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Explicit Generators of the Steinberg Module of the

Mapping Class Group

By Ingrid Irmer

Abstract. A conjecture of Broaddus is proven, giving a simple
characterisation of a representative of the unique orbit of the action
of the mapping class group on the homology of Harvey’s complex of
curves for any genus surface. As an application, the kernel of the
action of the mapping class group of a genus g surface on the Steinberg
module is shown to be trivial.
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1. Introduction

It was shown in [6], Theorem 3.5, that the complex of curves, Cg, of a

closed, orientable topological surface Sg of genus g ≥ 2 has the homotopy

type of an infinite wedge of spheres of dimension 2g−2. In [4], an algorithm

for constructing a homotopically nontrivial sphere was given, and an explicit

example was computed in genus 2. This paper proves a conjecture showing

that a considerably simpler construction of spheres: “Broaddus spheres” -

of which there is one in each genus - could be used.

The reduced homology group H̃2g−2

(
Cg; Z

)
(this is isomorphic to

π2g−2(Cg) via the Hurewicz theorem) is also referred to as the Steinberg

module St(Sg). Since there is a simplicial action of the mapping class group
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Γg of Sg on Cg, St(Sg) has the structure of a Γg-module. It was also shown

in [4] that St(Sg) is a cyclic Γg-module.

Theorem 1.1. St(Sg) is generated by the mapping class group orbit of

the Broaddus sphere of genus g.

A Poincaré duality group is a group whose homology and cohomology

satisfy a duality property analogous to the Poincaré duality between the

homology and cohomology of a compact manifold. This definition was gen-

eralised in [3] to the notion of a duality group. Informally, a duality group

is a group whose homology and cohomology satisfy a property analogous

to Poincaré duality, with a nontrivial “dualising module” taking the place

of the orientation module. It was shown in Theorem 6.6 of [10] that the

mapping class group of a closed orientable surface is a virtual duality group,

and that the dualising module is St(Sg).

For genus g at least 3, the center Zg of Γg is trivial, as shown in Theorem

3.10 of [5]. In Section 3.4 of [5] it was shown that the center of Z2 is

generated by involutions that act trivially on Cg. The techniques of this

paper can be used to relate the stabiliser subgroup of the action of Γg on a

generator of St(Sg).

Corollary 1.2. The kernel of the action of Γg/Zg on St(Sg) is trivial.

The systole function fsys : Tg → R+ is the piecewise smooth map whose

value at any point of Tg is the length of the systoles. The systole function is

known to be a topological Morse function, [1]. These are defined in [14], and

can be used to construct cell decompositions of topological spaces analogous

to those of (smooth) Morse functions.

The central idea is that the Broaddus sphere can be described using a

basepoint-free analogue of the “screens” of Penner-McShane. As explained

in [9], these are combinatorial objects that determine the set of curves that

become arbitrarily short on a set of minima. Informally, the sets of minima

in this paper behave like “stable manifolds” of critical points of fsys. A set of

minima, or a critical point, is labelled by a set of curves. The mapping class

group maps sets of minima to sets of minima, and critical points to critical

points. As this action is determined by the action of the mapping class

group on curves, the action of the mapping class group on the Broaddus
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spheres is identical to the action on the sets of minima that they bound

in Tg. The Broaddus spheres are shown to represent nontrivial homology

classes in St(Sg) by studying the way the fixed point sets of the action of

Γg on the sets of minima restrict equivariant homotopies.

Outline of the paper. Section 2 first introduces some background and

notations. For the benefit of readers who are not be familiar with Schmutz

Schaller’s sets of minima, a survey of their properties is given. The con-

struction from [4] of a generator of St(Sg), as well as a related example of

a critical point due to Schmutz Schaller are given in 3. The relationship

between these ingredients is made clear in Section 4. The “stable manifold”

of the critical point in the form of a certain set of minima, is identified

with the ball in Teichmüller space bounded by the sphere corresponding to

Broaddus’s conjectured generator of St(Sg). The vertices of this triangu-

lated sphere are shown to correspond to particular boundary points of the

set of minima. In Section 5 symmetries are used to show that the homology

class of the sphere is nontrivial.

2. Assumptions and Background

The orientable, closed, compact, connected topological surface of genus

g will be denoted by Sg; when this surface is given a marked hyperbolic

structure corresponding to a point in Teichmüller space, it will be denoted

by Sg.

