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Holomorphic Lie Algebroid Connections on

Holomorphic Principal Bundles on

Compact Riemann Surfaces

By Indranil Biswas

Abstract. For a Γ–equivariant holomorphic Lie algebroid (V, φ),
on a compact Riemann surface X equipped with an action of a finite
group Γ, we investigate the equivariant holomorphic Lie algebroid con-
nections on holomorphic principal G–bundles over X, where G is a
connected affine complex reductive group. If (V, φ) is nonsplit, then it
is proved that every holomorphic principal G–bundle admits an equiv-
ariant holomorphic Lie algebroid connection. If (V, φ) is split, then it
is proved that the following four statements are equivalent:

(1) An equivariant principal G–bundle EG admits an equivariant
holomorphic Lie algebroid connection.

(2) The equivariant principal G–bundle EG admits an equivariant
holomorphic connection.

(3) The principal G–bundle EG admits a holomorphic connection.

(4) For every triple (P, L(P ), χ), where L(P ) is a Levi subgroup of a
parabolic subgroup P ⊂ G and χ is a holomorphic character of
L(P ), and every Γ–equivariant holomorphic reduction of struc-
ture group EL(P ) of EG to L(P ), the degree of the line bundle
over X associated to EL(P ) for χ is zero.

The correspondence between Γ–equivariant principal G–bundles
over X and parabolic G–bundles on X/Γ translates the above result
to the context of parabolic G–bundles.
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1. Introduction

A well-known theorem of Atiyah and Weil says the following: A holomor-

phic vector bundle E on a compact connected Riemann surface X admits

a holomorphic connection if and only if the degree of each indecomposable

component of E is zero [At], [We]. This criterion for the existence of holo-

morphic connections extends to holomorphic principal G–bundles over X,

where G is a reductive affine algebraic group defined over C [AB].

The notion of a holomorphic connection on a holomorphic vector bundle

E extends to the notion of holomorphic Lie algebroid connections on E,

which we briefly recall.

A holomorphic Lie algebroid over X is a pair (V, φ), where V is a holo-

morphic vector bundle over X equipped with the structure of a C–bilinear

Lie algebra on its sheaf of holomorphic sections, and φ : V −→ TX is an

OX–linear homomorphism satisfying the Leibniz rule

[s, ft] = f [s, t] + φ(s)(f) t

for all locally defined holomorphic sections s, t of V and all locally defined

holomorphic functions f .

We work with an equivariant set-up, meaning a finite subgroup Γ ⊂
Aut(X) is fixed, and all objects and structures on X are taken to be Γ–

equivariant.

A Lie algebroid (V, φ) is called split if there is a holomorphic Γ–equiv-

ariant homomorphism η : TX −→ V such that φ ◦ η = IdTX . If (V, φ) is

not split, then it is called nonsplit. See Example 3.1 for nonsplit and split

Lie algebroids.

Let EG be a Γ–equivariant holomorphic principal G–bundle over X,

where G, as before, is a reductive affine algebraic group defined over C.
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Using the Atiyah bundle for EG and the pair (V, φ), a C–Lie algebra bundle

A(EG) is constructed which fits in the following short exact sequence of Γ–

equivariant vector bundles over X:

0 −→ ad(EG) −→ A(EG)
ρ−−→ V −→ 0,

where ad(EG) is the adjoint bundle for EG. An equivariant holomorphic Lie

algebroid connection on EG is a Γ–equivariant holomorphic homomorphism

δ : V −→ A(EG) such that ρ ◦ δ = IdV . In the special case where

(V, φ) = (TX, IdTX), a holomorphic Lie algebroid connection on EG is a

usual holomorphic connection on EG.

There is a large body of research on Lie algebroids and Lie algebroid

connections. Bruzzo and Rubtsov investigated the cohomology and moduli

spaces of skew-holomorphic Lie algebroids [BR]. Tortella introduced mod-

ules over Lie algebroids and described moduli space of flat Lie algebroid

connections which are also called Λ–modules [To1], [To2]. In [AO], Alfaya

and Oliveira studied the moduli space of flat Lie algebroid connections and

proved numerous properties of the moduli space [AO]. Bruzzo-Mencattini-

Rubtsov-Tortella investigated extensions of Lie algebroids [BMRT].

