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Explicit Generators of the Steinberg Module of the
Mapping Class Group

By Ingrid IRMER

Abstract. A conjecture of Broaddus is proven, giving a simple
characterisation of a representative of the unique orbit of the action
of the mapping class group on the homology of Harvey’s complex of
curves for any genus surface. As an application, the kernel of the
action of the mapping class group of a genus g surface on the Steinberg
module is shown to be trivial.
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1. Introduction

It was shown in [6], Theorem 3.5, that the complex of curves, C4, of a
closed, orientable topological surface S, of genus g > 2 has the homotopy
type of an infinite wedge of spheres of dimension 2¢g —2. In [4], an algorithm
for constructing a homotopically nontrivial sphere was given, and an explicit
example was computed in genus 2. This paper proves a conjecture showing
that a considerably simpler construction of spheres: “Broaddus spheres” -
of which there is one in each genus - could be used.

The reduced homology group fIQQ_Q (Cg; Z) (this is isomorphic to
mag—2(Cqy) via the Hurewicz theorem) is also referred to as the Steinberg
module St(Sy). Since there is a simplicial action of the mapping class group

2020 Mathematics Subject Classification. Primary 57K20. Secondary 57R70.
Key words: Mapping class groups, Moduli space, Morse Theory.



2 Ingrid IRMER

I'y of S4 on Cy, St(S,) has the structure of a I'g-module. It was also shown
in [4] that St(S,) is a cyclic I';-module.

THEOREM 1.1. St(Sy) is generated by the mapping class group orbit of
the Broaddus sphere of genus g.

A Poincaré duality group is a group whose homology and cohomology
satisfy a duality property analogous to the Poincaré duality between the
homology and cohomology of a compact manifold. This definition was gen-
eralised in [3] to the notion of a duality group. Informally, a duality group
is a group whose homology and cohomology satisfy a property analogous
to Poincaré duality, with a nontrivial “dualising module” taking the place
of the orientation module. It was shown in Theorem 6.6 of [10] that the
mapping class group of a closed orientable surface is a virtual duality group,
and that the dualising module is St(S,).

For genus g at least 3, the center Z; of Iy is trivial, as shown in Theorem
3.10 of [5]. In Section 3.4 of [5] it was shown that the center of Zy is
generated by involutions that act trivially on C4. The techniques of this
paper can be used to relate the stabiliser subgroup of the action of I'; on a
generator of St(Sy).

COROLLARY 1.2. The kernel of the action of T'y/Z, on St(Sy) is trivial.

The systole function fsys : 7, — Ry is the piecewise smooth map whose
value at any point of 7, is the length of the systoles. The systole function is
known to be a topological Morse function, [1]. These are defined in [14], and
can be used to construct cell decompositions of topological spaces analogous
to those of (smooth) Morse functions.

The central idea is that the Broaddus sphere can be described using a
basepoint-free analogue of the “screens” of Penner-McShane. As explained
in [9], these are combinatorial objects that determine the set of curves that
become arbitrarily short on a set of minima. Informally, the sets of minima
in this paper behave like “stable manifolds” of critical points of fsy,. A set of
minima, or a critical point, is labelled by a set of curves. The mapping class
group maps sets of minima to sets of minima, and critical points to critical
points. As this action is determined by the action of the mapping class
group on curves, the action of the mapping class group on the Broaddus
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spheres is identical to the action on the sets of minima that they bound
in 7;. The Broaddus spheres are shown to represent nontrivial homology
classes in St(Sy) by studying the way the fixed point sets of the action of
I'y on the sets of minima restrict equivariant homotopies.

Outline of the paper. Section 2 first introduces some background and
notations. For the benefit of readers who are not be familiar with Schmutz
Schaller’s sets of minima, a survey of their properties is given. The con-
struction from [4] of a generator of St(Sy), as well as a related example of
a critical point due to Schmutz Schaller are given in 3. The relationship
between these ingredients is made clear in Section 4. The “stable manifold”
of the critical point in the form of a certain set of minima, is identified
with the ball in Teichmiiller space bounded by the sphere corresponding to
Broaddus’s conjectured generator of St(S;). The vertices of this triangu-
lated sphere are shown to correspond to particular boundary points of the
set of minima. In Section 5 symmetries are used to show that the homology
class of the sphere is nontrivial.

