirms the following:

Proposition 5.11. Where $H_{i}(i=1,2, \ldots, n)$ is a cyclic subgroup of H generated by the automorphism $h_{i}:\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(u_{1}, \ldots, e^{2 \pi \mathrm{i} / l_{i}} u_{i}\right.$,
$\left.\ldots, u_{n}\right)$, the pseudo-reflection subgroup P of H is the direct product $P=$ $H_{1} \times H_{2} \times \cdots \times H_{n}$ and the order of P is $l_{1} l_{2} \cdots l_{n}$.

In particular, $P=\{1\}$ if and only if $l_{1}=l_{2}=\cdots=l_{n}=1$. Thus:
Corollary 5.12. H is small if and only if $l_{1}=l_{2}=\cdots=l_{n}=1$.

Now let G be the descent of H with respect to the $l_{1} l_{2} \cdots l_{n}$-fold covering $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $r\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\left(u_{1}^{l_{1}}, u_{2}^{l_{2}}, \ldots, u_{n}^{l_{n}}\right)$. Then $l_{1}=l_{2}=$ $\cdots=l_{n}=1$ if and only if r is the identity map, or equivalently $H=G$. This, combined with Corollary 5.12, gives the following:

Lemma 5.13.

$$
\begin{aligned}
H \text { is small } & \Longleftrightarrow l_{1}=l_{2}=\cdots=l_{n}=1 \\
& \Longleftrightarrow r \text { is the identity map } \\
& \Longleftrightarrow H=G .
\end{aligned}
$$

The following arithmetic results are proved later (Corollary 5.19):
(1) If $n=2$, then $l_{1}=l_{2}=1$.
(2) If $n \geq 3$, then $l_{1}=l_{2}=\cdots=l_{n}=1$ if and only if $\operatorname{gcd}\left(m_{j}^{\prime}, m_{k}^{\prime}\right)=1$ for any $j \neq k$.

This, combined with Lemma 5.13, yields the following:
Theorem 5.14 (Numerical criterion of smallness).
(1) If $n=2$, then H is always small.
(2) If $n \geq 3$, then H is small if and only if $\operatorname{gcd}\left(m_{i}^{\prime}, m_{j}^{\prime}\right)=1$ for any i, j such that $i \neq j$.

Example 5.15. If $n=3, a_{1}=a_{2}=a_{3}=1, m_{1}=2, m_{2}=4, m_{3}=6$ and $\kappa=0$, then $c=\operatorname{gcd}\left(m_{1}, m_{2}, m_{3}\right)=2, m_{1}^{\prime}=1, m_{2}^{\prime}=2, m_{3}^{\prime}=3$ and $d=$ $2+3+6=11$. In this case, Γ is generated by the automorphism γ of $A_{d-1}(=$ $\left.A_{10}\right)$ given by $\gamma\left(x_{1}, x_{2}, x_{3}, t\right) \mapsto\left(e^{2 \pi \mathrm{i} / 2} x_{1}, e^{2 \pi \mathrm{i} / 4} x_{2}, e^{2 \pi \mathrm{i} / 6} x_{3}, e^{2 \pi \mathrm{i} / 12} t\right)$. Let $\widetilde{\Gamma}$
be the lift of Γ with respect to the covering $p: \widetilde{A}_{10} \rightarrow A_{10}, p\left(X_{1}, X_{2}, X_{3}\right)=$ $\left(X_{1}^{11}, X_{2}^{11}, X_{3}^{11}, X_{1} X_{2} X_{3}\right)$, and let H be the descent of $\widetilde{\Gamma}$ with respect to the covering $q: \widetilde{A}_{10} \rightarrow \mathbb{C}^{3}, q\left(X_{1}, X_{2}, X_{3}\right)=\left(X_{1}, X_{2}^{2}, X_{3}^{3}\right)$. Then, since $\operatorname{gcd}\left(m_{1}^{\prime}, m_{2}^{\prime}\right)=1, \operatorname{gcd}\left(m_{1}^{\prime}, m_{3}^{\prime}\right)=1$ and $\operatorname{gcd}\left(m_{2}^{\prime}, m_{3}^{\prime}\right)=1$, Theorem 5.14 ensures that H is small.

5.4. Supplement: Arithmetic result

This section is devoted to proving an arithmetic result used in §5.3.
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be positive integers such that $\operatorname{gcd}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=1$, where $n \geq 2$. Set $l_{i}:=\frac{\lambda_{1} \cdots \check{\lambda}_{i} \cdots \lambda_{n}}{\operatorname{lcm}\left(\lambda_{1}, \ldots, \check{\lambda}_{i}, \ldots, \lambda_{n}\right)}$, where $\check{\lambda}_{i}$ means the omission of λ_{i}. Note that l_{i} is a positive integer (cf. Remark 3.1). We show that if $n \geq 3$, then $l_{1}=l_{2}=\cdots=l_{n}=1$ if and only if $\operatorname{gcd}\left(\lambda_{j}, \lambda_{k}\right)=1$ for any $j \neq k$.

REMARK 5.16. If $n=2$, this equivalence is vacuous, because $l_{1}=l_{2}=$ 1 always holds (and $\operatorname{gcd}\left(\lambda_{1}, \lambda_{2}\right)=1$ by assumption). In fact $l_{1}=\frac{\lambda_{1}}{\operatorname{gcd}\left(\lambda_{1}\right)}=$ 1 and $l_{2}=\frac{\lambda_{2}}{\operatorname{gcd}\left(\lambda_{2}\right)}=1$.

We begin with some preparation:
Lemma 5.17. For any i, j, k such that i, j and k are distinct, $l_{i} \geq$ $\operatorname{gcd}\left(\lambda_{j}, \lambda_{k}\right)$.

Proof. We only show the assertion for $i=1, j=2$ and $k=3$ (the assertion for other cases are similarly shown). Note first that $\lambda_{2} \lambda_{3}=$ $\operatorname{gcd}\left(\lambda_{2}, \lambda_{3}\right) \cdot \operatorname{lcm}\left(\lambda_{2}, \lambda_{3}\right)$. Multiplying $\lambda_{4} \cdots \lambda_{n}$ to this yields:

$$
\lambda_{2} \lambda_{3} \lambda_{4} \cdots \lambda_{n}=\operatorname{gcd}\left(\lambda_{2}, \lambda_{3}\right) \cdot \operatorname{lcm}\left(\lambda_{2}, \lambda_{3}\right) \lambda_{4} \cdots \lambda_{n}
$$

Here, since $\operatorname{lcm}\left(\lambda_{2}, \lambda_{3}\right) \lambda_{4} \cdots \lambda_{n} \geq \operatorname{lcm}\left(\lambda_{2}, \lambda_{3}, \lambda_{4}, \ldots, \lambda_{n}\right)$,

$$
\lambda_{2} \lambda_{3} \lambda_{4} \cdots \lambda_{n} \geq \operatorname{gcd}\left(\lambda_{2}, \lambda_{3}\right) \cdot \operatorname{lcm}\left(\lambda_{2}, \lambda_{3}, \lambda_{4}, \ldots, \lambda_{n}\right)
$$

Dividing this by $\operatorname{lcm}\left(\lambda_{2}, \lambda_{3}, \lambda_{4}, \ldots, \lambda_{n}\right)$,

$$
\frac{\lambda_{2} \lambda_{3} \lambda_{4} \cdots \lambda_{n}}{\operatorname{lcm}\left(\lambda_{2}, \lambda_{3}, \lambda_{4} \cdots \lambda_{n}\right)} \geq \operatorname{gcd}\left(\lambda_{2}, \lambda_{3}\right)
$$

Since the left hand side is l_{1}, we have $l_{1} \geq \operatorname{gcd}\left(\lambda_{2}, \lambda_{3}\right)$. (Note: If $n=3$, then the equality holds. In fact, $l_{1}=\frac{\lambda_{2} \lambda_{3}}{\operatorname{lcm}\left(\lambda_{2}, \lambda_{3}\right)}=\operatorname{gcd}\left(\lambda_{2}, \lambda_{3}\right)$.)

We next show that:

Lemma 5.18. For each $i=1,2, \ldots, n$,

$$
l_{i}=1 \Longleftrightarrow \operatorname{gcd}\left(\lambda_{j}, \lambda_{k}\right)=1 \text { for any } j \neq k(\text { distinct from } i) .
$$

Proof. \Longrightarrow : By Lemma 5.17, for any i, j, k such that i, j and k are distinct, $l_{i} \geq \operatorname{gcd}\left(\lambda_{j}, \lambda_{k}\right)$. In particular if $l_{i}=1$, then $\operatorname{gcd}\left(\lambda_{j}, \lambda_{k}\right)=1$.
$\Longleftarrow:$ If $\operatorname{gcd}\left(\lambda_{j}, \lambda_{k}\right)=1$ for any $j \neq k$ such that j and k distinct from i, then $\operatorname{lcm}\left(\lambda_{1}, \ldots, \check{\lambda}_{i}, \ldots, \lambda_{n}\right)=\lambda_{1} \cdots \check{\lambda}_{i} \cdots \lambda_{n}$, and thus $l_{i}=1$.