Laurent-Gengoux, Stiénon and Xu investigate the relationships between

holomorphic Lie algebroids and holomorphic Poisson structures.

Our aim here is to give a criterion for the existence of equivariant holo-

morphic Lie algebroid connections on an equivariant holomorphic principal

G–bundle over X. We prove the following (see Theorem 6.1):

Theorem 1.1.

• Let (V, φ) be a nonsplit Γ–equivariant Lie algebroid. Then any equiv-

ariant principal G–bundle over X admits an equivariant holomorphic

Lie algebroid connection.

• Let (V, φ) be a split Γ–equivariant Lie algebroid. Let EG be an equiv-

ariant principal G–bundle over X. The following four statements are

equivalent:

(1) EG over X admits an equivariant holomorphic Lie algebroid con-

nection.

(2) EG admits an equivariant holomorphic connection.
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(3) EG admits a holomorphic connection.

(4) For every triple (P, L(P ), χ), where L(P ) is a Levi subgroup of

a parabolic subgroup P ⊂ G and χ is a holomorphic character of

L(P ), and every Γ–equivariant holomorphic reduction of struc-

ture group EL(P ) of EG to L(P ), the degree of the line bundle

over X associated to EL(P ) for χ is zero.

In [ABKS], Theorem 1.1 was proved under the assumption that G =

GL(r,C).

There is a natural bijective correspondence between parabolicG–bundles

on X/Γ and Γ–equivariant principal G–bundles over X. Using this corre-

spondence, Theorem 1.1 translates into the following (see Theorem 6.3):

Theorem 1.2. Let Y be a compact connected Riemann surface and

{s1, · · · , sn} ⊂ Y a parabolic divisor. Fix an integer Ni ≥ 2 for each si,

1 ≤ i ≤ n.

• Let (V∗, φ) be a nonsplit parabolic Lie algebroid on Y . Then any

parabolic G–bundle on Y admits a parabolic Lie algebroid connection.

• Let (V∗, φ) be a split parabolic Lie algebroid on Y . Let EG be a

parabolic G–bundle on Y . The following three statements are equiva-

lent:

(1) EG admits a parabolic Lie algebroid connection.

(2) EG admits a parabolic holomorphic connection.

(3) For every triple (P, L(P ), χ), where L(P ) is a Levi subgroup of

a parabolic subgroup P ⊂ G and χ is a holomorphic character of

L(P ), and every holomorphic reduction of structure group EL(P )

of EG to L(P ), the parabolic line bundle over X associated to

EL(P ) for χ has parabolic degree zero.

2. Equivariant Lie Algebroids

Let X be a compact connected Riemann surface. Denote by Aut(X) the

group of all holomorphic automorphisms of X. Fix a finite subgroup

Γ ⊂ Aut(X).(2.1)
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So the group Γ has a tautological action on X.

Let G be a complex Lie group. Note that in the introduction G was a

reductive affine algebraic group defined over C. An equivariant principal

G–bundle over X is a holomorphic principal G–bundle

p : EG −→ X(2.2)

over X together with an action of Γ on EG such that

(1) for every γ ∈ Γ, the automorphism of EG given by the action of γ is

holomorphic,

(2) the projection p in (2.2) is Γ–equivariant, and

(3) the actions of G and Γ on EG commute.

A holomorphic vector bundle V of rank r over X is called equivariant if

the corresponding holomorphic principal GL(r,C)–bundle over X, given by

the frames in the fibers of V , is equipped with an action of Γ that satisfies

the above three conditions. This is equivalent to an action of Γ on V , via

holomorphic vector bundle automorphisms, over the action of Γ on X.

The holomorphic tangent bundle of X will be denoted by TX, while

the holomorphic cotangent bundle of X will be denoted by KX . Using the

action of Γ on X, both TX and KX are equivariant line bundles.

