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Superconducting Phase in the BCS Model with
Imaginary Magnetic Field

By Yohei KASHIMA

Abstract. We prove that in the reduced quartic BCS model with
an imaginary external magnetic field a spontaneous U(1)-symmetry
breaking (SSB) and an off-diagonal long range order (ODLRO) occur.
The system is defined on a hyper-cubic lattice with periodic boundary
conditions at positive temperature. In the free part of the Hamilto-
nian we assume the nearest-neighbor hopping. The chemical potential
is fixed so that the free Fermi surface does not degenerate. The term
representing the interaction between electrons’ spin and the imaginary
external magnetic field is the z-component of the spin operator mul-
tiplied by a pure imaginary parameter. The SSB and the ODLRO
are shown in the infinite-volume limit of the thermal average over the
full Fermionic Fock space. The magnitude of the negative coupling
constant must be larger than a certain value so that the gap equation
is solvable. The gap equation is different from that of the conven-
tional mean field BCS model because of the presence of the imaginary
magnetic field. By adjusting the imaginary magnetic field this model
shows the SSB and the ODLRO in high temperature, weak coupling
regimes where the conventional reduced BCS model does not show
these phenomena. The proof is based on Grassmann Gaussian inte-
gral formulations and a double-scale integration scheme to analytically
control the formulations.
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1. Introduction

1.1. Introductory remarks

In 1957 ([1]) Bardeen, Cooper and Schrieffer proposed a microscopic the-
ory of superconductivity which is widely known as the BCS theory today.
As the importance of the BCS theory was recognized, many began to math-
ematically verify effective approximations made in the theory. Proving a
superconductivity within the fundamental principles proposed by Bardeen,
Cooper and Schrieffer has been a stimulating topic in mathematical physics
until today. See e.g. the review article [8] for a recent trend of the subject.
Many papers concerning mathematical physics of the BCS theory have been
published since the early stage. The historical review [3] reported in 100th
year after the discovery of superconductivity is enlightening. However, if we
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focus our attention on a basic simple question whether the BCS model shows
superconductivity characterized by spontaneous U(1)-symmetry breaking
(SSB) and off-diagonal long range order (ODLRO), we notice that there
are unexpectedly few mathematical results answering this question. Here
the BCS model is meant to be the Hamiltonian consisting of a kinetic part,
quadratic in Fermionic operators, describing free movements of electrons
and an interacting part, quartic in Fermionic operators, describing a long
range interaction between Cooper pairs. We also require SSB and ODLRO
to be shown in the infinite-volume limit of the thermal average over the full
Fermionic Fock space.

In the strong coupling limit of the reduced BCS model, where the free
part is the number operator multiplied by the chemical potential only and
the interacting part is a product of the Cooper pair operators, a SSB and
an ODLRO in the above sense were proved by a C*-algebraic approach by
Bru and de Siqueire Pedra in [4]. The model considered in [4] is allowed
to contain the Hubbard type on-site interaction as well. The same authors
also extended their C*-algebraic framework to be applicable to the BCS
model having a non-constant kinetic term and gave a mathematical sense of
ODLRO in a limit of the finite systems under periodic boundary conditions
in [5]. Before [4] many researchers had continued their efforts to analyze
the BCS model in the quasi-spin formulation at positive temperature. The
achievements of these authors are listed in the references of [3]. Here we
refer to the original article [20] where the equivalence between correlation
functions in the strong coupling limit of the reduced BCS model and those
in the mean field BCS model was proved in the quasi-spin formulation. See
also [6] for an analysis of the BCS model with non-constant free dispersion
relations in the quasi-spin formulation at positive temperature. It should be
remarked that the thermal average in the quasi-spin formulation amounts to
the average over a proper subspace of the full Fermionic Fock space. There
were also attempts to demonstrate SSB in the BCS model in Grassmann
integral formulations. When the grand canonical partition function of the
reduced BCS model is formulated into a Grassmann Gaussian integral, a
quartic Grassmann polynomial resembling the BCS interaction appears to
be integrated with a time-variable in its action. By artificially dividing the
single time-integral into a double time-integral and thus deriving the so-
called doubly reduced BCS model, Lehmann showed that a SSB occurs in
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a form of the Schwinger function in [14]. In [16] Mastropietro extended the
approach based on the Grassmann integral formulation and showed that a
SSB occurs in the Schwinger function where the interaction is of the dou-
bly reduced BCS type tempered by time-integration with a Kac potential.
The insertion of the Kac potential is in effect an interpolation between the
doubly reduced BCS interaction and the reduced BCS interaction in the
Grassmannian level. The gap equation in these studies is equal to that of
the mean field BCS model.

Despite a long history of the research we can hardly find a thoroughly
explicit demonstration of SSB and ODLRO in the full BCS model. In this
situation this paper is devoted to demonstrating them in the BCS model in
a non-standard parameter region of the complex plane. We will prove that a
SSB and an ODLRO occur in the reduced BCS model in a way fulfilling the
above-mentioned requirements, provided a term representing the interaction
between electrons’ spin and an imaginary external magnetic field is added to
the Hamiltonian. More precisely, the interacting term with the imaginary
magnetic field is given by the z-component of the spin operator multiplied
by a pure imaginary parameter. The model is initially defined on a finite
hyper-cubic lattice with periodic boundary conditions. In the free part
of the Hamiltonian we assume the nearest-neighbor hopping. We restrict
the range of the chemical potential so that the free Fermi surface does not
degenerate. The magnitude of the negative coupling constant must be larger
than a certain value so that the gap equation has a positive solution. At the
same time it must be smaller than a certain value so that our perturbative
treatments make sense. Thus, there are two kinds of constraint on the
magnitude of the negative coupling constant. It is due to a fine tuning
of the imaginary magnetic field that we can actually choose a coupling
constant satisfying both the constraints. The gap equation is different from
that of the conventional mean field BCS model because of the insertion of
the imaginary magnetic field. Consequently it turns out that the SSB and
the ODLRO can occur in high temperature, weak coupling regimes where
these phenomena do not show up in the conventional reduced BCS model.
The presence of the imaginary magnetic field breaks the hermiticity of the
whole Hamiltonian. However, it will be proved as a part of our main results
that the grand canonical partition function takes a real positive value in
parameter regions where our analytical methods are valid.
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From a technical view point this paper is seen to be a continuation of
the Grassmann integration approach by Lehmann ([14]) and Mastropietro
([16]). In the Grassmannian level we divide the reduced BCS interaction
into the doubly reduced BCS interaction and the correction term, transform
the doubly reduced interaction into an integral of quadratic Grassmann
polynomials by means of the Hubbard-Stratonovich transformation and es-
timate the Grassmann Gaussian integral having the quartic correction term
in its exponent by the tree expansion. The use of the Hubbard-Stratonovich
transformation was motivated by [14], [16] and an important division tech-
nique of truncated expectations which works to produce an extra inverse
volume factor was influenced by [16]. However, there are notable differences
between the conclusions of this paper and those of the preceding articles.
This paper starts with Fermionic operators defined on the Fock space and
concludes the SSB and the ODLRO in the infinite-volume limit of the full
trace thermal expectations, while the conclusions of [14], [16] concern limit
values of the Schwinger functions on Grassmann algebras. In fact it is not
yet known how to realize the doubly reduced BCS interaction with or with-
out the Kac potential in a concrete form of Fermionic operators. Moreover,
since our gap equation is different from that of the mean field BCS model,
the SSB and the ODLRO take place in a parameter region where the conven-
tional BCS gap equation is not solvable and thus where SSB and ODLRO
do not emerge in the sense of [14], [16]. As another new technical aspect
we show the convergence of the infinite-volume limit of the finite-volume
thermal expectations by sending the box size to infinity without taking a
subsequence. As the result the SSB and the ODLRO can be claimed in the
limit, not only in some accumulation points of the finite-volume formula-
tions. To prove this, it is essential to establish the full convergent property
of the Grassmann Gaussian integral of the correction term which does not
simply follow from a uniform boundedness of the Grassmann integration and
requires a detailed analysis of the tree expansion of truncated expectations.
The analysis is performed in Subsection 4.3.

The technical core of our construction is the estimation of the correc-
tion to the doubly reduced BCS model. The estimation is completed by
a double-scale integration process over the Matsubara frequency. The first
integration involves a covariance with all but one time-momentum, while
the covariance in the second integration contains only one time-momentum.
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We should declare in this remark that we use Pedra-Salmhofer’s type de-
terminant bound (PS bound, [17]) to bound the determinant of the first
covariance with large Matsubara frequencies. In general the application of
the PS bound is a very efficient alternative to a multi-scale integration pro-
cedure over large Matsubara frequencies. By applying it one can prepare the
input to the succeeding infrared integration process by a simple single-scale
integration. In this paper, which aims at providing the first convincing proof
of SSB and ODLRO in the BCS model with an imaginary magnetic field,
we decide to make the construction simple and thus choose to apply the
PS bound rather than go through a self-contained but lengthy multi-scale
Matsubara ultra-violet integration. Also, in the interest of simplicity we do
not perform a multi-scale infrared integration to improve the dependency
of possible magnitude of the coupling constant on the temperature. As a
consequence, this paper does not ensure that one can take the temperature
close to zero while keeping the magnitude of the coupling constant positive.
This may be seen as a shortcoming of this paper’s results. Since it needs to
classify Grassmann polynomials at each scale, the proof based on a multi-
scale integration would be substantially longer. This thought together with
the hope that a simpler construction must be more convincing led us to con-
clude our construction only by the double-scale integration. A qualitative
improvement of the temperature-dependency of the coupling constant by
means of a multi-scale infrared integration should be performed elsewhere.

The main novelty of this paper is to reveal the mathematical fact that
the insertion of the imaginary magnetic field in the BCS model makes it pos-
sible to prove SSB and ODLRO in wide parameter regions. We should note
that the extension of the external magnetic field to the complex plane in
many-body systems has been an important subject of mathematical physics
since the pioneering study by Lee and Yang ([24], [13]). At the same time
the presence of the imaginary magnetic field admittedly makes it difficult
to find a conventional physical meaning of the model. It is interesting and
encouraging to know that the Lee-Yang zeros of the partition function of
the Ising model are being experimentally realized through a time domain
measurement of the spin system ([18]). What appears particularly inter-
esting to us in [18] is that the partition function of the ferromagnetic Ising
model with long range interaction under an imaginary magnetic field was
identified with the coherence of a central spin coupled to the spin bath,
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which was experimentally measured. See also [22], [21] for the idea behind
the experiment [18]. A message from [18] is that if the partition function
with an imaginary magnetic field is measurable, then extending the mag-
netic field into the complex plane is not only a way to solve a mathematical
problem but could be an analysis of a model of the real world. Amid the
latest progress of physical experiments our hope from a mathematical side
is that the superconducting phase in the BCS model with an imaginary
magnetic field should be experimentally realized someday.

The contents of this paper are outlined as follows. In the rest of this
section we define the model and officially state the main results of this pa-
per. In Section 2 we formulate the grand canonical partition function of
the model Hamiltonian by means of the Hubbard-Stratonovich transforma-
tion and the Grassmann Gaussian integration. In Section 3 we construct a
double-scale integration process in a generalized setting with the aim of ap-
plying it to estimate the Grassmann Gaussian integral of the correction term
in the following section. In Section 4 we apply the general results obtained
in the previous section to the actual model problem and derive necessary
bound properties. Then we show necessary convergent properties of the
Grassmann Gaussian integral of the correction term in the time-continuum,
infinite-volume limit. After these preparations we complete the proof of the
main theorem. In Appendix A we provide a short proof to Pedra-Salmhofer’s
type determinant bound used in our construction for completeness. We also
list notations which are used over multiple sections for readers’ convenience
at the end of the paper.

1.2. The model and the main results

Throughout the paper the spatial dimension is denoted by d. With
L(e N={1,2,---}) we define the spatial lattice I by I" := {0,1,2,--- , L —
1}¢. For (x,0) € T' x {1,]} let 4%, , 1xo denote the Fermionic creation /
annihilation operator respectively. We impose periodic boundary conditions
on the finite-volume system. To describe the periodicity, it is convenient to
use the map rp : Z¢ — T which satisfies r7(x) = x in (Z/LZ)? for any
x € Z4. For (x,0) € Z% x {7, |} we identify w,(:f,) with wﬁz)(x)o_. The free part
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Ho of our Hamiltonian is defined by

d
Ho := Z Z (_1)hop Z(chawx-f—er + ¢;a¢x—eja) - /“b)tawxa )

xel oe{1,1} j=1

where hop € {0,1}, e; (j = 1,2, -+ ,d) are the standard basis of R? and the
real parameter y is the chemical potential. For simplicity we adopt the unit
where the hopping amplitude is scaled to be 1. We use the parameter hop to
treat the positive hopping and the negative hopping at once. Moreover, we
include the number operator multiplied by the chemical potential in the free
Hamiltonian. Also we restrict the hopping of electrons to be only between
nearest-neighbor sites. Throughout the paper except Remark 1.9 we assume
that
w € (—2d,2d)

so that the free Fermi surface {k € [0,27)¢ | (—1)"P2 2?21 cosk; — p =
0} does not degenerate. Only in Remark 1.9 we consider the degenerate
case. In [1] the complex phonon-electron interaction was reduced into a
sum of product of 2 Cooper pair operators. We consider the reduced BCS
interaction with constant matrix element defined as follows.

U * gk
V= ﬁ Z ¢xwal¢yl¢YT7

x,yel’

where U is a real negative parameter controlling the strength of non-local
attraction between Cooper pairs. The BCS model H is defined by

H:=Hy+V

d
= Z Z (_1)hop Z(¢;a¢x+ejo— + wiawx—eja) - /“ﬁ;alﬁxa

xel oe{1,1} =1
U
+ 7d Z ¢;T¢il¢yl¢ym
x,yel’

which is a self-adjoint operator on the Fermionic Fock space Ff(LQ(I‘ X

{1,1}).

In this paper we focus on two characteristics of superconductivity and
try to prove their existence in the infinite-volume limit of the system. One
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characteristic is spontaneous symmetry breaking (SSB). The other charac-
teristic of our interest is off-diagonal long range order (ODLRO). A math-
ematical description of SSB is the following. We add a U(1)-symmetry
breaking external field

F=v) (03¥% +¥xtx), 7ER

xel

to the system and observe the thermal expectation value of the pairing
operator in the limit v — 0 after taking the limit L — oo,

. . Tr(efﬁ(HJrF)w;Tw;l)
Ay B
LeN

Here the trace operation is taken over the Fermionic Fock space and (€
R~) is the inverse temperature. If the expectation value converges to a non-
zero value, it is said that a SSB occurs in the system. This is because the
U(1)-gauge symmetry which the original system possesses remains broken
even after removing the symmetry-breaking external field. A long range
correlation between Cooper pairs is explained by the behavior of the 4-point
correlation function in the infinite-volume limit,

. Tr(e PRk 0% vy ¥91)

L—o0 Tr e‘ﬂH
LeN

If the correlation function in the infinite-volume limit converges to a non-
zero value as the distance between X and y goes to infinity, the system is
said to exhibit an ODLRO (see [23]). These phenomena have been desired
to be proven in the BCS model. Despite many years of research after [1], the
full rigorous demonstration of SSB and ODLRO in the BCS model seems
unexpectedly scarce. Amid this situation this paper is devoted to revealing
a new fact of the BCS model that a SSB and an ODLRO are present under
an external imaginary magnetic field. More precise explanation of our plan
is that we add the operator i6S, (6 € R) to the BCS model H and prove the
existence of a SSB and an ODLRO. Here S, is the z-component of the spin

operator.
1

S. 1= 5 2 (Ut — Uk ¥xl):
xel’
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The term i6S, is formally interpreted as an interaction between the imagi-
nary magnetic field (0,0,:60) and the electrons’ spin.

Since adding i6S, to the Hamiltonian breaks hermiticity, we do not know
whether the partition function Tre PH+#05:4F) remaing non-zero. Thus,
even the well-definedness of the thermal expectation is unclear. We know
at least the following. Set

A=yl A= Y5k Y1

LEMMA 1.1.

Tr e—,B(H—i—iGSZ—i-F)’ TT(G_B(H+i6.SZ+F)A1), Tr(e—ﬁ(H+iGSz+F)A2) eR

and
Tr(e—,B(H—l-iGSZ—Q—F)Al) — TI“(E_’@(H—HGSZ_‘—F)AT).

PROOF. Let us define the transforms Uy, Us on Fp(L*(T x {T1,]})) by

U = Q,
uleqalwigag e w;nanQ = wil—al wig—ag T w;n—an97
U ) = (),

Uz¥100Vxaos  Yamon 7= 15101 Vinon * * Prtnorn &
(VneN, (xj,05) eI x{1,1} (1 =1,2,--- ,n))
and by linearity, where {2 is the vacuum of the Fock space. The transforms
U1,Uy are unitary. Moreover,
Ty o~ BH+0S-4F) _ my. ,—Ah (H+i0S.+FUf _ y. ,—B(H—i0S.—F)

— Ty g BUe(H=i0S.—F)Us _ . ,—B(H—i0S.+F)

— Tr e—B(H+i0S.+F)

Thus, Tre #H+05:4F) ¢ R The other claims can be checked in the same
way. [J

It will be proved as a part of the main theorem that Tre A(H+105:-+F) ~
for sufficiently large L. The next lemma tells us that it suffices to analyze
the system for 6 € [0, 27/[].
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LEMMA 1.2. Assume that § € R, 0/ € (=27/3,27/0] and 0 = 0" in
R/%Z. Then,

Ty ¢~ BH+0S-+F) _ . o —B(H+i[0'[S-+F)

Tr(e—ﬂ(H+z'0$z+F)Aj) — Tr(e—ﬂ(HJri\@/ISerF)Aj)’ (G =1,2).

PROOF. Note that the operator S, commutes with H, F, w;Tw;{l,
g P51 for any x € Z%. The trace operation over the Fock space can be
decomposed into the sum of the trace over each eigenspace of S,. Since each
eigenvalue of S, belongs to %Z,

Tr 6—,3(H+iesz+F) — Tr(e—ﬁ(HJrF)e—iﬁesz) — Tr(efﬁ(H+F)€7wg/Sz)

S e—ﬂ(H+i9’sz+F)‘

Moreover, by Lemma 1.1,

Tre—ﬁ(HJrz‘a/SerF) _ Tre—ﬂ(H+i|0’|Sz+F)_

Thus, the first equality is obtained. The other equalities can be derived in
the same way. U

From here we always assume that

2T
0 € [O, F) .

In this paper we do not treat the case § = 27/3. As in this case the free
partition function vanishes (see Lemma 2.1), we are unable to define the
free covariance which plays a central role in our analysis.

In order to officially state the main results of this paper, we should make
clear notations used in the statements. Let ||-||ge denote the euclidean norm
of R%. For a function f : Z? x Z¢ — C and ¢ € C we write

lim  f(x,y)=c

Hx_yan—’OO

if for any € € Ry there exists r € Ry such that |f(x,y) — ¢| < € for any
x,y € Z¢ satisfying ||x — y||[ga > 7. For a proposition P let 1p be 1 if P is
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true, 0 otherwise. We define the function e : R? — R by
d
e(k) = (—=1)"%2Y "coskj —pu, k= (ki k, - kq) € RY,
j=1

which is in fact the free dispersion relation. To estimate possible magnitude
of the coupling constant, we use the function g4 : (0,00) — R defined as
follows.

d 1

(1.1) ga(z) := 1gso(log(x™! + 1))@+~ @1
+ La=1 (4 — 1?) "2 log(a ™! + 1).

The main result of this paper is the following.

THEOREM 1.3. Assume that 8 € Rsg, U € Reg. There exist constants
c1(d) € Rso, c2(d) € (0,1] depending only on d such that the following
statements hold true.

(i) Assume that 6 € [0,27/3) and
o_=
2 p

)

Tre PH+OS:AF) c R o (VL € N with L > Lo, ~ € [0,1]).

01 < ead) (14 55 4 (14 57 ('

Then, there exists Lo € N such that

(11) Assume that 6 € [0,27/5) and

12 al@@d- 8|3 -]

273
< |U] < ex(d) (1 LA (14 g (\— T

2 5>>%

Then, there uniquely exists A € R such that A > 0 and

)

—1
' <1|%—%S§(2d—ul) o251 eafup (24— 1)

2 2

0
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(1.3)
2
U]
n 1 ; / I sinh(B+/e(k)? + A?) _
(2m)% Jio2n)d  (cos(B860/2) + cosh(B+/e(k)2 + A2))\/e(k)? + A2
Moreover,
(1.4)
jim (g1 14450
LeN

AT 1 B9 et
= m — 5@y /[0,277}11 dk log <2 cos <7> e

4 VPHAT—e(K) 6—6(\/e(k)2+A2+e(k))) ,

(1.5)

T1r(e—ﬂ('J'JFZ'GS:H-F)M{T :)

lim lim -
N0 Looo Tr e—B(H+i6S.+F)
v€(0,1] LeN

Tr(e” PO yg 1951) A
= lim lim - = ——.
N0 L0 Tr e—B(H+i0S:+F) |U|
v€(0,1] LeN

(1.6)

—B(H+i0S.
b Lm Tr(e PHTOS)yx % g 1) _ A
IIﬁ—S'I\RdHooLLZK]o Tr ¢—B(H+i6S:) U2

(iii) Assume that 0 € [0,7/3) and

1< ea) (15955 14 57 (|5 -

-30))

Then, for any A € R the equation (1.3) does not hold. Moreover, the
statements (1.4), (1.5), (1.6) hold with A = 0.

(iv) For any B € Rsq there exists 6 € Rsg such that
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(1) el 85 -

+1

' <1|§—%<%(2d—ul)

851> 2a-tu) (24 = 1D |3
< ca(d) <1 + 83+ (1467 Ygq (‘Q _T

()

forany 0 € 2w/ —06,2w/B). Thus, for any 0 € 2m/3—6,27/[3) there
exists U € Reg such that (1.2) holds.

(v) Assume that 6 € [w/(3,27/3) and (1.2) holds. Then,

-2
T
i)
for any n € [0,7/B) and thus the conclusions of (iii) hold with these
B, U and n in place of 6.

U| < ea(d) <1 + 083 £ (148 Ngq (‘g —

The claims (iv), (v) can be proved here. Set © := |0/2 — n/3|. If
© < 1(2d — |u|), the inequality (1.7) is equivalently written as follows.

Ml»—‘

(1485302 + 140 (14 571 (4 — (log(©@~! +1))O72
+1d22(1+ﬂ_1)(10g(@ +1))a+0
< (er(d)~"(2d — [p)) B ea(d)) 2.

Since the left-hand side converges to 0 as © \, 0, the claim (iv) holds true.
The claim (v) follows from the fact that g4 : (0,00) — R is decreasing.

)

1

MIH

REMARK 1.4. The implication of the claim (iv) is that at any temper-
ature we can choose 0 € [7/3,27/3) and the negative coupling constant U
so that SSB and ODLRO occur in the system. Moreover, since

lim cy(d) <1 + A3+ (14 8 Nga <’Q .
0,2 2

for any small Uy € Ry and at any positive temperature we can choose
0 € [r/B,2n/B) and the negative coupling constant U so that |U| < Up and
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SSB and ODLRO occur in the system. In other words, at arbitrarily high
temperature, for arbitrarily weak coupling SSB and ODLRO take place in
the system with an imaginary magnetic field.

REMARK 1.5. The implication of the claim (v) is the following. As-
sume that (1.2) holds with some (U,[,0) € Reg x Ry x [7/3,27/03).
Then, SSB and ODLRO occur in the system with (U, (,6) by the claim
(ii), while SSB and ODLRO do not occur in the system with (U, 3,1n)
for any n € [0,7/3). By the claim (iv) we can always choose (U, (3,0) €
Rep x Rsg x [7/8,27/3) such that (1.2) holds with (U, ,0). By fixing
these U, 3 and taking n to be 0 we can conclude in other words that super-
conductivity characterized by SSB and ODLRO emerges in the BCS model
with an imaginary magnetic field and it does not emerge in the BCS model
without an imaginary magnetic field.

REMARK 1.6. The condition

U] < eald) (1 LA (14 B )g <\9 T

-2
2 ))
is necessary to ensure that our double-scale integration converges. Thus,
the claim (iii) especially means that within the analytical framework of the
present paper we cannot prove the existence of superconductivity in the
conventional reduced BCS Hamiltonian, which is the case 6 = 0.

REMARK 1.7. There is no essential reason to choose the spatial lattice
to be {0,1,--- , L — 1}d. One can prove that all the partition functions and
the thermal expectations in the theorem are equivalent to those defined in
the system on the spatial lattice {0,1,---,L — l}d + a with the periodic
boundary conditions for any a € Z¢.

REMARK 1.8. We introduce the parameter hop(€ {0,1}) to treat the
model with positive hopping and the model with negative hopping at
the same time. However, if L € 2N, by the unitary transform %, —
(—1)2?:1:”9'1/1;0 (x = (x1,--- ,x4) € T') we can change the sign of hopping
by keeping all the other terms unchanged. Thus, the role of the parameter
hop seems not essential. We add it for completeness. It causes no technical
complication.
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REMARK 1.9. The reason why we only consider the nearest-neighbor
hopping in the free Hamiltonian is that in this case the free dispersion rela-
tion takes the relatively simple form e(k) which allows us to make explicit
the condition (1.2). We made this choice to claim the main results of this
paper simply and explicitly. In fact the condition

a0 m
(18) U] >er(@(d 1) 5|5 - 7
0
-1
' <1§g|§;(2d|m> gzt am gy 24— D)7 |5 - BD
in (1.2) is a sufficient condition for the inequality
2 1 sinh(B|e(k)|)
-t g dk >0,
Ul (2m) /[o,zﬂ]d (cos(30/2) + cosh(Fe(k)))le(k)]

which is a necessary and sufficient condition for the existence of a positive
solution to the gap equation (1.3). The theorem can be claimed under the
condition

-1
1 sinh(fle(k)|)
= <<27r>d Joo Mot + cosh(ﬂe(k)))le(k)\>

in place of the condition (1.8). We should also remark that apart from a
multiplication of irrelevant positive constant, the term g4(|0/2 — w/f3]) is
derived as an upper bound on the integral

1
. R = e

In fact we can replace the term g4(|0/2 — w/3|) in the condition
d+3 -1 0 = -
Ul <ca(d) 1+ +(14+068)ga 5—5

by the integral (1.9). The validity of these modifications would be clearly
seen after completing the proof of Theorem 1.3. Since it is important in this
approach to guarantee the solvability of the gap equation and the conver-
gence of Grassmann integrations at the same time, the sufficient conditions
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should be explicitly comparable. We decide not to pursue the issue of gener-
alization of the dispersion relation or the whole Hamiltonian in this paper.
Here we list the lemmas which use the specific form of the free dispersion
relation and eventually lead to the condition (1.2). These are Lemma 4.8,
Lemma 4.17 and Lemma 4.18.

However, based on the above modifications of the crucial conditions, let
us see that the results hold for the degenerate case p € {2d, —2d} as the
least extension of the theorem. By letting O, ¢(d) denote |0/2 — w/3|, a
positive constant depending only on d respectively we observe in this case
that

sinh(f]e(k)|)
/[0,27r]d dk(COS(69/2) + cosh(fe(k)))le(k)]

> d —1 Ak =P~ |e( )I<B—1 / drr d—1 7‘2<,3 1
(d)p o2 e(k)?+ @2 2 dd)f” ot e?

> co(d)B™ (lo<ming1,5-1}
- (La<307 2 + 1y_g log(min{1, 5713071 + 1455(min{1, 571})22)
. Cnd
+ 1@>min{1ﬂ_1}(mln{1vﬂ 1})2@ 2)7

1 1 ’I"d 1
dk——— < ¢(d / dr —————
/[0,27r]d 02 +e(k)? (@) 0o VO24rt
C(d)(l@gl(ldzl@_% + 14—9 log(l + @_1) + 1d23) + 1@>1@_1).

Define the function g4 : (0,00) — R by

1
9a,5(x) = lo<1(lam1272 + Ly—o(log2) M log(L 4+ 271) + 1gs3) + L1z

Here we inserted log 2 in order to make the function decreasing. Then, by
using the lower, upper bounds obtained above the condition (1.2) is modified
as follows.

(1.10)
c1(d)B(lo<min{1,6-1}
- (143022 + 144 log(min{1, 3711071 + 1425 (min{1, 87112 2)
+ 1o>min{1,5-1} (min{1, 5_1})_%@2)
<|U| < e2(d)(1+ B + (1 + 57 1)ga,5(0)) 7
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Since with positive constants ¢1(d, 3), ca(d, 3) depending only on d, 3,

(L.H.S of (1.10)) < ¢1(d, B)(14<3027% + 1y_q|log ©] L + 145),
(R.H.S of (1.10)) > c2(d, 3)(14=10 + 14=2|log ©] 72 + 14>3)

for small ©, we can find U € R satisfying the condition (1.10) for small
O in the case d = 1,2,3,4. We can expect that the claims parallel to those
of Theorem 1.3 hold for p € {—2d,2d} in the case d = 1,2,3,4. We should
note that in the case d = 3,4 the upper bound on |U| can be independent
of ©® and thus we can take © arbitrarily close to zero.

2. Formulation

In this section we will derive a finite-dimensional Grassmann integral
formulation of the grand canonical partition function. Then, by means of the
Hubbard-Stratonovich transformation we will transform it into a Gaussian
integral formulation involving both Grassmann variables and real variables,
which will be analyzed as a central object in the following sections.

2.1. Grassmann algebra

To begin with, let us recall some basics of finite-dimensional Grassmann
integration. Let Sy be a finite set and let S := Sy x {1, —1}. In practice we
will need to change the index set Sy several times during the construction.
Here we do not fix any detail of Sy. Let R be the complex vector space
spanned by the abstract basis {¢)x | X € S}. We should remark that ¢x
(X € 8) are not operators on the Fock space, though we use the same
symbol as the Fermionic annihilation operator. For any X € Sy we let ¢y,
Yx denote ¥(x 1), ¥(x,—1) respectively. For n € N, A" R denotes the n-fold
anti-symmetric tensor product of R. We set /\0 R := C by convention. The
Grassmann algebra A R generated by {¢)x | X € S} is the direct sum of
N" R.

S n

/\R::T@/\R.

We will often work in a situation where R is the direct sum @;n:l RP of
other vector spaces RP (p =1,2,--- ,m). We assume that the basis of RP is
{¢% | X € S}. For a function D : S§ — C the Grassmann Gaussian integral
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[ -dup(t) is a linear map from /\ (@;n:l Rp) to A (@;’;2 Rp) defined as
follows. For f € \ (@2;2 RP>, X1, X, Xo, Y1, Y-+ Yy € So,

/ T, Bl - b dup ()

| det(D(X;,Y)))1<ij<af ifa=0,
1o otherwise,

[ fduowh) = 1.

Then by linearity and anti-symmetry the value f gdpp(¥t) is uniquely de-
termined for any g € A (@;1:1 Rp>. We can define [ -dup(¢) as a linear
functional on A R in the same way.

Exponential and logarithm of a Grassmann polynomial appear in many
parts of this paper. Let us recall their definitions. For f € A R with the
constant part fo(€ C)

5S4
ef .= elo Z ﬁ(f — fo)".
n=0

If fo (S C\Rgm

fo

Throughout the paper loga for a € C\R< is assumed to be representing
the principal value log |a| 4 if, where § € (—7, ) satisfies a = |a|e. See
e.g. [7] for more properties of Grassmann algebra.

S el e panm
logf:zlogfo-i-z( 172 <f f0> )
n=1

2.2. One-band formulation
It is systematic to introduce artificial parameters A\, Ao € C and deal
with the normalized partition function
Ty o~ B(H+i0S. +F+A)
TI' e_ﬁ(HO'f"iesz) ’

(2.1)

where A := A\1A; 4+ A\2A2. From now we always assume that

ro(X) # r(y).
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We can assume this condition to prove Theorem 1.3, since the theorem
concerns the limit ||%X — ¥||ge — oo and for any %,y € Z? with X # y there
exists Ny € N such that rp(X) # rp(y) for any L € N with L > Ny. We
will derive the thermal expectation values of our interest by differentiating
(2.1) with A\;, Aa. We are going to formulate (2.1) into a limit of finite-
dimensional Grassmann integration. First of all we should make sure that
the denominator is non-zero. Let us define the momentum lattice I'* by

o1 2 2 d
F*::{O T g —W(L—l)}.

"L L L
LEMMA 2.1.
(2.2)
Tr e~ AHoHi65:) — H (1 + 2cos <%) ePell) 4 e_%e(k))
kel
— ¢ BZ werr (k)L H (cos (%) + cosh(ﬂe(k))) # 0.

kel™

PrOOF. For o € {1, |} we consider the Fermionic Fock space Fy(L?(T'x
{o})) as a subspace of Fr(L*(I" x {1,]})). Set

d
HO,U = Z (_1)h0p2(¢;a¢x+eja + w;awx—eja) - /“/Gtzﬂbxa )

xel’ j=1

By letting Tr, mean the trace operation over Fy(L?(I' x {o})) we have that

Ty e~ B(Ho+i6S2) _ Try e~ B(Ho 1 +i5Nyp) Tr, o B(Ho, —i§N))

= | Try e—ﬁ(HO,THgNT) ‘2

= T 11+ e Bttt
kel™*

which is the right-hand side of (2.2). O



The BCS Model with Imaginary Magnetic Field 21

The covariance in our Grassmann Gaussian integral formulation of (2.1)
is equal to a restriction of the following free two-point correlation function.