From Lemma 5.18, $l_{1}=l_{2}=\cdots=l_{n}=1$ if and only if $\operatorname{gcd}\left(\lambda_{j}, \lambda_{k}\right)=1$ for any $j \neq k$. (Actually if $n=2$, then $l_{1}=l_{2}=1$ always holds (Remark 5.16).)

Now let $m_{1}, m_{2}, \ldots, m_{n}$ be positive integers. Set $c:=\operatorname{gcd}\left(m_{1}, m_{2}, \ldots\right.$, $\left.m_{n}\right)$ and $m_{i}^{\prime}:=\frac{m_{i}}{c}(i=1,2, \ldots, n)$. Then $m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n}^{\prime}$ are positive integers such that $\operatorname{gcd}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n}^{\prime}\right)=1$. So we may apply the above to obtain the following:

Corollary 5.19. Let $m_{1}, m_{2}, \ldots, m_{n}$ be positive integers. Set $c:=$ $\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right), m_{i}^{\prime}:=\frac{m_{i}}{c}$ and $l_{i}:=\frac{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}}{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)}$, where \check{m}_{i}^{\prime} means the omission of m_{i}^{\prime}. (Note that l_{i} is a positive integer (cf. Remark 3.1).) Then the following hold:
(1) If $n=2$, then $l_{1}=l_{2}=1$.
(2) If $n \geq 3$, then $l_{1}=l_{2}=\cdots=l_{n}=1$ if and only if $\operatorname{gcd}\left(m_{j}^{\prime}, m_{k}^{\prime}\right)=1$ for any $j \neq k$.

6. Uniformization Theorem for Arbitrary Dimension

6.1. Determination of G

Recall the diagram (3.5) for the covering maps p, q, r :

Then

- $\widetilde{\Gamma}=\coprod_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} \operatorname{Lift}^{(j)}$ (disjoint union) is the lift of Γ with respect to p, where $\operatorname{Lift}^{(j)}$ is the set of all lifts of $\gamma^{j} \in \Gamma$.
- $H=\bigcup_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} q_{*}\left(\operatorname{Lift}^{(j)}\right)$ is the descent of $\widetilde{\Gamma}$ with respect to q, where $q_{*}\left(\operatorname{Lift}^{(j)}\right)$ is the descent of $\operatorname{Lift}{ }^{(j)}$.
- $G=\bigcup_{j=1}^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} r_{*} \circ q_{*}\left(\operatorname{Lift}^{(j)}\right)$ is the descent of H with respect to r, where $r_{*} \circ q_{*}\left(\operatorname{Lift}^{(j)}\right)$ is the descent of $q_{*}\left(\operatorname{Lift}^{(j)}\right)$.

Here $\operatorname{Lift}^{(j)}=\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\} \quad($ Corollary 4.5 (3)) and $q_{*}\left(\operatorname{Lift}^{(j)}\right)=\left\{h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\}$ (Lemma 4.8 (2)). We next determine $r_{*} \circ q_{*}\left(\operatorname{Lift}^{(j)}\right)$. For $j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$ and $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}$, define an automorphism $g_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by

$$
\left(v_{1}, \ldots, v_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i} l_{1}\left(j a_{1}+m_{1} p_{1}\right) / c d} v_{1}, \ldots, e^{2 \pi \mathrm{i} l_{n}\left(j a_{n}+m_{n} p_{n}\right) / c d} v_{n}\right)
$$

Then as for Lemma 4.8, we can show the following:

Lemma 6.1.

(A) $g_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ is the descent of $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}$ with respect to the covering r : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.
(B) $r_{*} \circ q_{*}\left(\operatorname{Lift}^{(j)}\right)=\left\{g_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}\right\}$.
(C) $G=\left\{g_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}, j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\right\}$. (In particular, any two elements of G commute, so G is abelian.)

6.2. Uniformization theorem

Let H be the descent of $\widetilde{\Gamma}$ with respect to the $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime}$-fold covering $q: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ and P be the pseudo-reflection subgroup of H, that is, P is generated by all pseudo-reflections in H. The descent G of H with respect to the $l_{1} l_{2} \cdots l_{n}$-fold covering $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is regarded as the quotient group H / P. Indeed the kernel of the surjective homomorphism $r_{*}: H \rightarrow G$ (given by $r_{*}(h):=$ descent of h) is P, so $G \cong H / P$. Thus G is obtained from H by collapsing the pseudo-reflections in H, consequently:

Proposition 6.2. G contains no pseudo-reflections, that is, is a small group.

Now $A_{d-1} / \Gamma \cong \widetilde{A}_{d-1} / \widetilde{\Gamma} \cong \mathbb{C}^{n} / H \cong \mathbb{C}^{n} / G$. Here G is a finite abelian group (Proposition 3.2 (3)) and small (Proposition 6.2). The following is thus established:

Theorem 6.3 (Uniformization theorem). Let Γ be the cyclic group generated by the automorphism $\gamma: A_{d-1} \rightarrow A_{d-1}$ given by

$$
\gamma:\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / m_{1}} x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{n} / m_{n}} x_{n}, e^{2 \pi \mathrm{i} / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} t\right)
$$

Then there exists a small finite abelian group $G \subset G L(n, \mathbb{C})$ such that $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$.

We explicitly give the isomorphism $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$ in the uniformization theorem. The covering maps p, q and r appearing in the diagram (6.1) induce isomorphisms $\bar{p}: \widetilde{A}_{d-1} / \widetilde{\Gamma} \rightarrow A_{d-1} / \Gamma$ and $\bar{q}: \widetilde{A}_{d-1} / \widetilde{\Gamma} \rightarrow \mathbb{C}^{n} / H$ and $\bar{r}: \mathbb{C}^{n} / H \rightarrow \mathbb{C}^{n} / G$. The isomorphism $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$ in the uniformization theorem (Theorem 6.3) is then given by

$$
\begin{equation*}
\Psi:=\bar{r} \circ \bar{q} \circ \bar{p}^{-1}: A_{d-1} / \Gamma \xrightarrow{\cong} \mathbb{C}^{n} / G \tag{6.2}
\end{equation*}
$$

Explicitly:
LEMMA 6.4. $\Psi\left(\left[x_{1}, \ldots, x_{n}, t\right]\right)=\left[x_{1}^{m_{1}^{\prime} l_{1} / d}, \ldots, x_{n}^{m_{n}^{\prime} l_{n} / d}\right]$,
where $\left[x_{1}, \ldots, x_{n}, t\right] \in A_{d-1} / \Gamma$ and $\left[x_{1}^{m_{1}^{\prime} l_{1} / d}, \ldots, x_{n}^{m_{n}^{\prime} l_{n} / d}\right] \in \mathbb{C}^{n} / G$ denote the images of $\left(x_{1}, \ldots, x_{n}, t\right) \in A_{d-1}$ and $\left(x_{1}^{m_{1}^{\prime} l_{1} / d}, \ldots, x_{n}^{m_{n}^{\prime} l_{n} / d}\right) \in \mathbb{C}^{n}$ respectively.

Proof. Since $p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(X_{1}^{d}, X_{2}^{d}, \ldots, X_{n}^{d}, X_{1} X_{2} \cdots X_{n}\right)$, we have $\bar{p}\left(\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right)=\left[X_{1}^{d}, X_{2}^{d}, \ldots, X_{n}^{d}, X_{1} X_{2} \cdots X_{n}\right]$, so

$$
\bar{p}^{-1}\left(\left[x_{1}, x_{2}, \ldots, x_{n}, t\right]\right)=\left[x_{1}^{1 / d}, x_{2}^{1 / d}, \ldots, x_{n}^{1 / d}\right] .
$$

Next since $q\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(X_{1}^{m_{1}^{\prime}}, X_{2}^{m_{2}^{\prime}}, \ldots, X_{n}^{m_{n}^{\prime}}\right)$ and $r\left(u_{1}, u_{2}, \ldots\right.$, $\left.u_{n}\right)=\left(u_{1}^{l_{1}}, u_{2}^{l_{2}}, \ldots, u_{n}^{l_{n}}\right)$, we have $\bar{q}\left(\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right)=\left[X_{1}^{m_{1}^{\prime}}, X_{2}^{m_{2}^{\prime}}, \ldots\right.$, $\left.X_{n}^{m_{n}^{\prime}}\right]$ and $\bar{r}\left(\left[u_{1}, u_{2}, \ldots, u_{n}\right]\right)=\left[u_{1}^{l_{1}}, u_{2}^{l_{2}}, \ldots, u_{n}^{l_{n}}\right]$, so

$$
\begin{aligned}
\bar{r} \circ \bar{q}\left(\left[x_{1}^{1 / d}, x_{2}^{1 / d}, \ldots, x_{n}^{1 / d}\right]\right) & =\bar{r}\left(\left[x_{1}^{m_{1}^{\prime} / d}, x_{2}^{m_{2}^{\prime} / d}, \ldots, x_{n}^{m_{n}^{\prime} / d}\right]\right) \\
& =\left[x_{1}^{m_{1}^{\prime} l_{1} / d}, x_{2}^{m_{2}^{\prime} l_{2} / d}, \ldots, x_{n}^{m_{n}^{\prime} l_{n} / d}\right] .
\end{aligned}
$$