2. Assumptions and Background

The orientable, closed, compact, connected topological surface of genus
g will be denoted by Sy; when this surface is given a marked hyperbolic
structure corresponding to a point in Teichmiiller space, it will be denoted
by Sy.

The Teichmiiller space of S, will be denoted by 7, the mapping class
group by I'y, moduli space by My, and Harvey’s curve complex by C,. For
convenience, the simplicial complex C, will be confused with its geometric
realisation.

A curve is a homotopy class of embeddings of S' into Sy. When there
is no possibility of misunderstanding, the word curve will also refer to a
particular representative of the homotopy class, such as a geodesic. A set
of curves is said to fill Sy if the complement of a set of representatives in
minimal positition cuts the surface into polygons.

A curve ¢ determines an analytic map L(c) : 7, — R, whose value at
any point is given by the length of the unique geodesic representative of c. A
length function L(A, C) is a linear combination of such functions with posi-
tive coefficients where C'is a finite set of |C'| curves, and A = (a1, ... ,a)¢|) €
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]R‘fl the coefficients. Length functions satisfy many convexity properties,
for example they are strictly convex along Weil-Petersson geodesics, [19].
The Weil-Petersson metric will be assumed whenever a metric is needed on
1.

The systoles of Sy are the shortest curves; every closed hyperbolic surface
has a finite set of shortest curves. The set of points in 7, at which the set
of systoles is exactly C' will be denoted by Sys(C'). The Thurston spine is
the set of points in 7, at which the systoles fill S;. It follows from [12] that
the Thurston spine is a CW complex.

Lengths of curves of surfaces have a property called local finiteness. Fix
the genus g of the surface. For any L > 0 there exists a finite n(L) such that
on any choice of Sy, the number of curves of length at most L is bounded
from above by n(L), [13]. This implies that for any point = € 7, at which
the set of systoles is given by C, there exists a neighbourhood of z in 7; in
which the systoles are all contained in the set C'.

Teichmiiller space has a decomposition into the thick part, where fgys
is less than or equal to the Margulis constant, and the thin part, which is
the complement of the thick part. For convenience, a decomposition into a
O-thick part and é-thin part will be used, where ¢ > 0 might be less than
the Margulis constant. The é-thick part of 7, is the subset of 7, on which
fsys 1s greater than or equal to é, and will be denoted by 7;]5.

It was shown in [10] that C, is I'j-equivariantly homotopy equivalent
to the boundary of the thick part of Teichmiiller space. The idea behind
this is very simple. On the boundary of the thick part of 7,, the systoles
are pairwise disjoint; at a given point they determine a multicurve m. The
intersection of Sys(m) with the boundary of the thick part of 7, corresponds
to the cell labelled by m in the barycentric subdivision of C;. The same
argument as in [10] gives an embedding of C, in the boundary of Tg‘S.

Sets of minima. Let C be a finite filling set of curves. From Lemma
1 of [17], it is known that every length function given by a strictly positive
linear combination of the lengths of curves in C' has a unique minimum at
some point of 7. The set Min(C) defined in [17] consists of all points in 7,
at which a length function of the form L(A,C) for some A € R'f' has its
minimum. A reference for sets of minima is Section 2 of [17].

There is a surjective map ¢¢ : R'fl — Min(C'), where here ¢(A) is
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the point in Min(C) at which L(A,C) has its minimum. Note that ¢¢ is
not injective. This paper will be concerned with specific examples of sets
Min(C) that are known to be differentiable cells with empty boundary.

Suppose C = {ci, ... ,c} is a filling set of curves. The lengths of curves
in C are said to parameterise Min(C'). For any z1, 2 in Min(C), the map
F : Min(C) — R given by z +— (L(c1)(%),. .., L(ck)(x)) has the property
that F'(z1) = F(x2) only if x1 = x2. When the rank of the Jacobian of F'(C)
is constant on Min(C'), as will always be the case in this paper, Section 2
of [17] showed how to use the lengths of the curves in C' to obtain a set of
coordinates on Min(C).

LEMMA 2.1 (Lemma 4 of [2], or Proposition 1 from [18]). Let C' be
any collection of curves on a surface that do not fill. Then at any point x of
1y, there is an open cone of T, 7, corresponding to directions in which the
lengths of all the geodesics representing curves in C' are strictly increasing.