Tr(e_B(HO'i—iGSZ)(152t¢;0(3)¢y7(t) - 1s<t7/}y'r(t)w;a(5)))

G(x0s,yTt) := Ty e—B(Ho+i65.) ’

where w,(::,)(s) = eS(H°+i952)1/1,(;,)6_5("'0”952). We introduce the finite index
set of Grassmann algebra by discretizing the time interval. With h € %N

we set
1 2 1
[Oaﬂ)h'_{07ﬁ7ﬁ)"'7ﬁ_ﬁ}a

which is a discretization of [0, 3). We take the parameter h from %N rather
than from %N, since it is technically convenient according to the earlier

study [9, Appendix C]. The index sets of Grassmann algebra for our one-
band model are defined by

Jo=T x{1,1} x[0,8)n, J:=dJox{l,—1}.

The restriction G| g2 is the covariance of our Grassmann Gaussian integral
formulation. For simplicity let us omit the notation -| J2 in the following.

Let W be the complex vector space spanned by the basis {¢)x | X € J}.
Set N := 4L%3h so that §J = N. Here we state the Grassmann integral
formulation of (2.1) in the Grassmann algebra A W. For r € Ry let D(r)
denote the open disk {z € C | |z] < r}. Set

U L
V(l/J) = m Z Z waswxlswylswyT&

x,y€l' s€[0,8),

F(¢) = %Z Z (EszExls + wxlswas)y

xel SE[O,ﬁ)h
1 _ _
Al(y) = 7 Z Vo (5)15VrL (%) 150
Se[o7ﬁ)h
1 _ _
A2(¢) = E Z er(ﬁ)Tser(f{)lser(y)lser(y)Tsa
56[07ﬁ)h

A(¥) := MA (1) 4+ AaA% ().
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We let A denote (A1, \2) (€ C?).

LEMMA 2.2. For any r € Ry,

(2.3)
Tr e—B(H+i0S-+F+A)
, —V($)—F()—A(¥) _ =
fim s | [ e () =~ sy | =
he%NAED(T)

Proor. The proof is close to the Grassmann integral formulation pro-
cess in [9], [10], [11]. However, we sketch the procedure for readers’ conve-
nience. For any objects ai,as, - ,a, we let Hn_l aj denote ajag - - ap,.
This definition should be reminded especially When a; (7=1,2,- ) are
non-commutative. For x,y € I, a € {0, —1, 1} set

U
V(x,y,a) = ls=0 <Ld + Aol (xy)=(rp (x )m(9>>>

! v
+ la=1 <ﬁ + ﬁlx:rL(fc)> + 1a:—1ﬁ~

The partition function (2.1) can be expanded as follows (see e.g. [9, Lemma
B.3]).
(2.4)
Tr 6_ﬂ(H+iQSz+F+A)
Tr e—B(Ho+i65.)

00 n B
=1+> "I > /dé‘j Y. Vixjyiea)
n=1

j=1 \x;,y;er’0 a;€{0,1,—1}

' 181>52>~~~>sn 12 ".L 1 a;=0

H J—0¢XT Sj)wx] (85)0y;1(85)y;1(85)

7j=1
+ La;=195%,1(8))0%, 1 (85) + La;=—1%y,1(55)¥y;1(55)))os
where
Tr (e P(Ho+ifS2) )

(O = Tr e—B(Ho+i05-)
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for any operator O on Fy(L*(I" x {1, |})). The constraint 1y " a;=0 is due
to the fact that Hy + i0S, conserves the particle number.

Assume that 8 > s1 > s9 > -+ > s, > 0 and Z}Ll aj = 0. We can
choose {zp}p 1 Uptpes {kptpen C {1 2,---,n} so that | + 2m = n and

11 <9 < - < 7y, aip:O(VPG{l,Q,---,l}),

N <j2<--<jm, a;,=1(pe{l,2--- ,m}),

Ry <k < <kpm, ap,=-1(pe{l,2,---,m}).
Then, let us set

X = ((xiy, Ty 81y )5 (Kigs Ly Siy )y o+ 5 (Xis T, 84,), (Xips 1, 84,))
e (T x {1, 1} x[0,8)*,

XY= (%0, 1850 (%500 L8300 5 (K 1585 )5 (K L 85)
e T x{1,1} x [0,8)*™,

YV .= ((¥irs T sin)s (Vins by sin)s - s (Vigs 1584, (¥4 1 S4,))
e (I x {1,1} x[0,8))*,

Y= (s T Sk)s (Fhgs LSk )s o s (F ks Ts S )s (Fkoms Ls Sk )
e (0 x {1, 1} x [0,3))*™.

By giving a number to each component we write as follows.
(X%, XY = (Xjhcjcarom, (YO, Y') = (Yi)icj<oriom:

Because of the assumption s; > --- > s, the operator

[T (Raym0v%, 1 ()05, (5)8by, 1 (5 51 (5) + La=195, 1 (585, 1 (59)

7=1
+ 1aj=71¢yjl (Sj)wij(sj))

is already ordered with respect to the standard lexicographical order in the
product set [0, 3) x {particle, hole}. Thus,

aJ:0¢xT Sj Q/}X] (*SJ)@byJ (Sj)wy] (SJ) + 1a]:11/)x T(Sj)¢>*cjl(3j)

||E:

+ 1aj=flwyjl (Sj)¢yJT(S]))>O
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= det(G(X;,Y;))1<i j<21+2m-

See e.g. [9, Lemma B.7, Lemma B.8, Lemma B.9] for a proof of the above
equality. By substituting this into (2.4) we have

Tr e—B(H+i6S:+F+A)

(2.5) Tr e—B(Ho+i6S:)
[o¢] n ﬁ
e | (ID SR AT SRR RS
n=1 j=1 \x;,y;er”0 a;€{0,1,—1}

la>ep>esen 10| a=0 det(G(Xy, Yi))1<i j<orom-

Define the function P(A) (A € C?) by the right-hand side of (2.5). We also
define its discrete analogue Pp,(A) by

(2.6)

> 2> > Vixyiha)

x;,¥; €l s;€[0,8) a;€{0,1,—1}

&=

A):=1+> (-]
n=1 7j=1

La>ep>esen 1o a;=0 det(G(Xy, Y)))1<i j<orom-

Based on the fact that the function

S 151>52>"'>Sn det(G(Xla Y]))lﬁi,jg?l+2m : [O7ﬂ)n - C

is continuous almost everywhere in [0, 5)™ and the uniform bounds

n 3 g
H </ dS]) 1$1>52>"'>5n S _|7
j:1 0 n.

g1 (2n+ )3 Ho-i0S. s,
(2.7) | det(G(Wi, Zj))1<ij<n| <

| Tr e~ A(Ho+ifS-) | ’
(VneN, Wy, Z; e T x {1,1} x [0,8) (j =1,2,--- ,n)),

where || - [|5(r;) is the operator norm of operators on Fr(L2(T x {1,1})), we
can prove that for any r € Ryg, n € N,

hm sup H % Z Z Z V(%55 a;)

he N)‘ED( x;,y;€l' s;€[0,8)n a;€{0,1,—1}
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s>, In | o0 det(G(Xi, Y))1<ij<arrom

n 8
111 > /dsj > Vixjy5a5)

Lsis>essa 1o o,=0 det(G(X, Y)))i<ij<ariom| = 0

and by the dominated convergence theorem that

(2.8) hlim sup |Pp(X) —P(A)| =0.
he_)%oI%AGWQ

By the definition of the Grassmann Gaussian integral, it holds inside (2.6)
that

det(G (X, Y)))1<i j<214+2m
n
:/H(laj—owxﬂsjlﬁlesjwyjlsj-wyﬂsg' + 1%:1¢XjTSj¢lesj
j=1
+ 1a,j:—1¢yjlsj' ¢ij5j)dMG(1/’)-

By substituting this we observe that

2L23h

o (1
VRS S S 1 {E30 SIS S spneors
n=1 7j=1 Xj,ijFSjG[O,ﬁ)hajG{O,l,—l}
“Ljsth—ss s

n
'/H(la"wastijJlSjwyjlsjwa'TSj
j=1
T 1aj:1EijsjEle5j
+ laj:—lwyjlsj'wmsj)dﬂG(w)-

Note that if we drop the constraint 1;.5 5,25, , the right-hand side is equal
to fe_v(w)_F(¢)_A(w)duG(w). By using the estimate

1 n ﬁn—l
- E 15j3k(i#kns j=s,) < 1n>2
h J 2 h

1 SJG[OHB)h

n

J
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and the uniform bound (2.7) we can prove that for any r € Rs

hm sup
he oy N)\GD(T)

Py — / ¢~V ~F)=AW) gy )| = 0,

This convergence property and (2.8) imply (2.3). O

As the second step we decompose the quartic Grassmann polynomial
V() into quadratic polynomials and a quartic correction term by means
of the Hubbard-Stratonovich transformation. Let us define V(¢), V_(¢),

W(y) € AW by

V+( ; Z Z waswxlsa

l
/82 XEF s€[0,8

V,( = |U| Z Z wxlswasa

/82L2 x€el se€[0,8

W(lﬁ) = ﬂLd 72 Z Z ¢sz¢x¢s¢ylt¢yTt

x,y€I' 5,t€[0,8)n

LEMMA 2.3.

(2.9)
e VWOIFWI=AW) g0 ()

_ ! / Ay debye—!P / V()W) —F () AWV (03Y—(8) gy (),

s
where ¢ := ¢1 + i, |P| == /P37 + 3.

PrOOF. For f;(¢) € AW, gj € LY(R?) (j =1,2,-- ,n) we can define
the Grassmann polynomial fRZ do1dogo Z?:l 9j (@1, ¢2)f] (1/))

n

L. dordin3_5(6n.0)550) = 3 ([ dordongyton.on)) 5000
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Bearing this definition in mind, the Hubbard-Stratonovich transformation
gives that

(2.10) VewV-w) _ 1 / by O+ ATV ().
R2

T
This equality can be confirmed without difficulty. In fact,

1 / by depge— |9+ (B +OV ()
T JR2

N/2 1
= > i (Ve 0+ Vo)V () V()

m,n=0

- /]R dgre% g2 /R dne= g2n

N/2 272m72n

= > T (Ve () + Vo ()P (VA () — V()"

1nl
me  mind

oAV HV ()2 E GV () V- () _ V4 (V- ().

By substituting the equality Vi (¢)V_(¢) = —W(¢)) and (2.10) we can
derive the result. [J

2.3. Two-band formulation

To complete the formulation, we will include the quadratic terms V4 (1),
V_(%), F(¢) in the covariance. This procedure leads to another Grassmann
integration where Grassmann algebra is indexed by the band index {1,2}
rather than the spin {{,]}. To this end, let us introduce some notations.
We define the new index sets Iy, I by

Ip:={1,2} xT x [0,8)n, I:=1Iyx{1,—1}.

Let V be the complex vector space spanned by the basis {1)x | X € I'}. Then,
define the Grassmann polynomials V' (v), W (1)), Al(z)), A%(xp), A(x)) € AV
by

(211) V(¢) = %dh Z Z Elxswlxs

x€T se[0,0)
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U _ _
_|_m Z Z wlxs¢2xs¢2yswly5’

x,y€l' s€[0,08)n

(212) W(T/)) = ﬁth2 Z Z wlxs¢2xs¢2ytwlyta

x,y€l' 5,t€[0,08)n

(2.13) Al(y) = V1 (2)sV2r, (%9

¢17«L(&)37#2@(&)5@2“(9)5@”1@(y)sa
€[0.8)n
(2.14) A(Y) —>\1 M) + A A% ().

In order to introduce the Grassmann Gaussian integral formulation, we
need to define its covariance. To define the covariance as a free 2-point
correlation function, first we need to introduce a free Hamiltonian on the
Fermionic Fock space Fy(L?*({1,2} x I)). For ¢ € C set

(2.15)

Ho(¢)
=g X S e () (Y, S ) ()

x,yel' kel

where 9%, (1)yx) is the creation (annihilation) operator in Fy(L*({1,2} xT)).
Because of the presence of ig, Hy(¢) is not self-adjoint. Therefore, it may
not be appropriate to call Hy(¢) Hamiltonian. We included the imaginary
magnetic field inside only for conciseness. The covariance of the 2-band

formulation is the restriction of the free 2-point correlation function C(¢) :
({1,2} x Z¢ x [0, 8))* — C defined by

(2.16)

r(e PO (Lo i (5) Uy () — Loctthyy o (8
C(6) (pxs.nyt) 1= 2 (Lot () Uy (1) — Locrtbny (15 (5)))

TI' 6_6H0(¢) ’
where @b,(,;)( ) = estol ¢)¢(*) —sHo(#)  Here again we identify T/J;();) with
w( for x € Z4. Since Hy(¢) is not self-adjoint, the denominator could

be zero We have to make sure that this is not the case.
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LEMMA 2.4.
()
Tre 7@ = TT ] (1+e—ﬁ(i§+6\/6(k)2+l¢|2)>

kel §e{1,-1}

— T ] <cos (50) + cosh (ﬁ\/m)) £0.

2
kel™
(it) For any (p,x,s), (1,y,t) € {1,2} x Z% x [0, 3),

(2.17)

C(¢)(pxs,nyt)
_ Ld T eilioxy) (o)t @)
kel
Lozt (I + ePUsBAB@OM =1 _q (T, 4 =Bt B@)0))~1) () p).

where Iy 15 the 2 X 2 unit matriz and

(2.18) E(¢)(k) :( s —oll

PROOF. (i): Since the materials will be used later, we describe the
derivation in some detail. Define the (¢, k)-dependent 2 x 2 matrix U(¢) (k)
as follows.

B X (¢)(k) Y(¢)(k)
(2.19)  U(@)(k) :=Lg—olo + Lo0 <\X(¢)(k)|y@2’ \\Y(qb)(k)ch) ’

where

B o
X(¢)(k) == < e(k)2 + |92 — e(k) ) ’

< e(k)? +_\i!2 +e(k) >

Jad

&

=
i
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and || - ||z is the norm of C? induced by the hermitian inner product.
Moreover, set

(2.20) e(9)(k) := 1g=oe(k) + 1sz0V/ e(k)? + [,

One can check that U(¢)(k) is unitary and

22 U@ E@wUEwW = (N 8.

Note that
i(k,x— Pix 0 = Py )
Ho dgejrk;* (V). (igm+ m@00) (1 )

With the matrix U(¢)(k) one can define a unitary transform U(¢) on
Fp(L%({1,2} x I)) satisfying that

(2.22)
U(¢)Ho (o) xzejrk; Hloxy)

'<< ) ( ER o) (02 )
(2.23)

ULUD)” =53 S 3 R ITE) M)

yel ne{1,2} kel'*

Since Tre #Ho(®) = Ty e=AUG Ho(@OU(®) and U(p)Ho(d)U(H)* is diagonal-
ized with the band index, the result follows.

(ii): By the periodicity of both sides of (2.17) we can restrict the spatial
variables to I' during the proof. By (2.22), (2.23) and U(¢)(k) = U(¢)(k),

C(¢)(pxs,nyt)

DYDY

k,pel* x',y’el p/ n'e{1,2}
cemWex=X)HeY YO () (k) (p, ) U () (P) (1, 7))
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Tr(eMOHOOU@) (15 1% (8)hyryr (B) = Loty ()75 (5)))
' Tr e—BU(S) Ho(o)U(¢)* )

where i(s) = eUOHOUOG) 0 o— U@ Ho(GU@)" Since
U(d)Ho(d)U(¢)* is diagonalized with the band index, it can be derived
by a standard procedure (see e.g. [9, Appendix B]) that

Tr (e O HO OO (15 1%, (8) Dy () — Loctrys ()50 ())
TI‘ e_ﬁu(¢)HO(¢)u(¢)*
_ ly=r T el Ry () e )

=~ d
k'el'™

. 13215 . 1s<t
1 4 P+ =2e(@) ) 1 4 B+ P 2e(9)(K)) |
Then by using the equality e(¢)(k) = e(¢)(—k) we obtain that

(2.24)

C(o)(pxs,nyt)
= LYY AU ) (. T .6

kel™ ¢e{1,2}
(=5 +(=1)16=2¢(¢) (K))

. 1521& . 1s<t
14 BASHED=2e(@)(k) 4 —BES+(-D'=2e(@)k) |
Then by using (2.21) again we reach the claimed equality. O

The following lemma will form the basis of our analysis which eventually
leads to the proof of Theorem 1.3.

LEMMA 2.5. The following statements hold true for any r € Rsg.
(i) For any ¢ € C,

lim er<w)+W(w)fA(w>dHC(¢) (1)

hﬂzoo
he EN
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converges in C(D(T‘)Q) as a sequence of function with the variable (€
——2
D(r)").

(i) The C(D(T)Q)—valued function

222 Tier (€08(80/2) + cosh(B+/e(K)% + [9)
[Txer- (cos(80/2) + cosh(Be(k)))

h—o0
he%N

(@1, 02) —e

belongs to L'(R?, C(WQ))
(iii)

(2.25)
Ty o—B(H+i0S-+F+A)

Tr e—B(Ho+i6S2)

B i it i (c0s(30/2) + cosh(/eT0P < o)
U] Jre [Ixer-(cos(50/2) + cosh(fe(k)))
. hh—>Ho1<> e—V(¢)+W(w)—A(¢)duo(¢) (1)).
he3N

(2.26)
Tr(e_ﬁ(H‘FieSz‘i‘F)Aj)
Tr e—ﬁ(HO-H'@Sz)

Id _%|¢_7‘2 [Txer-(cos(86/2) + cosh(B/e(k)? + [¢]2))

= — dord
A0 Jee 01002¢ [Teor- (cos(36/2) + cosh(Fe(k)))
. hhm e VW)+W () g (¥)ducs) V),
he_%ol%

(j=1,2).

REMARK 2.6. At this point we do not prove that we can change the
order of the integration over R? and the limit operation h — oo in (2.25),
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(2.26). It suffices to establish a suitable uniform bound on

/ VW@ =AW) g ()
[V OO A e ) (= 1.2)

with ¢, h in order to ensure that these operations are exchangeable. Later
we will prove the uniform bound (4.78) and thus we will be able to exchange
these operations in (2.25) with A = (0,0) and in (2.26). It is also possible to
use Pedra-Salmhofer’s type determinant bound Proposition 4.2 to directly
establish a desirable uniform boundedness of these Grassmann integrals.

Proor orF LEMMA 2.5. We decompose the Grassmann polynomial
W(v) in the right-hand side of (2.9) temporarily by the Hubbard-
Stratonovich transformation. Set

VV_|_( = Z|U| Z Z was@Dxlsu

ﬂ2L2hx€Fs€OB)

W—( = Z|U| Z Z wxlswas

ﬂ2L2hxerEOﬁ

For the same reason as the equality (2.10) holds, the following equality holds
true.

(2.27)  (RHS of (2.9))
_1 d¢1d¢2/ € deqe P17 —IEP

71-2

. / ¢ V) ~F Q) ~AW)FOV 4 (0)H0V - (V) HEW L (W)W () g, - ()

where we set £ := &1 + i€2. Let us transform the Grassmann integral inside
the Gaussian integral. By expanding each exponential of the Grassmann
polynomials and using the determinant bound (2.7) we can derive that

(2.28) | / V) ()~ AWV (0)H9V (B HEW () +EW () gy, - ()
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22Ld65||H0+i95z lB(Ep)
<max< 1 -
S max g 4 | Tr e—BHo+i05.) |

. lUIBLAD> 121y BLAD-+{\1 8D+ xal BD>+211|U| 2 8% L8 D42V 362 LI D
where D = ¢2PIHoF#S:llsrp) e same argument as in the proof of Lemma
2.2 proves that for any r € Ry
(2.29)

lim  sup ‘ /e—V(w)—F(w)—A(¢)+¢V+(1/1)+¢V(¢)+€W+(w)+§W(¢)dMG(¢)
h—o0 —2
he%N)\eD(r)
Ty ¢~ B(H+i0S. +F+A—0V, —@V_ W, —EW_)
B Tr e—B(Ho+i6S-)

=0,
where V4, V_, W., W_ are operators on Fy(L*(I' x {1, |})) defined by

1 1
9k Ul
Vii= 0 > ding, Vo= o > g,
B2L2 ser B2 L2 ser
W_|_ = Z.V+, W_ = ZV_
Here we introduce the band index {1, 2} and relate the partition function
in (2.29) to a partition function in the Fermionic Fock space Fy(L?({1,2} x
I')). Let us give a number to each x € I' so that we can write I' = {xj}jLil.
Define the linear map U from Fy(L*(I' x {1,1})) to Fr(L*({1,2} x I')) by
a
U =[] vsx, 2,
j=1
UGS, 0k 10 (05, U, )
= ¢Txi1 wikxiz e Tﬁfxil wajl ¢2xj2 T ¢2xjmuQ;
(VilaZé? e 7il7j17j27 o 7jm S {1727 e 7Ld})
and by linearity. Here 2, €y are the vacuum of Fy(L*(I x {1,[})),
Fp(L%({1,2} x I')) respectively. We can see that the map U is unitary
and
(2.30)

UhU™ = YTy, UbU™ = Yix, UYL U™ = thox, Uty U™ = 13y, (Vx €T).
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Let us define the operators V', A, Wy, W_ on Fy(L*({1,2} xTI)) by

U U
V.= ﬁ Z dJwalx - ﬁ Z dﬁxwgyw%(wly?

xel x,yel'
A= Migthas — A g bsg ez,
1 1
ik . ek .
W= U0 S g, W= A0S g
B2L2 (e B2L2 i er

We can see from (2.15), (2.30) that

UH+i0S, +F+A— ¢V — pV_ — EW, — EW_ U

— Ho (@) -V + A=W, B+ Y ek) oL,

2
kel
where we set ¢/ := v — \U\%ﬁ_%lfgqb. Therefore,

Ty e—BH+i0S.+F+A—¢V, —GV_—EW, —EW_)
Tr e—B(Ho+i6S:)
0B werx e(k)=i§ LY) . o—BHo(¢') Ty p—B(Ho(¢)+V+A—EW L —EW_)
Tr e—B(Ho+iS.) Tr e—BHo(¢)

For conciseness, set

B(g) = [Tier-(cos(80/2) + cosh(By/e(k)* + []*))
' [Tier-(cos(80/2) + cosh(Be(k)))

Recalling Lemma 2.1 and Lemma 2.4, we observe that

Tr e—BH+i0S.+F+A—¢V —GV_—EW, —EW_)
Tr e—BA(Ho+i6S:)
 Tr e~ BHo(¢)+V+A—EW,—EW-)
Tr e—GBHo(¢')

(2.31)

The normalized partition function for the 2-band Hamiltonian Hy(¢') +
V 4+ A— W, — EW_ can be formulated into the time-continuum limit of a
Grassmann Gaussian integral in /\ V in the same way as the proof of Lemma
2.2. Here we especially need to make sure that the creation operators are
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on the left of the annihilation operators in V 4+ A — éW,. — EW_. The result
is that for any r € Ryg

(2.32) Jimsup / eV~ AW) W)W i, o (4)
he 2NAeD(r)
Ty e~ BHo(¢)+V+A—EWL —EW_)
Tr e—BHo(¢') =0,
where

i|U]|2
W—I—( = ’ ’ Z Z wlxs¢2xsa
B2L2hx€Fs€[O

Z!UI
W*( = Z Z Q/}2xs’¢)1XS
ﬂQLthGFsE[O

By considering the original definition (2.16) we can see that C'(¢) has a de-
terminant bound like (2.7). We can expand each exponential of the Grass-
mann polynomials to derive that

/ e~V AWIHEWL WDV -W) gy (¢)‘

22Ld€ﬁ”H0(¢/)HB(Ff_2)
< 1
= max ’ | Tr 6_5H0(¢l)|

(2.33)

1.1 d
. e\UI5D2+|UIﬁLdD§+\>\1\BD2+\>\2|BD§+2\5HU|2ﬁ2L2D2
9

where ||-||5(F; ,) denotes the operator norm of operators on Fp(L2({1,2}xT))
and Dy = o281 Ho (@I )

Here let us put these pieces together. By (2.28), (2.29) and (2.31)
we can apply the dominated convergence theorem in Ll(Rz,C(D(T)2)),
LY (R4, C’(TT)Q)) to prove that

(2.34) hm sup
he cZNAED()”

1
) _/ d&d&e—\s\?
RQ

™
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: / V) =F) AWV () FOV- () HEW+ () +HEW-(0) gy - (1))

1
-2 [ deideee B
v RZ
Ty e—B(Ho(¢)+V+A—EW, —EW_)

TI‘ e*ﬁHO(le)

(2.35) hlim sup
he %O§I AeD(r)’

1
e / dendgs / dgrdgpe™ 1P IEF
T JR2 R2

. / e_v(w)_F(¢)—A(¢)+¢v+(¢)+$V—(¢)+£W+(w)+EW—(¢)dMG(¢)

1
~ 5 [ dondon [ derdgae PP B
T JRe R2
Ty e—B(Ho(¢')+V+A—EW, —EW-)

Tr e—BHo(#) =0

By (2.32), (2.33) the dominated convergence theorem in L'(R?, C’(D(T)Q))
ensures that

hlim sup
he ENAEDG)”

1 o i
R A 0

1 Ty e—B(Ho(¢")+V+A—EW —EW_)
_ _/ € déqe 1€ re S
T R2 rI‘r e 0 d) )

= Oa (\V/d) € (C)7

or by using the Hubbard-Stratonovich transformation again,

(2.36) lim sup

/ e—V(w)+W(¢)_A(w)dMC(¢/) (@Z))
h—o00 =2

1 Tr e A(HO(@)+V+A—EW, —EW)
— _/ d£1d£2€_|£|2 e —BHo(d'
T JRe Tre BHo(¢")
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=0, (V¢ € C),

which implies the claim (i). We can deduce from (2.28), (2.34) that the
C (D(T)Q)—valued function

el Tt e~ B(Ho(@)+V+A—EW, —EW_)

(61,02 = = [} derdeoe” T B T3]

belongs to L'(R?, C(D(r)z)). By combining this fact with (2.36) we see that
the C (D(T)Q)—Valued function

e~ 1ol?
(61,62) > “——B(@) lim [ VOO Ay, ()
he 3N

belongs to LI(R2,C(D(7’)2)). Then, by changing ¢ to |U|_%ﬁ%L%(’y — )
we see that the claim (ii) holds. Moreover, by (2.3), (2.9), (2.27), (2.35),
(2.36) and changing ¢ to |U\_%ﬁ%L%('y — ¢),
(2.37)
Ty o~ BH+BS+F+A)
Tr e—B(Ho+i6S>)

:l/ dgrdgoe™ " B(¢)) lim [ e”VIOHWWIZAW G0 ()
T JR2 h—o0
he%N
BLY —BLL 62 : V()W () —A
:W R2d¢1d¢2e T 1977 B(qb)hh—{%o e V@)W () (w)dﬂC(¢)(w)7

2
heBN

which is (2.25). Furthermore, by Cauchy’s integral formula,

(2.38)
Tr(e=AHHOS:+F) A ) 1 1 Tr e—BH+i0S+F+X;A))
Tr B—B(H()—HGSZ) - 2B Jx, = d)‘jﬁ Tr e—B(Ho+i6S-)

J

1 _MM)_ 2
= d\i—e 101770 B
U] / dprd 2772 j{)\ I=r j)\?e ()

Clim [ e V@HW)=X; AT (% )dMC(qs)W)

h—o00
he%N
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L T
S doqd O] "B
m|U| Jre Prpae (¢)
_— L[ @) W) x4 (v)
Ao fjﬂr aAjvs / € A O dpeg) (1)
he 3N J J
L1 —é£ﬂ¢—|2 : v w i
= 0] Jgo 21d0ne B Jim [ eV ETHIOA W) diici (4),

he3N
which is (2.26). Note that the claim (ii) justifies the change of order of the
integrals in the 2nd equality. The uniform convergence property claimed in

(1) justifies the change of order of the integral and the limit operation in the
3rd equality. O

3. Estimation of Grassmann Integration

Thanks to Lemma 2.5, our objective is set to analyze the Grassmann
integral

/ VR AWD g (1)

with ¢(€ C) fixed. We especially need to find out which term will remain
relevant after taking the limit A — oo, L — oo. To achieve this aim, it is
efficient to generalize the problem to some extent so that we can describe the
basic mechanism of convergence without taking care of a bunch of physical
parameters. In the next section we will substitute the physical parameters
into the general results obtained in this section.

In (2.11), (2.12) the Grassmann polynomials V' (v), W (%)) were defined
with the coupling constant U(€ R.g). It is convenient for our analysis to
extend the coupling constant to be a complex parameter. To avoid confu-
sion, let us use the notation V' (u)(v), W(u)(¢)) when we consider a complex
parameter u in place of U. More precisely, we set for u € C

V()= 2 > [Z) Prxsthins
x€el' s€[0,8)n
u

m Z Z ElxswbcsEstwlyS’

X7yer Se[ozﬁ)h

W('Uz)(w) = ﬁ Z Z ElxstXSEQytwlyt

x,y€l 5,t€[0,6),

+
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so that V(U)(¢) = V (), W(U)(¥) = W ().

3.1. Preliminaries

In addition to the brief introduction of Grassmann algebra in Subsec-
tion 2.1 here we need to define more notations, notational conventions and
other tools necessary in the forthcoming analysis. We keep using Iy and [
defined in Subsection 2.3 as the index sets of Grassmann algebra. Let us
admit that for any set S, n € N and X belonging to the product set 5", X;
denotes the j-th component of X. Thus, X is equal to (X1, X2, -+, X,).
We will use this notational rule, which helps to shorten formulas, without
any additional comment. In many occasions we will apply this rule to the
sets Iy, I". Size of a Grassmann polynomial can be measured through
norms on its kernel functions. Thus, it is important to organize various
notions concerning kernel functions. For n € N let S,, denote the set of
permutations over {1,2,--- ,n}. For X € I" and o € S, we let X, de-
note (X, (1), Xs(2), "+ » Xo(n)). For a function f : I" — C we call it anti-
symmetric if

f(X) =sgn(0)f(X,), (VXelI", ogeSsy).
For a function g : I x I™ — C we call it bi-anti-symmetric if

9(X,Y) = sgn(o) sgn(1)9(X,, Y7),
VX, Y)eI™xI", o€S,, TES,).

For any function f : I™ — C (n € N>3) we define the norms || f|1,00, ||f]1
by

n—1
o= s sw (1) ¥ Y XYL

JE{12, - n} Xoel Xeli-1Yeln—i

= (7) X 1o

Xeln

Since anti-symmetric functions on I? play special roles in our analysis,
we need to define other kinds of norm on them. For this purpose as well
as other later use let us introduce a few notational conventions. For X =
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(PIX131§17P2X232§27 o 7ann3n§n) € ({17 2} X Zd X %ZX {17 _1})n7 s € %Zv
we set

(3.1) X +s5:=(p1x1(s1 4+ 5)&1, paxa(s2 + 5)&2, -+, puXn(sn + 8)&n).

Similarly for X = (p1x181, , pXnsn) € ({1,2} x Z¢ x $Z)", 5 € 17 we
set X + 5 := (p1x1(51 + 8), -+ , pnXn(Sn + 5)). Define the index set I° by

I°:={1,2} x T x {0} x {1,-1}.
It follows that for X € (I%)", s € [0, 8), X +s € I". With these notational

rules we define the norms || - [|1 ., || - || on anti-symmetric functions on [ 2
as follows. For any anti-symmetric function g : I? — C,

l9l 0o = sup > [9(Xo, X +5), gl := lgllio0 + 87 1gll1,00-

Xoel

s e[g 3), XEI°
We will also deal with bi-anti-symmetric functions on the product set
I™ x I". By considering that these functions are defined on ™% the norms
||I-||1 can be defined on them. We will need to measure these functions
coupled with another anti-symmetric function on I2. The measurement will

be carried out in terms of the following quantities. For a bi-anti-symmetric
function fp,, : I™ x I — C (m,n € N>5) and an anti-symmetric function
g:I? = C we set

[fm,n:g]lyoo

)

‘= max { sup

Xoel Xelm !

sup Z |fmn XO: )7Y)H9(YE)7Y1)|}7

Yoel Yein

(i

L
o (7 )

L

sSup Z ’fmn YE)? ))|’9(X07X1)|}}7

Xo€el Xcm

YeI” 1

m+n
nmdhi= (3) 3 Un XY g(Xs Y0

Xel™
YeI™
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For X € I" let v¥x denote 9¥x,v¥x, - ¥x,. Anti-symmetry of Grass-
mann variables implies that for any f()) € AV there uniquely exist f € C

and anti-symmetric functions f,, : I — C (n =1,2,--- , N) such that
N 1 n
=3 (3) X mxux
n=0 Xeln

Based on this fact we admit that for f(¢) € AV, fn (n = 0,1,--- ,N)
denote the unique anti-symmetric kernels of f(¢). A norm can be defined
in the vector space A V by defining a norm in every space of anti-symmetric
kernels. Finite dimensionality of AV implies that AV is a Banach space
with the norm. Then, by considering as a Banach-space-valued function
the standard notions such as continuity, differentiability and analyticity of
a Grassmann polynomial parameterized by real or complex variables are
defined. Since we introduce various norms on anti-symmetric kernels, it is
clearer to define these notions without specifying a norm on A V. We say
that a sequence of elements of AV, f™(¢) (m =1,2,---) converges in AV
if each anti-symmetric kernel function of f™ (1) converges point-wise, or
more precisely lim,, o f7"(X) converges in C for any n € {0,1,---, N},
X € I". For a domain O of R™ or C™ and f(z)(¢) € A\ V parameterized
by z € O we say that f(z)(z) is continuous with z in O, differentiable with
z in O and analytic with z in O if so is f(z),(X) for any n € {0,1,--- , N},
X € I™. Moreover, when it is differentiable, for j € {1,2,--- ,m},z =
(21,22, ,2m) € O we define the Grassmann polynomial %f(z)(w) eANV
by

N n
ai (2)(®) ::Z(%) OFTICHE SIS

n=0 Xern =Y

The single-scale integration is well-described in terms of trees. We refer
to the clear statement of the tree formula with a self-contained proof pre-
sented in [19, Theorem 3, Appendix A]. We should also lead the readers to
the references of [19] for more original versions of such expansion techniques
known as the Brydges-Battle-Federbush formula. To state the formula, we
need to recall the definition of Grassmann left-derivatives. Let V7 be the
vector space spanned by the basis {wé( | X € I} for j =1,2,--- ,n. For
p € {1,---,n}, X € I the Grassmann left-derivative 9/9¢% is a linear
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transform on A(V! @ --- & V") defined by

0 ) . ) ) )
P1 p P Pi+1 p - J,/,P1 P Pj+1 D
aw?{ (le o )gj¢x¢)gj+l .. '1/1)(7:1) = (—1) le )gj )gjﬂ .. .¢er;7
0 .
D1 D. Pji+1 Y2 I
a,lpp (le )(]j )(Jj+1 'l/}X”:@) =0
X

for any (p;, X;) € {1,2,--- ,n} x I satisfying (p;, X;) # (p,X) (j = 1,
2,---,m) and by linearity. The Grassmann left-derivative 0/0yx (X € I)
can be defined as a linear transform on A(V @ V! @ --- @ V") in the same
way.