Hence $\Psi:=\bar{r} \circ \bar{q} \circ \bar{p}^{-1}$ is explicitly given by

$$
\Psi\left(\left[x_{1}, x_{2}, \ldots, x_{n}, t\right]\right)=\left[x_{1}^{m_{1}^{\prime} l_{1} / d}, x_{2}^{m_{2}^{\prime} l_{2} / d}, \ldots, x_{n}^{m_{n}^{\prime} l_{n} / d}\right]
$$

6.3. Correspondence between functions

We use the notation in §6.2. Besides, let $\Phi: A_{d-1} \rightarrow \mathbb{C}$ be a holomorphic map given by $\Phi\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=t^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}$. Then Φ is Γ-invariant, so induces a holomorphic map $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$. As we explained in § Introduction, the topological monodromy of $\bar{\Phi}$ is a $-\left(\frac{a_{1}}{m_{1}}, \frac{a_{2}}{m_{2}}, \ldots, \frac{a_{n}}{m_{n}}, \kappa\right)$ fractional Dehn twist: If $n=2$, then the topological monodromy of $\bar{\Phi}$ is the $-\left(\frac{a_{1}}{m_{1}}, \frac{a_{2}}{m_{2}}, \kappa\right)$-fractional Dehn twist.

Under the isomorphism $\Psi: A_{d-1} / \Gamma \xrightarrow{\cong} \mathbb{C}^{n} / G$ in $(6.2), \bar{\Phi}: A_{d-1} / \Gamma \rightarrow$ \mathbb{C} corresponds to a holomorphic map on \mathbb{C}^{n} / G. We describe this map. To that end, we need the following:

Lemma 6.5. For an element $g \in G$ given by

$$
\left(v_{1}, \ldots, v_{n}\right) \longmapsto\left(e^{2 \pi i i_{1}\left(j a_{1}+m_{1} p_{1}\right) / c d} v_{1}, \ldots, e^{2 \pi i l_{n}\left(j a_{n}+m_{n} p_{n}\right) / c d} v_{n}\right),
$$

write $\eta_{i}=e^{2 \pi \mathrm{i} l_{i}\left(j a_{i}+m_{i} p_{i}\right) / c d}(i=1,2, \ldots, n)$. Next for $i=1,2, \ldots, n$, set $k_{i}:=\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) c$, where \check{m}_{i}^{\prime} means the omission of m_{i}^{\prime}. Then $\eta_{1}^{k_{1}} \eta_{2}^{k_{2}} \cdots \eta_{n}^{k_{n}}=1$.

Proof. Since $l_{i}=\frac{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}}{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)}$, we have $k_{i} l_{i}=$ $m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime} c$, so

$$
\begin{aligned}
\eta_{1}^{k_{1}} \eta_{2}^{k_{2}} \cdots \eta_{n}^{k_{n}}= & e^{2 \pi \mathrm{i} k_{1} l_{1}\left(j a_{1}+m_{1} p_{1}\right) / c d} e^{2 \pi \mathrm{i} k_{2} l_{2}\left(j a_{2}+m_{2} p_{2}\right) / c d} \cdots \\
& \cdots e^{2 \pi \mathrm{i} k_{n} l_{n}\left(j a_{n}+m_{n} p_{n}\right) / c d} \\
= & e^{2 \pi \mathrm{i} m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c \sum_{i=1}^{n}\left(j a_{i} / m_{i}+p_{i}\right) / d}
\end{aligned}
$$

Here $\sum_{i=1}^{n} p_{i} / d=j \kappa / d\left(\right.$ because $\left.\left(p_{1}, p_{2}, \ldots p_{n}\right) \in \Lambda^{(j)}\right)$, so

$$
\begin{aligned}
e^{2 \pi \mathrm{i} m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c \sum_{i=1}^{n}\left(j a_{i} / m_{i}+p_{i}\right) / d} & =e^{2 \pi \mathrm{i} j m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\left(\sum_{i=1}^{n} a_{i} / m_{i}+\kappa\right) / d} \\
& =e^{2 \pi \mathrm{i} j} \quad \text { by }(3.3)
\end{aligned}
$$

Hence $\eta_{1}^{k_{1}} \eta_{2}^{k_{2}} \cdots \eta_{n}^{k_{n}}=e^{2 \pi \mathrm{i} j}=1$.
We next show the following (this generalizes Lemma 2.4):
ThEOREM 6.6. Let $\phi: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a holomorphic map given by $\phi\left(v_{1}, v_{2}, \ldots v_{n}\right)=v_{1}^{k_{1}} v_{2}^{k_{2}} \ldots v_{n}^{k_{n}}$, where $k_{i}:=\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) c$. Then:
(1) ϕ is G-invariant. In particular, this induces a holomorphic map $\bar{\phi}$: $\mathbb{C}^{n} / G \rightarrow \mathbb{C}$.
(2) Under the isomorphism $\Psi: A_{d-1} / \Gamma \xrightarrow{\cong} \mathbb{C}^{n} / G$ in (6.2), $\bar{\Phi}$ corresponds to $\bar{\phi}$, that $i s, \bar{\Phi}=\bar{\phi} \circ \Psi$.

Proof. (1): For $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{C}^{n}$ and an element $g \in G$ given by $g:\left(v_{1}, v_{2}, \ldots, v_{n}\right) \mapsto\left(\eta_{1} v_{1}, \eta_{2} v_{2}, \ldots, \eta_{n} v_{n}\right)$,

$$
\begin{aligned}
\phi \circ g\left(v_{1}, v_{2}, \ldots, v_{n}\right) & =\phi\left(\eta_{1} v_{1}, \eta_{2} v_{2}, \ldots, \eta_{n} v_{n}\right) \\
& =\left(\eta_{1}^{k_{1}} \eta_{2}^{k_{2}} \cdots \eta_{n}^{k_{n}}\right) v_{1}^{k_{1}} v_{2}^{k_{2}} \cdots v_{n}^{k_{n}} \\
& =\eta_{1}^{k_{1}} \eta_{2}^{k_{2}} \cdots \eta_{n}^{k_{n}} \phi\left(v_{1}, v_{2}, \ldots, v_{n}\right) \\
& =\phi\left(v_{1}, v_{2}, \ldots, v_{n}\right) \quad \text { by Lemma } 6.5 .
\end{aligned}
$$

Thus $\phi \circ g=\phi$, confirming the assertion.
(2): Note first that

$$
\begin{align*}
\bar{\phi} \circ \Psi & \left(\left[x_{1}, x_{2}, \ldots, x_{n}, t\right]\right) \\
& =\bar{\phi}\left(\left[x_{1}^{m_{1}^{\prime} l_{1} / d}, x_{2}^{m_{2}^{\prime} l_{2} / d}, \ldots, x_{n}^{m_{n}^{\prime} l_{n} / d}\right]\right) \tag{Lemma6.4}\\
& =x_{1}^{m_{1}^{\prime} l_{1} k_{1} / d} x_{2}^{m_{2}^{\prime} l_{2} k_{2} / d} \cdots x_{n}^{m_{n}^{\prime} l_{n} k_{n} / d}
\end{align*}
$$

Here since $k_{i} l_{i}=m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime} c$, we have $m_{i}^{\prime} l_{i} k_{i}=m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$. Thus the last expression is rewritten as

$$
\begin{aligned}
x_{1}^{m_{1}^{\prime} l_{1} k_{1} / d} x_{2}^{m_{2}^{\prime} l_{2} k_{2} / d} \cdots x_{n}^{m_{n}^{\prime} l_{n} k_{n} / d} & =\left(x_{1} x_{2} \cdots x_{n}\right)^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c / d} \\
& =t^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} \quad \text { because } x_{1} x_{2} \cdots x_{n}=t^{d}
\end{aligned}
$$

Hence $\bar{\phi} \circ \Psi\left(\left[x_{1}, x_{2}, \ldots, x_{n}, t\right]\right)=\bar{\Phi}\left(\left[x_{1}, x_{2}, \ldots, x_{n}, t\right]\right)$.

