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Higher Order Phase Transitions in the BCS Model

with Imaginary Magnetic Field

By Yohei Kashima

Abstract. In the BCS model with imaginary magnetic field at
positive temperature we provide necessary and sufficient conditions for
existence of a higher order phase transition driven by temperature. We
define the order of the phase transition by regularity of the extended
free energy density with temperature. More precisely we prove the fol-
lowing. There exist a non-vanishing free dispersion relation and a weak
coupling constant such that a temperature-driven phase transition of
order n ∈ 4N+2 (= {6, 10, 14, · · · }) occurs if and only if the minimum
of the magnitude of the free dispersion relation over the maximum is

less than or equal to the critical value
√

17 − 12
√

2. These statements
are also proved to be equivalent to that there exist a non-vanishing free
dispersion relation and a weak coupling constant such that the phase
boundary varying with the inverse temperature has a stationary point
of inflection. Moreover, it follows that for any non-vanishing free dis-
persion relation and weak coupling constant the temperature-driven
phase transition is of 2nd order if and only if the minimum of the
magnitude of the free dispersion relation over the maximum is larger

than
√

17 − 12
√

2. We apply some key lemmas established in Section
2 of [Y. Kashima, J. Math. Sci. Univ. Tokyo 28 (2021), 399–556]. So
this work is a continuation of the section of the preceding paper.

1. Introduction and Main Results

1.1. Introduction

The infinite-volume limit of the many-electron system governed by the

Bardeen-Cooper-Schrieffer (BCS) model with imaginary magnetic field can

be explicitly derived for any positive temperature and weak coupling con-

stant if the free dispersion relation is non-vanishing, as shown in the preced-

ing work [25]. While the temperature, the imaginary magnetic field and the
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coupling constant are largely restricted in [23], where the free Fermi surface

is non-degenerate, and in [24], where the free Fermi surface is typically de-

generate but non-empty, we have more freedom to choose these parameters

in the framework of [25]. In particular, if the coupling constant is suffi-

ciently small depending on the non-vanishing free dispersion relation, we

can fully draw the phase boundary in the 2D plane of (inverse temperature,

imaginary magnetic field) and justify the derivation of the infinite-volume

limit of the free energy density at the same time. This means that we

can reach a rigorous conclusion on the phase transitions happening in the

infinite-volume limit of the many-electron system by means of mathematical

analysis of the phase boundary. This is what we aim for in this paper.

The imaginary magnetic field can be considered as the real time variable

in the context of dynamical quantum phase transition (DQPT). This fact

motivates us to establish fundamental properties of this unconventional BCS

model. The physical research on DQPT has been growing steadily since the

proposal [18]. Let us summarize the formalism of DQPT to which our

free energy density is related. DQPT at zero temperature is defined as

appearance of non-analyticity of the function

t �→ lim
N→∞

1

N
log 〈ψ0, e

−itHψ0〉,(1.1)

where H is a quantum many-body Hamiltonian, ψ0 is a state vector and N

denotes the system size ([18], [15]). The quantity 〈ψ0, e
−itHψ0〉 is called the

Loschmidt amplitude, which measures the overlap between the initial state

and the state after time-evolution. There have been attempts to generalize

the concept to finite temperature. When ψ0 is the ground state of a Hamil-

tonian H0, the finite-temperature counterpart of the Loschmidt amplitude

is

Tr(e−βH0e−itH)

Tr e−βH0
(1.2)

with the inverse temperature β(∈ R>0). Accordingly DQPT at positive

temperature is defined by non-analyticity of the function

t �→ lim
N→∞

1

N
log

(
Tr(e−βH0e−itH)

Tr e−βH0

)
(1.3)

(see e.g. [3], [17], [31], [20], [19]). There is another approach to DQPT at

positive temperature. It is known ([37], [35]) that the characteristic function
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of the work done in a quantum system where the initial Hamiltonian H0

suddenly changes to H1 is given by

Tr(e−βH0e−itH0eitH1)

Tr e−βH0
.(1.4)

As pointed out in [35], (1.4) is also considered as a finite-temperature version

of the Loschmidt amplitude 〈ψ0, e
−itH0eitH1ψ0〉. In [1], [34], [33] there are

explanations about defining DQPT at positive temperature based on (1.4)

in place of (1.2). Let us explain how our model fits in these formalism.

Let H denote the BCS model and Sz denote the z-component of the spin

operator. The explicit definition will be given in Subsection 1.2. In this

paper we analyze the free energy density of the BCS model with imaginary

magnetic field

lim
N→∞

(
− 1

βN
log(Tr e−βH+itSz)

)
.(1.5)

Within the weak coupling regime of this paper no temperature-driven phase

transition is signaled as singularity of the free energy density without imag-

inary magnetic field

lim
N→∞

(
− 1

βN
log(Tr e−βH)

)
.

Thus the regularity of (1.5) with (β, t) in R>0 × R is the same as that of

lim
N→∞

(
− 1

βN
log

(
Tr e−βH+itSz

Tr e−βH

))
.

Since Sz commutes with H,

Tr e−βH+itSz = Tr(e−βHeitSz) = Tr(e−βHe−itHeit(H+Sz)).

We can see that analyzing (1.5) is linked to the study of DQPT at positive

temperature based on both (1.2) and (1.4). Jump discontinuity of the 2nd

order time derivative of (1.5) was shown in [25, Proposition 2.5 (iii)], which

therefore implies a DQPT in the BCS model at positive temperature. This

phenomenon has not been reported in other articles except for our previous

work, to the best of the author’s knowledge.



128 Yohei Kashima

One main theme of the physical research on DQPT so far is the possible

relation between DQPT and equilibrium phase transition (EPT). In (1.1)

with the ground state vector ψ0 of a Hamiltonian H0 or in (1.3) the question

is whether existence of a DQPT is related to existence of an EPT in the

systems governed by H0, H. One expected scenario is that a DQPT occurs

if H0 and H are in mutually distinct phases so that the quench from H0

to H crosses a critical point of EPT. In the formulation (1.4) the quench is

from H0 to H1. Thus the same question with H1 in place of H should be

considered. As summarized in the review article [15], there are many results

indicating such correspondences between DQPT and EPT. For example the

article [3] shows that a DQPT occurs based on the formulation (1.3) with

the transverse-field Ising chain if the quench of the transverse magnetic field

crosses a quantum critical point, which is a critical point of EPT at zero

temperature. The article [17] presents a DQPT in the formulation of the

type (1.3) with the 2D massive Dirac model after quenching across a criti-

cal point of topological phase transition. On the other hand, there are also

many DQPTs unrelated to EPT. For example the papers [2], [40] highlight

occurrence of DQPTs without crossing any EPT in quantum spin chains at

zero temperature. As for positive temperature, the paper [31] intends to

present numerical results showing DQPTs based on the formulation (1.3)

for the fully connected transverse-field Ising model, despite that the quench

from H0 to H does not cross any equilibrium critical point, in Appendix

B. See the arXiv version of [31, Appendix B] for clean presentation. As

emphasized in [15], DQPT seems to be a critical phenomena which is not

tightly connected with EPT in general. We know that DQPTs occur in

the formulation (1.4) when H0 is the weakly interacting BCS model H and

H1 = H + Sz at high temperatures. We can deduce from the definition of

DQPT that the same conclusion holds for H1 = H+ θSz for any θ ∈ R\{0}.
It is possible to reconstruct the framework [23] to prove that if the BCS

interaction is weak and the temperature is high, H+θSz is in a trivial phase

without U(1)-symmetry breaking for any θ ∈ R. See Remark 1.14 for the

technical details. In summary the DQPTs occur despite that the quench

from H to H + θSz crosses no critical point of EPT. As explained above,

finding no clear relation between our DQPTs and the typical EPTs in the

BCS model is not discouraging. It is rather interesting that DQPTs charac-

terized by spontaneous U(1)-symmetry breaking occur at high temperatures
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(see [25, Theorem 1.3]) where such an order cannot exist in the equilibrium

case.

There is yet another definition of DQPT at positive temperature, based

on the fidelity between the initial thermal density operator ρ(0) and the

density operator ρ(t) after time evolution, where

ρ(t) :=
e−itHe−βH0eitH

Tr e−βH0
, t ∈ R

with Hamiltonians H0, H. The DQPT is defined as non-analyticity of the

function

t �→ lim
N→∞

1

N
log Tr

(√√
ρ(0)ρ(t)

√
ρ(0)

)
.

See e.g. [33], [31], [34] for the definition. The fidelity version of DQPT in

our model is defined with

ρ(t) =
e−itSze−βHeitSz

Tr e−βH
, t ∈ R.

However, since H commutes with Sz, ρ(t) = ρ(0) for all t ∈ R. This implies

non-existence of DQPT in the fidelity-based formulation. This is not an

uncommon scenario. The paper [20] features a couple of multi-band non-

hopping models which show DQPTs in the formulation (1.3) with finite β or

in the infinite-temperature limit β → 0, despite that the initial density oper-

ator is unchanged by quantum quench, or in short ρ(t) = ρ(0) for any t ∈ R,

and thus there is no DQPT in the fidelity-based formulation. In general the

finite-temperature Loschmidt amplitude (1.2), (1.4) can be reformulated

into the overlap between time-evolving pure states via purification of the

initial density operator. The paper [20] attempts to give a physical inter-

pretation to a thermal DQPT, where the initial thermal density operator

remains intact, by means of such transformations.

DQPT is not only a theoretical concept. A number of articles have

already presented the experimental observations at zero temperature, fol-

lowing the theoretical predictions. See e.g. [22], [11], which are also reviewed

in [15, Section 4]. A brief summary of experiments of DQPT is given in the

recent paper [19]. Though we do not find any experimental result treat-

ing temperature as a control parameter of DQPT, the authors of [17] argue
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that their finite-temperature formalism of DQPT reproduces the experimen-

tal observation of [11], because the experiment is “unavoidably performed

on mixed states”.

Here we add one remark that our notion of phase diagram is different

from the dynamical phase diagram defined in the physics literature (e.g.

[46], [14], [31], [39]). Our phase diagram drawn in [25, Subsection 2.1] shows

the boundary of a region where the gap equation has a positive solution

in the plane of (inverse temperature, real time). On the other hand, the

dynamical phase diagrams in [46], [14], [31], [39] show boundaries of different

regions in a plane of 2 parameters, which does not include the real time

variable. The 2 parameters plus the real time variable control the dynamical

analogue of free energy density whose singularity with the time variable

defines DQPT. The 2 parameters belong to the inside of the boundaries if

the DQPT occurs, i.e. the dynamical free energy density is non-analytic

with the time variable.

In [25, Section 2] we proved that the phase transition driven by the real

time variable is of 2nd order and that driven by the temperature is also

of 2nd order at most of the critical temperatures. Recall that we define

the order of phase transition in terms of regularity of the extended free

energy density, which is an analogy to the Ehrenfest classification. Moreover

we gave a necessary and sufficient condition for the representative phase

boundary to have only one local minimum point (LMiP). More precisely, the

condition is that the minimum of the modulus of the free dispersion relation

over the maximum is larger than the critical value
√

17 − 12
√

2. We did not

relate the order of the phase transition to the uniqueness of LMiP, though

in [25, Remark 2.6] we mentioned a possibility of the temperature-driven

phase transition of higher order in case where the phase boundary has a

stationary point of inflection.

The main results of this paper are obtained by pursuing the question

raised in [25, Remark 2.6]. Admitting the free energy density of the BCS

model with imaginary magnetic field characterized in [25, Theorem 1.3 (ii)],

we prove that we can choose a non-vanishing free dispersion relation and a

weak coupling constant so that the system has a temperature-driven phase

transition of order n for some n ∈ 4N+2 (= {6, 10, 14, · · · }) if and only if the

minimum of the modulus of the free dispersion relation over the maximum

is less than or equal to
√

17 − 12
√

2. We also prove equivalence between
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existence of a higher order phase transition (HOPT) driven by temperature

and existence of a stationary point of inflection (SPI) on the phase boundary.

It follows in particular that the temperature-driven phase transition is of

order n ∈ 4N + 2 if the critical inverse temperature is a SPI of the phase

boundary, it is of 2nd order otherwise. In the previous work [25] we were

unaware of the relation between the order of the phase transition and the

critical value
√

17 − 12
√

2. The essential new finding in this paper is that

the universal constant
√

17 − 12
√

2 is also a critical value for existence of a

HOPT driven by temperature.

Once the equivalence between existence of a HOPT and existence of a

SPI is established, we focus on the problem of existence / non-existence of a

SPI. Our study on the uniqueness / non-uniqueness of a LMiP of the phase

boundary in [25, Section 2] essentially helps us in this part. The proof of

uniqueness of LMiP is technically close to the proof of non-existence of SPI.

Specifically, we apply [25, Lemma 2.12] as the key lemma. When there are

2 LMiPs on the phase boundary, we can continuously transform the free

dispersion relation until one of the LMiPs disappears. In the middle of this

process a SPI appears on the phase boundary. This is how we prove the ex-

istence of a SPI and thus a HOPT. We remark that [25, Lemma 2.15] plays a

key role in the proof of the existence in a critical case. After proving the main

theorems we study specific models in terms of SPI and HOPT. There we

also apply [25, Lemma 2.24] and admit the proof of [25, Proposition 2.26].

The critical value
√

17 − 12
√

2, whose original meaning is a root of the

polynomial X4 − 34X2 + 1, is already involved in [25, Lemma 2.12], [25,

Lemma 2.15] and [25, Lemma 2.24]. This work can certainly be seen as a

continuation of [25, Section 2] from the technical viewpoint.

As explained in the beginning, the main reason for focusing on non-

vanishing free dispersion relations is that the derivation of the free energy

density is justified for wide range of parameters. It is encouraging that this

class of free dispersion relations cover benchmark models showing DQPTs

at positive temperature, namely Fermionic Hamiltonians for topological in-

sulator. Let H0, H be gapped Hamiltonians with different ground state

topology in (1.3). It has been vigorously studied if such a system exhibits

DQPT in recent years. Though the benchmark models are spinless, they

can be written with single-particle Hamiltonian matrices belonging to our

class. They are e.g. the Haldane model (2-dimensional, 2-band, [13], [17]),
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the Su-Schrieffer-Heeger (SSH) model (1-dimensional, 2-band, [36], [19]).

Though it is related to DQPT at zero temperature, the paper [32] intro-

duced a multi-band version of the SSH model, which belongs to our class as

well. We will show how to construct the Haldane model and the SSH model

in Remark 1.2 as concrete examples of our free Hamiltonian.

No physical interpretation has been given to non-analyticity of the func-

tions

β �→ lim
N→∞

1

N
log

(
Tr(e−βH0e−itH)

Tr e−βH0

)
,

β �→ lim
N→∞

1

N
log

(
Tr(e−βH0e−itH0eitH1)

Tr e−βH0

)
in the context of DQPT as far as the author knows. Therefore, what this

paper presents as the main results are novel mathematical properties of the

BCS model, rather than physical properties which can be immediately inter-

preted in terms of DQPT at present. One interesting aspect of our DQPT

is that the dynamical free energy density (1.5) is equal to the minimum of

a function whose minimizer is the order parameter solving the gap equa-

tion. It is actually written as the right-hand side of (1.7). Whether one

can construct an analogue of the Landau theory of EPT in the context of

DQPT is posed in [16] as one open question. The paper [38] presents such

a trial in the transverse-field Ising chain. Since there is a notable structural

resemblance to the conventional macroscopic theory of EPT, it is a natural

mathematical interest to pursue the analogy by studying the degree of non-

analyticity of our free energy density with β. Concerning the conventional

BCS model without imaginary magnetic field, it is a general consensus that

the temperature-driven transition between superconducting / normal phase

is of 2nd order. Despite that there are many mathematical papers studying

the BCS theory (see e.g. the review articles [12], [4]), it seems that only a

few have tried to prove the order of the phase transition. There are mathe-

matical constructions toward the 2nd order phase transition in a BCS-type

thermodynamic potential by Watanabe ([41], [42], [43], [44], [45]).

We find more articles related to the present paper’s theme, namely

HOPT in superconductors, in physics literature. Cronström and Noga [5]

obtained a mean field solution to the BCS model in thin films and a layered

structure, which shows a 3rd order superconducting phase transition. There
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are attempts to explain experimentally observed anomalous superconduct-

ing phase transitions in terms of HOPT, especially of 3rd / 4th order, by

extending the phenomenological Ginzburg-Landau theory. Kumar and the

coauthors ([27], [29], [30], [28], [10]) initiated this approach. Later Ekuma

and the coauthors ([6], [7], [9], [8]) continued in this line of research, aiming

in particular to explain a 3rd order phase transition in iron-based supercon-

ductors.

This paper is organized as follows. In the rest of this section we pre-

pare necessary concepts and state the main results of this paper. In Sec-

tion 2 we prove the main theorems step by step by establishing various

propositions ranging from the equivalence between HOPT and SPI to ex-

istence / non-existence of a SPI. In Section 3 we study whether HOPT is

possible in multi-orbital non-hopping models and a one-dimensional nearest-

neighbor hopping model. These are the same models as those analyzed in

[25, Subsection 2.3] with regard to uniqueness / non-uniqueness of a LMiP

of the phase boundary.

1.2. The main results

We keep using many of the notations introduced in [25, Section 1, Sec-

tion 2]. Let us reintroduce the important ones for clarity of the present

paper. With the dimension d ∈ N let (v̂j)
d
j=1 denote a basis of R

d. Define

the subset Γ∗
∞ of R

d by

Γ∗
∞ :=


d∑

j=1

k̂jv̂j

∣∣∣ k̂j ∈ [0, 2π] (j = 1, · · · , d)

 .

Originally the set Γ∗
∞ is the continuum limit of a finite momentum lattice

spanned by (v̂j)
d
j=1, which is denoted by Γ∗ below. Take b ∈ N and emin,

emax ∈ R>0 satisfying emin ≤ emax. The set E(emin, emax) of one-particle

Hamiltonians in momentum space is defined as follows. E ∈ E(emin, emax)

if and only if

E ∈ C∞(Rd,Mat(b,C)),

E(k) = E(k)∗, ∀k ∈ R
d,

E(k + 2πv̂j) = E(k), ∀k ∈ R
d, j ∈ {1, · · · , d},

E(k) = E(−k), ∀k ∈ R
d,(1.6)
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inf
k∈Rd

inf
u∈Cb

with ‖u‖
Cb

=1

‖E(k)u‖Cb = emin(> 0),

sup
k∈Rd

‖E(k)‖b×b = emax.

Here Mat(b,C) is the complex Banach space of b × b complex matrices

equipped with the operator norm ‖ ·‖b×b. Also, ‖ ·‖Cb denotes the canonical

norm of C
b induced by the Hermitian inner product.

Some of the properties assumed in E(emin, emax) will not be used in this

paper at all. For example, we do not need to assume that k �→ E(k) is

infinitely differentiable and (1.6) to complete the proofs of the main results.

We keep these conditions in this paper in order to emphasize that the free

energy density analyzed in this paper is the same as that rigorously derived

in [25, Theorem 1.3 (ii)] by assuming these conditions.

Our main theorems concern the free energy density which explicitly in-

volves the solution ∆ to the gap equation. Therefore we have to intro-

duce the gap equation in advance. For E ∈ E(emin, emax) the function

gE : R>0 × R × R → R is defined by

gE(x, t, z) := − 2

|U |

+ Dd

∫
Γ∗∞

dkTr

(
sinh(x

√
E(k)2 + z2)

(cos(t/2) + cosh(x
√

E(k)2 + z2))
√

E(k)2 + z2

)
,

Dd := |det(v̂1, · · · , v̂d)|−1(2π)−d.

The parameter U is real, negative and called coupling constant. Remind us

that for any function f : R\{0} → C and k ∈ R
d f(E(k))(∈ Mat(b,C)) is

defined via the spectral decomposition of E(k). The next lemma is essen-

tially the same as [25, Lemma 1.1].

Lemma 1.1. The following statements hold for any (β, t) ∈ R>0 × R.

The equation gE(β, t,∆) = 0 has a solution ∆ in [0,∞) if and only if

gE(β, t, 0) ≥ 0. Moreover, if a solution exists in [0,∞), it is unique.

