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Harmonic Analysis on the Positive Rationals I:

Basic Results

By Peter D. T. A. Elliott and Jonathan Kish

In celebration of the sixtieth birthday of Leo Murata

Abstract. Estimates are given, via harmonic analysis on the pos-
itive rationals, for sums of multiplicative functions on progressions
whose differences are large in comparison with the length of the sum.

1. Introduction

A complex-valued function, g, is arithmetic if it is defined on the positive

integers. It is multiplicative if it satisfies g(ab) = g(a)g(b) on mutually prime

integers a, b; completely multiplicative if it further satisfies g(pk) = g(p)k on

prime-powers; exponentially multiplicative if g(pk) = g(p)k/k!.

This study is in two parts. The present paper contains a complete proof

of

Theorem 1. Let α, γ, x be real numbers and D an integer satisfying

0 < α < 1, 0 < γ < 1, 1 ≤ D ≤ x. Let g be a multiplicative function with

values in the complex unit disc.

Then there are nonprincipal Dirichlet characters χj (modD), their num-

ber bounded in terms of α alone, such that∑
n≤y

n≡a (modD)

g(n) =
1

ϕ(D)

∑
n≤y

(n,D)=1

g(n) +
∑
j

χj(a)

ϕ(D)

∑
n≤y

g(n)χj(n)

+ O

(
y

ϕ(D) log y

∏
p≤D

(p,D)=1

(
1 +

|g(p)|
p

)(
log y

logD

)α
)
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uniformly for (a,D) = 1, xγ ≤ y ≤ x.

In particular, the error term is � D−1y (logD/ log y)1−α.

The accompanying paper, II, contains a complete proof of

Theorem 2. Let 3/2 ≤ Y ≤ x. Let g be a multiplicative function that

for positive constants β, c, c1 satisfies |g(p)| ≤ β,∑
w<p≤x

(|g(p)| − c) p−1 ≥ −c1, Y ≤ w ≤ x,

on the primes. Suppose, further, that the series∑
q

|g(q)|q−1(log q)γ , γ = 1 + cβ(c + β)−1,

taken over the prime-powers q = pk with k ≥ 2, converges.

Then with

λ = min
|t|≤T

∑
Y <p≤x

(
|g(p)| − Re g(p)pit

)
p−1,

∑
n≤x

g(n) � x(log x)−1
∏
p≤x

(
1 + |g(p)|p−1

) (
exp

(
−λc(c + β)−1

)
+ T−1/2

)
uniformly for Y , x, T > 0, the implied constant depending at most upon

β, c, c1 and a bound for the sum of the series over higher prime-powers.

Although their arguments have features in common, the emphasis is

sufficiently different that it seemed better to give each theorem its own

presentation. In Theorem 1 functions are considered in packets; in Theorem

2 they are considered singly.

Further, the present paper applies Theorem 2 to illustrate a taxonomy

of the characters appearing in Theorem 1. The second paper collectively

applies the various results to the study of automorphic forms.

To place the present paper in a wider context and to motivate the per-

vasive presence of the logarithmic function, we begin with an overview in

the language of group representations.

Q∗ will denote the multiplicative group of positive rationals.
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The dual group of Q∗, the direct product of denumerably many copies of

R/Z, may be identified with the space of completely multiplicative functions

g with values in the complex unit circle, |z| = 1. We may topologize this

space with a metric

ρ(g, h) =

(∑
p

p−σ|g(p) − h(p)|2
)1/2

≥ 0,

where σ > 1 and the sum is taken over the prime numbers.

It is sometimes convenient to employ a family of such metrics with dif-

fering values of σ. Each metric is translation invariant and induces the

standard topology attached to the dual of a locally compact abelian group.

Note that applied to general multiplicative functions with values in the

complex unit disc, |z| ≤ 1, these are metrics on the equivalence classes

of functions that coincide on the primes but not necessarily on the higher

prime-powers.

Formally, or in an L2 sense, a function f : Q∗ → C gives rise to a Fourier

transform

f̂(g) =

∫
Q∗

f(r)g(r) dη(r)

where η is purely atomic, assigning measure 1 to each positive rational, r.

Conversely, for each positive rational, r,

f(r) =

∫
Q̂∗

f̂(g)g(r) dg

where dg is the Haar measure on the compact dual group Q̂∗, conveniently

normalised to give measure 1 to the whole group.

In particular, restricting r to the positive integers,∑
n≤x

n≡a (modD)

f(n) =

∫
Q̂∗

f̂(g)
∑
n≤x

n≡a (modD)

g(n) dg.

In the general study of arithmetic functions on residue classes, a spe-

cialisation to multiplicative functions with values in the complex unit disc

then appears appropriate.
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The one-dimensional unitary representations of the multiplicative group

of positive reals into the invertible linear maps on L2(R) with respect to

Lebesgue measure form a one-parameter group typically given by

t �→ (w �→ tiαw,w ∈ L2(R)), α ∈ R.

The infinitesimal generator of this group is given by the map w �→ iw log t,

w ∈ L2(R).

Similarly, we may view the representations

Sτ : a = (. . . , an, . . . ) �→ (. . . , ann
−iτ , . . . ), τ ∈ R,

as a one-parameter group of invertible maps into itself of the (2 Hilbert space

of complex-valued functions on the positive integers, norm
(∑∞

n=1 |an|2
)1/2

.

The Dirichlet series
∑∞

n=1 g(n)n−s, s = σ + iτ , for a multiplicative function

g with values in the complex unit disc and σ fixed at a positive value, may

be identified with the orbit Sτ (. . . , g(n)n−σ, . . . ) whose elements generate

an invariant subspace from which, as is shown in Lemma 18, g may be

recovered, up to translation, as any member with multiplicative coefficients.

The infinitesimal generator of the Sτ is given by

a �→ −i(. . . , an log n, . . . ).

Viewed on the whole space (2, this operator is not bounded. However,

in the present number-theoretical circumstances, the Euler product repre-

sentation of the series
∑∞

n=1 g(n)n−s, whose existence is equivalent to the

multiplicativity of the coefficient function g, affords a representation

G(s) = exp

(∑
p

log
(
1 + g(p)p−s + · · ·

))
= G(σ) exp

(
iτG′(σ)/G(σ) + · · ·

)
corresponding to Stone’s representation of Sτ in terms of its infinitesimal

generator, rendering the ratio

G′(σ)/G(σ) = −
∑
p

(
1 + g(p)p−σ + · · ·

)−1
∞∑
k=1

g(pk)p−kσ log pk,

corresponding to the action of the infinitesimal generator, manageable.
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Note that the operator given by G(σ) �→ G′(σ)/G(σ) only plays the

role of the infinitesimal generator of the Sτ , whose actual action is given by

G(σ) �→ −iG′(σ).

Although the expected logarithm function appears, the representing

Dirichlet series is supported only on the prime-powers, which compensates.

In particular, corresponding to the factorisation G(s) (G′(s)/G(s)) the func-

tion g log may be viewed as a convolution. Otherwise expressed, we have

factored g log in the group algebra of Q∗.
Conveniently, for multiplicative functions with values in the complex

unit disc

−G′(s)/G(s) =
∑
p

g(p)p−s log p− ψ′(s),

where

ψ(s) =
∑
p

(
log
(
1 + g(p)p−s + · · ·

)
− g(p)p−s

)
converges uniformly absolutely in each half-plane σ ≥ σ1 > 1/2, rendering

the functions ψ(s) and ψ′(s) then uniformly bounded analytic.

Since the logarithmic function oscillates slowly on R, a simple integration

by parts may facilitate its removal. As a consequence, the mean-value of g

may be attached to that of g log g and replaced by the specialisation of a

bilinear form

x−1
∑

pkm≤x
(p,m)=1

g(m)g(pk) log pk.

Extending each Dirichlet character to have the value 1 on primes that

divide the corresponding modulus, we may regard the functions gχj ap-

pearing in Theorem 1 as characters attached to the tensor product of one-

dimensional representations of Q∗ and (Z/DZ)∗, respectively. In a sense

ρ(1, gχj) = ρ(χj , g)

measures the distance of a typical tensor product from the trivial represen-

tation.
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The wide spacing of Dirichlet characters on Q̂∗ ensures that at most one

can be near to a given general character, g. Indeed, under mild constraints,

and for a similar reason, at most one character attached to the tensor prod-

uct of one-dimensional representations of (Z/DZ)∗ and the group of positive

reals can be near to a given multiplicative function, g, with values in the

complex unit disc. Theorem 1 shows that, for practical purposes, estimation

of the mean-value of g on a given residue class involves only a small number

of Dirichlet characters, their number independent of the size of the mod-

ulus. In certain applications, such as to the study of primes in arithmetic

progression, this uniformity is important.

Amongst other things, Lemma 12 asserts that the sets of primes on which

various Dirichlet characters to reasonably sized moduli closely approximate

a given function, g, are essentially disjoint, offering a tensor decomposition

of the background representation of Q∗ with details controlled by Dirichlet

characters whose orders are also bounded independently of the associated

moduli.

The sizes of G(s, χ) =
∑∞

n=1 g(n)χ(n)n−s and the corresponding

logG(s, χ), Dirichlet L-functions attached to g braided with a Dirichlet

character χ, are controlled by the Large Sieve, i.e. bounds for the spectra of

appropriate self-adjoint operators acting upon spaces of functions supported

on the integers or the primes, as the case may be.

