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A Note on Characterizing Pluriharmonic Functions

via the Ohsawa–Takegoshi Extension Theorem

By Takahiro Inayama

Abstract. For a continuous function, we prove that the function
is pluriharmonic if and only if the equality part of the optimal Ohsawa–
Takegoshi L2-extension theorem is satisfied with respect to the metric
having the function as a weight. This partially resolves the conjecture
proposed by the author.

1. Introduction

On a one-dimensional complex domain, as is well known, a subhar-

monic function is characterized by the mean value inequality, and when

the equality of the inequality holds, the function becomes a harmonic func-

tion. Subharmonic functions play an important role in complex analysis and

geometry, and are also used in important theorems such as Hörmander’s L2-

estimate [5] and Ohsawa–Takegoshi’s L2-extension theorem [9].

On the other hand, recent research has revealed that the fact that the

optimal Ohsawa–Takegoshi L2-extension theorem holds itself guarantees the

subharmonicity of the weight. This property is called the minimal extension

property [4] or the optimal Lp-extension property [1, 2] in a general setting,

and has been widely studied and applied by various experts (cf. [3, 4, 1,

2, 6, 7]). In other words, subharmonic functions can be characterized by

the inequality part of the optimal Ohsawa–Takegoshi L2-extension theorem.

Based on the analogy with the above, we propose the following conjecture

in [7, Appendix A]:

Conjecture 1.1. Let ϕ be an upper semi-continuous function on a

domain Ω ⊂ C
n. Then the following are equivalent:

(1) ϕ is pluriharmonic.
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(2) ϕ > −∞ and for any holomorphic cylinder a + Pr,s,A, where

(a, r, s, A) ∈ Ω
δ̃

(see the notation below), there exists a unique holo-

morphic function f on a + Pr,s,A satisfying f(a) = 1 and∫
a+Pr,s,A

|f |2e−ϕ ≤ |Pr,s,A|e−ϕ(a),

where |Pr,s,A| is the volume of Pr,s,A.

We proved this conjecture in the case that ϕ was smooth by using the

theory of the L2-extension index in [7]. Our aim of this paper is to give

an affirmative answer to the above conjecture for a continuous function ϕ.

To clarify the claim of the theorem, several symbols will be prepared. Let

∆r = {z ∈ C | |z| < r}, B
m
s = {z ∈ C

m | |z| < s} and Pr,s,A = A(∆r×B
n−1
s )

for r, s > 0 and A ∈ U(n), where U(n) is the set of all n-dimensional unitary

groups. Here Pr,s,A is a holomorphic cylinder. We let Ω
δ̃

= {(a, r, s, A) ∈
Ω × R>0 × R>0 × U(n) | a + Pr,s,A ⊂ Ω}. Then the main theorem can be

stated as follows.

Theorem 1.2. Let ϕ be a continuous function on Ω. Then ϕ is

pluriharmonic if and only if for any (a, r, s, A) ∈ Ω
δ̃
, there exists a unique

holomorphic function f on a + Pr,s,A satisfying f(a) = 1 and∫
a+Pr,s,A

|f |2e−ϕ ≤ |Pr,s,A|e−ϕ(a).

Note that the above f satisfies the equality∫
a+Pr,s,A

|f |2e−ϕ = |Pr,s,A|e−ϕ(a).

For the proof, we use the terms of the L2-extension index and the charac-

terization of log-plurisubharmonicity.
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2. The Proof of Main Theorem

In order to prove the main result, we prepare several notions. First,

we review the minimal extension property [4] or the optimal L2-extension

property [1, 2]. In this paper, we follow the formulation of Deng, Ning,

Wang and Zhou.

Definition 2.1 ([1, Definition 1.1]). Let Ω be a domain in C
n and

ϕ be an upper semi-continuous function. Then we say that ϕ satisfies the

optimal L2-extension property if for any (a, r, s, A) ∈ Ω
δ̃
, there exists a

holomorphic function f on a + Pr,s,A such that f(a) = 1 and∫
a+Pr,s,A

|f |2e−ϕ ≤ |Pr,s,A|e−ϕ(a).