This lemma enables us to define the function ∆ : R>0 × R → R≥0 as

follows. For (β, t) ∈ R>0 × R, if gE(β, t, 0) ≥ 0, let ∆(β, t) ∈ R≥0 be such

that gE(β, t,∆(β, t)) = 0. If gE(β, t, 0) < 0, let ∆(β, t) := 0. Observe that

∆(β, t) = ∆(β, δt + 4πm), ∀(β, t) ∈ R>0 × R, δ ∈ {1,−1}, m ∈ Z.
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Moreover, we define the function FE : R>0 × R → R by

FE(β, t) :=
∆(β, t)2

|U | − Dd

β

∫
Γ∗∞

dkTr log

(
2 cos

(
t

2

)
e−βE(k)

(1.7)

+ eβ(
√

E(k)2+∆(β,t)2−E(k)) + e−β(
√

E(k)2+∆(β,t)2+E(k))

)
.

We can see that

FE(β, t) = FE(β, δt + 4πm), ∀(β, t) ∈ R>0 × R, δ ∈ {1,−1}, m ∈ Z.

(1.8)

According to [25, Theorem 1.3 (ii)], for any E ∈ E(emin, emax) there exists

c′ ∈ (0, 1] such that for any β ∈ R>0, t ∈ R,

U ∈
(
−2c′

b
min{emin, e

d+1
min}, 0

)
,(1.9)

FE(β, t) = lim
L→∞
L∈N

(
− 1

βLd
log
(
Tr e−βH+itSz

))
,

where c′ depends only on d, b, (v̂j)
d
j=1 and the quantity

sup
k∈Rd

sup
mj∈N∪{0}
(j=1,··· ,d)

∥∥∥∥∥∥
d∏

j=1

∂mj

∂k
mj

j

E(k)

∥∥∥∥∥∥
b×b

1∑ d
j=1 mj≤d+2.(1.10)

For any proposition P 1P := 1 if P is true, 1P := 0 otherwise. The operator

H is the BCS model with the reduced quartic interaction and the one-particle

Hamiltonian E(·), and Sz is the z-component of the spin operator. The

negative parameter U controls the strength of attractive interaction between

Cooper pairs in the BCS model H. More precisely,

H :=
1

Ld

∑
(ρ,x),(η,y)∈B×Γ

∑
σ∈{↑,↓}

∑
k∈Γ∗

ei〈x−y,k〉E(k)(ρ, η)ψ∗
ρxσψηyσ
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+
U

Ld

∑
(ρ,x),(η,y)∈B×Γ

ψ∗
ρx↑ψ

∗
ρx↓ψηy↓ψηy↑,

Sz :=
1

2

∑
(ρ,x)∈B×Γ

(ψ∗
ρx↑ψρx↑ − ψ∗

ρx↓ψρx↓),

where B := {1, 2, · · · , b},

Γ :=


d∑

j=1

mjvj

∣∣∣ mj ∈ {0, 1, · · · , L− 1} (j = 1, · · · , d)

 ,

Γ∗ :=


d∑

j=1

m̂jv̂j

∣∣∣ m̂j ∈
{

0,
2π

L
,
4π

L
, · · · , 2π − 2π

L

}
(j = 1, · · · , d)

 ,

(vj)
d
j=1 is a basis of R

d, dual to (v̂j)
d
j=1 and for (ρ,x, σ) ∈ B×Γ×{↑, ↓} ψρxσ

(ψ∗
ρxσ) is the annihilation (creation) operator on the Fermionic Fock space

Ff (L
2(B×Γ×{↑, ↓})). The Fermionic operators appear only in this section.

As we want to relate the present construction to the original definitions, U

is taken as a negative parameter throughout this paper even though we

essentially deal with |U | in every estimate.

Here we remark for clarity that [25, Theorem 1.3] is claimed for t = −βθ

with any θ ∈ R. The arbitrariness of θ ensures that [25, Theorem 1.3 (ii)]

is equivalent to the above statement.

Remark 1.2. We can formulate various free Hamiltonians into the

form

1

Ld

∑
(ρ,x),(η,y)∈B×Γ

∑
σ∈{↑,↓}

∑
k∈Γ∗

ei〈x−y,k〉E(k)(ρ, η)ψ∗
ρxσψηyσ

with E ∈ E(emin, emax). The most standard one is the nearest-neighbor

hopping model on the (hyper-)cubic lattice

E(k) = 2

d∑
j=1

cos kj − µ, k ∈ R
d(1.11)

with µ ∈ R\[−2d, 2d]. In this case b = 1, (vj)
d
j=1, (v̂j)

d
j=1 are the canonical

bases of R
d and emin = |µ| − 2d(> 0), emax = |µ| + 2d. In the following we
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Fig. 1. The lattice for the SSH model.

present a couple of benchmark models studied in the context of DQPT at

finite temperature. We note, however, that these models are supposed to

describe spinless Fermions in the papers we refer to.

The Su-Schrieffer-Heeger (SSH) model The SSH model describes a 1-

dimensional, 2-band insulator. It was originally proposed as a model

of polyacetylene ([36]). It was analyzed in [19] to display DQPT at

finite temperature. To formulate the model, we set b = 2. The spatial

lattice is identified as {1, 2} × Z. In our finite-volume formulation

Γ = {0, 1, · · · , L− 1}, Γ∗ = {0, 2π
L , · · · , 2π

L (L− 1)}. The lattice linked

by the nearest-neighbor hopping is pictured in Figure 1.

The corresponding one-particle Hamiltonian matrix E is defined by

E(k) =

(
0 J1 + J2e

−ik

J1 + J2e
ik 0

)
, k ∈ R,

where J1, J2(∈ R) are hopping amplitude. Set

f(k) :=
√

J2
1 + 2 cos kJ1J2 + J2

2

for k ∈ R. Since the eigenvalues of E(k) are ±f(k),

inf
k∈R

inf
u∈C2

with ‖u‖
C2=1

‖E(k)u‖C2 = min
k∈R

f(k) = ||J1| − |J2||,

sup
k∈R

‖E(k)‖2×2 = max
k∈R

f(k) = |J1| + |J2|.

Thus if |J1| �= |J2|, E ∈ E(emin, emax) with emin = ||J1| − |J2||(> 0),

emax = |J1| + |J2|.
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Fig. 2. The honeycomb lattice linked by the nearest-neighbor hopping (solid lines) and
the next-nearest-neighbor hopping (dashed lines).

The Haldane model Let b = 2, v1 = (1, 0)T , v2 = (1
2 ,

√
3

2 )T , v̂1 =

(1,− 1√
3
)T , v̂2 = (0, 2√

3
)T . The vectors v1, v2 form a basis of R

2

and (v̂j)
2
j=1 is its dual basis. The honeycomb lattice is expressed as

{1, 2} × {m1v1 + m2v2 | m1,m2 ∈ Z}.

In the Haldane model ([13]) not only the nearest-neighbor hopping but

also the next-nearest-neighbor hopping is considered. The honeycomb

lattice linked by these hoppings is pictured in Figure 2. See [21] for

experimental realization of the model.

A version of the Haldane model studied in [17] can be formulated

with

E(k) = (E(k)(ρ, η))1≤ρ,η≤2,

E(k)(1, 1)

= m− 2J ′(cos(〈k,v1 − v2〉) + cos(〈k,v1〉) + cos(〈k,v2〉)),
E(k)(1, 2) = J(1 + e−i〈k,v1〉 + e−i〈k,v2〉),

E(k)(2, 1) = J(1 + ei〈k,v1〉 + ei〈k,v2〉),

E(k)(2, 2)

= −m + 2J ′(cos(〈k,v1 − v2〉) + cos(〈k,v1〉) + cos(〈k,v2〉)),
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where J(∈ R\{0}), J ′(∈ R) is the nearest-neighbor, the next-nearest-

neighbor hopping amplitude respectively and m(∈ R) is the on-site

energy. It is clear that all the conditions of E(emin, emax) except for

the spectral properties are satisfied. Set

g(k̂1, k̂2) :=
(
(m− 2J ′(cos(k̂1 − k̂2) + cos k̂1 + cos k̂2))

2

+ J2(1 + cos k̂1 + cos k̂2)
2 + J2(sin k̂1 + sin k̂2)

2
) 1

2 .

A direct calculation shows that the eigenvalues of E(k̂1v̂1 + k̂2v̂2)

(k̂1, k̂2 ∈ R) are ±g(k̂1, k̂2). Let us determine mink1,k2∈Rg(k1, k2),

maxk1,k2∈R g(k1, k2) exactly. Observe that

g(k1, k2) =
(
(m− 2J ′h(k1, k2))

2 + J2(3 + 2h(k1, k2))
) 1

2 ,

where h(k1, k2) := cos(k1 − k2) + cos k1 + cos k2. Moreover,

max
k1,k2∈R

h(k1, k2) = 3,

min
k1,k2∈R

h(k1, k2) = min
k1,k2∈R

(Re(eik1(e−ik2 + 1)) + cos k2)

= min
k2∈R

(−|e−ik2 + 1| + cos k2) = −3

2
.

Thus it suffices to find the minimum and the maximum of the function

x �→ ((m− 2J ′x)2 + J2(3 + 2x))
1
2

in [−3
2 , 3]. We can find them in each of the cases J ′ = 0, J ′ �= 0

and 2mJ ′−J2

4J ′2 < −3
2 , J ′ �= 0 and −3

2 ≤ 2mJ ′−J2

4J ′2 ≤ 3, J ′ �= 0 and
2mJ ′−J2

4J ′2 > 3. The results are organized as follows.

• If J2 < 2J ′(m− 6J ′),

min
k1,k2∈R

g(k1, k2) =
√

(m− 6J ′)2 + 9J2,

max
k1,k2∈R

g(k1, k2) = |m + 3J ′|.

• If 2J ′(m− 6J ′) ≤ J2 ≤ 2J ′(m + 3J ′),

min
k1,k2∈R

g(k1, k2) =
|J |

2|J ′|
√

4J ′(m + 3J ′) − J2,

max
k1,k2∈R

g(k1, k2) = max
{
|m + 3J ′|,

√
(m− 6J ′)2 + 9J2

}
.
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• If J2 > 2J ′(m + 3J ′),

min
k1,k2∈R

g(k1, k2) = |m + 3J ′|,

max
k1,k2∈R

g(k1, k2) =
√

(m− 6J ′)2 + 9J2.

We can deduce from above that mink1,k2∈Rg(k1, k2) > 0 for any J ∈
R\{0} if and only if m + 3J ′ �= 0. Therefore on the assumption

that J ∈ R\{0} and m + 3J ′ �= 0 E ∈ E(emin, emax) with emin =

mink1,k2∈Rg(k1, k2), emax = maxk1,k2∈Rg(k1, k2).

Next let us recall the notion of phase boundary. We define the subsets

Q+, Q−, Q0 of R>0 × R by

Q+ := {(β, t) ∈ R>0 × R | gE(β, t, 0) > 0},
Q− := {(β, t) ∈ R>0 × R | gE(β, t, 0) < 0},
Q0 := {(β, t) ∈ R>0 × R | gE(β, t, 0) = 0}.

It follows that R>0 × R = Q+ � Q− � Q0 and ∆(β, t) > 0 if and only if

(β, t) ∈ Q+. We call Q0 phase boundary. The main theme of this paper

is to study the regularity of FE on the phase boundary Q0. Because of

the periodicity of gE(β, t, 0) with t, Q0 is infinite union of copies of one

representative curve. This paper’s main problems can be solved by focusing

on the representative curve. The next lemma is essentially the same as [25,

Lemma 1.2] and supports the well-definedness of the representative curve.

Lemma 1.3. Assume that |U | < 2emin
b . Then, there uniquely exists

βc ∈
(

0,
2

emin
tanh−1

(
b|U |
2emin

)]
such that

gE(β, π, 0) < 0, ∀β ∈ R>0, gE(β, 2π, 0) > 0, ∀β ∈ (0, βc),

gE(βc, 2π, 0) = 0, gE(β, 2π, 0) < 0, ∀β ∈ (βc,∞),

where tanh−1 : (−1, 1) → R is the inverse function of tanh.
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From here we always assume that U ∈ (−2emin
b , 0) so that the existence

of the critical inverse temperature βc is guaranteed by Lemma 1.3. By the

monotone increasing property of t �→ gE(β, t, 0) in (π, 2π) for any β ∈ (0, βc)

there uniquely exists τ(β) ∈ (π, 2π) such that gE(β, τ(β), 0) = 0. This

defines the function τ : (0, βc) → (π, 2π). By [25, Lemma 2.2 (i)] τ ∈
Cω((0, βc)). Remind us that for any open set O(⊂ R

n) Cω(O) denotes the

set of real analytic functions on O. Using the function τ , we can characterize

the phase boundary Q0 as follows.

Q0 ={(β, δτ(β) + 4πm) | β ∈ (0, βc), δ ∈ {1,−1}, m ∈ Z}(1.12)

∪ {(βc, 2π + 4πm) | m ∈ Z}.

The above characterization was given in [25, (2.3)]. We can see that Q0 is

a union of copies of

{(β, τ(β)) | β ∈ (0, βc)} ∪ {(β,−τ(β) + 4π) | β ∈ (0, βc)} ∪ {(βc, 2π)},

and thus we can consider the above set as the representative curve of the

phase boundary. Moreover,

Q+ =
⊔
m∈Z

{
(β, t)

∣∣∣ β ∈ (0, βc), t ∈ (τ(β) + 4πm,−τ(β) + 4π(m + 1))
}
,

(1.13)

Q− =
⊔
m∈Z

{
(β, t)

∣∣∣ β ∈ (0, βc), t ∈ (−τ(β) + 4πm, τ(β) + 4πm)
}

� (βc,∞) × R.

This interestingly suggests that in this weak coupling regime the gap equa-

tion has a positive solution only when the temperature is high.

To state the main theorems, we have to make clear our definition of

phase transition. For (ρ, η) = (+,−) or (−,+) let us set

Qρ,η :=

{
(β0, t0) ∈ Q0

∣∣∣ ∃ε ∈ R>0 s.t.
(β, t0) ∈ Qρ, ∀β ∈ (β0 − ε, β0),

(β, t0) ∈ Qη, ∀β ∈ (β0, β0 + ε).

}
.

Here we should recall the fact that for any E ∈ E(emin, emax)

FE |Q+∪Q− ∈ Cω(Q+ ∪Q−), FE ∈ C1(R>0 × R),(1.14)
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which was proved in [25, Proposition 2.5 (i)]. For (β0, t0) ∈ R>0 × R, n ∈
N(= {1, 2, 3, · · · }), (ρ, η) ∈ {(+,−), (−,+)} we define the properties

(PT)n,(ρ,η)(β0, t0), (PT)n,(ρ,η)

as follows.

(PT)n,(ρ,η)(β0, t0)

(β0, t0) ∈ Qρ,η,

lim
β↗β0

∂mFE

∂βm
(β, t0), lim

β↘β0

∂mFE

∂βm
(β, t0) converge to finite values

for any m ∈ {0, 1, · · · , n}, and

lim
β↗β0

∂mFE

∂βm
(β, t0) = lim

β↘β0

∂mFE

∂βm
(β, t0), ∀m ∈ {0, 1, · · · , n− 1},

lim
β↗β0

∂nFE

∂βn
(β, t0) �= lim

β↘β0

∂nFE

∂βn
(β, t0).

There exists (β0, t0) ∈ R>0 × R such that (PT)n,(ρ,η)(β0, t0) holds.

(PT)n,(ρ,η)

By analogy with the Ehrenfest classification we state that the system has a

phase transition of order n driven by temperature when (PT)n,(ρ,η) holds.

According to [25, Proposition 2.5 (ii)], (PT)2,(+,−), (PT)2,(−,+) hold for any

emin, emax ∈ R>0 satisfying emin ≤ emax, U ∈ (−2emin
b , 0) and E ∈

E(emin, emax). The question here is whether (PT)n,(ρ,η) holds for n ≥ 3,

or in other words, a phase transition of order n(≥ 3) driven by temperature

occurs. The following fact based on (1.8), (1.12), (1.13) will be useful later.

Lemma 1.4. Let β0 ∈ (0, βc], n ∈ N, (ρ, η) ∈ {(+,−), (−,+)}. The

following statements are equivalent to each other.

• There exists t0 ∈ R such that (PT)n,(ρ,η)(β0, t0) holds.

• {t ∈ R | (β0, t) ∈ Qρ,η} �= ∅ and for any t0 ∈ R satisfying (β0, t0) ∈
Qρ,η (PT)n,(ρ,η)(β0, t0) holds.

• If β0 < βc, (PT)n,(ρ,η)(β0, τ(β0)) holds. If β0 = βc, (PT)n,(ρ,η)(β0, 2π)

holds.
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In addition, we need to prepare the concept of stationary point of inflec-

tion (SPI).

Definition 1.5. Let a, b, c ∈ R satisfy a < c < b. Let f ∈
C1((a, b),R).

(1) We call c rising stationary point of inflection of f if there exists ε ∈ R>0

such that

(c− ε, c + ε) ⊂ (a, b),

df

dx
(c) = 0,

df

dx
(x) > 0, ∀x ∈ (c− ε, c + ε)\{c}.

(2) We call c falling stationary point of inflection of f if there exists ε ∈
R>0 such that

(c− ε, c + ε) ⊂ (a, b),

df

dx
(c) = 0,

df

dx
(x) < 0, ∀x ∈ (c− ε, c + ε)\{c}.

(3) We call c stationary point of inflection of f if c is either a rising

stationary point of inflection or a falling stationary point of inflection

of f .

We define the properties (SPI)ξ(β0), (SPI)ξ for ξ ∈ {r, f}, β0 ∈ R>0 as

follows.

β0 is a rising stationary point of inflection of τ(·) : (0, βc) → R.

(SPI)r(β0)

β0 is a falling stationary point of inflection of τ(·) : (0, βc) → R.

(SPI)f (β0)

There exists β0 ∈ (0, βc) such that (SPI)ξ(β0) holds.(SPI)ξ

Using these terms, we can state our main theorems. Theorem 1.6 sum-

marizes the equivalence between existence of a HOPT and existence of a

SPI plus the fact that if a HOPT occurs, it must be of order n ∈ 4N + 2.

Theorem 1.6. Let d, b ∈ N, (v̂j)
d
j=1 be a basis of R

d, emin, emax ∈
R>0 satisfy emin ≤ emax, U ∈ (−2emin

b , 0), E ∈ E(emin, emax), (ξ, ρ, η) ∈
{(r,+,−), (f,−,+)} and β0 ∈ (0, βc). Then the following statements hold.
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(i) (SPI)ξ(β0) holds if and only if there exists n ∈ 4N + 2

(= {6, 10, 14, · · · }) such that (PT)n,(ρ,η)(β0, τ(β0)) holds.

(ii) (SPI)ξ does not hold if and only if (PT)2,(ρ,η)(β, t) holds for any

(β, t) ∈ Qρ,η.

(iii) (β, t) ∈ Qρ,η and (PT)2,(ρ,η)(β, t) does not hold if and only if there

exists n ∈ 4N + 2 such that (PT)n,(ρ,η)(β, t) holds.

In essence Theorem 1.7 gives a necessary and sufficient condition for

existence of a HOPT and a SPI.

Theorem 1.7. For any d, b ∈ N, basis (v̂j)
d
j=1 of R

d and emin, emax ∈
R>0 satisfying emin ≤ emax the following statements are equivalent to each

other.

(i) For any U0 ∈ (0, 2emin
b ), (ρ, η) ∈ {(+,−), (−,+)} there exist U ∈

[−U0, 0), E ∈ E(emin, emax), n ∈ 4N + 2 (= {6, 10, 14, · · · }) such that

(PT)n,(ρ,η) holds.

(ii) For any U0 ∈ (0, 2emin
b ), ξ ∈ {r, f} there exist U ∈ [−U0, 0), E ∈

E(emin, emax) such that (SPI)ξ holds.

(iii)

emin

emax
≤
√

17 − 12
√

2.