The first jet bundle of a holomorphic vector bundle W over X will be

denoted by J1(W ). An equivariant C–Lie algebra structure on an equiv-

ariant vector bundle V over X is a C–bilinear pairing defined by a sheaf

homomorphism

[−, −] : V ⊗C V −→ V,

which is given by a holomorphic homomorphism J1(V ) ⊗ J1(V ) −→ V of

vector bundles, such that

(1) [γ(s), γ(t)] = γ([s, t]) for all γ ∈ Γ, and

(2) [s, t] = −[t, s] and [[s, t], u] + [[t, u], s] + [[u, s], t] = 0 for all locally

defined holomorphic sections s, t, u of V .

The Lie bracket operation on the sheaf of holomorphic vector fields on X

gives the structure of an equivariant C–Lie algebra on TX.

An equivariant Lie algebroid over X is a pair (V, φ), where
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(1) V is an equivariant vector bundle over X equipped with the structure

of an equivariant C–Lie algebra, and

(2) φ : V −→ TX is a Γ–equivariant OX–linear homomorphism such

that

[s, f · t] = f · [s, t] + φ(s)(f) · t(2.3)

for all locally defined holomorphic sections s, t of V and all locally

defined holomorphic functions f on X.

The above homomorphism φ is called the anchor map of the Lie algebroid.

The two conditions in the definition of a Lie algebroid imply that

φ([s, t]) = [φ(s), φ(t)](2.4)

for all locally defined holomorphic sections s, t of V ; this is explained in

Remark 2.1 below.

Remark 2.1. To show that (2.4) holds for (V, φ), note that for all

holomorphic local sections s, t, u of V and each locally defined holomorphic

function f in OX we have

[[s, t], fu] = f [[s, t], u] + φ([s, t])(f) · u(2.5)

(see (2.3)). On the other hand,

[[s, t], fu] = [[s, fu], t] + [s, [t, fu]] = [f [s, u] + φ(s)(f)u, t](2.6)

+[s, f [t, u] + φ(t)(f)u] = f [[s, u], t] − φ(t)(f)[s, u] + φ(s)(f)[u, t]

−φ(t)(φ(s)(f))u+ f [s, [t, u]] +φ(s)(f)[t, u] +φ(t)(f)[s, u] +φ(s)(φ(t)(f))u

= f [[s, t], u] + (φ(s)(φ(t)(f)) − φ(t)(φ(s)(f)))u

= f [[s, t], u] + [φ(s), φ(t)](f) · u.

Combining (2.5) and (2.6) we conclude that φ([s, t])(f)·u = [φ(s), φ(t)](f)·
u. Since this holds for all locally defined f and u, it follows that

φ([s, t]) = [φ(s), φ(t)].
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This proves (2.4).

Definition 2.2. An equivariant Lie algebroid (V, φ) over X will be

called split if there is a Γ–equivariant OX–linear homomorphism

ρ : TX −→ V

such that φ ◦ ρ = IdTX . An equivariant Lie algebroid (V, φ) over X will be

called nonsplit if it is not split.

Lemma 2.3. Let (V, φ) be an equivariant Lie algebroid over X. If there

is an OX–linear homomorphism

ζ : TX −→ V

such that φ◦ ζ = IdTX , then there is a Γ–equivariant OX–linear homomor-

phism

ζ̂ : TX −→ V

such that φ ◦ ζ̂ = IdTX .

Proof. Let ζ : TX −→ V be an OX–linear homomorphism such

that φ ◦ ζ = IdTX . For each γ ∈ Γ, let

ζγ : TX −→ V

be the homomorphism given by the following composition of maps:

TX
γ·−−→ TX

ζ−−→ V
γ−1·−−−−→ V,

where γ· (respectively, γ−1·) is the action of γ (respectively, γ−1) on TX

(respectively, V ). Then the homomorphism

ζ̂ :=
1

#Γ

∑
γ∈Γ

ζγ : TX −→ V,

where #Γ is the order of Γ, is clearly Γ–equivariant and it also satisfies the

condition that φ ◦ ζ̂ = IdTX . �
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3. Lie Algebroid Connection on Principal Bundles