The following theorem is important in relation to this definition.

Theorem 2.2 ([1, Theorem 1.6]). Keep the setting. Then ϕ is

plurisubharmonic if and only if ϕ satisfies the optimal L2-extension prop-

erty.

Next, we explain the L2-extension index introduced by the author in [7].

Here we adopt a slightly extended definition.

Definition 2.3. Let ϕ be a function ϕ : Ω → [−∞,∞]. Then we

define the L2-extension index Lϕ of ϕ on Ω
δ̃

as follows: for (a, r, s, A) ∈ Ω
δ̃
,

if −∞ < ϕ(a) < +∞,

Lϕ(a, r, s, A)

:=
1

|Pr,s,A|KPr,s,A,ϕ(a)

= inf

{∫
a+Pr,s,A

|f |2e−ϕ

|Pr,s,A|e−ϕ(a)

∣∣∣∣ f ∈ A2(a + Pr,s,A, ϕ) & f(a) = 1

}
,

if ϕ(a) = +∞, Lϕ(a, r, s, A) = +∞ and if ϕ(a) = −∞, Lϕ(a, r, s, A) = 0.

Here, KPr,s,A,ϕ is the weighted Bergman kernel on Pr,s,A with respect to
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ϕ, A2(a + Pr,s,A, ϕ) = {f ∈ O(a + Pr,s,A) |
∫
a+Pr,s,A

|f |2e−ϕ < +∞} and

O(a + Pr,s,A) is the space of all holomorphic functions on a + Pr,s,A.

By using this notion, we can rephrase the optimal L2-extension property

as follows: if Lϕ ≤ 1 for an upper semi-continuous function, then ϕ is

plurisubharmonic. Our goal is to prove the next proposition that is paired

with the above result.

Proposition 2.4. Let ϕ be a lower semi-continuous function on a

domain Ω ⊂ C
n with ϕ �≡ +∞. If Lϕ ≥ 1, then ϕ is plurisuperharmonic.

Proof. We use the proposition that for a non-negative function v with

v �≡ 0, log v is plurisubharmonic if and only if ve2Reg is plurisubharmonic

for every polynomial g. We take any polynomial g and any (a, r, s, A) ∈ Ω
δ̃
.

We may assume that ϕ(a) < +∞. If Lϕ ≥ 1, it holds that∫
a+Pr,s,A

|eg|2e−ϕ ≥ |Pr,s,A||eg(a)|2e−ϕ(a).

Since −ϕ is upper semi-continuous, we can say that e−ϕe2Reg is plurisub-

harmonic (see Lemma 3.1 in [1]). Hence, −ϕ is plurisubharmonic. �

By using this proposition, we can prove Theorem 1.2.

Proof of Theorem 1.2. If ϕ is pluriharmonic, take a holomorphic

function h on a + Pr,s,A satisfying 2Re(h) = ϕ and use the argument in

[7, Section 5]. Then we only prove the if part. Note that the assumption

in Theorem 1.2 says that Lϕ ≡ 1. Since Lϕ ≤ 1 and ϕ is upper semi-

continuous, Theorem 2.2 implies ϕ is plurisubharmonic. Also, since Lϕ ≥ 1

and ϕ is lower semi-continuous, Proposition 2.4 implies that ϕ is plurisu-

perharmonic. �

I have discussed Conjecture 1.1 with Wang Xu. On May 15, I sent

him the above proof. Then, by using the linearity of certain minimal L2-

integrals, Xu showed that the assumption that ϕ is lower semi-continuous

is not needed and sent me the proof on May 16. About a month later,

with Zhuo Liu, Xu consequently obtained the result that the upper semi-

continuity of ϕ is also unnecessary and sent the manuscript [8] to me on June
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26. Although their result is literally a generalization of my theorem, they

encouraged me to write this paper on my result as a first important step. I

would like to thank them for their consideration and warm encouragement.
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