Theorem 1.7 is not logically equivalent to the following theorem, which

essentially gives necessary and sufficient conditions for the temperature-

driven phase transition to be of 2nd order.

Theorem 1.8. For any d, b ∈ N, basis (v̂j)
d
j=1 of R

d and emin, emax ∈
R>0 satisfying emin ≤ emax the following statements are equivalent to each

other.

(i) There exists U0 ∈ (0, 2emin
b ) such that for any U ∈ [−U0, 0), E ∈

E(emin, emax), (ρ, η) ∈ {(+,−), (−,+)}, n ∈ N≥3 (= {3, 4, 5, · · · })
(PT)n,(ρ,η) does not hold.
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(ii) There exists U0 ∈ (0, 2emin
b ) such that for any U ∈ [−U0, 0), E ∈

E(emin, emax), (ρ, η) ∈ {(+,−), (−,+)}, (β, t) ∈ Qρ,η (PT)2,(ρ,η)(β, t)

holds.

(iii) There exists U0 ∈ (0, 2emin
b ) such that for any U ∈ [−U0, 0), E ∈

E(emin, emax), ξ ∈ {r, f} (SPI)ξ does not hold.

(iv)

emin

emax
>

√
17 − 12

√
2.

Remark 1.9. Theorem 1.7 ensures existence of a HOPT and a SPI

under the condition emin
emax

≤
√

17 − 12
√

2. One question is whether the

HOPT and the SPI exist for the same U and E. In view of Theorem 1.6

(i), one can expect that they do. More precisely the following statement

can be deduced from Theorem 1.7 and Corollary 2.5. Assume that emin
emax

≤√
17 − 12

√
2. Then for any U0 ∈ (0, 2emin

b ), (ξ, ρ, η) ∈ {(r,+,−), (f,−,+)}
there exist U ∈ [−U0, 0), E ∈ E(emin, emax), n ∈ 4N+2 such that (PT)n,(ρ,η)

and (SPI)ξ hold.

Remark 1.10. According to Theorem 1.7, a HOPT driven by temper-

ature exists in the case emin
emax

≤
√

17 − 12
√

2. Strictly speaking, we cannot

state that a HOPT exists in the BCS model with imaginary magnetic field

unless the derivation of FE(β, t) from the many-electron system is justified.

In the case emin
emax

<
√

17 − 12
√

2 the existence of a HOPT is guaranteed

while the derivation of FE(β, t) is justified by [25, Theorem 1.3 (ii)]. See

Remark 2.13. In the case emin
emax

=
√

17 − 12
√

2, however, we cannot prove

existence of a HOPT while justifying the derivation of FE(β, t). See Remark

2.16.

Remark 1.11. In Remark 1.2 we provided 3 models belonging to

E(emin, emax) together with the explicit characterization of their emin, emax.

We can apply Theorem 1.8 to conclude that if emin
emax

>
√

17 − 12
√

2 and the

interaction is sufficiently small, there is no HOPT in the BCS model having

one of these free Hamiltonians and the imaginary magnetic field. However,

none of the above theorems implies existence of a HOPT in these models. In
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fact we do not have a general theory for existence of a HOPT when we vary

emin, emax or other parameters inside a specific one-particle Hamiltonian

matrix at present. We will consider this problem by focusing on a couple of

simple models belonging to E(emin, emax) in Section 3.

Nevertheless we prove in Theorem 1.7 that if emin
emax

≤
√

17 − 12
√

2,

there exists E ∈ E(emin, emax) such that a HOPT occurs with E. In this

contradictory situation one might wonder how such E is characterized in

the proof of Theorem 1.7. Here let us illustrate the corresponding part of

the proof of Theorem 1.7. We will prove earlier in Corollary 2.5 that for

(ξ, ρ, η) ∈ {(r,+,−), (f,−,+)} (SPI)ξ holds if and only if (PT)n,(ρ,η) holds

for some n ∈ 4N+2. Therefore if we find U ∈ (−2emin
b , 0), E ∈ E(emin, emax)

such that a SPI exists, we can use the same pair (U,E) to prove ex-

istence of a HOPT. To prove existence of a SPI, we construct a family

{Es}s∈(0,1) ⊂ E(emin, emax). Each Es can be written as Es(k) = Φs(k)Ib
(k ∈ R

d) with the b×b identity matrix Ib and a smooth real-valued function

Φs, which is parameterized by s and takes either emin or emax for most of

k ∈ R
d. Then under the condition emin

emax
≤
√

17 − 12
√

2 we prove existence

of s ∈ (0, 1) and U such that a SPI exists for Es and U , which implies exis-

tence of a HOPT as explained above. Here we emphasize that we essentially

use the intermediate value theorem for a continuous function of s to prove

existence of such s ∈ (0, 1) and we cannot determine it explicitly. In fact

throughout this paper we are unable to exactly determine E ∈ E(emin, emax)

for which a HOPT exists. When we prove HOPTs in a specific model in

Section 3, not all the controlling parameters are made explicit.

Remark 1.12. Let us comment on whether we can extend the above

results to gapless free dispersion relations. It is possible to extend the

definition of our free energy density to include gapless dispersion relations.

However, as explained in the beginning of the section, the domain of (β, t)

where we can derive the free energy density from the many-Fermion system

is severely restricted in the gapless case. Therefore it is difficult to give

a coherent sense to our definition of phase transition as non-analyticity of

the free energy density, which might not be the thermodynamic limit of

a quantum many-body system. Putting the issue of derivation aside, one

can analyze the free energy density itself in the whole domain of (β, t). If

the free Hamiltonian is gapless, the phase boundary is very different from

that studied in this paper. In particular the order parameter ∆(β, t) can
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be positive for any t ∈ R in low temperatures. Remind us that ∆(β, t) = 0

for any t ∈ R in low temperatures in the present gapped case. This can

be deduced as follows. Let us consider a gapless one-particle Hamiltonian

matrix E satisfying that

lim
β→∞

Dd

∫
Γ∗∞

dkTr

(
tanh(βE(k))

E(k)

)
= ∞.

For example the dispersion relation (1.11) with µ ∈ (−2d, 2d) satisfies the

above condition. Then there uniquely exists β̂ ∈ R>0 such that

gE(β̂, 0, 0) = − 2

|U | + Dd

∫
Γ∗∞

dkTr

(
tanh( β̂2E(k))

E(k)

)
= 0,

gE(β, 0, 0) > 0, ∀β ∈ (β̂,∞), gE(β, 0, 0) < 0, ∀β ∈ (0, β̂).

Therefore, for any (β, t) ∈ (β̂,∞)×R gE(β, t, 0) > 0, and thus there uniquely

exists ∆(β, t) ∈ R>0 such that gE(β, t,∆(β, t)) = 0. For β ∈ (0, β̂)

lim
t↗2π

gE(β, t, 0) = ∞,

which ensures that there uniquely exists τ(β) ∈ (0, 2π) such that

gE(β, τ(β), 0) = 0. We can conclude that the phase boundary exists only in

(0, β̂] × R. The same argument as in the proof of [25, Proposition 2.5 (iii)]

implies that the phase transition driven by t is of 2nd order. Focusing on

the subdomain (0, β̂] × R, it seems possible to summarize the equivalence

between existence of a HOPT and existence of a SPI in a way parallel to

Theorem 1.6. Therefore it must suffice to find a SPI of the phase bound-

ary to prove existence of a HOPT driven by β. However, to construct a

gapless free dispersion relation with which the phase boundary has a SPI

by modifying this paper’s construction is not trivial. We wish to leave the

(non-)existence theory of HOPT in the gapless case as an open problem

without speculating more at this stage.

Concerning the standard dispersion relation (1.11), it is implied by The-

orem 1.6 and Proposition 3.5 that if d = 1 and |µ| > 2, there is no HOPT.

See [25, Remark 2.22] for deduction of this statement from Proposition 3.5.

One interesting question is whether the same conclusion holds for any d ∈ N

and µ ∈ R, which covers the gapless case (|µ| ≤ 2d). The question remains

open at present.
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Remark 1.13. In the series [23], [24], [25] the interaction is always the

reduced BCS type

U

Ld

∑
x,y∈Γ

ψ∗
x↑ψ

∗
x↓ψy↓ψy↑(1.15)

with negative U , apart from the insertion of band index. It would be nice

if we can derive the thermodynamic limit of the free energy density and

analyze the nature of phase transition under the influence of imaginary

magnetic field for more general interactions. However, it seems that inter-

actions we can deal with in line with [23], [24], [25] are limited. Assume

that Γ is spanned by the canonical basis (ej)
d
j=1 for simplicity. We expect

that if the interaction is of the form

U
∑

x,y∈Γ

vL(x,y)ψ∗
x↑ψ

∗
x↓ψy↓ψy↑(1.16)

with a function vL : Z
d × Z

d → R≥0 satisfying

vL(x,y) = vL(x + z,y + z) = vL(y,x) = vL(x + Lej ,y),

∀x,y, z ∈ Z
d, j ∈ {1, · · · , d},∑

x∈Γ

|vL(x,0) − L−d| ≤ c(d)L−d(1.17)

with c(d)(∈ R>0) depending only on d, then the same free energy density

as that for (1.15) can be derived in a way parallel to [23], [24], [25]. This

is because the difference between (1.15) and (1.16) is measured by the left-

hand side of (1.17) and is bounded by c(d)L−d. A concrete example is

that

vL(x,y) = L−d + 1x�=y in (Z/LZ)dexp

−L1+d
d∑

j=1

|ei 2π
L

(xj−yj) − 1|

 .

At present we cannot give an example of interaction for which an essentially

different free energy density from that for (1.15) can be derived under the

influence of imaginary magnetic field.

Remark 1.14. In Subsection 1.1 we noted that there is no EPT in

the BCS model with real magnetic field H + θSz (θ ∈ R) when the BCS
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interaction is weak and the temperature is high. As the necessary notations

are introduced by now, let us explain more explicitly. Let E ∈ E(emin, emax).

We can reconstruct the framework [23] to prove the following. There exist

c(b, d, E) ∈ (0, 1] depending only on b, d, E, n(d) ∈ N depending only on d

such that for any θ ∈ R, β ∈ R>0,

U ∈
[
−min

{
c(b, d, E)(1 + β)−n(d),

2emin

b

}
, 0

)(1.18)

lim
L→∞
L∈N

(
− 1

βLd
log(Tr e−β(H+θSz))

)(1.19)

= −Dd

β

∫
Γ∗∞

dkTr log

(
2 cosh

(
βθ

2

)
e−βE(k) + 2 cosh(βE(k))e−βE(k)

)
.

Since |U | ≤ 2emin
b , the corresponding gap equation

− 2

|U | + Dd

∫
Γ∗∞

dk

(1.20)

· Tr

(
sinh(β

√
E(k)2 + ∆2)

(cosh(βθ/2) + cosh(β
√

E(k)2 + ∆2))
√

E(k)2 + ∆2

)
= 0

has no solution. Indeed (L.H.S of (1.20))< − 2
|U | + b

emin
≤ 0 for any ∆ ∈ R.

This is the reason why the right-hand side of (1.19) does not contain the

gap function ∆.

We want to have the equality (1.19) for β ∈ (0, βc) where the DQPT

takes place. For this purpose we further assume that

U ∈
[
−min

{
c(b, d, E)2−n(d),

2emin

b
tanh

(emin

2

)}
, 0

)
.

It follows from Lemma 1.3 that βc ≤ 1. For any β ∈ (0, βc] U satisfies (1.18),

and thus (1.19) holds. Since the right-hand side of (1.19) is analytic with

(β, θ) in (0, βc)×R, there is no EPT driven by (β, θ) in (0, βc)×R. Though

we cannot derive the zero-temperature limit of the free energy density within
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our framework, at least we can formally extract some hint of existence of

critical magnetic fields at zero temperature. Observe that

lim
β→∞

(R.H.S of (1.19))

= −Dd

∫
Γ∗∞

dkTr

(
max

{ |θ|
2

, |E(k)|
})

+ Dd

∫
Γ∗∞

dkTrE(k),

which is not analytic with θ in R and singular points exist in [−2emax,

−2emin] ∪ [2emin, 2emax]. For example if

E(k) =

(
emin 0

0 emax

)
with any emin, emax ∈ R>0 satisyfing emin ≤ emax, d ∈ N and basis (vj)

d
j=1

of R
d,

lim
β→∞

(R.H.S of (1.19))

= −max

{ |θ|
2

, emin

}
− max

{ |θ|
2

, emax

}
+ emin + emax.

Therefore θ = ±2emin, ±2emax are critical points at zero temperature.

However, our DQPTs occur at positive temperatures whether the quench

from H to H + θSz (θ ∈ R\{0}) crosses these critical points or not.

2. Proof of the Main Results

In this section we will prove Theorem 1.6, Theorem 1.7 and Theorem

1.8. The proof of Theorem 1.6 will be completed in Subsection 2.1. We

decompose Theorem 1.7, Theorem 1.8 into several claims. We will prove

the claims step by step. Combination of them will complete the proof of

Theorem 1.7, Theorem 1.8 in the end of this section.

2.1. HOPT and SPI

Here we prove Theorem 1.6, the equivalence between the claim (i) and

the claim (ii) of Theorem 1.7 and the equivalence between the claim (i), the

claim (ii) and the claim (iii) of Theorem 1.8. To this end, we define the

functions F̃E , g̃E : R>0 × R × (−e2
min,∞) → R for E ∈ E(emin, emax) by

F̃E(x, t, z) :=
z

|U | −
Dd

x

∫
Γ∗∞

dkTr log

(
cos

(
t

2

)
+ cosh(x

√
E(k)2 + z)

)
,
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g̃E(x, t, z) :=

− 2

|U | + Dd

∫
Γ∗∞

dkTr

(
sinh(x

√
E(k)2 + z)

(cos(t/2) + cosh(x
√

E(k)2 + z))
√

E(k)2 + z

)
.

Observe that

FE(β, t) = F̃E(β, t,∆(β, t)2) − Dd

β

∫
Γ∗∞

dkTr log(2e−βE(k)),(2.1)

∀(β, t) ∈ R>0 × R,

gE(x, t, z) = g̃E(x, t, z2),(2.2)

∂F̃E

∂z
(x, t, z) = −1

2
g̃E(x, t, z),(2.3)

∂g̃E
∂z

(x, t, z) < 0, ∀(x, t, z) ∈ R>0 × R × (−e2
min,∞).(2.4)

The inequality (2.4) is based on the fact that

x �→ sinhx

(ε + coshx)x
: R>0 → R(2.5)

is strictly monotone decreasing for any ε ∈ [−1, 1]. The equality (2.1)

suggests that we can study the regularity of the function FE by analyzing

F̃E(β, t,∆(β, t)2) instead. It follows from (1.14), (2.1) that

(β, t) �→ F̃E(β, t,∆(β, t)2) is real analytic in Q+ ∪Q−(2.6)

and C1-class in R>0 × R.

We can see from this fact and the inequality (2.4) that the statement of the

next lemma makes sense.

Lemma 2.1. For any n ∈ N≥2 (= {2, 3, 4, · · · }) and (β, t) ∈ Q+ the

following equality holds.(
∂

∂β

)n

F̃E(β, t,∆(β, t)2)(2.7)

=
∂nF̃E

∂xn
(β, t,∆(β, t)2)

+
1

2∂g̃E
∂z (β, t,∆(β, t)2)

n−2∑
j=0

(
∂

∂x

)j
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·
(
∂g̃E
∂x

(x, t, z)
∂n−1−j g̃E
∂xn−1−j

(x, t, z)

) ∣∣∣∣∣ x=β,
z=∆(β,t)2

+
∑

ρ,η∈N≥1

1ρ≤η1ρ+η≤n−1

· Pρ,η

((
∂g̃E
∂z

(x, t, z)

)−1

,

(
∂a+bg̃E
∂xa∂zb

(x, t, z)

)
a,b∈N∪{0}

1≤a+b≤n−1

)

· ∂
ρg̃E
∂xρ

(x, t, z)
∂η g̃E
∂xη

(x, t, z)

∣∣∣∣∣ x=β,
z=∆(β,t)2

.

Here Pρ,η is a polynomial with real coefficient for any ρ, η ∈ N≥1 satisfying

ρ ≤ η, ρ + η ≤ n− 1. For Ca,b ∈ C (a, b ∈ N ∪ {0}, 1 ≤ a + b ≤ n− 1)

(Ca,b) a,b∈N∪{0}
1≤a+b≤n−1

:= (C0,1, C0,2, · · · , C0,n−1, C1,0, C1,1, · · · , C1,n−2, · · · , Cn−1,0).

Proof. Take any (β, t) ∈ Q+. By (2.3)

∂

∂β
F̃E(β, t,∆(β, t)2)

=
∂F̃E

∂x
(β, t,∆(β, t)2) − ∆(β, t)

∂∆

∂β
(β, t)g̃E(β, t,∆(β, t)2).

Here we remark that by the implicit function theorem for real analytic

functions (see e.g. [26]) ∆ ∈ Cω(Q+ ∪Q−). By (2.2) g̃E(β, t,∆(β, t)2) = 0.

Thus,

∂

∂β
F̃E(β, t,∆(β, t)2) =

∂F̃E

∂x
(β, t,∆(β, t)2).

Moreover, by (2.3)(
∂

∂β

)2

F̃E(β, t,∆(β, t)2)(2.8)

=
∂2F̃E

∂x2
(β, t,∆(β, t)2) + 2∆(β, t)

∂∆

∂β
(β, t)

∂2F̃E

∂x∂z
(β, t,∆(β, t)2)
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=
∂2F̃E

∂x2
(β, t,∆(β, t)2) − ∆(β, t)

∂∆

∂β
(β, t)

∂g̃E
∂x

(β, t,∆(β, t)2).

We can derive from (2.2), (2.4) that

∆(β, t)
∂∆

∂β
(β, t) = −

∂g̃E
∂x (β, t,∆(β, t)2)

2∂g̃E
∂z (β, t,∆(β, t)2)

.(2.9)

By substituting (2.9) into (2.8) we obtain that

(
∂

∂β

)2

F̃E(β, t,∆(β, t)2) =
∂2F̃E

∂x2
(β, t,∆(β, t)2) +

(
∂g̃E
∂x (β, t,∆(β, t)2)

)2

2∂g̃E
∂z (β, t,∆(β, t)2)

,

which is (2.7) for n = 2.

Let us assume that (2.7) holds for some n ∈ N≥2. By differentiating

both sides with β and using (2.3), (2.9) we have that(
∂

∂β

)n+1

F̃E(β, t,∆(β, t)2)(2.10)

=
∂n+1F̃E

∂xn+1
(β, t,∆(β, t)2) +

∂g̃E
∂x (β, t,∆(β, t)2)∂

ng̃E
∂xn (β, t,∆(β, t)2)

2∂g̃E
∂z (β, t,∆(β, t)2)

+
1

2∂g̃E
∂z (β, t,∆(β, t)2)

·
n−2∑
j=0

(
∂

∂x

)j+1(∂g̃E
∂x

(x, t, z)
∂n−1−j g̃E
∂xn−1−j

(x, t, z)

) ∣∣∣∣∣ x=β,
z=∆(β,t)2

+
∂

∂x

(
1

2∂g̃E
∂z (x, t, z)

)∣∣∣∣∣ x=β,
z=∆(β,t)2

·
n−2∑
j=0

(
∂

∂x

)j (∂g̃E
∂x

(x, t, z)
∂n−1−j g̃E
∂xn−1−j

(x, t, z)

) ∣∣∣∣∣ x=β,
z=∆(β,t)2

−
∂g̃E
∂x (β, t,∆(β, t)2)
∂g̃E
∂z (β, t,∆(β, t)2)

· ∂

∂z

 1

2∂g̃E
∂z (x, t, z)

n−2∑
j=0

(
∂

∂x

)j
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·
(
∂g̃E
∂x

(x, t, z)
∂n−1−j g̃E
∂xn−1−j

(x, t, z)

)) ∣∣∣∣∣ x=β,
z=∆(β,t)2

+
∑

ρ,η∈N≥1

1ρ≤η1ρ+η≤n−1

(
∂

∂x
−

∂g̃E
∂x (x, t, z)
∂g̃E
∂z (x, t, z)

∂

∂z

)

·
(
Pρ,η

((
∂g̃E
∂z

(x, t, z)

)−1

,

(
∂a+bg̃E
∂xa∂zb

(x, t, z)

)
a,b∈N∪{0}

1≤a+b≤n−1

)

· ∂
ρg̃E
∂xρ

(x, t, z)
∂η g̃E
∂xη

(x, t, z)

)∣∣∣∣∣ x=β,
z=∆(β,t)2

.