From the viewpoint of group representations it is natural to consider

functions in L2 spaces. The step from an L2 estimate to an L∞ estimate

that is presented in Theorem 1 depends vitally upon attaching a bilinear

form to the function g.

The maps g �→ g(r), corresponding to the embedding of Q∗ into its

second dual, may be viewed as random variables with respect to the mea-

surable sets of Q̂∗, and the argument of the present paper appraised within

the aesthetic of the theory of probability. This brings into relief the need

for maximal versions of the various inequalities arising.

The present argument takes place entirely in the half-plane of absolute

convergence of the various Dirichlet series
∑∞

n=1 g(n)χ(n)n−s; no analytic

continuation is required of their sum functions G(s, χ); boundary value be-

haviour is essentially classified. This affords applications to problems that

are otherwise currently out of reach.

Further remarks, including those of an historical nature, may be found



Multiplicative Functions on Residue Classes 575

in the concluding section of this paper.

2. Inequalities of Large Sieve Type

Besides error terms, the following estimates of operator norms will con-

trol the size of L-functions and their logarithms.

Lemma 1. Let 0 < ε < 1. The inequality

J∑
j=1

max
v−u≤H

∣∣∣∣∣∣∣∣
∑

u<n≤v
(n,Q)=1

anχj(n)

∣∣∣∣∣∣∣∣
2

�

H
∏
p|Q
p≤H

(
1 − 1

p

)
+ JHεD1/2 logD

 ∞∑
n=1

|an|2

where the χj are distinct Dirichlet characters (modD), D ≥ 2, Q a positive

integer, H ≥ 0, holds for all square-summable complex numbers an, the

implied constant depending at most upon ε.

There are several ways to establish this result, which is of Maximal Gap

Large Sieve type. An application of Cauchy’s inequality shows that we may

assume D1/2 not to exceed H. We may also include in Q the prime-divisors

of D. Note that
∑
p|Q

x<p≤x2

p−1 ≤
∑

x<p≤x2

p−1 � 1 uniformly in x ≥ 1.

Proof of Lemma 1. With 0 ≤ vj − uj ≤ H, define

tj(n) =

{
χj(n) if uj < n ≤ vj ,

0 otherwise,
j = 1, . . . , J.

For any real λd, d | Q, constrained by λ1 = 1, the dual form

S =
∑
n≤x

(n,Q)=1

∣∣∣∣∣∣
J∑

j=1

cjtj(n)

∣∣∣∣∣∣
2
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does not exceed

∑
n≤x

 ∑
d|(n,Q)

λd

2 ∣∣∣∣∣∣
J∑

j=1

cjtj(n)

∣∣∣∣∣∣
2

=
∑
di|Q

λd1λd2

J∑
j,k=1

cjck
∑

n≡0 (mod [d1,d2])

tj(n)tk(n),

where [d1, d2] denotes the least common multiple of d1 and d2. For those

terms with j 
= k, the innermost sum has the form

χjχk ([d1, d2])
∑
m

χjχk(m)

with the integers m over an interval and is, by a classical result of Pólya

and Vinogradov, O
(
D1/2 logD

)
. The corresponding contribution to S is

� JD1/2 logD

∑
d|Q

|λd|

2
J∑

j=1

|cj |2.

For those terms with j = k we reform the square in the λd to gain a

contribution

J∑
j=1

|cj |2
∑
n≤x

 ∑
d|(n,Q)

λd

2

|tj(n)|2 .

Since |tj(n)| ≤ 1, the innersum over n does not exceed

∑
di|Q

λd1λd2

∑
uj<n≤vj+H

n≡0 (mod [d1,d2])

1 = H
∑
di|Q

λd1λd2 [d1, d2]
−1 + O

∑
d|Q

|λd|

2 .

We may follow the standard appeal to the method of Selberg, c.f. Elliott

[3], Chapter 2, with λd = 0 if d > Hε/2 which, in particular, gives |λd| ≤ 1

for all remaining λd.
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As a consequence,

S �

H
∏
p|Q
p≤H

(
1 − 1

p

)
+ JHεD1/2 logD

 J∑
j=1

|cj |2.

Dualising gives the inequality of Lemma 1. �

Specialising H to x, Q to
∏

p≤xε p we obtain the

Corollary. Let 0 < ε < 1. The inequality

∑
χ

∣∣∣∣∣∣
∑
q≤x

aqχ(q)

∣∣∣∣∣∣
2

�
(

x

log x
+ xεD3/2 logD

)∑
q≤x

|aq|2

where χ traverses the characters χ (modD), and q the prime-powers, holds

for all complex numbers aq, real x ≥ 2.

Lemma 2. There is a real c such that

k∑
j=1

max
D≤w≤y≤x

max
σ≥1,|t|≤T

∣∣∣∣∣∣
∑

w<p≤y

apχj(p)p
−s

∣∣∣∣∣∣
2

≤ 4(L + k∆)
∑

D<p≤x

|ap|2p−1,

with s = σ + it, σ = Re (s), L =
∑

D<p≤x p−1, ∆ = log(log T/ logD) + c,

uniformly for ap in C and distinct characters χj (modD), j = 1, . . . , k,

x ≥ D ≥ 2, T ≥ D.

Whilst a version of Lemma 2 may be deduced from the Corollary to

Lemma 1 using an integration by parts, the dependence of the resulting

bound upon the size of |t| is severe. The amelioration supplied by the

following result is vital.

Lemma 3. With a certain constant c,

Re
∑

y<p≤w

χ(p)p−s ≤ log(log T/ logD) + c
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uniformly for nonprincipal characters χ (modD), σ ≥ 1, |t| ≤ T , w ≥ y ≥
D, T ≥ D ≥ 2.

Proof of Lemma 3. We shall appeal to the following bound for

Dirichlet L-functions:∣∣∣∣L(σ1 + it, χ)

L(σ2 + it, χ)

∣∣∣∣ ≤ (D(|t| + 2))c1(σ2−σ1) ,

valid for 1 < σ1 ≤ σ2 with an absolute constant c1. Two proofs via analytic

functions may be found in [11], the restriction to σ2 ≤ 2 there unnecessary;

an alternative elementary argument via a sieve is given in [16].

For β > 1, p−1 − p−β ≤ (β − 1)p−1 log p holds and integration by parts

together with the well-known Chebyshev bound π(x) � x/ log x shows the

sums ∑
p>exp((β−1)−1)

p−β,
∑

p≤exp((β−1)−1)

(
p−1 − p−β

)
,

(β − 1)
∑

p≤exp((β−1)−1)

p−1 log p

to be uniformly bounded.

With β = 1 + (logw)−1,∑
p≤w

χ(p)p−s −
∑
p

χ(p)p−(β+s−1)

=
∑

p≤exp((β−1)−1)

χ(p)p−s+1
(
p−1 − p−β

)
−

∑
p>exp((β−1)−1)

χ(p)p−(β+s−1)

is bounded uniformly for w ≥ 2; likewise when w is replaced by y.

From the Euler product representation

L(z, χ) =
∏
p

(
1 − χ(p)p−z

)−1
= exp

(∑
p

χ(p)p−z + O(1)

)
,

valid for Re (z) > 1,

exp

Re
∑

y<p≤w

χ(p)p−s

�

∣∣∣∣∣∣
L
(
s + 1

logw , χ
)

L
(
s + 1

log y , χ
)
∣∣∣∣∣∣� (D(|t| + 2))c1/ log y .
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Bearing in mind the restriction y ≥ D, if y ≥ T further holds then this

upper bound does not exceed an absolute constant. Otherwise we apply the

same argument to the range T < p ≤ w and note that∣∣∣∣∣∣Re
∑

y<p≤T

χ(p)p−s

∣∣∣∣∣∣ ≤
∑

D<p≤T

p−1 ≤ log(log T/ logD) + c2.

Taking logarithms completes the proof. �

Proof of Lemma 2. Since the sum
∑

D<p≤x |ap|p−σ approaches zero

as σ → ∞, the innermost maximum may be taken over a bounded rectangle.

For reals yj , wj , D ≤ yj ≤ wj , σj ≥ 1/2, tj , |tj | ≤ T , define

δj,p =

{
χj(p)p

−σj−itj if yj < p ≤ wj ,

0 otherwise,

j = 1, . . . , k, and consider the inequality

∑
D<p≤x

∣∣∣∣∣∣
k∑

j=1

bjδj,p

∣∣∣∣∣∣
2

≤ λ
k∑

j=1

|bj |2,

where the bj are for the moment real and nonnegative. The expanded sum

is

k∑
j=1

b2j
∑

yj<p≤wj

p−2σj + 2
∑

1≤j<$≤k

bjb$ Re
∑

D<p≤x

χjχ$(p)p
−σj−σ�−itj+it� .

An appeal to Lemma 3 followed by an application of the Cauchy-Schwarz

inequality shows that with a suitable choice for c we may take λ = L+ k∆.

If now bj is complex, we represent it as a sum

max(Re bj , 0) + min(Re bj , 0) + imax(Im bj , 0) + imin(Im bj , 0)

and correspondingly partition the innersum over j. Since the coefficients

in each subsum all have the same argument, a second application of the

Cauchy-Schwarz inequality allows us to conclude that with λ = 4(L + k∆)

the above inequality holds for all complex bj .
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Dualising:

k∑
j=1

∣∣∣∣∣∣
∑

D<p≤x

apδj,p

∣∣∣∣∣∣
2

≤ 4(L + k∆)
∑

D<p≤x

|ap|2

for all complex ap.

