
J. Math. Sci. Univ. Tokyo
23 (2016), 615–658.

Harmonic Analysis on the Positive Rationals II:

Multiplicative Functions and Maass Forms

By Peter D. T. A. Elliott and Jonathan Kish

In celebration of the seventieth birthday of Yoichi Motohashi

Abstract. Estimates are given, via harmonic analysis on the pos-
itive rationals, for the value distribution of Fourier coefficients of au-
tomorphic cusp forms.

1. Introduction

Ramanujan’s arithmetic τ -function is defined by

∞∑
n=1

τ(n)xn = x

∞∏
j=1

(1 − xj)24, |x| < 1.

Thirty years ago the first author conjectured that it satisfied the Central

Limit condition

x−1
∑

1
n≤x

|τ(n)|≤n11/2(log x)−1/2 exp(zc(log log x)1/2)

→ 1√
2π

∫ z

−∞
e−u2/2 du, x→ ∞.

This is the weak convergence of measures on the real line and, in view of

the continuity of the limiting distribution, would be uniform in real z. An

appropriate value for the positive constant c would be
(
π2/12 + 1/2

)1/2
, c.f.

Elliott [6], [10], [9], [11].

Implicit in this conjecture is the conjecture of Lehmer [22], that τ never

vanishes, for otherwise the multiplicativity of τ would force the limiting

measure to have an atom at z = 0.
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The first author proved recently that if

∞∑
n=1

ane
2πinz, a1 = 1, Im (z) > 0,

is an elliptic holomorphic new form of weight k ≥ 2, level N and nebentypus

ψ : (Z/NZ)∗ → C∗, then for each real z

(αx)−1
∑

|an|2n−(k−1)

n≤x
|an|≤n(k−1)/2 exp(A(x)+zB(x))

→ 1√
2π

∫ z

−∞
e−u2/2 du, x→ ∞,

where

A(x) =
∑
p≤x

|ap|2p−k log
(
|ap|p−(k−1)/2

)
,

B(x) =


∑

p≤x

|ap|2p−k
(
log
(
|ap|p−(k−1)/2

))2




1/2

≥ 0,

the sums taken over primes for which ap �= 0, and

α = lim
x→∞

x−1
∑
n≤x

|an|2n−(k−1),

c.f. [11].

For those forms that do not possess complex multiplication in the sense

of Ribet [23], i.e. whose coefficients ap do not vanish identically on the

inertial primes of an imaginary quadratic extension of the rationals, which

includes the form with k = 12, N = 1, corresponding to Ramanujan’s

function, the version of the Sato-Tate conjecture established by Barnet-

Lamb, Geraghty, Harris and Taylor [1], ensures that we may replace B(x)

by
(
(π2/12 + 5/8) log log x

)1/2
and estimate A(x) to be (1/4 + o(1)) log log x

as x→ ∞.

The basic result remains valid whether or not the cusp form under con-

sideration has complex multiplication.

If we identify the above cusp forms with functions in the Hilbert space

L2(Γ0(N)\SL(2,R)) with respect to the appropriate Haar measure, c.f.
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Gelbart [12], then the introduction of the weights |an|2n−(k−1) appears nat-

ural and subdues the effect of vanishing coefficients. In order to remove the

weights in favour of 1, the vanishing of the an has to be met, since it directly

affects the formulation of appropriate limit laws.

Appealing to an �-adic representation of Deligne, and the Chebotarev

density theorem, Serre [24], 1981, showed that for each member of this same

class of holomorphic cusp forms, once again without complex multiplication,

there is a positive constant b so that amongst the coefficients ap, 2 ≤ p ≤ x,
at most O

(
x(log x)−1−b

)
vanish. As a consequence the density

ρ = lim
x→∞

x−1
∑
n≤x
an �=0

1

exists and is positive.

This may be applied to the forms of weight 2 that correspond to elliptic

curves, the existence of which was conjectured by Taniyama and Shimura,

and established by Wiles [28], Taylor and Wiles [26], Breuil, Conrad, Dia-

mond, Taylor [2]. By a result of Elkies [4], in these cases ρ is always less

than 1.

Otherwise for each form with complex multiplication there is a positive

constant A and an asymptotic estimate∑
n≤x
an �=0

1 ∼ Ax(log x)−1/2, x→ ∞,

Serre, loc. cit.

To obviate appeal to an hypothesis of Lehmer type, a natural analogue,

for elliptic holomorphic new forms without complex multiplication, of the

conjecture concerning Ramanujan’s function would be that

(ρx)−1
∑

1
n≤x

0<|an|n−(k−1)/2≤(log x)−1/2 exp(zδ(log log x)1/2)

→ 1√
2π

∫ z

−∞
e−u2/2 du, x→ ∞,

where ρ is the density of nonvanishing of the coefficients, δ2 = π2/12 + 1/2.

An improvement of the Sato-Tate asymptotic estimate of Barnet-Lamb,

Geraghty, Harris and Taylor loc. cit., to within an error of o
(
x(log x)−3

)
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for primes in the interval 2 ≤ p ≤ x, would suffice to establish the general

conjecture.

For forms with complex multiplication the corresponding frequency to

consider would be(
Ax(log x)−1/2

)−1∑
1

n≤x
0<|an|n−(k−1)/2≤(log x)−1/2 exp(zλ(log log x)1/2)

with λ2 = π2/24, the desired result being in principle already within reach.

A somewhat more elaborate discussion of these matters, together with

examples, may be found in Elliott [11].

Given a positive integer D, introduction of Dirichlet characters would

allow the method of Serre to be extended to the consideration of coefficients

of a form on an arithmetic progression (modD). Less clear is how uniform

the various estimates might be in D.

From the viewpoint of functional analysis or, more widely, of group

representations, it is natural to expect analogues of the above results for

the coefficients of other automorphic cusp forms that are eigenfunctions of

the appropriate Hecke operators, in particular for the coefficients of Maass

wave forms.

Let

f =
∑
n�=0

an(2πy)1/2Ks(2π|n|y)e2πinx

be a nonzero Maass cusp form, attached to the action of SL(2,Z) on the

complex upper half-plane, that is an eigenfunction of the appropriate Hecke

operators and renormalised so that an is a multiplicative function of n. An

analogue of the Ramanujan-Petersson conjecture |ap| ≤ 2p(k−1)/2 for holo-

morphic forms, established by Deligne, is unavailable, even less an analogue

of the Sato-Tate conjecture.

In the present paper we address the question of how often the coefficients

of a Maass form vanish on a given arithmetic progression or, when real,

have a particular sign. In order that the argument have the widest possible

application we assume as little as possible of the analytic properties of the

L-functions attached to the forms, this being anyway currently forced upon

us.
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The above example of a Maass form may be realised in terms of an

irreducible component attached to a representation of the group GL2(AQ),

where AF denotes the ring of adèles of the algebraic extension F of the

rationals.

In a series of works from Gelbart and Jacquet [13], Kim and Shahidi

[20], Kim [19], amongst others, serious strides have been made in Langland’s

functoriality program. With specific exceptions characterised in Kim and

Shahidi [21], the second, third and fourth symmetric product L-functions

attached to a normalised nonzero cusp form, derived from a representation

of GL2(AF ) and an eigenfunction of the appropriate Hecke operators, may

be realised as L-functions of a cusp form derived from representations of

GLk(AF ), k = 3, 4, 5, respectively. In particular, they have analytic contin-

uations over the whole complex plane. Moreover, for immediate application

to Analytic Number Theory, adequate control is available over symmetric

product L-functions of order up to 9, c.f. Kim and Shahidi loc. cit.

The Fourier coefficients ap at the infinite cusp of the Maass form f over

Q are real and there is an Euler product representation for the attached

L-function:

∞∑
n=1

ann
−s =

∏
p

(
1 − app

−s + p−2s
)−1

=
∏

p

(
1 − αpp

−s
)−1 (

1 − βpp
−s
)−1

, Re (s) > 1,

where, courtesy of Kim and Shahidi loc. cit., max (|αp|, |βp|) ≤ p1/9. A

direct calculation with Euler products shows that

exp

(∑
p

a4pp
−s + h(s)

)
= L(sym2 × sym2, s)L(sym2, s)2ζ(s),

where

h(s) =
∑

p

∞∑
k=2

k−1
(
αk

p + βk
p

)4
p−ks,

the first L-function is the Rankin-Selberg product of the symmetric square

L-function attached to (the Maass form) f realised, under the Gelbart-

Jacquet lift, as the L-function of a Maass form representing the action of
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SL(3,Z) on the generalised upper half-plane GL(3,R)/ (O(3,R) · Z3) and

so on; c.f. Goldfeld [14].