As before, G is a complex Lie group. Take an equivariant principal G–

bundle p : EG −→ X (see (2.2)). The action of G on EG produces an

action of G on the direct image p∗TEG of the holomorphic tangent bundle

TEG. The invariant part

ψ : At(EG) := (p∗TEG)G −→ X(3.1)

is the Atiyah bundle for EG [At]. It fits in a short exact sequence of holo-

morphic vector bundles

0 −→ ad(EG)
ι−−→ At(EG)


−−→ TX −→ 0,(3.2)

where ad(EG) is the adjoint vector bundle for EG (see [At]); the projection

 in (3.2) is given by the differential dp : TEG −→ p∗TX of the map p.

The sequence in (3.2) is known as the Atiyah exact sequence for EG.

The Lie bracket operation on the sheaf of holomorphic vector fields on

EG produces a C–Lie algebra structure on At(EG). The homomorphism  

in (3.2) intertwines the C–Lie algebra structures of At(EG) and TX. In

fact, (At(EG),  ) is a Lie algebroid.

A holomorphic connection on the principal G–bundle EG is a holomor-

phic splitting of the Atiyah exact sequence in (3.2) [At]. In other words, a

holomorphic connection on EG is a holomorphic OX–linear homomorphism

µ : TX −→ At(EG) such that  ◦ µ = IdTX , where  is the homomor-

phism in (3.2).

Example 3.1. Assume that EG does not admit any holomorphic con-

nection. For example, set G = GL(r,C) and take EG to be the holomorphic

principal GL(r,C)–bundle overX associated to a holomorphic vector bundle

of rank r and nonzero degree over X. Then the Lie algebroid (At(EG),  )

in (3.2) is nonsplit.

On the other hand, if EG admits a holomorphic connection, then the Lie

algebroid (At(EG),  ) in (3.2) is split. For example, take any indecompos-

able holomorphic vector bundle E over X of rank r with degree(E) = 0.

Then E admits a holomorphic connection [At], [We]. Hence the holomorphic

principal GL(r,C)–bundle EGL(r,C) over X associated to E admits a holo-

morphic connection. Consequently, the Lie algebroid given by At(EGL(r,C))

(see (3.2)) is split.
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The action of Γ on EG makes At(EG) an equivariant vector bundle.

The homomorphism  in (3.2) is Γ–equivariant. Thus (At(EG),  ) is an

equivariant Lie algebroid. The action of Γ on EG produces an action of Γ

on ad(EG), and the homomorphism ι in (3.2) is Γ–equivariant.

Take an equivariant Lie algebroid (V, φ) over X. Consider the homo-

morphism

ψ : V ⊕ At(EG) −→ TX, (v, w) �−→ φ(v) − (w),

where  is the homomorphism in (3.2). Note that ψ is surjective because

 is surjective. Define

A(EG) := kernel(ψ) ⊂ V ⊕ At(EG).(3.3)

The C–Lie algebra structure on V ⊕ At(EG), given by the C–Lie alge-

bra structures on V and At(EG), restricts to a C–Lie algebra structure

on A(EG). Restricting the natural projection V ⊕ At(EG) −→ V to

A(EG) ⊂ V ⊕ At(EG) we obtain a homomorphism

ρ : A(EG) −→ V ;(3.4)

note that kernel(ρ) = kernel( ) = ad(EG). Similarly, restricting the natu-

ral projection V ⊕At(EG) −→ At(EG) to A(EG) ⊂ V ⊕At(EG) we obtain

a homomorphism

ϕ : A(EG) −→ At(EG).(3.5)

The action of Γ on V ⊕At(EG), given by the actions of Γ on V and At(EG),

preserves the subbundle A(EG).