For any smooth function f(x)

n−2∑
j=0

(
d

dx

)j ( df

dx
(x)

dn−1−jf

dxn−1−j
(x)

)
=

n−1∑
k=1

n−1∑
j=k

(
j − 1

k − 1

)
dkf

dxk
(x)

dn−kf

dxn−k
(x),

(2.11)

n−2∑
j=0

(
d

dx

)j+1( df

dx
(x)

dn−1−jf

dxn−1−j
(x)

)
=

n−1∑
j=1

(
d

dx

)j ( df

dx
(x)

dn−jf

dxn−j
(x)

)
.

(2.12)

By using (2.11), (2.12) for f(x) = g̃E(x, t, z) we can see that the 1st, 2nd,

3rd term of the right side of (2.10) can be organized into the 1st, 2nd term

of the right side of (2.7) for n + 1 and the 4th, 5th, 6th term of (2.10) can

be summarized into the last term of the right side of (2.7) for n + 1. Thus,

(2.7) holds for n + 1. The induction with n concludes the proof. �

To understand the following lemmas, let us recall that τ ∈ Cω((0, βc)),

which is claimed in [25, Lemma 2.2 (i)].

Lemma 2.2.

(i)

∂g̃E
∂x

(β, τ(β), 0) = −∂g̃E
∂t

(β, τ(β), 0)
dτ

dβ
(β), ∀β ∈ (0, βc).
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(ii) Assume that β0 ∈ (0, βc), n ∈ N≥2 and

dmτ

dβm
(β0) = 0, ∀m ∈ {1, 2, · · · , n− 1}.

Then

∂mg̃E
∂xm

(β0, τ(β0), 0) = 0, ∀m ∈ {0, 1, · · · , n− 1},
∂ng̃E
∂xn

(β0, τ(β0), 0) = −∂g̃E
∂t

(β0, τ(β0), 0)
dnτ

dβn
(β0).

Proof. (i): The claim follows from the equality

g̃E(β, τ(β), 0) = 0, ∀β ∈ (0, βc).(2.13)

(ii): We can derive from (2.13) that(
∂

∂x
+

dτ

dx
(x)

∂

∂t

)l

g̃E(x, t, 0)

∣∣∣∣∣ x=β,
t=τ(β)

= 0, ∀l ∈ N ∪ {0}, β ∈ (0, βc).

The result follows from this equality and the assumption. �

Lemma 2.3. Assume that β0(∈ (0, βc)) is a SPI of τ(·). Then there

exist n ∈ 2N + 1 (= {3, 5, 7, · · · }) and ε ∈ R>0 such that (β0 − ε, β0 + ε) ⊂
(0, βc) and

dmτ

dβm
(β0) = 0, ∀m ∈ {1, 2, · · · , n− 1}, dnτ

dβn
(β0) �= 0,

dτ

dβ
(β) �= 0, ∀β ∈ (β0 − ε, β0 + ε)\{β0}.

Moreover,

∂mg̃E
∂xm

(β0, τ(β0), 0) = 0, ∀m ∈ {0, 1, · · · , n− 1},(2.14)

∂ng̃E
∂xn

(β0, τ(β0), 0) �= 0.
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Proof. The claims on τ(·) are general properties of a real analytic

function having a SPI. However, we provide the proof for clarity. By the

assumption and the definition of SPI there exists ε ∈ R>0 such that (β0 −
ε, β0 + ε) ⊂ (0, βc),

dτ
dβ (β0) = 0 and

dτ

dβ
(β) > 0, ∀β ∈ (β0 − ε, β0 + ε)\{β0}(2.15)

or
dτ

dβ
(β) < 0, ∀β ∈ (β0 − ε, β0 + ε)\{β0}.

Since τ ∈ Cω((0, βc)), there exist ε′ ∈ (0, ε], n ∈ N≥2 such that dmτ
dβm (β0) = 0,

∀m ∈ {1, 2, · · · , n− 1}, dnτ
dβn (β0) �= 0 and

dτ

dβ
(β) =

∞∑
m=n

1

(m− 1)!

dmτ

dβm
(β0)(β − β0)

m−1, ∀β ∈ (β0 − ε′, β0 + ε′).

We can deduce from the property (2.15) and the above expansion that n

must be odd. At this point the claims on τ(·) have been proved. The claims

on g̃E follow from the above properties of τ(·) and Lemma 2.2 (ii) plus the

fact ∂g̃E
∂t (β0, τ(β0), 0) > 0 based on τ(β0) ∈ (π, 2π). �

We can prove Theorem 1.6 by applying Lemma 2.1 and Lemma 2.3.

Proof of Theorem 1.6. (i): Assume that (SPI)ξ(β0) holds. We can

see from (1.13) and the general behavior of τ(·) proved in [25, Lemma 2.2]

that (β0, τ(β0)) ∈ Qρ,η. By Lemma 2.3 there exists n0 ∈ 2N + 1 such that

(2.14) holds for n = n0. We remark that

(
∂

∂β

)l

F̃E(β, t,∆(β, t)2) =
∂lF̃E

∂xl
(β, t, 0), ∀(β, t) ∈ Q−, l ∈ N ∪ {0}.

(2.16)

Bearing (2.11) in mind, we observe that for any n ∈ {2, 3, · · · , 2n0 − 1}
each of the 2nd, 3rd terms of the right-hand side of (2.7) contains
∂mg̃E
∂xm (β, t,∆(β, t)2) for some m ∈ {1, 2, · · · , n0 − 1}. For n = 2n0 the 2nd

term contains (∂
n0 g̃E
∂xn0 (β, t,∆(β, t)2))2 and each of the 3rd terms contains

∂mg̃E
∂xm (β, t,∆(β, t)2) for some m ∈ {1, 2, · · · , n0 − 1}. This observation and
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the properties (2.4), (2.14), (2.16) imply that for any n ∈ {2, 3, · · · , 2n0−1}

lim
β→β0

(β,τ(β0))∈Q+

(
∂

∂β

)n

F̃E(β, τ(β0),∆(β, τ(β0))
2)

= lim
β→β0

(β,τ(β0))∈Q+

∂nF̃E

∂xn
(β, τ(β0),∆(β, τ(β0))

2) =
∂nF̃E

∂xn
(β0, τ(β0), 0)

= lim
β→β0

(β,τ(β0))∈Q−

(
∂

∂β

)n

F̃E(β, τ(β0),∆(β, τ(β0))
2),

lim
β→β0

(β,τ(β0))∈Q+

(
∂

∂β

)2n0

F̃E(β, τ(β0),∆(β, τ(β0))
2)

=
∂2n0F̃E

∂x2n0
(β0, τ(β0), 0) +

∑2n0−1
j=n0

(
j − 1

n0 − 1

)
2∂g̃E

∂z (β0, τ(β0), 0)

(
∂n0 g̃E
∂xn0

(β0, τ(β0), 0)

)2

<
∂2n0F̃E

∂x2n0
(β0, τ(β0), 0) = lim

β→β0

(β,τ(β0))∈Q−

(
∂

∂β

)2n0

F̃E(β, τ(β0),∆(β, τ(β0))
2).

Combined with (2.1), the above argument concludes that

(PT)2n0,(ρ,η)(β0, τ(β0)) holds.

Assume that (SPI)ξ(β0) does not hold and (β0, τ(β0)) ∈ Qρ,η. It follows

from (1.12), (1.13) that dτ
dβ (β0) ≥ 0 if ξ = r, dτ

dβ (β0) ≤ 0 if ξ = f . Consider

the case that ξ = r and dτ
dβ (β0) = 0. Since τ(·) is real analytic and not

constant, there exists ε ∈ R>0 such that dτ
dβ (β) �= 0, ∀β ∈ (β0 − ε, β0 +

ε)\{β0}. If dτ
dβ (β) < 0, ∀β ∈ (β0 − ε, β0) or dτ

dβ (β) < 0, ∀β ∈ (β0, β0 + ε),

it contradicts that (β0, τ(β0)) ∈ Q+,−. Thus dτ
dβ (β) > 0, ∀β ∈ (β0 − ε, β0 +

ε)\{β0}, which means that β0 is a rising SPI, a contradiction. Therefore
dτ
dβ (β0) > 0 if ξ = r. Similarly we can prove that dτ

dβ (β0) < 0 if ξ = f .

We can derive from this, (2.7) for n = 2, Lemma 2.2 (i) and (2.16) that

lim
β→β0

(β,τ(β0))∈Q+

(
∂

∂β

)2

F̃E(β, τ(β0),∆(β, τ(β0))
2)

=
∂2F̃E

∂x2
(β0, τ(β0), 0) +

(∂g̃E∂t (β0, τ(β0), 0) dτdβ (β0))
2

2∂g̃E
∂z (β0, τ(β0), 0)
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<
∂2F̃E

∂x2
(β0, τ(β0), 0) = lim

β→β0

(β,τ(β0))∈Q−

(
∂

∂β

)2

F̃E(β, τ(β0),∆(β, τ(β0))
2).

Here we also used (2.4) and that ∂g̃E
∂t (β0, τ(β0), 0) > 0. This together

with (2.1), (2.6) imply that (PT)2,(ρ,η)(β0, τ(β0)) holds, and thus

(PT)n,(ρ,η)(β0, τ(β0)) does not hold for any n ∈ 4N+2. If (β0, τ(β0)) /∈ Qρ,η,

(PT)n,(ρ,η)(β0, τ(β0)) does not hold for any n ∈ 4N + 2 by definition. The

claim (i) is proved.

(ii): Assume that (SPI)ξ does not hold. Take any (β1, t1) ∈ Qρ,η.

First let us assume that β1 ∈ (0, βc). It follows from (1.12), (1.13) that

(β1, τ(β1)) ∈ Qρ,η. The same argument as in the 2nd half of the proof of (i)

leads to that

lim
β→β1

(β,τ(β1))∈Q+

(
∂

∂β

)2

F̃E(β, τ(β1),∆(β, τ(β1))
2)

< lim
β→β1

(β,τ(β1))∈Q−

(
∂

∂β

)2

F̃E(β, τ(β1),∆(β, τ(β1))
2).

This property, (2.1) and (2.6) ensure that (PT)2,(ρ,η)(β1, τ(β1)) holds. Then

by Lemma 1.4 (PT)2,(ρ,η)(β1, t1) holds.

Next let us assume that β1 = βc. In this case

g̃E(x, t1, 0) = − 2

|U | + Dd

∫
Γ∗∞

dkTr

(
1

tanh(x2 |E(k)|)|E(k)|

)
, ∀x ∈ R>0,

and thus ∂g̃E
∂x (x, t1, 0) < 0, ∀x ∈ R>0. Using this inequality, (2.4), (2.7) for

n = 2 and (2.16), we deduce that

lim
β→β1

(β,t1)∈Q+

(
∂

∂β

)2

F̃E(β, t1,∆(β, t1)
2) =

∂2F̃E

∂x2
(β1, t1, 0) +

(∂g̃E∂x (β1, t1, 0))2

2∂g̃E
∂z (β1, t1, 0)

<
∂2F̃E

∂x2
(β1, t1, 0) = lim

β→β1

(β,t1)∈Q−

(
∂

∂β

)2

F̃E(β, t1,∆(β, t1)
2),

which together with (2.1), (2.6) imply that (PT)2,(ρ,η)(β1, t1) holds. Thus

we have proved that if (SPI)ξ does not hold, (PT)2,(ρ,η)(β, t) holds for any

(β, t) ∈ Qρ,η.
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If (SPI)ξ holds, by the claim (i) there exist β2 ∈ (0, βc), n ∈ 4N +2 such

that (PT)n,(ρ,η)(β2, τ(β2)) holds. This means that (β2, τ(β2)) ∈ Qρ,η and

(PT)2,(ρ,η)(β2, τ(β2)) does not hold. We have proved the claim (ii).

(iii): Assume that (β3, t3) ∈ Qρ,η and (PT)2,(ρ,η)(β3, t3) does not hold.

If β3 = βc, by the 2nd half of the proof of (ii) (PT)2,(ρ,η)(β3, t3) holds,

which is a contradiction. Thus β3 ∈ (0, βc). If (SPI)ξ(β3) does not hold,

by the 1st half of the proof of (ii) (PT)2,(ρ,η)(β3, t3) holds, contradicting

the assumption. Thus (SPI)ξ(β3) must hold. Then by the 1st half of the

proof of (i) there exists n ∈ 4N + 2 such that (PT)n,(ρ,η)(β3, τ(β3)) holds.

Moreover, by Lemma 1.4 (PT)n,(ρ,η)(β3, t3) holds. The converse is obvious

from the definition. �

As a corollary of Theorem 1.6, we can prove the following.

Corollary 2.4.

(1) The statements (i), (ii) of Theorem 1.7 are equivalent to each other.

(2) The statements (i), (ii), (iii) of Theorem 1.8 are equivalent to each

other.

Proof. (1): If (PT)n,(ρ,η) holds with n ∈ 4N + 2, by Lemma 1.4

there exists β0 ∈ (0, βc] such that (PT)n,(ρ,η)(β0, τ(β0)) holds if β0 < βc,

(PT)n,(ρ,η)(β0, 2π) holds if β0 = βc. If β0 = βc, it follows from the proof

of Theorem 1.6 (ii) above that (PT)2,(ρ,η)(β0, 2π) holds, which is a contra-

diction. Thus β0 < βc and (PT)n,(ρ,η)(β0, τ(β0)) holds. We can deduce the

equivalence between (i) and (ii) of Theorem 1.7 from the above argument

and Theorem 1.6 (i).

(2): Theorem 1.6 (ii) implies the equivalence between the statements (ii),

(iii). We can deduce from the definition of (PT)n,(ρ,η) that the statement (ii)

implies the statement (i). It suffices to show that the statement (i) implies

the statement (iii). Suppose that for any U0 ∈ (0, 2emin
b ) there exist U ∈

[−U0, 0), E ∈ E(emin, emax), ξ ∈ {r, f} such that (SPI)ξ holds. By definition

there exists β0 ∈ (0, βc) such that (SPI)ξ(β0) holds. Set (ρ, η) := (+,−) if

ξ = r, (−,+) if ξ = f . By Theorem 1.6 (i) there exists n ∈ N≥3 such that

(PT)n,(ρ,η) holds. This means that (i) implies (iii). Thus the claim holds

true. �
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The following corollary will be used in Subsection 2.4 and Subsection 2.5

to prove key propositions on which Theorem 1.7, Theorem 1.8 are based.

Corollary 2.5. Under the same assumption of Theorem 1.6 the fol-

lowing statement holds. (SPI)ξ holds if and only if there exists n ∈ 4N + 2

such that (PT)n,(ρ,η) holds.

Proof. By Theorem 1.6 (i), if (SPI)ξ holds, there exists n ∈ 4N + 2

such that (PT)n,(ρ,η) holds. It follows from the 2nd half of the proof of

Theorem 1.6 (ii) and (1.12), (1.13) that (PT)2,(+,−)(βc, t1) holds for any

t1 ∈ R satisfying (βc, t1) ∈ Q+,− and (βc, t) /∈ Q−,+ for any t ∈ R. This

ensures that if (PT)n,(ρ,η)(β, t) holds for some (β, t) ∈ R>0 ×R, n ∈ 4N + 2,

then β ∈ (0, βc). We can deduce from this property, Lemma 1.4, Theorem

1.6 (i) that if there exists n ∈ 4N + 2 such that (PT)n,(ρ,η) holds, (SPI)ξ
holds. �

2.2. General lemmas

Here we prepare several lemmas in order to prove Theorem 1.7, Theo-

rem 1.8 in the following subsections. For E ∈ E(emin, emax) we define the

function F∞ : R × (−1, 0) → R by

F∞(x, y) := Dd

∫
Γ∗∞

dkTr

(
sinh(xE(k))

(y + cosh(xE(k)))E(k)

)
.

In fact this function was defined in [25, (2.38)]. We keep using the same no-

tation for consistency with the previous paper. First of all let us state a basic

lemma which follows from Lemma 1.3 and is the same as [25, Lemma 2.1].

Presenting the whole statement here must be convenient for the readers to

apply in the subsequent construction.

Lemma 2.6. Assume that |U | < 2emin
b , y ∈ (−1, 0), β ∈ R>0, E ∈

E(emin, emax) and 2
|U | = F∞(β, y). Then β ∈ (0, βc) and y = cos( τ(β)

2 ).

The next lemma gives a sufficient condition in terms of F∞ for τ(·) not

to have any SPI.

Lemma 2.7. Let S ⊂ E(emin, emax), S �= ∅. Assume that there exists

y0 ∈ (−1, 0) such that for any y ∈ (−1, y0] and E ∈ S there uniquely exists
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x0 ∈ R>0 such that ∂F∞
∂x (x0, y) = 0. Then there exists U0 ∈ (0, 2emin

b ) such

that for any U ∈ [−U0, 0) and E ∈ S τ(·) has no SPI in (0, βc).

Proof. The first half of the proof is close to the initial part of the

proof of [25, Proposition 2.8]. Take any E ∈ E(emin, emax). It follows from

Lemma 1.3 that for U ∈ (−2emin
b , 0)

βc ≤
2

emin
tanh−1

(
b|U |
2emin

)
≤ 2 tanh−1(1)

emin
.

By the monotone decreasing property of the function (2.5) and the above

inequality

2

|U | ≤
b sinh(βemin)

emin(cos(τ(β)/2) + cosh(βemin))
≤ b sinh(2 tanh−1(1))

emin(cos(τ(β)/2) + 1)
,

and thus

cos

(
τ(β)

2

)
+ 1 ≤ b sinh(2 tanh−1(1))

2emin
|U |, ∀β ∈ (0, βc).

This implies that there exists U0 ∈ (0, 2emin
b ) such that for any U ∈ [−U0, 0),

E ∈ E(emin, emax)

cos

(
τ(β)

2

)
∈ (−1, y0], ∀β ∈ (0, βc).(2.17)

Let us fix U ∈ [−U0, 0) and E ∈ S. Suppose that β0 (∈ (0, βc)) is a SPI

of τ(·). Let β1 ∈ (0, βc) be a global minimum point of τ(·). Remark that

by the behavior of τ(·) summarized in [25, Lemma 2.2] a global minimum

point exists. By the definition of SPI β1 �= β0. Let us assume that β1 < β0.

We can deduce from [25, Lemma 2.2] that there exists β2 ∈ (0, β1] such that

τ(β2) = τ(β0). It follows that

2

|U | = F∞

(
β2, cos

(
τ(β2)

2

))
= F∞

(
β2, cos

(
τ(β0)

2

))
= F∞

(
β0, cos

(
τ(β0)

2

))
.
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By the mean value theorem there exists β3 ∈ (β2, β0) such that

∂F∞
∂x

(
β3, cos

(
τ(β0)

2

))
= 0.(2.18)

On the other hand, since β0 is a SPI,

0 =
∂F∞
∂x

(
β0, cos

(
τ(β0)

2

))
(2.19)

− 1

2

dτ

dβ
(β0) sin

(
τ(β0)

2

)
∂F∞
∂y

(
β0, cos

(
τ(β0)

2

))
=

∂F∞
∂x

(
β0, cos

(
τ(β0)

2

))
.

By (2.17) cos( τ(β0)
2 ) ∈ (−1, y0], which together with (2.18), (2.19) contradict

the assumption. Similarly we can derive a contradiction by assuming that

β1 > β0. Therefore τ(·) cannot have any SPI in (0, βc). �

The next lemma gives sufficient conditions in terms of F∞ for τ(·) to

have a SPI.

Lemma 2.8. Let U0 ∈ (0, 2emin
b ), y0 ∈ (−1, 0).