Replacing ap by app
− 1

2 completes the proof. �

3. Exceptional Characters

We may appreciate Lemma 2 by applying it to the Dirichlet series

GI,j(s) =

∞∑
n=1

g(n)χj(n)n−s

where the multiplicative function g, with values in the complex unit disc,

vanishes on the primes outside the interval I, and χj is a nonprincipal

character (modD).

For σ > 1, I ⊆ (D,x], in terms of the principal value of the logarithm,

logGI,j(s) =
∑
p∈I

g(p)χj(p)p
−s + O

∑
p>D

p−2

 .

If H is the semi-strip Re (s) > 1, |Im (s)| ≤ T , then

k∑
j=1

max
I⊆(D,x]

max
s∈H

|logGI,j(s)|2 ≤ 8(L + k∆)L + O
(
(logD)−1

)
.

Given α > 0, T ≤ exp
(
logD(log x/ logD)α

2/9
)
, we call a nonprincipal

character χj (modD) for which

max
I⊆(D,x]

max
s∈H

|logGI,j(s)| < α log(log x/ logD)

fails, exceptional relative to the triple (α,D, x) or, more shortly, exceptional.

Thus, given α > 0, with the exception of O
(
α−2

)
characters,(

log x

logD

)−α

< |GI,j(s)| <
(

log x

logD

)α
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uniformly for s in H, I in (D,x].

Then either there are � α−2 such characters attached to the modulus

D, or D exceeds a certain fixed power of x, the power depending upon α

only.

Remarks. If 0 < γ < 1, D ≤ Nγ ≤ x ≤ N , then a character χj that

is nonexceptional relative to (α,D,N) is essentially nonexceptional relative

to (α,D, x), since each subset of (D,x] is a subset of (D,N ] and

|GI,j(s)| <
(

logN

logD

)α

≤
(

log x

γ logD

)α

,

with an analogous lower bound.

Note that within similar tolerances the same result applies to gµ, ob-

tained by braiding g with the Möbius function.

4. First Waystation: an L2 Theorem 1

Lemma 4. Let γ < 1, δ < 1, c > 3/2, N be positive real numbers, D

an integer, 2 ≤ D ≤ N1/c.

Given a completely multiplicative function g that vanishes on the primes

in (1, Dc], there is a set J of Dirichlet characters (modD), of cardinality

bounded in terms of δ alone, so that

∑
χ/∈J

max
2≤y≤t

∣∣∣∣∣∣
∑
n≤y

g(n)χ(n)

∣∣∣∣∣∣
2

�
(

t

log t

)2( log x

logD

)δ

uniformly for Dc ≤ t ≤ x, Nγ ≤ x ≤ N .

We may interpret this result by means of

Lemma 5. Let χj, j ∈ J , be a collection of Dirichlet characters

(modD). Let

L(a) =
∑

n≡a (modD)

bn −
∑
j∈J

χj(a)

ϕ(D)
Bj
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where at most finitely many of the complex numbers bn are nonzero and

Bj =
∑
n

bnχj(n).

Then

ϕ(D)
D∑

a=1
(a,D)=1

|L(a)|2 =
∑
j /∈J

|Bj |2.

Proof of Lemma 5. From the orthogonality of characters

L(a) =
∑
j /∈J

χj(a)

ϕ(D)
Bj .

Hence

D∑
a=1

(a,D)=1

|L(a)|2 =

D∑
a=1

(a,D)=1

1

ϕ(D)2

∑
j1,j2 /∈J

χj1χj2(a)Bj1Bj2

=
1

ϕ(D)2

∑
j1,j2 /∈J

Bj1Bj2

D∑
a=1

(a,D)=1

χj1χj2(a)

=
1

ϕ(D)

∑
j /∈J

|Bj |2,

the final step by a further appeal to the orthogonality of characters. �

For an arithmetic function f , define

Y (f, a, x) =
∑
n≤x

n≡a (modD)

f(n) −
∑
j∈J

χj(a)

ϕ(D)

∑
n≤x

f(n)χj(n).

Then Lemma 4 in particular asserts that

ϕ(D)

D∑
a=1

(a,D)=1

|Y (g, a, t)|2 �
(

t

log t

)2( log x

logD

)δ
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uniformly for Dc ≤ t ≤ x, Nγ ≤ x ≤ N , a version of Theorem 1 that be-

longs formally to the L2 space of functions on the group of reduced residues

(modD).

For a complex-valued arithmetic function f and real x define

N(x) = N(x, f) =
∑
n≤x

f(n) log n, M(x) = M(x, f) =
∑
n≤x

f(n).

When it is clear from the context, explicit reference to the function f may

be omitted.

Λ(n) denotes von Mangoldt’s function, log p when n is a power of a

prime p, zero otherwise.

Lemma 6. Let r > 0, y = w − w(logw)−r. Then

N(w, g) � w

∫ w

2

|N(u)|
u2 log u

du +
∑

d≤(logw)2r

dΛ(d)|g(d)|
w − y

∫ w/d

y/d
|M(u)| du + E0,

where

E0 = E0(g) = max
y≤t≤w

∣∣∣∣∣∣
∑

y<n≤t

g(n) log n

∣∣∣∣∣∣
uniformly for w ≥ 2, for all completely (or exponentially) multiplicative

functions g with values in the complex unit disc.

Proof of Lemma 6. This result may be found as Lemma 1 of [9]. �

The following argument, which formally applies to any complex-valued

arithmetic function f , will be implicitly employed several times.

Integrating by parts, F (s), s = σ + iτ , σ = Re (s) > 0, the formal sum

function of the Dirichlet series
∑∞

n=1 f(n)n−s, has representations

s−1F (s) =

∫ ∞

1
y−s−1M(y, f) dy =

∫ ∞

1
M(ew)e−wσe−iwτ dw.

Viewed as functions of τ and w respectively,
(
s
√

2π
)−1

F (s) and M(ew)e−wσ

are Fourier transforms. By Plancherel’s theorem:
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Lemma 7. ∫ ∞

−∞

∣∣∣∣F (s)

s

∣∣∣∣2 dτ = 2π

∫ ∞

1

|M(y)|
y2σ+1

dy

provided one of the integrals exists in an L2 sense.

Proof of Lemma 4. For simplicity of presentation we shall establish

the result with 3δ in place of δ. Temporarily denoting log t by (, it follows

from Lemma 6 that for any set of distinct characters χj (modD),

S(t) =
∑
j

max
2≤w≤t

|N(w, gχj)|2 �
3∑

k=1

Fk,

where

F1 =
∑
j

(
t

∫ t

2

|N(u)|
u2 log u

du

)2

,

F2 =
∑
j

∑
d≤$2r

Λ(d)|g(d)| max
u≤d−1t

|M(u, gχj)|

2

,

F3 =
∑
j

 max
v−u≤$−rt

v≤t

∣∣∣∣∣∣
∑

u<n≤v

g(n)χj(n) log n

∣∣∣∣∣∣
2

.

We consider these expressions in reverse order. Assuming c > 3/2, an

application of Lemma 1 with r = 2 and ε sufficiently small shows that

F3 �
(
t(log t)−2 + D3/2 logD log t

)∑
n≤t

(log n)2 � t2.

With κ =
∑

D<d≤$2r d
−1Λ(d), after the Cauchy-Schwarz inequality a

similar application of Lemma 1 delivers

F2 � κ
∑

Dc<d≤$2r

dΛ(d)
∑
j

max
u≤d−1t

|M(u, gχj)|2

� κ
∑

Dc<d≤$2r

dΛ(d)
(
d−1t + (d−1t)εD3/2 logD

)
d−1t

� (κt)2 � (t log(log t/ logD))2 .
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Note that if Dc ≥ (log t)4, then F2 = 0; otherwise we may safely replace D,

in the summation condition on d, by (logD)4.

Towards F1 we also note that since g vanishes on the integers not ex-

ceeding Dc, appeal to Lemma 1 delivers the bound∑
j

|N(u, gχj)|2 �
(
u(logD)−1 + uεD3/2 logD

)∑
n≤u

|g(n) log n|2

� (u log u/ logD)2 ,

uniformly for u ≥ 2.

Let θ be a real number, 0 < θ < 1; its value will ultimately depend at

most upon c, δ, γ. Let

S1(t) = t2
∑
j

(∫ t

tθ

|N(u, gχj)|
u2 log u

du

)2

and S2(t) the similar expression with range of integration Dc < u ≤ tθ.

We begin with the Cauchy-Schwarz inequality:

S1(t) ≤ t2
∫ t

tθ

du

u(log u)2

∑
j

∫ t

tθ

|N(u, gχj)|2
u3

du.

Setting σ = 1 + (log t)−1, u−3 ≤ e2u−2σ−1 holds over the range 1 ≤ u ≤ t,

hence

S1(t) ≤
(et)2

θ log t

∑
j

∫ t

tθ

|N(u, gχj)|2
u2σ+1

du

≤ (et)2

2πθ log t

∑
j

∫ ∞

−∞

∣∣∣∣G′(s, χj)

s

∣∣∣∣2 dτ,

the second step by appeal to Lemma 7.