The Teichmüller space of Sg will be denoted by Tg, the mapping class

group by Γg, moduli space by Mg, and Harvey’s curve complex by Cg. For

convenience, the simplicial complex Cg will be confused with its geometric

realisation.

A curve is a homotopy class of embeddings of S1 into Sg. When there

is no possibility of misunderstanding, the word curve will also refer to a

particular representative of the homotopy class, such as a geodesic. A set

of curves is said to fill Sg if the complement of a set of representatives in

minimal positition cuts the surface into polygons.

A curve c determines an analytic map L(c) : Tg → R+ whose value at

any point is given by the length of the unique geodesic representative of c. A

length function L(A,C) is a linear combination of such functions with posi-

tive coefficients where C is a finite set of |C| curves, and A = (a1, . . . , a|C|) ∈
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R
|C|
+ the coefficients. Length functions satisfy many convexity properties,

for example they are strictly convex along Weil-Petersson geodesics, [19].

The Weil-Petersson metric will be assumed whenever a metric is needed on

Tg.
The systoles of Sg are the shortest curves; every closed hyperbolic surface

has a finite set of shortest curves. The set of points in Tg at which the set

of systoles is exactly C will be denoted by Sys(C). The Thurston spine is

the set of points in Tg at which the systoles fill Sg. It follows from [12] that

the Thurston spine is a CW complex.

Lengths of curves of surfaces have a property called local finiteness. Fix

the genus g of the surface. For any L > 0 there exists a finite n(L) such that

on any choice of Sg, the number of curves of length at most L is bounded

from above by n(L), [13]. This implies that for any point x ∈ Tg at which

the set of systoles is given by C, there exists a neighbourhood of x in Tg in

which the systoles are all contained in the set C.

Teichmüller space has a decomposition into the thick part, where fsys
is less than or equal to the Margulis constant, and the thin part, which is

the complement of the thick part. For convenience, a decomposition into a

δ-thick part and δ-thin part will be used, where δ > 0 might be less than

the Margulis constant. The δ-thick part of Tg is the subset of Tg on which

fsys is greater than or equal to δ, and will be denoted by T δ
g .

It was shown in [10] that Cg is Γg-equivariantly homotopy equivalent

to the boundary of the thick part of Teichmüller space. The idea behind

this is very simple. On the boundary of the thick part of Tg, the systoles

are pairwise disjoint; at a given point they determine a multicurve m. The

intersection of Sys(m) with the boundary of the thick part of Tg corresponds

to the cell labelled by m in the barycentric subdivision of Cg. The same

argument as in [10] gives an embedding of Cg in the boundary of T δ
g .

Sets of minima. Let C be a finite filling set of curves. From Lemma

1 of [17], it is known that every length function given by a strictly positive

linear combination of the lengths of curves in C has a unique minimum at

some point of Tg. The set Min(C) defined in [17] consists of all points in Tg
at which a length function of the form L(A,C) for some A ∈ R

|C|
+ has its

minimum. A reference for sets of minima is Section 2 of [17].

There is a surjective map φC : R
|C|
+ � Min(C), where here φ(A) is



Generators of the Steinberg Module 5

the point in Min(C) at which L(A,C) has its minimum. Note that φC is

not injective. This paper will be concerned with specific examples of sets

Min(C) that are known to be differentiable cells with empty boundary.

Suppose C = {c1, . . . , ck} is a filling set of curves. The lengths of curves

in C are said to parameterise Min(C). For any x1, x2 in Min(C), the map

F : Min(C) → Rk
+ given by x �→ (L(c1)(x), . . . , L(ck)(x)) has the property

that F (x1) = F (x2) only if x1 = x2. When the rank of the Jacobian of F (C)

is constant on Min(C), as will always be the case in this paper, Section 2

of [17] showed how to use the lengths of the curves in C to obtain a set of

coordinates on Min(C).

Lemma 2.1 (Lemma 4 of [2], or Proposition 1 from [18]). Let C ′ be

any collection of curves on a surface that do not fill. Then at any point x of

Tg, there is an open cone of TxTg corresponding to directions in which the

lengths of all the geodesics representing curves in C ′ are strictly increasing.

It follows from Lemma 14 of [17] that points on ∂Min(C) in the interior

of Tg are minima of strictly positive linear combinations of filling subsets

of C. For a length function of the form L(A,C ′), where C ′ is a nonfilling

subset of C, Lemma 2.1 implies that any infima are realised as limits of

sequences of points in Min(C). Broaddus spheres are described in terms of

minima of nonfilling subsets of C.