(i) Assume that x0 is a rising SPI of the function x �→ F∞(x, y0) : R>0 →
R and F∞(x0, y0) ≥ 2

U0
. Then there exists U ∈ [−U0, 0) such that τ(·)

has a falling SPI in (0, βc).

(ii) Assume that x0 is a falling SPI of the function x �→ F∞(x, y0) : R>0 →
R and F∞(x0, y0) ≥ 2

U0
. Then there exists U ∈ [−U0, 0) such that τ(·)

has a rising SPI in (0, βc).

Proof. We only give a proof to the claim (i). The claim (ii) can be

proved similarly. By the assumption there exist ε ∈ R>0, U ∈ [−U0, 0) such

that

(x0 − ε, x0 + ε) ⊂ R>0,
∂F∞
∂x

(x0, y0) = 0,

(2.20)

∂F∞
∂x

(x, y0) > 0, ∀x ∈ (x0 − ε, x0 + ε)\{x0}, − 2

|U | + F∞(x0, y0) = 0.
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Here we use Lemma 2.6 to ensure that x0 ∈ (0, βc) and y0 = cos( τ(x0)
2 ). We

can derive from the equality F∞(x, cos( τ(x)
2 )) = 2

|U | (x ∈ (0, βc)) that

0 =
∂F∞
∂x

(x0, y0) −
1

2
sin

(
τ(x0)

2

)
dτ

dβ
(x0)

∂F∞
∂y

(x0, y0).

It follows from ∂F∞
∂x (x0, y0) = 0, sin( τ(x0)

2 ) > 0 and ∂F∞
∂y (x0, y0) < 0 that

dτ

dβ
(x0) = 0.(2.21)

By the analytic implicit function theorem (see e.g. [26]) there exist

ε1 ∈ (0, ε] and a real analytic function Y : (x0 − ε1, x0 + ε1) → (−1, 0) such

that

− 2

|U | + F∞(x, Y (x)) = 0, ∀x ∈ (x0 − ε1, x0 + ε1), Y (x0) = y0.

Let us show that there exists ε2 ∈ (0, ε1] such that

Y (x) < y0, ∀x ∈ (x0 − ε2, x0), Y (x) > y0, ∀x ∈ (x0, x0 + ε2).(2.22)

Suppose that for any ε3 ∈ (0, ε1] there exists x1 ∈ (x0 − ε3, x0) such that

Y (x1) ≥ y0. By (2.20) and the fact y �→ F∞(x1, y) : (−1, 0) → R is strictly

monotone decreasing

2

|U | = F∞(x1, Y (x1)) ≤ F∞(x1, y0) < F∞(x0, y0) =
2

|U | ,

which is a contradiction. Thus there exists ε3 ∈ (0, ε1] such that

Y (x) < y0, ∀x ∈ (x0 − ε3, x0).

Similarly, suppose that for any ε4 ∈ (0, ε1] there exists x2 ∈ (x0, x0 + ε4)

such that Y (x2) ≤ y0. By (2.20) and the monotone decreasing property of

the function y �→ F∞(x2, y) : (−1, 0) → R

2

|U | = F∞(x2, Y (x2)) ≥ F∞(x2, y0) > F∞(x0, y0) =
2

|U | ,

which is again a contradiction. Therefore there exists ε4 ∈ (0, ε1] such that

Y (x) > y0, ∀x ∈ (x0, x0 + ε4).
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The above arguments conclude that the claim (2.22) holds true.

The property (2.22) implies that there exists ε5 ∈ (0, ε2] such that

dY

dx
(x) > 0, ∀x ∈ (x0 − ε5, x0 + ε5)\{x0}.(2.23)

This can be confirmed by expanding the real analytic function Y (·) into the

Taylor series around x = x0. By applying Lemma 2.6 again we observe that

(x0 − ε5, x0 + ε5) ⊂ (0, βc) and

Y (x) = cos

(
τ(x)

2

)
, ∀x ∈ (x0 − ε5, x0 + ε5).

We can deduce from the above equality, (2.23) and the fact τ(x) ∈ (π, 2π),

∀x ∈ (x0 − ε5, x0 + ε5) that

dτ

dβ
(β) < 0, ∀β ∈ (x0 − ε5, x0 + ε5)\{x0}.

This combined with (2.21) concludes that x0 is a falling SPI of τ(·). �

Let us prepare a key lemma to prove existence of a SPI of τ(·) in Sub-

section 2.4, Subsection 2.5 under the assumption emin
emax

≤
√

17 − 12
√

2. Let

us recall the definition of the functions W : R>0× (−1, 0)×R>0×R>0 → R,

Ŵ : R>0 × R>0 × R>0 → R given in [25, (2.62), Proof of Proposition 2.16].

W (x, y, z, s) :=
sinh(x)

y + cosh(x)
+ s

sinh(zx)

(y + cosh(zx))z
,

Ŵ (x, z, s) :=
x

1 + x2

2

+ s
x

1 + z2 x2

2

.(2.24)

Lemma 2.9. For any d, b ∈ N, basis (v̂j)
d
j=1 of R

d, emax, emin ∈ R>0

satisfying 0 < emin < emax, s0 ∈ (0, 1) there exists

{Es,δ}
s∈(0,s0),δ∈(0,1−s

1
d
0 )

⊂ E(emin, emax)

such that if we define Fδ : R>0 × (−1, 0) × (0, s0) → R by

Fδ(x, y, s) := Dd

∫
Γ∗∞

dkTr

(
sinh(xEs,δ(k))

(y + cosh(xEs,δ(k)))Es,δ(k)

)
(2.25)

for δ ∈ (0, 1 − s
1
d
0 ), the following statements hold true.
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(i) For any δ ∈ (0, 1 − s
1
d
0 )

sup
k∈Rd

sup
mj∈N∪{0}
(j=1,··· ,d)

∥∥∥∥∥∥
d∏

j=1

∂mj

∂k
mj

j

Es,δ(k)

∥∥∥∥∥∥
b×b

1∑ d
j=1 mj≤d+2

is constant with s ∈ (0, s0).

(ii)

Fδ ∈ C∞(R>0 × (−1, 0) × (0, s0)), ∀δ ∈ (0, 1 − s
1
d
0 ).

Fδ(·, y, s) ∈ Cω(R>0), ∀(y, s) ∈ (−1, 0) × (0, s0), δ ∈ (0, 1 − s
1
d
0 ).

(iii)

lim
δ↘0

δ∈(0,1−s
1
d
0 )

∂jFδ

∂xj
(x, y, s) = bsej−1

max

∂jW

∂xj

(
emaxx, y,

emin

emax
,
1 − s

s

)

locally uniformly with (x, y, s) in R>0×(−1, 0)×(0, s0) for j ∈ {0, 1, 2}.

(iv)

lim
(y,δ)→(−1,0)

(y,δ)∈(−1,0)×(0,1−s
1
d
0 )

(y + 1)
1
2
(j+1)∂

jFδ

∂xj
(
√

y + 1x, y, s)

= bsej−1
max

∂jŴ

∂xj

(
emaxx,

emin

emax
,
1 − s

s

)
locally uniformly with (x, s) in R>0 × (0, s0) for j ∈ {0, 1}.

Remark 2.10. We will use the property (i) only to discuss the deriva-

tion of the free energy density from the many-electron system in Remark

2.13. The property (i) is not necessary to prove Theorem 1.7 and Theorem

1.8.

Proof of Lemma 2.9. We can construct Es,δ ∈ E(emin, emax) in a

way similar to the construction of “E” in [25, Lemma A.1]. Here let us
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describe the initial part of the construction in detail as it was skipped in

the proof of [25, Lemma A.1]. Take any δ ∈ R>0. Define the function

φ1,δ : R → R by

φ1,δ(x) :=

{
e

1
(x+πδ)x , x ∈ (−πδ, 0),

0, x ∈ (−∞,−πδ] ∪ [0,∞).

Observe that φ1,δ ∈ C∞(R). Define the function φ2,δ : R → R by

φ2,δ(x) :=

∫ x
−∞ dtφ1,δ(t)∫∞
−∞ dtφ1,δ(t)

.

It follows that φ2,δ ∈ C∞(R). Then let us define the function φ3,δ : R ×
R>0 → R by

φ3,δ(x, s) := φ2,δ(x + πs
1
d ).

Observe that φ3,δ ∈ C∞(R × R>0) and for any s ∈ R>0

φ3,δ(x, s) = 0, ∀x ∈ (−∞,−π(δ + s
1
d )],

φ3,δ(x, s) = 1, ∀x ∈ [−πs
1
d ,∞),

∂

∂x
φ3,δ(x, s) > 0, ∀x ∈ (−π(δ + s

1
d ),−πs

1
d ).

Moreover, define the function φ4,δ : R × R>0 → R by

φ4,δ(x, s) :=

{
φ3,δ(x, s), x ∈ (−∞, 0),

φ3,δ(−x, s), x ∈ [0,∞).

Observe that φ4,δ ∈ C∞(R × R>0) and for any s ∈ R>0

φ4,δ(x, s) = 1 if |x| ≤ πs
1
d , φ4,δ(x, s) = 0 if |x| ≥ π(δ + s

1
d ),

φ4,δ(x, s) ∈ (0, 1) if πs
1
d < |x| < π(δ + s

1
d ),

φ4,δ(x, s) = φ4,δ(−x, s), ∀x ∈ R.

Furthermore we define the function φδ : R × R>0 → R by

φδ(x, s) := (emax − emin)
1
dφ4,δ(x− π, s), ∀(x, s) ∈ R × R>0.
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It follows that φδ ∈ C∞(R × R>0) and for any s ∈ R>0

φδ(x, s) = (emax − emin)
1
d if |x− π| ≤ πs

1
d ,

φδ(x, s) = 0 if |x− π| ≥ π(δ + s
1
d ),

φδ(x, s) ∈ (0, (emax − emin)
1
d ) if πs

1
d < |x− π| < π(δ + s

1
d ),

φδ(π + x, s) = φδ(π − x, s), ∀x ∈ R.

Moreover, for any n ∈ N ∪ {0}, c, c0, c1, · · · , cn ∈ R

sup
x∈R

∣∣∣∣∣∣c +
n∑

j=0

cj
∂jφδ

∂xj
(x, s)

∣∣∣∣∣∣ is constant with s ∈ R>0.(2.26)

Then by using φδ in place of “φ” we can construct Es,δ in the same way as

the construction of “E” in the proof of [25, Lemma A.1]. Let us sketch the

construction for completeness. Let s0 ∈ (0, 1), δ ∈ (0, 1 − s
1
d
0 ). Define the

function Φδ : R
d × (0, s0) → R by

Φδ(x1, · · · , xd, s) :=

d∏
j=1

φδ(xj , s) + emin.

Observe that Φδ ∈ C∞(Rd × (0, s0)),

Φδ(x1, · · · , xd, s) = emax if |xj − π| ≤ πs
1
d , ∀j ∈ {1, · · · , d},

Φδ(x1, · · · , xd, s) = emin if ∃j ∈ {1, · · · , d} s.t. |xj − π| ≥ π(δ + s
1
d ),

Φδ(x1, · · · , xd, s) ∈ (emin, emax) otherwise.

Then we define the matrix-valued function Ês,δ : Γ∗
∞ → Mat(b,C) by

Ês,δ(k) := Φδ((v̂1, · · · , v̂d)
−1k, s)Ib, k ∈ Γ∗

∞.

Let Es,δ : R
d → Mat(b,C) be the periodic extension of Ês,δ so that

Es,δ

k +
d∑

j=1

2πmjv̂j

 = Ês,δ(k), ∀k ∈ Γ∗
∞, (mj)

d
j=1 ∈ Z

d.
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One can check that Es,δ ∈ E(emin, emax). In particular the property (1.6)

can be confirmed in the same way as in the proof of [25, Lemma A.1].

Take any mj ∈ N ∪ {0} (j = 1, · · · , d) with
∑d

j=1 mj ≤ d + 2. Set

V := (v̂1, · · · , v̂d) ∈ Mat(d,R). By (2.26) for any s ∈ (0, s0)

sup
k∈Rd

∥∥∥∥∥∥
d∏

j=1

∂mj

∂k
mj

j

Es,δ(k)

∥∥∥∥∥∥
b×b

= sup
k̂∈[0,2π]d

∥∥∥∥∥∥
d∏

j=1

∂mj

∂k
mj

j

Ês,δ(V k̂)

∥∥∥∥∥∥
b×b

= sup
k̂∈Rd

∣∣∣∣∣∣
d∏

j=1

(
d∑

i=1

(V −1)i,j
∂

∂k̂i

)mj
 d∏

j=1

φδ(k̂j , s) + emin

∣∣∣∣∣∣
= sup

(k̂2,··· ,k̂d)∈Rd−1

sup
k̂1∈R

·

∣∣∣∣∣∣
d∏

j=1

(
d∑

i=1

(V −1)i,j
∂

∂k̂i

)mj
φδ

(
k̂1,

s0

2

) d∏
j=2

φδ(k̂j , s) + emin

∣∣∣∣∣∣
= sup

(k̂1,k̂3,··· ,k̂d)∈Rd−1

sup
k̂2∈R

·

∣∣∣∣∣∣
d∏

j=1

(
d∑

i=1

(V −1)i,j
∂

∂k̂i

)mj
 2∏

l=1

φδ

(
k̂l,

s0

2

) d∏
j=3

φδ(k̂j , s) + emin

∣∣∣∣∣∣
...

= sup
k̂∈Rd

∣∣∣∣∣∣
d∏

j=1

(
d∑

i=1

(V −1)i,j
∂

∂k̂i

)mj
 d∏

j=1

φδ

(
k̂j ,

s0

2

)
+ emin

∣∣∣∣∣∣
= sup

k∈Rd

∥∥∥∥∥∥
d∏

j=1

∂mj

∂k
mj

j

E s0
2
,δ(k)

∥∥∥∥∥∥
b×b

,

which implies the claim (i).

We can deduce the property (ii) from the equality

Fδ(x, y, s) = b(2π)−d

∫
[0,2π]d

dk̂
sinh(xΦδ(k̂, s))

(y + cosh(xΦδ(k̂, s)))Φδ(k̂, s)
.
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Let us define the function Φ : R
d × (0, s0) → R by

Φ(x1, · · · , xd, s) :=

{
emax if |xj − π| ≤ πs

1
d , ∀j ∈ {1, · · · , d},

emin if ∃j ∈ {1, · · · , d} s.t. |xj − π| > πs
1
d .

Observe that

lim
δ↘0

δ∈(0,1−s
1
d
0 )

Fδ(x, y, s) = b(2π)−d

∫
[0,2π]d

dk̂
sinh(xΦ(k̂, s))

(y + cosh(xΦ(k̂, s)))Φ(k̂, s)

= bse−1
maxW

(
emaxx, y,

emin

emax
,
1 − s

s

)
locally uniformly with (x, y, s) in R>0 × (−1, 0)× (0, s0). One can derive an

upper bound on the right-hand side of the following equality to verify the

claimed locally uniform convergence.

Fδ(x, y, s) − bse−1
maxW

(
emaxx, y,

emin

emax
,
1 − s

s

)
= b(2π)−d

∫
Q(π(δ+s

1
d ))\Q(πs

1
d )

dk̂

·
(

sinh(xΦδ(k̂, s))

(y + cosh(xΦδ(k̂, s)))Φδ(k̂, s)
− sinh(xΦ(k̂, s))

(y + cosh(xΦ(k̂, s)))Φ(k̂, s)

)
,

where Q(t) := [π − t, π + t]d for t ∈ (0, π). Moreover,

lim
(y,δ)→(−1,0)

(y,δ)∈(−1,0)×(0,1−s
1
d
0 )

√
y + 1Fδ(

√
y + 1x, y, s)

= b(2π)−d

∫
[0,2π]d

dk̂
x

1 + x2

2 Φ(k̂, s)2
= bse−1

maxŴ

(
emaxx,

emin

emax
,
1 − s

s

)
locally uniformly with (x, s) in R>0 × (0, s0). The convergent properties of

the derivatives of Fδ can be confirmed similarly. �

2.3. Non-existence of SPI

Here we prove a proposition which ensures that the claim (iv) of Theorem

1.8 implies the claim (iii) of Theorem 1.8. In the proof we will use the
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function u : R>0 × [−1, 1] × R>0 → R defined by

u(x, y, z) :=
sinh(xz)

(y + cosh(xz))z
.

We essentially rely on [25, Lemma 2.12] to prove the next proposition.

Proposition 2.11. Assume that emin
emax

>
√

17 − 12
√

2. Then there

exists U0 ∈ (0, 2emin
b ) such that for any U ∈ [−U0, 0), E ∈ E(emin, emax)

τ(·) has no SPI in (0, βc).

Proof. Let us prove the following statement.

There exists y0 ∈ (−1, 0) such that for any y ∈ (−1, y0], E ∈ E(emin, emax)

(2.27)

there uniquely exists x0 ∈ R>0 such that
∂F∞
∂x

(x0, y) = 0.

If (2.27) holds, then we can apply Lemma 2.7 with S = E(emin, emax) to

conclude the proof.

If emin = emax, F∞(x, y) = bu(x, y, emax). For any y ∈ (−1, 0),
∂F∞
∂x (x0, y) = 0 if and only if x0 = cosh−1(|y|−1)

emax
, where cosh−1 : [1,∞) → R≥0

is the inverse function of cosh |R≥0
. Thus (2.27) holds.

Assume that emin < emax. Let us fix E ∈ E(emin, emax). By apply-

ing Rouché’s theorem one can prove that there are continuous functions

ej : Γ∗
∞ → R (j = 1, 2, · · · , b) such that e1(k) ≤ e2(k) ≤ · · · ≤ eb(k),

{eigenvalues of E(k)} = {ej(k)}bj=1 for any k ∈ Γ∗
∞. It follows that

emin = min
k∈Γ∗∞

min
j∈{1,··· ,b}

|ej(k)|, emax = max
k∈Γ∗∞

max
j∈{1,··· ,b}

|ej(k)|,

F∞(x, y) =
b∑

j=1

Dd

∫
Γ∗∞

dku(x, y, |ej(k)|), ∀(x, y) ∈ R>0 × (−1, 0),(2.28)

∂F∞
∂x

(x, y) > 0, ∀x ∈
(

0,
cosh−1(|y|−1)

emax

]
,(2.29)

∂F∞
∂x

(x, y) < 0, ∀x ∈
[
cosh−1(|y|−1)

emin
,∞
)

, y ∈ (−1, 0).
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The inequalities (2.29) imply that for any y ∈ (−1,−1
2 ] there exists x0(y) ∈

( cosh−1(|y|−1)
emax

, cosh−1(|y|−1)
emin

) such that ∂F∞
∂x (x0(y), y) = 0. Observe that∣∣∣∣ e0√

y + 1
x0(y)

∣∣∣∣ ≤ cmax
emax

emin
, ∀e0 ∈ [emin, emax],(2.30)

where

cmax := sup
y∈(−1,− 1

2
]

cosh−1(|y|−1)√
y + 1

.

Using the equality

cosh−1(|y|−1) = log
(
|y|−1 +

√
|y|−2 − 1

)
,(2.31)

we can check that 0 < cmax < ∞. By substituting x = e0√
y+1

x0(y) and using

(2.30) we can deduce from [25, Lemma 2.12] that if y ∈ (−1,−1
2 ] and

|y + 1| <
c1

emin
emax

(( emin
emax

)2 − 17 + 12
√

2)

2 cosh2(2cmax
emin
emax

) cosh2(cmax
emin
emax

)
,(2.32)

then

∂u

∂x
(x0(y), y, e0)

∂2u

∂x2
(x0(y), y, emin) − ∂2u

∂x2
(x0(y), y, e0)

∂u

∂x
(x0(y), y, emin)

(2.33)

> 0, ∀e0 ∈ (emin, emax],

where c1 ∈ R>0 is the generic constant independent of any parameter, in-

troduced in [25, Lemma 2.12]. We emphasis that c1 is independent of E.

We can derive from (2.28), (2.33) that

∂u

∂x
(x0(y), y, emin)

∂2F∞
∂x2

(x0(y), y) <
∂F∞
∂x

(x0(y), y)
∂2u

∂x2
(x0(y), y, emin) = 0.