Since αk + βk is a symmetric function of α, β hence a polynomial in

α+ β, αβ, it is real. The function h(s) is analytic in Re (s) > 17/18 and in

the half-plane Re (s) ≥ 26/27 satisfies the bound

|h(s)| ≤ 8
∑

p

∞∑
k=2

p−k(σ−4/9) ≤ 32ζ(28/27).

The Rankin-Selberg product and the Riemann zeta function each have a

simple pole at s = 1, otherwise the above L-functions are analytic in an

open set that contains the half-plane Re (s) ≥ 1.

Following classical methodology, an application of the Wiener-Ikehara

theorem provides the asymptotic estimate∑
p≤x

a4p log p ∼ 2x, x→ ∞.

A like consideration of the Rankin-Selberg product of the standard L-

function attached to f yields the corresponding∑
p≤x

a2p log p ∼ x, x→ ∞.

For this particular example more is known, but we shall often not need it.

Suffice it, for the moment, that after an application of the Cauchy-Schwarz

inequality we obtain the lower bound∑
p≤x
ap �=0

log p ≥ (1/2 + o(1))x, x→ ∞.

Indeed, we shall often only assume that for positive constants c1 and c2,∑
p≤x
ap �=0

log p ≥ c1x, x ≥ c2;

and that ∑
u<p≤v
ap �=0

p−1 ≥ (1/2)
∑

u<p≤v

p−1 +O(1),
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uniformly in 2 ≤ u ≤ v, each of which, after Heilbronn and Landau [18, 17],

may be deduced from the analyticity and nonvanishing of L(sym2, s) and

and ζ(s)−1L(sym2 × sym2, s), or truncations of them to unramified primes,

in a proper disc |s− 1| < c3.
In general, for the purposes of establishing central limit theorems involv-

ing mean-square coefficients of Maass forms it currently suffices to possess

first analytic properties of appropriate symmetric L-functions of order up

to the sixth.

As will be shown in the present paper, when counting the frequency with

which Maass coefficients on a given residue class do not vanish, or have a

given sign, it suffices to have such properties for orders up to the fourth.

We address these questions, with three paradigmatic theorems and a

detailed example, in section 3. With so little to hand almost all the weight

of argument will be borne by the multiplicativity of an appropriately defined

arithmetic function. Since classical methodology with its appeal to analytic

continuation is unavailable, the argument will operate under a completely

different aesthetic.

Theorem 2, the main result of section 2, establishes an upper bound

for the mean-value of a complex-valued multiplicative function n→ g(n) in

terms of its associated function n→ |g(n)| and the sums

∑
p≤y

p−1
(
|g(p)| − Re (g(p)pit)

)
, t real,

taken over the primes. Classical constraints upon the function g are severely

weakened.

This enables the uniform distribution of the Maass form Fourier coef-

ficients attached to representations of the group GL2(AQ), both in residue

classes and with respect to sign when the coefficients are real, that are es-

tablished in section 3. The coefficients are permitted to vanish not only

on the majority of the integers but, in most cases, on the majority of the

primes.

Moreover, the method permits, in principle, a considerable uniformity in

the moduli involved, with obstructions driven by exceptional representations

of the group.

The arguments apply, mutatis mutandis, to the Fourier coefficients of

holomorphic forms provided they are multiplicative.
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Definition of the adèlic group GL2(AF ) and the derivation of automor-

phic forms from its representations may be found in Gelbart [12].

A detailed study of Maass forms attached to representations of GLk(AQ)

may be found in Goldfeld [14]. Shimura’s analytic continuation of braided

symmetric square L-functions, appraised for application to Maass forms,

and to which we appeal in example 4 of Section 3, may be found in Chapter

7 of that volume, within a treatment of the Gelbart-Jacquet lift.

Symbols for standard number theoretical functions such as the greatest

integer function, [ · ], may be found in Hardy and Wright [16].

To ensure a reasonably self-contained presentation, the account of The-

orem 2 given here occasionally overlaps that of Theorem 1 in the previous

paper, I. The emphasis is, however, quite different.

2. Multiplicative Functions

A systematic study of multiplicative functions with values in the complex

unit disc, initiated by Delange in 1961 [3], received strong impulses from

Wirsing [29], 1967, and Halász [15], 1968. Implicitly the multiplicative

function was largely compared to the function that is identically 1 on the

positive integers.

In the present section we begin in general terms and gradually narrow

the focus towards the problems raised in the previous section. We consider

the mean-value of a multiplicative function that may assume large values

but whose support on the primes may be seriously decreased, rendering it

far from the function 1.

To gain perspective on matters of size the next three results concern

multiplicative functions with values in a real interval, [0, β].

Lemma 19. The estimate

∑
2≤n≤x

g(n) ≤
(
x

log x
+

10x

(log x)2

)
∆
∑
n≤x

g(n)

n

with

∆ = sup
1≤y≤x

y−1
∑
q≤y

g(q) log q,
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the sum over prime-powers q, holds uniformly for all real nonnegative mul-

tiplicative functions g, and all x ≥ 2. Moreover,

1

log x

∑
n≤x

g(n)

n

 exp


∑

q≤x

g(q) − 1

q




with an absolute implied constant. In particular, if g(q) ≤M on the prime-

powers, then

x−1
∑

2≤n≤x

g(n) 
M exp


∑

q≤x

g(q) − 1

q


 .

Proof. A complete proof may be found in [8], Lemma 2.2. �

Lemma 20. Under the conditions of Lemma 19 assume that g(p) ≤ β
uniformly on the primes p and that the series

∑
g(q)q−1, taken over the

prime-powers q = pk with k ≥ 2, converges. Then

1 

∏
p≤x

(
1 + g(p)p−1

)−1∑
n≤x

g(n)n−1 
 1, x ≥ 1.

Lemma 21. Assume, further, that∑
p≤x

g(p) log p ≥ cx

for a positive c and all sufficiently large x. Then

∑
n≤x

g(n) � x exp


∑

p≤x

− (1 − g(p)) p−1


 , x ≥ 1.

Proofs. Lemmas 20 and 21 will be established in two passes, the first

with β = 1.

The upper bound in Lemma 20 follows from the inequality

∑
n≤x

g(n)n−1 ≤
∏
p≤x

(
1 +

∞∑
k=1

g(pk)p−k

)
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and the convergence of the series
∑

p,k≥2 g(p
k)p−k.

Towards the lower bound we may assume that g(p) = 0 if xε < p ≤ x,
0 < ε ≤ 1/2, and define the multiplicative function h by h(p) = 1 − g(p),
h(pk) = 0, k ≥ 2. On squarefree integers the Dirichlet convolution h ∗ g
assumes the value 1. Restricting summation to squarefree integers,

6

π2
x+O(x1/2) =

∑
ab≤x

h(a)g(b)

≤
∑
a≤xε

h(a)
∑

b≤x/a

g(b) +
∑

b≤x1−ε

g(b)
∑

a≤x/b

h(a)

= Σ1 + Σ2.

By Lemma 19,

∑
b≤x/a

g(b) 
 xa−1 exp


−

∑
p≤x/a

h(p)p−1


 ,

from which

Σ1 
 x
∑
a≤xε

h(a)a−1 exp


−

∑
p≤xε

h(p)p−1 −
∑

xε<p≤x1−ε

p−1



 εx,

since (xε, x1−ε] is contained in (xε, x/a].

With ε fixed at a suitably small value, independent of g,

x
 Σ2 
 x
∑

b≤x1−ε

g(b)b−1 exp


−

∑
p≤x/b

g(p)p−1





 exp


−

∑
p≤xε

g(p)p−1


x∑

b≤x

g(b)b−1.

The sum
∑

xε<p≤x p
−1 is bounded in terms of ε alone and the desired result

follows readily.

Under the further assumption of Lemma 21, once again restricting to
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squarefree integers, for x sufficiently large∑
n≤x

g(n) log n =
∑
n≤x

g(n)
∑
p|n

log p

≥
∑

m≤x1/2

g(m)


 ∑

p≤x/m

g(p) log p− logm




� x
∑

m≤x1/2

g(m)m−1 � x
∏

p≤x1/2

(
1 + g(p)p−1

)
.

Moreover, the factor logn does not exceed log x which, in turn, lies between

constant multiples of exp
(∑

p≤x p
−1
)
.

For the second pass we assume that β > 1. Lemma 19 again supplies an

upper bound, which it is convenient to express in the form

∑
n≤x

g(n) 
 x(log x)β−1 exp


−

∑
p≤x

(β − g(p))p−1


 , x ≥ 2.