For T > 0, to be chosen shortly, let

L1 =
t2

θ log t

∑
j

∫
|τ |≤T

∣∣∣∣G′(s, χj)

s

∣∣∣∣2 dτ
and L2 the similar expression with range of integration |τ | > T .
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A further application of Lemma 7 shows that

∑
j

∫ ∞

−∞

∣∣∣∣G′(s, χj)

s

∣∣∣∣2 dτ �
∫ ∞

2

∑
j

|N(u, gχj)|2
du

u2σ+1
,

which our initial remark guarantees to be

�
∫ ∞

2

(
log u

logD

)2 du

u2σ−1
� (log t)3

(logD)2
.

In particular, ∑
j

∫
|τ |≤1

|G′(s, χj)|2 dτ � (log t)3(logD)−2.

Since we can replace g(n) by g(n)n−iλ for any real λ without affecting

the hypothesis that g vanishes on the primes up to Dc, this last inequality

holds when the integration is over any interval |τ −m| ≤ 1, m an integer.

As a consequence,

L2 � t2

θ log t

∑
|m|>T

1

m2

(log t)3

(logD)2
� 1

θT

(
t log t

logD

)2

.

We now remove from consideration those characters χj that are excep-

tional relative to the triple (δ,D,N).

With the implicit constraint that T not exceed

exp
(
logD(log x/ logD)δ

2/9
)
, the factorisation G′(s, χj) =

G(s, χ) (G′(s, χ)/G(s, χ)) enables us to assert that

L1 � t2

θ log t

(
log x

logD

)2δ∑
j

∫ ∞

−∞

∣∣∣∣G′(s, χj)

sG(s, χj)

∣∣∣∣2 dτ.

Appeal to the representation

−G′(s, χ)

G(s, χ)
=

∞∑
n=1

g(n)χ(n)Λ(n)

ns
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and application of Lemma 7 provides the sum over j with the alternative

representation

2π

∫ ∞

1

∑
j

∣∣∣∣∣∣
∑
n≤y

g(n)χj(n)Λ(n)

∣∣∣∣∣∣
2

y−2σ−1 dy.

Here the integrand is zero unless y > Dc, when the corollary to Lemma 1

shows it to be

�
(
y(log y)−1 + yεD3/2 logD

)∑
n≤y

Λ(n)2y−2σ−1 � y−2σ+1.

Consequently L1 � t2θ−1(log x/ logD)2δ and

S1(t) � t2θ−1(log x/ logD)2δ + t2(θT )−1(log t/ logD)2.

Choosing T = c0(logN/ logD)4 with a suitably small constant c0, we may

omit the second of the bounding terms in favour of the first.

The sum S2(t) is treated indirectly. For Dc ≤ u ≤ x define

H(u) = max
Dc≤w≤u

1

w2(logw)δ

∑
j

max
2≤y≤w

|N(y, gχj)|2.

After an application of the Cauchy-Schwarz inequality

S2(t) ≤ t2
∫ tθ

Dc

du

u(log u)1−δ/2

∫ tθ

Dc

H(u)

u(log u)1−δ/2
du

� t2(θ log t)δH(tθ) � t2(θ log t)δH(xθ),

uniformly for Dc ≤ t ≤ x. Then uniformly for Dc ≤ t ≤ x, Nγ ≤ x ≤ N ,

S(t) � t2(θ log t)δH(xθ) + t2θ−1(log x/ logD)2δ,

the contribution from terms F2, F3 having been absorbed. In particular,

H(x) � θδH(xθ) + θ−1(log x/ logD)2δ(logD)−δ.

Fixing θ at a sufficiently small value, independent of x, N , D, we may omit

the term involving H(xθ) and arrive at∑
j

max
2≤y≤t

|N(y, gχj)|2 � t2(log x/ logD)3δ,
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with the same uniformities in t and x.

To strip the logarithm in N(y) we apply Lemma 1:

∑
j

max
2≤y≤t

∣∣∣∣∣∣
∑
n≤y

g(n)χj(n) log(t/n)

∣∣∣∣∣∣
2

�
(
t + tεD3/2 logD

)∑
n≤t

log(t/n)2

� t2,

the Cauchy-Schwarz inequality; and divide by (log t)2.

This completes the proof of Lemma 4. �

5. Second Waystation: from L2 to L∞

Lemma 8. Let c > 3/2. Theorem 1 is valid for completely multiplica-

tive functions that vanish on the primes up to Dc.

Proof of Lemma 8. We again introduce a logarithm, then remove

it.

The representation log n =
∑

d|n Λ(d) enables the convolution factorisa-

tion g log = g ∗ gΛ, hence a representation

Y (g log, a, t) =
∑
d≤t

g(d)Λ(d)Y (g, ad, td−1),

where dd ≡ 1 (modD).

The contribution from the terms with tD−2c < d ≤ t is

�
∑

tD−2c<d≤t

Λ(d)

 ∑
m≤td−1

m≡ad (modD)

g(m) +
1

ϕ(D)

∑
m≤td−1

|g(m)|



�
∑

m≤D2c

|g(m)|

 ∑
d≤tm−1

d≡am (modD)

Λ(d) +
1

ϕ(D)

∑
d≤tm−1

Λ(d)


and, by the Brun-Titchmarsh theorem,

� t

ϕ(D)

∑
m≤D2c

|g(m)|
m

� t

ϕ(D)

∏
Dc<p≤D2c

(
1 +

1

p

)
� t

ϕ(D)
.
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Let 0 < β < 1. We cover the interval (Dc, tD−2c] by adjoining intervals

(U, 2U ] and each such interval by adjoining subintervals (V, V + Uβ]. The

remaining terms in the sum representing Y (g log, a, t) contribute

�
∑
U

∑
V

∑
V <d≤V +Uβ

|g(d)|Λ(d)
∣∣Y (g, ad, td−1)

∣∣ .
Replacing td−1 in the innermost sum by tV −1 introduces an error of

�
∑
U

∑
V

∑
V <d≤V +Uβ

Λ(d)

(
1

ϕ(D)

(
t

V
− t

d

)
+ 1

)
�

∑
Dc<d≤2tD−2c

t

d2−βϕ(D)
+

∑
d≤2tD−2c

Λ(d) � t

ϕ(D)
.

We are reduced to estimating the sum

J =
∑
U

∑
V

∑
V <d≤V +Uβ

Λ(d)
∣∣Y (g, ad, tV −1)

∣∣ .
Partitioning the variable d according to the residue class (modD) to which

it belongs, a typical innersum over d is

D∑
b=1

(b,D)=1

∣∣Y (g, ab, tV −1)
∣∣ ∑
V <d≤V +Uβ

d≡b (modD)

Λ(d)

� Uβ

ϕ(D)

D∑
b=1

(b,D)=1

∣∣Y (g, ab, tV −1)
∣∣ ,

by a second application of the Brun-Titchmarsh theorem since, typically,

Uβ ≥ Dβc and we may choose β so that βc > 1.

Bearing in mind that ab traverses a complete set of reduced residues

(modD) with b, an application of the Cauchy-Schwarz inequality shows

this last bound to be

� Uβ

ϕ(D)

ϕ(D)
D∑
b=1

(b,D)=1

∣∣Y (g, b, tV −1)
∣∣2


1/2
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in turn, via the first waystation, Lemma 4,

� Uβ

ϕ(D)

tV −1

log(tV −1)

(
log x

logD

)δ

,

uniformly for Dc ≤ U ≤ tD−2c, U ≤ V ≤ 2U , Dc ≤ t ≤ y, xγ ≤ y ≤ x.

For the purposes of calculation it is convenient to replace this upper

bound by

� 1

ϕ(D)

(
log x

logD

)δ ∑
V <d≤V +Uβ

t

d log(td−1)

to obtain the estimate

J � t

ϕ(D)

(
log x

logD

)δ ∑
Dc<d≤2tD−2c

1

d log(td−1)
.

Since the function (y log(t/y))−1 is nonincreasing for 0 < y ≤ t/e, the final

sum is

� 1 +

∫ 2tD−2c

Dc

dw

w log(tw−1)
� log

(
log t

logD

)
.

Altogether,

Y (g log, a, y) � y

ϕ(D)

(
log x

logD

)δ

log

(
log x

logD

)
,

uniformly for xγ ≤ y ≤ x.

To remove the logarithm we note that∑
n≤y

n≡a (modD)

g(n) log(y/n) −
∑
j∈J

χj(a)

ϕ(D)

∑
n≤y

g(n)χj(n) log(y/n)

�
∑
n≤y

n≡a (modD)

log(y/n) +
1

ϕ(D)

∑
n≤y

log(y/n) � y

ϕ(D)
,

uniformly for 1 ≤ D ≤ y/ log y.

To complete the proof of Lemma 8 we set δ = α/2 and divide by

(log y)2. �

At this stage we remove the restrictions on the multiplicative function

in the second waystation; first that it should vanish on the primes up to Dc.
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6. Truncated Multiplicative Functions

Lemma 9. Let h be a real-valued multiplicative arithmetic function that

for some c0 satisfies 0 ≤ h(pk) ≤ ck0 on prime-powers and for each ε > 0,

with an appropriate constant c1(ε), h(n) ≤ c1(ε)n
ε on the positive integers.

Let 0 < β < 1.

Then

∑
n≤x

n≡a (modD)

h(n) � x

ϕ(D) log x
exp

 ∑
p≤x

(p,D)=1

h(p)

p


uniformly for (a,D) = 1, D ≤ xβ, x ≥ 2.