Since ∂u
∂x(x0(y), y, emin) > 0, ∂2F∞

∂x2 (x0(y), y) < 0. Essentially we have proved

that if y ∈ (−1,−1
2 ] satisfies (2.32) and x0 ∈ ( cosh−1(|y|−1)

emax
, cosh−1(|y|−1)

emin
)
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satisfies ∂F∞
∂x (x0, y) = 0, then ∂2F∞

∂x2 (x0, y) < 0. Take any y ∈ (−1,−1
2 ]

satisfying (2.32). Set

M :=

{
x ∈

(
cosh−1(|y|−1)

emax
,
cosh−1(|y|−1)

emin

) ∣∣∣∣∣ ∂F∞
∂x

(x, y) = 0

}
.

We have already seen that M �= ∅. Suppose that <M ≥ 2. Since x �→
∂F∞
∂x (x, y) : R>0 → R is real analytic, not identically zero, there exist

x1, x2 ∈ M such that x1 < x2 and x /∈ M for any x ∈ (x1, x2). However, the

property ∂2F∞
∂x2 (xj , y) < 0 (j = 1, 2) implies that there exists x3 ∈ (x1, x2)

such that x3 ∈ M , which is a contradiction. Therefore <M = 1. Combined

with (2.29), the above argument ensures that the claim (2.27) holds with

y0 = min{−1
2 ,−1 + c2

2 }, where c2(∈ R>0) is the right-hand side of (2.32).

Lemma 2.7 concludes the proof. �

2.4. Existence of SPI: non-critical case

Our purpose here is to prove existence of a SPI under the condition
emin
emax

<
√

17 − 12
√

2, or more precisely the following proposition. Remind

us that the set {Es,δ}
s∈(0,s0),δ∈(0,1−s

1
d
0 )

⊂ E(emin, emax) is constructed in

Lemma 2.9.

Proposition 2.12. Assume that emin
emax

<
√

17 − 12
√

2. Then there

exist s0 ∈ (0, 1) and δ ∈ (0, 1− s
1
d
0 ) such that the following statements hold.

(i) For any U0 ∈ (0, 2emin
b ), ξ ∈ {r, f} there exist U ∈ [−U0, 0), s ∈ (0, s0)

such that (SPI)ξ holds with U and Es,δ(∈ E(emin, emax)).

(ii) For any U0 ∈ (0, 2emin
b ), (ρ, η) ∈ {(+,−), (−,+)} there exist U ∈

[−U0, 0), s ∈ (0, s0), n ∈ 4N + 2 such that (PT)n,(ρ,η) holds with U

and Es,δ(∈ E(emin, emax)).

Remark 2.13. The free energy density FE(β, t) was derived from the

many-electron system in [25, Theorem 1.3 (ii)] for any E ∈ E(emin, emax),

U ∈ R<0 satisfying (1.9). It is not trivial if (U,Es,δ) introduced in Propo-

sition 2.12 (i), (ii) satisfies (1.9). If so, the existence of SPI and HOPT is

guaranteed by the proposition while the derivation of the free energy density

is justified by [25, Theorem 1.3 (ii)]. According to the proof of Proposition
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2.12, the choice of s ∈ (0, s0) depends on U0. However, Lemma 2.9 (i) states

that (1.10) with E = Es,δ is independent of s. Assume emin
emax

<
√

17 − 12
√

2

and let s0 ∈ (0, 1), δ ∈ (0, 1 − s
1
d
0 ) be those introduced in Proposition 2.12.

It follows in particular that

((1.10) with E = Es,δ) = ((1.10) with E = E s0
2
,δ)

for any s ∈ (0, s0). Take any

U0 ∈
(

0,
2c′

b
min{emin, e

d+1
min}

)
,

where c′ ∈ (0, 1] is introduced in [25, Theorem 1.3] and depends only on d,

b, (v̂j)
d
j=1 and (1.10) with E = E s0

2
,δ. Then the following statements hold

true.

• For any ξ ∈ {r, f} there exist U ∈ [−U0, 0), s ∈ (0, s0) such that

(SPI)ξ holds and FE(β, t) is derived from the many-electron system

by [25, Theorem 1.3 (ii)] with U and Es,δ.

• For any (ρ, η) ∈ {(+,−), (−,+)} there exist U ∈ [−U0, 0), s ∈ (0, s0),

n ∈ 4N + 2 such that (PT)n,(ρ,η) holds and FE(β, t) is derived from

the many-electron system by [25, Theorem 1.3 (ii)] with U and Es,δ.

Throughout this subsection we assume that emin
emax

<
√

17 − 12
√

2. We

need to introduce a function in order to construct the proof of the above

proposition. Let us set the convergent power series p(x, y, z) (x, y, z ∈ C)

by

p(x, y, z) :=
∞∑
n=1

(y + 1)n−1

(2n)!
2nznxn.

The function w̃(x, y, z) is defined in the open set D̃ of C
3 as follows.

D̃ := {(x, y, z) ∈ C
3 | |1 + yp(x, y, z)||1 + p(x, y, 1)| > 0},

w̃(x, y, z) := −(1 + yp(x, y, 1))(1 + p(x, y, z))2

(1 + yp(x, y, z))(1 + p(x, y, 1))2
.
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In fact in [25, Subsection 2.2] the function w̃ was introduced as an analytic

continuation of the function w : D → R defined by

w(x, y, z) := −(1 + y cosh(
√
y + 1

√
2x))(y + cosh(

√
y + 1

√
2zx))2

(1 + y cosh(
√
y + 1

√
2zx))(y + cosh(

√
y + 1

√
2x))2

,

(2.34)

D :=

{
(x, y, z) ∈ R>0 × (−1, 0) × R>0

∣∣∣ x <
1

2z(y + 1)
(cosh−1(|y|−1))2

}
.

Here we presented the full definition of these functions in order to make clear

the continuity from the previous construction [25, Section 2]. The function

w will be recalled in Subsection 2.5.

Set η := ( emin
emax

)2(∈ (0, 17−12
√

2)). Here we only need to use the function

x �→ w̃(x,−1, η) : (0, η−1) → R, which is characterized as

w̃(x,−1, η) =
(x− 1)(1 + ηx)2

(1 − ηx)(1 + x)2
, x ∈ (0, η−1).

Since (1+η
6η )2 > 1

η , we can define the real numbers a+(η), a−(η) by

a+(η) :=
1 + η

6η
+

((
1 + η

6η

)2

− 1

η

) 1
2

,

a−(η) :=
1 + η

6η
−
((

1 + η

6η

)2

− 1

η

) 1
2

.

The behavior of the function w̃(·,−1, η) is the most important information

to prove Proposition 2.12 and is summarized in [25, Lemma 2.18]. Here we

restate it for readability of the present paper.

1 < a−(η) < a+(η) < η−1,(2.35)

∂w̃

∂x
(x,−1, η) > 0, ∀x ∈ (0, a−(η)),

∂w̃

∂x
(a−(η),−1, η) = 0,(2.36)

∂w̃

∂x
(x,−1, η) < 0, ∀x ∈ (a−(η), a+(η)),

∂w̃

∂x
(a+(η),−1, η) = 0,(2.37)
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∂w̃

∂x
(x,−1, η) > 0, ∀x ∈ (a+(η), η−1),

0 < w̃(a+(η),−1, η) < w̃(a−(η),−1, η).(2.38)

Since w̃(1,−1, η) = 0 and limx↗η−1 w̃(x,−1, η) = +∞, there uniquely exist

a1(η) ∈ (1, a−(η)), a2(η) ∈ (a+(η), η−1) such that

w̃(a1(η),−1, η) = w̃(a+(η),−1, η), w̃(a2(η),−1, η) = w̃(a−(η),−1, η).

In the following we fix

s1 ∈ (0, w̃(a+(η),−1, η)), s2 ∈ (w̃(a+(η),−1, η), w̃(a−(η),−1, η)),

s3 ∈ (w̃(a−(η),−1, η),∞).

The schematic profile of the function w̃(·,−1, η) in [1, η−1) is pictured in

Figure 3. We remark that Figure 3 is a sketch, not the exact implementation

of w̃(·,−1, η).

We can prove the next lemma by combining Lemma 2.9 with the above

properties of w̃(·,−1, η). Recall that the function Fδ is defined in (2.25).

Here we consider (1
2s1 + 1)−1 as s0 introduced in Lemma 2.9.

Lemma 2.14. There exist y0 ∈ (−1, 0), δ0 ∈ (0, 1 − (1
2s1 + 1)−

1
d ) such

that the following statements hold for any y ∈ (−1, y0], δ ∈ (0, δ0].

(i)

√
2 <

cosh−1(|y|−1)√
y + 1

<
√

2a1(η) <
√

2a−(η) <
√

2a+(η) <
√

2a2(η)

<
√

2η−1 <
√

η−1
cosh−1(|y|−1)√

y + 1
.

(ii)

∂Fδ

∂x

(√
y + 1

emax
x, y,

1

s3 + 1

)
> 0, ∀x ∈ [

√
2a1(η),

√
2a+(η)].(2.39)

∂Fδ

∂x

(√
y + 1

emax

√
2a1(η), y,

1

s + 1

)
> 0,(2.40)

∂Fδ

∂x

(√
y + 1

emax

√
2a+(η), y,

1

s + 1

)
> 0, ∀s ∈ [s2, s3].

∂Fδ

∂x

(√
y + 1

emax

√
2a−(η), y,

1

s2 + 1

)
< 0.(2.41)
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Fig. 3. The schematic profile of w̃(·,−1, η) in [1, η−1).

(iii)

∂Fδ

∂x

(√
y + 1

emax
x, y,

1

s1 + 1

)
< 0, ∀x ∈ [

√
2a−(η),

√
2a2(η)].(2.42)

∂Fδ

∂x

(√
y + 1

emax

√
2a−(η), y,

1

s + 1

)
< 0,(2.43)

∂Fδ

∂x

(√
y + 1

emax

√
2a2(η), y,

1

s + 1

)
< 0, ∀s ∈ [s1, s2].

∂Fδ

∂x

(√
y + 1

emax

√
2a+(η), y,

1

s2 + 1

)
> 0.(2.44)

Proof. We can derive from (2.31) that

lim
y↘−1

cosh−1(|y|−1)√
y + 1

=
√

2.(2.45)
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It was remarked in the beginning of the proof of [25, Lemma 2.24] that for

y ∈ (−1, 0) sufficiently close to −1,

cosh−1(|y|−1)√
y + 1

>
√

2.(2.46)

The claim (i) follows from (2.35), (2.45), (2.46) and that a1(η) ∈ (1, a−(η)),

a2(η) ∈ (a+(η), η−1). Recall the definition (2.24). Observe that

∂Ŵ

∂x
(x,

√
η, s) =

1 − η x2

2

(1 + η x2

2 )2

(
s− w̃

(
x2

2
,−1, η

))
,

∀(x, s) ∈ (0,
√

2η−1) × R>0,

and thus by (2.38) and the choice of s1, s2, s3

∂Ŵ

∂x
(x,

√
η, s3) > 0, ∀x ∈ [

√
2a1(η),

√
2a+(η)].(2.47)

∂Ŵ

∂x
(
√

2a1(η),
√
η, s) > 0,

∂Ŵ

∂x
(
√

2a+(η),
√
η, s) > 0, ∀s ∈ [s2, s3].

∂Ŵ

∂x
(
√

2a−(η),
√
η, s2) < 0.

∂Ŵ

∂x
(x,

√
η, s1) < 0, ∀x ∈ [

√
2a−(η),

√
2a2(η)].

∂Ŵ

∂x
(
√

2a−(η),
√
η, s) < 0,

∂Ŵ

∂x
(
√

2a2(η),
√
η, s) < 0, ∀s ∈ [s1, s2].

∂Ŵ

∂x
(
√

2a+(η),
√
η, s2) > 0.

Figure 3 may help us understand the above inequalities. Lemma 2.9 (iv)

implies that

lim
(y,δ)→(−1,0)

(y,δ)∈(−1,0)×(0,1−( 1
2
s1+1)−

1
d )

(y + 1)
∂Fδ

∂x

(√
y + 1

emax
x, y,

1

s + 1

)

=
b

s + 1

∂Ŵ

∂x
(x,

√
η, s)
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uniformly with (x, s) in [
√

2a1(η),
√

2a2(η)] × [s1, s3]. We can deduce the

claims (ii), (iii) by combining the above convergent property with (2.47). �

The proof of Proposition 2.12 is based on Corollary 2.5, Lemma 2.8,

Lemma 2.9 and Lemma 2.14.

Proof of Proposition 2.12. By Corollary 2.5 the claim (i) is equiv-

alent to the claim (ii). Thus it suffices to give a proof to the claim (i). Let

y0 ∈ (−1, 0), δ0 ∈ (0, 1 − (1
2s1 + 1)−

1
d ) be those introduced in Lemma 2.14.

Observe that for any x ∈ [
√

2a1(η),
√

2a2(η)], s ∈ [s1, s3], δ ∈ (0, δ0]√
y + 1Fδ

(√
y + 1

emax
x, y,

1

s + 1

)
≥ b

(s3 + 1)emax
inf

x′∈[
√

2a1(η),
√

2a2(η)]

s′∈[s1,s3]

Ŵ (x′,
√
η, s′)

− sup
x′∈[

√
2a1(η),

√
2a2(η)]

s′∈[s1,s3]

∣∣∣∣∣√y + 1Fδ

(√
y + 1

emax
x′, y,

1

s′ + 1

)

− b

(s′ + 1)emax
Ŵ (x′,

√
η, s′)

∣∣∣∣∣.
We can apply Lemma 2.9 (iv) to ensure that there exist y1 ∈ (−1, y0],

δ1 ∈ (0, δ0] such that

Fδ1

(√
y + 1

emax
x, y,

1

s + 1

)
≥ b

2
√
y + 1(s3 + 1)emax

inf
x′∈[

√
2a1(η),

√
2a2(η)]

s′∈[s1,s3]

Ŵ (x′,
√
η, s′)

for any y ∈ (−1, y1]. Take any U0 ∈ (0, 2emax
b ). By the above inequality

there exists y2 ∈ (−1, y1] such that

Fδ1

(√
y2 + 1

emax
x, y2,

1

s + 1

)
≥ 2

U0
, ∀x ∈ [

√
2a1(η),

√
2a2(η)], s ∈ [s1, s3].

(2.48)
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Here we apply the inequalities given in Lemma 2.14 (ii) with δ = δ1, y = y2.

By (2.39), (2.41) and the fact that s �→ minx∈I
∂Fδ1
∂x (x, y2,

1
s+1) is continuous

in [s2, s3] for any closed bounded interval I ⊂ R>0 there exists ŝ ∈ (s2, s3)

such that

min
x∈
[ √

y2+1

emax

√
2a1(η),

√
y2+1

emax

√
2a+(η)

] ∂Fδ1

∂x

(
x, y2,

1

ŝ + 1

)
= 0.

Moreover, by (2.40) there exists

x̂ ∈
(√

y2 + 1

emax

√
2a1(η),

√
y2 + 1

emax

√
2a+(η)

)
such that

∂Fδ1

∂x

(
x̂, y2,

1

ŝ + 1

)
= 0.

Furthermore, since x �→ ∂Fδ1
∂x (x, y2,

1
ŝ+1) : R>0 → R is real analytic and not

identically zero, there exists ε ∈ R>0 such that

(x̂− ε, x̂ + ε) ⊂
(√

y2 + 1

emax

√
2a1(η),

√
y2 + 1

emax

√
2a+(η)

)
,

∂Fδ1

∂x

(
x, y2,

1

ŝ + 1

)
> 0, ∀x ∈ (x̂− ε, x̂ + ε)\{x̂}.

This means that x̂ is a rising SPI of Fδ1(·, y2,
1

ŝ+1). Since Fδ1(·, y2,
1

ŝ+1) =

F∞(·, y2) with E 1
ŝ+1

,δ1
∈ E(emin, emax), the above property and (2.48) enable

us to apply Lemma 2.8 (i) to conclude that there exists U ∈ [−U0, 0) such

that τ(·) has a falling SPI in (0, βc).

Using Lemma 2.14 (iii), Lemma 2.8 (ii) in place of Lemma 2.14 (ii),

Lemma 2.8 (i) respectively, we can argue in a way parallel to the above

argument to prove existence of a rising SPI of τ(·) for some U ∈ [−U0, 0),

E 1
s̃+1

,δ1
∈ E(emin, emax) with s̃ ∈ (s1, s2).

We have proved the claims with s0 = (1
2s1 + 1)−1, δ = δ1. �

2.5. Existence of SPI: critical case

Here we prove existence of a SPI when emin
emax

=
√

17 − 12
√

2.
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Proposition 2.15. Assume that emin
emax

=
√

17 − 12
√

2. Then the fol-

lowing statements hold.

(i) For any U0 ∈ (0, 2emin
b ), ξ ∈ {r, f} there exist U ∈ [−U0, 0), s ∈ (0, 1),

δ ∈ (0, 1−s
1
d ) such that (SPI)ξ holds with U and Es,δ(∈ E(emin, emax)).

(ii) For any U0 ∈ (0, 2emin
b ), (ρ, η) ∈ {(+,−), (−,+)} there exist U ∈

[−U0, 0), s ∈ (0, 1), δ ∈ (0, 1 − s
1
d ), n ∈ 4N + 2 such that (PT)n,(ρ,η)

holds with U and Es,δ(∈ E(emin, emax)).

Remark 2.16. As we can see from the proof, we have to choose s ∈
(0, 1), δ ∈ (0, 1 − s

1
d ) after fixing U0. We cannot prove that the condition

(1.9) holds for the pair (U,Es,δ) introduced in the proposition. Accordingly

we cannot prove existence of a SPI of τ(·) : (0, βc) → R or existence of

a HOPT driven by temperature while justifying the derivation of FE(β, t)

from the many-electron system in the case emin
emax

=
√

17 − 12
√

2. In the

case emin
emax

<
√

17 − 12
√

2 we can choose δ before fixing U0 as claimed in

Proposition 2.12, and thus we can reach the positive conclusions stated in

Remark 2.13.

Set η0 := 17 − 12
√

2, a0 := 3 + 2
√

2. As a preliminary, let us recall

properties of the function

w̃(x,−1, η0) =
(x− 1)(1 + η0x)2

(1 − η0x)(1 + x)2
, x ∈ (0, η−1

0 ),

which form the basis of the proof. Observe that

∂w̃

∂x
(x,−1, η0) =

3η0(1 − η0)(1 + η0x)

(1 − η0x)2(1 + x)3

(
x2 − η0 + 1

3η0
x +

1

η0

)
,

which is equal to [25, (2.47)], and

x2 − η0 + 1

3η0
x +

1

η0
= (x− a0)

2.

These imply that

∂w̃

∂x
(x,−1, η0) > 0, ∀x ∈ (0, η−1

0 )\{a0},(2.49)
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∂w̃

∂x
(a0,−1, η0) = 0,

and thus

1

2
w̃(a0,−1, η0) < w̃(a0,−1, η0) < w̃

(
1

2
η−1
0 ,−1, η0

)
,(2.50)

sup
x∈[1,a0]

w̃(x,−1, η0) < 2w̃(a0,−1, η0),

inf
x∈[a0,

1
2
η−1
0 ]

w̃(x,−1, η0) >
1

2
w̃(a0,−1, η0).

In the proof of Proposition 2.15 we essentially use [25, Lemma 2.15],

which concerns properties of the function w(x, y, η0) defined in (2.34).

Proof of Proposition 2.15. By Corollary 2.5 the claim (i) is equiv-

alent to the claim (ii). Thus it suffices to prove the claim (i). We apply

Lemma 2.9 (iv) with s0 = (1 + 1
3 w̃(a0,−1, η0))

−1 to ensure that there exist

δ1 ∈ (0, 1 − (1 + 1
3 w̃(a0,−1, η0))

− 1
d ), y1 ∈ (−1, 0) such that

√
y + 1Fδ

(√
y + 1

emax
x, y,

1

s + 1

)
≥ b

2(2w̃(a0,−1, η0) + 1)emax
inf

x′∈[
√

2,
√

2η−1
0 ]

Ŵ

(
x′,

√
η0,

1

2
w̃(a0,−1, η0)

)
,

∀x ∈ [
√

2,

√
2η−1

0 ], y ∈ (−1, y1], s ∈
[
1

2
w̃(a0,−1, η0), 2w̃(a0,−1, η0)

]
,

δ ∈ (0, δ1].