We have the commutative diagram of homomorphisms of vector bundles

0 −→ ad(EG) −→ A(EG)
ρ−−→ V −→ 0∥∥∥

�ϕ
�φ

0 −→ ad(EG)
ι−→ At(EG)


−−→ TX −→ 0

(3.6)

where ϕ and ρ are constructed in (3.5) and (3.4) respectively. Note that

every vector bundle in (3.6) is equipped with an action of Γ, and all the

homomorphisms in (3.6) are Γ–equivariant.
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Definition 3.2. An equivariant holomorphic Lie algebroid connection

on EG is a Γ–equivariant holomorphic homomorphism

δ : V −→ A(EG)

such that ρ ◦ δ = IdV , where ρ is the homomorphism in (3.4).

Let δ be an equivariant holomorphic Lie algebroid connection on EG.

For locally defined holomorphic sections s and t of V , consider

α(s, t) := [δ(s), δ(t)] − δ([s, t]).

For a locally defined holomorphic function f on X,

f · α(s, t) = α(fs, t) = α(s, ft) = −α(ft, s).

Also, ρ(α(s, t)) = 0, where ρ is the homomorphism in (3.4); consequently,

α(s, t) is a locally defined section of ad(EG). From these it follows that α

defines a Γ–invariant holomorphic section

K(δ) ∈ H0(X, ad(EG) ⊗
∧2

V ∗)Γ.(3.7)

The section K(δ) in (3.7) is the curvature of the equivariant holomorphic

Lie algebroid connection δ.

When V = TX and φ = IdTX , an equivariant holomorphic Lie alge-

broid connection on EG is a usual equivariant holomorphic connection on

the principal G–bundle EG.

When G = GL(r,C), the notions of Lie algebroid connection and cur-

vature coincide with those for holomorphic vector bundles.

4. Equivariant Holomorphic Connections and Split Lie Alge-

broids

Earlier the notation G was used to denote a complex Lie group. Now-

onwards, we will consider principal bundles whose structure group is a con-

nected reductive affine algebraic group defined over C. To distinguish it

from a general complex Lie group, the notation G will be used instead of G.
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4.1. Equivariant holomorphic connections

Let G be a connected reductive affine algebraic group defined over C.

Take any parabolic subgroup P ⊂ G. Let Ru(P ) ⊂ P be the unipotent rad-

ical of P . A Levi subgroup of P is a connected reductive complex algebraic

subgroup L(P ) ⊂ P such that the following composition of homomorphisms

is an isomorphism:

L(P ) ↪→ P −→ P/Ru(P )

(see [Hu, p. 125], [Bo]).

Take a holomorphic principal G–bundle over X. Take a holomorphic

character χ : L(P ) −→ Gm = C
∗ of a Levi subgroup L(P ) of a parabolic

subgroup P of G. Let EL(P ) ⊂ EG be a holomorphic reduction of structure

group of EG to L(P ) ⊂ G. Let EL(P ) ×P
C
∗ be the holomorphic principal

C
∗–bundle on X obtained by extending the structure group of EL(P ) using

the character χ. Using the standard multiplication action of C
∗ on C,

the principal C
∗–bundle EL(P ) ×P

C
∗ produces a holomorphic line bundle

L(EL(P ), χ) −→ X.

The principal G–bundle EG admits a holomorphic connection if and only

if for every triple (P, L(P ), χ) as above, and every holomorphic reduction

of structure group EL(P ) of EG to L(P ), we have

degree(L(EL(P ), χ)) = 0

[AB, Theorem 4.1].

Let EG be an equivariant principal G–bundle over X. A reduction of

structure group EL(P ) of EG to L(P ) ⊂ G is called equivariant if the action

of Γ on EG preserves the submanifold EL(P ) ⊂ EG. The following lemma

gives a criterion for the existence of an equivariant holomorphic connection

on an equivariant principal G–bundle.

Lemma 4.1. An equivariant principal G–bundle EG over X admits

an equivariant holomorphic connection if and only if for every triple

(P, L(P ), χ) as above, and every Γ–equivariant holomorphic reduction of

structure group EL(P ) of EG to L(P ),

degree(L(EL(P ), χ)) = 0.(4.1)
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Proof. First, assume that EG admits an equivariant holomorphic con-

nection. Then, from the above criterion of [AB] it follows immediately that

(4.1) holds.