3. From Critical Points to Spheres

This section begins by surveying an important family of examples of

critical points of the topological Morse function fsys. These examples will

later be related to the construction of 2g − 2-dimensional spheres in Cg,
whose construction is also given in this section.

Example 3.1 (A critical point of fsys of index 2g− 1, from Theorem 36

of [17]). Take a regular, right angled hyperbolic polygon T with 2g + 2

sides. Four copies of T can be glued together along four pairs of edges with

a common vertex. This is done in such a way that each copy of T shares

one edge with two others. A right angled hyperbolic polygon with 8g − 4

sides is obtained. The construction with g = 2 is shown in Figure 1. This

gives a fundamental domain of a surface. The sides of the fundamental
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domain are glued together in such a way that each edge of a copy of T

lies along a geodesic loop on the surface obtained by traversing exactly two

edges, each on different copies of T . It transpires that the gluing maps

are completely determined by this condition. When given a marking, this

surface corresponds to a point in Tg that will be denoted by p.

It was shown in [17] that p is a critical point of index 2g − 1 and that

the set C of systoles at p is the set of curves that can be embedded in

the graph on Sg consisting of the edges of the four copies of T . This gives

2g + 2 systoles, each of which intersects exactly two other systoles. Let c1
and c2 be a pair of systoles that intersect. It was shown that C�{c1, c2}
fills and Min(C�{c1, c2}) = Min(C). For every x ∈ Min(C), the gradients

{∇L(c) | c ∈ C} lie in a 2g−1 dimensional subspace of TxTg. As C�{c1, c2}
has no proper filling subsets and the rank of the Jacobian of the map Tg →
R2g+2 given by x �→

(
L(c1), . . . , L(c2g+2)

)
is constant and equal to 2g − 1

everywhere on Min(C), it follows from Corollary 13 and Lemma 14 of [17]

that Min(C) is a continously differentiable cell with empty boundary.

The cell Min(C) behaves like the stable manifold of the critical point

p. The relationship between sets of minima and stable manifolds of critical

points of fsys is discussed in [9]. The definition of Min(C) implies that any

vector in the tangent space to Min(C) at p gives a direction in which the

length of at least one curve in C is decreasing. On a neighbourhood of p,

by local finiteness the systoles are contained in C, so p is a local maximum

Fig. 1. The left side of this figure (not drawn to scale!) shows a fundamental domain
of the genus 2 surface in Example 3.1. The systoles lie along the boundary and the
edges shown. The numbers on the edges are intended to indicate the gluing maps.
The right side of the figure shows the systoles on the surface.
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Fig. 2. This figure is reproduced from [4] and shows the 1-skeleton of the triangulated
sphere in C2 constructed by the algorithm below. Theorem 4.1 shows this is homotopic
in Cg to the intersection of Min(C) from Example 3.1 with the embedding of Cg in
∂T δ

g .

for fsys in Min(C).

The point p is an element of a Γg-orbit of critical points. The systole

function is invariant under the action of Γg. A γ ∈ Γg maps a critical point

with set of systoles C to a critical point with systoles given by the image of

C under γ. Similarly, Γg acts on sets of minima, mapping Min(C) to the

set of minima of the image of C under γ.

Construction of the Sphere. The 2g − 2 dimensional sphere in Cg
from Conjecture 4.9 of [4] is constructed as follows: Let C be the set of

2g + 2 curves from Example 3.1 and let K2g+2 be a (2g + 2)-gon. Choose

a bijection between the vertices of K2g+2 and the elements of C with the

property that adjacent vertices of K2g+2 are labelled by intersecting curves.

The symbol Φg will be used to denote the symplicial complex whose vertices

correspond to diagonals of K2g+2 and whose simplices correspond to sets of

disjoint diagonals of K2g+2.

An associahedron Kn is a polytope of dimension n whose vertices cor-

respond to all the distinct ways of parenthesising the word x0x1 . . . xn+1.
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As shown in [11], Theorem 1, the simplicial complex Φg is the boundary of

the dual of the 2g − 1-dimensional associahedron K2g−1, and is therefore a

triangulation of the 2g − 2-dimensional sphere.

The barycentric subdivision of Cg will be denoted by C◦
g . Recall that

each vertex v of Φg is labelled by pair of nonintersecting curves c(v) in C.