Let A,pen V denote a subspace of AV consisting of even polynomials.

More precisely,
N/2 2n

/\v::g/\v.

even

For a covariance C : I3 — C and f/(¢)) € AenV (4 = 1,2, ,n) the
Grassmann polynomial

log </ e> 7lzjfj(¢+’”1)duc(¢l)>

is well-defined and analytic with (z1,22,---,25,) in a neighborhood of the
origin. The strategy of single-scale analysis is to expand the logarithm into
the Taylor series around the origin and estimate each order term. To this
end we need to know a formula for

1/ 0 no, g
(o)
' j

The formula for n = 1 can be derived from the definition as follows.

d
@ ([ o aeon)

ijo

z2=0
— [ 1w+ hduew?)
=% g2 CX)=5— 9
_ 0 5 de2 1 1
=e AU
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The tree formula characterizes the derivative for n € Nx>o.

1 H" o, n i (ol

mj:1 <3Zj> o </ o )duc(¢1)>
1

-— [T (254(C)+ 24,(C))

" TeT({1,2,+ n}) {p, q}ET

' / ds Z @(Ta 0-7 S)eZ Z,b:l M(T707S)a,bAa,b(C)
[0,1]7—1 o€SA(T)

H FI7 + )

yi=0

where T({1,2,---,n}) is the set of all trees over the vertices {1,2,---,n},

o 0

A C = - CX_——,
palC)i= = 3 CX) g

Xel?

S, (T) is a T-dependent subset of S,,, ¢(T, 0, -) is a real non-negative function
on [0,1]""! depending on T € T({1,2,---,n}), o € Sy(T) and
(M(T,0,8)ab)1<ap<n is & (T,0,s)-dependent real symmetric non-negative
matrix which satisfies that

M(T,0,8)q,0 =1,

(Va € {1l,---,n}, T€T{1,---,n}), 0 €S,(T), s€0,1]"1).
s — M(T,0,8)a, is continuous in [0,1]"1,

(Va,be {1,--- ,n}, TeT{1,---,n}), 0 €Sp(T)).

Moreover, the function ¢(7T', 0, -) satisfies that

(3.2) / ds S @(Tos) =1, (FTeT({1,2,n}).
0,11 a€S,(T)

Because of the property (3.2) the function ¢(7T',0,-) does not affect our
estimation of Grassmann polynomials in practice. We can deduce from the
fact that the matrix M (T, 0,s) is real symmetric non-negative and all the
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diagonal elements are 1 that there are vy, -+, v, € R™ such that ||v;||r» =1
(¢=1,---,n) and

(3.3) M(T,0,8)ap = (Va,Vb), (Va,be{l,--- n}).
Thus,

(3'4) |M(T7 g, S)a,b| < 1a
(Va,be {1,--- ,n}, T€T{1,---,n}), 0 €Su(T), s €[0,1]"71).

To systematize our estimation, let us define operators on Grassmann
algebras which are slight generalization of the above formulas. For p, q € Z,
set

~ 0 0
A{p,q}(c) = Z C(X)—8w§{ —3¢g( )

Xerl?
where C : I? — C is the anti-symmetric extension of C defined by

1

(3:5)  C((X,6),(Y,Q) = 5(leo—a,-nCXKY) = Lig o= (-10)C(Y; X)),

(VX,Y €Iy, ¢ e{1,—-1}).

We can see that

- 2A{p,q} (C) = Apq(C) + Ay p(C),
- Z M(T, o, S)p,qA{p,q}(C) = z M(T,0,8)p,gAp,q(C).
p,g=1 p,q=1

For S = {s1,82, -+ ,8,}(C Z) with S = n > 2 let T(S) denote the set of
all trees over the vertices {s1, s2,--+,sp}. Using these notations we set for
S ={s1,s2,-- ,sp}(CZ),ifn=1,

TT@G(S, C) = eA{S1,S1}(C)7

ifn>2

Tree(s,¢) = (<21 3" [ Apa(©) / ds S o(T,0.5)

TeT(S) {p.q}eT o, a€S,(T)
e Y Z,b:l M(T7U7S)a,bA{sa,sb} (C) .
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It follows that for any n € N, fI(¢) € A eV (G = 1,2, ,n),
L1 /(2 s P W gy ()

36) (5 )los( [ dpe(¥")
P j

= %Tree({l, 2,---,n}C) H I + %)
j=1

z;=0

=0

When f7(¢) = f() for any j € {1,2,--- ,n}, the formula (3.6) implies that

a0 () ([ duew)
z=0

1 n
= ETW@({LQ,“ : 7”}7C U w-i—W

=0

The following inequalities will be crucially important.

e s1s1) C>¢X

Pt = 0‘

0 if m is odd,
(3.8) < sup ‘det(C(Y}, Zj))1<i7j<m’ if m is even,
Y;,Z;€lo T
(.] 1a27 Ty )

(VmeN, XeI™).

n
-, _ M(T,0,8), Agsg,si3(C Sj
(39) | e MRy O T | L
0 if m is odd,
sup sup
< {0 uy,v;€CT with HUJH(C” Ivillcn <1 Yj,Z;€l0

. det((ui,vj)CnC(Yi, Zj))lgi,jg%‘ if m is even,
(ij S {0,1,--- ,N}, Xj e (] = 1,2,~-- ,n),
T € T({s1,82, - ,8n}), 0 €Su(T), s €[0,1]"1),
where m := Y%, m; and (-, )¢n is the hermitian inner product and || - [|c»
is the norm induced by (-, ). The inequality (3.9) is based on the Gram

representation (3.3) of the matrix M(T,o,s). See e.g. [9, Lemma 4.5] for
details of how to derive an inequality of this kind.



The BCS Model with Imaginary Magnetic Field 47

3.2. General estimation

Here we estimate Grassmann polynomials produced by applying the op-
erator Tree(S,C) to given Grassmann polynomials. As explained in the
beginning of the section our purpose here is to summarize generic struc-
tures of single-scale integrations. Let us introduce some notions which are
necessary to describe properties of the Grassmann input and the covariances
of the single-scale integrations. To describe periodicity and translation in-
variance with the time variable, we define the map rg : %Z — [0, 8)p, by the
condition that rg(s) € [0, 8), and rg(s) = s in +Z/BZ for s € +Z. Then we
define the map R from ({1,2} x I x +Z x {1,—1})" to I" by

Rp(pixisi€i, -, pnXnsnén) = (p1x178(51)&1, -+ 5 PnXnr(Sn)én)-

We will sometimes consider Rg as the map from ({1,2} x T' x +Z)" to I}
satisfying that

Ra(p1x151,- -+, PnXnsn) = (p1x173(51), -, PnXnr3(sn)),

by admitting the notational abuse. The meaning of the map Rz should be
understood from the context.
We assume that the covariance C : Ig — C satisfies that

(3.10) C(R3(X +s)) =C(X), (VX €l se %Z) ,

(3.11) | det((us, vj)omC(Xs, Y)))1<ij<n| < D",
(Vm,n € N, u;,v; € C™ with ||u;||cm, ||viljem < 1,
Xiai/; S IO (’L = 1727“' 7n))7

where D is a fixed positive constant. The condition (3.10) might appear
unnatural if C is thought to be a sum over the Matsubara frequency. How-
ever, one can modify such a covariance to satisfy (3.10) by a simple gauge
transform.

One implication of the property (3.10) is that

(3.12)

TT’G@({LQ,-” ’n}’C)ngzﬁ(Xj—f—s) $i=0
Jj=1 (VjG{l,Q,”',TL})
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pi=0

=Tree({1,2,--- ,n},C) H U
j=1

1
(VnGN, mj €{0,1,--- N}, X; € I"™ (j=1,2,---,n), SEEZ>.

“For j € Nlet Fi(¢)) € Ayyep V be such that its anti-symmetric kernels
F),:I™ —C (m=2,4,---,N) satisfy

(3.13) FJ(Rs(X + 5)) = F2,(X), (vx el™ se %Z) .

In this subsection we will give the Grassmann polynomials F7 (1) (j € N)
as the input to the single-scale integrations.
For n € N we define A (¢)) € A,,., V by

A () := Tree({1,2,--- ,n},C) H (¥ + )

$i=0

Since T'ree(S,C) consists of Grassmann left-derivatives of even degree, it is
clear that the output belongs to A,,.,, V if so does the input.

For conciseness of formulas we let || fol/1,00 = ||foll1 := |fo| for the con-
stant term fo of f(¢) € A V. We admit this notational convention through-
out this section. The next lemma is the simplest among other lemmas in
this subsection.

LEMMA 3.1. For any m € {2,4,--- N}, n € N the anti-symmetric

kernel A%L)(-) satisfies (3.13). Moreover the following inequalities hold for
anym €{0,2,--- N}, n € N>o.

N Tye
N m=0Ap#0 p »
=2 (5) T (n)e"

=m

(315)  [JAD], < < )D%
p=m

(3.16) A 100 < (

(3.14) I

pHLOO'

p”l'

==

1m:O
) (n— D F92m G
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n N .y
. 2 i
N H Z 23p]‘D 2 ||FIJ)J ||1aOo ]'Z j=1 pj_Z(n_l)Zm'
7j=1

pj=2
N p
m ~ 1
(317) AWy < (n— 21D F 22 E L N 28 DB ||y
p1=2
n N p )
T D2 2% D7 e | 15, b2t 1)2m-
7j=2 pj:2

Here C(: I? — Q) is the anti-symmetric extension of C defined as in (3.5).

Proor. By anti-symmetry,

A =33 (2)(3) X moxremn.on], o

p=0 m=0 Xelm
Yerr—m

Thus, by the uniqueness of anti-symmetric kernels, for any m € {0,2,-- -,
N}, Xel™,

(3.18)
AD(X) = i ( fl > <%)p_m > Fy(Y,X)Tree({1},C)vy o

p=m Yeip—m

By using the translation invariant properties (3.12), (3.13) we see that for
anyXEIm,SG%Z

AL (Rp(X +9))

:p_im< fl ) (%)p_myeng[}(Y,Rg(X+S))TT€€({1}aC)¢%( o
N

(1)
,<%>p_m > Fy(R((Y. X) + s)Tree({1}.000k (v 4| ,_,

Yelp—m
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Thus, ALY satisfies (3.13). The inequalities (3.14), (3.15) can be derived
from (3.18) by using (3.8), (3.11).
Next let us consider the case n > 2. By anti-symmetry,

j=1 \p;j=2m;=0 X,el™i
Y, elPim™
n ) i
-TTee({l,Q,-u ,TL},C) H¢%(] J=0 (_1)2?;1 ™5 2 R (Premme)
J=1 (vje{1,2, n})

: H VX, -
=1

Thus, for m € {0,2,--- ,N}, X e I'™,

(3.19)
AR(X)
1 n N pj—1 i
Tl (S X ()
aeSn, j=1 \p;j=2m;=0 J
pj—m; A
(%) 3 ng(Yj,X;)>

Yjelpj_mj

Wi=0 (—1)2?:711 mj 21 (Pe—m)
(Vje{1,2,+ n})

Ay xy X)) =X A my=m s T pi—o(n-1)zm-

: Tree({l, 27 T 7”}76) H ¢]Y']
j=1

The constraint > % ;p; — 2(n — 1) > m is added since the operator
[y grer Aip.gy(C) inside Tree({1,2,---,n},C) erases 2(n — 1) Grassmann
variables. Again by using (3.12), (3.13) we can check that AW C
satisfies (3.13).

To establish upper bounds on the norms of A
sum over trees by a sum over possible degrees of trees. For j € {1,2,--- ,n},

5,?) we need to replace the
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T € T({1,2,---,n}) let d;(T) denote the degree of the vertex j in T". The
following calculation, which we will frequently refer to during this subsec-

tion, is based on Cayley’s theorem on the number of trees with fixed degrees.
For any ki, ko, -+ ,kn, €N,

w0 x ()

TeT({1,2, n}) j=1

kj) (n—2)!

P [ A
H(dj ) Ty (de = D == =20
< (-2 J(k257Y) < (n— 2222 ks

Since we will need to deal with the case n = 1 at the same time, let us
give a meaning to the left-hand side of (3.20) for n = 1 and generalize the
combinatorial estimate (3.20) to be valid for any n € N. We assume that
T({1}) = {{1}} and di({1}) = 0 so that the left-hand side is 1. It follows
from this convention that for any n € N

(3.21) > H<< ) j(T)!>

TET({1 2 m
< ( n=1t 17122(71 —2)127 )2221':1 k;

By (3.2), (3.9), (3.11),
AR (X))

on—1 n
2y I

" 0€SH TeT({1,2,+,n}) j

EEE)Ca e

pj=2m;=0

j / L=n  pi—2(n-1)-m
> \F,;jwj,zj,xjn)m a2
X;EImj ,Yjefpj —m;—d;(T)

ZjGIdj(T)
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H Agp,q(C) H w%j
j=1

{p,q}€T

X XY X=X I my=m IS 7 pi—2(n—1)>m
Note that

H Agpq3(C) H w]ij
j=1

{p,q}eT

creates at most [[7_; d;(T")! terms, since

P d; (1)
J
(Z 6%;) vz,

Xel

creates d;(T)! terms for j € {1,2,--- ,n}. Forevery T' € T({1,2,--- ,n}) we
consider the vertex 1 as the root. Then, by recursively estimating along the
lines of 7" from younger branches to the root and using (3.21) for k; = p;—m;
(j =1,2,--- ,n) we observe that

1A 1

o= SR () (g e

TeT({1,2,+- ,n}) p1=2m1=0
n N pj—1 »; b .
' ‘ 77 M) g ()
H<Z 2 <m>< d;(T) ) i(T)
Xt < ) > IF,(XlieC Xo,Xol)D%@;*1pj—2<n—1>—m>
Xo€el Xer’s
. ].Z;L:l mJ:mlz ?:1 pj—2(n—1)2m

N p1—1
<=2t Y > < " )22“ ™D || F |

p1=2m1=0
n N Dy
TS S ()2t )
j=2 \ pj=2m;=0

5> o mj:mlz Go1pj—2(n—1)>m>
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which is bounded from above by the right-hand side of (3.17).

We can estimate ||A£g)||1,OO from (3.19) in a way parallel to the above
argument. In the case m > 2, first we fix a component of X(e I"™). For
fixed o € S,, there uniquely exists j; € {1,2,---,n} such that the fixed
component is one component of the variable X', (€ I™1). Then we consider
J1 as the root of each tree and repeat the same recursive calculation as above
to reach the claimed inequality (3.16). The inequality (3.16) for m = 0
follows from (3.17) for m = 0 and ||F}, |1 < ﬁHFI}1 loo- I

In addition to F7(y) (j = 1,2, - ,n) we give a Grassmann polynomial
having bi-anti-symmetric kernels as one piece of the input. Assume that we
have bi-anti-symmetric functions Fj,, : IP x [1 — C (p,q € {2,4,--- ,N})
satisfying (3.13) and the following property. For any function g : [0, )} —
C, h:[0,8)} — C satisfying

(322) gl
1

<v(317827" : 7811) € [07ﬁ)]€7 ERS EZ> ’

h(rg(si +s),rg(s2+s), - ,rg(sq +5)) = h(s1,s2, - ,5q)

1
<\V/(51,52,“ : 7Sq) € [Oaﬂ)%v s € ﬁZ> ;

(s1+5),rg(s2+5),---,rg(sp+5)) = g(s1,52,- -+, Sp)

(3.23) Z Fpq((p1x15181, -+ ppXpspp), Y)g(s1,- -+, 5p) =0,

(317"'7517)6[ )i
(VYEI(I, (p]7X]7£])6{1 2}XFX{1 _1} (J 2 ap))7

Z Fpa(X, (my1t1Cr, -, MgYateCq) At -+, tq) =0,
(tlf"th)E[O?B)Z

(VX € ij (Uijij) € {172} x I x {17_1} (] =1,2,--- 7Q)>'

We are going to analyze the Grassmann polynomial B () € Ao,V
(n € N) defined by

B™(4))
N 1\ Pta
= 1p,q€2N<E) Y Fpg(X,Y)Tree({1,2,-- ,n+1},C)

P,q=2 Xelr,Yela
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n+1
(W@ oy [[ @ )
j=3 (Vje{1,2,+ ,n+1})
LEMMA 3.2. For any m € {2,4,--- N}, n € N the anti-symmetric

kernel B,(ff)(-) satisfies (3.13). Moreover, for any m € {0,2,--- ,N}, n €
N>o,

(3.24)
N =0 m
W< () 0E

N
+P2
2p1+2p2 T2
E , 1p1,p262N2 D =" [Fm,pmc]lmlpﬁm—?zm-
P1,p2=2

(3.25)

P1 +P2

HB H1<D - Z lpl,p2€2N22pl+2p2D
P1,p2=2

[Fp1 D29 é] 1 1p1+p2—22m-

(3.26)

n N tm=o0 —n—25—2m|| A ||n—
B < (3) (- DD E ]
N

3p1+3p2 p2 5
§ : Lp, pyeanN2 D [Fpl P23 C]LOO
P1,p2=2
n+1 N

N 2D ||F) 1
: H 2 2 || pj”l,oo Z?;Lllpj—2n2m'
]:3 p]-:2

(3.27)

IBS 1 < (n — 1)!19_"_%2_2’”\\5””_1

P1 +P2 =

[thpz’c]l,oo

3p1+3p2
E : 1p, pocaN2 D
P1,p2=2

11 Z 2% D7 | F3 100

j=3 \p;=2
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N
z 93pn+1 )5t | Frtt

) Pn +1||112 ;}illpijnzm'
Pn+1=

ProOOF. By anti-symmetry,

B™(y)
p1—1 p2—1 »
2
=Y e S (2)(2)
P1,p2=2 m1=0m2=0

. <%>m+m 3 Fyyn (Y1, X1), (Y2, X2)

Xpel™1, Y elP1—™
Xo€el™2,Yoe[P27™M2

Tl+1 N pj 1 Pj )
(= (2)6) 5 mwx)
7j=3 i=2m;=0 X,elmi

Y]‘Gij_mJ

-Tree({1,2,--- ,n+1},C)

n+1 1
' H ij i (—1)2 ?:1 mjzzij+1(pk_mk)
J PIi=0
j=1 (VjE{1,2,+ m+1})
n+1

: H Px, -
=1

Then, the uniqueness of anti-symmetric kernels ensures that for m €
{0727"' aN}7 XEIm,

B,(JZ)(X)
p1—1 pa—1 »
2
= m' Z sgn Z 1p1,p262N Z Z ( ) ( - )
oESK p1,p2=2 m1=0 ma=0
1 p1+p2—mi—ma
' (E) > Fppe (Y1, X7), (Y2, X3))

Y €]P1—™m1 YoeP2—m2

HEE R 5 )

J=3 \pj=2m;=0 YT
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‘Tree({1,2,-+ ,n+1},C)
n+1
) H w{( i ( 1)2" 1m]z:i;+1(pk_mk)
' Y/ =0
‘ ’ (Vj€{1,2,- n+1})

) 12 ]”ﬂl mj —mlz ;”11 Dj —2n2m1(X'1,X/2,"' X 1) =Xo
The property (3.13) of B follows from (3.12) and the property (3.13) of

the input.
By (3.2), (3.9), (3.11),

(3.28)

B (X))

m

on al
< E Z Z Z 1P17p2€2N
2

" 0€Sm TET({1,2, ,;n+1}) p1,p2=2

p1—1 p2—1
50
p1+p2—mi—m2
() ) (') (3)
> [ Fprpe (Y1, 21, XY), (Y2, Z2,X5))]

Y err1—m1—di(T) y,epe—m2—da(T)
Z1€19(T) Z,ed2(T)

TS () ()

j=3 \p;j=2m;=0
1\ Pi™™ . ,
(3) S IR (Y2,
Yerrimmi 4
ZjEIdj(T)
1 Zn«l»l 9 ’I’L+1 .

D2 pimznm) H Apgy(€) H 7/’sz

{p.q}eT j=1

) 12 "+11 m; mlz ;H'llp —Zanl(Xll,Xéf“ Xp1)=Xo

Let us derive the inequality (3.25) from (3.28). For any m €
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{0727"' 7N}7

I1BY|; <2 Z 1p, poc2N plzzl pil < > < 7];2 )(Pl —m1)(p2 — m2)

P1,p2=2 m1=0ma=0 2
1y2 o o
’ [Fp17p2?c]1D2(z =132 m)1m1+m2:m1p1+p2—22m,
which is less than or equal to the right-hand side of (3.25). The inequality

(3.24) can be derived in the same way.
Let us consider the case that n > 2. We decompose (3.28) as follows.

(3.29) 1B (X)| < > BI"(T)(X),
TeT({1,2, ,n+1})
(3.30)
B,Sz” (T)(X)

= Z Z 1p17p262N

UGSm P1,p2=2

S0

m1=0mo=0

() Caan ) G
> |y e (Y1, Z1,X4), (Yo, Zo, X5))|

Y;err1—m1—di(T) 7Y261p27m2—d2(T)
Z1e14(T) Zyed2(T)

(s (h) ()

i=2m,;=0

1 pj—myj; ) ,
(3) S IR

Y errimmim 4
d; (T
Zeri™

n+1

Lontly _on—m j
.DQ(ZJ 1 P2 ) H A{p,q}(C)ijzj
=1

{p.a}eT
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12 ;z+11 mj —mlz "+1 1 Dj 72n>m1(X/17X/27"' aX/TL+1):Xa .

Let us estimate HB&U(T)HL For T' € T({1,2,--- ,n + 1}) we consider the
vertex n+1 as the root of T'. Without loss of generality we can assume that

(3.31) the distance between 1 and n + 1 is shorter than or equal to
that between 2 and n+1in 7.

We can derive the same inequality by assuming otherwise. For j € {1,2,--,
n + 1} let us introduce the conditions Pj, @ as follows.

Pj : The vertex 1 is on the shortest path between j and 2 in T
Q@ : The distance between 1 and 2 in T is 1

Then, only one of the following cases occurs.

Pn—l—lAQ Pn—i—l/\_‘Q n41

By recursively estimating along the lines of T' from younger branches to the
root n + 1 we obtain from (3.30) that for any m € {0,2,--- , N}

(3.32)

1B ()]s
N

<2" Z Lp; prcaN
p1,p2=2

ST (e Y (P )
n N pj—1
T(EE (2) (i om

j=3 \p;j=2m;=0
-sup() S IFL(X ||CX0,X1>|)
Xoel XerPi

Pn4+1—1 p p m
n+1 n+1 — n+1 n
> 5 (e ) (M e

m
Pn+1=2 Mnp41=0 ntl
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D2(Z ;L+11 pj—2n—m)

1 P1+p2 5 B
‘ (1%@ o (1) X (X YK, X0IICCX Y1)
Xoel Xerr

YeIP2
1 P1+p2
+ (]‘P'rr‘rl/\_‘Q + 1 n+1) sup ((E) Z
Xoel Xelr

csup Y |Fp (X, Y)I!C(Xo,Xl)IIC(Yb,H)|>>

Yoelyerrs

’ 12 ;LJFI mj —mlz ;L+11 pj—2n>m

< 2"DTE||C|r L
p1+p2 p1—1 p2—1 P
S ™= S (1) (1)
p1,p2=2 m1=0mo=0 2

: ( pill_(zf’)“ > di(T)! ( pilQ_(T”;? ) do(T)![Fpy 2 Cli o0

A(E () (iYoo)

7=3 \p;j=2 m
N — Prny1—1 » » m
L +1 +1 = M4l
S (m )( v ) A (YL
Pri1=2 Mng1=0 n+1 n+1

12 n+1 mj —mlz ;L+11 pj—2n>m’
When P,,;1 holds, the first inequality above can be derived smoothly. The
point of the derivation of the first inequality when P, 11 does not hold is to
complete the recursive estimation along the branch containing the vertex
2 before the recursive estimation along the branch containing the vertex 1.
Here we use the assumption (3.31) to exclude that the vertex 2 is on the
shortest path between n + 1 and 1 in 7. By applying (3.21) we can derive
(3.27) from (3.29), (3.32). Note that (3.27) for m = 0 implies (3.26) for

=0, since [|B{ ||y = |B{ [l1.00 = |B{™] and IIF,ﬁHh

Pni1
In order to derive the claimed upper bound on ||B H 1,00 for m > 2 from
(3.30), we fix T' € T({1,2,--- ,n+ 1}) and the first component X; of the
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variable X (&€ I"™). For any o € S, there uniquely exists j; € {1,2,--- ,n+
1} such that X is a component of X;-l. Then, we consider the vertex j; as
the root of the tree T'. Again without loss of generality we can assume that

(3.33) the distance between 1 and j; is shorter than or equal to
that between 2 and j; in T

Only one of the following cases happens.
le/\QAjl =1 le/\Q/\jl #1 ]Djl/\_\Q/\jl =1 leAﬁQAjl #1 -Pj

By the recursive estimation from younger branches to the root j; we deduce
that

IBS(T) 1,00

S Y e

0ESm p1,p2=2

'plzl pil ( > < o ) (pill_@?;l >d1(T)! < pizQ_(Tﬂ;Q )dg(T)!

m1=0mo=0

H(EE(5) Cuhr Jam)oios=-

i=2m;=0
' 12 ”+11 m]—mlz 7+11p —2n>m

: <1Pj1/\Q/\j1:1
Xerr1—t

1 p1+p2—1
. Sup —
Xoel <h>
Yerr2

n+1 1\ P . ~
. H <sup <E> Z ‘Fg](X)‘C(Xle)’)

j=3 \Xo&! Xers

|1 2 (X0, X), Y)IC(X1, Yl)\)

+ 1p, rQaji#1
1

p1tp2 - ~
+ Sup <ﬁ> Z ’Fplmz(XaY)HC(XOaXl)HC(XQ’Yl)’
Xoel XeIpr1

YcIP2
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n+1
15 b 1 <sup< )X el Xo,Xm)

XeIPi
J#h

1 p1+p2—1
+ 1p; A-Qnji=1 Sup <E>
Xoel Xerri-!

- sup ( Z |Fp1,P2((XO7X),Y)||CN(YOvY1)|>)

Yoel \ yerr
n+1
11 (Sup ( ) > IFL(X)1IC( Xo,X1)|)
j=3 \ Xo&l XelPi
1 p1t+p2
+ (1p, A-Qrji#1 + 1-p;, ) Sup ((ﬁ) Z
Xo€el XeIpt

'Sup( > IFpl,pz(X7Y)Hé(Xo,Xl)Hé(Yo,Yl)O)

Yoel Yerre

ntl pj . -
g 1T (o, () 2 1m0, x))

XeIPi
]5‘6]1

< QnD—n—% HCN‘ n—1

p1+P2 Pl opl D2
Z Ly, pocoND 2 Z Z ( )( )

p1,p2=2 m1=0m2=0 "
(i ) (T ) o s
s pj pj—mj \ j

1S5 (2) (i Jomn)

) 12 "+11 m; mlz ;H'llp —2n>m’

Again when Pj, does not hold, the assumption (3.33) excludes that the
vertex 2 is on the shortest path between j; and 1 in T so that we can carry
out the recursive estimation along the branch containing the vertex 2 before
that along the branch containing the vertex 1. Combining this inequality
with (3.29) and (3.21) results in (3.26) for m > 2. O
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Next we consider the Grassmann polynomials E™ (y) € A_,.,, V (n € N)
defined as follows.
N 1\ Pta
) = Z 1p,q€2N<E> Z Fpqe(X,Y)
p,q=2 XelP
Yeld

m—+1

Tree({s;} 74" Q)@ +o)x [[ FY @ +0)) .
.722 (Vj€{17277m+1})

Tree({t}p = C) W + )y ] F* @™ + )

k=2

Yhh=0

where the functions F,, : I? x I9 — C (p,q € {2,4,--- ,N}) are bi-anti-
symmetric and satisfy (3.13), (3.23) and

me{0,1,--- ,n—1},
1:81<52<"'<Sm+1§n, l=ti<to<-- - <tph_m<n
{s) ¥ Uit} = (2,3, ,n}, {Sj}’?;? N{tr}ps" = 0.

Here we assume that {s]}mJr1 it m=0, {tx};_5' =0if m=n—1

9

LEMMA 3.3. Foranyn € N, a,b € {2,4,--- , N} there exists a function
E(n) I* x I* — C such that Eénb) is bi-anti-symmetric, satisfies (3.13),
(3 23) and

=> 1a7bem<5) > BN (X Y)uxey.

a,b=2 Xele
Yerb

Moreover, the following inequalities hold for any a,b € {2,4,--- ,N}, n €
N>o.

(3.34)
I|E l)Hloo < Zleq€2N< > ( Z )D%(P-&-q—a—b)Hqu 1
p=a g=b
(3.35)

q 1 —a—
12 <Zleq@N Daraa=d g .
b

p=a q=b
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(3.36)
1223 oo
< (1m¢0(m — 1)‘ + 1m:0)(1m¢n_1(n —m — 2)' + 1m:n71)
N
_ 1 P1+ ql
e L Ll 1] e NS PAOSS. LD R S e
P1,q1=2
m—+1 N o n—m N a
(S otmne) T Sotim. )
Jj=2 \p;=2 k=2 \ qp=2
12 m+1p 72m>a122 U ar—2(n—m—1)>b
(3.37)
3
<(1 m;«so(m — 1)l + 1m:0>(1m7ﬁn71(n —m—=2)l+ 1p=n-1)
N
. 2—2a—2bD—n+1——(a+b HCHn 1 z 1p1,q1€2N23p1+3Q1
P1,91=2
m—+1 N )
3p; Pj 85 Sj
I (Z 29 D% (1 sl 2 1.0 + Loyl B ||1>)
Jj=2 \p;=2
n—m N .
ap;
11 ( > 25D (L | Fgt |, - F;:rm)
k=2 qk:2

) 12 m+1 pj —2m>a12 o ar—2(n—m—1)>b

PROOF. By using anti-symmetry we can transform £ (v) as follows.

(3.38)
EM ()
N D1 . N
Z 1P17q1€2N Z (1m:0 + 1m7'5011t1§p1—1) ( " > <E> Z
P1,q1=2 u1=0 1 XicTu

q1 T 1 v1
D (L1 + Lgn1 Loy <q-1) < o > <g) )

v1=0 Y elv1
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N Pi— pi 1\ %
J _
Z < u; > <h> Z .
=0 XjEIuJ
N g1 Vg
e 1
>Y (%)) =
qr=2vE=0 Y eIk

k=2
: f ((pj)1<]<m+17 (u])1<]<m+17 (QJ)1<j<n m> (U])1<]<n m)
((Xlu X25 et 7Xm+1)7 (Y17Y25 et )Yn—m))

VX UKy VX VYUY VY s

where the function

Jm((Pi)1<j<mrt, (Uj)1<i<mr1s (45)1<i<n—m, (Vj)1<j<n—m)

m+1 n—m
:HI“J'X HI”’“—NC
7j=1 k=1

is defined by

(3:39) fr((Pj)i<i<m+1, (Uj)1<j<m+1, (@) 1<j<n—m> (Vj)1<j<n—m)
((Xla X27 T 7Xm+1)7 (YlaYza te yYn—m))

1 p1+q1—u1—v1
= (1) S Y WX @)

W, eIP1—u1 Z1€]91— 1

m+1 1\ Pi—w ..
. (E) E: Fy) (W5, X;)

J=2 W, cIPi™™
n—m 1\ %~V .
() X memx
k=2 Zy 1% %
m+1

-Tree( {sj};"ﬁl,c H Vi

=0

-Tree({tx}p_1",C) H w%k

k=1

410
(VEe{1,2,- ,n—m})

. (_1)2;1:1 “jz '—]+1(pz Uz)‘i’zz {n 1”/621 k”il(ql Uz).
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For simplicity, set p := (pj)i<j<m+1, U = (4;)1<j<m+1, 4 := (¢j)1<j<n—m.
v = (v;)1<j<n—m. Since the kernel of E(™(3)) inherits many properties
from the function f(p,u,q,v), we should study f (p,u,q,v) first.

It follows from the property (3.13) of Fp, ., F7 and (3.12) that
fr(p,u,q,v)(-) satisfies (3.13). Assume that u = 0 and define the function
g:IP* — C by

m+1 1\ Pi )
=11 ((3) T mowy)
=2 W,elbi
m+1

Tree({s; )41 0w [ Vi,
j=2

$*i=0
(Vje{1,2,- ,m+1})

By (3.12) and the property (3.13) of F7 the function g satisfies (3.13) too.
Then, the property (3.23) of F), 4, implies that

fr’rrll(p7 07 q,V)(Yl,Yg, Tt 7Yn—m)

1\ Prta—un
:<E) > Y Fua(Wi(ZY1)g(Wh)
WielPl Z,e]91—v1

n—m 1\ 4~V
T ((;) X mex
k=2 Z, €19~k

n—m
' Tf’ee({tk};;;?v C) H w%k (_1)2 Z;In_l Uk 2 ?:_kriﬂ%—vi)

k=1

ik =0

n—m
=0, <V<Y1,Y2,--- Yoo e [] I)
k=1

Similarly we can check that f)}(p,u,q,0) = 0.