To prove converse, assume that (4.1) holds for every triple (P, L(P ), χ)

as above, and every Γ–equivariant holomorphic reduction of structure group

EL(P ) of EG to L(P ). This implies that the principal G–bundle EG admits

a holomorphic connection (see [Bi, p. 274, Lemma 4.2]). Let

δ : TX −→ At(EG)

be a holomorphic connection on EG; so we have  ◦ δ = IdTX , where  is

the homomorphism in (3.2) (see [At]). For any γ ∈ Γ, let

δγ : TX −→ At(EG)

be the homomorphism given by the following composition of maps:

TX
γ·−−→ TX

δ−−→ At(EG)
γ−1·−−−−→ At(EG),

where γ· (respectively, γ−1·) is the action of γ (respectively, γ−1) on TX

(respectively, At(EG)); recall that Γ acts on both TX and At(EG).

Now consider the homomorphism

δ̂ :=
1

#Γ

∑
γ∈Γ

δγ : TX −→ At(EG).

Since  ◦δ = IdTX , it follows immediately that  ◦δ̂ = IdTX . It is also evi-

dent that δ̂ is Γ–equivariant. Consequently, δ̂ is an equivariant holomorphic

connection on the equivariant principal G–bundle EG. �

The second part of the proof of Lemma 4.1 gives the following:

Corollary 4.2. An equivariant principal G–bundle EG admits a

holomorphic connection if and only if EG admits an equivariant holomorphic

connection.
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4.2. Split equivariant Lie algebroid connections

Let (V, φ) be a split equivariant Lie algebroid (see Definition 2.2). As

before, G is a connected reductive affine algebraic group defined over C.

Proposition 4.3. An equivariant principal G–bundle EG over X ad-

mits an equivariant holomorphic Lie algebroid connection (see Definition

3.2) if and only if for every triple (P, L(P ), χ) as in Lemma 4.1, and ev-

ery Γ–equivariant holomorphic reduction of structure group EL(P ) of EG to

L(P ),

degree(L(EL(P ), χ)) = 0.(4.2)

Proof. We will show that EG admits an equivariant holomorphic Lie

algebroid connection if and only if EG admits an equivariant holomorphic

connection. To prove this, first assume that EG admits an equivariant

holomorphic connection. Take an equivariant holomorphic connection

δ0 : TX −→ At(EG)

on EG. Since  ◦ δ0 = IdTX , where  is the homomorphism in (3.2), there

is a unique holomorphic homomorphism

δ′0 : At(EG) −→ ad(EG)

such that kernel(δ′0) = δ0(TX) and δ′0 ◦ ι = Idad(EG), where ι is the homo-

morphism in (3.2). Now, consider the homomorphism

δ′0 ◦ ϕ : A(EG) −→ ad(EG),

where ϕ is the homomorphism in (3.5). There is a unique holomorphic

homomorphism

δ : V −→ A(EG)

such that δ(V ) = kernel(δ′0 ◦ ϕ) and ρ ◦ δ = IdV , where ρ is the homo-

morphism in (3.4). Since δ is also Γ–equivariant, it defines an equivariant

holomorphic Lie algebroid connection on EG.

To prove the converse, assume that EG has an equivariant holomorphic

Lie algebroid connection

δ : V −→ A(EG).
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Fix a Γ–equivariant holomorphic homomorphism

η : TX −→ V

such that φ ◦ η = IdTX ; see Definition 2.2 (recall that (V, φ) is a split

equivariant Lie algebroid). Now it is straightforward to check that the

composition of homomorphisms

ϕ ◦ δ ◦ η : TX −→ At(EG),

where ϕ is the homomorphism in (3.5), is an equivariant holomorphic con-

nection on EG.

Since EG admits an equivariant holomorphic Lie algebroid connection if

and only if EG admits an equivariant holomorphic connection, Lemma 4.1

completes the proof of the proposition. �

Proposition 4.3, Corollary 4.2 and Lemma 4.1 together give the follow-

ing:

Corollary 4.4. Let (V, φ) be a split equivariant Lie algebroid and G

a reductive affine algebraic group over C. Let EG be an equivariant principal

G–bundle over X. The following four statements are equivalent:

(1) EG over X admits an equivariant holomorphic Lie algebroid connec-

tion.