We may then follow the argument for the case β = 1, modifying the

function h to satisfy h(p) = β − g(p) so that on squarefree integers (h ∗
g)(n) = βω(n), where ω(n) denotes the number of distinct primes divisors

of n.

The bound ∑
n≤x

µ(n)2βω(n) � x(log x)β−1,

sufficient to complete the proof of the general version of Lemma 20, may

be derived from the case β = 1 of Lemma 21 via the Dirichlet convolution

representation

µ2βω = µ2 ∗ µ2 ∗ · · · ∗ µ2 ∗ (β − r)ωµ2 ∗ t,

where the r convolutions of the characteristic function of the squarefree

integers are chosen so that 0 < β − r ≤ 1 and the function t, given by

∞∑
n=1

t(n)n−s = exp


∑

p

∑
k≥2

(
r + (β − r)(−1)k+1

)(
kpks

)−1


 ,
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assumes nonnegative values.

In particular,∑
n≤x

µ(n)2βω(n) ≥
∑

vj≤x1/(2r)

j=1,...,r

µ(v1)
2 · · ·µ(vr)

2
∑

n≤x(v1···vr)−1

µ(n)2(β − r)ω(n)

� x(log x)β−r−1


 ∑

v≤x1/(2r)

µ(v)2v−1




r

� x(log x)β−1,

the last step by the first-pass version of Lemma 20.

This completes the proof of the general Lemma 20; which result may be

employed to complete the proof of the general Lemma 21. �

Introducing Dirichlet characters χ (modD), we consider a typical inner-

sum in the representation∑
n≤x

n≡a (mod D)

g(n) = ϕ(D)−1
∑

χ (mod D)

χ(a)
∑
n≤x

g(n)χ(n), (a,D) = 1.

Under the conditions of Lemma 21, the innersum corresponding to the prin-

cipal character (modD) lies between multiples of

x(log x)−1
∏
p≤x

(p,D)=1

(
1 + g(p)p−1

)
,

comparable to the sum
∑

n≤x g(n) itself.

Provided D does not exceed a certain power of x, depending upon the

value of c in the hypotheses of Lemma 21, this lower bound remains valid

uniformly in D.

If g is a multiplicative function with values in the complex unit disc and

otherwise unconstrained, then the method of Halász delivers an estimate

x−1
∑
n≤x

g(n) 
 me−m + T−1/2, x ≥ 2, T ≥ 2,

where

m = min
|t|≤T

∑
p≤x

(
1 − Re g(p)pit

)
p−1,
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c.f. Tenenbaum [27], III.4 Corollary 6.3, in particular exercise 6 of the same

chapter; see, also, [5], Chapter 6. The leading term in the upper bound may

be effectively rearranged as

(log x)−1
∏
p≤x

(
1 + |g(p)|p−1

)
me−ρ

with

ρ = min
|t|≤T

∑
p≤x

(
|g(p)| − Re g(p)pit

)
p−1.

Supposing that
∑

p≤x |g(p)| log p ∼ cx, 0 < c < 1, x→ ∞, it is feasible that

ρ becomes unbounded with x but remains O
(
(log log log x)1/2

)
in size; an

example is constructed following the proof of Theorem 2. The saving by the

factor e−ρ is then vitiated by the factor m of size (1 − c+ o(1)) log log x.

The following result addresses this phenomenon.

Theorem 2. Let 3/2 ≤ Y ≤ x. Let g be a multiplicative function that

for positive constants β, c, c1 satisfies |g(p)| ≤ β,
∑

w<p≤x

(|g(p)| − c) p−1 ≥ −c1, Y ≤ w ≤ x,

on the primes. Suppose, further, that the series∑
q

|g(q)|q−1(log q)γ , γ = 1 + cβ(c+ β)−1,

taken over the prime-powers q = pk with k ≥ 2, converges.

Then with

λ = min
|t|≤T

∑
Y <p≤x

(
|g(p)| − Re g(p)pit

)
p−1,

∑
n≤x

g(n) 
 x(log x)−1
∏
p≤x

(
1 + |g(p)|p−1

) (
exp

(
−λc(c+ β)−1

)
+ T−1/2

)

uniformly for Y , x, T > 0, the implied constant depending at most upon

β, c, c1 and a bound for the sum of the series over higher prime-powers.
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Remark. Since the partial sums
∑

p≤x

(
|g(p)| − Re g(p)pit

)
p−1 are

continuous in t and nondecreasing in x, their divergence for each real t

ensures that

∑
n≤x

g(n) = o


x(log x)−1

∏
p≤x

(
1 + |g(p)|p−1

) , x→ ∞.

As an example, Theorem 2 applies to the renormalised Ramanujan func-

tion |τ(n)|n−11/2.

Since γ > 1, Lemmas 19 and 20 may be applied to the function |g(n)|.
Define

M(x) =
∑
n≤x

g(n), N(x) =
∑
n≤x

g(n) log n, x ≥ 2.

We switch between M(x) and N(x) as the harmonic analysis more readily

lends itself.

Lemma 22. Assuming only that the multiplicative function g is com-

plex-valued,∫ x

2

|M(u)| log u

u2
du


∫ x

2

|N(u)|
u2

du

∫ x

1

|M(u)| log u

u2
du, x ≥ 2.

Proof. Integrating by parts:

M(u) =
N(u)

log u
+

∫ u

2

N(w)

w(logw)2
dw, u ≥ 2.

The first inequality in Lemma 22 follows from the argument∫ x

2

log u

u2

∫ u

2

|N(w)|
w(logw)2

dw du

=

∫ x

2

|N(w)|
w(logw)2

∫ x

w

log u

u2
du dw 


∫ x

2

|N(w)|
w2 logw

dw.

Bearing in mind that N(u) = 0 if u < 2, a similar argument establishes

the second inequality of Lemma 22. �
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For ease of exposition, until otherwise stated, during the proof of The-

orem 2 g will denote an exponentially multiplicative function, i.e., g(pk) =

g(p)k/k!, k ≥ 2, for which |g(p)| ≤ β. The attendant Dirichlet series

G(s) =

∞∑
n=1

g(n)n−s = exp

(∑
p

g(p)p−s

)
, G0(s) =

∞∑
n=1

|g(n)|n−s,

s = σ + it, absolutely convergent in the half-plane σ = Re (s) > 1, define

there analytic functions for which we shall not require analytic continuation.

The multiplicativity of g enables x−1N(x) and, therefore, x−1M(x), to

be related to a weighted mean of itself, introducing a convenient smoothing.

Lemma 23. For each K > 0,

N(x) 
 x

∫ x

1
|M(u)|u−2 du+ x log log x sup√

x<u≤x

|M(u)|u−1 + x(log x)−K

uniformly for x ≥ 2, the implied constant depending at most upon β,K.

Proof. For the duration of this proof only, set y = x − x(log x)−r,

where r is a positive number to be chosen presently.

Application of the Cauchy-Schwarz inequality and Lemma 20 shows that

|N(x) −N(w)| ≤ (x− u+ 1)1/2


∑

n≤x

(|g(n)| log n)2




1/2



(
x(log x)−r

)1/2
(
x(log x)2+β2

)1/2

uniformly for y ≤ u ≤ x. Fixing r at a sufficiently large value,

N(x) = (x− y)−1

∫ x

y
N(u) du+O

(
x(log x)−K

)
.

From the exponential multiplicativity of g,

N(u) =
∑
p≤u

g(p) log pM(up−1),
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and with z = (log x)2r the integral representing N(x) has the corresponding

representation

∑
z<p≤x

g(p)p log p

∫ x/p

y/p
M(v) dv +

∑
p≤z

g(p) log p

∫ x

y
M(up−1) du.

If H denotes the supremum of u−1|M(u)| taken over the range
√
x ≤

u ≤ x, then the second sum is


 H
∑
p≤z

p−1 log p

∫ x

y
u du
 Hx(x− y) log z.

The first sum is



∑

z<p≤x

p log p

∫ x/p

y/p
|M(v)| dv 


∫ x/z

1
|M(v)|

∑
y/v≤p≤x/v

p log p dv.

For v ≤ xz−1, xv−1 ≤
(
xv−1z−1/2

)2 ≤
(
(x− y)v−1

)2
, so that by an old

estimate of Hardy and Littlewood, or an application of Selberg’s sieve, as

in [5] Chapter 2,

∑
y/v≤p≤x/v

p log p
 x

v
log
x

v

(
x− y
v

)(
log

(
x− y
v

))−1


 x(x− y)
v2

.