A simplicial map

q◦g : Φg → C◦
g(1)

is contructed, where q◦g maps a vertex v to the vertex in C◦
g labelled by the

multicurve m
(
C�c(v)

)
consisting of the set of nontrivial homotopy classes

of curves on the boundary of the surface obtained by cutting Sg along the

geodesic representatives of the curves C�c(v). Informally, m(C ′) is con-

tained in the boundary of the subsurface filled by C ′.
The map q◦g can be seen to map simplices to simplices. The condition

that the simplices of Φg correspond to sets of disjoint diagonals of K2g+2

implies that the image of a simplex under Φg is a simplex in C◦
g .

Defining the map qg : Φg → Cg. For the purposes of this paper, it

will be simplest to work with the image in C◦
g of Φg under q◦g . This is a

matter of taste; if one wants to obtain a sphere in Cg, for any vertex v with

the property that m
(
C�c(v)

)
has more than one connected component,

choose a single curve m1

(
C�c(v)

)
in m

(
C�c(v)

)
. It was shown in [4] that

q◦g is homotopic to a map from S2g−2 to a subcomplex with the vertex in

Fig. 3. Lower dimensional analogue of homotoping a subcomplex of C◦
g onto a subcomplex

of Cg. Edges and vertices of C◦
g not in Cg are shown in grey.
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the image of q◦g labelled by m
(
C�c(v)

)
replaced by the vertex labelled by

m1

(
C�c(v)

)
. This homotopy pushes simplices in the interior of a simplex

of C◦
g onto the boundary of the simplex, as illustrated in Figure 3. The map

q◦g , composed with one such choice of homotopy for every vertex not in Cg,
gives the map qg.

For every g ≥ 2 there is a map qg, the homotopy class of which will be

referred to as a Broaddus sphere.

4. The Set of Minima

The purpose of this section is to show that the Broaddus sphere in genus

g can be embedded in ∂T δ
g in such a way that it makes sense to think of

it as the boundary of Min(C), where C is the set of curves from Example 3.1.

A thickening of the embedded curve complex. The dimension

3g− 4 of Cg is smaller than the dimension of Tg, namely 6g− 6. In order to

use the embedding of Cg into ∂T δ
g from [10] it will be convenient to define a

regular neighbourhood of the image of the embedding. An abuse of notation

will be used to simplify the exposition; the image of the embedding of Cg or

C◦
g in ∂T δ

g will also be referred to as Cg or C◦
g .

Ivanov’s embedding of Cg in ∂T δ
g has the property that a vertex labelled

by a curve c is mapped into Sys({c}), an edge labelled by {c1, c2} is mapped

into the union of Sys({c1}), Sys({c2}) and Sys({c1 ∪ c2}), etc.

For every multicurvem labelling a top dimensional simplex of Cg, the in-

tersection of Sys(m) with ∂T δ
g is an embedded submanifold without bound-

ary. Different points in Sys(m) ∩ ∂T δ
g have Fenchel-Nielsen parameters dif-

fering only in the twist parameters around curves in m. For a multicurve m′

with fewer connected components, the boundary of Sys(m′)∩∂T δ
g lies along

{Sys(m′′) ∩ ∂T δ
g | m′ � m′′}. As these extend to embedded submanifolds

with boundary in a neighbourhood of ∂T δ
g , the same arguments as in [10]

show that it is possible to embed a regular neighbourhood π : Ng → C◦
g into

the thin part of Tg in such a way that the duality between the sets of sys-

toles and the cells of the regular neighbourhood is preserved. This regular

neighbourhood can be chosen wide enough to contain the intersection of a

chosen set of minima with ∂T δ
g .

Construction of the map qC,g. Recall the definition of q◦g : Φg → C◦
g
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from the previous section, where Φg is a triangulation of a 2g−2 dimensional

sphere. Another map qC,g from Φg to C◦
g will now be constructed. This map

factors through a map homotopic to the inclusion map into ∂T δ
g of a 2g−2-

dimensional sphere in the intersection ∂T δ
g ∩ Min(C).

The construction is motivated by the basepoint-free analogue of Penner-

McShane’s screens given in [9]. Let c1, c2 be a pair of disjoint curves in

C, and C ′ := C�{c1, c2} a nonfilling set of curves. The curves {c1, c2}
correspond to a diagonal of K2g+2. The length function L(C ′) obtained

by taking the sum of the lengths of curves in C ′ has no minimum in Tg
by Lemma 2.1. It can be thought of as having its infimum at the limit of

a sequence of points whose parameters (a1, . . . , a2g+2) ∈ R
2g+2
+ approach

1
2g (0, 0, 1, 1, . . . , 1).