It follows from Lemma 14 of [17] that points on OMin(C') in the interior
of 7, are minima of strictly positive linear combinations of filling subsets
of C. For a length function of the form L(A,C"), where C’ is a nonfilling
subset of C, Lemma 2.1 implies that any infima are realised as limits of
sequences of points in Min(C'). Broaddus spheres are described in terms of
minima of nonfilling subsets of C.

3. From Critical Points to Spheres

This section begins by surveying an important family of examples of
critical points of the topological Morse function fyys. These examples will
later be related to the construction of 2g — 2-dimensional spheres in C,,
whose construction is also given in this section.

Example 3.1 (A critical point of fsys of index 2g — 1, from Theorem 36
of [17]). Take a regular, right angled hyperbolic polygon 7' with 2¢g + 2
sides. Four copies of T' can be glued together along four pairs of edges with
a common vertex. This is done in such a way that each copy of T' shares
one edge with two others. A right angled hyperbolic polygon with 8g — 4
sides is obtained. The construction with g = 2 is shown in Figure 1. This
gives a fundamental domain of a surface. The sides of the fundamental
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domain are glued together in such a way that each edge of a copy of T
lies along a geodesic loop on the surface obtained by traversing exactly two
edges, each on different copies of 1. It transpires that the gluing maps
are completely determined by this condition. When given a marking, this
surface corresponds to a point in 7, that will be denoted by p.

It was shown in [17] that p is a critical point of index 2¢g — 1 and that
the set C of systoles at p is the set of curves that can be embedded in
the graph on S, consisting of the edges of the four copies of T". This gives
2g + 2 systoles, each of which intersects exactly two other systoles. Let ¢;
and ¢y be a pair of systoles that intersect. It was shown that C'~{c1, 2}
fills and Min(C'~{¢1,c2}) = Min(C). For every = € Min(C'), the gradients
{VL(c) | c € C} lie in a 2g — 1 dimensional subspace of T, 7,. As C~{c1,c2}
has no proper filling subsets and the rank of the Jacobian of the map 7, —
R29%2 given by @ — (L(c1),. .., L(c2g+2)) is constant and equal to 2g — 1
everywhere on Min(C'), it follows from Corollary 13 and Lemma 14 of [17]
that Min(C) is a continously differentiable cell with empty boundary.

The cell Min(C') behaves like the stable manifold of the critical point
p. The relationship between sets of minima and stable manifolds of critical
points of fyys is discussed in [9]. The definition of Min(C') implies that any
vector in the tangent space to Min(C) at p gives a direction in which the
length of at least one curve in C' is decreasing. On a neighbourhood of p,
by local finiteness the systoles are contained in C, so p is a local maximum

Fig. 1. The left side of this figure (not drawn to scale!) shows a fundamental domain
of the genus 2 surface in Example 3.1. The systoles lie along the boundary and the
edges shown. The numbers on the edges are intended to indicate the gluing maps.
The right side of the figure shows the systoles on the surface.
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Fig. 2. This figure is reproduced from [4] and shows the 1-skeleton of the triangulated
sphere in Cz constructed by the algorithm below. Theorem 4.1 shows this is homotopic
in C4 to the intersection of Min(C) from Example 3.1 with the embedding of C4 in
o1,

for foys in Min(C).

The point p is an element of a I'g-orbit of critical points. The systole
function is invariant under the action of I';. A v € Iy maps a critical point
with set of systoles C' to a critical point with systoles given by the image of
C under . Similarly, I'; acts on sets of minima, mapping Min(C') to the
set of minima of the image of C' under ~.

Construction of the Sphere. The 2¢g — 2 dimensional sphere in C,4
from Conjecture 4.9 of [4] is constructed as follows: Let C' be the set of
2g + 2 curves from Example 3.1 and let Kygy2 be a (29 + 2)-gon. Choose
a bijection between the vertices of Ky,12 and the elements of C' with the
property that adjacent vertices of Ko, are labelled by intersecting curves.
The symbol @, will be used to denote the symplicial complex whose vertices
correspond to diagonals of K419 and whose simplices correspond to sets of
disjoint diagonals of Kagyo.

An associahedron /C,, is a polytope of dimension n whose vertices cor-
respond to all the distinct ways of parenthesising the word oz ... ZTpy1-
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As shown in [11], Theorem 1, the simplicial complex ®, is the boundary of
the dual of the 2g — 1-dimensional associahedron Ko4_1, and is therefore a
triangulation of the 2¢g — 2-dimensional sphere.