The corresponding contribution to N(x) is


 x

∫ x

1
v−2|M(v)| dv,

and Lemma 23 is established. �

Lemma 24. In the notation of Theorem 2,

G(s) 

∏
p≤x

(
1 + |g(p)|p−1

)
e−λ ((σ − 1) log x)β

uniformly for 1 + (log x)−1 ≤ σ ≤ 2, |t| ≤ T .

Proof. For 2 ≤ w ≤ x define

ρ(w, t) =
∑
p≤w

(
|g(p)| − Re g(p)p−it

)
p−1.



Distribution of Cusp Form Coefficients 631

From the Euler product representation

G(s) =
∏

p

(
1 +

∞∑
k=1

g(pk)p−ks

)
= exp

(∑
p

g(p)p−s

)

we obtain the bounds

G(s)G0(σ)
−1 
 exp

(
−
∑

p

(
|g(p)| − Re g(p)p−it

)
p−σ

)


 exp(−ρ(y, t)), y = exp
(
(σ − 1)−1

)
,

in the strip 1 < σ ≤ 2, since integration by parts and appeal to the Cheby-

shev inequality π(x) 
 x/ log x shows the sums

∑
p>y

p−σ,
∑
p≤y

(
p−1 − p−σ

)

 (σ − 1)

∑
p≤y

p−1 log p

to be uniformly bounded there.

For each T the function

∑
p≤w

2|g(p)|p−1 − min
|t|≤T

ρ(w, t) = max
|t|≤T

∑
p≤w

(
|g(p)| + Re g(p)p−it

)
p−1

is nondecreasing in w, hence

min
|t|≤T

ρ(y, t) ≥ min
|t|≤T

ρ(x, t) − 2
∑

y<p≤x

|g(p)|p−1,

uniformly for 1 + (log x)−1 ≤ σ ≤ 2. In particular,

G(s) 
 G0(σ) exp


2

∑
y<p≤x

|g(p)|p−1 − λ




over the same range of σ-values.
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Apart from the factor e−λ, this upper bound is


 exp


∑

p≤y

|g(p)|p−1 + 2
∑

y<p≤x

|g(p)|p−1






∏
p≤x

(
1 + |g(p)|p−1

)
exp


β ∑

y<p≤x

p−1






∏
p≤x

(
1 + |g(p)|p−1

)
((σ − 1) log x)β ,

completing the proof. �

Lemma 25. Under the hypothesis∑
w<p≤x

(|g(p)| − c) p−1 ≥ −c1, Y ≤ w ≤ x,

the bound

G0(σ) 

∏
p≤x

(
1 + |g(p)|p−1

)
((σ − 1) log x)−c

holds uniformly for 1 + (log x)−1 ≤ σ ≤ 1 + 2(log Y )−1.

Moreover, with a suitable choice for c1, the converse is valid.

Proof. With δ = 1 + (log x)−1, appeal to Euler product representa-

tions shows that

G0(δ)
−1G0(σ) = exp

(
−
∑

p

|g(p)|p−δ +
∑

p

|g(p)|p−σ

)
,

which by the Chebyshev bounds in Lemma 24 is


 exp


−

∑
w<p≤x

|g(p)|p−1


 , w = exp

(
(σ − 1)−1

)
.

For σ ≤ 1 + (log Y )−1 the asserted bound follows directly from the

hypothesis and the estimate
∑

w<p≤x p
−1 = log(log x/ logw) +O(1).
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For 1 + (log Y )−1 < σ ≤ 1 + 2(log Y )−1, so that Y 1/2 ≤ w < Y , we

may replace w in the second exponential by Y and note that the sum∑
Y 1/2<p≤Y p

−1 is bounded uniformly in Y .

The converse proposition may be obtained by reversing the steps. �

Proof of Theorem 2. For α > 0, s = 1 + α+ iτ , define

θ(α) =

(
α

∫ 1+α+i∞

1+α−i∞

∣∣∣∣G′(s)

s

∣∣∣∣
2

dτ

)1/2

≥ 0.

An application of the Cauchy-Schwarz inequality shows that

∫ x

2

|N(u)|
u2

du ≤
(∫ x

2

|N(u)|2
u3

du

∫ x

2

dv

v

)1/2



(

log x

∫ ∞

1
|N(u)|2u−3−2δ du

)1/2

, δ = 2(log x)−1.

Since

s−1G′(s) =

∫ ∞

−∞
N(ey)e−yσe−yiτ dτ,

we may appeal to Plancherel’s theorem

∫ ∞

1

|N(u)|2
u3+2δ

du =
1

2π

∫ 1+δ+i∞

1+δ−i∞

∣∣∣∣G′(s)

s

∣∣∣∣
2

dτ

from which, via Lemma 22∫ x

√
x

|M(u)|
u2

du
 1

log x

∫ x

2

|M(u)| log u

u2
du
 θ(δ).

Thus ∫ x

3/2

|M(u)|
u2

du

∫ x

3/2

|M(u)|
u2

∫ u2

u

dy

y log y
du



∫ x2

3/2

1

y log y

∫ y

√
y

|M(u)|
u2

du dy.
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If we assume that g(p) = 0 for p ≤ Y , so that M(u) = 1 over the range

u ≤ Y , then this double integral is


 1 +

∫ x2

Y
θ

(
2

log y

)
dy

y log y

 1 +

∫ 2/ log Y

1/ log x

θ(α)

α
dα,

the last after the change of variable y = e2/α.

Appealing to Lemma 23,

N(x) 
 x

∫ 2/ log Y

1/ log x
θ(α)α−1 dα+ x+ x log log x sup√

x<u≤x

|M(u)|u−1.

In view of Lemmas 19 and 20, with Px =
∏

p≤x

(
1 + |g(p)|p−1

)
, the third

of these bounding terms is 
 x(log x)−1Px log log x.

The integral involving α we divide into two ranges, according to whether

α ≤ ∆(log x)−1, where 1 ≤ ∆ ≤ 2 log x/ log Y .

A further application of Plancherel’s theorem together with the elemen-

tary bound
∑

p≤x log p
 x shows that

∫ 1+α+i∞

1+α−i∞

∣∣∣∣G′(s)

sG(s)

∣∣∣∣
2

dτ = 2π

∫ ∞

1

∣∣∣∣∣∣
∑
p≤u

g(p) log p

∣∣∣∣∣∣
2

du

u3+2α



∫ ∞

1
u−1−2α du
 α−1.

In particular,

∫
|t|≤1

∣∣∣∣G′(s)

G(s)

∣∣∣∣
2

dt
 1

α
,

∫
|t−m|≤1

∣∣∣∣G′(s)

G(s)

∣∣∣∣
2

dt
 1

α
, m ∈ Z,

the last by application to the translated function with g(p)p−im in place of

g(p).

In view of the factorisation G′ = (G′/G)G, for T > 0

∫ 1+α+i∞

1+α−i∞

∣∣∣∣G′(s)

s

∣∣∣∣
2

dt
 1

α
max
σ=α
|t|≤T

|G(s)|2 +
1

α
sup
σ=α
|t|>T

|G(s)|2
∑
m>T

m−2,
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which, by applications of Lemmas 24 and 25 respectively, is


 α−1P 2
x

(
e−λ(α log x)β + T−1/2(α log x)−c

)2
.

The corresponding contribution to the integral over α is


 Pxe
−λ

∫ ∆/ log x

1/ log x
(log x)βα−1+β dα+ T−1/2Px

∫ ∆/ log x

1/ log x
(log x)−cα−1−c dα


 Px

(
e−λ∆β + T−1/2

)
.

Employing only Lemma 25, the contribution from the range

∆(log x)−1 ≤ α ≤ 2(log Y )−1 is


 Px

∫ 2/ log Y

∆/ log x
(log x)−cα−1−c dα
 Px∆−c.

Before choosing ∆ we note that we may assume T ≥ 1, otherwise The-

orem 2 follows immediately from Lemmas 19 and 20. Since

Re


2−1

∫ 1

−1

∑
p≤x

(
|g(p)| − g(p)pit

)
p−1 dt




=
∑
p≤x

|g(p)|p−1 +O


∑

p≤x

(p log p)−1


 ,

λ cannot exceed
∑

p≤x |g(p)|p−1 + O(1), hence β log(log x/ log Y ) + c2 for

an absolute constant, c2. The inequalities

eλ ≤ ec2
(

log x

log Y

)β

≤
(

2 log x

log Y

)c+β

will be satisfied unless Y exceeds a certain fixed power of x, depending upon

c; in which circumstances Theorem 2 again follows from Lemmas 19 and 20.