For convenience, from now on the normalisation factors on the param-

eters in R
2g+2
+ will be dropped. For the arguments given here, it is only of

interest which of the parameters are close to zero.

For small δ, the length function L(C ′) nearly reaches its infimum on

Min(C) ∩ ∂T δ
g . Denote by v(C ′) a point at which L(C ′)|Min(C)∩∂T δ

g
is min-

imised. Similarly, for any other vertex of Φg, define a corresponding point

in Min(C)∩ ∂T δ
g . The only restriction imposed here is that any choices are

made in such a way that the embedding is invariant under the action of the

subgroup of Γg that maps Min(C) to itself.

Imposing the restriction that any choices in the construction of the em-

bedding are made in a Γg-equivariant way is not a problem, for reasons that

will now be explained. The subgroup of Γg that maps Min(C) to itself per-

mutes the curves in C in a way that preserves or reverses the cyclic ordering.

This subgroup could only map a minimum of L(C ′) on Min(C) ∩ ∂T δ
g to a

different minimum if it maps C ′ to itself. This is only possible if c1 and c2
represent a pair of opposite vertices of K2g+2. In this case, m(C ′) consists of

a single separating curve that is invariant under the action of the subgroup.

It follows from Riera’s theorem that the minima of L(C ′) on Min(C)∩ ∂T δ
g

occur where m(C ′) is a systole. By symmetry, such points are therefore in-

variant under the action of the subgroup of Γg that maps Min(C) to itself.

It follows that any choices can be made in a Γg-equivariant way.

Every edge of Φg determines a pair of endpoints v(C ′) and v(C ′′) with

m(C ′) and m(C ′′) disjoint multicurves. The midpoint of this edge is repre-

sented by a tuple in R
2g+2
+ with parameters close to zero in 3 or 4 positions,



Generators of the Steinberg Module 11

and all other parameters close to 1. The parameters that are small consist

of the union of the parameters that are small at the vertices.

To be more precise: C ′ = C�{ci ∪ ck} and C ′′ = C�{cl, cm} where cl
or cm (but not both) might be in {ci, cj}. Then the midpoint of the edge

connecting v(C ′) and v(C ′′) has parameters ai, aj , al and am close to zero,

and all others close to 1. The midpoint of this edge can be thought of as

a minimum of the length function L(C�{ci, cj , cl, cm}) on ∂T δ
g . Between

the midpoint and each of the endpoints, the edge is defined by taking a

linear interpolation of the parameters. Maps of higher dimensional simplices

of Φg into Min(C) are defined analogously, with midpoints contained in

∂T δ
g ∩ Min(C).

Ng can be chosen in such a way that the image of the simplices of Φg

are contained in Ng. Since Φg is a 2g− 2-sphere, and Min(C) a 2g− 1-ball,

inside Ng the embedding of Φg can be homotoped to have image in the

intersection ∂T δ
g ∩Min(C). Composing with π : Ng → C◦

g gives a homotopy

in C◦
g . In this way an embedding of a 2g− 2-sphere in C◦

g denoted by qC,g is

obtained.

Lemma 4.1. For g ≥ 2, q◦g is Γg-equivariantly homotopic to qC,g.

Proof. Suppose Ci for i = 1, . . . , n are nonfilling subsets of C, each

of which is obtained by deleting a pair of disjoint curves from C, and such

that {m(C1), . . . ,m(Cn)} are pairwise disjoint.

Claim 1. Suppose σ is a top dimensional simplex in the image of the

embedding of Φg by qC,g defined above, with vertices given by {v(C1), . . . ,

v(Cn)}. Then for sufficiently small δ, everywhere on σ the length of any

multicurve in the set {m(C1), . . . ,m(Cn)} is less than the diameter of the

collar of a geodesic of length δ.

Note that in the δ-thin part of T δ
g , the statement that a given curve has

length less than the diameter of a collar of a geodesic of length δ amounts

to saying that the curve is disjoint from the systoles or is a systole.

Proof of Claim 1. Using Keen’s collar lemma, the bound on the

Margulis constant given in [20] and some hyperbolic trigonometry, for ex-

ample Theorem 3.5.4 of [15], it is not hard to check that the length of the

systoles at p in Min(C) is less than the diameter of the collar of a geodesic
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of length δ. Similarly, for sufficiently small δ, the length of m(C ′) at p is less

than the diameter of the collar of a geodesic of length δ. Moreover, Lemma

2.1 implies that the length function L(C ′), for nonfilling C ′ � C, has some

values on ∂T δ
g smaller than at p.