The barycentric subdivision of C; will be denoted by Cg. Recall that
each vertex v of @, is labelled by pair of nonintersecting curves c¢(v) in C.
A simplicial map

(1) qy: Py —Cy

is contructed, where g; maps a vertex v to the vertex in Cg labelled by the
multicurve m(C \c(v)) consisting of the set of nontrivial homotopy classes
of curves on the boundary of the surface obtained by cutting S, along the
geodesic representatives of the curves C'\.c(v). Informally, m(C") is con-
tained in the boundary of the subsurface filled by C’.

The map ¢, can be seen to map simplices to simplices. The condition
that the simplices of ®, correspond to sets of disjoint diagonals of Kagy2
implies that the image of a simplex under ®, is a simplex in C.

Defining the map qg : & — Cg. For the purposes of this paper, it
will be simplest to work with the image in Cj of ®; under g;. This is a
matter of taste; if one wants to obtain a sphere in Cg4, for any vertex v with
the property that m(C\c(v)) has more than one connected component,
choose a single curve m1(C\c(v)) in m(C~c(v)). It was shown in [4] that
gy is homotopic to a map from 52972 to a subcomplex with the vertex in

Fig. 3. Lower dimensional analogue of homotoping a subcomplex of C; onto a subcomplex
of Cy. Edges and vertices of Cg not in Cy are shown in grey.



Generators of the Steinberg Module 9

the image of g, labelled by m(C \c(v)) replaced by the vertex labelled by
m1 (C~c(v)). This homotopy pushes simplices in the interior of a simplex
of Cg onto the boundary of the simplex, as illustrated in Figure 3. The map
qy, composed with one such choice of homotopy for every vertex not in C,
gives the map g,.

For every g > 2 there is a map ¢,4, the homotopy class of which will be
referred to as a Broaddus sphere.

4. The Set of Minima

The purpose of this section is to show that the Broaddus sphere in genus
g can be embedded in 87;5 in such a way that it makes sense to think of
it as the boundary of Min(C'), where C'is the set of curves from Example 3.1.

A thickening of the embedded curve complex. The dimension
3g — 4 of C4 is smaller than the dimension of 74, namely 6g — 6. In order to
use the embedding of C, into 8’2;5 from [10] it will be convenient to define a
regular neighbourhood of the image of the embedding. An abuse of notation
will be used to simplify the exposition; the image of the embedding of C, or
Cy in (9’]'9‘S will also be referred to as Cy4 or Cy.

Ivanov’s embedding of C, in 8’]'96 has the property that a vertex labelled
by a curve ¢ is mapped into Sys({c}), an edge labelled by {c1, c2} is mapped
into the union of Sys({c1}), Sys({c2}) and Sys({c1 U c2}), etc.

For every multicurve m labelling a top dimensional simplex of C4, the in-
tersection of Sys(m) with 8’];5 is an embedded submanifold without bound-
ary. Different points in Sys(m) N 87;5 have Fenchel-Nielsen parameters dif-
fering only in the twist parameters around curves in m. For a multicurve m’
with fewer connected components, the boundary of Sys(m’) N 8796 lies along
{Sys(m) N OTg‘S | m" € m”}. As these extend to embedded submanifolds
with boundary in a neighbourhood of 8’];]5, the same arguments as in [10]
show that it is possible to embed a regular neighbourhood 7 : N — Cy into
the thin part of 7, in such a way that the duality between the sets of sys-
toles and the cells of the regular neighbourhood is preserved. This regular
neighbourhood can be chosen wide enough to contain the intersection of a
chosen set of minima with 8’];5.

Construction of the map qcg. Recall the definition of ¢, : &, — CJ
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from the previous section, where ®, is a triangulation of a 2g—2 dimensional
sphere. Another map q¢ 4 from @4 to C; will now be constructed. This map
factors through a map homotopic to the inclusion map into 87;‘5 of a 2g — 2-
dimensional sphere in the intersection 8’];‘5 N Min(C).