Take any U0 ∈ (0, 2emin
b ). The above property guarantees that there exists

y2 ∈ (−1, y1] such that

Fδ

(√
y + 1

emax
x, y,

1

s + 1

)
≥ 2

U0
,

(2.51)

∀x ∈ [
√

2,

√
2η−1

0 ], y ∈ (−1, y2], s ∈
[
1

2
w̃(a0,−1, η0), 2w̃(a0,−1, η0)

]
,

δ ∈ (0, δ1].
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It follows from [25, Lemma 2.15] that there exists y3 ∈ (−1, y2] such that

for any y ∈ (−1, y3]

1

2(y + 1)
(cosh−1(|y|−1))2 < a0 <

1

2η0(y + 1)
(cosh−1(|y|−1))2,

0 < w(a0, y, η0) < 1.

Moreover, there exist

x1(y) ∈
(

1

2(y + 1)
(cosh−1(|y|−1))2, a0

)
,

x2(y) ∈
(
a0,

1

2η0(y + 1)
(cosh−1(|y|−1))2

)
such that

w(x1(y), y, η0) = w(a0, y, η0) = w(x2(y), y, η0),(2.52)

w(x, y, η0) > w(a0, y, η0), ∀x ∈ (x1(y), a0),

w(x, y, η0) < w(a0, y, η0), ∀x ∈ (a0, x2(y)).

We can deduce from (2.46), (2.50) and the property

lim
y↘−1

sup
x∈[1, 1

2
η−1
0 ]

|w(x, y, η0) − w̃(x,−1, η0)| = 0(2.53)

that there exists y4 ∈ (−1, y3] such that

1 <
1

2(y + 1)
(cosh−1(|y|−1))2,

1

2
w̃(a0,−1, η0) < w(a0, y, η0) < w̃

(
1

2
η−1
0 ,−1, η0

)
,

sup
x∈[1,a0]

w(x, y, η0) < 2w̃(a0,−1, η0), inf
x∈[a0,

1
2
η−1
0 ]

w(x, y, η0) >
1

2
w̃(a0,−1, η0)

(2.54)

for any y ∈ (−1, y4].

Let us prove that there exists ŷ ∈ (−1, y4] such that

x2(ŷ) <
1

2
η−1
0 .(2.55)
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Set ξ := 1
2(w̃(1

2η
−1
0 ,−1, η0) − w̃(a0,−1, η0)). It follows that

w̃(a0,−1, η0) + ξ < w̃

(
1

2
η−1
0 ,−1, η0

)
.(2.56)

By (2.53) there exists y5 ∈ (−1, y4] such that

w(a0, y, η0) < w̃(a0,−1, η0) + ξ, ∀y ∈ (−1, y5].(2.57)

Let us take ε ∈ R>0 so that

η−1
0 − ε >

1

2
η−1
0 ,

η−1
0 − ε− 1

εη0(1 + η−1
0 )2

≥ w̃

(
1

2
η−1
0 ,−1, η0

)
.

We define T : (−1, y5] → R by

T (y) := − 1 + y cosh(
√
y + 1

√
2x)

1 + y cosh(
√
y + 1

√
2η0x)

∣∣∣∣∣
x=η−1

0 −ε

· (y + 1)2

(y + cosh(
√
y + 1

√
2x))2

∣∣∣∣
x= 1

2η0(y+1)
(cosh−1(|y|−1))2

.

Observe that

1

2(y + 1)
(cosh−1(|y|−1))2 < η−1

0 − ε <
1

2η0(y + 1)
(cosh−1(|y|−1))2,

w(x, y, η0) ≥ T (y),

∀x ∈
[
η−1
0 − ε,

1

2η0(y + 1)
(cosh−1(|y|−1))2

)
, y ∈ (−1, y5],

lim
y↘−1

y∈(−1,y5]

T (y) =
η−1
0 − ε− 1

εη0(1 + η−1
0 )2

≥ w̃

(
1

2
η−1
0 ,−1, η0

)
.

These properties plus (2.56) imply that there exists y6 ∈ (−1, y5] such that

w(x, y, η0) ≥ w̃(a0,−1, η0) + ξ,(2.58)

∀x ∈
[
η−1
0 − ε,

1

2η0(y + 1)
(cosh−1(|y|−1))2

)
, y ∈ (−1, y6].
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On the other hand, since

lim
y↘−1

y∈(−1,y6]

sup
x∈[ 1

2
η−1
0 ,η−1

0 −ε]

|w(x, y, η0) − w̃(x,−1, η0)| = 0,

by (2.49) and (2.56) there exists ŷ ∈ (−1, y6] such that

w(x, ŷ, η0) ≥ w̃(a0,−1, η0) + ξ, ∀x ∈
[
1

2
η−1
0 , η−1

0 − ε

]
.(2.59)

By combining (2.57), (2.58) with (2.59) we obtain that

w(x, ŷ, η0) > w(a0, ŷ, η0), ∀x ∈
[
1

2
η−1
0 ,

1

2η0(ŷ + 1)
(cosh−1(|ŷ|−1))2

)
.

If x2(ŷ) ≥ 1
2η

−1
0 ,

w(x2(ŷ), ŷ, η0) > w(a0, ŷ, η0) = w(x2(ŷ), ŷ, η0),

which is a contradiction. Therefore x2(ŷ) < 1
2η

−1
0 .

Let us set

s1 :=
1

2
w̃(a0,−1, η0), s2 :=

1

2

(
inf

x∈[a0,x2(ŷ)]
w(x, ŷ, η0) + w(a0, ŷ, η0)

)
,

s3 :=
1

2

(
sup

x∈[x1(ŷ),a0]
w(x, ŷ, η0) + w(a0, ŷ, η0)

)
, s4 := 2w̃(a0,−1, η0).

We can see from (2.52), (2.54), (2.55) that

s1 < inf
x∈[a0,x2(ŷ)]

w(x, ŷ, η0) < s2(2.60)

< w(a0, ŷ, η0) = w(x1(ŷ), ŷ, η0) = w(x2(ŷ), ŷ, η0)

< s3 < sup
x∈[x1(ŷ),a0]

w(x, ŷ, η0) < s4.

Observe that

∂W

∂x
(
√

y + 1x, y,
√
z, s) =

1 + y cosh(
√

z(y + 1)x)

(y + cosh(
√

z(y + 1)x))2

(
s− w

(
x2

2
, y, z

))(2.61)
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for any (x, y, z) ∈ R>0× (−1, 0)×R>0 satisfying x < 1√
z(y+1)

cosh−1(|y|−1).

Let x̂1 ∈ (x1(ŷ), a0), x̂2 ∈ (a0, x2(ŷ)) be such that

w(x̂1, ŷ, η0) = max
x∈[x1(ŷ),a0]

w(x, ŷ, η0), w(x̂2, ŷ, η0) = min
x∈[a0,x2(ŷ)]

w(x, ŷ, η0).

(2.62)

Combination of (2.60), (2.61), (2.62) implies that

∂W

∂x
(
√

ŷ + 1x, ŷ,
√
η0, s1) < 0, ∀x ∈ [

√
2a0,

√
2x2(ŷ)],

∂W

∂x
(
√

ŷ + 1
√

2a0, ŷ,
√
η0, s) < 0,

∂W

∂x
(
√

ŷ + 1
√

2x2(ŷ), ŷ,
√
η0, s) < 0,

∀s ∈ [s1, s2],

∂W

∂x
(
√

ŷ + 1
√

2x̂2, ŷ,
√
η0, s2) > 0,

∂W

∂x
(
√

ŷ + 1x, ŷ,
√
η0, s4) > 0, ∀x ∈ [

√
2x1(ŷ),

√
2a0],

∂W

∂x
(
√

ŷ + 1
√

2x1(ŷ), ŷ,
√
η0, s) > 0,

∂W

∂x
(
√

ŷ + 1
√

2a0, ŷ,
√
η0, s) > 0,

∀s ∈ [s3, s4],

∂W

∂x
(
√

ŷ + 1
√

2x̂1, ŷ,
√
η0, s3) < 0.

Here we apply Lemma 2.9 (ii), (iii) with s0 = (1 + 1
3 w̃(a0,−1, η0))

−1 to

derive from the above inequalities that there exists δ̂ ∈ (0, δ1] such that

∂Fδ̂

∂x
(·, ŷ, ·) ∈ C(R>0 × [(s4 + 1)−1, (s1 + 1)−1]),

Fδ̂(·, ŷ, s) ∈ Cω(R>0), ∀s ∈ [(s4 + 1)−1, (s1 + 1)−1],

∂Fδ̂

∂x

(√
ŷ + 1

emax
x, ŷ,

1

s1 + 1

)
< 0, ∀x ∈ [

√
2a0,

√
2x2(ŷ)],

(2.63)

∂Fδ̂

∂x

(√
ŷ + 1

emax

√
2a0, ŷ,

1

s + 1

)
< 0,

∂Fδ̂

∂x

(√
ŷ + 1

emax

√
2x2(ŷ), ŷ,

1

s + 1

)
< 0,

(2.64)

∀s ∈ [s1, s2],
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∂Fδ̂

∂x

(√
ŷ + 1

emax

√
2x̂2, ŷ,

1

s2 + 1

)
> 0,

(2.65)

∂Fδ̂

∂x

(√
ŷ + 1

emax
x, ŷ,

1

s4 + 1

)
> 0, ∀x ∈ [

√
2x1(ŷ),

√
2a0],

(2.66)

∂Fδ̂

∂x

(√
ŷ + 1

emax

√
2x1(ŷ), ŷ,

1

s + 1

)
> 0,

∂Fδ̂

∂x

(√
ŷ + 1

emax

√
2a0, ŷ,

1

s + 1

)
> 0,

(2.67)

∀s ∈ [s3, s4],

∂Fδ̂

∂x

(√
ŷ + 1

emax

√
2x̂1, ŷ,

1

s3 + 1

)
< 0.

(2.68)

By (2.63), (2.65), (2.66), (2.68) and the fact that s �→ maxx∈I
∂Fδ̂
∂x (x, ŷ, 1

s+1),

s �→ minx∈I
∂Fδ̂
∂x (x, ŷ, 1

s+1) are continuous in [s1, s4] for any closed bounded

interval I ⊂ R>0 there exist ŝ1 ∈ (s1, s2), ŝ2 ∈ (s3, s4) such that

max
x∈
[ √

ŷ+1
emax

√
2a0,

√
ŷ+1

emax

√
2x2(ŷ)

] ∂Fδ̂

∂x

(
x, ŷ,

1

ŝ1 + 1

)
= 0,

min
x∈
[ √

ŷ+1
emax

√
2x1(ŷ),

√
ŷ+1

emax

√
2a0

] ∂Fδ̂

∂x

(
x, ŷ,

1

ŝ2 + 1

)
= 0.

Moreover, by (2.64), (2.67) there exist

ζ1 ∈
(√

ŷ + 1

emax

√
2x1(ŷ),

√
ŷ + 1

emax

√
2a0

)
,

ζ2 ∈
(√

ŷ + 1

emax

√
2a0,

√
ŷ + 1

emax

√
2x2(ŷ)

)
such that

∂Fδ̂

∂x

(
ζ2, ŷ,

1

ŝ1 + 1

)
= 0,(2.69)

∂Fδ̂

∂x

(
ζ1, ŷ,

1

ŝ2 + 1

)
= 0.(2.70)
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Furthermore, since
∂Fδ̂
∂x (·, ŷ, 1

ŝj+1) ∈ Cω(R>0) (j = 1, 2) and these functions

are not identically zero, there exists ε̂ ∈ R>0 such that

(ζ1 − ε̂, ζ1 + ε̂) ⊂
(√

ŷ + 1

emax

√
2x1(ŷ),

√
ŷ + 1

emax

√
2a0

)
,

∂Fδ̂

∂x

(
x, ŷ,

1

ŝ2 + 1

)
> 0, ∀x ∈ (ζ1 − ε̂, ζ1 + ε̂)\{ζ1},(2.71)

(ζ2 − ε̂, ζ2 + ε̂) ⊂
(√

ŷ + 1

emax

√
2a0,

√
ŷ + 1

emax

√
2x2(ŷ)

)
,

∂Fδ̂

∂x

(
x, ŷ,

1

ŝ1 + 1

)
< 0, ∀x ∈ (ζ2 − ε̂, ζ2 + ε̂)\{ζ2}.(2.72)

Finally the properties (2.51), (2.69), (2.72) enable us to apply Lemma 2.8

(ii) to ensure that for E 1
ŝ1+1

,δ̂ (∈ E(emin, emax)) and some U ∈ [−U0, 0)

τ(·) has a rising SPI in (0, βc). Similarly by (2.51), (2.70), (2.71) we can

apply Lemma 2.8 (i) to conclude that for E 1
ŝ2+1

,δ̂ (∈ E(emin, emax)) and

some U ∈ [−U0, 0) τ(·) has a falling SPI in (0, βc). Thus the claim (i) holds

true. �

2.6. Proof of Theorem 1.7 and Theorem 1.8

We can complete the proof of Theorem 1.7 and Theorem 1.8 by applying

Proposition 2.11, Proposition 2.12 and Proposition 2.15.

Proof of Theorem 1.7. The equivalence between the claim (i) and

the claim (ii) was proved in Corollary 2.4 (1). By Proposition 2.12 and

Proposition 2.15 the claim (iii) implies the claim (ii). If the claim (iii) does

not hold, by Proposition 2.11 the claim (ii) does not hold. Therefore the

claim (iii) is equivalent to the claim (ii). The proof is complete. �

Proof of Theorem 1.8. Corollary 2.4 (2) ensures the equivalence

between the claims (i), (ii), (iii). By Proposition 2.11 the claim (iv) implies

the claim (iii). It follows from Proposition 2.12, Proposition 2.15 that if the

claim (iv) does not hold, the claim (iii) does not hold. Thus the claim (iv)

is equivalent to the claim (iii), which concludes the proof. �
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3. Specific Models

Our main theorems are claimed for the general set of free dispersion

relations E(emin, emax). One natural question is whether HOPT occurs in a

specific model belonging to E(emin, emax) by varying parameters on which

the model depends. We focus on the following 2 models of E(emin, emax).

(1) For d ∈ N, b ∈ N≥2, b′ ∈ {1, 2, · · · , b − 1}, a basis (v̂j)
d
j=1 of R

d,

emin, emax ∈ R>0 with emin ≤ emax

Eb(k) :=

(
emaxIb′ 0

0 eminIb−b′

)
, k ∈ R

d.

(2) For t ∈ R≥0, emin ∈ R>0

E1(k) := t(cos k + 1) + emin, k ∈ R.

The model (1) is actually independent of the variable k. It is a one-particle

Hamiltonian of non-hopping multi-orbital electron. In the model (2) d =

b = 1, emax = 2t + emin. It is the dispersion relation of a free electron

hopping between nearest neighbor sites in the 1-dimensional lattice Z. In

fact these models were studied in [25, Subsection 2.3] in terms of uniqueness

of local minimum point of the phase boundary. Our aim here is to study

these models in terms of SPI and HOPT. By Theorem 1.8 we know that

if |U | is sufficiently small and emin
emax

>
√

17 − 12
√

2, the temperature-driven

phase transition is of 2nd order, and thus there is no HOPT in these models.

However, our main theorems do not imply existence of a HOPT in these

specific models even if emin
emax

≤
√

17 − 12
√

2. It is advantageous that we

can use the technical lemma [25, Lemma 2.24] to analyze the model (1). It

turns out that the model (1) shows quite rich behavior in terms of SPI and

HOPT, depending on emin
emax

and b−b′
b′ . Also we can deduce non-existence of

SPI in the model (2) from the proof of [25, Proposition 2.26].

Concerning the model (1), we want to prove the following proposition.

Proposition 3.1.

(i) Assume that b−b′
b′ ∈ [3 − 2

√
2,∞). Then for any emin, emax ∈ R>0

satisfying emin ≤ emax there exists U0 ∈ (0, 2emin
b ) such that for any

U ∈ [−U0, 0) τ(·) has no SPI in (0, βc).
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(ii) Assume that b−b′
b′ ∈ (1

8 , 3 − 2
√

2). Then for any emin ∈ R>0, U0 ∈
(0, 2emin

b ) there exist e1, e2 ∈ (0,
√

17 − 12
√

2), U1, U2 ∈ [−U0, 0) such

that e2 < e1 and if emin
emax

= e1, U = U1, τ(·) has a rising SPI in (0, βc),

if emin
emax

= e2, U = U2, τ(·) has a falling SPI in (0, βc).

(iii) Assume that b−b′
b′ ∈ (0, 1

8 ]. Then for any emin ∈ R>0, U0 ∈ (0, 2emin
b )

there exist e3 ∈ (0,
√

17 − 12
√

2), U ∈ [−U0, 0) such that if emin
emax

= e3,

τ(·) has a rising SPI in (0, βc).

We can derive the following corollary from the above proposition and

Theorem 1.6.

Corollary 3.2.

(i) Assume that b−b′
b′ ∈ [3 − 2

√
2,∞). Then for any emin, emax ∈ R>0

satisfying emin ≤ emax there exists U0 ∈ (0, 2emin
b ) such that for any

U ∈ [−U0, 0), (ρ, η) ∈ {(+,−), (−,+)}, (β, t) ∈ Qρ,η (PT)2,(ρ,η)(β, t)

holds.

(ii) Assume that b−b′
b′ ∈ (1

8 , 3 − 2
√

2). Then for any emin ∈ R>0, U0 ∈
(0, 2emin

b ) there exist e1, e2 ∈ (0,
√

17 − 12
√

2), U1, U2 ∈ [−U0, 0) such

that e2 < e1 and if emin
emax

= e1, U = U1, (PT)n,(+,−) holds for some

n ∈ 4N + 2, if emin
emax

= e2, U = U2, (PT)n,(−,+) holds for some n ∈
4N + 2.

(iii) Assume that b−b′
b′ ∈ (0, 1

8 ]. Then for any emin ∈ R>0, U0 ∈ (0, 2emin
b )

there exist e3 ∈ (0,
√

17 − 12
√

2), U ∈ [−U0, 0) such that if emin
emax

= e3,

(PT)n,(+,−) holds for some n ∈ 4N + 2.

The proof of Proposition 3.1 is based on Lemma 3.3 below. Recall the

definition of the functions w(x, y, z), w̃(x, y, z) and their properties summa-

rized in front of Lemma 2.14 to understand the statements and the proof of

the lemma. In addition we will use the following properties.

lim
η↗17−12

√
2
w̃(a+(η),−1, η) = lim

η↗17−12
√

2
w̃(a−(η),−1, η) = 3 − 2

√
2,(3.1)

lim
η↘0

w̃(a−(η),−1, η) =
1

8
, lim

η↘0
w̃(a+(η),−1, η) = 0,(3.2)
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which can be derived from the facts that

lim
η↗17−12

√
2
a+(η) = lim

η↗17−12
√

2
a−(η) = 3 + 2

√
2,

lim
η↘0

a−(η) = 3, lim
η↘0

a+(η) = +∞, lim
η↘0

ηa+(η) =
1

3
.

Moreover we need that

d

dη
w̃(aδ(η),−1, η) > 0, ∀δ ∈ {+,−}, η ∈ (0, 17 − 12

√
2).(3.3)

This can be confirmed as follows.

∂w̃

∂z
(x,−1, z) =

(x− 1)x(1 + zx)(3 − zx)

(x + 1)2(1 − zx)2
> 0, ∀z ∈ (0, 1), x ∈ (1, z−1),

(3.4)

and thus by (2.35), (2.36), (2.37)

d

dη
w̃(aδ(η),−1, η) =

∂w̃

∂x
(aδ(η),−1, η)

daδ
dη

(η) +
∂w̃

∂z
(aδ(η),−1, η)

=
∂w̃

∂z
(aδ(η),−1, η) > 0, ∀η ∈ (0, 17 − 12

√
2), δ ∈ {+,−}.