6.4. Equi-smallness theorem

Let Γ be the cyclic group generated by the automorphism $\gamma: A_{d-1} \rightarrow$ A_{d-1} given by

$$
\gamma:\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / m_{1}} x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{n} / m_{n}} x_{n}, e^{2 \pi \mathrm{i} / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c} t\right)
$$

where $d:=\sum_{k=1}^{n} a_{k} m_{1}^{\prime} \cdots \check{m}_{k}^{\prime} \cdots m_{n}^{\prime}+m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c \kappa$. Here κ is an integer satisfying $(*) \frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{n}}{m_{n}}+\kappa>0$. Then $\kappa \geq-n+1$ (see (3.1)).

Let $\widetilde{\Gamma}$ be the lift of Γ and H is the descent of $\widetilde{\Gamma}$. The pseudo-reflection subgroup P of H is generated by the automorphisms $h_{i}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}(i=$ $1,2, \ldots, n)$ given by $h_{i}:\left(u_{1}, \ldots, u_{i}, \ldots, u_{n}\right) \mapsto\left(u_{1}, \ldots, e^{2 \pi \mathrm{i} / l_{i}} u_{i}, \ldots, u_{n}\right)$ (Proposition 5.11). Here $l_{i}=\frac{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}}{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)}$ does not depend on κ. Thus:

Lemma 6.7. The pseudo-reflection subgroup P of H does not depend on κ.

In what follows, regarding κ as a 'parameter', write $\widetilde{\Gamma}, H, P$ as $\widetilde{\Gamma}_{\kappa}, H_{\kappa}$, P_{κ}. These are subgroups of $G L(n, \mathbb{C})$. From Lemma 6.7,

$$
\begin{equation*}
P_{\kappa_{0}}=P_{\kappa_{0}+1}=\cdots=P_{\kappa}=\cdots, \tag{6.3}
\end{equation*}
$$

where κ_{0} denotes the least integer in the set S of integers κ satisfying $(*)$. If $H_{\kappa_{0}}$ is small, then $P_{\kappa_{0}}=\{1\}$ and by (6.3), $P_{\kappa_{0}}=P_{\kappa_{0}+1}=\cdots=P_{\kappa}=$ $\cdots=\{1\}$. Thus H_{κ} is small for any $\kappa \in S$. This confirms the following:

Theorem 6.8 (Equi-smallness). Let S be the set of integers κ satisfying $\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{n}}{m_{n}}+\kappa>0$, and let κ_{0} denote the least integer in S. Then $H_{\kappa_{0}}$ is small $\Longleftrightarrow H_{\kappa}$ is small for any $\kappa \in S$. (In other words, $H_{\kappa_{0}}$ is not small $\Longleftrightarrow H_{\kappa}$ is not small for any $\kappa \in S$.)

Example 6.9. (i): When $n=3, a_{1}=a_{2}=a_{3}=1, m_{1}=2, m_{2}=4$ and $m_{3}=6, c=\operatorname{gcd}\left(m_{1}, m_{2}, m_{3}\right)=2, m_{1}^{\prime}=1, m_{2}^{\prime}=2$ and $m_{3}^{\prime}=3$. Then $\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\frac{a_{3}}{m_{3}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}$, and thus $\frac{11}{12}+\kappa>0$. Hence $\kappa_{0}=0$. Here by Example 5.15, $H_{\kappa_{0}}$ is small. Thus by Theorem 6.8, H_{κ} is small for any integer κ such that $\kappa \geq 0$.
(ii): When $n=3, a_{1}=1, a_{2}=2, a_{3}=3, m_{1}=2, m_{2}=3$ and $m_{3}=4, c=\operatorname{gcd}\left(m_{1}, m_{2}, m_{3}\right)=1, m_{1}^{\prime}=2, m_{2}^{\prime}=3$ and $m_{3}^{\prime}=4$. Then $\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\frac{a_{3}}{m_{3}}=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}=\frac{23}{12}$, and thus $\frac{23}{12}+\kappa>0$. Hence $\kappa_{0}=-1$. Here since $\operatorname{gcd}\left(m_{1}^{\prime}, m_{3}^{\prime}\right)=2$, Theorem 5.14 ensures that $H_{\kappa_{0}}$ is not small. Thus by Theorem $6.8, H_{\kappa}$ is not small for any integer κ such that $\kappa \geq-1$.

7. Generators of $\widetilde{\Gamma}, H$ and G

Let $\widetilde{\Gamma}$ be the lift of Γ with respect to the covering p. Let H be the descent of $\widetilde{\Gamma}$ with respect to the covering q, and G be the descent of H with respect to the covering r. Then G is a small finite abelian group such that $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$. We explicitly give generators of $\widetilde{\Gamma}, H, G$.

7.1. Generators of $\widetilde{\Gamma}$

Recall that (see the paragraph above Lemma 4.7)

$$
\widetilde{\Gamma}=\left\{\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}, j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\right\}
$$

where $\Lambda^{(j)}=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{Z}^{n}: 0 \leq p_{i}<d, \sum_{i=1}^{n} \frac{p_{i}}{d} \equiv \frac{j \kappa}{d} \bmod \mathbb{Z}\right\}$ and $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ is an automorphism given by

$$
\left(X_{1}, \ldots, X_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i}\left(j a_{1}+m_{1} p_{1}\right) / m_{1} d} X_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{n}+m_{n} p_{n}\right) / m_{n} d} X_{n}\right)
$$

Recall that Γ is generated by the automorphism $\gamma: A_{d-1} \rightarrow A_{d-1}$ given by

$$
\gamma:\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / m_{1}} x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{n} / m_{n}} x_{n}, e^{2 \pi \mathrm{i} /\left(m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\right)} t\right)
$$

The automorphism $\delta: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ given by

$$
\begin{aligned}
& \left(X_{1}, X_{2}, \ldots, X_{n}\right) \\
& \quad \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / m_{1} d} X_{1}, e^{2 \pi \mathrm{i} a_{2} / m_{2} d} X_{2}, \ldots, e^{2 \pi \mathrm{i}\left(a_{n}+m_{n} \kappa\right) / m_{n} d} X_{n}\right)
\end{aligned}
$$

is a lift of $\gamma \in \Gamma$ with respect to the covering $p: \widetilde{A}_{d-1} \rightarrow A_{d-1}$. Hence $\delta \in \widetilde{\Gamma}$. The automorphism $\eta_{i}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}(i=1,2, \ldots, n-1)$ given by

$$
\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, X_{i-1}, e^{2 \pi \mathrm{i} / d} X_{i}, X_{i+1}, \ldots, e^{-2 \pi \mathrm{i} / d} X_{n}\right)
$$

is a lift of the identity $1 \in \Gamma$ with respect to the covering p. Hence $\eta_{i} \in \widetilde{\Gamma}$ $(i=1,2, \ldots, n-1)$.

Lemma 7.1. Any element of $\widetilde{\Gamma}$ is expressed by $\delta, \eta_{1}, \eta_{2}, \ldots, \eta_{n-1} \in \widetilde{\Gamma}$. In fact, $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in \widetilde{\Gamma}$ is expressed as $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}=\delta^{j} \eta_{1}^{p_{1}} \eta_{2}^{p_{2}} \cdots \eta_{n-1}^{p_{n-1}}$.

Proof. It suffices to show that $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \delta^{-j} \eta_{1}^{-p_{1}} \eta_{2}^{-p_{2}} \cdots \eta_{n-1}^{-p_{n-1}}$ is the identity. For brevity, express $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}(\vec{x})=A \vec{x}, \delta(\vec{x})=B \vec{x}$ and $\eta_{i}(\vec{x})=$ $C_{i} \vec{x}$, where

$$
\begin{aligned}
& A=\operatorname{diag}\left(e^{2 \pi \mathrm{i}\left(j a_{1}+m_{1} p_{1}\right) / m_{1} d}, e^{2 \pi \mathrm{i}\left(j a_{2}+m_{2} p_{2}\right) / m_{2} d}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{n}+m_{n} p_{n}\right) / m_{n} d}\right), \\
& B=\operatorname{diag}\left(e^{2 \pi \mathrm{i} a_{1} / m_{1} d}, e^{2 \pi \mathrm{i} a_{2} / m_{2} d}, \ldots, e^{2 \pi \mathrm{i} a_{n-1} / m_{n-1} d}, e^{2 \pi \mathrm{i}\left(a_{n}+m_{n} \kappa\right) / m_{n} d}\right) \\
& C_{i}=\operatorname{diag}\left(1, \ldots, 1, e^{2 \pi \mathrm{i} / d}, 1, \ldots, 1, e^{-2 \pi \mathrm{i} / d}\right), \text { where } e^{2 \pi \mathrm{i} / d} \text { lies in the } i \text { th }
\end{aligned}
$$ place. Then $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \delta^{-j} \eta_{1}^{-p_{1}} \eta_{2}^{-p_{2}} \cdots \eta_{n-1}^{-p_{n-1}}(\vec{x})=A B^{-j} C_{1}^{-p_{1}} C_{2}^{-p_{2}} \cdots$ $C_{n-1}^{-p_{n-1}} \vec{x}$. It thus suffices to show that the matrix $D:=A B^{-j} C_{1}^{-p_{1}} C_{2}^{-p_{2}} \ldots$ $C_{n-1}^{-p_{n-1}}$ is the identity matrix. Since A, B, C_{i} are diagonal, D is also diagonal, so it suffices to show that any of its diagonal entries is 1 . This is confirmed as follows:

- For $i=1,2, \ldots, n-1$, the (i, i) entry of D is

$$
e^{2 \pi \mathrm{i}\left(j a_{i}+m_{i} p_{i}\right) / m_{i} d}\left(e^{2 \pi \mathrm{i} a_{i} / m_{i} d}\right)^{-j}\left(e^{2 \pi \mathrm{i} / d}\right)^{-p_{i}}=1
$$

- The (n, n) entry of D is

$$
\begin{aligned}
& e^{2 \pi \mathrm{i}\left(j a_{n}+m_{n} p_{n}\right) / m_{n} d}\left(e^{2 \pi \mathrm{i}\left(a_{n}+m_{n} \kappa\right) / m_{n} d}\right)^{-j}\left(e^{2 \pi \mathrm{i} / d}\right)^{p_{1}+\cdots+p_{n-1}} \\
& \quad=e^{2 \pi \mathrm{i}\left(p_{1}+\cdots+p_{n}-j \kappa\right) / d}
\end{aligned}
$$

Here since $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}$, we have $\sum_{i=1}^{n} \frac{p_{i}}{d} \equiv \frac{j \kappa}{d} \bmod \mathbb{Z}$, and thus $e^{2 \pi \mathrm{i}\left(p_{1}+\cdots+p_{n}-j \kappa\right) / d}=1$.

Lemma 7.1 implies that:

Corollary 7.2. $\widetilde{\Gamma}$ is generated by $\delta, \eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$, or as a subgroup of $G L(n, \mathbb{C})$, generated by the matrices $B, C_{1}, C_{2}, \ldots, C_{n-1}$ appearing in the proof of Lemma 7.1.

7.2. Relations among generators of $\widetilde{\Gamma}$

Recall that $\widetilde{\Gamma}$ is a finite abelian group of order $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c d^{n-1}$ (Proposition $3.2(1))$ and is generated by $\delta, \eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$ (Corollary 7.2). These generators are generally not independent. In fact, the following holds (the proof is the same as that of Lemma 7.1):

LEMMA 7.3. $\quad \delta^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}=\eta_{1}^{a_{1} m_{2}^{\prime} m_{3}^{\prime} \cdots m_{n}^{\prime}} \eta_{2}^{a_{2} m_{1}^{\prime} m_{3}^{\prime} \cdots m_{n}^{\prime}} \ldots$

$$
\eta_{n-1}^{a_{n-1} m_{1}^{\prime} \cdots m_{n-2}^{\prime} m_{n}^{\prime}} .
$$

If the order of δ is $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$, then this relation is actually vacuous. To see this, we need the following:

Lemma 7.4.

(1) Express $\delta(\vec{x})=B \vec{x}$, where B is the matrix appearing in the proof of Lemma 7.1. Then $\operatorname{det} B=e^{2 \pi \mathrm{i} / m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}$.
(2) If $\delta^{k}=1$, then k is a multiple of $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$. In particular, the order of δ is a multiple of $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$.
(3) $\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n}^{\prime}\right) c d \quad$ is a multiple of $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$, and $\delta^{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n}^{\prime}\right) c d}=1$.
(4) Write $\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n}^{\prime}\right) c d=N m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$ where N is a positive integer. Then the order of δ is $l m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$ for some positive integer $l(1 \leq l \leq N)$.

Proof. We show the assertions only for $n=3$ (the proof is the same for any n).
(1): Since $B=\left(\begin{array}{ccc}e^{2 \pi \mathrm{i} a_{1} / m_{1} d} & 0 & 0 \\ 0 & e^{2 \pi \mathrm{i} a_{2} / m_{2} d} & 0 \\ 0 & 0 & e^{2 \pi \mathrm{i}\left(a_{3}+m_{3} \kappa\right) / m_{3} d}\end{array}\right)$, we have $\operatorname{det} B=e^{2 \pi \mathrm{i} a_{1} / m_{1} d} e^{2 \pi \mathrm{i} a_{2} / m_{2} d} e^{2 \pi \mathrm{i}\left(a_{3}+m_{3} \kappa\right) / m_{3} d}=e^{2 \pi \mathrm{i}\left(a_{1} / m_{1}+a_{2} / m_{2}+a_{3} / m_{3}+\kappa\right) / d}$. Here $\left(a_{1} / m_{1}+a_{2} / m_{2}+a_{3} / m_{3}+\kappa\right) / d=1 / m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c$ (because $d:=$ $\left.m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c\left(a_{1} / m_{1}+a_{2} / m_{2}+a_{3} / m_{3}+\kappa\right)\right)$, confirming the assertion.
(2): If $\delta^{k}=1$, then $B^{k}=I$ (the identity matrix), $\operatorname{so} \operatorname{det}\left(B^{k}\right)=1$. Then $e^{2 \pi \mathrm{i} k / m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c}=1$ by (1). Thus k is a multiple of $m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c$.
(3): We first show that $\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c d$ is a multiple of $m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c$, for which it is sufficient to demonstrate that $\frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c d}{m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c}$ is an integer. Using $d:=m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c\left(\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\frac{a_{3}}{m_{3}}+\kappa\right)$, we rewrite:

$$
\begin{aligned}
& \frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c d}{m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c}=\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c\left(\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\frac{a_{3}}{m_{3}}+\kappa\right) \\
& \quad=\frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c}{m_{1}} a_{1}+\frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c}{m_{2}} a_{2}+\frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c}{m_{3}} a_{3} \\
& \quad+\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c \kappa
\end{aligned}
$$

Since $m_{i}=m_{i}^{\prime} c$, the last expression is equal to

$$
\begin{aligned}
& \frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)}{m_{1}^{\prime}} a_{1}+\frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)}{m_{2}^{\prime}} a_{2}+\frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)}{m_{3}^{\prime}} a_{3} \\
& \quad+\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c \kappa
\end{aligned}
$$

This is an integer, because

$$
\frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)}{m_{1}^{\prime}}, \frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)}{m_{2}^{\prime}}, \frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)}{m_{3}^{\prime}} \text { are integers. }
$$

Thus $\frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c d}{m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c}$ is an integer, confirming the assertion.
We next show that $\left.\delta^{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}\right.}, m_{3}^{\prime}\right) c d=1$. For an integer k, the automorphism $\delta^{k}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ is given by

$$
\left(X_{1}, X_{2}, X_{3}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} k / m_{1} d} X_{1}, e^{2 \pi \mathrm{i} a_{2} k / m_{2} d} X_{2}, e^{2 \pi \mathrm{i}\left(a_{3}+m_{3} \kappa\right) k / m_{3} d} X_{3}\right)
$$

Here if $k=\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c d$, then

$$
\begin{aligned}
k / m_{1} d & =\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) / m_{1}^{\prime}, \quad k / m_{2} d=\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) / m_{2}^{\prime}, \\
k / m_{3} d & =\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) / m_{3}^{\prime}
\end{aligned}
$$

hence $k / m_{1} d, k / m_{2} d, k / m_{3} d$ are integers, consequently $\delta^{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c d}$: $\left(X_{1}, X_{2}, X_{3}\right) \longmapsto\left(X_{1}, X_{2}, X_{3}\right)$, so $\delta^{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) c d}=1$.
(4): This follows from (2) and (3).

Since $\eta_{i}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}(i=1,2, \ldots, n-1)$ is given by

$$
\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, X_{i-1}, e^{2 \pi \mathrm{i} / d} X_{i}, X_{i+1}, \ldots, e^{-2 \pi \mathrm{i} / d} X_{n}\right)
$$

the order of η_{i} is d.
Lemma 7.5.
(1) There is no nontrivial relation among $\eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$: If $\eta_{1}^{k_{1}} \eta_{2}^{k_{2}} \ldots$ $\eta_{n-1}^{k_{n-1}}=1$, then $\eta_{1}^{k_{1}}=\eta_{2}^{k_{2}}=\cdots=\eta_{n-1}^{k_{n-1}}=1$.
(2) Let k be an integer such that $\delta^{k} \neq 1$. If δ^{k} is expressed by $\eta_{1}, \eta_{2}, \ldots$, η_{n-1}, that is, $\delta^{k}=\eta_{1}^{l_{1}} \eta_{2}^{l_{2}} \cdots \eta_{n-1}^{l_{n-1}}$ for some integers $l_{1}, l_{2}, \ldots, l_{n-1}$, then k is a multiple of $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$.
(3) If an integer k is not a multiple of $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$, then $\delta^{k} \neq 1$. Moreover δ^{k} cannot be expressed by $\eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$.
(4) Let $\langle\delta\rangle$ and $\left\langle\eta_{1}, \eta_{2}, \ldots, \eta_{n-1}\right\rangle$ denote the subgroups of $G L(n, \mathbb{C})$ generated by δ and $\eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$ respectively. If the order of δ is $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$, then $\langle\delta\rangle \cap\left\langle\eta_{1}, \eta_{2}, \ldots, \eta_{n-1}\right\rangle=\{1\}$.