The construction is motivated by the basepoint-free analogue of Penner-
McShane’s screens given in [9]. Let c¢j,ca be a pair of disjoint curves in
C, and C' := C~{c1,¢c2} a nonfilling set of curves. The curves {c1,c2}
correspond to a diagonal of Kagio. The length function L(C’) obtained
by taking the sum of the lengths of curves in €’ has no minimum in 7
by Lemma 2.1. It can be thought of as having its infimum at the limit of
a sequence of points whose parameters (ai,...,az542) € Rig” approach
2—1g(0,0,1,1,... 1.

For convenience, from now on the normalisation factors on the param-
eters in ]Rig+2 will be dropped. For the arguments given here, it is only of
interest which of the parameters are close to zero.

For small 4, the length function L(C”) nearly reaches its infimum on
Min(C) N 972. Denote by v(C’) a point at which L(C')\Min(c)mm—f is min-
imised. Similarly, for any other vertex of ®,, define a corresponding point
in Min(C) N 8’]'96. The only restriction imposed here is that any choices are
made in such a way that the embedding is invariant under the action of the
subgroup of I'y that maps Min(C) to itself.

Imposing the restriction that any choices in the construction of the em-
bedding are made in a I'j-equivariant way is not a problem, for reasons that
will now be explained. The subgroup of I'y that maps Min(C) to itself per-
mutes the curves in C' in a way that preserves or reverses the cyclic ordering.
This subgroup could only map a minimum of L(C") on Min(C) N 8’];,6 to a
different minimum if it maps C’ to itself. This is only possible if ¢; and ¢
represent a pair of opposite vertices of Kag1o. In this case, m(C”) consists of
a single separating curve that is invariant under the action of the subgroup.
It follows from Riera’s theorem that the minima of L(C") on Min(C') N 8’]'96
occur where m(C") is a systole. By symmetry, such points are therefore in-
variant under the action of the subgroup of I'y that maps Min(C') to itself.
It follows that any choices can be made in a I'g-equivariant way.

Every edge of ®, determines a pair of endpoints v(C”) and v(C”) with
m(C") and m(C") disjoint multicurves. The midpoint of this edge is repre-
sented by a tuple in ]RigJr2 with parameters close to zero in 3 or 4 positions,
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and all other parameters close to 1. The parameters that are small consist
of the union of the parameters that are small at the vertices.

To be more precise: ¢’ = C~{c¢; U ¢} and C” = C~{¢;, ¢} where ¢
or ¢, (but not both) might be in {¢;,¢;}. Then the midpoint of the edge
connecting v(C”") and v(C”) has parameters a;, aj,a; and a,, close to zero,
and all others close to 1. The midpoint of this edge can be thought of as
a minimum of the length function L(C'~\{c¢;,¢;, ¢, em}) on 8’]'96. Between
the midpoint and each of the endpoints, the edge is defined by taking a
linear interpolation of the parameters. Maps of higher dimensional simplices
of &, into Min(C) are defined analogously, with midpoints contained in
(9’2;5 N Min(C).

N, can be chosen in such a way that the image of the simplices of @,
are contained in Nj. Since @, is a 2¢g — 2-sphere, and Min(C) a 2g — 1-ball,
inside N, the embedding of ®, can be homotoped to have image in the
intersection 8’];6 NMin(C). Composing with = : Ny — C, gives a homotopy
in Cg. In this way an embedding of a 2g — 2-sphere in C; denoted by gc g is
obtained.

LEMMA 4.1. For g > 2, qg is I'g-equivariantly homotopic to qc.g-

PROOF. Suppose C; for i = 1,... ,n are nonfilling subsets of C', each
of which is obtained by deleting a pair of disjoint curves from C', and such
that {m(C1),...,m(Cy)} are pairwise disjoint.

CrLAaiM 1. Suppose o is a top dimensional simplex in the image of the
embedding of ®, by gc 4 defined above, with vertices given by {v(C1),. ..,
v(Cp)}. Then for sufficiently small §, everywhere on o the length of any
multicurve in the set {m(C1),... ,m(C,)} is less than the diameter of the
collar of a geodesic of length 6.

Note that in the 6-thin part of Tg‘s, the statement that a given curve has
length less than the diameter of a collar of a geodesic of length 6 amounts
to saying that the curve is disjoint from the systoles or is a systole.

Proor oF CrLAM 1. Using Keen’s collar lemma, the bound on the
Margulis constant given in [20] and some hyperbolic trigonometry, for ex-
ample Theorem 3.5.4 of [15], it is not hard to check that the length of the
systoles at p in Min(C') is less than the diameter of the collar of a geodesic
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of length é. Similarly, for sufficiently small ¢, the length of m(C”) at p is less
than the diameter of the collar of a geodesic of length 6. Moreover, Lemma
2.1 implies that the length function L(C"), for nonfilling C’ C C, has some
values on 8’]'95 smaller than at p.