To confirm that f (p,u,q, v)(,-) satisfies (3.23), let us take a function
h H;n;ll [0,3), — C satisfying (3.22). Here let us temporarily extend
the notational rule defined in (3.1) as follows. For X = (p1x181&1,-- -,
pnxnsngn) € ({172} X Zd X %Z X {L _1})717 t= (tla e atn) € (%Z)n, set

X+t:= (ﬂlxl(sl + t1)§17 T aPan(Sn + tn)fn)-
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Then, we see that for any X; € (I9)% (j = 1,2,--- ,m + 1), Yy € I%
(k=1,2,---,n—m),

m—+1
(3.40) H( Z )h(S17527”',Sm+1)
"

7=t \s;€0,8),7
: f;ﬁ(l%‘% q,V)((Xl + SlaX2 + 82, 7Xm+1 + Sm—l—l)a
(Y17Y27”' 7Yn—m)>

-7y x

Wie(I9)P17u1  s1€[0,8),!
Zieli1~v1 t1€[0,3 )Pl uq

“Fpy g (Wi 4 t1, Xy +51), (21, Y1) (W1, Z1)(t1,81),

where

W(W1,Z1)(t1,81) = > )h(sl,szr" ; Smt1)
J

J=2 \se0,8),7

1\ PiT% o
<E> > FI(WXj+s;)

m—+1
J=2 W,er?i™"

1 4k —Vk
(ﬁ) Z FlF(Zy, Yi)
VARSI K

m+1
. m+1
. TT@G({SJ ]:1 , W1+t1 H /I,Z) ’ll)éJ:O

“Tree({ty},_1"C) H Q/)%k

k=1

=0
(Vke{1,2,--- ,;n—m})

m +1 1 1—
(1) T S L i) R o S I ()

The equality (3.12), the property (3.13) of F/ and the property (3.22) of h
imply that

h/(wlazl)(rﬁ(tl + 5)? T 7Tﬂ(tp1*U1 + S)’Tﬁ(sl + 5)7 T 7Tﬁ(SU1 + S))
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= h/(Wl,Zl)(th-“ Jtpl—u17817"' 78u1)7
(Vt] € [07ﬁ)h (]: 17 , P1 —U1>, Sk S [07/8)h (k: 17 ,Ul),

1
—Z).
sEh

Thus, the property (3.23) of F,, 4, ensures that the right-hand side of (3.40)
vanishes. By the same procedure as above we can check that for any function
¢ I[}=1"[0,8),) — C Satlsfymg (3.22), X; € I% (j = 1,2,--+ ,m + 1),
Y€ (I0)% (k=1,2,- —m),

I D | ette - tnm)
k=1

t,€[0,8), %

' frnn(pvua qvv)((XhXQ? te 7Xm+1)a
(Yi+t1, Yo +to, -, Yoom +tom)) =0.

After these preparations we define the functions E((;? It x " - C
(a,be€ {0,2,4,--- ,N}) by

(3.41) EU)(X,Y)

N b1
Z 1p1,Q1€2N Z (1m=O + 1m¢01U1SP171) ( b )

Uy
P1,q1=2 u1=0
q1 q
1
: Z(lm:n—l + 1m7ﬁn711v1§q1—1) ( v )
v1=0 1

TS ) (S5 ()

o ((Pi)1<j<mat, (U5)1<j<mr1, (@) 1<i<n—m, (Vj)1<j<n—m)
(( /17 /2a ;n—i-l)?( /17 /7"' Y, ))

-12 m+1uj—a12" o= blZ milp 2m>a12n o1 k= 2(n—m—1)2b

'albl Z sgn(o) sgn(7)1(x 1X’2,~~~,X;n+1):X01(Y’1,Y’ YL =Y,
€S,
iGSb
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By definition Eénb) is bi-anti-symmetric. Moreover, it follows from the above

study on the function f (p,u, q, v) that E! b) satisfies (3.13), (3.23) and that

a

E™ =0ifa=0o0rb=0. Thus, by (3.38)

n
)

N 1 a+b
EO@) =3 1a,bem<5) S X, Y)uxiy.

a,b=2 Xele
Yerb

To establish upper bounds on the integrals of E((ﬁ)), let us study bound
properties of f}(p,u,q,Vv). First we consider the case n = 1. In this case
it simply follows from (3.8), (3.11) that for any X; € I, Y; € I"!

‘fT”)}L(p’ u, q, V)(X17Y1)|

1 p1t+q1—u1—v1 N
: <ﬁ> Z |Fp17Q1((W17X1)7 (ZlaYl))‘Da(plﬂnimivl)v
W,elP1—u1
Z,cI91—v1
and thus
1 o —
(3.42) £ (P, 1, @, V) l1,00 < D2PHFOTE ]y o,
1
(3.43) 1P wq, V)|l < D2PrFa— eI E

Next let us assume that n > 2. By (3.2), (3.9), (3.11), for any X; € 1%
(j:152) 7m+1)7YJ S A (j:1727 an_m)v

|f7¢z(pa u, qav)((Xla X27 o 7Xm+1)a (YlaY27 o 7Yn7m))|

71 1 p1+q1—u1—v1
<ty % (5)

SeT({s; ymtly TeT{tr}r_1")

j=1

2 2.

W, elr1—u1-41(5) 7, e[a1—v1—di(T)
W/ eI () Zh eI (1)

(P V(B ) Wi 0, 200

™ 5. (g mwwn)

j=2 Wjelpj—uj—dsj (S)
s - yds ;i (S)
W]EI J
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H(E™ £ () mwsw)

Zkelqkivk'idtk (T)
Z/ e]dtk (T)

b m“pj—zm D T )+ I g —2(n—m—1) =% P2 vy)

. D3l
m+1

H Ay (€) H wi?{f; H Ay (©) H 7@1
k=1

{p.q}€S J=1 {p.q}€T
R RS UR D S 2
SET({s;}h") TeT({tx}p=1")

Wt >

Wicrr1—v1—d1(8) 7, erar—v1—di(T)
W/, erd(s) Zh e (1)

' (pl —up > ( q1 — v )Dé(p1+q1)
di(S) di(T)
| plﬁl((wlanaXl) (Zl’ /laYl))|

T,z G monwin)

=2 w; eij*u j—ds; (S) J

W’eI 5

Tl () Q. — Uk CI— /
’ H E Z dtk(T) D= ’Fqk (ZkvzkaYk)|
k=2

Zkelqkivkidtk (T)

(S)

Z;CEIdtk (T)
m+1
H A{p,q}(c) H wvjvg. H A{zo,q} H wz’ )
{p,q}€s Jj=1 {p,q}€T

where for consistency we admit that

m+1

II 20a©@ 11 wi;‘vz_ —1ifm =0,
j=1

{p.q}€S

H Agp,q(C) H wtz’“;g =1ifm=n-1,

{p.q}€T k=1
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since in these cases S (or T') has no line. For each S € 'I[‘({sj}m"'l) T e

T({tx};_}") we can draw a line between the vertex s;(= 1) of S and the
vertex t1(= 1) of T to form a tree containing both S and T. To estimate
I/ (p,u,q,Vv)|[1, we consider the vertex n as the root of this large tree.
Then, by repeating the recursive estimation from younger branches to the
root n and using the inequality (3.21) we deduce that

(3.44)

1 (P, u,q,v) [l
< gn-lp—n+l- F(C T+ I o) Z Z
SeT({s; 74 TeT{tr} ™)

(M) (i ) asparyptora)

1 pP1t+aq1 B
| Tnegsyzy sup ( h) Y B (X, Y)]IC(Xo, X1)|
XelP1

Xoel
Yera
1 p1t+q1 ~
+ lne{tk}z;? }S/upl <E) Z |Fp1,q1(X7Y)HC(YE)7Y1)|
0€ XcIP1
Yeln

m-+1 i u s
: 7= D%
I1( (%8 oo
Jj=2 ’
: <1s]7én sup < > Z ’Flf; HC X07X1>| + 18; n”F[f;Hl))

XeiIPi

H << U~ k >dtk(T)!Dq7'°
dy, (T
1
~<1tk¢n§(§g <g> > FEX)C(Xo, X1)| + Ly=nl Fy h))

Xelk
< (Lngrs2(m = D+ Lpgi=1) (Ln—mz2(n —m — 2)! 4+ 1, _p—1)
2SI w2 I o oo P S ) G

2 Dt || F
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m+1 o
. -7 Sj Sj
T @% D% (Lo al ) 100 + Lsj=nll B 1))
7j=2
n—m

9k
[T @%#D= (L zall Fg llroe + Lol Egk 111))-
k=2

We should remark that the inequality

2" N (Lpppase(m — D127 4 1,,009)
(Lpems2(n —m —=2)127"F" 1, 1)

< (Igiz2(m — D+ Lpgi=1) (Ln—mz2(n —m — 2)1 + 1, _p—1)

was used to derive the second inequality.

Estimation of || f},(p, u, d, V)||1,00 can be done similarly. In this case first
we fix a component of ((X1,Xa, +, Xm+1), (Y1, Yo, -+ Y,,—,)). Then,
there uniquely exists a vertex of the enlarged tree containing both S and T
such that the fixed component is a variable of the function F7 or F,, ; on the
vertex. We consider the vertex as the root of the enlarged tree and repeat
the same recursive estimation as above. The result is that

(3.45)  [lf;m(piu,q,v)
< (Lngrso(m = D+ Lppgi=1) (Ln—m>2(n —m — 2)! 4 1, _p—1)

) 2722 ;”:JEI uj—2% " kafn+1f%(Z gDy 1 k) Hé”rlz—l

,00

1,00

J

2PN DICFD B g 1o

’I’)’L-‘rl P n—m m
. L Sj >
LD E e TT D% 1F o0).
j=2 k=2

It follows from the definition (3.41) that

(3.46)

IES [ norm

N p1
< Z 1p1,q1€2N Z (1m=0 + 1m7ﬁ01u1§p1*1) ( 1 )

u1l
P1,q1=2 u1=0
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q1
: Z(lm:n—l + 1m7én711111§q1—1) < gi )

v1=0

TS (2)T (S ()] e amon

=2 \p;j=2u;=0 k=2 \qx=2v;=0

’ 12 ;”:le u]-:alz = blz m+1 Dj— 2m>alzz U ag—2(n—m—1)>b’
where norm = ‘1,00' or norm = 1. When n = 1, by substituting (3.42)
into (3.46) with norm = ‘1, 00’ we obtain (3.34). By substituting (3.43) into

(3.46) with norm = 1 we obtain (3.35). Assume that n > 2. By inserting
(3.45) into (3.46) with norm = ‘1, 00" we see that

B 1m«n€2NZ< )Z@)

P1,q1=2 u1=0 v1=0
m+1 N p;j—1 < > n—m N qp—1 < >
j=2 \pj=2u;=0 k=2 qr=2v,=0

(Ipgase(m — D)4+ 1pp1=1)(Lpem>2(n —m — 2) + 1, pp—1)

L9720 Pl (a0 Gl L2t 20 3 () | B
m—+1 n—m
. " o
L@ DR E o) TT @ D% 1F |h,0)
§=2 k=2

'12 m+1p 72m>alzz 1 a—2(n—m—1)>b

which gives (3.36). By combining (3.44) with (3.46) with norm = 1 we
obtain (3.37). O

3.3. Generalized covariances

To construct a double-scale integration process in a generalized setting,
here we list the assumptions on a couple of generalized covariances. Let
co € R>1, D, € Ryg. We assume that covariances Co, C1 : Ig — C satisfy
the following properties.

e (C; satisfies (3.10).
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[ ]
(3.47)
CO(PXSanyt) = CO(PX07UYO)7 (van € {172}7 X,y € F7 37t € [07ﬁ)h)
[ ]
(3.48) | det((us, v) omCi(Xs, Y))1<ij<n| < cp,
(Vm,n € N, u;,v; € C™ with ||u||cm, || villem <1,
X, Y, el (’L =1,2,--- ,TL), l e {0,1}).
[ ]
(3.49) 1C1]]1,00 < co.
(3.50) IC1]| < co.
(351) HC~0H1,00 S CQDC.

Here C;(: I? — C) is the anti-symmetric extension of C; defined as in (3.5).
In practice C; will be replaced by the free covariance with many Matsubara
frequencies and the covariance Cy will be the free covariance containing
only one Matsubara frequency closest to the parameter /2. The condition
(3.47) requires Cy to be independent of the time variables, which may be seen
as a strong assumption at this point. If a covariance sums over only one
time-momentum, then by a gauge transform the covariance can be made
independent of the time variables. It will turn out that because of the
time-independence of Cp, only negligibly small data bounded by the inverse
volume factor remain after the double-scale integration of the correction
term.

3.4. The first integration without the artificial term
Our purpose here is to develop a single-scale analysis concerning the
single-scale integration

log ( / V@ @G+ gy (w1)> _

In fact what we will analyze is an analytic continuation of the above Grass-
mann polynomial which a priori makes sense only if the coupling constant
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is sufficiently small. The analytically continued polynomial will be related
to the Grassmann integral of the correction term by the identity theorem in
Subsection 4.2. In the next subsection we will add the artificial term —A(v))
to the input =V (¢) + W (¢).

To describe properties of the output of the above integration, we intro-
duce a couple of sets of A V-valued functions. For sets O, 0’ let Map(O, O")
denote the set of maps from O to O’. From now we use a parameter o € R>;
in many situations. In this subsection kernels of Grassmann polynomials
are parameterized by u € m To describe uniform convergent properties
of the kernels, let us modify the norm || - ||; oo defined in Subsection 3.1 as

follows. For f € Map(D(r), Map(I™,C)) we set

[fl11000 :="sup_[Lf (w)l1,00-
ueD(r)

For notational consistency we set

I1f

1,00,r += SUp ‘f(u)‘
ueD(r)

for f € Map(D(r),C) as well.
With these notations, for r € Rso we define the subset Q(r) of

Map(D(7), Aeyen, V) as follows. f belongs to Q(r) if and only if the fol-
lowing statements hold.

. feMap<W,/\v>.

even

e u— f(u)(y) : D(r) — AV is continuous in D(r) and analytic in
D(r).

e For any u € D(r) the anti-symmetric kernels f(u),, : I™ — C (m =
2,4,---,N) satisfy (3.13) and

h -
N Mol oo < L7,

N
(3.52) > cg o™ fmlltoor < L7
m=2
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In short the set Q(r) gathers Grassmann data bounded by L~
Next we define the subset R(r) of Map(D(r), A pen V) as follows. f
belongs to R(r) if and only if the following statements hold.

e f € Map (W, N v>.
o u— f(u)(y) : D(r) — AV is continuous in D(r) and analytic in
D(r).

e There exist fp, € Map(D(r), Map(I? x I19,C)) (p,q € {2,4,---, N})
such that for any u € D(r), p,q € {2,4,--- ,N}, fpq(u) : [P x 17— C
is bi-anti-symmetric and satisfies (3.13), (3.23) and

N 1\ P+e
w)() = > 1p,q€2N(E> > fraW) (X Y)x oy,

P,q=2 Xel?
Yel?
N
(3.53) S 1 geaned U0 <1

D,q=2

In short the set R(r) collects Grassmann data whose kernels have the good
property (3.23).

With fixed r € Rsg let us define VO=b1 V0=21 01 ¢ Map(D(r),
Neven V) as follows.

v = () 3 W

Xel?

VO (u)(y) = (%) 2 Ver (X Vuxiy,

X,YeI?

VO (u) (1) := VO (w) () + VO (u)(¥), (u€ D(r)),

where
(3.54)
V) (w) (pixys1€1, paxasato)

[
= = ULy x s1) =2 02,50 L =1 (L 0)=0,-1) — Ligg)=(-1,1));
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(3.55)
Vay M (w) (p1x151€1, poxasao, my1tiC, n2yataCo)

1 _
= _ZuL dh21(X1781,y1,t1):(X2,82,y2,t2)(h181=t1 B 1)

) Z Sgn(a) Sgn<7—) 1(p0'(1) Po(2):77(1) 7777‘(2)):(17272’1)
U,TESQ

’ 1(‘50’(1)760(2)’CT(l)7CT(2)):(1771)1’71) :

One can check that Vo M) : I? — C is anti-symmetric, ‘/20’2_2’1(u) :
I? x I? — C is bi-anti-symmetric and V%!(u)(¢)) is equal to the initial
data =V (u)(¥) + W (u)(sh). Then, we define VO~1-10y/0-1-20 17020 ¢
Map(D(7), Appen V) as follows. For any n € N, u € D(r),

VOO0 ) )
1
= mTree({l, 2,---,n},C1)

-H( 2. V”“(u)(zpuw)
j=1

$i=0 135(b,=1)

b;e{1,2} (Vje{1,2, n})
VOS200 ) )
(1 ! 0-2,1 1
=15 Z Voo (u)(X,Y)—'Tree({l,Q,--- ,n+1},Cr)
X,Yer? "
n+1
W ex@ Oy [V @ )|
j=3 (V5e{1,2,+ ,;n+1})

-1y ()Y wrexy

m=0 ({s;} 70" {tx } 71" ES(n,m) X, Yer?
m+1
Tree({s;} 7 Co@™ +o)x [[ VO @y +v)|
Jj=2 (Vge{1,2,- ;m+1})

Tree({te} 727, CL) (" +¥)y H VIR )@ + )
(Vke{1,2,-:- ;n—m})
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where
S(n,m)
l=s51 <852 < "+ <8pp1 <,
m nem 1=t <to< - <tp_m <n,
= ({Sj}j:—’i17 {tk}k‘zl ) {Sj}?j?@:—lil U {tk}z;;n — {27 3,--- 7n}7
{s; 375" n{tr )iy = 0.
Then, set
VI ) (@) =3 VI @) (), (G =1,2),
n=1
VOO (u)(¢) = VOO (u) () + VO 20 () (1),
Vo2 u)(p) = Y VORI () (y),
n=1

on the assumption that these series converge in /\ V. The reason why we
use the label 0—1, 0 —2 as the 1st superscript is that these Grassmann data
are independent of the artificial parameters A1, Ao and thus are classified as
the data of degree 0 with A;, As. In the next subsection we will introduce
the data V17 (j = 1,2,3) and V? which are of degree 1 and of degree
at least 2 with the parameters Ai, Ao respectively. The 2nd superscripts
1, 0 indicate the scale of integration. The data being integrated with the
covariance C; have the 2nd superscript 1, while the data to be integrated
with the covariance Cy have the 2nd superscript 0. Thus, it can be read
that V%! is independent of A, A2 and to be integrated with C;, V0= is

independent of A1, A2 and to be integrated with Cy and so on.

We should explain the structure of the above definitions. The idea of
the following transformation is essentially same as the equalities [16, (3.38)],
[15, (IV.15)]. It follows from the general formulas (3.6), (3.7) that

(3.56)
]. d " 0,1 1
) (e o)
= VOO () ()

+(3) T s e,z ke

X, YeI?

z=0
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@O o [TV 40

j=2

=0
(Vje{1,2,--,n})

— 0-1-1,0,(n) (uw)(2)

() 2 e 1T ()

X, Yel? =

log </ R e e A e OGS OF P (W)

ZjIO
(Vje{1,2,---,n})

:V071—1,0,(n)( ) (%)
1
() 3, v emy
X,Yer?

L[ 0 n 02 ) ()
! 31:[2 (6»@) / (W' +)x (@ +o)ye™ =2V WD gy, (p1)

-1
- (/ ez ", 2; VO (w) (3 +4) d’uc (»(/} ))
_ Vo—l—l,o,(n)( )(1/))

+<%> > Ve T (W(XY) uH(aij)

X, YeI?

ZJ'ZO
(Vj€{2,3,- ,n})

- <1Og </ 620(¢1+w)X+21('¢’1+w)Y+Z ;_‘:2 zjV072’l(u)(wl+w)dﬂcl (1)[}1))
4 log (/ (W HVXAT J, 5 VO W) gy (w1)>

log (/ oA (W D)+ T Zjv”*“(u)(wlwz))dw1 (¢1)> )

VO ILO) () () 4 VOI2O0) (1) (45) + VO 20 (1) ().

Zj:()
(vj€{0,1,--,n})

Remark that for any f7(¢) € Apen V (5 = 1,2, ,n) the maps

(Zla 29,0 ,Zn) — ]og (/ ez ?:1 ijj(lﬁl—i-’/’)ducl (¢1)) y

. -1
(Zla Zo, - ,Zn) — </ eZ ?:1 ij](llllJr'ﬁb)ndl (wl))
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are analytic in a neighborhood of the origin and thus the above transforma-
tion holds true. See e.g. [7] for properties of inverse and logarithm of even
Grassmann polynomials.

In the rest of this subsection we prove the following lemma.

LEMMA 3.4. For any a € [23,00),

VO—I,O E Q(2_9662a_4), V0_270 6 R(2_9062Q_4)-

REMARK 3.5. The reason why we introduce the norm || - ||1 oo, is that
we want to make use of the following fact. If f* € Map(D(r), Aopen V) (n €
N) satisfy that u — f™(u)(¢)) is continuous in D(r), analytic in D(r) (Vn €
N) and 35 ooy < 00 (Fm € 0,2, , N}), then S22 1" (u)(¥)
converges for any u € D(r). Moreover, u +— Y - f™(u)(¢) is continuous
in D(r) and analytic in D(r).

PROOF OF LEMMA 3.4. We can derive from (3.50), (3.54), (3.55) and
the uniqueness of anti-symmetric kernel that

(3.57) V3 ™ o0 < 7L
(338) IV oo < Va3 oo < 74
(3.59) sup [Vys 7 (1), Cili 00
ueD(r)
1 o . ~
< sup sup — Z rL™%hls—y + B7Y)|C1 (Yo, nytl)|
€08 YOI 1% () 4 Oer

<rL™Y|Cy| < corL74.

In the following we assume that o > 23 and

(3.60) 20c3atr < 1.
We can use Lemma 3.1 to estimate V0~ 1=10:(")  The lemma ensures
that the anti-symmetric kernel V(u)?n_l_l’o’(n)(-) satisfies (3.13). Moreover,

by using (3.14), (3.48), (3.57) we have that

1 N\lm=o |
||V72 1 1,0,(1)||17oo’r < <_) c

|3

- L™ g5,
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Thus,
_1- N
(3.61) VO < el ™,
N m
(3.62) Z ¢ ™| VOTEOM ), < epalrLTe
m=2

Also, by (3.16), (3.48), (3.49), (3.57), (3.58), for any n € Nso, m €
{0727"' aN}7

ang_l_1707(n)

N =0 —m L . B 0—b;1
S(E) 2 * IT{ 22 D0 2%ed IV oo

J=1 \b;j€{1,2} p;=2

-2 zm 135020

N 17n:0 _m

n
n — — _
~Z( ! )(2600||V20 " 1 0.)' 22NV 1)

=1

Lo a(n—n—2(n—1)>m
n

N Im=0 —om _m n _ n—
< <F> 27 Z< l >(26007"L 22" an-2rs22m-

=1

Therefore, by ¢g > 1,

(3.63) 17—

N
(3.64) > e o™V O o

m=2

N

n
n _ _ _ _
SZ( l )(QGCorL d)l(212637")n 12(2 2@)271 20+2
=1

< 2(2_204)22 < 7; ) (28cor L) (282 ar) !

=1
a?(2%c2a?r)" L7,
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where we used a > 23 so that 272a/(272a — 1) < 2.

Lemma 3.2 is the tool to estimate V01720 According to the lemma,
the anti-symmetric kernel V (u )0 1=20,(n )( -) satisfies (3.13). By substituting
(3.48), (3.59) into (3.24) we obtain that

N\'"™=0 gm
||V0 1-2,0,( ||1oor_28<h> ¢y 2 0], d122m’

or
N
(3.65) [0y < 28Ec(2)rlfd,
(3.66) Z e aM[VOIm20W|| < 98c2a?r L,

m=2

Also, by (3.26), (3.48), (3.49), (3.58) and (3.59), for n € Nso, m €
{0727"' aN}7

N =0 _m
HVrg_l_2707(n)H1,OO,T < (ﬁ) 2—2mco 2 (2120(2)7‘)RL_d12n2m-
Thus,
N
(3.67) VORI, < %(21203@%—61,
(3.68) Z ¢ ™| Vo120, < 2(28cEatr)n LY,

where we used o > 23 so that 272a/(272a — 1) < 2. Then, we see from
(3.60), (3.61), (3.62), (3.63), (3.64), (3.65), (3.66), (3.67), (3.68) and a > 2°
that

co 2
h 0—1—7,0,(n
F I T e,

n=1 j=1

(2 a2 4023 @0~y + 270 4?3 @0ty >L ‘o

n=2 n=2

ZCO mZZ”VO 1— ]O(n)Hl

n=1 j=1
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oo oo
< (2%2 +a®> a2 a2 Z(z%ﬂ)”) L~t< ™
n=2 n=2

This implies that VO~10 € Q(27%;%a™4).

Let us consider V0=2.0:(n) By Lemma 3.3, forn € N, m € {0,1,--- ,n—
1}, (S, T) € S(n,m), a,b € {2,4,--- N}, u € D(r) there exists a function
EX™ S () - 1% x 1P — C such that V™% (u) is bi-anti-symmetric,
satisfies (3.13), (3.23) and

V200 (w)(4)
1 n-l N a+b o7
= 2 > tasean(3) X BV Yoy

" m=0(S,T)eS(n,m) a,b=2 Xel®
Yert

0-2,0

Define the function V', on )( ): I¢x I" — C by

0-2,0, 1 « n,m,8,T
Ve, 2 :=—,Z S BRI,

" m=0(S,T)eS(n,m)

Then, VO 20,(n) (u)(+,-) is bi-anti-symmetric, satisfies (3.13), (3.23) and

1 a+
V020 Z 1ab€2N<h> STV W) (X, Yk
a,b=2 Xele
YEI”

It is also clear from the construction that u +— VO 20 (n)( )(X,Y) is contin-

uous in D(r) and analytic in D(r), (VX € I*,Y € I’). Let us prove bound

properties of V0 20, (n)(

our analysis. Note that

u). The inequalities proved in Lemma 3.3 support

(3.69) 4S(n,m) = ( n—1 > .

m

By (3.34), (3.58),

(370) H‘/20220 Hloor <r
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Combination of (3.36), (3.48), (3.49), (3.58), (3.69) yields that for n € N>o,
a,be{2,4,--- N},

n—1
0—2,0, 1 n—1
L P ( . ) (Lnzo(m = 1)} + L)
" m=0
(Lpzn—1(n —m —2)V + 1—p—1)
9g— +b
2 202 2(a )(212COT) 12+2m>a12n 2m>b-
Note that
(3.71)
n—1 n—1
( " ) (Lnzo(m — D+ Lp—o) (Iinstn—1(n —m — 2)! 4+ 1Ly pp—1)
m=0
< n!

By using (3.71) and 272a/(272a — 1) < 2 we can derive that

L(a+b 0—2,0,(
(3.72) Z Lupeaneg "ot Ve 2O < (28,
a,b=2

It follows from (3.60), (3.70), (3.72) and a > 23 that

1

= + _
Z LopeaNe “*"ZH Vo ey <279 427 a2 < 1L
a,b=2

Thus we conclude that V0=20 € R(279¢,2a™1). O

3.5. The first integration with the artificial term

In this subsection we perform a single-scale integration where Grass-
mann polynomials are dependent on the artificial parameter A = (A1, A2).
To be specific, we are going to analyze an analytic continuation of the Grass-
mann polynomial

log ( / ¢~V @G48 - AW+ gy (W)) _
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For this purpose we need to introduce sets of Grassmann polynomials pa-
rameterized by (u,A). Bound properties of these Grassmann polynomials

are measured in a variant of the L'-norm | - ||1, while polynomials belong-
ing to Q(r), R(r) were measured in the norm || - ||1 oor. To prove uniform
bounds with (u, A), we modify the norm || - ||; defined in Subsection 3.1 as
follows. For f € Map(D(r) x D(r)°, Map(I™, C)) let
||f 1,r, *= SUp ”f(ua )‘)Hl
u€D(r)
AeD()’

Also for f € Map(D(r) x D(r’)2, C) we set

Hf”l,r,r’ ‘= sup ’f(ua A)|
ueD(r)
AeD(y’

for notational consistency.
For r, 7" € R=o we define the subset Q'(r,7’) of Map(D(r) x C%, \
as follows. f belongs to Q'(r,7’) if and only if

V)

even

fEMap(WX(CQ,/\V>.

even

e For any u € D(r), A — f(u,A)(¢) : C> — AV is linear.

e For any A € C% u — f(u,A\)(¢) : D(r) — AV is continuous in D(r)
and analytic in D(r).

e For any (u,A) € D(r) x C? the anti-symmetric kernels f(u, ), :
I'"— C (m=2,4,---,N) satisfy (3.13) and

a2||f0||l,r,r’ < L_da

N
(3.73) > e ™l < L7
m=2

In other words the set Q'(r,7") contains Grassmann polynomials which are
linearly dependent on A and become negligibly small as L — oo.
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We also need a set containing Grassmann polynomials with bi-anti-
symmetric kernels linearly depending on A. For r,7’ € Ry the subset
R'(r,7") of Map(D(r) x C?,\,,., V) is defined as follows. f belongs to

R'(r,r") if and only if

even

f€Map<WxC2,/\V>.

even

e For any u € D(r), A — f(u,A)(¢) : C*> — AV is linear.

e For any A € C% u — f(u,A\)(¢) : D(r) — AV is continuous in D(r)
and analytic in D(r).

e There exist f,, € Map(D(r)xC?, Map(I?x1%,C)) (p,q = 2,4,--+ , N)
such that for any (u,A) € D(r) x C%, p,q € {2,4,--- , N}, fpq(u,A) :
I? x 11 — C is bi-anti-symmetric, satisfies (3.13), (3.23) and

N
1 pt+q

PN = Y paean (1) X Soals NX Vi,

p,q=2 XelP

YeI4

al L(p+q)
(3.74) ) Lpgencg ol | fy gl < 10
P,q=2

We introduce another set of Grassmann polynomials with linear depen-
dence on A, which is used to contain the offspring of the artificial term A(1)).
For r,r" € Ry, f belongs to S(r,r’) if and only if

feMap<ch2,/\v>.

e For any u € D(r), A — f(u,A)(¢)) : C?2 — AV is linear.
e For any A € C% u — f(u,A\)(¢) : D(r) — AV is continuous in D(r)
and analytic in D(r).

e For any (u,A) € D(r) x C? the anti-symmetric kernels f(u, ), :
I — C (m=2,4,---,N) satisfy (3.13) and
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2
« ||f0||1,r,r’ S 17

N
(3.75) > et a(lfm
m=2

1,rr! <1

Finally we introduce a set of Grassmann polynomials whose degree with
A is more than 1. For r,r’ € Ry, f belongs to W(r,r’) if and only if

s tap () DET" A V)

even

o (u,A) — f(u,A)(¢) is continuous in D(r) x D(r’)2 and analytic in
D(r) x D(r")%.

e For any u € D(r), j € {1,2},
F.0)(0) = 5 F(w.0)(0) =0

e For any (u, ) € D(r) x D(r’)2 the anti-symmetric kernels f(u, X),, :
I — C (m=2,4,---,N) satisfy (3.13) and

O‘2||f0||17r7r’ <1,

N
(3.76) > et a(|fm
m=2

1,7/ <1

Here let us systematically define the input and the output of the single-
scale integration. We admit the results of Lemma 3.4 claiming that
VO-10 < Q(2_90520‘_4)> V020 ¢ R(2_900_2a_4)
and define VY € Map (D(2_90520F4), Aeven V) by
VO’O .— VO*LO + VO*Q,O‘

We define V11 € Map(C?, A, V) by

even

VE ) () = —A(y),
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where A(1)) is the Grassmann polynomial defined in (2.14). Then, by re-
calling the formula (3.7) let us observe the following expansion.

(3.77)
1(d nlog /eZ(VO’l(U)(¢1+w)+vl’1()‘Wl*m)duc (')
n! \ dz 1 =0
1 -z b,1
_ HTTGB({LQV“ ,n},Cr) H (ZV (17 —I—@Z))> $i=0
i (Vje{1,2, ,n})

= %Tree({l,Q, < ,n},Cr) H T + )

$=0

+ lnleree({l},CﬁVl’l(T/J + )

P1=0
1

1n ———=T 17 27 ) 3

+ 1p>2 =) ree({ n},Cy)
VH@ ) [V )]
j:2 (Vj€{1,2,'-',n})
n 1

1 . .

i aTree({l, 2,---,n},Cp) H Z Vbil (37 4 ) $iz0
j=1 \b;=0 (vie{1,2,~- n})
. 12 ?:1 bjzz.

We further decompose or rename each term of this expansion from top to
bottom. It follows from (3.56) that if we set for n € N

PO0) (45 1 %Tree({l, 2, m},C) [T VO @ + )

J=1

pi=o

then VO0(1) = 3700 VOO (3)). Let us set

VT30 i= Tree({1},C VI (! + 4)

Wi=0

For n € N>o we set

Vlflfl,O,(n) (w)
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1
= 7‘Tree({1, 2,---,n}Ch)

(n—1)
n—1 2 )
: ( > VOThal(yi 4 w)) L )] P E PN
j=1 b;=1 (Vje{1,2,-,n})
V1—1—2,0,(n) (¢)
1 1\* 0-2,1
= ez (7)Y MY
X,Y€eI?
W+ )x (W + o)y
. H V07271(7,[}j + w) X Vl,l(wn+1 + w) wjzo ,
j=3 (VjG{l,Q,"',TL-‘rl})

Vl—Q,O,(n) (w)

n—1 4
(n_ll)u Z (%) Z V2(?2_2’1(X7Y)

Cm=0 ({5;3m L {1} €S (nm) X,Yer?
~Tree({s;}4", CO(W™ +4)x
m—+1
. H (18]_7&”‘/072,1(1!)5]' + ¢) + 15j=nvl’1(¢8j + w)) =0
Jj=2 (VjE{l,Q,"' 7m+1})
- Tree({te )31, C1) (" + )y
k=2 (Vke{1,2,-- ,;n—m})

By the same argument as in (3.56) we can derive that

L ree({1,2, - nh, VI (! + ) [[ VO + 9)

(n— 1) =0

Jj=2 (VjG{l,Q,"',n})
1
= WTWG({LQ,“' ;n},C1)
n—1 .
IV @ e v et )
Jj=1 (Vj€{1,2,~-,n})
— Vlflfl,O,(n) (¢) + V17172,0,(n) (¢) + V172,0,(n) (w)
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Finally we set for n € N>o,

()
1 - b
= —Tree({L,2,+- ,n},C1) H ZV“ LR | IR
j=1 \b;=0 (Vje{1,2,~ n})
o ez

Then, the expansion (3.77) can be equivalently written as follows.
LAY 1og / VOV W) gy (1)
n! \ dz !