Proof. We show this for $n=3$ (the proof is the same for any n).
(1): The automorphism $\eta_{1}^{k_{1}} \eta_{2}^{k_{2}}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ is given by $\left(X_{1}, X_{2}, X_{3}\right) \mapsto\left(e^{2 \pi \mathrm{i} k_{1} / d} X_{1}, e^{2 \pi \mathrm{i} k_{2} / d} X_{2}, e^{-2 \pi \mathrm{i}\left(k_{1}+k_{2}\right) / d} X_{n}\right)$. If $\eta_{1}^{k_{1}} \eta_{2}^{k_{2}}=1$, then $e^{2 \pi \mathrm{i} k_{1} / d}=1, e^{2 \pi \mathrm{i} k_{2} / d}=1, e^{-2 \pi \mathrm{i}\left(k_{1}+k_{2}\right) / d}=1$. Accordingly $\eta_{1}^{k_{1}}=1$ and $\eta_{2}^{k_{2}}=1$ hold.
(2): Suppose that $\delta^{k}=\eta_{1}^{l_{1}} \eta_{2}^{l_{2}}$. Here since $\delta \in \widetilde{\Gamma}$ is a lift of $\gamma \in \underset{\widetilde{\Gamma}}{\Gamma}, \delta^{k} \in \widetilde{\Gamma}$ is a lift of $\gamma^{k} \in \Gamma$ and since $\eta_{1}, \eta_{2} \in \widetilde{\Gamma}$ are lifts of $1 \in \Gamma, \eta_{1}^{l_{1}} \eta_{2}^{l_{2}} \in \widetilde{\Gamma}$ is a lift of $1 \in \Gamma$. The relation $\delta^{k}=\eta_{1}^{l_{1}} \eta_{2}^{l_{2}}$ thus implies that δ^{k} is a lift of both γ^{k}
and 1 , so $\gamma^{k}=1$. Since the order of γ is $m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c$, this implies that k is a multiple of $m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c$.
(3): Since the order of δ is a multiple of $m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c$ (Lemma 7.4 (2)), if an integer k is not a multiple of $m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c$, then $\delta^{k} \neq 1$. The rest is a restatement of (2).
(4): This can be shown by contradiction. If $\langle\delta\rangle \cap\left\langle\eta_{1}, \eta_{2}\right\rangle \neq\{1\}$, then there exist elements $\delta^{k} \neq 1$ of $\langle\delta\rangle$ and $\eta_{1}^{l_{1}} \eta_{2}^{l_{2}} \neq 1$ of $\left\langle\eta_{1}, \eta_{2}\right\rangle$ such that $\delta^{k}=\eta_{1}^{l_{1}} \eta_{2}^{l_{2}}$. Then (2) implies that k is a multiple of $m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c$. But $\delta^{m} m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c=1$ by assumption, accordingly $\delta^{k}=1$. This contradicts that $\delta^{k} \neq 1$.

By (4) of Lemma 7.4, the order of δ is $l m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$ for some positive integer $l(1 \leq l \leq N)$, where $N=\frac{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n}^{\prime}\right) c d}{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}$. The following holds:

Corollary 7.6.

(1) If the order of δ is $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime}$ c, then the relation in Lemma 7.3 is vacuous, that is, $\delta^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c}=\eta_{1}^{a_{1} m_{2}^{\prime} m_{3}^{\prime} \cdots m_{n}^{\prime}}=\cdots=$ $\eta_{n-1}^{a_{n-1} m_{1}^{\prime} \cdots m_{n-2}^{\prime} m_{n}^{\prime}}=1$.
(2) If the order of δ is $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$, then $\widetilde{\Gamma}$ is isomorphic to the product of cyclic groups $\langle\delta\rangle \times\left\langle\eta_{1}\right\rangle \times\left\langle\eta_{2}\right\rangle \times \cdots \times\left\langle\eta_{n-1}\right\rangle$, where $\langle\delta\rangle$ and $\left\langle\eta_{i}\right\rangle$ denote the cyclic groups generated by δ and η_{i} respectively.

Proof. We show this for $n=3$ (the proof is the same for other cases).
(1): If the order of δ is $m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c$, then $\delta^{m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c}=1$, so $\eta_{1}^{a_{1} m_{2}^{\prime} m_{3}^{\prime}} \eta_{2}^{a_{2} m_{1}^{\prime} m_{3}^{\prime}}=1$ by Lemma 7.3. Consequently $\eta_{1}^{a_{1} m_{2}^{\prime} m_{3}^{\prime}}=\eta_{2}^{a_{2} m_{1}^{\prime} m_{3}^{\prime}}=1$ by Lemma 7.5 (1), confirming the assertion.
(2): By Lemma 7.5 (4), if the order of δ is $m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime} c$, then $\langle\delta\rangle \cap\left\langle\eta_{1}, \eta_{2}\right\rangle=$ $\{1\}$. Since $\widetilde{\Gamma}$ is generated by $\delta, \eta_{1}, \eta_{2}$ (Corollary 7.2), we obtain $\widetilde{\Gamma} \cong\langle\delta\rangle \times$ $\left\langle\eta_{1}, \eta_{2}\right\rangle$. Here $\left\langle\eta_{1}, \eta_{2}\right\rangle=\left\langle\eta_{1}\right\rangle \times\left\langle\eta_{2}\right\rangle$ because there is no nontrivial relation between η_{1} and η_{2} (Lemma $\left.7.5(1)\right)$. Hence $\widetilde{\Gamma} \cong\langle\delta\rangle \times\left\langle\eta_{1}\right\rangle \times\left\langle\eta_{2}\right\rangle$, confirming the assertion.

Remark 7.7. If the order of δ is greater than $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c$, then $\widetilde{\Gamma}$ is not isomorphic to $\langle\delta\rangle \times\left\langle\eta_{1}\right\rangle \times\left\langle\eta_{2}\right\rangle \times \cdots \times\left\langle\eta_{n-1}\right\rangle$, because there is a nontrivial relation among $\delta, \eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$ (Lemma 7.3).

7.3. Generators of H and relations among them

Recall that (see Lemma 4.8 (3))

$$
H=\left\{h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}, j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\right\}
$$

where $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is an automorphism given by

$$
\left(u_{1}, \ldots, u_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i}\left(j a_{1}+m_{1} p_{1}\right) / c d} u_{1}, \ldots, e^{2 \pi \mathrm{i}\left(j a_{n}+m_{n} p_{n}\right) / c d} u_{n}\right)
$$

Recall that $\widetilde{\Gamma}$ is generated by $\delta, \eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$ (Corollary 7.2), where

$$
\begin{aligned}
\delta: & \left(X_{1}, X_{2}, \ldots, X_{n}\right) \\
& \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / m_{1} d} X_{1}, e^{2 \pi \mathrm{i} a_{2} / m_{2} d} X_{2}, \ldots, e^{2 \pi \mathrm{i}\left(a_{n}+m_{n} \kappa\right) / m_{n} d} X_{n}\right) \\
\eta_{i}: & \left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, X_{i-1}, e^{2 \pi \mathrm{i} / d} X_{i}, X_{i+1}, \ldots, e^{-2 \pi \mathrm{i} / d} X_{n}\right)
\end{aligned}
$$

Let $\alpha, \beta_{i}(i=1,2, \ldots, n-1)$ be automorphisms of \mathbb{C}^{n} given by

$$
\begin{aligned}
& \alpha:\left(u_{1}, u_{2}, \ldots, u_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / c d} u_{1}, e^{2 \pi \mathrm{i} a_{2} / c d} u_{2}, \ldots, e^{2 \pi \mathrm{i}\left(a_{n}+m_{n} \kappa\right) / c d} u_{n}\right) \\
& \beta_{i}:\left(u_{1}, u_{2}, \ldots, u_{n}\right) \longmapsto\left(u_{1}, \ldots, u_{i-1}, e^{2 \pi \mathrm{i} m_{i}^{\prime} / d} u_{i}, u_{i+1}, \ldots, e^{-2 \pi \mathrm{i} m_{n}^{\prime} / d} u_{n}\right) .
\end{aligned}
$$

They are respectively the descents of $\delta, \eta_{i} \in \widetilde{\Gamma}$ (with respect to the covering $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$), hence $\alpha, \beta_{i} \in H$.