Denote by ¥(C;) the union of cells each containing the vertex v(Cj).
At the vertex v(C;) the systoles are disjoint from every curve in C; and
hence from m(C;). Otherwise, for sufficiently small §, one of the systoles
would intersect a curve in C;, making L(C;) larger than its value at p. The
systoles are therefore contained in the multicurve m(C;) at v(C;). Any
curves in m(C;) that are not systoles at the vertex must also have length
less than the diameter of the collar of a geodesic of length 6. This is because
such curves are homotopic to curves lying along arcs of the curves C; and
hence cannot be too long without forcing L(C;) to be larger than its value
at p.

At the vertex v(C}) of ¥(C;), each curve in m(C;) is either homotopic
to a curve in m(C}) or to a piecewise smooth curve lying along some of the
geodesic representatives of the curves in C;. Either way, for sufficiently small
0, the length of m(C}) is less than the diameter of the collar of a geodesic of
length 6. The same is true for any vertex or midpoint of a simplex in (C}).
This can then be extended to ¥(C;), because the length functions minimised
over the cells are linear combinations of the length functions minimised at
the vertices and midpoints of cells. Since o is in the intersection

MN7=13(C5)
the claim follows.

CLAIM 2. Suppose ¢ is a top dimensional simplex with vertices
{v(C1),...,v(Cy)} as in Claim 1. Then for sufficiently small ¢, if ¢ is a sys-
tole somewhere on o, ¢ is contained in one of the multicurves {m(C1),... ,

Claim 2 is a corollary of Claim 1. Since ¢ is top dimensional, it follows
from the construction that the multicurves {m(C1),... ,m(C,)} determine
a pants decomposition of S,. If ¢ were a systole on ¢ intersecting one of the
multicurves {m(C1),... ,m(Cy)}, this would contradict Claim 1.
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A T'y-equivariant homotopy between ¢ 4 and qg will now be constructed.
Let o be the image under gc 4 of a top dimensional cell of the barycentric
subdivision of ®;. The vertices of o are already on C;. A vertex v(C’) will
be mapped to the vertex v(C")¢ of Cy labelled by m(C”). Recall that by
Claim 2, the systoles at v(C’) are a submulticurve of m(C”). So v(C") is
already contained in a cell in C, containing v(C”’)¢. The homotopy shifts
v(C") to v(C")C along a straight line contained within this simplex.

Now suppose e(C’,C") is an edge of the embedding of the barycentric
subdivision of ®,. Here v(C’) is a vertex and v(C”) the midpoint. Then by
Claim 2, the edge e(C’,C") is contained in a thickened simplex containing
the edge e(C’,C")¢ in the image of C, joining v(C")¢ and v(C”)¢. The ho-
motopy maps e(C”’, C") to e(C”,C")¢ by shifting points along straight lines
within this thickened simplex, extending the homotopy taking the endpoints
of e(C’,C") to the endpoints of e(C’, C")C.

The homotopy can be defined inductively, where the homotopy on the
n + 1-skeleton extends the homotopy of the n-skeleton. [

5. Proof of the Conjecture
This section gives a proof of the main theorem and its corollary.

THEOREM 5.1.  St(Sy) is generated by the I'g-orbit of the image in Cq4
of the map qq.

PROOF. The theorem will be proven by first proving the lemma below.
As it was shown in Theorem 4.2 of [4] that St(S,) is cyclic modulo the
action of Iy, it then sufficies to show primitivity of the homology class with
representative given by the image of the map g,.

LEMMA 5.2 (Conjecture 4.9 of [4]). The image of the map q, repre-
sents a nontrivial element of mag—2(Cy).

For convenience, the map gy with image in C; will be used in place of g,.
This can be done because it was shown that the two maps are homotopic.

The cases ¢ = 1 and g = 2 of the lemma were proven in [4], where
the first nontrivial case g = 2 was worked through explicitly. The sphere
obtained in the case g = 2 is shown in Figure 2.
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For simplicity, balls and spheres in N, N 8’2;5 will be confused with
corresponding objects in C,. This is done by identifying the image of the
embedding of C, with Cg4, and projecting N, onto this image via the systole-
preserving map .