Proof of Lemma 9. This is a particular case of a result of Shiu [27],

that generalises the Brun-Titchmarsh theorem to nonnegative multiplicative

functions. �

Lemma 10. Let 2 ≤ w ≤ x, 2 ≤ Y ≤ x, and 0 < β < 1. Let g be an

exponentially multiplicative function with 0 ≤ g(p) ≤ 1 if p ≤ Y , g(p) = 0

otherwise.

Then

∑
w<n≤x

n≡a (modD)

g(n) � x

ϕ(D) log x
exp

 ∑
p≤Y

(p,D)=1

g(p)

p

 exp

(
− logw

log Y

)

uniformly for (a,D) = 1, D ≤ xβ.

Proof of Lemma 10. Set θ = 1/ log Y . The sum, S, to be estimated,

does not exceed

w−θ
∑
n≤x

n≡a (modD)

g(n)nθ.

Set h(n) = g(n)nθ. Here h(pk) = (g(p) exp(θ log p))k /k! ≤ ek/k! if p ≤ Y ,

and is otherwise zero. Thus h(pk) ≤ exp(e) for all prime-powers pk. In
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particular, h(n) ≤ exp (eω(n)), where ω(n) counts the number of distinct

prime-divisors of n, hence ≤ exp(c2 log n/ log log n) < nε for all n sufficiently

large.

After an application of Lemma 9,

S � w−θx

ϕ(D) log x
exp

 ∑
p≤Y

(p,D)=1

g(p)pθ−1

 .

Appealing to the bound et − 1 ≤ tet, valid for all nonnegative t, the sum in

the exponential does not exceed∑
p≤Y

(p,D)=1

g(p)p−1 + eθ
∑
p≤Y

g(p)p−1 log p,

with a second term that is � θ log Y � 1.

Since w−θ = exp(− logw/ log Y ), the lemma is established. �

Lemma 11. Let 2 ≤ w ≤ x, 2 ≤ Y ≤ x. Let g be a multiplicative

function with values in the real interval, 0 ≤ g(n) ≤ 1, vanishing on the

primes p > Y .

Then∑
w<n≤x

n≡a (modD)

g(n) � x

ϕ(D) logw

∏
p≤Y

(p,D)=1

(
1 +

g(p)

p

)
exp

(
− logw

10 log Y

)

uniformly for (a,D) = 1, D11 ≤ w.

Remark. Although susceptible of improvement, the uniformities in

Lemma 11 are adequate to our present requirements.

Proof of Lemma 11. Express g as a convolution of multiplicative

functions ( ∗ r, where ((pk) = g(p)k/k!, k ≥ 1. An examination of Euler

products shows that r(p) = 0 and

r(pk) =
k∑

j=0

1

j!
(−g(p))j g(pk−j), k ≥ 2.
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Hence |r(p2)| ≤ 1 and |r(pk)| ≤ e generally. It is convenient to note that∑
v

|r(v)|v−1 ≤
∏
p

(
1 + ep−2(1 − p−1)−1

)
and absolutely bounded.

Let 0 < δ < 1. We represent∑
w<n≤x

n≡a (modD)

g(n) =
∑

v≤xw−δ

r(v)
∑

wδ<u≤xv−1

u≡av (modD)

((u)

+
∑
u≤wδ

((u)
∑

wu−1<v≤xu−1

v≡au (modD)

r(v),

= Σ1 + Σ2, say.

Applied to its innersum, Lemma 10 assures that

Σ1 � x

ϕ(D) logw
exp

 ∑
p≤Y

(p,D)=1

g(p)

p
− δ logw

log Y


uniformly for D ≤ (xv−1)β, hence for D ≤ wδβ.

If a prime p exactly divides an integer v in Σ2, then r(v) = 0. Thus

v = m2t where p | t implies p | m. In particular, t ≤ m, so m ≥ (wu−1)1/3.

Moreover, m ≤ x1/2. The innersum in Σ2 is

�
∑

(wu−1)1/3<m≤x1/2

eω(m)
∑

t≤xm−2

t≡am2 (modD)

1

�
∑

(wu−1)1/3<m≤x1/2

eω(m)
( x

m2D
+ 1
)
.

Estimating simply,∑
m≤y

eω(m) ≤ y
∑
m≤y

eω(m)m−1 ≤ y
∏
p≤y

(
1 + ep−1 + O(p−2)

)
� y(log y)e,

and with an integration by parts,∑
m>y

eω(m)m−2 � y−1(log y)e, y ≥ 2.
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Hence

Σ2 �
∑
u≤wδ

((u)

(
x

D

( u

w

)1/3
(logw)e + x1/2(log x)e

)
�
∑
u≤wδ

((u)u−1
(
xD−1w4δ/3−1/3(logw)e + wδx1/2(log x)e

)
.

We choose δ = 1/10. The series involving ( is

≤
∏
p≤Y

(p,D)=1

(
1 +

∞∑
k=1

g(p)k/k!

)
= exp

 ∑
p≤Y

(p,D)=1

g(p)

p

 ,

the coefficient of xD−1 is

w−1/5(logw)e � exp(− logw/10 log Y )(logw)−1

and the restriction on the size of D guarantees the term involving x1/2 to

be negligible.

This completes the proof of Lemma 11. �

It is useful to note the following

Corollary to Lemma 11. Let 2 ≤ w ≤ x, 2 ≤ Y ≤ x. Let g be

a multiplicative function with values in the complex unit disc, vanishing on

the primes p > Y .

Then

Y (g, a, x) − Y (g, a, y) � x

ϕ(D) logw

∏
p≤Y

(p,D)=1

(
1 +

|g(p)|
p

)
exp

(
− logw

10 log Y

)

uniformly for w ≤ y ≤ x, D11 ≤ w.

Proof of Corollary to Lemma 11. The difference to be estimated

is

�
∑

w<n≤x
n≡a (modD)

|g(n)| + 1

ϕ(D)

∑
w<n≤x
(n,D)=1

|g(n)|.

We may apply Lemma 11 to the first sum, directly, and to the second sum

after partitioning the range of the variable n into reduced residue classes

(modD). �
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7. Proof of Theorem 1: Completion

Express g as a convolution of multiplicative functions f ∗ h, where

f(pk) = g(pk) if p > Dc and is zero otherwise, h coincides with g on the

powers of p ≤ Dc and is zero otherwise. There is a corresponding decom-

position

Y (g, a, y) =
∑

v≤y1/2

h(v)Y (f, av, yv−1)

+
∑

u≤y1/2

f(u)
(
Y (h, au, yu−1) − Y (h, au, y1/2)

)
.

From the second Waystation the sum over the variable v is

�
∑

v≤y1/2

|h(v)| y

vϕ(D) log y

(
log y

logD

)α

where ∑
v≤y1/2

|h(v)|v−1 �
∏

p≤Dc

(
1 + |g(p)|p−1

)
�
∏
p≤D

(
1 + |g(p)|p−1

)
.

In view of the Corollary to Lemma 11, the sum over the variable u is

�
∑

u≤y1/2

|f(u)|
u

y

ϕ(D) log y

∏
p≤D

(
1 +

|g(p)|
p

)
exp

(
− log y

20c logD

)
.

Here ∑
u≤y1/2

|f(u)|
u

�
∏

Dc<p≤y1/2

(
1 +

|g(p)|
p

)
� log y

logD
,

an amount which is absorbed by the previous exponential factor.

It remains to remove the restriction that g be completely multiplicative.

Since the argument runs along familiar lines, we indicate only salient details.

Given a convolution representation g = ( ∗ r with ((pk) = g(p)k, k ≥ 1,

examination of Euler products shows that r(pk) = g(pk) − g(p)g(pk−1),

k ≥ 1, in particular that r(p) = 0.
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We employ the above decomposition of Y (g, a, y), the roles of f , h played

by (, r respectively. To the corresponding sum over v ≤ y1/2 we apply the

version of Theorem 1 obtained so far. The sum over u ≤ y1/2 we treat in

the manner of Lemma 11, the role of the function eω(m) played by 2ω(m).

This completes the proof of Theorem 1. �

Note that, in accordance with the second of the remarks following the

definition of exceptional characters, Theorem 1 applies simultaneously to

the functions g and gµ.

8. Taxonomy of Exceptional Characters

In this section we address the exceptional characters that appear in

Theorem 1. An overview is that without hypothesis at most one Dirichlet

character (modD) can be near to a given multiplicative function g with

values in the complex unit disc. Unless g has slender support, all exceptional

characters in Theorem 1 are obtained by braiding a character close to g with

characters of order bounded independently of the modulus D.

To motivate the methodology we apply it to derive the following result.

Theorem 3. Let c, c1, γ, x be positive real numbers, D an integer,

0 < c < 1, 0 < γ < 1, 1 ≤ D ≤ x.

Let g be a multiplicative function, with values in the complex unit disc,

that satisfies ∑
w<p≤x

(|g(p)| − c) p−1 ≥ −c1, D ≤ w ≤ x,

on the primes.

Then there are nonprincipal Dirichlet characters χj (modD), their num-

ber bounded in terms of c alone, such that uniformly for (a,D) = 1, xγ ≤
y ≤ x,∑

n≤y
n≡a (modD)

g(n) =
1

ϕ(D)

∑
n≤y

(n,D)=1

g(n) +
∑
j

χj(a)

ϕ(D)

∑
n≤y

g(n)χj(n)

+ O

(
y

ϕ(D) log y

∏
p≤y

(p,D)=1

(
1 +

|g(p)|
p

)(
logD

log y

)η
)
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with η = 10−3c4(c + 1)−1 and the order of every product χjχr, j 
= r, of

exceptional characters bounded by 10c−1.