We may thus choose e−λ∆β+c = 1 to obtain the bound

N(x) 
 xPx

(
exp

(
−λc(c+ β)−1

)
+ T−1/2 + (log x)−1 log log x

)
+ x

Moreover, in view of the above remark on the size of λ, we may omit the

fourth error bound in favour of the first.
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To widen the applicability of the estimate for N(x) we note that by

Lemma 24

min
|t|≤T

ρ(u, t) ≥ min
|t|≤T

ρ(x, t) − 2
∑

u<p≤x

|g(p)|p−1,

so that if
√
x ≤ u ≤ x, Y ≤ √

x,

N(u) 
 uPx

(
exp

(
−λc(c+ β)−1

)
+ T−1/2 + (log x)−1 log log x

)
uniformly for

√
x ≤ u ≤ x. Applied to the first integration by parts in

Lemma 22 this yields

M(x) 
 x(log x)−1Px

(
exp

(
−λc(c+ β)−1

)
+ T−1/2 + (log x)−1 log log x

)
,

since∫ x

2

N(w)

w(logw)2
dw 
 Px

∫ √
x

2

dw

logw
+ sup√

x≤w≤x

|N(w)|
w

∫ x

√
x

dw

(logw)2
.

For
√
x < Y ≤ x the improved bound on M(x) also follows from Lemmas

19 and 20.

Taking into account the restrictions on Y as necessary, we may now

retrace our steps using the improved bound for sup√
x≤u≤x |M(u)|u−1 that

the above argument implies and obtain the improved bound

N(x) 
 xPx

(
exp

(
−λc(c+ β)−1

)
+ T−1/2 +

(
(log x)−1 log log x

)2)
.

Finitely many iterations of this procedure enable us to omit the resulting

third term in the bound in favour of the first, and complete the proof of

Theorem 2 for uniformly bounded exponentially multiplicative functions

that vanish on the primes not exceeding Y .

To remove the latter restriction, define exponentially multiplicative func-

tions f , h by

f(p) =

{
g(p) if p ≤ Y,
0 if p > Y,

h(p) =

{
0 if p ≤ Y,
g(p) if p > Y,
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so that g = f ∗ h and∑
n≤x

g(n) =
∑

u≤√
x

f(u)
∑

v≤x/u

h(v) +
∑

v<
√

x

h(v)
∑

√
x<u≤x/v

f(u).

The first of the doublesums we estimate by applying to h the version of

Theorem 2 that we have obtained so far, the necessary uniformity in u

derived along the lines of that for N(u), earlier. The doublesum is then



∑

u≤√
x

|f(u)| x

u log x

∏
Y <p≤x/u

(
1 +

|g(p)|
p

)(
exp

(
−λc(c+ β)−1

)
+ T−1/2

)

which, since ∑
u≤√

x

|f(u)|u−1 

∏
p≤Y

(
1 + |g(p)|p−1

)
,

falls within the bound of Theorem 2.

Set θ = 1/ log Y . Then, for v <
√
x,

∑
√

x<u≤x/v

|f(u)| ≤ 1

(
√
x)θ

∑
u≤x/v

|f(u)|uθ 
 x1−θ/2

v log x

∑
u≤x

|f(u)|
u1−θ

,

the second step by an application of Lemma 19; since if q = pk, then

|f(q)|qθ log q =
(
(|f(p)|pθ)k log p

)
/(k − 1)! ≤

(
(βY θ)k log p

)
/(k − 1)! and

the function M appearing in that Lemma is uniformly bounded in terms of

β alone.

The elementary inequality et − 1 ≤ tet, valid for t ≥ 0, shows that for

primes p not exceeding Y , pθ ≤ 1 + θpθ log p ≤ 1 + eθ log p; hence

∑
u≤x

|f(u)|uθ−1 ≤ exp


∑

p≤x

|f(p)|pθ−1




≤ exp


∑

p≤x

|f(p)|p−1 + βeθ
∑
p≤Y

p−1 log p






∏
p≤Y

(
1 + |g(p)|p−1

)
.



638 Peter D. T. A. Elliott and Jonathan Kish

The second of the above doublesums is


 x1−θ/2

log x

∑
v<

√
x

|h(v)|
v

∏
p≤Y

(
1 +

|g(p)|
p

)


 exp

(− log x

2 log Y

)
x

log x

∏
p≤x

(
1 +

|g(p)|
p

)
,

an amount much smaller than the first term in the upper bound of Theo-

rem 2.

To remove the restriction to exponential multiplicativity we express a

general multiplicative function g as a Dirichlet convolution g1 ∗ g2, where

g1 is exponentially multiplicative and satisfies g1(p) = g(p). Computation

with Euler products shows that

g2(p
k) =

k∑
r=0

(r!)−1(−g(p))rg(pk−r), k ≥ 2,

g2(p) = 0.

From the elementary inequality a + b ≤ ab, valid for reals satisfying

min(a, b) ≥ 2,

4 log n ≤
∏
pk‖n

(4 log pk).

For any nonnegative multiplicative function h, real γ ≥ 0,

∞∑
n=1

h(n)(log n)γ ≤
∏

p

(
1 +

∞∑
k=1

h(pk)(4 log pk)γ

)

≤ exp

(
4γ
∑

q

h(q)(log q)γ

)
,

where q runs over the prime-powers, the final sum assumed to converge.

In the present circumstance∑
q

q−1|g2(q)|(log q)γ 


∑
p,t≥2

p−t|g(pt)|(log p)t

(
1 +

∞∑
m=1

(m!pm)−1βm(log pm)γ

)
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+
∑

p,k≥2

(
(k − 1)!pk

)−1
βkkγ(log p)γ


 1 +
∑
q=pk

k≥2

q−1|g(q)|(log q)γ ,

so that the series
∑∞

n=1 n
−1|g2(n)|(log n)γ with γ = 1 + cβ(c + β)−1 con-

verges.

The convolution decomposition of g guarantees a representation∑
n≤x

g(n) =
∑
v≤x

g2(v)
∑

u≤x/v

g1(u).

Since
∑√

x<p≤x p
−1 is bounded uniformly in x, along earlier lines the con-

tribution to the doublesum from the terms with v ≤ √
x is



∑

v≤√
x

v−1|g2(v)|x(log x)−1Px

(
exp

(
−cλ(c+ β)−1

)
+ T−1/2

)
,

within the asserted bound of Theorem 2.

The simple estimate∑
u≤x/v

|g1(u)| 
 xv−1Px, 1 ≤ v ≤ x,

shows the terms with
√
x < v ≤ x to contribute


 xPx

∑
√

x<v≤x

v−1|g2(v)| 
 xPx(log x)−1−βc(c+β)−1
,

again within the bound of Theorem 2.

The proof of Theorem 2 is complete. �

Remarks. With an integration by parts the lower bound hypothe-

sis on |g(p)| in Theorem 2 follows directly from a uniform lower bound∑
p≤y p

−1|g(p)| log p ≥ c log y − c3, c4 ≤ y ≤ x.
We may braid g with a Dirichlet character (modD) without affecting

the lower bound hypothesis of Theorem 2 provided D ≤ Y .
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Example 3. Let 0 < c < 1 and for y ≥ exp
(
e2
)

set β(y) =

(log log log y)1/2. Define a sequence bn of positive reals by b1 = 3/2, bn+1 =

bn
(
1 + (log bn)−1

)
, n ≥ 1. The sequence is unbounded and for all suffi-

ciently large values of n, y = [bn (β(bn+1) − β(bn))] satisfies

bn(2 log bn)−4 ≤ y ≤ bn(log bn)−2.

Let qj , j = 1, 2, . . . , enumerate the successive primes in the interval

(bn, bn+1]. Define g(qj) to be −1 if 1 ≤ j ≤ y, 1 if y < j ≤ c(π(bn+1) −
π(bn)), and to be zero otherwise. Note that c (π(bn+1) − π(bn)) =

(c+ o(1)) bn(log bn)−1.

Since

y∑
j=1

g(qj)

qj
=
y

bn

(
1 +O

(
1

log bn

))−1

= (1 + o(1)) (β(bn+1) − β(bn)) ,

summing over the intervals with bn ≤ x,∑
p≤x

(|g(p)| − g(p)) p−1 = (2 + o(1)) (log log log x)1/2,

whilst ∑
p≤x

|g(p)| log p = (c+ o(1))x, x→ ∞.

Suppose now that for some |t| not exceeding T , a given fixed power of

log x,

ρ(x, t) =
∑
p≤x

(
|g(p)| − Re g(p)p−it

)
p−1 < 2(log log log x)1/2.