Let C be the set of curves from Example 3.1. It follows from Lemma
4.1 and the definition of g¢ 4 that the image of g represents a boundary in
C, iff the ball By in Min(C') bounded by the image of the embedding of ®,
can be homotoped relative to its boundary into 87;5.

Suppose there exists a homotopy of B, relative to its boundary into 879‘5.
Denote by Bg a ball in C; homotopic to B,. It is possible to assume without
loss of generality that BB; is invariant under the action of the finite subgroup
of I'y that stabilises 885. If Bg could not be chosen this way, Theorem 4.2
of [4] would imply that St(S,) is a finite I'j-module.

The critical point p from Example 3.1 represents a surface with an au-
tomorphism group that acts transitively on the curves in C'. This auto-
morphism group therefore corresponds to a subgroup of I'y that stabilises
Min(C') setwise. Since the action of the mapping class group preserves injec-
tivity radius, this subgroup also stabilises B, and its boundary setwise. This
group will be called G¢ from now on. G¢ contains a cyclic element of order
2g + 2 that permutes the systoles, preserving the cyclic ordering. In addi-
tion, it contains elements that correspond to a reflection of the (2g + 2)-gon
Kagy9 from Section 3.

The fixed point set of G¢ is a path v that will now be described. It is
an example of a type of path constructed in [16].

At the critical point p in Example 3.1, the systoles intersect at right
angles, and cut the surface into right angled (2g + 2)-gons. The set C' can
be decomposed into two multicurves, each with g+ 1 elements; these are the
“A-curves” and the “B-curves”. The edges of each (2g + 2)-gon alternately
lie along A-curves and B-curves. Each systole lies along two edges of this
tesselation, and these two edges are on the boundary of different (2g + 2)-
gons.

It is possible to deform the hyperbolic structure such that the tesselation
by right angled (2g + 2)-gons becomes a tesselation by (2g + 2)-gons with all
edge lengths equal and angles that alternate between 7w/2+t and 7/2 —¢ for
t € [0,7/2). This is done in such a way that all angles at the vertices of the
tesselation still sum to 27 and opposite pairs of edges at vertices continue to
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meet at angle 7. The hyperbolic structure on the (2g+ 2)-gons extends to a
hyperbolic structure on the tesselated surface. A map v : (—7/2,7/2) — 7,
is obtained. Here ¢t € (—m/2,7/2) is mapped to the point in 7, represented
by the hyperbolic surface tesselated by the complements of the geodesics in
C, where the tesselation consists of (2g + 2)-gons with angles alternating
between 7/2 +t and 7/2 — t.

Since G¢ acts by isometry, at every point of v, the lengths of the different
curves in C' are equal. Similarly for the angles of intersection, where these
are defined appropriately using an orientation convention as in the definition
of 7. The action of G¢ at ~(t) performs the same permutation of the
(2g+2)-gons of the tesselation of v(t) and their edges as at the critical point
~(0). The fixed point sets of the reflections contain -, and extend radially
outwards from v, intersecting 0B,;. The Brouwer fixed point theorem implies
that the fixed point set of the cyclic subgroup of G must intersect BgC,
similarly for the fixed point set of the reflections. It follows that v intersects
BC.

The quotient 7,/G¢ is therefore an orbifold with trivial fundamental
group and cone singularities along v and radiating outwards from -y, as
explained above. The homotopy from B, to Bg can therefore be assumed
to be G¢-equivariant; its projection to 7,/G¢ is a homotopy between two
singular balls with the same boundary. This homotopy shifts points on each
fixed point set along the fixed point set.

Again due to the fact that G acts by isometry, v is a geodesic with
respect to any I'g-equivariant metric on 7,. In particular, it is a geodesic
with respect to the Teichmiiller metric. If 7y is the axis of a pseudo-Anosov
(calculations suggest this is not the case), the image of v in the moduli space
is a closed loop in the é-thick part of 7, for some é. Since a I'g-equivariant
homotopy of the embedding of B, can only shift the image of the embedding
in such a way that the image of the critical point stays on -, this contradicts
the existence of a homotopy.

When v is not the axis of a pseudo-Anosov, it intersects 87;‘5 in a
discrete set of points. This follows from the observation that ~ is also a
Weil-Petersson geodesic, and curve lengths are strictly convex along Weil-
Petersson geodesics, [19].