Denote by Σ(Ci) the union of cells each containing the vertex v(Ci).

At the vertex v(Ci) the systoles are disjoint from every curve in Ci and

hence from m(Ci). Otherwise, for sufficiently small δ, one of the systoles

would intersect a curve in Ci, making L(Ci) larger than its value at p. The

systoles are therefore contained in the multicurve m(Ci) at v(Ci). Any

curves in m(Ci) that are not systoles at the vertex must also have length

less than the diameter of the collar of a geodesic of length δ. This is because

such curves are homotopic to curves lying along arcs of the curves Ci and

hence cannot be too long without forcing L(Ci) to be larger than its value

at p.

At the vertex v(Cj) of Σ(Ci), each curve in m(Ci) is either homotopic

to a curve in m(Cj) or to a piecewise smooth curve lying along some of the

geodesic representatives of the curves in Cj . Either way, for sufficiently small

δ, the length of m(Cj) is less than the diameter of the collar of a geodesic of

length δ. The same is true for any vertex or midpoint of a simplex in Σ(Ci).

This can then be extended to Σ(Ci), because the length functions minimised

over the cells are linear combinations of the length functions minimised at

the vertices and midpoints of cells. Since σ is in the intersection

∩n
j=1Σ(Cj)

the claim follows.

Claim 2. Suppose σ is a top dimensional simplex with vertices

{v(C1), . . . , v(Cn)} as in Claim 1. Then for sufficiently small δ, if c is a sys-

tole somewhere on σ, c is contained in one of the multicurves {m(C1), . . . ,

m(Cn)}.

Claim 2 is a corollary of Claim 1. Since σ is top dimensional, it follows

from the construction that the multicurves {m(C1), . . . ,m(Cn)} determine

a pants decomposition of Sg. If c were a systole on σ intersecting one of the

multicurves {m(C1), . . . ,m(Cn)}, this would contradict Claim 1.
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A Γg-equivariant homotopy between qC,g and q◦g will now be constructed.

Let σ be the image under qC,g of a top dimensional cell of the barycentric

subdivision of Φg. The vertices of σ are already on C◦
g . A vertex v(C ′) will

be mapped to the vertex v(C ′)C of C◦
g labelled by m(C ′). Recall that by

Claim 2, the systoles at v(C ′) are a submulticurve of m(C ′). So v(C ′) is

already contained in a cell in Cg containing v(C ′)C . The homotopy shifts

v(C ′) to v(C ′)C along a straight line contained within this simplex.

Now suppose e(C ′, C ′′) is an edge of the embedding of the barycentric

subdivision of Φg. Here v(C ′) is a vertex and v(C ′′) the midpoint. Then by

Claim 2, the edge e(C ′, C ′′) is contained in a thickened simplex containing

the edge e(C ′, C ′′)C in the image of C◦
g joining v(C ′)C and v(C ′′)C . The ho-

motopy maps e(C ′, C ′′) to e(C ′, C ′′)C by shifting points along straight lines

within this thickened simplex, extending the homotopy taking the endpoints

of e(C ′, C ′′) to the endpoints of e(C ′, C ′′)C .
The homotopy can be defined inductively, where the homotopy on the

n+ 1-skeleton extends the homotopy of the n-skeleton. �

5. Proof of the Conjecture

This section gives a proof of the main theorem and its corollary.

Theorem 5.1. St(Sg) is generated by the Γg-orbit of the image in Cg
of the map qg.

Proof. The theorem will be proven by first proving the lemma below.

As it was shown in Theorem 4.2 of [4] that St(Sg) is cyclic modulo the

action of Γg, it then sufficies to show primitivity of the homology class with

representative given by the image of the map qg.

Lemma 5.2 (Conjecture 4.9 of [4]). The image of the map qg repre-

sents a nontrivial element of π2g−2(Cg).

For convenience, the map q◦g with image in C◦
g will be used in place of qg.

This can be done because it was shown that the two maps are homotopic.

The cases g = 1 and g = 2 of the lemma were proven in [4], where

the first nontrivial case g = 2 was worked through explicitly. The sphere

obtained in the case g = 2 is shown in Figure 2.