Since

|g(p)|
∣∣∣1 −

(
g(p)pit

)2∣∣∣2 ≤ 4|g(p)|
∣∣1 − g(p)pit

∣∣2 ≤ 8
(
|g(p)| − Re g(p)pit

)
,∑

p≤x

|g(p)|p−1
∣∣1 − p2it

∣∣2 < 16(log log log x)1/2.
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An application of I, Lemma 15 shows that t 
 (log x)−c/7. With w =

exp
(
(log x)c/7

)
, ∑

p≤x

p−1
∣∣pit − 1

∣∣
 ∑
p≤w

p−1|t| log p
 1.

In particular,

ρ(x, t) ≥ ρ(w, t) = (2 + o(1))β(w) = (2 + o(1))β(x).

Hence

λ = min
|t|≤T

∑
p≤x

(
|g(p)| − Re g(p)p−it

)
p−1

= (2 + o(1)) (log log log x)1/2, x→ ∞,

as required in the introduction to Theorem 2.

We include here Sätze 1.1 and 1.2.2 of Wirsing [29], to which we shall

appeal in §3, and which may be compared with the present Theorem 2.

Lemma 26. Let λ(n) be a nonnegative real-valued multiplicative func-

tion that for a positive τ satisfies

∑
p≤x

log p

p
λ(p) ∼ τ log x, x→ ∞.

Let the λ(p) be uniformly bounded and the series
∑
λ(q)q−1, taken over the

prime-powers q = pk with k ≥ 2, converge. Moreover, if τ ≤ 1 then, with

the same convention, let
∑

q≤x λ(q) 
 x(log x)−1 hold.

Then

∑
n≤x

λ(n) ∼ e−κτ

Γ(τ)

x

log x

∏
p≤x

(
1 +

λ(p)

p
+
λ(p2)

p2
+ · · ·

)
, x→ ∞,

where κ denotes Euler’s constant.

Lemma 27. Let λ(n) satisfy the conditions of Lemma 26, and let g(n)

be a real-valued multiplicative function that satisfies |g(n)| ≤ λ(n) on the

positive integers.
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Then

lim
x→∞

∑
n≤x

g(n)


∑

n≤x

λ(n)




−1

=
∏

p

(
1 +

∞∑
k=1

g(pk)p−k

)(
1 +

∞∑
k=1

λ(pk)p−k

)−1

,

where the product either converges properly to a nonzero limit, or improperly

to zero.

The asymptotic estimate for
∑

p≤x p
−1λ(p) log p, rather than a lower

bound, delivers an asymptotic estimate for the mean-value of λ.

It is not difficult to modify the proof of Theorem 2, including an analogue

of Lemma 19 for exponentially multiplicative functions, so that the theorem

continues to hold under wider conditions.

Theorem 5. Theorem 2 remains valid if, for some real δ, 0 < δ < 1,

the uniform bound |g(p)| ≤ β on g is replaced by the requirements

g(p) 
 p1/2−δ,
∑
p≤x

|g(p)|1+δp−1 
 log log x,

∑
x−y<p≤x

|g(p)| log p
 y uniformly for x1−δ ≤ y ≤ x,

and ∑
u<p≤v

|g(p)|p−1 ≤ β log(log v/ log u) +O(1)

uniformly for v ≥ u ≥ 2.

In particular, Theorem 5 may be applied to the Fourier coefficients of

Maass forms.

3. Automorphic Forms

We continue this study with three paradigmatic examples.
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Let an, for integers n, be the coefficient function either of an elliptic

holomorphic form of weight k ≥ 2,

∞∑
n=1

ane
2πinz,

or of a Maass form ∑
n�=0

an(2πy)1/2Kw (2π|n|y) e2πinx,

i.e. a solution f , in an appropriate Hilbert space, of the Laplacian

−y2
(
∂2f

∂x2
+
∂2f

∂y2

)
=

(
1

4
− w2

)
f,

each a new cusp form attached to the action of a congruence subgroup

Γ0(N) of SL(2,Z) on the complex upper half-plane, eigenfunction of the

appropriate Hecke operators and normalised to have a1 = 1.

On the positive integers define the multiplicative function g(n) to be 1

if an �= 0, zero otherwise, and for each nonzero integer D set

SD(x) =
∑
n≤x

(n,D)=1

g(n).

Theorem 6. Assume that for positive constants c, c0, and all suffi-

ciently large values of x ∑
p≤x
ap �=0

log p ≥ cx

and ∑
p≤x
ap �=0

p−1 ≥ 1

2
log log x− c0.

Then SD(x) lies between constant multiples of

x(log x)−1
∏
p≤x

(p,D)=1

(
1 + |g(p)|p−1

)
.
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In particular SD(x) � x(log x)−1/2, x ≥ 2, the implied constants possibly

depending upon D.

For each pair of mutually prime integers a, D,

γ(a) = lim
x→∞

SD(x)−1
∑
g(n)

n≤x
n≡a (mod D)

exists. Moreover,

(1) γ(a) = ϕ(D)−1 uniformly in (a,D) = 1 unless there is a quadratic

character χ (modD) for which the series
∑
g(p)p−1, taken over the

primes with χ(p) = −1, converges.

(2) In that exceptional case

γ(a) = ϕ(D)−1


1 + χ(a)

∏
g(p)=1

χ(p)=−1

ψp

∏
g(p)=0

χ(p)=−1

ψp




with

ψp =

(
1 +

∞∑
k=1

g(pk)χ(pk)p−k

)(
1 +

∞∑
k=1

g(pk)p−k

)−1

,

and is nonzero unless, for the primes not dividing D, g(p) = 1 if and

only if χ(p) = +1.

(3) In that further exceptional case γ(a) = 2ϕ(D)−1 when χ(a) = 1, and

is zero otherwise.

In the cases (2) and (3)

SD(x) = (1 + o(1))Ax(log x)−1/2, x→ ∞,

for a certain positive constant A.

Remarks. For holomorphic forms Theorem 6 is in accord with the

result of Serre considered in §1, the existence of an exceptional quadratic
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character corresponding to the form having complex multiplication. The

required conditions are all satisfied.

For Maass forms the argument in §1 shows that, in the notation of Kim

and Shahidi loc. cit., provided the underlying representation of GL2(AQ)

is not of dihedral, tetrahedral or octahedral type, the conditions are also

satisfied.

Proof of Theorem 6. The bounds on SD(x) follow from the first

three lemmas in §2. It is only here that we appeal to the assumption

that
∑

p≤x log p, taken over the primes for which ap does not vanish, is

at least cx in size. For the remainder of the present proof it will suffice

that
∑

p≤x p
−1 log p ≥ c log x, with the same constraint on the primes, be

satisfied.

From the representation of g, on arithmetic progressions, in terms of

Dirichlet characters and by the remark following Theorem 2, γ(a) will

exist and have the value ϕ(D)−1 unless, for some nonprincipal character

χ (modD) and real t, the series

∑
p

g(p)
(
1 − Reχ(p)pit

)
p−1

converges.

If the character has order r, appeal to the inequality |1 − zr| ≤ r|1− z|,
|z| ≤ 1, shows the series

∑
p

g(p)
(
1 − Re pirt

)
p−1

to converge and, after I, Lemma 15, that t = 0.

Moreover, by I, Lemma 3,

∑
p≤x

g(p)p−1 ≤ Re

r∑
j=1

r−1
∑
p≤x

χ(p)jp−1 +O(1)

≤
(
r−1 + o(1)

)
log log x, x→ ∞,

contradicting an initial assumption unless r = 2.
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Likewise, there can be at most one exceptional quadratic character, for

an inequivalent second such, χ1, would guarantee∑
p≤x

g(p)p−1 ≤
∑
p≤x

4−1 (1 + χ(p)) (1 + χ1(p)) p
−1 +O(1)

≤ (1/4 + o(1)) log log x, x→ ∞,

again a contradiction.

In view of the identity

∑
p−1

p≤x
g(p)=0, χ(p)=1

=
∑
p≤x

χ(p)=1

p−1 −


 ∑

p≤x
g(p)=1

p−1 −
∑
p−1

p≤x
g(p)=1, χ(p)=−1




and the lower bound hypothesis on
∑

p≤x g(p)p
−1, there is a set of primes

q for which
∑
q−1 converges and outside of which g(p) = 1 if and only if

χ(p) = 1.

In particular,∑
q≤x

q−1 log q ≤
∑

q≤log x

q−1 log q + (log x)
∑

q>log x

q−1 = o(log x),

hence∑
p≤x

g(p)p−1 log p =
∑
p≤x

χ(p)=1

p−1 log p+ o(log x) = (1/2 + o(1)) log x, x→ ∞.