If B, is homotopic into 879‘5, by symmetry, there must be at least two
G c-equivariant homotopies; one moving a point of By in one direction along
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v, and the other in the opposite direction along v. These homotopies take
B, to distinct balls Bg and Bf in Cy4, as demonstrated by the fact that the
set of systoles at the two corresponding points of intersection of v with (97;75
are different. Both these balls in C;, have dimension 2g — 1, as they have
2g — 2-dimensional boundary.

As C4 has the homotopy type of a wedge of spheres of dimension 2g — 2,
the (29 —1)-sphere in C4 obtained by gluing BgL and Bf’ together along their
boundaries must bound a ball in C,. As this is also the case in the projection
to 7,/Gc, the T'g-orbits of Bé and Bf must be Go-equivariantly homotopic
in C;. However, this contradicts the fact that v only intersects 8’2'95 in a
discrete set of points. It follows that there can be no homotopy, proving
Lemma 5.2.

It remains to show primitivity of the image of g,. This follows from the
existence of a Poincaré dual to Min(C') with algebraic intersection number
1 with Min(C'). There are a number of different possible constructions for
this dual. Choose a smallest subset C’ of C' that fills. In [8] this is called a
minimal filling set. In Section 3 of [8] it was shown that the set E(C’) :=
{z € T, | L(¢;)(z) = L(cj)(x) V¥ ¢,¢j € C'} is an embedded submanifold
with codimension equal to the dimension of Min(C') intersecting Min(C') in a
single point. Alternatively, by Theorem 1.2 of [9], the Thurston spine, while
not an embedded submanifold, has intersection number 1 with Min(C), and
as shown in the final section of [7], contains a subcomplex without boundary
of codimension equal to the dimension of Min(C'). This concludes the proof
of primitivity, and hence of the theorem. [

COROLLARY 5.3. Denote by Z, the center of the mapping class group
I'y. The stabiliser subgroup of the action of I'q/Z, on the homology class [qq]
in St(Sy) with representative the image of qq is isomorphic to the dihedral
group Dagio. Moreover, the kernel of the action of I'y/Zy on St(Sg) is
trivial.

PrROOF. Recall the construction of the simplicial 29 — 2 dimensional
sphere ®, via the (2¢g + 2)-gon Kygi9. It follows that the automorphism
group of the associahedron Ky,_1 is isomorphic to the automorphism group
of K442, namely the dihedral group Dy .

The dihedral group Dy44 2 is generated by reflections. Let  be one such
reflection. Since 2g+2 is even, r leaves invariant a pair of vertices of Kog2;
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Fig. 4. In genus 2, the mapping class in the proof of Corollary 5.3 is a composition of
reflections through the red curve shown in part (a), followed by the red multicurve in
part (b). When the genus is odd, the first reflection is through a multicurve with two
connected components, as shown in part (c).

let ¢1 and co be the curves in C' labelling these edges. There is an element
a(r) of the mapping class group that realises r in the sense that the induced
action of a(r) on the curves of S; determines the same permutation of the
elements of C' as the action of r on the vertices of Ky412. The mapping
class a(r) is a composition of two reflections of S,, as illustrated in Figure
4. The first reflection is through a multicurve that intersects c¢; and co
twice each, and cuts each of the (2g + 2)-gons in Sy\C into two (g + 2)-
gons. This multicurve is a curve when the genus is even, and has 2 connected
components when the genus is odd, as illustrated in Figure 4 (a) and (c).
The second reflection is through the set of curves obtained as the boundary
curves of a subsurface obtained by gluing two adjacent (2g + 2)-gons in
Sg\C along their common edges as shown in Figure 4 (b). This concludes
the proof of the first part of the Corollary.

The kernel of the action of I'y/Z, on St(S,) is contained in the inter-
section of the stabiliser subgroups of the generators, each of which can be
taken to be in the I'g-orbit of a fixed [g,] by Theorem 5.1. These stabiliser
subgroups consist of all the conjugates of the stabiliser subgroup of [gq].
This intersection can readily be seen to be trivial; consider for example the
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conjugate by a large power of a pseudo-Anosov. The intersection with the
stabiliser subgroup of [g,] is zero, because the images of the reflections fix

different curves. [J

[14]
[15]

[16]
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