If for some positive integer k∑
D<p≤x
g(p)k∈R

(|g(p)| − c) p−1 ≥ −c1

and the exponent η is replaced by k−2η, then the order of each exceptional

character is at most 20kc−1.

Moreover, with
(
10−1ck−1

)2
η in place of η and Z =

exp
(
logD(log x/ logD)1/30

)
, each exceptional sum satisfies the uniform

bound ∑
n≤y

g(n)χj(n) � y

log y

∏
p≤y

(p,D)=1

(
1 +

|g(p)|
p

)

× exp

− c

c + 1

∑
D<p≤Z

|g(p)| − Re g(p)χj(p)

p

 ,

xγ ≤ y ≤ x, the implied constant depending at most upon c, c1, γ and k.

Remarks. Integrating by parts, the lower bound hypothesis on |g(p)|
follows directly from a uniform lower bound∑

p≤y

|g(p)|p−1 log p ≥ c log y − c2, y ≥ 2.

Note that ∑
D<p≤Z

p−1 =
1

30

∑
D<p≤x

p−1 + O(1), 1 ≤ D ≤ x.

Theorem 3 aims to maintain uniformity in the modulus D whilst en-

compassing multiplicative functions g with limited and scattered support

and reducing the orders of the exceptional characters to a range within the

purview of standard reciprocity laws.

The constants appearing in Theorem 3 may be considerably varied.

In practice the lower bound on |g(p)| with a possibly small value of c
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serves to enable the application of Theorem 2 to Theorem 1 and support

a taxonomy of the exceptional characters according to the size of the sum∑
D<p≤x |g(p)|p−1 alone, as is shown in Theorem 4.

For T ≥ D ≥ 2, denote by ∆(T ) the function log(log T/ logD) + c that

appears as the upper bound in Lemma 3.

Lemma 12. Let χ be a Dirichlet character (modD), D ≥ 2, x, δ, t

real, x ≥ D, 0 < δ ≤ 1, |t| ≤ T , h a real-valued function on the primes in

the interval (D,x] for which 0 ≤ h(p) ≤ 1 and∑
D<p≤x

h(p)p−1
∣∣1 − χ(p)pit

∣∣2 ≤ δL,

where L =
∑

D<p≤x p−1.

Then

either
∑

D<p≤x

h(p)p−1 ≤ 4δ1/3L + ∆
(
δ−1/3T

)
or the order of χ is less than 2δ−1/3.

Remark. In application to Theorem 3, δ will be fixed at a

positive value independent of D, x; T will be chosen of the form

max
(
D, (log x/ logD)d

)
for some positive constant d, also independent of

D, x. As a consequence, the term ∆
(
δ−1/3T

)
in the above conclusion will

not exceed logL + O(1), effectively negligible in comparison with L.

Proof of Lemma 12. We begin with the Fejér kernel

1

N

(
sinπNθ

sinπθ

)2

=

N−1∑
m=−(N−1)

(
1 − |m|

N

)
e2πimθ, θ ∈ R.

It is useful to note that if ‖θ‖ denotes the distance of θ to a nearest integer,

then

2‖θ‖ ≤ |sinπθ| ≤ π‖θ‖.
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If, moreover, 2N‖θ‖ ≤ 1, then ‖Nθ‖ = N‖θ‖ and the Fejér kernel is at least

4Nπ−2. With 2πγp = argχ(p) + t log p we see that

4Nπ−2
∑

D<p≤x
2N‖γp‖≤1

h(p)

p
≤

∑
D<p≤x

1

N

(
sinπNγp
sinπγp

)2 1

p

=

N−1∑
m=−N+1

(
1 − |m|

N

)
Re

∑
D<p≤x

(
χ(p)pit

)m 1

p
.

If the order of χ is at least N , then each of the innermost character sums

with m 
= 0 is by Lemma 3 at most ∆(NT ).

However,
∣∣1 − χ(p)pit

∣∣ = ∣∣1 − e2πiγp
∣∣ = 2 |sinπγp| ≥ 4‖γp‖ so that∑

D<p≤x
2N‖γp‖>1

h(p)

p
<

N2

4

∑
D<p≤x

h(p)

p

∣∣1 − χ(p)pit
∣∣2 ≤ N2δL

4
.

Altogether, ∑
D<p≤x

h(p)

p
≤
(
N2δ

4
+

π2

4N

)
L + ∆(NT ).

Choosing, for simplicity of exposition, N = [2δ−1/3], so that N > 2δ−1/3 −
1 ≥ δ−1/3, we obtain the upper bound 4δ1/3L + ∆

(
δ−1/3N

)
and complete

the proof. �

Employing the lower bound sin θ ≥ θ − θ3/6, valid for 0 ≤ θ ≤ π
2 , and

the consequent lower bound

1

r

(
sinπrθ

sinπθ

)2

≥ r

(
1 − (πr‖θ‖)2

6

)
for the Fejér kernel, valid if 2r‖θ‖ ≤ 1, a similar argument with r in place

of N and a division into cases according to whether 2r‖γp‖ ≤
(
3π−2r3δ

)1/4
delivers the following variant of Lemma 12.

Lemma 13. Under the hypotheses of Lemma 12, if r3δ ≤ 1 and χ has

order at least r, r ≥ 2, then∑
D<p≤x

h(p)

p
≤
(
1 + (r3δ)1/2

) L

r
+ ∆ ((r − 1)T ) .
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If D is a prime, D ≡ 1 (mod r) and S is the set of primes in (D,x] that

are rth-powers (modD), then for every character of order r:∑
p∈S p−1 |1 − χ(p)|2 = 0 whilst, for a fixed D, Dirichlet’s Theorem on

primes in arithmetic progressions shows that
∑

p∈S p−1 = r−1L + O(1) as

x → ∞. The upper bound in Lemma 13 cannot be appreciably improved.

Under the hypotheses of Lemma 12 there is control on the size of t, too.

To this end we employ an analogue of Lemma 3.

Lemma 14. With a certain real c0,

Re
∑

y<p≤x

p−1−it ≤


2 log log (2 + |t|) + c0, |t| > (log y)−1

− log (|t| log y) + c0, (log x)−1 < |t| ≤ (log y)−1,

log(log x/ log y) + c0, |t| ≤ (log x)−1,

uniformly for x ≥ y ≥ 2, t real.

Proof of Lemma 14. Applying the estimates of Chebyshev as in

Lemma 3,

exp

Re
∑

y<p≤x

p−1−it


lies between positive absolute constant multiples of∣∣∣ζ (1 + (log x)−1 + it

) (
ζ
(
1 + (log y)−1 + it

))−1
∣∣∣ .

The first of the three inequalities in the lemma follows from the classical

bounds (log(2 + |t|))−1 � |ζ(s)| � log(2 + |t|), valid in the notched half-

plane σ ≥ 1, |s− 1| ≥ c1 > 0, c.f. [28], Theorem 3.5. The second and third

inequalities follow from the Laurent expansion ζ(s) = (s−1)−1+ · · · around

the simple pole of ζ(s) at s = 1. �

Denote the upper bound in Lemma 14 by ψ(t) and set L1 =
∑

y<p≤x p−1.

Lemma 15. If for some δ, 0 < δ < 1, t real with h(p) in the interval

[0, 1] ∑
y<p≤x

h(p)p−1
∣∣1 − pit

∣∣2 ≤ δL1,
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then, with the same uniformities∑
y<p≤x

h(p)p−1 ≤ 4δ1/3L1 + 3ψ
(
2δ−1/3t

)
+ 3ψ(t).

Proof of Lemma 15. The argument follows that for Lemma 12 with

appeal to Lemma 14 in place of that to Lemma 3. �

Before proceeding to the proof of Theorem 3, let D be an integer, x, T

real, 2 ≤ D ≤ x, D ≤ T and again ∆(T ) the function log(log T/ logD) + c

that appears as the upper bound in Lemma 3. In the following proof T is

chosen to be max
(
D, (log x/ logD)4

)
, so that the remark made following

the statement of Lemma 12 comes into force.

Assuming that L =
∑

D<p≤x p−1 > 0, on the equivalence classes of

multiplicative functions, with values in the complex unit disc, and that

coincide on the primes in the interval (D,x], define the metric

ρ(g1, g2) =

 1

4L

∑
D<p≤x

1

p
|g1(p) − g2(p)|2

1/2

≥ 0.

Effectively, multiplicative functions with values in the complex unit disc

belong to a ball of radius 1 whose centre we may choose to be the arithmetic

function that is identically 1.

For distinct Dirichlet characters χj (modD), real tj , |tj | ≤ T , define

generalised characters χj,tj by p → χj(p)p
itj , j = 1, 2. An application of

Lemma 3 shows that

ρ(χ1,t1 , χ2,t2) =

 1

2L

∑
D<p≤x

1

p
(1 − Reχ1,t1χ2,t2(p))

1/2

≥
(

1

2
− ∆(2T )

2L

)1/2

=
1√
2

+ O

(
logL

L

)
and, after the triangle inequality,

max
j=1,2

ρ
(
χj,tj , g

)
≥ 1

2
√

2
+ O

(
logL

L

)
.
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To this extent, at most one generalised character can be near to a given

multiplicative function, g.