Lemma 7.8. Any element of H is expressed by $\alpha, \beta_{1}, \beta_{2}, \ldots, \beta_{n-1}$. In fact, $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in H$ is expressed as $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}=\alpha^{j} \beta_{1}^{p_{1}} \beta_{2}^{p_{2}} \cdots \beta_{n-1}^{p_{n}-1}$.

Proof. Since $\alpha, \beta_{i} \in H$ are the descents of $\delta, \eta_{i} \in \widetilde{\Gamma}$ respectively, $\alpha^{j} \beta_{1}^{p_{1}} \beta_{2}^{p_{2}} \cdots \beta_{n-1}^{p_{n-1}} \in H$ is the descent of $\delta^{j} \eta_{1}^{p_{1}} \eta_{2}^{p_{2}} \cdots \eta_{n-1}^{p_{n-1}} \in \widetilde{\Gamma}$. On the other hand, $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in H$ is the descent of $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in \widetilde{\Gamma}$ (Lemma 4.8 (1)). The relation $\widetilde{\gamma}_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}=\delta^{j} \eta_{1}^{p_{1}} \eta_{2}^{p_{2}} \cdots \eta_{n-1}^{p_{n-1}}$ (in Lemma 7.1) then implies $h_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}=\alpha^{j} \beta_{1}^{p_{1}} \beta_{2}^{p_{2}} \cdots \beta_{n-1}^{p_{n-1}}$.

Lemma 7.8 implies that H is generated by $\alpha, \beta_{1}, \beta_{2}, \ldots, \beta_{n-1}$. Here α and β_{i} are expressed by the following diagonal matrices:
$S=\operatorname{diag}\left(e^{2 \pi \mathrm{i} a_{1} / c d}, e^{2 \pi \mathrm{i} a_{2} / c d}, \ldots, e^{2 \pi \mathrm{i} a_{n-1} / m_{n-1} d}, e^{2 \pi \mathrm{i}\left(a_{n}+m_{n} \kappa\right) / c d}\right)$ and
$T_{i}=\operatorname{diag}\left(1, \ldots, 1, e^{2 \pi \mathrm{i} m_{i}^{\prime} / d}, 1, \ldots, 1, e^{-2 \pi \mathrm{i} m_{n}^{\prime} / d}\right)$, where $e^{2 \pi \mathrm{i} m_{i}^{\prime} / d}$ lies in the i th place. Thus:

Corollary 7.9. H is generated by $\alpha, \beta_{1}, \beta_{2}, \ldots, \beta_{n-1}$, or as a subgroup of $G L(n, \mathbb{C})$, generated by the matrices $S, T_{1}, T_{2}, \ldots, T_{n-1}$.

Here $\alpha, \beta_{1}, \beta_{2}, \ldots, \beta_{n-1}$ are actually not independent. In fact, there are relations among them:

Lemma 7.10. The generators $\alpha, \beta_{1}, \beta_{2}, \ldots, \beta_{n-1}$ of H satisfy the following relations:
(a) $\alpha^{m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n-1}^{\prime} c}=\beta_{1}^{a_{1} m_{2}^{\prime} m_{3}^{\prime} \cdots m_{n-1}^{\prime}} \beta_{2}^{a_{2} m_{1}^{\prime} m_{3}^{\prime} \cdots m_{n-1}^{\prime}} \cdots \beta_{n-1}^{a_{n-1} m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n-2}^{\prime}}$.
(b) For $i=1,2, \ldots, n-1$,

$$
\begin{gathered}
\alpha^{m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime} c}=\beta_{1}^{a_{1} m_{2}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}} \cdots \beta_{i}^{\left(a_{i} m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}-d\right) / m_{i}^{\prime}} \cdots \\
\cdots \beta_{n-1}^{a_{n-1} m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n-2}^{\prime} m_{n}^{\prime}},
\end{gathered}
$$

where note that $\left(a_{i} m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}-d\right) / m_{i}^{\prime}$ is an integer.
REMARK 7.11. The existence of nontrivial relations among $\alpha, \beta_{1}, \beta_{2}$, \ldots, β_{n-1} implies that $H=\left\langle\alpha, \beta_{1}, \beta_{2}, \ldots, \beta_{n-1}\right\rangle$ is not isomorphic to the product of cyclic groups $\langle\alpha\rangle \times\left\langle\beta_{1}\right\rangle \times\left\langle\beta_{2}\right\rangle \times \cdots \times\left\langle\beta_{n-1}\right\rangle$.

7.4. Generators of G and relations among them

Recall that (see Lemma 6.1 (C))

$$
G=\left\{g_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}:\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Lambda^{(j)}, j=1,2, \ldots, m_{1}^{\prime} m_{2}^{\prime} \cdots m_{n}^{\prime} c\right\}
$$

where $g_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is an automorphism given by

$$
\left(v_{1}, \ldots, v_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i} l_{1}\left(j a_{1}+m_{1} p_{1}\right) / c d} v_{1}, \ldots, e^{2 \pi \mathrm{i} l_{n}\left(j a_{n}+m_{n} p_{n}\right) / c d} v_{n}\right)
$$

Recall that H is generated by $\alpha, \beta_{1}, \beta_{2}, \ldots, \beta_{n-1}$ (Corollary 7.9), where

$$
\begin{aligned}
& \alpha:\left(u_{1}, u_{2}, \ldots, u_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / c d} u_{1}, e^{2 \pi \mathrm{i} a_{2} / c d} u_{2}, \ldots, e^{2 \pi \mathrm{i}\left(a_{n}+m_{n} \kappa\right) / c d} u_{n}\right), \\
& \beta_{i}:\left(u_{1}, u_{2}, \ldots, u_{n}\right) \longmapsto\left(u_{1}, \ldots, u_{i-1}, e^{2 \pi \mathrm{i} m_{i}^{\prime} / d} u_{i}, u_{i+1}, \ldots, e^{-2 \pi \mathrm{i} m_{n}^{\prime} / d} u_{n}\right) .
\end{aligned}
$$

Let $f, g_{i}(i=1,2, \ldots, n-1)$ be automorphisms of \mathbb{C}^{n} given by $f:\left(v_{1}, v_{2}, \ldots, v_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i} l_{1} a_{1} / c d} v_{1}, e^{2 \pi \mathrm{i} l_{2} a_{2} / c d} v_{2}, \ldots, e^{2 \pi \mathrm{i} l_{n}\left(a_{n}+m_{n} \kappa\right) / c d} v_{n}\right)$, $g_{i}:\left(v_{1}, v_{2}, \ldots, v_{n}\right) \longmapsto\left(v_{1}, \ldots, v_{i-1}, e^{2 \pi \mathrm{i} l_{i} m_{i}^{\prime} / d} v_{i}, v_{i+1}, \ldots, e^{-2 \pi \mathrm{i} \mathrm{l}_{n} m_{n}^{\prime} / d} v_{n}\right)$.

They are respectively the descents of $\alpha, \beta_{i} \in H$ (with respect to the covering $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$), hence $f, g_{i} \in G$. As for Lemma 7.8, we can show the following:

Lemma 7.12. Any element of G is expressed by $f, g_{1}, g_{2}, \ldots, g_{n-1}$. In fact, $g_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)} \in G$ is expressed as $g_{p_{1}, p_{2}, \ldots, p_{n}}^{(j)}=f^{j} g_{1}^{p_{1}} g_{2}^{p_{2}} \cdots g_{n-1}^{p_{n-1}}$.

Lemma 7.12 implies that:
Corollary 7.13. G is generated by $f, g_{1}, g_{2}, \ldots, g_{n-1}$, where f and g_{i} are expressed by the diagonal matrices
$Q=\operatorname{diag}\left(e^{2 \pi \mathrm{i} l_{1} a_{1} / c d}, e^{2 \pi \mathrm{i} l_{2} a_{2} / c d}, \ldots, e^{2 \pi \mathrm{i} l_{n-1} a_{n-1} / c d}, e^{2 \pi \mathrm{i} l_{n}\left(a_{n}+m_{n} \kappa\right) / c d}\right)$ and $R_{i}=\operatorname{diag}\left(1, \ldots, 1, e^{2 \pi \mathrm{i} l_{i} m_{i}^{\prime} / d}, 1, \ldots, 1, e^{-2 \pi \mathrm{i} l_{n} m_{n}^{\prime} / d}\right)$, where $e^{2 \pi \mathrm{i} l_{i} m_{i}^{\prime} / d}$ lies in the ith place.