14 Ingrid Irmer

For simplicity, balls and spheres in Ng ∩ ∂T δ
g will be confused with

corresponding objects in Cg. This is done by identifying the image of the

embedding of Cg with Cg, and projecting Ng onto this image via the systole-

preserving map π.

Let C be the set of curves from Example 3.1. It follows from Lemma

4.1 and the definition of qC,g that the image of q◦g represents a boundary in

C◦
g iff the ball Bg in Min(C) bounded by the image of the embedding of Φg

can be homotoped relative to its boundary into ∂T δ
g .

Suppose there exists a homotopy of Bg relative to its boundary into ∂T δ
g .

Denote by BC
g a ball in C◦

g homotopic to Bg. It is possible to assume without

loss of generality that BC
g is invariant under the action of the finite subgroup

of Γg that stabilises ∂BC
g . If BC

g could not be chosen this way, Theorem 4.2

of [4] would imply that St(Sg) is a finite Γg-module.

The critical point p from Example 3.1 represents a surface with an au-

tomorphism group that acts transitively on the curves in C. This auto-

morphism group therefore corresponds to a subgroup of Γg that stabilises

Min(C) setwise. Since the action of the mapping class group preserves injec-

tivity radius, this subgroup also stabilises Bg and its boundary setwise. This

group will be called GC from now on. GC contains a cyclic element of order

2g + 2 that permutes the systoles, preserving the cyclic ordering. In addi-

tion, it contains elements that correspond to a reflection of the (2g+2)-gon

K2g+2 from Section 3.

The fixed point set of GC is a path γ that will now be described. It is

an example of a type of path constructed in [16].

At the critical point p in Example 3.1, the systoles intersect at right

angles, and cut the surface into right angled (2g + 2)-gons. The set C can

be decomposed into two multicurves, each with g+1 elements; these are the

“A-curves” and the “B-curves”. The edges of each (2g + 2)-gon alternately

lie along A-curves and B-curves. Each systole lies along two edges of this

tesselation, and these two edges are on the boundary of different (2g + 2)-

gons.

It is possible to deform the hyperbolic structure such that the tesselation

by right angled (2g+2)-gons becomes a tesselation by (2g+2)-gons with all

edge lengths equal and angles that alternate between π/2+ t and π/2− t for

t ∈ [0, π/2). This is done in such a way that all angles at the vertices of the

tesselation still sum to 2π and opposite pairs of edges at vertices continue to
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meet at angle π. The hyperbolic structure on the (2g+2)-gons extends to a

hyperbolic structure on the tesselated surface. A map γ : (−π/2, π/2) → Tg
is obtained. Here t ∈ (−π/2, π/2) is mapped to the point in Tg represented

by the hyperbolic surface tesselated by the complements of the geodesics in

C, where the tesselation consists of (2g + 2)-gons with angles alternating

between π/2 + t and π/2 − t.
SinceGC acts by isometry, at every point of γ, the lengths of the different

curves in C are equal. Similarly for the angles of intersection, where these

are defined appropriately using an orientation convention as in the definition

of γ. The action of GC at γ(t) performs the same permutation of the

(2g+2)-gons of the tesselation of γ(t) and their edges as at the critical point

γ(0). The fixed point sets of the reflections contain γ, and extend radially

outwards from γ, intersecting ∂Bg. The Brouwer fixed point theorem implies

that the fixed point set of the cyclic subgroup of GC must intersect BC
g ,

similarly for the fixed point set of the reflections. It follows that γ intersects

BC
g .

The quotient Tg/GC is therefore an orbifold with trivial fundamental

group and cone singularities along γ and radiating outwards from γ, as

explained above. The homotopy from Bg to BC
g can therefore be assumed

to be GC-equivariant; its projection to Tg/GC is a homotopy between two

singular balls with the same boundary. This homotopy shifts points on each

fixed point set along the fixed point set.

Again due to the fact that GC acts by isometry, γ is a geodesic with

respect to any Γg-equivariant metric on Tg. In particular, it is a geodesic

with respect to the Teichmüller metric. If γ is the axis of a pseudo-Anosov

(calculations suggest this is not the case), the image of γ in the moduli space

is a closed loop in the δ-thick part of Tg for some δ. Since a Γg-equivariant

homotopy of the embedding of Bg can only shift the image of the embedding

in such a way that the image of the critical point stays on γ, this contradicts

the existence of a homotopy.