Proof of Theorem 3. For primes on which g does not vanish, let

g(p) = |g(p)|eiθp ; otherwise set θp = 0.

We apply Theorem 1 with α a positive value not exceeding c−η. Under

the lower bound hypothesis on |g(p)| this ensures that the error term in

Theorem 1 falls within that of Theorem 3.

If, for an exceptional character χ, real δ, 0 < δ < 1,

min
|t|≤T/2

∑
D<p≤x

|g(p)|
∣∣∣1 − eiθpχ(p)pit

∣∣∣2 p−1 > δL/4,

then with Y = D the function λ in Theorem 2 exceeds δL/8. With δ =

(c/5)3 the corresponding sum over the gχ(n) also falls within the error term

of Theorem 3.

For any pair χj , χr of the remaining exceptional characters an applica-

tion of the Cauchy-Schwarz inequality shows that for certain real tj , tr in

the interval [−T/2, T/2]∑
D<p≤x

|g(p)|
∣∣∣1 − χjχr(p)p

i(tj−tr)
∣∣∣2 p−1 ≤ δL.

Since the inequality cL− c1 ≤ 4δ1/3L + ∆
(
δ−1/3T

)
with 4δ1/3 = 4c/5 fails

provided D does not exceed a sufficiently small fixed power of x, which we

may assume, an application of Lemma 12 guarantees the order of χjχr not

to exceed 2δ−1/3, i.e., 10c−1.

Suppose, further, that∑
D<p≤x
g(p)k∈R

(|g(p)| − c) p−1 ≥ −c1

and that for some real t, |t| ≤ T/(2k),∑
D<p≤x
g(p)k∈R

|g(p)|
∣∣∣1 − eiθpχ(p)pit

∣∣∣2 p−1 ≤
(
4k2
)−1

δL.
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From the inequality |1− zk| ≤ k|1− z|, valid for z in the complex unit disc,∑
D<p≤x
g(p)k∈R

|g(p)|
∣∣∣1 −

(
χ(p)pit

)2k∣∣∣2 p−1 ≤ δL

and an application of Lemma 12 shows χ2k to have an order not exceeding

10c−1.

In particular, provided we replace η by k−2η, we may assume that every

exceptional character has order not exceeding 20kc−1.

Let m be the order of a typical character χ2k. At the expense of replacing

k−2η by (mk)−2η, i.e., of replacing δ by m−2δ, we may assume that for some

t in the shorter range∑
D<p≤x
g(p)k∈R

|g(p)|
∣∣∣1 − p2kmit

∣∣∣2 p−1 ≤ δL

and may apply Lemma 15 with y = D to conclude that

cL− c1 ≤ 4δ1/3L + 3ψ
(
2δ−1/3t

)
+ 3ψ(t).

If |t| logD > 1 then the second and third terms in this bound do not exceed

6 logL + O(1) which, for log x/ logD sufficiently large, is untenable. If

(log x)−1 < |t| ≤ (logD)−1 then cL/5 ≤ −6 log (|t| logD) + O(1), hence

|t| logZ � 1.

In particular, replacing pit by 1 in the corresponding sum∑
p≤Z

(
|g(p)| − Re g(p)χ(p)pit

)
p−1

introduces an error of

�
∑
p≤Z

∣∣1 − pit
∣∣ p−1 � |t|

∑
p≤Z

p−1 log p � |t| logZ � 1.

We may argue similarly for every t such that∑
D<p≤x

(
|g(p)| − Re g(p)χ(p)pit

)
p−1 ≤

(
20kc−1

)−2
δL
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and the final assertion of Theorem 3 rapidly follows. �

For convenience of application we state a version of Theorem 3 that is

obtained by employing the refined Lemma 13 in place of Lemma 12.

Theorem 4. Let c, c1, γ, ε, x be positive real numbers, D an integer,

0 < c < 1, 0 < γ < 1, 0 < ε < 1, 1 ≤ D ≤ x.

Let g be a multiplicative function, with values in the complex unit disc,

that satisfies ∑
w<p≤x

(|g(p)| − c) p−1 ≥ −c1, D ≤ w ≤ x,

on the primes and, for a positive integer r,∑
D<p≤x

|g(p)|p−1 >

(
1

r
+ ε

) ∑
D<p≤x

p−1 + c0,

where c0 is the constant appearing in Lemma 13.

Then there are nonprincipal Dirichlet characters χj (modD), their num-

ber bounded in terms of c alone, such that uniformly for (a,D) = 1, xγ ≤
y ≤ x,∑

n≤y
n≡a (modD)

g(n) =
1

ϕ(D)

∑
n≤y

(n,D)=1

g(n) +
∑
j

χj(a)

ϕ(D)

∑
n≤y

g(n)χj(n)

+ O

(
y

ϕ(D) log y

∏
p≤y

(p,D)=1

(
1 +

|g(p)|
p

)(
logD

log y

)η
)

with η = cε2
(
2r3(c + 1)

)−1
and the order of every product χjχk, j 
= k, of

exceptional characters less than r.

Moreover, if g is real and we replace η by η/2, then every exceptional

character has a square of order less than r.

Remark. Further applications of Lemmas 2 and 3 enable the number

of exceptional characters in Theorems 3 and 4 to be reduced, in the case of

Theorem 4 to at most 5r.



Multiplicative Functions on Residue Classes 605

Example 1. If g = µ, the Möbius function, then with r = 2, 2
√

2ε = 1,

c = 1, η = 2−9, there can be at most one exceptional character, and that

real.

Example 2. As demonstrated by Landau over a century ago, informa-

tion on the value distribution of Möbius’ function informs the distribution

of prime numbers. As a second example we give a proof of Linnik’s theorem

that for a positive constant c, the least prime in each reduced residue class

(modD) does not exceed Dc in size.

In the interest of brevity we employ only modest values for various pa-

rameters.

Lemma 16. Let 0 < γ < 1, 2 ≤ D ≤ Nγ. Then there exists a nonprin-

cipal real character χ (modD) such that with τ = 2−10

∑
D<n≤x

n≡a (modD)

Λ(n) =
1

ϕ(D)

∑
D<n≤x
(n,D)=1

Λ(n) +
χ(a)

ϕ(D)

∑
D<n≤x

Λ(n)χ(n)

+ O

(
x

ϕ(D)

(
logD

log x

)τ)
uniformly for Nγ ≤ x ≤ N , (a,D) = 1.

An integration by parts then delivers the

Corollary. Under the hypotheses of Lemma 16,

ϕ(D)
∑

Nγ<p≤N
p≡a (modD)

p−1 =
∑

Nγ<p≤N

p−1 + χ(a)
∑

Nγ<p≤N

p−1χ(p)

+ O ((logD/ logN)τ ) ,

the implied constant depending at most upon γ.

Proof of Lemma 16. Define the completely multiplicative function

g by g(p) = 1 if p > D, g(p) = 0 otherwise. In the notation of §4, with J the

single real nonprincipal character (modD) guaranteed by an application of

Theorem 4 to the function gµ with r = 2, 2
√

2ε = 1, c = 1, η = 2−9, or the
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empty set if there is none such, the convolution factorisation gΛ = gµ∗g log

affords the representation

Y (gΛ, a, x) =
∑
m≤y

g(m) logmY (gµ, am, xm−1)

+
∑

r≤xy−1

g(r)µ(r)
(
Y (g log, ar, xr−1) − Y (g log, ar, y)

)
.

We assume that D5 ≤ y ≤ x1/2. The sum over m is then

�
∑
m≤y

g(m) logm

m

x

ϕ(D) log x

∏
D<p≤x

(
1 +

1

p

)(
logD

log x

)η

and, in view of the elementary bounds∑
m≤y

g(m)

m
�

∏
D<p≤y

(
1 +

1

p

)
� log y

logD
,

at most a constant multiple of ϕ(D)−1x(log y/ logD)2(logD/ log x)η.

The treatment of the sum over r is largely an exercise in the application

of a sieve. Since a version of it in some detail may be found in the appendix

to [11], we confine ourselves to main points.

If w ≥ D5, (a,D) = 1, then an application of the fundamental lemma

version of Selberg’s sieve, c.f. [3], Chapter 2, provides an estimate∑
m≤w

m≡a (modD)

g(m) − 1

ϕ(D)

∑
m≤w

g(m) � w

ϕ(D) logD
exp

(
−2 logw

logD

)
,

the implied constant absolute. An integration by parts yields∑
y<m≤w

m≡a (modD)

g(m) logm− 1

ϕ(D)

∑
y<m≤w

g(m) logm � w

ϕ(D)
exp

(
− logw

logD

)
,

uniformly for D2 ≤ y ≤ w.

By partitioning the variable m into residue classes (modD), a similar

upper bound holds for the sum

ϕ(D)−1
∑

y<m≤w

g(m)χ(m) logm.
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The initial sum over r is thus

�
∑

r≤x/y

g(r)|µ(r)|
r

x

ϕ(D)
exp

(
− log(x/r)

logD

)
and, with θ = 1/ logD,

� x

ϕ(D)
exp

(
− log x

logD

) ∑
r≤x/y

g(r)

r1−θ
.

An integration by parts combined with the estimate(s)∑
m≤t

g(m) ≤
∑
m≤t

p|m =⇒ p>D1/2

1 � t(logD)−1,

valid uniformly for t ≥ D, shows the final sum over r to be

� exp
(
log(x/y)(logD)−1

)
.