_ VO,O,(n) (Q;Z}) + 1n:1V1_3’0('¢))
+ anQ(Vl—l—l,O,(n) (¢) + V1—1—2,0,(n) (1/}) + V1—2,0,(n) (¢) + v2,0,(n) (w))

2=0

By assuming their convergence let us set

[e.9]

VI3 () = Zvl—lfj,o,(n)w)7 (1 =1,2),
n=2
2

VITRO@) =) vIT (),
j=1

VIZ20(y) =Y VIR0 (), VEO(p) = VRO (y),

n=2 n=2

Then, it follows that

> 1 d " 0,1 1 1,1 A 1
> L <E> log (/ VO @@V ) g (¢1)>
‘

n=

3
= V) + 3 VI W) + V().

z=0

Our purpose is to prove that these Grassmann polynomials are indeed con-
vergent and they have desired invariant and bound properties. Not to con-
fuse, we should keep in mind that the data V%7 (j € {0,1}) are independent
of the artificial parameter A, the data V11, V1730 (5 € {1,2,3}) are linearly
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dependent on A and the data V9 depends on A at least quadratically. The
input have the 2nd superscript 1 and the output have the 2nd superscript 0
in this single-scale integration. More detailed properties of these Grassmann
data are summarized in the following lemma.

LEMMA 3.6. For any a € [23,00),
Y110 ¢ Qz(279662a74’279[371682&74)7
V1-20 ¢ R/(27% 2, 2_95_106204_4),
V1730 ¢ §(2% 204, 2790 1eg 204,

V20 e W27 %;%a™*, 27 min{1, B} 3 ey 2aH).

REMARK 3.7. It is clear from the definition that V'=3 is independent
of the parameter u. The condition on the first variable assumed in the set
S(r,r') is in fact unnecessary. However, we define the set in this way in
accordance with the other sets.

Proor OF LEMMA 3.6. During the proof we often hide the sign of
dependency on the parameter (u,A) for conciseness. In the following we
always assume that o > 23, (3.60) and

(3.78) 29Bc3atr’ < 1.
Let us start by estimating V! and V=30, Since V"' (1) = =\ A2(1)),
Vi (p1x18161, paXasaba, p3Xassla, paXasala)

Aah3

4' 8§1=82=83=84

’ 2 :Sgn(o—)l((pﬂ(l))xﬂ(l))50(1)))(pa(2)7xa(2)7&(7(2))7(p<7(3))x0(3))50(3)))(pa(4)7xa(4)7£a’(4)))7

€S,y =((1,r(%),1),(2,rL(%),—1),(2,rL(9),1),(1,rL(¥),—1))
(V(pj,xj,85,&) €I (j=1,2,3,4)).
Thus,
(3.79) IV e = 1Ve ™l < 57
Also,

V21’1 (p1x151&1, p2ax2522)
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A1h
== T 151:82 Z Sgn(o—)1((pn'(1)7xo'(1)7§(r(1))a(po'(2) IXU(2)7§U(2))) )
O'ESQ :((17TL(&)71)u(27TL(5()7_1))

(Y(pj,x5,85,&) €I (j =1,2)).
Thus,
(380) ||V2171H1,7‘,r’ < /BT,~

We can derive from the definition that

‘/2173,0(¢)
=1, (¥)
+(3) ) (( ) ) (%)Yz; VI (Y X)Tree({1,C00% wl:()) v

By using (3.48), (3.79), (3.80) and ¢y > 1 we have

~ 4
(381) Ve e < Ve e + ( 2

) col| Vi 1 < TBeor
It also follows from (3.48), (3.79), (3.80), co > 1 and the definition that

(3.82) Vo "N < ol Vo g + BIVE i < 2880

The inequalities (3.79), (3.81), (3.82) result in

N
Vo 1 < 2Bcda’r, Z C()%OlmHanfg’OHl,r,r’ < 238c3atr.
m=2
Though we can see from the explicit characterization of the kernels, the
statement of Lemma 3.1 ensures that Vi, >" : I'™ — C (m = 2,4) satisfy
(3.13). It is also clear from the definition that A ~— V1=30(X)(¢) is linear.
Combined with these basic properties, the above inequalities and (3.78)
imply that

(3.83) VT30 e S(27 %% a7, 2798 g 2a ).

Let us consider V1=1=1.0:(")(4). Here we use Lemma 3.1. The lemma
states that the anti-symmetric kernels of V1=1=10:(") (1)) satisfy (3.13). By
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definition, A = VI=1=1L0.() (X)(¢)) is linear. Thus, 0%, V=710 must
satisfy these properties if it is convergent. Let us establish bound properties
of the kernels. By applying (3.17) together with (3.48), (3.49), (3.57), (3.58),
(3.79), (3.80) we observe that for any n € N>, m € {0,2,--- , N},

anlz_l_l’()’(n)nl,r,r’
) m n—1 2 ; P; o b 1
<27 P [T D0 Do 2%ed IVl 7 e
J=1 \b;=1p,e{2.4}

Pn
3pn . 2 1,1
> 2 [V e Is 2 p—2(n-1)2m 1350,=1)

pn€{2,4}
n—1
o — 2 n—1 _ _ _1_
<27ty ( ! ) (20| V" n,00.) 22 IV 1,00,)"
=1
2 ||V 1
> IV i Lot a(n—1— 1)+ p—2(n—1) 5m
pn€{2,4}
n—1
< 9 2mt13 Z ( ”l—l > (20 cor LN (2122112 6y
=1
“Lotn—1-1)+4>m-
Then, by (3.60), (3.78) and o > 23,
(3.84)
1-1-1,0,(
||V0 ||1rr
n—1
< 242 ( ”l—l > (2304 (2ot L g < (2ot L,
=1
(3.85)
N m
ZCOZ mHVI 1-1,0 n)ler
m=2
6n_1 n—1 8 n-1-1,2,4
<2 Z l (28cor L= (28c2ar) pr!
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Let us study properties of V11729 By Lemma 3.2 the anti-symmetric
kernels of V1=1720.(0) () satisfy (3.13). Thus, if 0%, V1=1720.(0)(4)) con-
verges, the anti-symmetric kernels of V171720 (3)) must satisfy (3.13) as
well. We can see from the definition that X +— V17172000 (X)(¢) is lin-
ear and thus so must be V!=1729(¢)) if it converges. Let us find upper
bounds on the norms of the kernels of V1=1-20:(")(4)). By substituting
(3.48), (3.49), (3.58), (3.59), (3.79), (3.80) into (3.27) we have that for any
m e {0,2,--- ,N}, TLENZQ,

_m Y
[V 2000 [y g < 272700 2 L7422 > 2% Br'lon sy pzm
pe{2,4}

< 2—2m+160_?L—d(212C(2)r)n—1 (2120357“/)12n2m-
Thus, by (3.60), (3.78) and the assumption o > 23,

(3.86) ||v1 120, <L @30 )n,

(3.87) Z e amVATITEOO < 2228 G0ty (280 B L
<222 ta~HnL 4,

It follows from (3.84), (3.85), (3.86), (3.87) and o > 23 that

1 1— 0 —d
2 Z z || ] )HLT?TJ S L ’

n2]1

Zco mZZHVI =20 < L7

n=2 j=1

These uniform convergence properties imply the well-definedness of V1710
and its regularity with (u, A). Therefore, V=10 € Q'(r, 7).

Next let us consider V1=29 An application of Lemma 3.3 ensures that
there exist bi-anti-symmetric functions V1 200 e o C (a,b €

{2,4,---, N}) satisfying (3.13), (3.23) such that

N a+b
1 —2,0,(n
V) = 3 duen(5) 30 10K Vv

a,b=2 Xere
Yerb
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By definition, A = V1200 (4, X)(4) is linear for any u € D(r). Moreover,
by construction, (u,A) — V1 >0 (n)( ,A)(X,Y) is continuous in D(r) x
W2 and analytic in D(r) x D(r")?, (VX € I*,Y € I®). Let us establish
bound properties of the bi-anti-symmetric kernels. By combining (3.48),
(3.49), (3.58), (3.69), (3.79), (3.80) with (3.37) and using cp > 1 we observe
that for any a,b € {2,4,--- N}, n € N>o,

() ) (Linzo(m = D!+ Lino) (Lmgn—1.(n — m = 2)! + Ln—p—1)

m
+b
-27207 % ;1 )(212 5" (2%0Br’ + 2126381 ) Lot om>alon—2m>b

> nn—ll >(1m7é0(m—1)!+1m:0)(1m¢n_1(n_ ) 4 L)

m
1
—2a—2b+13 —3(atb) 12 2 1.2
27 ¢’ (2" cgr)" ™ g Br'latam>alon—2m>b-

Thus, by (3.60), (3.71), (3.78) and o > 23,

3(atd 1 2,0,( B o -
Z Lopeaned P ar o V20m) <93 (220)2(2 e )" < o272,
a,b=2

or
ZN Hatb) Zoo (n)
5(a+ b 1-2,0,(n —2
1a,b€2N03 a®t HVa,b HLT,T’ <2a <1
a,b=2 n=2

This means that V129 € R/(r,7/).

It remains to analyze V*?. By Lemma 3.1 the anti-symmetric kernels of
V200 () (n € N>g) satisfy (3.13). The constraint 12?:1 b,>2 implies that
V20:) (1) is of degree at least 2 with A, Ao. Thus,

0

V20 (4, 0)(y) = oN;
j

V20 (4 0)(4) =0, (Vue D(r), je{1,2}).
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Let us prove uniform bound properties of the anti-symmetric kernels. Here
we need to measure V! with the || - ||1,0o-norm as well. We can see from
the definition that for m € {2,4}

(3.88) sup [V (A)[|1,00 < B
AeD(Br')

By definition,

l

y2ou n,z( Jrreel(n 2, b o) [IVHw +0)
j=1
. H V0,1(¢k+w) wjzo
k=I+1 (Vie{1,2, ,n})

Then, it follows from (3.17), (3.48), (3.49), (3.57), (3.58), (3.79), (3.80),
(3.88) and ¢y > 1 that for any m € {0,2,--- , N}, n € N>,

|| VT%O,(R) || 1,r,min{1,8}r’

(n—2)! " n _m _9 3 Py
<IN )atrm T

=2 p1€{274}
l .
3p; 2 1,1

H Z 2% sup [V, (A1,
=2 \pje{2,4} AED(Br)

0, 0,1 -
- (2P| V a3V !
-1

> ;zl pj+4(n—1)—2(n—1)>m

n—2) & n _m B
< ( ) Z( I >Co 2272 (2B r) (2B )" oo m.

n!
=2

Moreover by (3.60), (3.78),

V20

1,r,min{1,8}r’

n—2)! & n —_m _ A
< ( ) Z( l >CO 29 2m<24a 4)l(24a 4)n ll2n+22m

n!
1=2

_m
< % 2 2—2m(25a—4)n12n+22m'
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Thus by o > 23,

o0
2,0, —
23 Ve i g < 202202 < 1,
n=2

N
S e a™ VOO iy < 227%0)2(2072)",

m=2
N 00

T om 2,0,(n)
g cq o E |V
m=2 n=2

This implies that V20 € W(r, min{1, 3}r'). The proof is complete. [J

1,r,min{1,8}r’ < 22(2_2a)2(2a_2)2 <1.

3.6. The second integration

Here we establish bound properties of the output of the single-scale in-
tegration with the covariance Cy. The input to the integration is the Grass-
mann polynomials VO=70() (j = 1,2), VI=F0(y) (k = 1,2,3), V20(y)
whose properties were studied in Lemma 3.4 and Lemma 3.6. In fact the
object we are going to analyze is an analytic continuation of

which is also an analytic continuation of
log < / VW W) =AW g o (¢)> _

Set
ri= 2*9052074, v =37t = min{l, g}

We define Verd, V1=3end ¢ Map(D(r) x D(r”)Q, C) by

Vend,(n)

1
= —'Tree({l, 2,---,n}Co)
n!

n 2 3
11 <Z vemmiyd) + 3 VIR + V2’°<W>>
j=1 k=1

m=1

pi=0
(Vje{L,2,+ ,n})
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Vend — i Vend,(n)’

n=1

Vl 3end TTC@({l} CO)Vl 30(¢1) o

by assuming its convergence. Our purpose here is to prove the following
lemma.

LEMMA 3.8. Assume that h > 1. Then, the following statements hold
for any o € [23,00), L € N with L¢ > 22D.,..

o Vend s continuous in

2
D279y %a4) x D(2~ 11 L~dh=1 3~ min{1, B}c;%a~4) ,
analytic in

D27 %;%a™) x D(27M L™ h 137 min{1, ﬂ}ca2a_4)2.

h - 0 =
(3.89) N|V6”d(u, 0)] <28a72L7¢,  (VYu € D(27%;2%a4)).

a €n 8 —3,en —
o —Verd(y,0 )—6—Ajv1 end(y, 0)| < 2'°8c2a* (1 + 2D,) L4

(Vu € D(27%;%a™), j € {1,2}).

(3.90)

PRrOOF. First let us observe that V0=29(¢), V1=29(3) do not con-
tribute to the value of the integration. With the aim of proving this, let us
take f(v) € AV, p,q € {2,4,--- ,N}, X € (I°)P, Y € I4. If we define the
function g : [0, )7 — C by

p
srisaeeosp) = [ [T, 0w (W)dne, ()
7j=1
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the property (3.47) ensures that the function g satisfies (3.22). If we expand
[VI=20(4) f(¥)dpuc, () (5 = 0,1), we see that each kernel of V7=20 is
multiplied by a function of the same form as g and is integrated with respect
to the time-variables. Thus, the property (3.23) of the bi-anti-symmetric
kernels of V/=20(z) (5 = 0,1) implies that

[V @ ) =0, (G =0.1).
Arbitrariness of f(1) implies that for any z € C

/ e haa VOTRO AR L VIR @VROW) gy ()

B /ez(voLO(w)_,’_Vl1,0(¢)+V13’0(¢)+V2’0(¢))d'uJCO (w)

Therefore,

Vend,(n)

= L Tree({1,2, -+ n},G)

n

H (VOROWT) + VIR ) + VISR £ VER W)
: (Vj€{1,2,"',ﬂ})
Note that

(3.91)  [Val(u,eX) | < e Vel

(3.92)  [[Val(u,eX) 100 <

(Vue D(r), A€ D), e €[0,1/2], a € {1 —1,1—3,2}).

"
b

Fora =1-1,1-3, (3.91) and (3.92) are clear. For a = 2 we can use
the following equality based on Cauchy’s integral formula to derive (3.91),
(3.92).

V2Ouz)\)
2,0 m
Vin® (2 szﬂé S f

- dzV20 (u 2)\)L
Comi Jes T 2 (z—e)
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(Yue D(r), A€ D), e €[0,1/2], § € (1/2,1)).
In the following we let € = %Ifdffl7 a > 23, The assumption h > 1 implies

that € € (0,1/2]. Take any u € D(r), A € D(r”)z. By (3.15), (3.48), (3.52),
(3.73), (3.75), (3.76), (3.91) we have that

[Verd M (u, eX)]
N
< EL_da_2 + 3ea 2
N[N
+ Z &y EHVT?L_LOHLOO,T +e Z ||Vncfb70”1,r,7“”
m=2 ae{1-1,1-3,2}
N
<2 (FL‘CZ + 35) a2 =2(N+1)h L %2
Also by (3.17), (3.48), (3.51), (3.52), (3.73), (3.75), (3.76), (3.91), (3.92)
and a > 23, for n € N>o

‘Vend,(n) (u7€)‘)‘
N

2 [ N
< D?gfl Z 23PC§ % ||‘/p071’0||1,oo,7” + e Z ||‘/;’0||1,r,7””
p=2 ae{1-1,1-3,2}
N \ n—1
D29 IV oo +he D IV Nl
q=2 ac{1-1,1-3,2}

N
<Dyt <%Ld + 35> (L% + 3he)"(20a72)"
= (N +1)h L7 2D. L)1 (280~ 2)",

Thus, if 2D, L4 < 1/2,

o0

sup |Vend’(") (u, )|
AeD(er)’

< 2N+ 1A 'L %2 423N + 1) L%
<2"(N + DA 'L a2 < 8Nh L7402
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—_—— =2
This estimation implies that V¢ is continuous in D(r) x D(er”)", analytic
in D(r) x D(er")? and

%We"d(u, 0)| < 2°L %2, (vu e D().

Moreover, observe that for any u € D(r), j € {1,2},

0 end
8—)\jv (u,0)
IS (1, 0 o)
_T/n:1(n_1)! ree o b0
> veure) @) [T VO () (v V=0
ae{1-1,1-3} k=2 (Vke{1,2,- ,n})

Thus, by (3.15), (3.17), (3.48), (3.51), (3.52), (3.73), (3.75) and the assump-
tions o > 23, 22D.L~ d<1

I

ivl—?’,end(u7 0)‘

0 end
Vrn,0) - 55

%

< l, Tree({1},Co)V 10 (u, r'e;) (')

$1=0

1
+_
!

Z (nll) Tree({1,2,---,n},Co)
n=2

Z V“Ourej HVO 10

ac{1-1,1-3}

¥E=0
(Vke{1,2,--- n})

1 N
;Z
m=0
+5 ZD” 1223’”% S VE

ae{1-1,1-3}

N n—1

P
> 22 IV o
p=2
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[\

2 d
<=L (DL~ < Z(142D.) L%
<SLH S E (+ c)

We can see from above that the claims of the lemma have been proved. [

REMARK 3.9. There is no essential necessity to complete the gener-
alized double-scale integration by explicitly estimating the combinatorial
factors as in Lemma 3.4, Lemma 3.6, Lemma 3.8. We did so only to feature
the explicitness of our construction. In fact the following statements, which
are less explicit but are sufficient to achieve the main goal of this paper,
can be proved by shorter arguments. There exists a positive constant c
independent of any parameter such that if h > 1, a > ¢, L¢ > ¢D.,

VO0-10 ¢ Q(c’lc_2a’4), V020 ¢ R(c ez 20,
VI e /(e leg2a4, e 2aY),

Y120 ¢ R/ 0204 476_15 1 Oza—4)’

V1730 ¢ S(cleg2at, ¢ 1 ey 2a ),

V20 e W(c ey 2, e B min{1, B}y 2a™?).

e Vend ig continuous in

2
D(c—lcaza—4) X D(c=1L=2h=13=1 min{1, 6}06204—4)
and analytic in

D(cey?a™) x D(¢ ' L4 g~ min{1, ﬂ}ca2a*4)2.

°
%H/end(u, 0)| < ca®L™%  (Vu € D(clcy2a4)).
°
8 end a 1-3,end 2 4 —d

(Vu € D(c_lc0 2o~ ), je{1,2}).
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REMARK 3.10. In practice D, will be the biggest parameter as 6 ap-
proaches to 2w /3. The essential benefit of Lemma 3.8 is that the parameter
D, does not affect the domain of analyticity with the extended coupling
constant u. This is because the heavy contribution from D, was absorbed
by the inverse of the volume factor.

4. Proof of the Theorem

In this section we will prove Theorem 1.3. In view of the formulation
(2.25), (2.26) we must know to what the Grassmann Gaussian integrals
converge inside the normal Gaussian integral as h — oo, L. — oco. One
part of this question will be answered by realizing the general results of
the double-scale integration prepared in the previous section. To do so, we
need to confirm that the actual covariances satisfy the properties required
in the previous section. It follows from the double-scale integration, es-
pecially from the bound (3.89) that the spatial mean of logarithm of the
Grassmann Gaussian integral converges to zero in the infinite-volume limit.
However, it will turn out necessary to make sure that the Grassmann Gaus-
sian integral itself, not the spatial mean, converges in the time-continuum,
infinite-volume limit. To prove this, which cannot be deduced from the re-
sults of the previous section, we will study detailed convergent properties
of each term of the perturbative expansion of logarithm of the Grassmann
Gaussian integral. After these preparations we will move on to the proof of
Theorem 1.3. To shorten formulas, we set

throughout this section.

4.1. Application of Pedra-Salmhofer’s determinant bound

Here we derive a uniform bound on the determinant of C'(¢) by applying
Pedra-Salmhofer’s determinant bound ([17]). We especially use the general
theorem [17, Theorem 1.3] which is a generalization of Gram’s inequality to
covariances with time-discontinuity typically caused by time-ordering. We
restrict our attention to what is sufficient to solve the current problem. The
following proposition, which is a specific version of [17, Theorem 1.3], is in
fact sufficient.
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PROPOSITION 4.1. LetC : ({1,2} xI'x[0,3))? — C. Assume that there
1s a complex Hilbert space H and sz, gjz, j<, gj< € Map({1,2} xI' x R, H)
(j = 1,2) such that
(4.1)

C(pxs,nyt)

=Tt Y (f7 (%), 97 (nyt))gg + Lot Y (f5 (p%8), g5 (ny )y,
je{1.2) je{1.2)

(V(p,x,8), (n,y,t) € {1,2} x I' x [0, B)),

where (-, )4, is the inner product of H. Moreover, assume that there exists
D € Ryq such that

1£7 GOty gz (Xl £ (Xl 11957 (X) 2 < D,
(VX e {1,2} xT' xR, j €{1,2})
and the maps s +— sz(pxs), 5 — gjz(pxs), s = [(pxs), s — g5 (pxs)
(j = 1,2) are continuous in R for any p € {1,2}, x € I". Then,
| det({uy, v;)on C(Xi, Yi)1<ij<n| < (4D)*",
(Vm,n € N, u;,v; € C"™ with ||u;||cm, ||villcm < 1,
Xi?Y; € {152} x I'x [Oaﬂ) (Z = 1727"‘ 7n))

Proposition 4.1 is a direct implication of [17, Theorem 1.3]. For readers’
convenience we provide a proof for this proposition in Appendix A. In fact
we added the continuity condition of ij, gjz, =, g5 with the time variable,
which is not assumed in the original [17, Theorem 1.3], to shorten the proof.
By applying this proposition we obtain the following.

PROPOSITION 4.2.

(4.2)
| det((us, vj)om C(0)(Xi, Y5))1<ij<nl

4
< (2 <1 + 2cos (%) e~ BVek)+ol? 4 28 e(k)2+|¢2>
kel

D=

Ld

.
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(Vm,n € N, u;,v; € C™ with ||wl|cm, ||villen <1,
XiaY; € {172} x I'x [O)ﬂ) (Z: 1727"' an)v d)e C)

REMARK 4.3. In the next subsection we will derive a ¢-independent
upper bound on

Ly <1 +9cos <%> B/ UP P, 28 e<k>2+¢2>

Ld
kel™*

See (4.21).

1
2

REMARK 4.4. We need to find a representation of the form (4.1). Such
a representation was constructed for one-band models with a real-valued
dispersion relation in [17, Subsection 4.1]. It is straightforward to modify
the construction of [17, Subsection 4.1] to fit in our 2-band model with
the complex-valued dispersion relation. We should also mention that an
extension of the construction of [17, Subsection 4.1] to one-band models with
a complex-valued dispersion relation was reported in [10, Subsection V.A].
Though it is close to both [17, Subsection 4.1] and [10, Subsection V.A],
we will provide a concrete representation of the form (4.1) for our 2-band
model for completeness of the paper.

PROOF OF PROPOSITION 4.2. Define the functions e; : I'* — C (5 =
1,2) by ej(k) := ig + (—1)%=2¢(¢)(k), where e(¢)(-) is the function defined
in (2.20). Since I'* is the finite set, for any sufficiently small ¢ € Ry,
ej(k) +e#0 (Vk € I'"). Set e;.(k) :=e;(k) + ¢ and

(4.3)  C:(pxs,nyt)
=3 T ERIGM )U)K) G)

kel je{1,2}

. e(S*t)ej,s(k) 152t . 1.S;<t
14 ePeic®) 1 4 e Bejelk) )’

where U(¢) (k) is the 2x 2 matrix defined in (2.19). Let us find a determinant
bound of C. and send ¢ \, 0 afterward. We can see from (2.24) that
lim. C.(X) = C(6)(X) (VX € I2).
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Remark that L?(T* x R) is the Hilbert space whose inner product
(s ) p2(re xr) 18 defined by

(f, >L2 I+ xR) Td Z/dvfkv (k,v).
kel*

For (p,x,s) € {1,2} x I' x R, j € {1,2}, a € {1,-1} we define fpxs,
grxs € LA(I™* x R) by

pxs(k v) :=14Ree, E(k)>0We—i<k,x>—is(a Ime; . (k)—v)

1 4 e~ Paese(k) \Reejs(k)\ 1

14 e—Baese(9))3 i+ Reeje (k)

gpxs(k v) =laRe ej,e(k) >0W i(k,x)—is(alme; c (k)—v)
1 | Re ejjs(k)| 1

11+ e—ﬁaej,s(k),% T v+ Reejo (k)

Then, let us define the maps sz, gjz, [, g5 € Map({1,2} xT' xR, L2(I'* x
R)) (j =1,2) by
2 _ < e £ s
fj (P,X,S)—fj (p,X,S). ,sz fpx (—s)’
i1 ; j—1
gjz(pax’ 3) = gi;x(ﬁ-i-s) +gp;((—s)’ gj (pvxa 8) = _g%’)%s - gi);((ﬁ—s)’
(Vi €{1,2}, (p,x,s) € {1,2} xI' x R).

By using the formula
A eztv
—tA __
e = ; /]Rdvm, (Vt € RZO, A € R>0)

and the uniform bound |U(¢)(k)(p,n)| <1 (Vk € T*, p,n € {1,2}) one can
check that

(4.4)

Ce(pxs,nyt) = ls>¢ Z <ij(PX3)7Qj'z(nyt»ﬂ(r*x]&)
je{1,2}

+ 1o Y (F(0x5), 05 (Y1) p2re sy
je{1,2}
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(V(p,x,5), (n,y,1) € {1,2} x T x [0, B)),
(4.5)
Hf]'Z(X>||L2(F*><R)u ngZ(X)HLQ(F*XR)a ||fj<(X)||L2(I‘*><R)7 ||gj<(X)HL2(F*><R)

< 1
=\ Ld
kel
1
2
. (1 + 2cos (@) e*ﬂl(*1)1j=26(¢)(k)+€| + 625(1)lj=26(¢)(k)+8> )
2 )
It is clear that sz,gjz, j<,gj< (j = 1,2) are continuous with respect to
the time variable as the maps from R to L?(I'* x R). Here we can apply

Proposition 4.1 to the perturbed matrix C.. Then, by sending ¢ Y\, 0 we
obtain the claimed bound. [J

(NI

(VX € {1,2} xT x R).

4.2. Completion of the double-scale integration

The analysis of the previous section was constructed on the basic as-
sumptions on the two generalized covariances. We have to demonstrate
that the actual full covariance can be decomposed into a sum of 2 covari-
ances and each of them satisfies the required bound properties. Our plan is
to reformulate the full covariance into a sum over the Matsubara frequency
and let Cy be one portion with only one Matsubara frequency closest to /2
and let C; be the one with the rest of the Matsubara frequencies. Concern-
ing the determinant bound, Gram’s inequality applies to Cy, while it does
not to C;. However, since the Pedra-Salmhofer’s type determinant bound
obtained in the previous subsection applies to Cy + C1, we can derive the
determinant bound on C; by decomposing C; as (Cyp 4+ C1) — Cp. In order to
derive the L'-type norm bounds, we introduce a family of scale-dependent
UV cut-off and estimate the norm of scale-dependent covariances with the
Matsubara UV cut-off. This is a normal technique used in multi-scale anal-
ysis over the Matsubara frequency. Since the L'-type norm bound of the
covariance with UV cut-off is summable with the scale index, we can obtain
an upper bound on the norm of C;.

The momentum variable dual to the time variable is the Matsubara
frequency %(ZZ + 1). Since we discretized [0,) by the step size %, we
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automatically have a cut-off in the infinite set 5(2Z +1). Set
7r
My, = {w € B(QZ—F 1) | || < 7rh}.

To begin with, let us reformulate the restriction of C(¢)(-) into a sum over
My,

LEMMA 4.5.
(4.6)
C(¢)(pxs,nyt)

kel™ weMy,

(V(p,x,8), (n,y,t) € {1,2} x ' x [0, B)n).

PROOF. One can derive (4.6) by using (2.21), (2.24) and the equality

63A< 1520 B ls<o >_l Z etws
A ]

1 1 T
(Vse {—ﬂ,—ﬁ—i-ﬁ,-“ ’ﬂ_ﬁ}’ AGC\ZB(2Z+1)>.

See [9, Appendix C] for the proof of the above formula. [J

Let us take a function x € C*°(R) satisfying that
x(x) =1, (Vo e (—o0,1]),

1
X($) =0, (V(E S [27 OO))a
x(x) € (0,1), (Va € (1,2)),

x(z) <0, (VzeR).
We do not need more detailed information on the function x. See e.g. [7,

Problem II.6. Solution] for an explicit construction of cut-off functions of
this type. Let us take the parameter M from [27,00). With the aim of
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dealing with small as well as large 3 at the same time, we set the smallest
scale of cut-off to be f-dependent, which is the idea implemented in [11,
Section 3]. We define the function xy : R — R by

XM(@) = x <A§2_7_]\§4 + 1) :

Note that

For h € %N, set

N, rog(zh)y Ny e maxﬂlog(ﬂJ +1’1}7

log M log M

where |z] denotes the largest integer which does not exceed x for x € R.
We want Nj, to be larger than Ng. One can find a sufficient condition as
follows.

LEMMA 4.6. Ifh> $max{1,"'}M? N, > Ng+1.

Since we will need the condition h > 4d later, let us assume from now
that

1
(4.7) h > max {5 max{1, 3~} M2, 4d} .
It follows that
(4.8) lgs1 M + 15871 < MY < max{1, 371} M.
(4.9) M"<2h, (VI €{Ng Ns+1,---,Ny}).

Then, let us define the cut-off functions x; € C*°(R) (I = Ng,Ng + 1,
-+, Ny) by

XN,B(W) = XM(MiNBhH - ei%D?
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xa(w) = xM (ML — el ]) =M (VR 'R,
(Vle{Ng+1,N3g+2,--- ,Nn}).
It follows from the inequalities h|l — €'n| < 2h < MNvtl that
XM(M~Nep|1 —€'7]) =1 (Vw € R). Thus,

Np,

(4.10) Z xi(w)=1, (MweR).

I=Njg

The values of the cut-off functions are summarized as follows.

1 if h1 —e'i| < MNst1,
(4.11) Xng(w) =14 €(0,1) if MNoH < |1 —e'h| < MNs+2,
0 if h|1 —e'i| > MNot2,
0 if |1 —e'in| < MY,
xiw) =< €(0,1] if M' < h|l —e'i| < M2,
0 if b1 — eth| > M2

(VweR, le{Ng+1,Ng+2,--- ,Np}).
We show a couple of necessary properties in the following lemma. To be
correct, we should remark that the lemma holds for any 3 € R~g.

LEMMA 4.7.

(i) There exists a positive constant ¢ independent of any parameter such
that

ﬁ > Lyrayro S M2 (V€ {Ng,Ng+1,--- Ny},  €R).
weEMy,

(it) If w € [=mh,wh] Nsupp xi(-) for somel € {Ng+1,Ng+2,--- ,Np},
then |w — g] > 1wl (VO € [0, 27”))

PrOOF. (i): By the periodicity that x;(z + 27h) = x;(z) (Vo € R),
(4.8) and (4.11),

2
IB Z 1 UJ+IE)7£0 < Sup ( Z 1Xl(27rm+,,, )

2
wEM), €0, m=—8k
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Bh
7—1

1
< sup (E Z 1%7m+r|§ch+2>§CMl+2‘

T’G[O,%’r) m:—ﬁ—h
2

(ii): It follows from the assumption M > 27 and (4.8), (4.11) that
w| > h|l —e'i| > MNst! > %ﬂ, which implies the result. [J

Here we introduce the covariances with scale-dependent UV cut-off. In
the following we fix ¢ € C unless otherwise stated. For (p, x, s), (1,y,t) € Io,
set

Ci(pxs, nyt)

1 . . x
— ik x—y)+i(s—t)(w—73)
g 2 2 !

kel weMy,
Xt N1 (@)D Iy — e R DEFRE@ )1 ()
(le{2,3,---,Ny— Ng+1}).
Ci(pxs, nyt)

= ﬁ Z Z €i<k,X—y>+z‘(s—t)(w—%)

kel weM,\{5}
XNy (W) (I — e R DA RE@ )1 () ),
Co(pxs,nyt)
1 i(kox— _ _i(x_9 1 _
= o5 S kx5 RO 1) )

kel™
We can deduce from (4.6), (4.10), (4.11) and the inequality h|l — '71 | <
5 < MNs+! that
Nh—Nﬁ-i-l
(4.12) S Cilpxs,nyt) = e 5ETV0(0) (pxs, nyt),
1=0
(V(Pa X, 8)7 (777 Yy, t) € IO)
. Np—Ng+1 . . .
We want to consider ) ;) Cy, Cy as Cq, Cy introduced in Subsection

3.3 respectively. For this purpose we are going to study properties of Cj
(l=0,1,--- ,Nh—Ng—{—l).