Lemma 3.3.

(i) For any s ∈ (1
8 , 3 − 2

√
2) there exist η1, η2, η3, η4 ∈ (0, 17 − 12

√
2),

y1 ∈ (−1, 0) such that η4 < η3 < η2 < η1, a+(η2) < η−1
1 and for any

y ∈ (−1, y1]

cosh−1(|y|−1)√
y + 1

>
√

2,

w(x, y, η1) > s, ∀x ∈
[
1

2
(a−(η2) + a+(η2)),

1

2
(a+(η2) + η−1

1 )

]
,

w

(
1

2
(a−(η2) + a+(η2)), y, η

)
> s, w

(
1

2
(a+(η2) + η−1

1 ), y, η

)
> s,

∀η ∈ [η2, η1],

w(a+(η2), y, η2) < s,
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w(x, y, η4) < s, ∀x ∈
[
1

2
(1 + a−(η3)),

1

2
(a−(η3) + a+(η3))

]
,

w

(
1

2
(1 + a−(η3)), y, η

)
< s, w

(
1

2
(a−(η3) + a+(η3)), y, η

)
< s,

∀η ∈ [η4, η3],

w(a−(η3), y, η3) > s.

(ii) For any s ∈ (0, 1
8 ] there exist η5, η6 ∈ (0, 17 − 12

√
2), y2 ∈ (−1, 0)

such that η6 < η5, a+(η6) < η−1
5 and for any y ∈ (−1, y2]

cosh−1(|y|−1)√
y + 1

>
√

2,

w(x, y, η5) > s, ∀x ∈
[
1

2
(a−(η6) + a+(η6)),

1

2
(a+(η6) + η−1

5 )

]
,

w

(
1

2
(a−(η6) + a+(η6)), y, η

)
> s, w

(
1

2
(a+(η6) + η−1

5 ), y, η

)
> s,

∀η ∈ [η6, η5],

w(a+(η6), y, η6) < s.

Remark 3.4. By using the inequality cosh−1(|y|−1)/
√
y + 1 >

√
2 we

can check that the variable (x, y, η) belongs to the domain D where the

function w is defined in the statement of the above lemma.

Proof. (i): Take any s ∈ (1
8 , 3 − 2

√
2). We can deduce from the

properties (2.38), (3.1), (3.2), (3.3) that there uniquely exist η̂1, η̂2 ∈ (0, 17−
12

√
2) such that η̂2 < η̂1,

w̃(a+(η̂1),−1, η̂1) = w̃(a−(η̂2),−1, η̂2) = s.

Moreover, by the profile of w̃(·,−1, η) described in Subsection 2.4, (3.3) and

(3.4) there exists small ε ∈ R>0 such that the following inequalities hold.

a+(η̂1) < η̂−1
1 .

w̃(x,−1, η) > s,
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∀x ∈
[
1

2
(a−(η̂1) + a+(η̂1)) − ε,

1

2
(a+(η̂1) + η̂−1

1 ) + ε

]
, η ∈ (η̂1, η̂1 + ε].

w̃

(
1

2
(a−(η̂1) + a+(η̂1)),−1, η̂1

)
> s, w̃

(
1

2
(a+(η̂1) + η̂−1

1 ),−1, η̂1

)
> s.

w̃(a+(η),−1, η) < s, ∀η ∈ [η̂1 − ε, η̂1).

w̃(x,−1, η) < s,

∀x ∈
[
1

2
(1 + a−(η̂2)) − ε,

1

2
(a−(η̂2) + a+(η̂2)) + ε

]
, η ∈ [η̂2 − ε, η̂2).

w̃

(
1

2
(1 + a−(η̂2)),−1, η̂2

)
< s, w̃

(
1

2
(a−(η̂2) + a+(η̂2)),−1, η̂2

)
< s.

w̃(a−(η),−1, η) > s, ∀η ∈ (η̂2, η̂2 + ε].

Then we can choose η1 ∈ (η̂1, 17 − 12
√

2), η2 ∈ (0, η̂1) to be close to η̂1 and

η3 ∈ (η̂2, 17−12
√

2), η4 ∈ (0, η̂2) to be close to η̂2 so that η4 < η3 < η2 < η1,

a+(η2) < η−1
1 ,

(3.5)

w̃(x,−1, η1) > s, ∀x ∈
[
1

2
(a−(η2) + a+(η2)),

1

2
(a+(η2) + η−1

1 )

]
,

(3.6)

w̃

(
1

2
(a−(η2) + a+(η2)),−1, η

)
> s, w̃

(
1

2
(a+(η2) + η−1

1 ),−1, η

)
> s,

(3.7)

∀η ∈ [η2, η1],

w̃(a+(η2),−1, η2) < s,

(3.8)

w̃(x,−1, η4) < s, ∀x ∈
[
1

2
(1 + a−(η3)),

1

2
(a−(η3) + a+(η3))

]
,

w̃

(
1

2
(1 + a−(η3)),−1, η

)
< s, w̃

(
1

2
(a−(η3) + a+(η3)),−1, η

)
< s,

∀η ∈ [η4, η3],

w̃(a−(η3),−1, η3) > s.
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The claimed inequalities follow from (2.46), the above inequalities and the

uniform convergence properties

lim
y↘−1

sup
x∈[ 1

2
(a−(η2)+a+(η2)), 1

2
(a+(η2)+η−1

1 )]

η∈[η2,η1]

|w(x, y, η) − w̃(x,−1, η)| = 0,(3.9)

lim
y↘−1

sup
x∈[ 1

2
(1+a−(η3)), 1

2
(a−(η3)+a+(η3))]

η∈[η4,η3]

|w(x, y, η) − w̃(x,−1, η)| = 0.

(ii): Take any s ∈ (0, 1
8 ]. By (3.1), (3.2) there exists η̂3 ∈ (0, 17− 12

√
2)

such that w̃(a+(η̂3),−1, η̂3) = s. We can choose η1 ∈ (η̂3, 17 − 12
√

2),

η2 ∈ (0, η̂3) sufficiently close to η̂3 so that the same inequalities as (3.5),

(3.6), (3.7), (3.8) hold. Then by applying the uniform convergence property

of the form (3.9) we obtain the claimed inequalities. �

Proof of Proposition 3.1. We set

s :=
b− b′

b′
, η :=

(
emin

emax

)2

during the proof. First of all we note that

F∞(x, y) = Dd

∫
Γ∗∞

dkTr

(
sinh(xEb(k))

(y + cosh(xEb(k)))Eb(k)

)
(3.10)

=
b′

emax
W (emaxx, y,

√
η, s),

which together with (2.61) implies that

∂F∞
∂x

(
√

y + 1x, y)(3.11)

= b′
1 + y cosh(

√
η(y + 1)emaxx)

(y + cosh(
√

η(y + 1)emaxx))2

(
s− w

(
e2
maxx

2

2
, y, η

))
,

∀y ∈ (−1, 0), x ∈
(

0,
cosh−1(|y|−1)

emin
√
y + 1

)
.

We will also use the following convergence property.

lim
y↘−1

√
y + 1W (

√
y + 1x, y,

√
ξ, s) = Ŵ (x,

√
ξ, s)(3.12)
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locally uniformly with (x, ξ) ∈ R>0 × R>0.

(i): Assume that s ∈ [3− 2
√

2,∞). If emin
emax

>
√

17 − 12
√

2, Proposition

2.11 ensures the result. Assume that emin
emax

=
√

17 − 12
√

2. Here we apply

[25, Lemma 2.24 (i)] to guarantee that

∃y0 ∈ (−1, 0) s.t. ∀y ∈ (−1, y0]

(3.13)

∃x0(y) ∈
(

1

2(y + 1)
(cosh−1(|y|−1))2,

1

2η(y + 1)
(cosh−1(|y|−1))2

)
s.t.

w(x, y, η) < s, ∀x ∈
(

1

2(y + 1)
(cosh−1(|y|−1))2, x0(y)

)
,

w(x0(y), y, η) = s,

w(x, y, η) > s, ∀x ∈
(
x0(y),

1

2η(y + 1)
(cosh−1(|y|−1))2

)
.

Since

∂F∞
∂x

(
√

y + 1x, y) > 0, ∀x ∈
(

0,
cosh−1(|y|−1)

emax
√
y + 1

]
,

∂F∞
∂x

(
√

y + 1x, y) < 0, ∀x ∈
[
cosh−1(|y|−1)

emin
√
y + 1

,∞
)

for any y ∈ (−1, 0), combination of (3.11) and (3.13) proves that for any

y ∈ (−1, y0] there exists x̂0 ∈ ( cosh−1(|y|−1)
emax

, cosh−1(|y|−1)
emin

) such that

∂F∞
∂x

(x, y) > 0, ∀x ∈ (0, x̂0),
∂F∞
∂x

(x̂0, y) = 0,

∂F∞
∂x

(x, y) < 0, ∀x ∈ (x̂0,∞).

Now the assumption of Lemma 2.7 with S = {Eb} is satisfied and thus the

claim follows from the lemma in this case.

Assume that emin
emax

<
√

17 − 12
√

2. By (3.1) and (3.3) s ∈
(w̃(a−(η),−1, η), ∞). Thus we can apply [25, Lemma 2.24 (ii)] to ensure

that the property (3.13) holds. Then by repeating the same argument as

above and using Lemma 2.7 we can deduce the claim in this case as well.

The proof of (i) is complete.
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(ii): Assume that s ∈ (1
8 , 3 − 2

√
2). Take any emin ∈ R>0 and U0 ∈

(0, 2emin
b ). Let η1, η2, η3, η4 ∈ (0, 17 − 12

√
2), y1 ∈ (−1, 0) be those intro-

duced in Lemma 3.3 (i). We can see from (3.10) that for any

emax ∈
[
emin√

η1
,
emin√

η2

]
, x ∈

√1 + a−(η2)

emax
,

√
a+(η2) + η−1

1

emax

 , y ∈ (−1, 0)

√
y + 1F∞(

√
y + 1x, y)(3.14)

≥ b′
√
η2

emin
inf

x∈[
√

1+a−(η2),
√

a+(η2)+η−1
1 ]

ξ∈[η2,η1]

√
y + 1W (

√
y + 1x, y,

√
ξ, s).

By the convergence property (3.12) there exists y2 ∈ (−1, y1] such that for

any y ∈ (−1, y2]

inf
x∈[

√
1+a−(η2),

√
a+(η2)+η−1

1 ]

ξ∈[η2,η1]

√
y + 1W (

√
y + 1x, y,

√
ξ, s)(3.15)

≥ 1

2
inf

x∈[
√

1+a−(η2),
√

a+(η2)+η−1
1 ]

ξ∈[η2,η1]

Ŵ (x,
√

ξ, s).

We can derive from (2.46), (3.14), (3.15) that there exists ŷ ∈ (−1, y2] such

that

F∞(
√

ŷ + 1x, ŷ) ≥ 2

U0
,(3.16)

∀emax ∈
[
emin√

η1
,
emin√

η2

]
, x ∈

√1 + a−(η2)

emax
,

√
a+(η2) + η−1

1

emax

 ,

cosh−1(|ŷ|−1)√
ŷ + 1

>
√

2.(3.17)

It follows from the inequalities claimed in Lemma 3.3 (i) that there exists

η̂1 ∈ (η2, η1) such that

min
x∈[ 1

2
(a−(η2)+a+(η2)), 1

2
(a+(η2)+η−1

1 )]
w(x, ŷ, η̂1) = s,
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w

(
1

2
(a−(η2) + a+(η2)), ŷ, η̂1

)
> s, w

(
1

2
(a+(η2) + η−1

1 ), ŷ, η̂1

)
> s.

Let x0 ∈ (1
2(a−(η2) + a+(η2)),

1
2(a+(η2) + η−1

1 )) be a minimizer. Set

emax :=
emin√

η̂1
, x̂ :=

√
2(ŷ + 1)x0

emax
.

By (3.16)

F∞(x̂, ŷ) ≥ 2

U0
.(3.18)

Observe that by (3.17)

√
2x0

emax
<

√
a+(η2) + η−1

1

emax
<

√
2η−1

1

emax
<

√
2η̂−1

1

emax
=

√
2

emin
<

cosh−1(|ŷ|−1)

emin
√
ŷ + 1

,

and thus by (3.11)

∂F∞
∂x

(x̂, ŷ) = b′
1 + ŷ cosh(

√
2η̂1(ŷ + 1)x0)

(ŷ + cosh(
√

2η̂1(ŷ + 1)x0))2
(s− w(x0, ŷ, η̂1)) = 0.(3.19)

We remark that by (3.17)√
2η̂1(ŷ + 1)x0 <

√
η̂1(ŷ + 1)(a+(η2) + η−1

1 ) <

√
2η̂1(ŷ + 1)η−1

1

<
√

2(ŷ + 1) < cosh−1(|ŷ|−1),

and thus

1 + ŷ cosh(
√

2η̂1(ŷ + 1)x0) > 0.

We can deduce from this inequality and the definition of x0 that there exists

ε ∈ R>0 such that ∂F∞
∂x (x, ŷ) < 0 for any x ∈ (x̂−ε, x̂+ε)\{x̂}. This together

with (3.18), (3.19) enables us to apply Lemma 2.8 (ii) to conclude that there

exists U ∈ [−U0, 0) such that τ(·) has a rising SPI in (0, βc). Remind us

that emin
emax

=
√
η̂1 ∈ (

√
η2,

√
η1). The existence of a rising SPI is now proved

with e1 =
√
η̂1.
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The existence of a falling SPI can be proved similarly. However, we

provide the proof for completeness. We can derive from (3.10) that for any

emax ∈
[
emin√

η3
,
emin√

η4

]
, x ∈

[√
1 + a−(η3)

emax
,

√
a−(η3) + a+(η3)

emax

]
,

y ∈ (−1, 0)√
y + 1F∞(

√
y + 1x, y)

≥ b′
√
η4

emin
inf

x∈[
√

1+a−(η3),
√

a−(η3)+a+(η3)]

ξ∈[η4,η3]

√
y + 1W (

√
y + 1x, y,

√
ξ, s).

Application of (3.12) yields that there exists y3 ∈ (−1, y1] such that for any

y ∈ (−1, y3]

inf
x∈[

√
1+a−(η3),

√
a−(η3)+a+(η3)]

ξ∈[η4,η3]

√
y + 1W (

√
y + 1x, y,

√
ξ, s)

≥ 1

2
inf

x∈[
√

1+a−(η3),
√

a−(η3)+a+(η3)]

ξ∈[η4,η3]

Ŵ (x,
√

ξ, s).

We can deduce from these inequalities and (2.46) that there exists ỹ ∈
(−1, y3] such that

F∞(
√

ỹ + 1x, ỹ) ≥ 2

U0
,(3.20)

∀emax ∈
[
emin√

η3
,
emin√

η4

]
, x ∈

[√
1 + a−(η3)

emax
,

√
a−(η3) + a+(η3)

emax

]
,

cosh−1(|ỹ|−1)√
ỹ + 1

>
√

2.(3.21)

The inequalities of Lemma 3.3 (i) imply that there exists η̂2 ∈ (η4, η3) such

that

max
x∈[ 1

2
(1+a−(η3)), 1

2
(a−(η3)+a+(η3))]

w(x, ỹ, η̂2) = s,

w

(
1

2
(1 + a−(η3)), ỹ, η̂2

)
< s, w

(
1

2
(a−(η3) + a+(η3)), ỹ, η̂2

)
< s.
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Let x̃0 ∈ (1
2(1 + a−(η3)),

1
2(a−(η3) + a+(η3))) be a maximizer and set

emax :=
emin√

η̂2
, x̃ :=

√
2(ỹ + 1)x̃0

emax
.

By (3.20)

F∞(x̃, ỹ) ≥ 2

U0
.(3.22)

Moreover, by (3.21)

√
2x̃0

emax
<

√
a−(η3) + a+(η3)

emax
<

√
2η−1

3

emax
<

√
2η̂−1

2

emax
=

√
2

emin
<

cosh−1(|ỹ|−1)

emin
√
ỹ + 1

,

and thus by (3.11)

∂F∞
∂x

(x̃, ỹ) = b′
1 + ỹ cosh(

√
2η̂2(ỹ + 1)x̃0)

(ỹ + cosh(
√

2η̂2(ỹ + 1)x̃0))2
(s− w(x̃0, ỹ, η̂2)) = 0.(3.23)

By using (3.21) again we can derive that√
2η̂2(ỹ + 1)x̃0 <

√
η̂2(ỹ + 1)(a−(η3) + a+(η3)) <

√
2η̂2(ỹ + 1)η−1

3

<
√

2(ỹ + 1) < cosh−1(|ỹ|−1),

and thus

1 + ỹ cosh(
√

2η̂2(ỹ + 1)x̃0) > 0.

By considering this inequality we can deduce from (3.23) and the definition

of x̃0 that there exists ε̃ ∈ R>0 such that ∂F∞
∂x (x, ỹ) > 0 for any x ∈ (x̃ −

ε̃, x̃ + ε̃)\{x̃}. This coupled with (3.23) means that x̃ is a rising SPI of

F∞(·, ỹ). Since we have (3.22), we can apply Lemma 2.8 (i) to ensure that

there exists U ∈ [−U0, 0) such that τ(·) has a falling SPI in (0, βc). Here
emin
emax

=
√
η̂2 ∈ (

√
η4,

√
η3).

Now we can see that the claim (ii) holds with e1 =
√
η̂1, e2 =

√
η̂2.

(iii): By using Lemma 3.3 (ii) in place of Lemma 3.3 (i) we can repeat

the same argument as the 1st half of the proof of (ii) to prove the claim. �
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In [25, Proposition 2.25] we derived τ(β) exactly. Let us numerically

implement the exact solution to observe that τ(·) has SPIs as suggested

by Proposition 3.1. We set b = 8, b′ = 7, emin = 1, U = −1
8 so that

b−b′
b′ ∈ (1

8 , 3−2
√

2), |U | ∈ (0, 2emin
b ). In fact these parameters take the same

values as in the numerical example in [25, Sub-subsection 2.3.1]. Based on

Proposition 3.1 (ii), we expect that we can find e1, e2 ∈ (0,
√

17 − 12
√

2)

such that e2 < e1 and if emax = 1
e1

, τ(·) has a rising SPI, if emax = 1
e2

, τ(·)
has a falling SPI. In Figure 4 we plot the graphs of τ(β), dτ

dβ (β) for emax =

6.643, 8.342. We can see that τ(·) has a rising SPI when emax = 6.643 and

τ(β) (left), dτ
dβ

(β) (right) with emax = 6.643

τ(β) (left), dτ
dβ

(β) (right) with emax = 8.342

Fig. 4. Parts of the graphs {(β, τ(β)) | β ∈ (0, βc)}, {(β, dτ
dβ

(β)) | β ∈ (0, βc)} for b = 8,

b′ = 7, U = − 1
8
, emin = 1, emax = 6.643, 8.342. The exact solution was implemented.
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τ(·) has a falling SPI when emax = 8.342. This means that our expectation is

realized with e1 = 1
6.643(≈ 0.1505), e2 = 1

8.342(≈ 0.1199) ∈ (0,
√

17 − 12
√

2)

(≈ (0, 0.1716)).

Concerning the model (2), we claim the following proposition. In fact it

is an immediate consequence of Lemma 2.7 and the proof of [25, Proposition

2.26].

Proposition 3.5. For any t ∈ R≥0, emin ∈ R>0 there exists U0 ∈
(0, 2emin) such that for any U ∈ [−U0, 0) τ(·) has no SPI in (0, βc).

Proof. We have shown in the proof of [25, Proposition 2.26] that there

exists y0 ∈ (−1, 0) such that for any y ∈ (−1, y0] there uniquely exists

x0 ∈ R>0 such that ∂F∞
∂x (x0, y) = 0. See around the equation “(2.101)” in

[25]. Then Lemma 2.7 with S = {E1} ensures the result. �
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