When γ is not the axis of a pseudo-Anosov, it intersects ∂T δ
g in a

discrete set of points. This follows from the observation that γ is also a

Weil-Petersson geodesic, and curve lengths are strictly convex along Weil-

Petersson geodesics, [19].

If Bg is homotopic into ∂T δ
g , by symmetry, there must be at least two

GC-equivariant homotopies; one moving a point of Bg in one direction along
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γ, and the other in the opposite direction along γ. These homotopies take

Bg to distinct balls BL
g and BR

g in Cg, as demonstrated by the fact that the

set of systoles at the two corresponding points of intersection of γ with ∂T δ
g

are different. Both these balls in Cg have dimension 2g − 1, as they have

2g − 2-dimensional boundary.

As Cg has the homotopy type of a wedge of spheres of dimension 2g− 2,

the (2g−1)-sphere in Cg obtained by gluing BL
g and BR

g together along their

boundaries must bound a ball in Cg. As this is also the case in the projection

to Tg/GC , the Γg-orbits of BL
g and BR

g must be GC-equivariantly homotopic

in Cg. However, this contradicts the fact that γ only intersects ∂T δ
g in a

discrete set of points. It follows that there can be no homotopy, proving

Lemma 5.2.

It remains to show primitivity of the image of qg. This follows from the

existence of a Poincaré dual to Min(C) with algebraic intersection number

1 with Min(C). There are a number of different possible constructions for

this dual. Choose a smallest subset C ′ of C that fills. In [8] this is called a

minimal filling set. In Section 3 of [8] it was shown that the set E(C ′) :=

{x ∈ Tg | L(ci)(x) = L(cj)(x) ∀ ci, cj ∈ C ′} is an embedded submanifold

with codimension equal to the dimension of Min(C) intersecting Min(C) in a

single point. Alternatively, by Theorem 1.2 of [9], the Thurston spine, while

not an embedded submanifold, has intersection number 1 with Min(C), and

as shown in the final section of [7], contains a subcomplex without boundary

of codimension equal to the dimension of Min(C). This concludes the proof

of primitivity, and hence of the theorem. �

Corollary 5.3. Denote by Zg the center of the mapping class group

Γg. The stabiliser subgroup of the action of Γg/Zg on the homology class [qg]

in St(Sg) with representative the image of qg is isomorphic to the dihedral

group D2g+2. Moreover, the kernel of the action of Γg/Zg on St(Sg) is

trivial.

Proof. Recall the construction of the simplicial 2g − 2 dimensional

sphere Φg via the (2g + 2)-gon K2g+2. It follows that the automorphism

group of the associahedron K2g−1 is isomorphic to the automorphism group

of K2g+2, namely the dihedral group D2g+2.

The dihedral group D2g+2 is generated by reflections. Let r be one such

reflection. Since 2g+2 is even, r leaves invariant a pair of vertices of K2g+2;
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Fig. 4. In genus 2, the mapping class in the proof of Corollary 5.3 is a composition of
reflections through the red curve shown in part (a), followed by the red multicurve in
part (b). When the genus is odd, the first reflection is through a multicurve with two
connected components, as shown in part (c).

let c1 and c2 be the curves in C labelling these edges. There is an element

α(r) of the mapping class group that realises r in the sense that the induced

action of α(r) on the curves of Sg determines the same permutation of the

elements of C as the action of r on the vertices of K2g+2. The mapping

class α(r) is a composition of two reflections of Sg, as illustrated in Figure

4. The first reflection is through a multicurve that intersects c1 and c2
twice each, and cuts each of the (2g + 2)-gons in Sg�C into two (g + 2)-

gons. This multicurve is a curve when the genus is even, and has 2 connected

components when the genus is odd, as illustrated in Figure 4 (a) and (c).

The second reflection is through the set of curves obtained as the boundary

curves of a subsurface obtained by gluing two adjacent (2g + 2)-gons in

Sg�C along their common edges as shown in Figure 4 (b). This concludes

the proof of the first part of the Corollary.

The kernel of the action of Γg/Zg on St(Sg) is contained in the inter-

section of the stabiliser subgroups of the generators, each of which can be

taken to be in the Γg-orbit of a fixed [qg] by Theorem 5.1. These stabiliser

subgroups consist of all the conjugates of the stabiliser subgroup of [qg].

This intersection can readily be seen to be trivial; consider for example the
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conjugate by a large power of a pseudo-Anosov. The intersection with the

stabiliser subgroup of [qg] is zero, because the images of the reflections fix

different curves. �
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