The BCS Model with Imaginary Magnetic Field 111

Let us make an inequality which will be used in the estimation of Cj.
Recall the function g4 : (0,00) — R defined in (1.1).

LEMMA 4.8. Let K € Ryg. There exists a positive constant c(d) de-
pending only on d such that for any L € N satisfying L > K 3g4(K)~!

9a(K).

Ld k%;* \/K2 +e(k

REMARK 4.9. The claimed inequality crucially affects the possible
magnitude of the coupling constant in our double-scale integration pro-
cess. In terms of the order with K as K X\ 0, the claimed upper bound is
better than the crude upper bound K !, which is out of use for our pur-
pose of proving SSB and ODLRO. However, it is unlikely to be optimal
especially in the case d > 2. More delicate analysis specifying d and p can
improve the result. In this paper we prefer to obtain an order with which
the coupling constant can satisfy both the condition for the convergence of
the Grassmann integration and the condition for the solvability of the gap
equation under the minimum assumption on d and p, rather than to obtain
the optimal order with some complication.

PRrROOF OF LEMMA 4.8. Note that for any k' € {0, 25, 2]? 2.+, 2w —
1 2 1 1= 1
— <c(d)K3L71,

K2 ek W)® L [k + o200, k)2

where we used the assumption || < 2d to suppress the dependency of the
error on . By repeating this estimation for each coordinate we obtain that

(4.13)

c(d)K 3L

1 1
B Jyams ™ VTR T B, VR T
[0,27]@ K-+ 6 Kel* K+ + 6

Take any ¢ € (0,%) and set I := [0,e] U[r —¢,7 + ] U [27 — ¢, 27]. Note
that infyco onjay ¢ [|Ve(k)|lgre > ce. It follows from the coarea formula and
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this inequality that
(4.14)

(0,27 K? + e(k)?
[Ve(k)||lga

<ce ! / —_— = 4 C(d)&dK_l
[0,27] 4\ 14 K? +e(k)?

2d—p d—1 k 9 d k) =
oot [ e 02 0 =01) g
—2d—p VE?+0?
1 d—1 i - b 1
<ce TsupH k € [0,2m ‘ cosk; =r dn—=
reR | ] jz_; / _4d /K2 4 n?
+ e(d)e? Kt

< c(d)(e M og(K~ +1) + K1),

where H% ! denotes the d—1 dimensional Hausdorff measure. One can check
that the function z +— 2 !log(K ! + 1) + 2K 1 : (0,00) — R attains its

minimum at
1

zo=(d1log(K™1 +1)  K)#
and the minimum value is
(d71 4 d~ a1 ) (log(K ! 4 1))@ K a1,

Since log(K~' +1) < K1, 29 € (0,%). By taking ¢ to be z¢ we have from
(4.14) that

1 d 1
4.15 / dk——— < ¢(d)(log(K ' + 1)) a1 K~ a1,
(4.15) 09m o) (d)(log( )

Let us improve the upper bound in the case d = 1.

1 2 1
dk————= < C/ dk .
/[0,27@ VE?+e(k) 0 VEK?+ (2cosk — |ul])?

Let arccos : (—=1,1) — (0,7) be the inverse function of cos|(g ). Note that
for k € [0, 5],

cosk:—M =

2
> Z
T

k k
/ dpsinp / dpp
arccos(|u|/2) arccos(|u|/2)
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1
> — arccos M k — arccos M .
T 2 2

By substituting this inequality we have

jus

1 c 1
(4.16 / dk < / dk————
) [0,27] K% +e(k)2 ~ arccos(14) Jo VEK? + k2
log(K~1 +1).

S

<
arccos(

1K
2

~—

The claim follows from (4.13), (4.15), (4.16). O

In the following, unless otherwise stated, we assume that
(4.17) L>0"%g(e)"

so that Lemma 4.8 holds for K = ©. In the next lemma we collect bound
properties of C;. We should emphasize that the constant ¢(d, M, x) appear-
ing in the lemma is independent of ¢.

LEMMA 4.10. There ezists a positive constant c(d, M,x) depending
only on d, M, x such that the following statements hold.

(i)
| det((ui, vj)om Co(Xi, Yj))1<ij<nl,
N,—Ng+1
det [ (wi,vj)en Y, Ci(Xi,Y))
=1 1<ij<n

< (c(d, M, x)(1+ B~ ga(©)))",
(Vm,n € N, u;,v; € C™ with ||w||cm, ||vi|lem <1,

X, Y,ely (i=1,2,---,n)).

(it)
||él||1,oo < C(d7 M, X) min{laﬂ}Mila (Vl € {2737 Tt aNh - Nﬂ + 1})7

1C 100 < c(d, M, x)B(1 + B)4H1,
1Coll1,00 < e(d, M, x)O7 (1 + O 1),
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(iii)

Ny—Ng+1 ||

S G| <eld, M) (B ga(©) + (1+ BT,
=1

1,00
Here C; : 12 — C is the anti-symmetric extension of C; defined as in (3.5).

ProOOF. In the following ‘¢’ denotes a generic positive constant and
‘c(ay, a9, -+ ,a,) denotes a positive constant depending only on parameters
ai,as, - ,an. First of all let us make some inequalities concerning the
integrand inside the covariances. For x € [—7h,wh], 6 € {1, -1},

|h(1 — e—i%-&-% e(k)2+|¢|2)|2
> BA(1 = RV OPHOR)2 o g2 VPR gin? ()
2 —1\2
= 1 cagremsat (1 = e
T

) 2 2 1.2
+1 P TTAE<h <e e(k)* + 4h”e™ " sin (ﬁ))
> c(e(k)® + 27),

where we used that h > 4d > supycga|e(k)|. Since the eigen values of

E(¢)(k) are ++/e(k)? + |¢|?, this implies that

17, _ o—iF I+t E(6)(k))-1 ¢
(Vz € [-mh, 7h]\{0}, k € RY),
where || - ||ax2 is the operator norm for 2 x 2 matrices. Similarly we can
prove that
(4.19) ||h71(12 _ efiﬁfer%E(ﬁb)(k))*1€%E(¢>)(k)||2X2 < ¢

m7

(Vz € [-mh, wh]\{0}, k € RY).

(i): We derive the claimed determinant bound on Cj by means of Gram’s
inequality. Set H := L?({1,2} x'* x My},), which is a Hilbert space endowed
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with the inner product (-, -),, defined by

(f,9)3 = % > F(K)g(K).

Ke{1,2}xI'*x My,

Let us define vectors fx,gx € H (X € Iy) by

—i(k,x)—is(w—% 0 2
fPXS(nakaw) =€ o) ( ﬂ)1w=%6pv77 <(w B 5) + 6(k)2> s

N

(k) —is(w—T) 0\? %
—i(k,x)—is(w—2 2
Gpxs(M k,w) :==e g lw:% ((w — 5) + e(k) >

Y (I — e w W DA E@®)Y -1 () 5y

We can deduce from Lemma 4.8 and (4.18) that

D=

Fxll7e, llgx Nl < e(d)(8719a(©))%, (VX € o).

Since Co(X,Y) = (fx,9v)y (VX,Y € Iy), Gram’s inequality in the Hilbert
space C"™ x 'H ensures that

iy Vi /Cm ’ <z,3<
(4.20) | det((wi, vj) cm Co(Xi, Yj))1<i j<nl
< [T lacllgy, e < (e(d)B ga(O))"™,
j=1
(Vm,n € N, u;,v; € C™ with ||u;||cm, || villem <1,
Xi,}/; S IO (Z - 1727"' ,’I’L)),

which implies that Cy satisfies the claimed (Ji\;atejrvminant bound.
To derive the determinant bound on ), ot C we use Proposition

4.2. Note that by Lemma 4.8

(4.21) % Z <1 +2cos <%> e BV e+ + e 20 €(k)2+|¢|2>_

kel
€ -1 2 2\—1
= 7d > (1ﬁ\/e(k)2+l¢>l2>1 + 1 oreral T (©7 +e(k)?) 2)
kel*

< c(d)(1+ 57'9a(0)).

D=
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Thus, by (4.2) and (4.12)

(4.22)
Np—Np+1
det [ (wi,vi)en Y, Ci(X:,Y)) < (e(d)(1 4 B~ ga(©)))",
=0

I<ij<n
(Ym,n € N, u;,v; € C" with ||u||cm, ||villcm <1,
Xiai/:i € IO (Z = 1727'“ 7n))
Here we can apply Lemma A.1 with (4.20), (4.22) to derive the claimed

. Nj—Ng+1
determinant bound on Zz:h1 .

(ii): We can deduce from (4.11), Lemma 4.7 (i), (ii) and (4.18) that

(4.23)  |C)(X)| < eM?, |C1(X)| < eMNeF28, |Co(X)| < efTrOT,
(Vi €{2,3,--- N, — N5+ 1}, X € ).

Let n €N, j € {1,2,---,d}. Note that by periodicity,

( L (et 1))n Ci(xs, -yt)

o
1 i(x—y K)+i(s—t) (w—7)
S LY Y ;
kel'™* weMy,
n 27
L L
: (Xl+Nﬁ—1(w)(1122 + Li=ilozz) + 1l:01w:%) 1T (ﬁ/ dpm>
m=1 0

q:k“l‘z ::1:1 Pme;

8 " i 9 1
A=) YT, — e E W) 2+ E(¢)(a)) -1
<3<Jj> U mermme ) ‘

We need to find a ¢-independent upper bound on

2x2

for w € My, k € R%. First let us consider the case that \/e(k)2 + |¢|2 < h.
Observe that

H (a%j) h (I — e~ # (@32t E(@)(k))—1

2%x2
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n m n
<emh™ Y IT 22 | Loy iu=n

m=1u=1 \I[,=1
m
u=1

(12 — efﬁ(w*g)Iﬁ%E(@S)(k))

. Ly
(I — e~ DE+EE@) ()1 (i) A E@) 1)

2x2

“Hiaxa.

function. Since

< ¢(n)ht

See e.g. the formula [12, (C.1)] for derivatives of inverse of a matrix-valued
‘ 2x2 B

O\ 1B
ok;

in this case, we deduce from (4.18) and the above inequality that

(4.24) H <i>n B Iy — e i (@32t B(@)(k))—1
Ok; 2x2
0 —2 0 —n—1
Sc(n)(w—§ +‘w—§ )

Next let us consider the case that /e(k)? + |¢|? > h. It is convenient to
use the equality

(4.25)
(I — e~ i@+ B@)K)) -1

— H (1 — e~ #@= D+ Vel +dl?)-1
6e{1,—1}

1—e i@ 2enf@OW(3,)  emilm2lenfO0(1, g)
e e Den M (2 1) 1 — e enB@)0(q 1)

Let us estimate derivatives of each component. Remark that
(1- A D e(k)*+191)—1)

|(1_e*%(w*%)+% e(k)2+|¢|2)*16% e(k)*+19?|

C.

(4.26)

IN
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Moreover, for any m € NU {0}, 6 € {1, -1},

(427) ‘(%) e% O HoP Sc(m)(1m=0+1mz1h_2)e% e(k)2+|¢‘27
J
m
(428) H %) e%E(@(k) Sc(m)(lmzo—Flleh_l)e% e(k)2+‘¢|2.
J 2%2

To derive (4.28), the following formula can be repeatedly used.

1
9 i@ _ L / dsel;ska)aik B(6) (K)et E@®)
0 J

%) (1 — e_%(“’_g)_%v e(k)2+|¢|2)—1 < c(m)(lm:() 4 1leh—2)7
J

(4.30)

< c(m)(Imeo + Ims1h ™ 2)|1 — e~ @2 T7 Vel Hol =1

Q

Thus, we have that

< ¢(n)h 2.

(4.31) (%)n H (1_6—%‘(w—g>+g e(k)*+¢l?)-1
T4 se{1,-1}

Also, by (4.26), (4.28), (4.30)

(%)mu—ei(“g)*i e(k)2+\¢\2)*1e%E(¢)(k)
j

2x2
< e(m)(Lm=0 + Imz1h "),
which combined with (4.29) implies that
(4.32)
o\" w48 eI HIIR ) 1 EE(6) () 1
% H (I—en 2)Th ) “en <c(n)h™ .
77 se{1,—1} 2x2
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We can see from (4.25), (4.31), (4.32) and wh > |w — 0/2| that

(4.33) H <i>n h=l(Ip — e~ h@—HRt;E@)(0)-1
akj 2x2

-2 —n—1
oo (o= -3 )

By using (4.11), Lemma 4.7 (i), (ii), (4.24) and (4.33) we can derive that

7r

(4.34) H( (7P xyes) 1)>nCl(-xs, yt)

2x2

( ) > (Xl+N571(W)(1122 + L= lozz) + 1l=olw=g>

WEMp,
( _n_1>

< ¢(n) (1122M717N’3+3 + 1o MNP (37 4 g

-2
+

0
w__
2

0
w__
2

+1—oB (O + @_n_1)>-

The inequality (4.34) coupled with (4.23) yields that

(4.35)
e(d, M)MY3 g3
C , Myt )
| 1(PX5 ny )’ ( —|—ﬂ) d— 12] 1( |€ L<X yeJ>_1’)d+1
c(d)pte!

|Co(pxs, nyt)| <

T yeg) _p|ydt1

L+ (1407~ 300 (e’
(V(p,x,5), (. y,t) € Io)-
Thus, by using (4.8),
IC1 11,00 < e(d, MMM B2(1 4 8)? < e(d, M)B(1 + B)"H,
1Coll1.00 < e(d)O (L + O,

Letl € {2,3,---,N,,—Ng+1}. Let us estimate decay of the covariances
with the time variable. By periodicity,
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i(x—y, i(s— = Fﬂ 0
ﬁLd Z Z Ykl H (27r/ dT‘m%)

kel'™* weM,, m=1

" XI4+Ng—1 <w + Z Tm> W (I — e # @3 FE oy rm) 24 5 E(6) () -1

m=1

Thus,

H <%(e_i%ﬁ(‘9_t) — 1))” Ci(-xs,-yt)

1
< sup (5 > 1><1+Nﬁl<w+x>¢0>

zeR WwEM,,

2%x2

(£> Xl+NB_1(aJ)h*1(Iz—e*%( —§)2+7, B(¢)(k))~-1

sup

w€[—mh,mh] Ow 2x2
keRd
Note that
(4.36)
H (i)n B (I — e Hem DI+ E@)09)-1
O 2x2
<emh™ 3 T 2 | 1o =
m=1u=1 \l,=1
m ) lu )
(I — e~ He- DI} BE@ )1 <aﬁ) o h - DL B(6) K
w
u=1 2x2

(12 — e—%(w—g)lz+%E(¢)(k))_1HQXZ

< e(mh Y |[(Iy — e @ DEHREO00) L B m
m=1

7 2]
(I — e w@mDARE@) 1), o

Then by using (4.9), (4.11), Lemma 4.7 (i), (ii), (4.18), (4.19), (4.36) and
the fact that

d n
(i) oo @)] < cln MNP, (o € R, )
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we have that

(4.37) H (%(e—i%"(s—“ - 1)) " Cuexs, 1)

< ¢(n, M)M!*Ns

T
. — ! .
we[—7h,mh] dw e

keR?
R (I — e R @ DAREG) (W)
+ sup
n;)we[—ﬂh,ﬂh}

d m
) XNe-1(w)
keR?

a n—m X 0 1
< ) LIy — e~ = DI EE@9y -1
< ¢(n, M, x)M'*Ns

2x2

71H2x2

n—1

o

2><2)

. (M—(Z+Nﬁ)n—(l+Nﬁ)

n—1 n—m
+ Z M—(l—Q—Ng)mh—l—(n—m) Z hu+1M—(l+N5)(u+1))
m=0 u=1

< c(n, M, x) M~ HNaIm,
By combining (4.23), (4.34) with (4.37) we reach the inequality

(4.38)

|Ci(pxs, nyt)]

< C(n, M? X)

> 14 Mn(l—i—Nﬁ)’%(ei%(S—t) . 1)’71 + MUI+Ng 2?21 ’%(a’%(x—y,ej) _ 1)‘n
(V(p,x,5), (n,y,t) € lo, n €N).

I

From (4.8), (4.9) and (4.38) we can deduce that

HCN'IHLOO < c(d, M, X)M_I_Nﬁ <c(d,M,x) min{l,ﬁ}M_l.
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(iii): By using the result of (i) for n = 1, (4.35), (4.38) and (4.8) we
have that for any p,n € {1,2}, s,t € [0,0), y €T,

Nh7N3+1 NthﬁJrl
YUY Glpxsyt) => | Y Cilpys,xt)
xel =1 xel =1

Nh N@+1 Nh7N5+1
= Z C1(p0s,n0t) +Z Z C1(pxs,n0t)
xel =1
x#0
< e(d, M, x)(1 + 87" 9a(©))
c(d, M)MNs
+Z —d— 1( ) B (x,e;5) d+1

S+ B) N R (f TR — 1))

x#0

Nj,—Ng+1

. Z 5 dMX)MlNﬁ

il S 1|2ﬂ( T(xej) _ 1 1)[d+1
x#0
< c(d, M, x)(1 + B ga(©) + MN3B(1 + B)?)
<e(d, M,x)(87 ' ga(©) + (1 + B)*1),

which implies the result. [

By summarizing the results of Lemma 4.10 we can reach the following
conclusion.

COROLLARY 4.11. Set Cq := Nh Np+1 Cy, Cy := Cy. There exists a

constant c(d, M, x) € R>1 depending only ond, M, x such that the following
statements hold with co, D, defined by

Co = C(d7 M7 X)(l + 6d+2 + ﬂilgd(G))v D. := @71(1 + eil)d'
e C; satisfies (3.10), (3.48), (3.49), (3.50) with cy.

e Cy satisfies (3.47), (3.48), (3.51) with ¢y and D..

PROOF.  The claims directly follow from Lemma 4.10. Since My —7% C
%’TZ, C; satisfies (3.10). Let us only show how to derive the claimed upper
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bounds on ||C1||1.00, [|C1]| from the results of Lemma 4.10.

Nh—Nﬁ—l-l

ICillco < NChlIoo + D [1Cill10o
1=2
N —Ng+1

< c(d, M, x)B(1+ A" + c(d, M,x) min{1,5} Y M~
=2

S o,
Ny—Ng+1 || Ny—Ng+1
al<| > & +870 > G
=1 ) =1
,00
< c(d, M, Xx)(5 " 9a(®) + (1 + B)™) + e(d, M, x)(1 + B)*""
N}L—Ng-i-].

te(d,M,y) Y M
=2

< cp. U

REMARK 4.12. Since we assumed the simple conditions on Cp, C; in
Subsection 3.3, it became necessary to overestimate the covariances’ bounds
in terms of the order with 3, ©~! in the derivation of Corollary 4.11 from
Lemma 4.10. In this paper we choose to simplify the Grassmann integration
process at the expense of the order with these parameters. The most impor-
tant information in the statements of Corollary 4.11 is the dependency of ¢
on O, which ultimately decides whether SSB and ODLRO can be proven.

Since we have verified the necessary properties of the real covariances,
we can apply the general results in the previous section to our model prob-
lem.

LEMMA 4.13. There exists a positive constant c¢(d) depending only on d
such that the following statements hold with any a € R>, h € %N satisfying

h > c(d)max{1, 371}, L € N satisfying

(4.39) LY > ¢(d) max{0%g,(0)7 ¢, 071+ 0 1))
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and r,v" € R<q defined by

¢ d)_l(l +/8d+2 +ﬂ_lgd(@))_2a_4,

ro=
P = e(d) 'L 3  min{1, BY(1+ B2 + 871 ga(©)) 20t

There exists a function Ve : C x D(2r) x D(27“’)2 — C such that for any
¢ € C, (u,N) — V(¢ u, N) is continuous in D(2r) x D(27"’)2 and analytic
in D(2r)x D(2r")%2. Moreover, for any (¢,u,\) € (CxD(r)xD(r/)Q, j=1,2,

(4.40) %]de(gb, u,0)| < a 2L79,
8 en ]
(4.41) 18—Ajv 6,00+ [ Afw)ducw)(w){
<e(d)B(1+ B + 67 19a(©)’ 1+ 07 1+ 07 )Da' L7,

(142) VTGN _ / e VO TW W) AW gy ()

PROOF. By the division formula of Grassmann Gaussian integral (see
e.g. [7, Proposition 1.21]),

—/A(w)duc1+co(w) = //Vl’l(w+¢1)d,ucl(¢l)d,uco(1/})
= /V1_3’0(¢)dﬂco (¥) = yl-3end

As in Corollary 4.11 we set C; = iihl_NﬁH Cy, Co = Cp. Then, by (4.12)

and the fact that A(v) is invariant under the transform )y — e_ig%szppxsg
((pyx,8,8) € 1),

/ A()dpcs vy () = / A dpcs) ().

Thus, V1-3end — _ J A(W)dpc ) (). By substituting this equality, co, D,
defined in Corollary 4.11 and o = 2%a we see that Lemma 3.8 implies the
existence of the function V"¢ satisfying the claimed regularity and (4.40),
(4.41).

The equality (4.42) can be derived by a basic argument close to [12,
Proposition 6.4 (3)]. However, we provide the proof for completeness. We
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fix ¢ € C and hide the dependency on ¢ in the following. Since the ex-
pansion of e~V @ @)FWW)(@)-A®) terminates at a finite order, there exists
a (8, L, h)-dependent positive constant r(/3, L, h) such that

(4.43)
—V(u u) () — AT e
Re / VW@ AW g o () > 0, (Y(u, \) € DG, LR))).

Let us set
1
Vi) =) V().
§=0
VOp) =3 VOO w) + 3 VI ) + VE(y).
j=1 j=1
By the results of Lemma 3.4, Lemma 3.6 and (3.57), (3.58), (3.79), (3.80)
there exists a (3, L, h)-dependent positive constant ¢(3, L, h) such that

N
D IVi(w, Nl < e(B, L, h)a,

m=0

(V(u, A) € D((B, L, h)~Ta=1)", a € [2%,00), | € {0,1}).

This implies that we can choose a (3, L, h)-dependent positive constant
¢(B, L,h) such that if a > ¢(83, L, h)’,

(4.44) Re / V' N 4o (1) > 0,

(¥(u,A) € D(e(B, L, k) Ta~7)", z € D(2), L€ {0,1}).
Let us take ag € [¢(8, L, h)’, o) satisfying that ¢(3, L, h)*1a0_4 <r(B8,L,h)
3
and fix (u, A) € D(c(3, L,h)~tag?) so that both (4.43) and (4.44) hold for
this (u, A). By (4.44), for | € {0, 1},

2 log (/ ez\/l(u,)\)(¢+¢1)ducl ('l/)l)>

is analytic in D(2) and thus
(4.45)

log ( / evl(“’)‘)(d’wl)duclwl))
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o0 d n
— Z = <£> log (/ eZVI(u’)\)(w+w1)d//LCI (@bl)) = VO(u, ) (%)
n=1 " z=0
Similarly,
(4.46) log </ eV N e, (1/1)> = Ve (u, N).

By (4.44) for I = 1, z = 1 and (4.45) we can apply the basic lemma [11,
Lemma C.2] to ensure that

VO (@) _ / eV N g (1),

By substituting this equality into (4.46) and using the division formula
again,

(4.47) Ve, ) = tog ( [Ny, 0)).

Moreover, by (4.43),

evend(u7A) — / evl(u7A)(w)d,U/CO+61 (w)

By the identity theorem, this equality must hold for any (u,A) € D(r) x
D(r’)z. By the gauge transform t,xse — e—zﬁ%swpxsg ((p,x,5,€) € I) the
right-hand side of the above equality becomes that of (4.42). O

Lemma 4.13 can be reduced to the following explicit statements.

PROPOSITION 4.14. There exists a positive constant c(d) € R>1 de-
pending only on d such that the following statements hold with any h € %N
satisfying h > c(d) max{1, 371}, L € N satisfying (4.39) and r € Rsq de-
fined by

re=c(d) 1+ B+ (14 571)9a(0)) 2.

(148) | [ VOO0 (0) 1 < 5 (Vo) €€ x DY)

1
9’
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[ e VWWFWIW®) AT (¢)dpcg) (1) ,
(4.49) ‘ [ e V@OFW@@ dpe 4 () _/ A W)dnci V)

< e(d)BL+ M+ (146 Nga(©)? 1+ 1+ H)L ™,

(V(o,u) € Cx D(r), j€{1,2}).

PrRoOF. Take a to be

2 (s (2)) F 0

which is larger than 1. Then, the r in Lemma 4.13 and the right-hand side
of (4.41) are rescaled to be the r in this proposition and the right-hand side
of (4.49) respectively. Moreover, (4.40) implies that

(NI

Vo, o)l <tog (). (¥, € € x D)

By combining this inequality with (4.42) we obtain (4.48). Also, by differ-
entiating (4.42) the left-hand side of (4.41) is proved to be equal to that of
(4.49). O

4.3. Existence of the infinite-volume limit of the correction term
According to (4.40), (4.47), (4.48), we know that

nggo limsup  sup % log (/ eV(u)(wHW(“)(w)dﬂc(qs)(1/)))‘ =0.
TeN 25%01% (¢,u)eCxD(r)

However, this property does not imply a uniform convergence of

/ VDWW gy, (1)

with (¢,u) as h — oo, L — 0o. As we need such a stronger convergence
property to complete the proof of the main theorem, let us prove it before-
hand. Let us start by confirming spatial decay properties of C'(¢).
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LEMMA 4.15. There exists a positive constant c(d, 3,0) depending only
on d, 3,0 such that

(4.50)

1C(6)(pxs,nyt)| < c(d, 3,6)

d 27 ve ,
1+35 |%(eZ L (-yei) _ 1)[d+1

(V(p,%,5), (n,y,t) € {1,2} x Z* x [0,8), ¢ € C).
(4.51)

) eyt < c(d,3,6) |

|C(¢)(pxs,nyt)| < 1+ (2)dt Z;l:l (x — y, e;)|d+!

(V(p,x,5), (n,y,t) € {1,2} x Z% x [0, B) with x —y € [-L/2, L/2]*,
¢ € C).

ProoF. It follows from Lemma 4.10 (i) for n = 1, (4.12) and (4.34) that
the inequality (4.50) holds for any (p,x,s), (n,y,t) € {1,2} x Z¢ x [0, B),
¢ € C. Since (s,t) — C(¢)(pxs,nyt) is continuous in {(s,t) € [0,3)? | s #
t}, (4.50) can be claimed for any s,t € [0, 3) with s # t by approximating
s,t by converging sequences. The inequality (4.50) also holds in the case
s =t, since C(¢)(pxs,nys) = C(¢)(px0,ny0). The inequality (4.51) follows
from (4.50). O

By definition, ¢ — C(¢)(X) is continuous in C for any X € ({1,2} x
7% x [0,3))? and thus

(6,1) = / e VW@ g0 ()

is continuous in C?. In the rest of this subsection we prove the following
proposition, which requires deeper analysis of the tree expansion than that
performed in Subsection 3.2.

PROPOSITION 4.16. Let r be the radius set in Proposition 4.14. For
any non-empty compact set Q@ of C,

h—o0
he%N
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lim lim e—V(u)(¢)+W(U)(¢)dMC(¢) (1)

L—00 h—00
LeN he2N

converge in C(Q x D(r/2),C) as sequences of function with the variable
(¢, u).

PROOF. Recalling the definition (3.54), (3.55), let us define the anti-
symmetric function Vs : I? — C and the bi-anti-symmetric function Voo :
2xI?— Chy Va(X) ==V, M (1)(X), V22(X,Y) == V35 21 (1)(X,Y) and
set

2 4
B = (3) X nm = (3) 5 1l Vexoy.
Xel? X, YeI?
V(®) = Va(¥) + Va(¥).
It follows that uV (¢) = —V(u)(¢)) + W(u)(¢)). For ¢ € C we define
the function G(¢) : ({1,2} x Z¢ x [0,8))> — C by G(9)(pxs,nyt) :=

e_i%(s_t)C(gb)(pxs,nyt). By the gauge transform s — ezg%swpxsg
((p,x,s,8) € 1),

/ V) dpg s (1) = / eV i ().

Though we often drop the sign of ¢-dependency from G(¢) for simplicity in
the following, the dependency on ¢ should be reminded especially when we
establish uniform bounds with ¢. By (4.48),

(¢, u) — log ( / e“V(w)dugw)(Qb))

is continuous in C x D(r) and

u +— log (/ e“v(w)dug(@ (1/1))

is analytic in D(r) for any ¢ € C. Take a non-empty compact set @ of C.
Forn e N, ¢ € @Q, set

ani® = () o ([ " Daug(w))

u=0
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Let us prove that o, 1,5 converges in C(Q,C) as a function of ¢ in the limit
h — oo, L — oco. By the transformation close to (3.56) we have

Qn, L.k

= %Tree({l, 2,---,n},G) H Va(47)
j=1

i =0
(vj€{1727"' an})

+lZ ( ) > %Tme({lﬂw“ 1}, G)
=1

l

n
R . —
JIvae) 1T @),
j=1 k=141 (vje{1,2, n})
n
= —Tree({1,2,--- ,n},G) H 2(¥7) Wi=0
j:]‘ (Vj€{172""7n})
n n 1 4
+Z< l )<E> S Va(X,Y)

=1 X, Y€EI?

: %T’F@B({l, 27 N + 1}7 g)¢%{¢%{

41 o onfl

JIvae?) 1T @)

=3 ke=1+2 (vje{1,2, m+1})

n n 1 n—1 1 4

SNGIEDS ) (3) X vy

=1 m=0 ({s;}7H! {tx} 21" )E€S(n,m) X, Yer?
-Tree({s;}74", G)vy

m+1 ) R
: H (Ls;<tVa(¥™) + 1,51 Va(4%)) =0

Jj=2 (VjE{LZ,--',m—&-l})
-Tree({tk}i21", Gy
T QasVa@™) + sV )|

k=2 (Vke{1,2,-- ,n—m})

Note that the translation invariances (3.10), (3.13) are satisfied by G and the
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kernels of Vs, V4. This implies that for any b; € {2,4} (=2,3,--- ,m+1),

m+1
Z Vo o(X,Y)Tree({s; ;”ﬁl, (s H Vi, (9°7) V5 =0
Xel? ‘: (VjE{l,?,---,m+1})
= Z Voo(X + s, Y)Tree({sj};nﬁl, )y
Xe(19)2
SE[O,ﬂ)h
m—+1

' H Vi, () $% =0 =0
j (V5€{1,2,--- ,m+1})

Thus,
/
Qn,Lh = Qp [ K + Qn L.h>

where

$=0

+ 1,1227121 ( 7 ) (%)4 ST 1aa(X,Y)

X,YeI?

1 no
a;l@h = Tree({1,2’... ’n}’g)HV
j:

1
. ﬁTree({l, 2, n+1}, g)¢%{¢%{
I+1 n+l

-Hv“/ﬂ IT va(e®)

k=I1+2

1\ 4
an,Lh 1= <E) D VBa(X,Y)

X, YeI?

wi=0

1 n+1 ) _
. mTree({l, 2, ,n+ 1}, G)xvy H Va(y?) Bi=0

Jj=3 (Vje{1,2,- ,n+1})
Let us show that a,, 1, j converges in C(Q,C) as h — oco. Let us set

Z/(S,t) = % — hls:ta (57t € [Oaﬁ)h)v

sz1(¢) = ¢1xslw2xs—la sz—1(¢) = ¢2x51¢1xs—17 (X € F> ERS [O>ﬁ)h)
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Then, by the periodicity and the translation invariance with the spatial
variable we observe that

(4.52) an,L,h=<%>2 > u(st)

xel
S,tE[O,ﬁ)h

1
S Tree({1,2,-+ 0+ 11, 6)Voa (1) Va1 (47)

n+1 A '
: H V4(W) $I=0

j:'?’ (Vj€{1,2,---,n+1})

n+1

YN | (DY

a16{172} x9€l j=3 Xj7yj€1—‘aj€{1,2}

n+1 1 1
1:[1 Loj=27373 Za_—laﬁlg Z
T o s;€[0,8),” s;€[0,8),

: f(¢)((a1> (aj)?i:?})» (Sb (Sj)?i?})v (X2v (Xj> yj);l:?,l))’

where we set

F(@) (a1, (a5)123), (1, (8))723), (%2, (x5, ¥5)723))
= %Tree({l, 2, ,n+1},G(9))

’ (1a1:1V0511(lPl)me—l(lﬁz) + 1a1:2V051,11(wl)szst—l(lﬁz))
n+1
’ H(1aj:1VXj8j1(¢j)V}’ij—1('L/}j) + 1aj:2vxj5j,11(wj)VYij,Z_l(’(/)j))

Jj=3

wi=0

(Vje{1,2, n+1})
By recalling the definition of Tree({1,2,--- ,n+1},G(¢)) we see that f con-
sists of a finite sum of products of G(¢) and thus the domain of the function
s — f(¢)(a,s,X) is naturally extended to be [0,3)* x H?igl [0,3)%. For
simplicity, set [0,5)2 := [0,5)" X H;Ligl [0,8)%, |a| := a1 + Z?;rgl a; for
a=(ay, (aj)?;“g) We can see from the definition that for any sg,to € [0, )
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with so # to, p,n € {1,2}, x,y € Z%,

(4.53) lim  sup |G(¢)(pxs,nyt) — G(¢)(pxs0,nyto)| = 0.
(s,6)—(s0:t0) ¢peQ

Define the subset S of [0, 5)? by
Si= {S € [Oaﬂ)a | 5= (51a827"' 75|a|)7
(Z7j€{]-7 7‘a|})/\l7é.7_>87,7é8j}

Note that the Lebesgue measure of [0, 3)?\S is zero. It follows from the
properties (3.2), (3.4), (4.50), (4.53) that

(4.54) SILIISIO sup |f(o)(a,s,X) — f(d)(a,s0,X)| =0, (Vsg€S),
s€[0,3)2 PEQ

(4.55) sup sup |f(¢)(a,s, X)| < oo.
s€[0,8)2 ¢€Q

We can consider f(-)(a,-, X) as an element of L([0, 3)2, C(Q, C)). For any
s € [0, 8) there uniquely exists s’ € [0, 8)p, such that s € [/, s’ + +). Let us
define the map py, : [0,8) — [0,5)n by pr(s) := s’. Then, define the map
Py, 0 0,8)" — [0,8)) by Pr(s1,---,5) := (pn(s1), -+ ,pn(sn)). It follows
from (4.54) that

(4.56) lim sup [f(#)(a, Pr(s), X) — f(¢)(a,;s, X)| =0, (Vs €S9).

h—o00
he%N¢€Q

By (4.55), (4.56) we can apply the dominated convergence theorem in
LY([0,83)2, C(Q,C)) to ensure that

i [ dsfO@PEX) = [ dsflasX) in C(@Q.0).
;Ll—>200 [Ov/B)a [Ovﬁ)a
esN
By using this convergence property in (4.52) we can reach the conclusion
that a, rn(-) converges in C(Q,C) as h — oo. In the same way as above
we can prove that «;, 1 () converges in C(Q,C) as h — oc.
Next we will prove the convergence property as L — oco. Let us prove
the convergence of a5, first. The proof for the convergence of o/, ; , is

much simpler because of the presence of the term V. We will see it after
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completing the proof for a, ;. For this purpose we need to disclose the
operator Tree({1,2,--- ,n+ 1},G). For p,q € {1,2,--- ,n+ 1} set

~ 0 0
Bipqy = 9(X) 55 q
Xezp 8¢X1 8sz
where Q is the anti-symmetric extension of G defined as in (3.5). Note that
by anti-symmetry By, 1+ = By, 1. We can rewrite a,, 1, as follows.