Altogether

x−1ϕ(D)Y (gΛ, a, y) �
(

log y

logD

)2( logD

log x

)η

+ exp

(
− log y

logD

)
.

We choose log y = logD(log x/ logD)η/4.

The factor g may be removed from Y (gΛ, a, y) at an expense of O(x1/2),

negligible in comparison with the target error, and Lemma 16 is estab-

lished. �

Proof of Linnik’s Theorem. We apply the corollary to Lemma 16.

According to Lemma 3, the sum
∑

Nγ<p≤N χ(p)p−1 is bounded above by

an absolute constant c1, uniformly for D ≤ Nγ . If χ(a) = −1, then∑
Nγ<p≤N

p−1(1 − χ(p)) > − log γ − c1 + O

((
logD

logN

)τ)
from which, with γ exp(2c1) = 1, Linnik’s theorem follows at once.

The cases when χ(a) = 1 are supplied by the following result, an ele-

mentary proof of which may be found as Lemma 13 in [16]. For 0 < β < 1,

y > 0, and χ a real nonprincipal character (modD), define

Mβ(y) =
∑

yβ<p≤y
χ(p)=1

p−1.
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Lemma 17. Let 96β < 1, ε > 0, y ≥ 4, χ(a) = 1. Then∑
yβ<p≤y

p≡a (modD)

1 =

(
1 + O

(
exp

(
− 1

7β
log

1

β

))
+ O(Mβ(y))

)
y

D
A(D)

+ O
(
y7/8+ε

)
,

where

A(D) = L(1, χ)
∏
p≤yβ

χ(p)=1

(
1 − 2

p + 2

) ∏
χ(p)=1

(
1 − 3

p2
+

2

p3

)

×
∏

χ(p)=−1

(
1 − 1

p2

)
,

the implied constant depending at most upon ε.

With the roles of β, y played by γ, N respectively, for a sufficiently small

absolute value of γ, either there is a prime p ≡ a (modD) in the interval

(Nγ , N ], or Mγ(N) exceeds a further positive absolute constant c2. In the

latter case ∑
Nγ<p≤N

p−1 (1 + χ(p)) ≥ 2Mγ(N) ≥ 2c2

and Linnik’s theorem is again evident. �

References in the following comments are confined to works narrowly

connected to the present paper.

Comments. A systematic study of multiplicative functions with values

in the complex unit disc, initiated by Delange in 1961 [1], received strong

impulses from Wirsing [29], 1967, and Halász [24], 1968. Although the

identity logn =
∑

d|n Λ(d) is employed in the works of Chebyshev, Wirsing

seems to have been the first to apply it systematically to the study of general

multiplicative functions. The influence of these authors in the present paper

is everywhere evident.

A version of Theorem 1, valid for α < 1/4, may be found in Elliott [17].
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An early version of Theorem 1, valid for α < 1, under the slightly sim-

plifying assumption that the modulus D exceed an arbitrarily small power

of log x, is carried out in careful detail in the second author’s Ph.D. thesis

[26]. Whilst the general outline follows that in Elliott [11], see also [8], there

are serious simplifying and improving modifications and a sharpened error

term. In particular, the step from an L2 to an L∞ estimate is effected by the

interpolation of a logarithm rather than the application of an approximate

sieve identity.

Besides its generality, an important feature of Theorem 1 is the unifor-

mity in D, sufficient to establish Linnik’s theorem on the size of the least

prime in an arithmetic progression. Indeed, within the same generality, this

was a calibrating target in the series of papers [5, 7, 8, 9, 10, 11, 17] by the

first author, key arguments from which are subsumed in the present paper.

A proof of Linnik’s theorem was achieved in the Illinois Millenial Conference

paper [16].

The recovery of a multiplicative function from the space generated by

the one-parameter group Sτ , τ ∈ R, is aided by the following result.

Lemma 18. The arithmetic function

ψ(n) =

k∑
j=1

cjn
iτj , n ≥ 1, cj ∈ C, τj ∈ R,

is nontrivial and multiplicative if and only if k = 1, c1 = 1.

Proof of Lemma 18. For each prime p, (m, p) = 1, multiplicativity

ensures that

ψ(p)ψ(m) =
k∑

j=1

cjp
iτjmiτj ,

hence

k∑
j=1

cj
(
piτj − ψ(p)

)
miτj = 0.
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Then, if σ > 1,

k∑
j=1

cj
(
piτj − ψ(p)

) ∑
(m,p)=1

m−σ+iτj

= σ

∫ ∞

1−
y−σ−1

k∑
j=1

cj
(
piτj − ψ(p)

) ∑
m≤y

(m,p)=1

miτj dy = 0.

Considering Euler products,

k∑
j=1

cj
(
piτj − ψ(p)

) (
1 − p−σ+iτj

)
ζ(σ + iτj) = 0, σ > 1,

and by analytic continuation, since ζ(s) has only one singularity, a simple

pole at s = 1,

k∑
j=1

cj
(
piτj − ψ(p)

) (
1 − p−z+iτj

)
ζ(z + iτj) = 0

for all z such that no z + iτj , j = 1, . . . , k, has the value 1. Allowing z to

approach each point 1 − iτj in turn, we see that

cj
(
piτj − ψ(p)

)
= 0, 1 ≤ j ≤ k.

If k ≥ 2, then ψ(p) = piτ1 = piτ2 , τ1 
= τ2, say, i.e. there exists τ 
= 0,

real, such that piτ = 1 for all primes p. Then for σ > 1,

ζ(σ) =
∏
p

(1 − p−σ)−1 =
∏
p

(1 − p−σ−iτ )−1 = ζ(σ + iτ),

ζ(z) = ζ(z + iτ) provided z 
= 1, 1 − iτ . This is untenable; k = 1.

At this stage ψ(n) can only be nontrivial and multiplicative if, for dis-

tinct primes p, q

c21p
iτ1qiτ1 = ψ(p)ψ(q) = ψ(pq) = c1(pq)

iτ1 ,

c21 = c1, c1 = 1.

This completes the proof. �
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An early realisation of Linnik’s Large Sieve as an inequality attached

to the action of a self-adjoint operator, and that such inequalities come in

pairs, may be found in Elliott [2].

Functional analysis may also be applied to the study of complex-valued

multiplicative functions with values outside the unit disc, c.f. Elliott [15],

[21]. To offset the lack of an obvious referent for size, the function is com-

pared to its absolute self. We may continue to view nonvanishing completely

multiplicative functions as characters on Q∗ provided we abandon the re-

quirement that the associated group representations be unitary.

A particular one-sided inequality related to Lemma 2 was privately

pre-circulated to members of the American Mathematical Society Research

Community meeting on ‘The Pretentious View of Analytic Number Theory’

held in Snowbird, Utah, Summer of 2011, attended by the second author.

The present two-sided, more general inequality, a slightly modified version

of the theorem in the authors’ paper [22], where a number of relevant further

comments may be found, has a different proof. Currently, all inequalities of

related type rest upon a version of Lemma 3 developed from that of Elliott

[11], with a variant argument in Elliott [17].

The results of §8 elaborate the taxonomy of exceptional characters in

terms of the support of the function g carried out in the authors’ paper [23].

A detailed study related to Lemmas 14 and 15 of the present work may be

found in §3 of Elliott [6].

As was demonstrated in the Illinois Millenial paper [16], to establish

Linnik’s theorem requires only a version of Theorem 1 for functions sup-

ported on the primes in the interval (D,x], and that at most one Dirichlet

character (modD) can be near to a given multiplicative function.

Lemma 17, adapted from a result of Heath-Brown [25], is derived by ap-

plying a sieve to an asymptotic estimate for the mean-value of the arithmetic

function n �→
∑

d|n χ(d) over an appropriate arithmetic progression. It may

be viewed as a localised descendent of the original argument employed by

Dirichlet to establish the nonvanishing of L(1, χ) for a real character, χ.

As a sampling of examples in the application of harmonic analysis on

Q∗ to problems in analytic number theory, and that apply methods related

to those in the present paper:

Let f1, f2 be real-valued additive arithmetic functions. Necessary and

sufficient conditions for the arithmetic function f1(an+b)+f2(An+B), with
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integers a > 0, A > 0, b, B, aB 
= Ab, to satisfy a weak limit law when suit-

ably renormalised, obtained via the study of characters on (Q∗ × Q∗) /Γk,

where Γk, subgroup of the direct product of two copies of Q∗, is generated

by elements of the form (an + b) × (An + B), n ≥ k ≥ 1, are established in

the first author’s memoir [13]; see also [4].

A similar but more elaborate study of f1(n) + f2(N − n), 1 ≤ n ≤ N , is

carried out in Elliott [20].

Structurally best possible bounds for the value concentration of an ad-

ditive arithmetic function on integers of the form p + 1, p prime, or N − p,

p < N , are established in Elliott [12].

An upper bound on the size of the group Q∗/Ek, where Ek is the sub-

group of Q∗ generated by the shifted primes p + 1, p ≥ k ≥ 1, is derived in

Elliott [14].

A general discussion of factor groups of the direct product of finitely

many copies of Q∗, with attendant details of harmonic analysis may be

found in Elliott [18]; an exotic example in the application of such harmonic

analysis to the product/quotient representations of positive rationals by

products of variously shifted primes may be found in Elliott [19].
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