Lemmas 26 and 27 deliver the asymptotic estimates

SD(x) = (1 + o(1))
e−κ/2

Γ(1/2)

x

log x

∏
p≤x

(p,D)=1

(
1 +

∞∑
m=1

g(pm)

pm

)
,

lim
x→∞

SD(x)−1
∑
n≤x

g(n)χ(n) =
∏

p

ψp,

respectively. Here κ denotes Euler’s constant and our essential characteri-

sation of the primes on which g(p) = 1 allows us to deduce that

SD(x) = (1 + o(1))Ax(log x)−1/2, x→ ∞.
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The remaining assertions of Theorem 6 follow rapidly.

This completes the proof of Theorem 6. �

Theorem 7. Let S(x) denote the number of integers n, not exceeding

x, for which an does not vanish. Then S(x) � x(log x)−1/2 and, with

24000γ = 1,

S(x)−1
∑
n≤x
an<0

1 = 1/2 +O
(
(log x)−γ

)
, x ≥ 2.

There is a like result for the an that are positive.

Remarks. S(x) coincides with the function S1(x) of Theorem 6.

The positive and negative an are uniformly distributed amongst those

that are nonzero.

Provided the coefficients are real, and we adjust the value of γ as neces-

sary, variant versions of Theorem 7 may be obtained for holomorphic as well

as Maass forms, moreover SL(2,Z) may be replaced by a congruence sub-

group Γ0(N). In particular, Theorem 7 holds for the values of Ramanujan’s

τ -function.

We may restrict summations to be over arithmetic progressions, with

the same interests as those attached to Theorem 6.

For the duration of the proof of the present theorem only, we shall denote

log log x by L.

We first furnish a supply of negative coefficients.

Lemma 28. ∑
p≤x
ap<0

p−1 ≥ 6−3L+O(1), x ≥ e.

Proof of Lemma 28. We recall the estimates∑
p≤x

|ap|2p−1 = L+O(1),
∑
p≤x

|ap|4p−1 = 2L+O(1), x ≥ e,

from the introductory section.
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For any real λ > 0,∑
p≤x

|ap|≤λ

|ap|2p−1 ≥ L− λ−2
∑
p≤x

|ap|4p−1 +O(1)

≥
(
1 − 2λ−2

)
L+O(1).

Hence ∑
p≤x

|ap|≤λ

|ap|p−1 ≥ λ−1
(
1 − 2λ−2

)
L+O(1).

The coefficient of L is maximized by λ2 = 6. In particular,∑
p≤x

|ap|p−1 ≥ 2
(
3
√

6
)−1
L+O(1), x ≥ e.

The function f(s) =
∑∞

n=1 ann
−s has a holomorphic continuation over

the whole plane. We need only that it is holomorphic in a proper disc

|s− 1| < c. Assuming it to have a zero of order r at s = 1, consideration of

the function log (f(s)ζ(s)r) and its derivative shows that∑
p≤x

ap p
−1 = −rL+O(1), x ≥ e.

As a consequence

2
∑
p≤x
ap<0

|ap|p−1 =
∑
p≤x

(|ap| − ap) p
−1 ≥

∑
p≤x

|ap|p−1 +O(1).

For any ν > 0,∑
p≤x

ap<0, |ap|≤ν

|ap|p−1 ≥
(
3
√

6
)−1
L− ν−1

∑
p≤x

|ap|2p−1 +O(1)

=
((

3
√

6
)−1 − ν−1

)
L+O(1).

In particular,∑
p≤x
ap<0

p−1 ≥ ν−1
((

3
√

6
)−1 − ν−1

)
L+O(1), x ≥ e.



Distribution of Cusp Form Coefficients 649

The choice ν = 6
√

6 completes the proof of Lemma 28. �

Proof of Theorem 7. Define the multiplicative function g by

g(pk) =




1 if apk > 0,

−1 if apk < 0,

0 if apk = 0.

Then g(n) has the same sign as an and it will suffice to prove that restricted

to the integers for which an does not vanish, g has mean-value zero.

With c = 1/2, β = 1, T = (log x)4,

ρ = min
|t|≤T

∑
p≤x

(
|g(p)| − Re g(p)pit

)
p−1,

Theorem 2 delivers the bound

S(x)−1
∑
n≤x

g(n) 
 e−ρ/3, x ≥ e.

Let t be a value for which the minimum defining ρ is attained. If, for

some positive δ not exceeding 1/8, ρ ≤ δL, then∑
p≤x

|g(p)|p−1
∣∣∣1 −

(
g(p)pit

)2∣∣∣2 =
∑
p≤x

|g(p)|p−1
∣∣1 − p2it

∣∣2
in turn ≤ 8ρ ≤ 8δL. Application of I, Lemma 15 shows that either 2|t| ≤
(log x)−1 or ∑

p≤x

|g(p)|p−1 ≤ 4(8δ)1/3 − 6 log |t| +O(1),

the implied constant depending at most upon δ. Recalling from the intro-

duction the lower bound estimate∑
p≤x
ap �=0

p−1 ≥ 2−1L+O(1),

we see that provided 4(8δ)1/3 < 1/2,

|t|(log x)α with α =
1

6

(
1

2
− 4(8δ)1/3

)
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is bounded uniformly in x ≥ e.
Set Z = exp ((log x)α). Then∑

p≤Z

∣∣1 − pit
∣∣ p−1 
 |t|

∑
p≤Z

p−1 log p
 |t| logZ 
 1,

and

ρ ≥
∑
p≤Z

(
|g(p)| − Re g(p)pit

)
p−1 ≥

∑
p≤Z

(|g(p)| − g(p)) p−1 +O(1)

≥ 2 · 6−3 log logZ +O(1) = 2 · 6−3αL+O(1).

We may therefore choose for the role of 3γ the minimum of δ and 2·6−3α.

With 8δ = 10−3, 2 · 6−3α = 6−4 · 5−1 > 10−3 · 8−1 = δ.

The proof of Theorem 7 is complete. �

Between the function g in Theorem 6 and the coefficient function n �→
|an|2 lies the arithmetic function n �→ |an|. Even if the corresponding Dirich-

let series
∑∞

n=1 |an|n−s were to be analytically continuable, an essential sin-

gularity would be expected at the point s = (k+1)/2, where k is the weight

of the form.

Theorem 8. Let an be the Fourier coefficient function of a Maass cusp

form corresponding to the action of SL(2,Z) upon the complex upper half-

plane, eigenfunction of the appropriate Hecke operators, normalised to have

a1 = 1.

There is an integer c with the property that for any pair of mutually

prime positive integers a, D,

lim
x→∞


∑

n≤x

|an|




−1 ∑
n≤x

n≡a (mod D)

|an| = ϕ(D)−1

holds unless there is a nonprincipal character χ (modD), of order at most

c, for which the series ∑
ap �=0

χ(p) �=1

|ap|p−1,
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taken over the primes, converges.

Remark. As for Theorem 7, the theorem remains valid if we replace

SL(2,Z) by Γ0(N) and, with appropriate renormalisation, allow the form

to be holomorphic.

Proof of Theorem 8. Since an analogous result is implicit in The-

orem 6, we confine ourselves to the details of applying Theorem 5 rather

than Theorem 2.

With g(p) = |ap| the only condition that does not follow rapidly from

the remarks in §1 is the requirement that for some δ, 0 < δ < 1,∑
x−y<p≤x |g(p)| log p
 y uniformly for x1−δ ≤ y ≤ x.
The analytic continuation over the simple pole at s = 1 and into the half-

plane Re (s) > 1/2 of the Rankin-Selberg product L-function
∑∞

n=1 |an|2n−s

guarantees a positive δ, 0 < δ < 1/2, for which

∑
n≤x

|an|2 = Ax+O
(
x1−2δ

)
.

By subtraction

∑
x−y<n≤x

|an|2 = Ay +O
(
y1−θ

)
, θ = δ(1 − δ)−1,

uniformly for x1−δ ≤ y ≤ x. This is sufficient that we may apply the version

of Selberg’s sieve given in Chapter 2 of the first author’s volume [5], and

obtain the bound ∑
x−y<p≤x

|ap|2 
 y(log y)−1

uniformly for y ≥ x1−δ, x ≥ 2. That an is a multiplicative function of n is

vital. A similar application may be found in Elliott [9].