277,
win = 3 )
TeT({1,2, ,n+1})
where
(4.57)
an,L,h(T)
n+1 "
_L—d(n—l)/ ds Z o(T,o0,s) ZM(Taavs)p,qB{p,q}
01" ses, (1) pa=t
1\ 2
H B{p,q}<ﬁ) Z v(s, 1) Vost (1) Vi1 (¥%)
{p.a}eT 87%[%?5%
n+1 1 2 . .
. H <<E> Z V(S,t)vxsl(wj)vyt—l(w])> P =0
i xyel (Vje{1,2,-+ n+1})
Svte[ovﬁ)h

We have to study case by case depending on the tree’s configuration. Let
us begin with the simplest case n = 1. Set

e oo

Since T({1,2}) = {1,2} and M(T,0,s) is symmetric,
al,L,h(T>

:/ ds Z SO(Tya'aS)QM(T7073)17QB%1,2}
0] esy(m)
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1 2
<ﬁ> S v ) Vour () Va1 (2)

r -
:/ ds Y @(T,0,8)4M(T,0,5)12 Y Ixer,
01 ses ) xeZd

< /du / G (20py (u)(~ 1), 2xp4 (£) )G (10py (w) 1, Lxpy () (~1))
— BG(200(—1),2x01)G (1001, 1x0(—1))> .

Thus,

lim ay 4(T)
h—o00
heQN

:/ dsz T054MT031221,<€FL /du/ dt
01 sr g
- (G(20u(-1), 2xt1)g(10u1,1xt(—1))

— G(200(—1),2x01)G(1001, 1x0(—1))).

We can deduce from the definition that for any X € ({1,2} x 7 x [0, 8) x
{1,-1})2, limy . G(X) converges in C(Q,C). Moreover by (4.51),

sup lyer, |G(20u(—1),2xt1)G(10ul, 1xt(—1))
$€Q

— G(200(—1),2x01)G(1001, 1x0(—1))|

c-c(d,B,0)?
(1+ (2)H1 30 [(x, e5)[d+1)2

Therefore, the dominated convergence theorem in L'(Z? x [0, 3)%, C(Q, C))
guarantees that limy .o renlim, | he%Nal,L,h converges in C(Q,C).

<

Let us consider the case n € N>9. To make clear the structure, let us add
the superscript 1, —1 to the Grassmann variables and rewrite the formula
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(4.57) as follows.

an,L,h(T)
1 2 n+1 1 2
= <E> Z I/(Sl,tg) H (E) Z V(Sj,tj) L*d(nfl)ERn
Slat26[07ﬁ)h -]:3 Sj’tje[ovﬁ)h
H Z Bw.p),(a.9) Z Vos,1 (") Vagy—1 (0% 71)
{p,q}eT \f.ge{1,-1} xel’
n+1 ' ]
. H < Z szj'l(wjyl)vytj—l(d)j’l)> d)j’é:O )
j=3 \x,yel (Vje{1,2,-+ ,;n+1},6€{1,—1})
where

E::/ ds Z o(T,o,s),
[071}n

o€S41(T)
5 0 0
B = GX)—— =<7
(.f),(2,9) Z f 9yT9
Xer? awg(l 8¢X2
n+1

R:= % > MT.058)Bpa -

a,be{1,—-1} p,gq=1

Since the integration and the summation with s, o are irrelevant in the
following argument, we do not indicate the dependency of R on these vari-
ables. For T' € T({1,2,--- ,n + 1}) we consider the vertex 1 as the root of
T. For j € {1,2,--- ;n+ 1} let disp(1,7) denote the length of the shortest
path between 1 and j in T'. Let us consider the case that

(4.58) Fve{3,4,--- ,n+1}{j,v} €T —disp(j,1) + 1 = disp(v, 1)).

In this case v is the terminal of a branch of T" and thus there uniquely exists
v € {1,2,--- ,n+ 1}\{v} such that {v/,v} € T. The operator B(, q) (' b)
erases one Grassmann variable from Vi, 1(¢%)Vy, —1(10~1). The remain-
ing 2 variables with the superscript ‘v, —a’ must be erased by R™. Thus,
there is at least one operator, at most two operators among n of R such that
they are to act on the Grassmann variables with the superscript ‘v, —a’. By
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decomposing these operators we have that

n, 1 (T)
1 2 n+1 1 2
= (E) Z I/(Sl, tg) H (E) Z I/(Sj, tj) -1 p
51,t2€[0,8)n Jj=3 55,t5€[0,8)n

11 ( > B(p,f),(q,g)> Y Buanwb

{p.a}eT\{{vo'}} \fige{l,—1} a,be{1,—1}

: (anle,—a),(v,—a)

n+1 2
n e
+ ( 2 > R 2 <2 Z Z ]-(p,c);é(v,fa)M(Tu g, s)p,UB(p,c),(v,a)) )

ce{1,—1} p=1
D Vosn (W) Vg1 (571
xel
n+1 ) )
H < Z vx3j1(1/)J71)Vytj—1(w],_1)> I8 =0
]:3 x,yel" (Vj€{1727"'7n+1}76€{1’71})
1 2
:n(ﬁ) Z v(s1,t2)
s1,t2€[0,8)n
n+1 1 2
—d(n— n—
11 <E> Y. vispt) | LTV ER
]:3 Sj,tje[o,ﬁ)h

11 ( > B(p,f),(q,g)> Y Buanwb

{p,q}ET\{{’l},U’}} f,ge{l,—l} a7be{17_1}
n+1
Z Z M(T’ 0-7 S)p,’L)B(p7c)7('U7—a)
ce{1,-1} p=1
’ Z V0811 (@Zjl’l)vxtz*l(wz’_l)
xel’
n+1 ‘ )
. H ( Z szﬂ(@bj’l)vytjl(?/ﬂ’l)) P8 =0 )
j:3 X7y€F (VjE{I,Q,“' 77’L+1},(5E{1,—1})
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where we used that

Remark that

(4.59)
> v, )BuywnVast @) = > ws, ) By 1) 0,1y Vyr-1 (")
Se[ovﬁ)h te[07ﬁ)h

=0.

Thus, the operator B(, _g) (s,—q) in the above expansion can be eliminated.
As the result,

Qn,L.h T)
1 2
=N E) Z 81,t2)
s1,62€[0,08)n

T 1 ? —d(n-1) 1 pn—1

: h o wspty) | L ER

7=3 $J7t]6[0 )h

n+1
: (( Z ZM(Tvo-as)P,vB(p,c),(v,—a)+B(v,1),(v,—1)>
ae{l,—-1} ce{l,—1} p=1
p#v
11 < > B(p,fx(q,g)) > B(v,a),wcb))
{p.a}eT\{{v,v'}} \ fge{1,—-1} be{1,-1}

Y Vou 1 () Va1 (7 7)

xel’

n+1

I ( S Va1 (09 Vo, 1 (1 >) o

Jj=3 \xyel (Vje{1,2, m+1},6€{1,—1})

Set for a € {1, -1}
n+1
R(a) = Z Z M(Tv g, s)p,vB(p,c),(v,fa) + B(v,l),(v,fly
ce{l,—1} p=1

pFv
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B(a) := 11 ( > B(p,f>,<q,g>> Y Bua).wh

{p,q}GT\{{’U,’Ul}} f,gG{l,fl} 56{1,71}

to simplify the following explanation. We carry out a recursive estimation
along the tree lines from younger branches to the root 1. Here we need
to estimate along the straight line whose terminal is the vertex v first of
all. We apply B(a) and then R(a) to the given Grassmann polynomial.
The rest of the Grassmann variables are erased by R"~!'. The application
of R(a) yields another G(-) which together with G(-) created by B(a) are
integrated with respect to the variables at the vertex v. The application of
B(a) combinatorially yields at most

f[l < dj?T) ) dj(T)!-;ij: ( dk?T) > d(T)!

factors, which is bounded by ¢ with a generic positive constant c. Recall
that d;(T) is the degree of the vertex j in T'. After applying B(a) and R(a)
we have Grassmann monomials of degree 2(n—1). Applying R"~! to each of
the remaining monomials combinatorially gives at most (2(n — 1))! factors.
By performing the recursive estimation as described above and using (3.2),
(3.4), (4.50) we observe that

(4.60)

|an, L1 (T)|
< L0 (2(n - 1)le"e(d, 8, 60)"

% Z sup (% Z G(Xanth)HV(Sat”)

Xelne{1,2}
s€[0,8)n ce{1,—-1} teb[’(fg)h

( sup (% > IQ(metC)HV(&t)I»

Xelne{1,2} %,y €T
cefl—1} 5,t€[0,8)

1 . .
: sup > 19X, pxsE)IG(Z, nytQ)||v (s, t)]
X,Z h
5 61707776{172} X yEF
ece{l—1} 0110801
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1 ~ ~
+  sup (—2 > 16X, pxsE)NIG(p'xsE nytd)| v (s, t)|>>
) h
Xel,p,p’ me{1,2} x,yel’
£,¢,¢e{1,-1} $,t€[0,8)n,

1
< L_d(n—l)(g(n —1))c"e(d, B, 9)%5 Z i
xerl—i—Zg 1’27r( L<xe]>_1)‘d+1

n—2
1
8L — )
( xeF1+Z] 1|27r( f(x,e]>_1)|d+1

2
1
B
(gHZmzﬂ( <“J>—1>Id+1>
< ¢(2n)le(d, B,0)*" 5" L.

Next let us consider the case that (4.58) does not hold. In this case the
tree T' is one straight line whose terminal is the vertex 2. By changing the
numbers if necessary we may assume that

T={{l,n+1},{n+1,n},---,{4,3},{3,2}}.

The term a,, 1, 4(T) can be further decomposed as follows.

,b,c,d
an,L,h(T) = Z q(zaL}cz )( )7

a,b,c,de{1,—1}
where
a,b,c,d
ao(l,L,h )(T)
1\2 n+1 1\2 oy

= (E) > V(&JQ)H (ﬁ) > ulspty) | LM VER"

51,t2€[0,8)n Jj=3 85,t;€[0,6)n

11 Y Buwneo | BeaenBee.ws

{p.a}eT\{{2,3},{3,4}} \fge{l,-1}
: Z VOsll L1 Xt2 1(¢2 _1)

xel

n+1

{2 Ve @) Va7 pio=0

J=3 \xy€l (Vie{1,2,-+ ,n+1},6€{1,—1})
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. a,1,1,d . . .
Let us consider a'® nLh )( T). In this case one Grassmann variable with

the superscript ‘2, —1/ and two Grassmann variables with the superscript
‘3, —1" are untouched by the derivatives along the tree lines and thus must
be erased by the operator R™. Set

R :=22M(T,0,8)32B(3 1) (2.1
n+1

+2 3 Y e )M(T.0.8)p2Bgs) 21
6e{1,—1} p=1
n+1
Z Z Lip.6)£2,—1),3,-1)M (T, 0,8)p3B(p.6),(3,-1)5
se{1,-1} p=1
B(aalaLd)
= 11 Y Bonas | BeaenBen.pa
{p:Q}ET\{{2»3}7{374}} fvge{lvfl}
n+1
Y Vot (0 )WVat, 1 (D T DD Vaesn (09 Vi, 1 (9971
xel 7=3 \x,yel'
Let us observe that
a,1,1,d
agm,h )(T)
1\ 2 n+1 1\2 o
B (ﬁ) > went)]] (ﬁ) D lspty) | LTVE
51,t2€[0,8)p Jj=3 55,¢5€[0,8)n
n+1
~an_1 2 Z ZM(T707S)p723(p,5),(2,71)
6e{1,—1} p=1
a,1,1,d
. Bla1,1.d) i
(Vje{1,2, n+1},6€{1,—1})

:n<%>2 > I/(sl,tg)ﬁ <%>2 ST sty | LU VE

517t26[075)h J:3 S]7t]6[075)h

n+1
. <( Rn 2 ( Z Z 1 (g,m)#(3,—1) (T7 g, S)Q73‘B(q,77)7(371)>

ne{l,—1} ¢=1
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2M(T,0,8)32B3,-1),(2,-1)

+ <(” — )R *B,_1),3,-1)

+1n>3(n_1 >Rn3

2
n+1 2
( Z Zl(qn M(T,o0,s )%33(«1,77),(3,—1)) )
ne{l,—1} ¢=1
n+1
' (2 Yo D lpere-nM(T.o, S)p,zB<p,5>,(2,_1>>>
§e{1,-1} p=1
a,1,1,d
. gla,1,1,d) i
(Vje{1,2,+ n+1},6e{1,-1})

:n<%>2 > V(Sl,tg)nli_f ((i)Q > | u(sj,tj)) 1~dn-1)

51,t2€[0,0)p Jj=3 55,t5€[0,6)n
n+1
' <( LR"™™ 2( S LgmreonM(T, o, s)q73B(q,n),(3,1)>
ne{l,—1} ¢=1

2M(T,0,8)32B3,-1),(2,-1)

n+1
4 (n—1)R™ 2( Z ZMTasqu(qn)( )>

ne{l,—1} ¢=1
n+1
'(2 > Z1<p,6>¢<37—1>M(T70aS)p,zB<q,6>,<2,—1>>)
6e{1,-1} p=1
1,1,d
. Bla ) i
(Vje{1,2,- ,n+1},6€{1,—1})
1\2 n+1 1\2
:n(n—l)(ﬁ> > V(Shtz)H (ﬁ) > ulsity)
51,t2€[0,8)n Jj=3 55,t5€[0,8)n
—d(n—1 n—2 a,1,1,d
- L= pRr—2 R R Bleh ) g
(Vje{1,2, ,n+1},6€{1,—1})
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In the derivation of the last equality we used the fact that since (4.59) with
v = 3 holds, the term with B3 1) 3,_1) does not contribute to the result.
It is important that there is no link between the vertex 2 and the vertex 3
in the operator R”. By using (3.2), (3.4), (4.50) we perform the recursive
estimation from the terminal 2 to the root 1. The important point is that
the extra G(-) produced by R’ is added to the integration on the vertex
3. We uniformly bound all the G ()s produced by R" 2R’  not integrating
them. As the result,

(4.61)
(7))
< L7 =D2(n — 1))c"e(d, B,0)" "

% Z sup (% Z \Q(X,nth)Hv(Sth)

Xelne{1,2}
5€[0,6)n cef1,-1} te}[’O%g)h

n—2
( sup <hi ) |5<X,nyt<>||v<s,t>|)>

Xelne{1,2} x,y€el
¢ce{1,—-1} 5,t€[0,8)1

1 - ~
( sup <_2 3 |Q(X,pxsf)Hg(Za77th)””(8»15)|>)
h
X,Z€el,p,ne{l1,2} x,yel

£ce{1,-1} 5,t€10,8)n

< (2n)\c"c(d, 3,0)*" 3" L~ (

xel

n+1
> :
L Yoy | (¢ 00%) — [t
< (2n)!¢e(d, 8,0)*" 3" L~
The same argument as above shows that
@l (T < (2n)icte(d, B,0)* 8" L.
Next let us consider aff’Ll’h_ L.d) (T'). In this case one Grassmann variable,

which originally belongs to Vys1(¥>1), remains after applying the operators
along the tree lines. This Grassmann variable must be erased by R". Thus,

inside aflaLl,? L.d) (T'), the operator R™ can be decomposed as follows.

2an71M(T, o, S)ngB(g’a),(&l) + 2anilB(3,—1),(3,1)
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n+1
+ 2nR"™ IZ Z TO'Sp3B(p5)(31)
p=46e{1,—1}
Let ~7(1a}:1,h b d)( T') denote the following.
1 2 n+1 1 2
(E) > vsta) ] (E) S sty | LT VE
51,t2€[0,6)n J=3 55,t;€[0,8)n
. 2an_1M(T, g, S)273B(2,a)’(371)
11 Y. Bwneo | BeaeyBe-vue
{p.a}eT\{{2,3},{34}} \f.g€{1,-1}
Y Vou 1 () Va1 (7 71)
xel’
n+1
. H Z szj V t-—l(w]’ ) 1/Jj’6=0
J=3 \x,yel' (Vje{1,2,- ,n+1},6€{1,—1})

In fact a(a’Ll’h 1’d)( T) is derived by replacing R" by 2nR" 'M(T,0,s)23

B2,q),3,1) inside a(a}}’hld)( T). Since the application of B3 _1)31),

By, (P €1{4,5,--- ,n+1}, 6 € {1,—1}) gives an additional free prop-
agator at the vertex 3, the same calculation as that leading to (4.61) yields
that

oty NT) —aly (D) < @n)lete(d, B,0) 5L
The term as}:;’l’d) (T') can be analyzed in the same way as above. The
result is that
oy ) = allp (D)) < (@2n)lete(d, B,0) 8L,
where
dfs’L_,h7l’d) (T)

= (%)2 > I/(sl,tg)ﬁ (%)2 > ulsyty) | LM VE

51,t2€[0,8)n Jj=3 55,t5€[0,8)n
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2nR" ' M(T, 0,8)23B(2,0),3.-1)

H Z B(pvf)v(qvg) B(27a)7(37_1)3(371)7(47d)
{p,a}eT\{{2,3},{3,4}} \fge{l,—1}

'ZV0311 " Va1 (>

xel’

n+1

H Z Vies; 1 (07 Vgt -1 (9771 B0 =0

Jj=3 \x,yel' (Vje{1,2,-- ,n+1},6€{1,—-1})

By combining these results we conclude that
|, 21 (T) = @21 (T)| < (20)lc"e(d, B,6)*" "L,

where

~ ~(a,1,—1,d ~(a,—1,1,d
(T = Z (a;,L,h (1) + QSZL,i ().
a,de{1,—1}

We can reform ay, 1, (7T") as follows.

a'n,L,h(T‘)
1 2 n+1 1 2
:<E> Z 1/(517752)1_[ <E> Z v(sj,tj)
51,2€[0,8) Jj=3 s5,t;€[0,8),
> D Be-nenBe -6y
be{l,—1} xel’

Vit -1 (0371 (Lo=1 Vosg1 (931) + Tp=—1 Vorg—1 (™))

. 2nLid(n72)EM(T, o, S)273Rn71 H Z B(p,f),(q,g)
{p.a}eT\{{2,3}} \fg€{l,—1}
: Z Vosi1 (01 (Lpm1 Vagg—1 (0371 + Ly 1 Va1 (*1))
zel
n+1
. H Z sz 1 V ytj —1(¢], ) pH8=0
Jj=4 \x,yel (Vje{1,2,-- ,n+1},6€{1,—1})

Let us observe that there is a recursive structure here. We can repeat the
same procedure as above on the tree T\{{2,3}}. The result is that

|an, L1 (T) = an,pn(T)| < (20)ic"e(d, B,6)*" 6" L7,
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where
an,.n(T)
1 2 n+1 1 2
= (ﬁ) Z V(Sl,tg) H (ﬁ) Z V(Sj,tj)
51,t2€[0,8) Jj=3 55,5 €[0,6)n
- Y. D BenenBe-n.ey
be{l,—-1} xel’

Va1 () (Lp=1 Vo1 (71) + Lp=—1Vorg—1 (> 1))

D Y Bin.oBe .0

ce{l,—1} zel’
c(Lpmt Vatg—1 (0771 + Lpe 1 Va1 (1))
(Le=1Vosg1 (W) 4 Lee 1 Vor, 1 (1))
- 2%n(n — 1)L~ EM(T, 0,8)23M (T, 0,8)3 4 R" >

II ( > B(p,f>,<q,g>)

{p.ayeT\{{2,3}.{3,4}} \f.ge{l,—1}
: Z V0311(¢1’1)(1c:1th4—1(¢4’_1) + 1C:—1VWS41(¢471>)
wel
n+1 ' '
T D2 Ve @V a () io
Jj=5 \x,yel (vje{1,2,- ,n+1},6€{1,—1})
By repeating this procedure we eventually have
(4.62) | .1 (T) = b pn(T)| < (20)Ic"c(d, B,0)*" 3" L,
where
n+1
bn,Ln(T) = ( > )gL,h(¢)(X27X3, Ty Xng1)s
j=2 x;el’
9r.n(9) (X2, X3, , Xn11)

SORE-RE (O ey

51,55 " €[0,8)n J=3



The BCS Model with Imaginary Magnetic Field 147

Z B 2,—1) 3b3) X085 (¢2 ) b3b (7/131)3)

bze{l,—1}

Z B3 —b3), (4b4)vx35 b3 b3(¢3 bg) b4b (¢4b4)

bye{l,—1}

. 2 n+1,—bnp41 1,1
Binst b0 Vi, ystnr (¥ Wos,1(¥7)

2'nlE [ M(T,0,9)p,
{p.a}eT

Since g7,1(¢)(X) is a finite sum of products of G, we can naturally de-
fine g, as a map from (Z9)" to C(Q,C). By the same argument as the
proof of the convergence hmh—»oo,he%N an,1,n in C(Q,C) we can prove that
hmh—»oo,he%NgL,h(')(X> converges in C(Q,C) for any X € (Z%)" and so
does lilfnh_mx%h6 2N by, h(T). We can also deduce from the definition of G
and gz, , that th—»oo,LGthhHoo,he%NgL,h(')(X) converges in C(Q, C) for
any X € (Z4)". It follows from (3.2), (3.4), (4.51) that

zug |gL,h(¢)(X2a X3,y Xpt1)| 1xjerL (j=2,3, ,n+1)
S

n+1

< nlc"c(d, 3,0)" 8" [ | L

d )
=2 1t (%)d—H Zj:l |<Xl7ej>’d+1

(VXJ EZd (j:2737 ,7'L+1))

The right-hand side of the above inequality is summable over (Z4)". Since

n+1
bn,L.n(T) = H ( Z >1Xj€FL(j=2,3,~~-,n+1)gL,h(¢)(X27X37 X)),

i=2 \x,e7d

we can apply the dominated convergence theorem in L'((Z4)",C(Q,C))
to conclude that limy o renlim,; | he%meL,h(T} converges in C(Q, C).

Observe that

2TL
Q. L.h = ()2 Z 1(4‘58)an,L,h(T)
Y TeTH{1,2,- ,n+1})
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2TL
+ o E 1ﬁ(4_58) (an,Ln(T) = bn,Ln(T))
TeT({1,2, ,n+1})

2n
(n)2 Z 1ﬂ(4.58) b, 1,n(T)-
TeT({1,2, n+1})

By (4.60), (4.62) and the fact that §T({1,2,--- ,n+1}) < "nl,

Sup |ap, 1, (¢) — el Z 1ﬁ(4'58)bn,L,h(T)(¢)

N2
PEQ () TET{1,2, n+1})

< %cnc(d, B3,6)>" 8 L~

Since we have checked that lim, |, 2n@n,rn, My, pc2nbn,La(T),
NE5 NEB
limz, oo, zeNlimy, o pc2n0n,Ln(T) converge in C(Q,C), we can deduce
N5
from this inequality that limj .o reNlim, he2N0n,L,n CODVErges in
NE5

C(Q,C).

Let us confirm the convergence of oz;% Ln BY definition,

o) 1, = —PG(9)(100,100),

which converges in C'(Q,C) as h — 0o, L — oo. Assume that n > 2. Let
us estimate |o ; | by using the general lemmas Lemma 3.1, Lemma 3.2,

which is a simpler way than decomposing the operator Tree({1,--- ,n},G)
as above. By (4.12), G(¢)(X) = S M ¢)(X), (VX € I2). Thus, by
(4.22)

| det((ui, v;) cm G () (Xi, Y))1<i j<nl

< (e(d)(1 + B ga(©))" < d(d, 8,0)",

(Ym,n € Nyu;,v; € C™ with ||u;||cm, [|villcm < 1,
Xi,Yiely (i=1,2,---,n)),

where ¢(d, 3,0)(€ R>1) is a positive constant depending only on d, 3, 6.
Moreover, by Lemma 4.15

Lo [G(O) < D ¢(d, 5,0)

d T x o :
S+ Zj:l ’%(61 T (x,e5) _ 1))d+1

1G(¢)
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Also, by definition

IVallioo < 7% [Volhoo <1,

; (d, »3 0)
V2,2, G(@)]1,00 < LG (R)| < L) - 7 _
xer 142750 ‘zﬂ(e T boes) 1)|d+1
With these inequalities and the fact that the || - ||1 0-norm of the anti-
(3.16), (3.26)
to derive that
‘O/n,L,h’
N 1 n—1
<a 2 (25¢(d, B,0)L)"
h (xEF 1 +Z] 1la(es ¢ (i) 1)|d+1)

+Z< >—212 d(d,3,0)? (Z

1 n
x€F1+Z] 1‘2 (¢! <Xe]>_1)|d+1>
L7422 (d, 8,0)%)! 1 (25¢ (d, B,0) L)

N 1
< EL—2dcncl(d7 ﬁ, 9)2n Z (Z

n—a
Z >

which implies that limy .o renlim, he%NO‘;z Ln =01in C(Q,C). Thus,

we have seen that a,, 1, j converges in C(Q,C) as h — oo(h € %N), L —
oo(L € N) for any n € N.
Let us complete the proof of the proposition. The inequality (4.48)

implies that
e log ( / e VWD gy (¢))

is analytic in D(r) for any ¢ € C and

log ( / VW) gy ¢)(¢)>‘ <1

sup
(¢,u)eCxD(r)

Thus,

log </e—v(u)(w)+w( W) g (0 ) ZanLh ,
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(V(¢,u) € @ x D(r/2)),

sup__|om,zn(@)u"]
(6:)€QxD(3)

1 1 T\ "
1

(1+¢e)™’

< (Ve € (0,1)).

Therefore we can use the dominated convergence theorem in I*(N, C(Q x

D(r/2))) to ensure that

lim log < / e VO W) gy Wm) ,

h—o0

2
heﬁN

lim lim log (/ eV(“)(wHW(“)(wd#c((p)(1/)))

L—00 h—o0

LeN he%N

converge in C(Q x D(r/2)). Since

/ e VEIWHW) gy () = los(l e OO ey )

(V(¢,u) € @ x D(r/2)),

the claims of the proposition follow. [

4.4. Completion of the proof of the main theorem

In this subsection we will complete the proof of Theorem 1.3. The
main necessary tools have already been prepared. It remains to study the
solvability of the gap equation which is different from the conventional BCS
gap equation due to the presence of the imaginary magnetic field. Let
us start by showing an inequality which will be used to give a sufficient
condition for the solvability of our gap equation.

LEMMA 4.17. Set K := £(2d — |p|). Then,

| ) 24— [l "
f d—1 k 2 d k) = > 1 1 _— .
o M ({k €0,27] | e(k) = n}) = 1g=1 + d>2<10(d_1)d>
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PROOF. Since |u+ 7| < 2d,
{ke[0.2]! | e(k) =n} #0, (V€ [-K K)).

This implies the lower bound for d = 1. Let us assume that d > 2. Note
that

HE ({k € [0,27]7 | e(k) =n})

d
d—1 1
> it ke {O,g} x [0, 7] ’ g coskj:§!n+u!
=1

In the following we assume that k € [0, 5]97 x [0, 7]. Set

_ min{1,2d — ||}
5(d—1)

Assume that %]17+,u] el,l+ %) for some [ € {0,1,---,d —1}. If

(463) k;j € [075] (Vj € {1a27" : 7l})>
T ™ .
k; € [5—5,5] Vjell+l, - ,d—1}),

then

d—1 1 1

Zcosk;j eli(l—e)l+(d-1-1)] C {l—g,l—i-g].

j=1
Thus,

d—1
1 17
§|77 + p| — Zcoskj € [—5, E} .
7=1
Recall that we defined arccos as a map from (—1,1) to (0, 7) in the proof of
Lemma 4.8. Then, we see that if (4.63) holds and k4 € [0, 7], the equality
Z;'l:1 coskj = 1[n+ p| is equivalent to

d—1

1
kq = arccos 5|77 + p| — Z;cos k;
J:
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[a) 0 ( /dk)

j=l+1

D=

— sin? k;
A 1 a1 5
o L= (gl + pl = 2252 cos ki)
d

Assume that £|n+ p| € [+ 3,1+ 1) for some I € {0,1,--- ,d —2}. If

(464) k] € [078] (vj € {1527" : 7l + 1})7
s s .
k; € [5—5,5] Vjel{l+2,--,d—1}),
then

d—1
> coskj e [(I+1)(1—e),l+1+(d—1-2)] C [l+%,l+§].

o ) 5
Thus,
d—1
1 71
§|77 + p| — jg_l coskj € [—E, g} :

Therefore, if (4.64) and kg € [0, 7] hold, the equality Z?:l cosk; = 3|n+pl
is equivalently written as

d—1
1
kq = arccos 5\7] + p| — ZCOS k;
7j=1
Thus, by the same calculation as above we have that

d

d—1 md-1 1 d—1

(4.65) H k e [0,5} x [0, 7] ( > 1coslc]—§|77+u| > gd-1,
]:
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Assume that 1y +p| € [d— 3,d). If kj € [0,¢] (Vj € {1,2,--- ,d —1}),
then

d—1 1
D coskj € [(d—1)(1—¢),d—1] C [d— 1= 2 (2d— |p]),d - 1} .
j=1

By assumption, 3|n+ u| < 3| + 3(2d — |u|). Thus,

1 -t 1 1 1
- - kie|=1——(2d— 1),

Therefore, the same argument as above yields the estimate (4.65). Since
min{1, 2d—|p|} > (2d—|p|)/(2d), the claimed inequality has been derived. O

Using Lemma 4.17, let us give a sufficient condition for the solvability
and the non-solvability of the gap equation (1.3).

LEMMA 4.18. The following statements hold true.

(i) There exists a positive constant c(d) depending only on d such that if

|U| > c(d)(2d — ’M|)1_dﬁ@ (1®§%(2d—|ul) + 1e>%(2d_|u|)(2d - \MD_I@) )

> 0.

(2m)d (cos(6/2) + cosh(Be(k)))[e(k)]

2 1 / sinh(Ble(k)|)

- dk
U (2m) [0,27])4

(i) Assume that 6 € [0, 3]. If [U] < 2871,

< 0.

2 1 sinh(Sle(k)|)
dk
/[(),Zﬂ]d

T @y (cos(30/2) + cosh(Be(K)))e(K)|

PROOF. Set K := £(2d — |u|).
(i): Let us define the function f: R — R by

sinh(5]z|)

M= Teos(3872) + cosh (Bl




154 Yohei KASHIMA

We can see from the definition that f € C*°(R). Moreover, by the coarea
formula and Lemma 4.17,

1
/W Ak f(e() 2 o | el (o)) Vek) s
= v | e 0201 | el9 <)

) 2d — || d—1 K
> m <1d:1 + 1g>2 <m> ) /_K dnf(n).

Note that

/_ I; dnf(n)

K
B
= /_K dncosh(ﬂn) — 14 2sin?(80/2)

min{©,K} 1
> 37! d————= =710 Larct in{l, KO~!
> cf /0 77772 ey cf arctan(min{ b

> Cﬂfl@fl(lggK + 1@>KK@71).

By combining this inequality with the above inequality we obtain
e TS0 2 20— ) 57107 (T + TorcO7),
0,27

which implies the claim (i).
(ii): By the assumption on 6, f(x) < tanh(8|z|)/|z| < (8 for any x € R.
The claim follows from this inequality. [

Before giving the proof of the main theorem, let us confirm a few more
simple facts.

LeEMMA 4.19. Lete € (—1,1]. The function

sinh(x) . .
e z(e + cosh(z)) [0,00) = R

1s strictly monotone decreasing and converges to 0 as x — o0o.
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ProOOF. Observe that

sinh(x) _ tanh(z/2) 1+ cosh(z)
x(e + cosh(x)) x € + cosh(z)’

One can check that the derivative of tanh(x/2)/x, (14cosh(z))/(e+cosh(x))
(e € (—1,1)) are negative in (0,00), which implies the strict monotone
decreasing property of the function. The convergence property is clear. [J

LEMMA 4.20. Foranyx,y €T, ¢ € C, p,n e {1,2}, p#n,

C(¢)(px0, py0)
- Ly ei<x-y,k>< e + cosh(8/e(K)? 1 [9P)
Ld (cos(6/2) + cosh(B+/e(k)? + |9]?))
~1)? sinh(8/e(K) + [9])e(k) )
21/e(k)? + [¢[?(cos(8/2) + cosh(B+/e(k)? + [¢]%)) )
C (¢)(px0 ny0)
Z i(x—y,k 12¢+1P77) (21)¢ Slnhﬁ\/e( +‘¢
L e ( ) + [¢|%(cos(86/2) + cosh(B+/e(k)? + |9|?)

kel'*

PROOF. By using the unitary matrix U(¢)(k) defined in (2.19), which
diagonalizes E(¢)(k) as shown in (2.21), we can derive the claimed equali-
ties. O

We are ready to prove Theorem 1.3.