Here $f, g_{1}, g_{2}, \ldots, g_{n-1}$ are actually not independent. In fact, there are relations among them:

Lemma 7.14. The generators $f, g_{1}, g_{2}, \ldots, g_{n-1}$ of G satisfy the following ralations:
(a) $f^{\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n-1}^{\prime}\right) c}=g_{1}^{a_{1} \operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n-1}^{\prime}\right) / m_{1}^{\prime}} \ldots$

$$
g_{n-1}^{a_{n-1} \operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n-1}^{\prime}\right) / m_{n-1}^{\prime}}
$$

where note that $a_{k} \operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n-1}^{\prime}\right) / m_{k}^{\prime}(k=1,2, \ldots, n-1)$ is an integer (because m_{k}^{\prime} divides $\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n-1}^{\prime}\right)$).
(b) For $i=1,2, \ldots, n-1$,

$$
\begin{aligned}
& f^{\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) c} \\
& \quad=g_{1}^{a_{1} \operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) / m_{1}^{\prime}} \cdots g_{i}^{\left(a_{i} m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}-d\right) / l_{i} m_{i}^{\prime}} \cdots \\
& \quad \cdots g_{n-1}^{a_{n-1} \operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) / m_{n-1}^{\prime}},
\end{aligned}
$$

where note that $\left(a_{i} m_{1}^{\prime} \cdots \check{m}_{i}^{\prime} \cdots m_{n}^{\prime}-d\right) / l_{i} m_{i}^{\prime}$ is an integer and for $k=$ $1,2, \ldots, \check{i}, \ldots, n, a_{k} \operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) / m_{k}^{\prime}$ is an integer (because m_{k}^{\prime} divides $\left.\operatorname{lcm}\left(m_{1}^{\prime}, \ldots, \check{m}_{i}^{\prime}, \ldots, m_{n}^{\prime}\right)\right)$.

REMARK 7.15. The existence of nontrivial relations among f, g_{1}, g_{2}, \ldots, g_{n-1} implies that $G=\left\langle f, g_{1}, g_{2}, \ldots, g_{n-1}\right\rangle$ is not isomorphic to the product of cyclic groups $\langle f\rangle \times\left\langle g_{1}\right\rangle \times\left\langle g_{2}\right\rangle \times \cdots \times\left\langle g_{n-1}\right\rangle$.

CASE $n=2$. Let $a_{1}^{*}\left(0<a_{1}^{*}<m_{1}\right)$ be the integer such that $a_{1} a_{1}^{*} \equiv$ $1 \bmod m_{1}$. If $n=2$, then G is a cyclic group generated by $g:\left(u_{1}, u_{2}\right) \mapsto$ $\left(e^{2 \pi \mathrm{i} / c d} u_{1}, e^{2 \pi \mathrm{iq} / c d} u_{2}\right)$, where $\mathrm{q}(0<\mathrm{q}<c d)$ is the integer such that $\mathrm{q} \equiv$ $\frac{a_{1}^{*} d-m_{2}^{\prime}}{m_{1}^{\prime}} \bmod c d$ (Theorem 2.1). Note that $\frac{a_{1}^{*} d-m_{2}^{\prime}}{m_{1}^{\prime}}$ is an integer (cf. Lemma 2.3 (1)). Here the automorphism g is expressed by the matrix $P:=\left(\begin{array}{cc}e^{2 \pi \mathrm{i} / c d} & 0 \\ 0 & e^{2 \pi \mathrm{iq} / c d}\end{array}\right)$, and as a subgroup of $G L(2, \mathbb{C}), G$ is generated by P. On the other hand by Corollary $7.13, G$ is generated by two matrices $Q=\left(\begin{array}{cc}e^{2 \pi \mathrm{i} a / c d} \\ 0 & e^{2 \pi \mathrm{i}(b+n \kappa) / c d}\end{array}\right)$ and $R_{1}=\left(\begin{array}{cc}e^{2 \pi \mathrm{i} m^{\prime} / d} \\ 0 & e^{-2 \pi \mathrm{i} n^{\prime} / d}\end{array}\right)$. Note that $l_{1}=l_{2}=1$, thus $G=H, f=\alpha, g_{1}=\beta_{1}$. We describe the relations among P and Q, R_{1}.

For simplicity, write $m_{1}, m_{2}, a_{1}, a_{2}, a_{1}^{*}, \beta_{1}, R_{1}$ as $m, n, a, b, a^{*}, \beta, R$, and set $c:=\operatorname{gcd}(m, n), m^{\prime}:=\frac{m}{c}, n^{\prime}:=\frac{n}{c}$ and $d:=a n^{\prime}+b m^{\prime}+m^{\prime} n^{\prime} c \kappa$.

Proposition 7.16. The matrices $P, Q, R \in G L(2, \mathbb{C})$ expressing the automorphisms g, α, β are related as follows:
(1) $P^{a}=Q, P^{m}=R$.
(2) Noting that $\frac{1-a a^{*}}{m}$ is an integer (because $a a^{*} \equiv 1 \bmod m$), let l $(0<l<c d)$ be the integer such that $l \equiv \frac{1-a a^{*}}{m} \bmod c d$. Then $Q^{a^{*}} R^{l}=P$.

Proof. (1): We first show $P^{a}=Q$. Since $a \mathbf{q} \equiv \frac{a\left(a^{*} d-n^{\prime}\right)}{m^{\prime}} \equiv$ $\frac{d-a n^{\prime}}{m^{\prime}} \equiv b+n \kappa \bmod c d$,

$$
P^{a}=\left(\begin{array}{cc}
e^{2 \pi \mathrm{i} a / c d} & 0 \\
0 & e^{2 \pi \mathrm{i} a \mathrm{q} / c d}
\end{array}\right)=\left(\begin{array}{cc}
e^{2 \pi \mathrm{i} a / c d} & 0 \\
0 & e^{2 \pi \mathrm{i}(b+n \kappa) / c d}
\end{array}\right)=Q
$$

We next show $P^{m}=R$. Since $m \mathbf{q} \equiv \frac{m\left(a^{*} d-n^{\prime}\right)}{m^{\prime}} \equiv a^{*} c d-c n^{\prime} \equiv-c n^{\prime} \bmod$ $c d$,

$$
P^{m}=\left(\begin{array}{cc}
e^{2 \pi \mathrm{i} m / c d} & 0 \\
0 & e^{2 \pi \mathrm{i} m \mathrm{q} / c d}
\end{array}\right)=\left(\begin{array}{cc}
e^{2 \pi \mathrm{i} m^{\prime} / d} & 0 \\
0 & e^{-2 \pi \mathrm{in}^{\prime} / d}
\end{array}\right)=R .
$$

(2): We first show $P^{a a^{*}+m l}=P$. Since $l \equiv \frac{1-a a^{*}}{m} \bmod c d$ and $a a^{*}+$ $m \frac{1-a a^{*}}{m}=1$, we have $a a^{*}+m l \equiv 1 \bmod c d$. Hence

$$
e^{2 \pi \mathrm{i}\left(a a^{*}+m l\right) / c d}=e^{2 \pi \mathrm{i} / c d}, \quad e^{2 \pi \mathrm{i}\left(a a^{*}+m l\right) \mathrm{q} / c d}=e^{2 \pi \mathrm{i} \mathbf{q} / c d}
$$

Accordingly, $P^{a a^{*}+m l}=P$. Then $\left(P^{a}\right)^{a^{*}}\left(P^{m}\right)^{l}=P$. Here since $P^{a}=Q$ and $P^{m}=R$ hold by (1), $Q^{a^{*}} R^{l}=P$. The assertion is thus confirmed.

Corollary 7.17. The automorphisms $g, \alpha, \beta: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ are related as follows:
(1) $g^{a}=\alpha, g^{m}=\beta$.
(2) Noting that $\frac{1-a a^{*}}{m}$ is an integer (because $a a^{*} \equiv 1 \bmod m$), let l $(0<l<c d)$ be the integer such that $l \equiv \frac{1-a a^{*}}{m} \bmod c d$. Then $\alpha^{a^{*}} \beta^{l}=g$.

References

[Ash] Ashikaga, T., Toric modification of cyclic orbifolds and extened Zagier reciprocity for Dedekind sums, Preprint (2012).
[AsIs] Ashikaga, T. and M. Ishizaka, A geometric proof of the reciprocity law of Dedekind sum, Preprint (2009).
[AGV] Arnold, V. I., Gusein-Zade, S. M. and A. N. Varchenko, Singularities of differentiable maps, II, Birkhäuser (1988).
[MaMo] Matsumoto, Y. and J. M. Montesinos-Amilibia, Pseudo-periodic maps and degeneration of Riemann surfaces, Springer Lecture Notes in Math. 2030 (2011).
[SaTa] Sasaki, K. and S. Takamura, Singularities and higher-dimensional fractional Dehn twists, in preparation.
[Tak] Takamura, S., Towards the classification of atoms of degenerations, II, (Linearization of degenerations of complex curves), RIMS Preprint 1344 (2001).

Department of Mathematics
Graduate School of Science
Kyoto University
Oiwakecho, Kitashirakawa, Sakyo-ku Kyoto 606-8502, JAPAN
E-mail: kjr-ssk@math.kyoto-u.ac.jp takamura@math.kyoto-u.ac.jp