Appeal to the Cauchy-Schwarz inequality yields∑
x−y<p≤x

|ap| 
 y(log y)−1

with the same uniformity, and the required condition is satisfied.
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In order to apply Lemmas 12 and 15 from the taxonomy section of paper

I we require that the function h(p) there, here played by ap, not exceed 1. If,

for some β > 0, and with L = log log x,
∑

p≤x |ap|p−1
∣∣1 − χ(p)pit

∣∣2 ≤ βL,

then we restrict the primes to those for which |ap| does not exceed
√

6.

It was shown during the proof of the present Lemma 28 that over such

primes
∑

p≤x |ap|p−1 is at least 2
(
3
√

6
)−1
L+O(1). We may proceed with β

replaced by β/
√

6, h(p) = |ap|/
√

6 unless |ap| >
√

6, when we set h(p) = 0.

This completes the outline proof of Theorem 8. �

Uniformities. In general, the argument employed in section 1 to guar-

antee nonvanishing Fourier coefficients ap may be expected to encounter

poles of order greater than 2 and deliver∑
p≤x
ap �=0

p−1 ≥ α log log x+O(1)

for a positive α possibly smaller than 1/2. The exceptional characters in

Theorem 6 may then have orders up to
[
α−1

]
, and be better classified in

terms of exceptional representations of the group GL2(AQ), and so on.

With a view towards applications it is natural to consider Fourier co-

efficients of automorphic forms on finite arithmetic progressions and allow

the differences to vary. Within the aesthetic of the second section this has

serious repercussions since, as was shown in the final example of paper I,

with g the Möbius function results bear upon the distribution of primes.

Assume that the function g in Theorem 6 satisfies the bound∑
D<p≤y

g(p)p−1 ≥ 1/2
∑

D<p≤y

p−1 +O(1)

that is derived in section 1. Given x ≥ D, γ > 0, confining interest to the

interval (D, y] and without assuming D to be fixed, I, Theorem 3 delivers

the estimate∑
n≤y

n≡a (mod D)

g(n) =
1

ϕ(D)

∑
n≤y

(n,D)=1

g(n) +
∑

j

χj(a)

ϕ(D)

∑
n≤y

g(n)χj(n)

+O

(
y

ϕ(D) log y

∏
p≤y

(p,D)=1

(
1 +

g(p)

p

)(
logD

log y

)η
)
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with (c + 1)η = 10−5c6, the number of characters bounded in terms of c

alone, each character of order at most 20c−1, uniformly for xγ ≤ y ≤ x.

Moreover, with Z = exp
(
logD(log x/ logD)1/30

)
and the same uniformity,

each exceptional sum satisfies the bound∑
n≤y

g(n)χj(n) 

y

log y

∏
p≤y

(p,D)=1

(
1 +

g(p)

p

)

× exp


− c

c+ 1

∑
D<p≤Z

g(p) (1 − Reχj(p))

p


 .

Arguing much as in the proof of Theorem 6, we may reduce the set of

characters χj until it contains at most a single real character.

However, there is no immediate reason that g(p) = χ1(p) = 1 might

not hold on successive stretches of primes with the defining moduli of the

various real characters χ1 increasing. This raises an interesting question:

Given a constant B and a (possibly general) character χ for which∑
p≤x
ap �=0

(1 − Reχ(p)) p−1 ≤ B,

is there a value of x that will force the background representation of the

group GL2(AQ) or GL2(AF ), as the case may be, to be of an exceptional

type; and if so, how large does x need to be as a function of the parameters

of the character, in our case the modulus D?

Note that we do not ask to identify the form, only the class to which it

belongs.

To complete this study and to illustrate a uniformity with respect to the

modulus D, we overfly the apparatus.

Example 4. Let an be the Fourier coefficient function of a Maass cusp

form attached to the action of SL(2,Z) on the complex upper half-plane,

eigenfunction of the appropriate Hecke operators. Then for each pair of

mutually prime positive integers b, D,

∑
1

n≤x, an �=0
n≡b (mod D)

=
1

ϕ(D)

(
1 +O

((
logD

log x

)1/49
)) ∑

1
n≤x, an �=0
(n,D)=1

, x→ ∞,
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uniformly for (b,D) = 1, 1 ≤ D ≤ x.

Proof. We may assume that D ≥ 2. A rapid argument may appeal

to I, Theorem 3. A better error term applies I, Theorem 1 directly. In

the notation of the proof of Theorem 6, this reduces the problem to the

estimation of a uniformly bounded number of sums
∑

n≤x g(n)χj(n), where

χj is a nonprincipal Dirichlet character (modD).

In turn, application of Theorem 2 with Y = D further reduces the

problem to the provision of a lower bound for the sum

ρ =
∑

D<p≤x

g(p)
(
1 − Reχ(p)pit

)
p−1,

where t is a real value in the interval |t| ≤ max
(
D, (log x/ logD)4

)
.

Rather than appeal to the taxonomy section of paper I, it is worthwhile

to establish an analogue of I, Lemma 3.

Denote by f(s) the function
∑∞

n=1 a
2
nχ(n)n−s, the Rankin-Selberg prod-

uct of the L-function attached to the Maass form and the same L-function

braided with a nonprincipal Dirichlet character (modD).

Assume first that χ is primitive. It follows from the work of Shimura

[25], c.f. Goldfeld [14], that f(s) has an analytic continuation over the

whole complex plane and, after an appeal to its functional equation together

with an application of the Phragmén-Lindelöf theorem, c.f. Elliott [10],

satisfies f(s) 
 (D(2 + |s|))c0 for some absolute constant c0, uniformly for

Re (s) ≥ 3/4.

Examination of its Euler product shows that f continues to satisfy such

a bound whether χ is primitive or not.

The Euler product representation of f factorises to

∏
p|D

(
1 − p−2s

)−1
ζ(2s)f(s)

=
∏

(p,D)=1

(
1 − α2

pχ(p)p−s
)−1 (

1 − χ(p)p−s
)−2 (

1 − β2
pχ(p)p−s

)−1

where, after Kim and Shahidi loc. cit., the components of the local Satake

parameter diag(αp, βp) satisfy |αp| ≤ p1/9, |βp| ≤ p1/9. Since αpβp = 1,
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αp + βp = ap, taking logarithms and reassembling,

f(s)−1 = exp


−

∑
(p,D)=1

a2pχ(p)p−s +O(1)




uniformly for Re (s) ≥ 3/4, and

σ − 1 
 |f(s)| 
 (σ − 1)−1

uniformly for 1 < σ = Re (s) ≤ 2.

For a suitably chosen point s0 in the strip 1 < Re (s) < 2, this enables

the application of a Borel-Carathéodory inequality to f(s)f(s0)
−1 in the

style of Landau, as in Elliott [7], Lemma 14, to obtain the upper bound∣∣∣∣f(σ1 + it)

f(σ2 + it)

∣∣∣∣
 (D(2 + |s|))c1(σ2−σ1)

with a constant c1 independent of D, uniformly for 1 < σ1 ≤ σ2.

We may now adapt the argument of I, Lemma 3 to show that

Re
∑

y<p≤w

a2pχ(p)p−1−it ≤ log(log T/ logD) + c2

uniformly for Re (s) ≥ 1, |t| ≤ T , w ≥ y ≥ D, T ≥ D ≥ 2. In particular, for

the value of t in the definition of ρ

Re
∑

D<p≤x

a2pχ(p)p−1−it ≤ logL2 +O(1),

where L2 denotes log(log x/ logD).

For each positive λ∑
D<p≤x

a2p
(
1 − Reχ(p)pit

)
p−1 ≤ λ2

∑
D<p≤x
|ap|≤λ

g(p)
(
1 − Reχ(p)pit

)
p−1

+ 2λ−2
∑

D<p≤x
|ap|>λ

a4pp
−1

≤ λ2ρ+ 4λ−2 (L2 +O(1))
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and

ρ ≥ λ−2
(
1 − 4λ−2

)
L2 − logL2 +O

(
λ−4 + 1

)
.

The coefficient of L2 is maximized by the choice λ = 2
√

2, whence ρ ≥
(1/16)L2 − logL2 +O(1).

Application of Theorem 2 with c = 1/2, β = 1 obtains for a typical

exceptional sum the bound

∑
n≤x

g(n)χj(n) 

x

log x

∏
p≤D

(p,D)=1

(
1 +

g(p)

p

)(
logD

log x

)1/48(
log

(
log x

logD

))1/3

.

Bearing in mind the note preceding the statement of Theorem 2, the

asserted result follows rapidly from applications of Lemmas 20 and 21.

This completes Example 4 and our consideration of uniformities. �

Remark. Although without immediate uniformity in D, the argument

of Example 4 readily furnishes examples in the application of Theorem 8.
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