PrOOF OF THEOREM 1.3. The claims (iv), (v) have been proved right
after the statement of Theorem 1.3. Let us prove the claims (i), (ii), (iii).
With the constant ¢(d)(€ R>1) introduced in Proposition 4.14, set ca(d) :=
(2¢(d))~! and assume that

U] < ea(d)(1+ BT + (14 671)ga(©))

throughout the proof. By assuming so the coupling constant U is inside a
disk on which all the results of Proposition 4.14 and Proposition 4.16 hold.
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The inequality (4.48) implies that

)

2
heEN

(V¢ € C, L € N satisfying (4.39)).

N~

Then, it follows from Lemma 2.1 and (2.25) that
Re Tre PHH+05:4F) ~ (VL e N satisfying (4.39), v € [0,1]).

Then, by taking into account Lemma 1.1 we observe that the claim (i) holds.
By considering Lemma 4.19 we see that the following statements hold.
If

21 sinh(e(k)|)
(4'66) |U| + (zﬂ)d /[O,Zfr}d dk (COS(59/2) ‘f‘COSh(ﬁe(k))”e(k)‘ ~ 0’

there uniquely exists A € (0, 00) such that

(4.67)
_ 2
U|
1 sinh(8+/e(k)? + A?) B
- (2m)d /[0,27r]d dk(cos(ﬁ@/Q) + cosh(B/e(k)2 + A2))\/e(k)? + A2
If
2,1 sinh(S|e(k)|)
488) =57 G e et <0

B0/2) + cosh(Be(k)))le(k)]
)

there is no positive solution to the equation (4.67). In this case we set
A := 0. During the proof we assume that either (4.66) or (4.68) occurs and
A(€ R>) is defined as above.

Let us prove the claims concerning SSB. We assume that v € (0, 1] unless
otherwise stated. Then, there uniquely exists a(y) € (A, co) such that

(4.69)

2
a(V)(‘m
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1 sinh(8y/e()7 ¥ a(1)?)
+@mdAMWﬁkwxwwm+«wMﬂ¢dm2+aw%ukmﬂ+awv)
_ 2

i

and lim\ g a(y) = A. Let us set a := (a(7y),0). Here we define the function
F:R®—Rby

—%ﬂm—w“%@

1 30
+ B(2n)? /[(J,er]d dk log <cos <7> + cosh </B e(k)? + ||X”]%§2))

_ m /[QW dk log <Cos <%) + cosh(ﬂe(k))> :

For r € Rsg, b € R? we set B,.(b) := {x € R? | ||x — b||gz < 7}. Some
remarks concerning the function F' are in order.

F(x):=

o ['c C*(R?).
e F' takes its global maximum at and only at x = a.
[ ]

0’F 2y 0’F 0*F 2y
a 92 < - ; = 07 o \a) = —
Ox3 (a) < |Ula(y)”  Ox10x2 (a) ox3 (a) |Ula(y)

(4.70)

e For any r € Ry,

—00o < sup (F(x)— F(a))<0.

x€R2\ B-(a)

Since these are the properties of the explicitly defined function, we omit the
proof. It is also necessary to deal with the discrete analogue Ff, of F. Set
for x € R?

1

Fr(x) = —m((«%l — )%+ a3)

o o (32) o )

kel™
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Ld S log <cos< 9> +cosh(ﬁe(k))> _

kel™

For sufficiently large L we can assume that

sinh(Ble(k)|)
(4.71) Ld kzr* (cos(B0/2) + cosh(fe(k)))|e(k)| 70

Since the situation is parallel to that of F'(x), it follows that
o F € C*(R?).

e [ takes its global maximum at and only at x = ar = (ar(v),0),
where ar, () € (0,00) and

2
aL(7)<— m

sinh ,8\/2—1-—&[,2
Ld k;* (cos(86/2) + cosh(B/e(k)? + ar(7)?))v/e(k)? + ar( )2>
__ X
it

Moreover, we observe that

e There exists a positive constant ¢(f3,d, 6, |U|) depending only on 3,d,
0,|U| such that

(4.72)

x||2 2
i) < - &f? ; (W . 1) Iz + (8, d,6, [U]), (¥ € B2, L € N).

e For any compact set @ of R? and 4,5 € NU {0} with i + j < 2,

i+ i+

(4.73) lim sup 0 -Fr(x) — a -F(x)| = 0.
L— 7 J
IR xeQ ozt D 00,

By making use of the properties (4.72), (4.73) we can prove that

(4.74) lim a7 = a.
L—oo
LeN
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Let H(F)(x), H(Fp)(x) denote the Hessian of F', F respectively. The
property (4.70) implies that

o n
HI@) < =710y

By applying (4.72), (4.73), (4.74) we can establish necessary basic proper-
ties as follows. There exist 6 € Rsg and Lg € N such that the following
statements hold true for any L € N with L > L.

e For any x € Bs(ar),

(4.75)

1
FL(X) = FL(aL) + /0 dt(l — t)<X —ay, H(FL)(t(X — aL) + aL)(x — aL)>,
(4.76)

H(F)(t(x —ay) +ar) < %H(F)(a) <0, (Vtelo,1).

e For any x € R?\Bs(ar),

(4.77) Fr(x) — Fr(ar) < sup (F(x)—F(a)) <0.

XGRQ\B5/2 (a)

N | —

At this point we go back to the Grassmann integral formulations. By
Proposition 4.14 and (4.22),

(4.78) sup sup sup <‘/ P)+W () dpcg) (1)

Wb o hegN oot
satistying ( : )hzc(d) max{l,ﬂil}

+ Z /_V(w W )Aj(w)d/ﬁcw)(?ﬁ)‘

je{1,2)
[ 4 @ducis >(w>|>

+ 2
je{1,2}

< 0.




160 Yohei KASHIMA

Since the functions inside the modulus above are continuous with ¢ over C,
the following transformation is justified.

(4.79)
[ ot it o301+ o TR
R2 [ Ixer~(cos(B86/2) 4 cosh(Be(k)))
[ OO 4 g (0)
= /R2 d¢1d¢2€ﬁLdFL(¢)/e_v(w)+w(w)d/i0(¢)(¢)/Al(w)duow)(lﬁ)

+ /RQ dp1dpe®t T2 (®) (/ e VIO AN W) dpc ) (1)

- / e VW g () / Al(w)duc<¢)(¢)>

— L Tu(ar) [ ~d / dprdeo1
R2

L Plo =0 H(FL(L™E Prar) @)
H¢||R2 <L2¢$

| e VW) AL ()d
/ ¢ K c@%wm»w)/ Wb 14 gar o)

BLIFy(ar) BLY(Fr(P)—~Fr(ar))
V) [ 1001 gy O

(¥)

: / eV dpc g (1) / AN (W) dpc(s)(¥)

ﬁLdFL(aL)L—d/ diondiml BIY dt(1—t)(H(FL)(tL~ 5 ptar)P)
+e - p1doo H¢”R2§L%6€ 0

. (/Q—V(wwww)Al(w)du

C(L™ % ptar () W)

_ [ vwrrww)g Al ()d
/ € K O(L—%wam))(w/ (W)dp c<L—%¢+aL(w>>(¢)>

BLAFL(ar) BLY(FL(P)~Fr(ar))
PV [ 101 gy Ol

. ( [V OO )
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_/6V(¢)+W(¢)duc(¢)(w)/Al(qb)dMC(@(w))v

where ¢ = (¢1, ¢2), ¢ = ¢1 + i and 6(€ Rsg) is the parameter appearing
in (4.75), (4.76), (4.77). Tt follows from Lemma 2.5 (i), (4.49), (4.72), (4.76),
(4.77), (4.78) that

i 7 BLY(FL(@)—Fy(ar))
(4.80) lim lim L /IRQd¢1d¢21¢¢Bé(aL)e L L(aL

L—00 h—oo

LeN heZN
OV e w) [ A @)duc @) =0
i BIL dt(1—t)(.H(FL)(tL™ % Prar) )
IZILH;O hh—>Holo R2 d¢1d¢21\|¢||R2§L%56 ’ " "

. (/e—wwwww)Al(w)du
N / efv(wnw(w)dﬂcw_%w .
ar,

1 —
‘/h«wm%wﬁﬁuw¢w>—m

m lim LY __ BLUFL(P)~FL(aL))
Lhm lim L /Rz d¢1d¢21¢¢36(aL)€ L r(ar

oS orar iy P

: </e_v(wHW(w)Al(lﬂ)dMC(qs)(w)

B / eV gy (1)) / A1(¢)duc(¢)(¢)> =0

Moreover, we can apply Proposition 4.16, (4.73), (4.74), (4.76), (4.78) to
conclude that

(4.81)

lim lim [ dgidgsl B4 di(1—t)( . H(FL)(tL™ % Prar)h)
L Rz

d
| @llg2<L26
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vy W) Al
/ c dp C(L‘5¢+aL(v>>(w)/ Wb 18 g oy P

_ / A1 e S PHE@D) iy 1y [ VW@ g ()
R2 L—00 h—o00

LeN he%N

-6 lim C(a(y))(100,200).

L—o00
LeN

Similarly we have that

(4.82)
/ dgbldgbgeﬁLdFL(d’)/eV(wHW(WduC (1)
R2 (#)

_ BLIF,(ar) [ —d B¢ dt(1—t) (@, H(FL)(tL™ 2 +ar)eh)
e L /]1%2 d¢1d¢21\\¢||R2§L%66 0

v ww)
/ ¢ U4 grar oy V)

eﬂLd(FL(¢)—FL(aL))

BLYFr(ar)
e /ﬂ@d‘bld@lcbm(am

./e—V(tb)JrW(w)dMC((b)(w)_

(4.83)
lim lim d¢1d¢21||¢||R2§L%6

L—oco h—oo J]R2
LeN heZN

. —V(@)+W ()
/ ¢ LT N C)

_ / d1doct BHE®D) finy i [ VOO g ),
RQ

BIL dt(1-t)(P.H(FL)(L™ % Prar))

L—00 h—o0
LeN he%N

0 Tim T4 —_ PLUFL(P)-Fr(ar))
Lhm lim L /]R2 d¢1d¢21¢¢35(aL)6 L rar
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The inequality (4.48) implies that

(4.84) lim lim €_V(¢)+W(w)dﬂC(a(7))(¢) # 0.

L—o00 h—o00

LeN he2N
Note that by Lemma 2.5 (i) and (4.78) we can change the order of the
integral over R? and the limit operation with A in (2.25) with A = (0,0)
and (2.26). Then, by using (4.79), (4.80), (4.81), (4.82), (4.83), (4.84) and
(4.69), Lemma 4.20 we can derive from (2.25), (2.26) that

TI'( (H+16’SZ+F)A1)

im
Lo Tre— B(H+1:0S.+F)
LeN

hmh_)o[o\{ fR2 d¢1d¢26ﬁ3L Fr(¢ fe +W(¢)A1(¢)duc(¢) (1)
he
= lim 5
R limpge B Jpe dp1dgpcPL FL(P) [ eV Wy ()
3
:/ d¢1d¢26§<¢,H(F)(a)¢> lim lim 67V(w)+w(¢)d/t0(a(fy))(1/’)
R2

L—00 h—oo
LeN he%N

- lim C(a(v))(100,200)

L—o0
LeN

/ / dg1dae’s PHEINP) lim  lim / e VWO 4o (1)

L—o0 h—>oo

LeN he N
a(v)
=y L
U] !U h
Thus,
TI‘( B(H+i0S +F)A1) A
lim lim = ——,
N0 L6 Ty e AHHOS.+F) U]
v€(0,1] LeN

We let ¢1(d) be the constant ¢(d) appearing in Lemma 4.18 (i). Then, if
—d _
U| > er(d)(2d — [u])' 80 <19§%(2d—|u|) +los 1 (2a- 1 (2d = [1]) 19) ;
(4.66) holds and thus A > 0. This proves the claims (1.3), (1.5). Note that
c2(d)(1+ BT + (1 +571)9a(0)) 2 < (14 872 <2871, (V6 € Roo).
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Thus, if 6 € [0,7/5], Lemma 4.18 (ii) implies that (4.68) holds and thus
A = 0. Therefore, the first statement of (iii) and the claim concerning SSB
in (iii) hold true.

Next let us prove the claim (1.6) and the claim concerning ODLRO in
(iii). The proof is in fact close to the proof of SSB above. However we
present it for completeness. Let us define the function f: R — R by

f(z)
2

o 1 po
=01 0 a8 (2 () ooV )

_ m /[O’Qﬂd dk log <cos (%) + cosh(ﬁe(k))) :

Then, we see that
o feC®R).

® fljo,00) : [0,00) — R takes its global maximum at and only at z = A,
where f|(g o) denotes the restriction of f on [0, co).

d*f
W(A) < 0.
The third statement above can be confirmed as follows.
d’f
@(A)
2 1 sinh(Ble(k)|)
<la— | —— + —/ dk
a0 ( 07 @) S amge * (cos(B6/2) + cosh(Be(k))) (k)
+ 1as0A sup
n€[—2d—|p|,2d+|pl]
d sinh(B/n? + 22)
dx \ (cos(86/2) + cosh(B/n? +22))/n? + 22 ) |,
< 0.

Again we need to introduce the L-dependent version of f as follows.
2

frlw) =———+ ﬁ kzr* log (Cos @) + cosMﬂ\/W))

Ul
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_ é 3 log <cos (%) + coshwe(k))) :

kel™

We may assume that (4.71) holds. When the left-hand side of (4.71) is
positive, there uniquely exists Ay, € (0,00) such that

2 N 1 Z sinh(84/e(k)? + A?) .
vl L ker+ (cos(66/2) + cosh(ﬁ\/e(k)2 + A%))\/e(kﬂ + A2 '

If the left-hand side of (4.71) is negative, we set Ay, := 0. It follows that

® fLljo,00) : [0,00) — R takes its global maximum at and only at z = Ay,
where f1|jg,o0) 18 the restriction of f1, on [0, 00).

Based on this fact and that f; and the derivatives of fr locally uniformly
converge to f and those of f respectively as I — oo, we can prove that

(4.85) Jim Ap = A,

LeN

Moreover, there exist 6 € Ry and Ly € N such that the following statements
hold true for any L € N with L > L.

e For any z € [Ar — 6, A + 6],

1 d2fL 5
(4.86) fr(z)= fr(ArL) + /0 dt(1— t)w(t(f —Ar)+Ar)(z — AL)*,
481 Tl —an+ a0 < 2 4y <o, e,

e For any = € [0,00)\[AL — 6, AL + 6],

sup (f(z) = f(A)) <0.

x€[07oo)\[A_g7A+%]

N | =

(4.88) fo(x) — fL(Ar) <

Observe that

(4.89)

/ d¢1d¢267%|¢|2 [Txer-(cos(80/2) + cosh(B+/e(k)? + [¢]?))
R2 [Txer-(cos(86/2) + cosh(Be(k)))
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./e—V(w)+W(¢)A2(¢)dMC(¢) (@)
27 o0
:A d&A drreﬁLde(T)/e_V(¢)+W(w)duC(rei5)(1/))/AQ(w)dMC(Teig)<¢)

27 e
+/ df/ drreﬁLde(T)</eV(wHW(w)AQ(@Z))d#(J(rei&)(1/’)
0 0
_/e_v(w)+w(w)dﬂc’(r€i5)(¢)/A2(¢)d/1’0(rei5)(w))

27 L4/2§ 4
BL fL(AL ——/ / (L_ET’—FAL)

L4/2 min{8,A 1}
ﬂf dt(1—¢) f7( tL*frJrAL)

. / VW) g, ()

C((L~ 8 r+Ap)ei€) C((L™Er+Ap)ei)

() / A2(4)dp

27
+ eBLfL(AL) / d¢ drreBLt(fL(r)—fL(AL))
0 [0,00)\[AL—8,AL+8]

[ OO iy (0) [ AWy ()

2 L/2§ 4
L BLLAL ——/ / dr(L~3r + Ay)
L4/2 min{§,A}

f}f dt(1— t)f’L’(tL*77~+AL
. (/e—vwnwwmz(w)du
_ —V()+W ()
/ ‘ U1 rrag)e)

/ A0 c«L-%rMmeié)(w)

27
+ eBLAfL(AL) / d¢ drrePLi(fL(r)=fu(AL))
0 [0,00)\[AL—8,AL+]

(¥)

C((L_%T—FAL)ei&)

(%)

. ( / e VOV A2 () dpicyere) ()
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_/6V(w)JrW(d])d,uC(rei&)(w)/AQ(w)d'uC(Teig)(w))’

where 6(€ Rs) is that appearing in (4.86), (4.87), (4.88). To prove conver-
gent properties, we need to multiply different volume factors depending on
whether A > 0 or A = 0. Lemma 2.5 (i), the inequalities (4.78), (4.88) and
a variant of the inequality (4.72) ensure that

L—00 h—oo

21
(4.90) lim lim (1as0L2 + 1a_ oLd)/ de
LeN heQN 0

. / drreBLAFL 1L (AL))
[0,00)\[AL—6,AL+6]

. / VOV i peie) () / A (W)dpc(re) ($) = 0,

27
lim lim (1A>0L2 +1a= oLd)/ d¢
0

L—00 h—oo
LeN he 2N

. / drreBLA L —FL(AL))
0,00\ AL—8,A1+8]

‘ (/e_v(w)+W(w)A2(w)duc(reis)(w)

_ / eV OV i, giey (1) / A2<w>duc<reis><¢>> =0

Moreover, it follows from Lemma 2.5 (i), (4.49), Proposition 4.16, (4.78),
(4.85), (4.87) and a variant of (4.73) that

(4.91)
2 Ld/2§ 4
lim lim d§/ dr(laso(L™2r 4+ Ar) + 1a=or)
L—o00 h—oo Ld/2 min{6,Az}

LeN pe 2N

L eBlo dt(1—t) f (tL™ v+ Ap)r2

. —V()+W () 2
/e Uy, a @) [ AW g @)
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00 00 8 o 9 2
= <1A>0/ drA + 1A_0/ drr) ezl (B / d§
—00 0 0

Cdim Tim e O g e (1)
LZIO\TOhZ%OI%
o O(A)(1%0,150)  C(A)(100,200)
(=5) Liir%odet< C(A)(200,100) C(A)(250, 2%0)
S

2 L4/2§ 4
Iim lim d§/ dr(1aso(L™2r + Ap) + 1a—or)
i s

d
.eﬁfo dt(1—t) fy (tL™ 2r+Ap)r?

. —V()+W (@) 42
( /e AWy, g o)

_ / VW) g, ()

C(L~ % r+AL)eit)

./A2(¢)du0((L_gr+AL)ei5)(ﬂ}))
=0.

For the same reason as above we have that

(4.92)
/ iy depePL L) / VOO g ()

2m L/2§ 4
— LA, —-/ / dr(L™2r + Ap)
L4/2 min{6,AL}

BIL dt(1-0) £ L b ALy / eV g, ()

C((L~ 8 r4Ap)ei)

21
+ eBLfL(AL) / d¢ drrePLt (L) —fu(AL)
0 [0,00)\[AL—6,AL+8]

. / VW@ gy e ()
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and
(4.93)
2 L4/2§ 4
lim lim d§/ dr(laso(L™2r 4+ Ap) + 1a—or)
RbgRle s

B -ty L S AL / e VHI W) g, ()

C((L™ S r+Ap)ei€)

0o 0o 2
= (1A>0/ drA + 1A:0/ drr) egf”(A)TQ/ d¢
—0o0 0 0

vaHWW)dMC(Aeis) (¥),

- lim lim
L—00 h—o0
LeN he%N

27
lim lim (1asoL2 + 1a_oL%) / d¢
0

L—00 h—o0

LeN he%N

. / drrePLt (L) —FL(AL)
[0,00)\[AL—6,AL+6]

-/e‘VW”W(@ducws)(zﬁ) —=0.

Furthermore, by (4.48)

L—00 h—o0

2T
(4.94) / d¢ lim  lim /e_v(w)"'w(wd,uc@eis)(w) # 0.
0 LeN heQN

To prove the claim (1.6), we first change the order of the integration over
R? and the limit operation h — oo in (2.25), (2.26), which is justified by the
uniform bound (4.78) and the dominated convergence theorem, and then
apply (4.89), (4.90), (4.91), (4.92), (4.93), (4.94). As the result,

T B(H+16S:) o
lim (e 2)

1o Tre PORTIOS)
LeN

o0 oo 27
= — <1A>0/ dT‘A + 1A0/ d?“?“) ezf//(A)T / dé-
—00 0 0

- lim lim
L—00 h—o0
LeN he%N

dpc(aciey(¥)
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L—oo

LeN

00 0o 27
/< <1A>0/ drA+1A:0/ drr> 3l (&) / d¢
—00 0 0

- lim  lim /e_V(w)+W(w)dMC(Aei€)(¢)>

b qe ((C(A)(1%0,130)  C(A)(100,200)
et <C(A)(200, 100) C(A)(Qyo,zfco))

L—00 h—o00
LeN he2ZN
< C(A)(1x0,1y0) C(A)(100,200) >

== Hm et oAy 200,100) C(A) (250, 2%0)

L—oo
LeN

or by Lemma 4.20 and (4.67),

Tr(e BHFi05:) o))

||&_;‘1‘$_>00ng20 T o AT lgrolo C(A)(100,200)C(A)(200,100)
LeN LeN
A2

After reaching this equality we only need to repeat the same argument as
in the end of the proof for SSB to complete the proof of the claim (1.6) and
the claim concerning ODLRO in (iii).

It remains to prove the claim (1.4). Remark that by (4.48)
2 L4/%s J
Re/ df/ (1A>0(L_57" + AL) + 1A:0T)
L4/2 min{6,Ar}

B/ dt(1—t) f¥ (tL™ 7r+AL)r2 —V()+W ()
’ ’ / ‘ Wi reanen®)

Ld/2§ .,
27r/ dr(1aso(L™2r + AL) + 1a—gr)
—L4/2min{8§,Ar}
GBI ) f (L Bt AL )r?

>0,

2m
Re/ d& drrePLi(fL(r)—fL(AL))
0 [0,00)\[AL—(S,AL-F(S}

: / e—V(w)—i-W(w) d:uC(relf) (w)
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> / drrePL L= fL(AL) <
[0,00)\[AL—6,AL+6]

for sufficiently large L,h. The following transformation based on (4.92) is

justified.

1 BLd BLAFL(OD [ VW) +W ()
1 L _d _
_ —Wlog <ﬁ|U| ﬁLde(AL)(1A>OL 2 + 1a—oL d))
2 L/2§ d
log / / dr(1aso(L™2r + Ar) + 1a—or)
L4/2 min{6,Ar}

B =) f (L St AL ) / VWV g, ()

C((L~ 8 r4+Ap)ei)

2
+ (1asoL? + 1a—oL%) / de / drrePLUL ()~ FL(AL))
0 [0,00)\[A L —8,A 1 +4]
‘/e_VWHWMdMC(rei&)(W)-

Then, by (2.25), (4.93) and a variant of (4.73), (4.85),

) 1 Tr 6—5(H+i952)
A\~ g o8 | oS
LeN

= lim lim
L—00 h—oo
LeN he%N

1 ,BLd dg, _
. <—W10g (m . dpy dppeP 12 (19D) / e V(’”Hw(wdﬂc(@(l/’)))
= - lim fi(AL) = —f(A).

LeN

By combining this with (2.2) we finally obtain the equality (1.4). O

Appendix A. Proof of Proposition 4.1

Here we provide a short proof of Proposition 4.1 for readers’ convenience.
We should remark that the proof below is essentially a digest of the general
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construction of [17]. First let us recall a simple fact based on the Cauchy-
Binet formula.

LEMMA A.1l. Assume that n X n matrices A = (A(iaj))lgi,jgn, B =
(B(i,7))1<i,j<n satisfy that

| det (A(ki, [j))1<ijem| < DF", | det(B(ki,1j)i<ij<m| < DE"

with Da, Dp € Rxq for any {k;}", {L:}7, C {1,2,--- ,n} satisfying
ki1 <---<kpm, 1 < - <ly. Then,

|det(A + B)| < (D4 + Dp)*.

ProOOF. By applying the Cauchy-Binet formula to the decomposition

A+B=(A In)<I§>

we observe that

| det(A + B)|

D>

v:{1, ,n}—{1,- 2n}
with y(1)<---<y(n)

|det(( A In )(i,7(5)))1<ii<nl

n

ae((5) (”(i)’j))lg,jgn

m 2(n—
> L (my<n<n(miny DY Dy "™

m=0~:{1, ,n}—{1,,2n}
with y(1)<---<y(n)

n 2 n
o n 2m ~2(n—m) < 2n 2m ~2(n—m)
() e 3 (2 Yo

m=

IN

< (Da+ Dp)*",

where we set v(0) :=0, y(n+1) :=n+ 1.0
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PROOF OF PROPOSITION 4.1. Take any m,n € N, u;,v; € C™ with
HuiH(Cma HVZH(Cm S 17 (pi>xiasi)7(ni7Yiati) € {172} x I' x [076) (7’ = 1727
-+ ,n), j € {1,2}. Define the n x n matrix M = (My;)1<ki<n by

My = (W, Vi) om Loy o, (FF (orXkst), 97 (myit))p, (LE=1,2,--- ).
Let us prove that |det M| < D?*". By permutating rows and columns if
necessary we may assume that s; > --- > s,, t1 > --- > t,. By the
assumption of continuity the function

(517"' 7571’617"' aén)'_>

| det (g, Vi) @ Loy e, >t—6 (5 (orXn (s + €8))s 95 (myi(t = 6))3)1<ki<nl

: RQZ% — R
is continuous at 0. Thus, we can choose real sequences (s})o2, ()52 (k
1,2,---,n) such that s§ > -+ > sh, ¢) > - >, {sSF}0_, n{h}7,
for any p € N and

0

lim | det((ug, vi)om g (f7 (pk%k8E), 95 (myit])) ) 1<k i<n| = | det M.

p—0o0

Thus, by keeping in mind that we perform the limit operation in the end we
may also assume that s; > -+ > s, t1 > - > b, {sp}p N {te}fy = 0.
Define the vectors f(sg), g(tx) (k=1,2,--- ,n) of C" @ H by f(sx) :=
uy ®ij (prXksk), g(tg) := vi ®ng (Mkyxtr). Let H be the finite-dimensional
subspace of C"™ @ H spanned by f(s), g(tx) (k =1,2,---,n). For f € H
let a(f) (a(f)*) be the annihilation (creation) operator on the Fermionic
Fock space Ff(H). It is well-known (see e.g. [2, Subsection 5.2.1]) that

f).alg)"} = {f,9)x
f)”zg(pf(ﬂ)) = Ha(f)*HB(Ff(ﬂ)) = ||fH7—p (Vf,g € 7%)7

~

where || - ”B(Ff (1)) 18 the operator norm for operators on Fy (H). For (b,¢) €
(kb {11 U ([tedy x {11) we set age) = a(f(B)) if € = —1,
a(g(b))*if & =1. Let l € {1,--- ,2n}. For any distinct (b1,&1), -+, (b,&) €
({sk}iey x {=1}) U ({tx}i—q x {1}) there uniquely exists o € S; such that
ba(l) > bg(g) > > ba(l)- Then, we set

(A.1) {a

(
(A.2) la(

T(a(b1,£1) a 'a(bzyﬁz)) = Sgn(a)a(bau),&a(n) Qb))
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Let us prove that

(A.3)
det M

n(n 1)

= ()™ T(a(f (1)) - al f (su))alg(t1)" -+ alg(tn)) ) £, 5y

by induction with n, where Q denotes the vacuum and (-, -) Fy () is the inner

product of F f(ﬂ) It clearly holds for n = 1. Let us assume that it holds
for n — 1 with n > 2. If t; > s,

(R.H.S of (A.3))
= (-
(9, a(g(t1))" T(alf(s1)) - alf (sn))alg(t))* -+~ alg(tn)) ) o, )
=0 = det M.
Consider the case that t; < s;. Then, there exists k € {1,2,--- ,n} such

that (k <n—1) A (sg > t1 > sg41) or (k =n) A (sg > t1). Then, by (A.1)
and the induction hypothesis,

(R.ILS of (A.3))

— (_1)@+n7k

(. a(f(s1)) -~ al(f(s)alg(t1))"

)
T(a(f(sk41)) -+ a(F(sn))alg(t2)" -~ alg(t)) IV,
k

Z n(n 1)+n+l f( l)7g(t1)>7:[

(9,

a(f(s1)) - a(f(sim))alf(si1) -+ alf(se))
TT(a(f(ske)) - alf(sn)alg(t2))" - alg(t) ),

(=1) " (), g(0))

] =

. ~
=

, Tla(f(s1)) - - alf(si-1))a(f (s141)) - - a(f (sn))
~a(g(t2))" - alg(ta)) ) 5,
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(_1)l+1Ml,1 det(My q)1<p<npr = det M.

2<q<n

Here we used that

(_l)n(ngfl) 4+ (n71)2(n72) _ (_1)l+1

Thus, by induction (A.3) holds for any n € N.
Then, by using (A.2) we can derive from (A.3) that

n

>
|det M| < [T I1/7 (oexusi) g7 (meyete) o < D™

k=1

A parallel argument shows that

| det((ug, vi)om Ls,<t, (f5 (okXksk), 95 (myite) )y 1 <ki<nl < D"

In fact in this case we may assume that s < ---

< Sy, b < oo <

175

tn,

{s}i_y N {tx}7_; = 0 by the continuity argument. Then we only need

to define T to arrange in the opposite order.

Now coming back to the

decomposition (4.1), we can repeatedly apply Lemma A.1 to derive the
claimed inequality. [
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Notation

Parameters and constants
Notation Description Reference
d spatial dimension Subsection 1.2
L size of the spatial lattice Subsection 1.2
hop 0 or 1, parameter to determine sign of hopping | Subsection 1.2
I chemical potential Subsection 1.2
U negative coupling constant Subsection 1.2
5y magnitude of symmetry breaking external field | Subsection 1.2
I} inverse temperature Subsection 1.2
0 magnitude of imaginary magnetic field Subsection 1.2
A1, Ao artificial parameters Subsection 2.2
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inverse step size of time-discretization
4hL?, cardinality of I
0/2 — /B

Subsection 2.2
Subsection 2.2
beginning of

Section 4
Sets and spaces
Notation Description Reference
r {0,1,--- ,L —1}¢ Subsection 1.2
r* {0, %’22% D2, ,12%([, — 1)} Subsect?on 2.2
[0,8)n 0,7,%,--, -3} Subsection 2.2
D(r) {zeC||z| <r} Subsection 2.2
1y {1,2} xIT'x [0, B)n Subsection 2.3
I Iy x {1,-1} Subsection 2.3
% complex vector space spanned by {¢x } xer Subsection 2.3
AV Grassmann algebra generated by {¢x}xer Subsection 2.3
I° {1,2} x ' x {0} x {1,—1} Subsection 3.1
Neven V Subspace of AV consisting of even Subsection 3.1
polynomials

Map(A, B) | set of maps from A to B Subsection 3.4

Functions and maps

Notation Description Reference

9 map from Z? to T Subsection 1.2

Ho err oe{T,l}((_l)hOP 2?21 Subsection 1.2
U( jcgwareja + ¢§g¢x—eja) — 1o Vxo)

v d Zx,yer Va1 Ve Uy 1 ¥y Subsection 1.2

H Ho +V Subsection 1.2

F ’szer(z/’;ﬂb;i + Vg ¥x1) Subsect%on 1.2

S. 7 2 xer (Wxi¥xt — Vi ¥x)) Subsection 1.2

A Yz, Subsection 1.2

Az ¢;T¢;iw5’“ﬁﬁ Subsection 1.2

e(") (—1)hor2 > j—1 cosk; — pu, free dispersion Subsection 1.2
relation

gd function to control possible magnitude of cou- | Equation (1.1)
pling constant

C(9) 2-band free covariance parameterized by ¢ € C | Equation (2.17)

E(¢) (2 x 2)-matrix-valued function parameterized | Equation (2.18)

by ¢ € C
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Tree(S,C) | operator consisting of Grassmann left- | Subsection 3.1

derivatives
T3 map from 17 to [0, 8), Subsection 3.2
Rg map from ({1,2} x ' x +Z x {1,-1})" Subsection 3.2

to I™ or from ({1,2} x T" x %Z)” to I

Norms and semi-norms

Notation Description Reference

Il 100 integrating with all but one fixed variable Subsection 3.1

Il 1 integrating with all variables Subsection 3.1

I 117,00 norm defined on anti-symmetric function on I? | Subsection 3.1

[ 11700 + B7H - 1,00 Subsection 3.1

[ ]1,00 measurement of function on I™ x I™ Subsection 3.1
coupled with a function on I?

[, measurement of function on I™ x I" Subsection 3.1
coupled with a function on I?

|| ) | 1,00, SUP, B ||f(u) 1,00 Subsection 3.4

1 SUP, By, A D) I|.f(u, A1 Subsection 3.5

Other notations

Notation Description Reference

e; standard basis of R? Subsection 1.2

(=14

V() sum of quadratic and quartic polynomials | Equation (2.11)
of AV

W () quartic polynomial of AV Equation (2.12)

Al () quadratic polynomial of AV Equation (2.13)

A2(¥) quartic polynomial of AV Equation (2.13)

A() M AL (Y) + A A2 (2) Equation (2.14)

d;(T) degree of vertex j in tree T' Subsection 3.2
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