(2) EG admits an equivariant holomorphic connection.

(3) EG admits a holomorphic connection.

(4) For every triple (P, L(P ), χ) as in Lemma 4.1, and every Γ–equiv-

ariant holomorphic reduction of structure group EL(P ) of EG to L(P ),

degree(L(EL(P ), χ)) = 0.

5. Nonsplit Equivariant Lie Algebroid Connections

Let (V, φ) be a nonsplit equivariant Lie algebroid (see Definition 2.2).

As before, G is a connected reductive affine algebraic group defined over C.
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We will show that any equivariant principal G–bundle over X admits an

equivariant holomorphic Lie algebroid connection.

Remark 5.1. Take an equivariant principal G–bundle EG over X.

There is a Levi subgroup L(P ) of a parabolic subgroup P ⊂ G, and a holo-

morphic reduction of structure group EL(P ) ⊂ EG of EG to L(P ) ⊂ G,

satisfying the following conditions:

(1) The action of Γ on EG preserves EL(P ) ⊂ EG, and

(2) the maximal torus of the group of all Γ–equivariant holomorphic au-

tomorphisms of EL(P ) coincides with the center of L(P ). (Note that

any element z of the center of L(P ) gives a Γ–equivariant holomorphic

automorphisms of EL(P ) defined by x �−→ xz.)

Moreover if P ′ ⊂ G is another parabolic subgroup, L(P ′) is a Levi subgroup

of P ′, and EL(P ′) ⊂ EG is a holomorphic reduction of structure group of

EG to L(P ′) satisfying the above two conditions, then there is an element

x ∈ G such that L(P ′) = x−1L(P )x and EL(P ′) = EL(P )x. (See [BP,

p. 63, Theorem 4.1].)

Lemma 5.2. Assume that the equivariant principal L(P )–bundle EL(P )

in Remark 5.1 admits an equivariant holomorphic Lie algebroid connection.

Then the equivariant principal G–bundle EG admits an equivariant holo-

morphic Lie algebroid connection.

Proof. There are natural homomorphisms a : ad(EL(P )) ↪→ ad(EG)

and b : At(EL(P )) ↪→ At(EG) because EL(P ) is a holomorphic reduction of

structure group of EG to L(P ), and they fit in the following commutative

diagram:

0 −→ ad(EL(P )) −→ At(EL(P )) −→ TX −→ 0�a
�b

∥∥∥
0 −→ ad(EG) −→ At(EG) −→ TX −→ 0
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where the rows are the Atiyah exact sequences (for EL(P ) and EG); see (3.2).

This commutative diagram produces the following commutative diagram:

0 −→ ad(EL(P ))
ι′−−→ A(EL(P ))

ρ′−−→ V −→ 0�a′
�b′

∥∥∥
0 −→ ad(EG)

ι−−→ A(EG) −→ V −→ 0

(5.1)

(see (3.6)).

Since the principal L(P )–bundle EL(P ) admits an equivariant holomor-

phic Lie algebroid connection, we have a Γ–equivariant holomorphic homo-

morphism

δ′ : V −→ A(EL(P ))

such that ρ′ ◦ δ′ = IdV , where ρ′ is the homomorphism in (5.1). Now, the

homomorphism

b′ ◦ δ′ : V −→ A(EG),

where b′ is the homomorphism in (5.1), is an equivariant holomorphic Lie

algebroid connection on EG. �

As before, L(P ) and EL(P ) are as in Remark 5.1. Consider the Atiyah

exact sequence

0 −→ ad(EL(P )) −→ At(EL(P )) −→ TX −→ 0(5.2)

for the equivariant principal L(P )–bundle EL(P ). Let

β ∈ H1(X, ad(EL(P )) ⊗KX)

be the extension class for the short exact sequence in (5.2). Since (5.2) is

an exact sequence of Γ–equivariant vector bundles, we have

β ∈ H1(X, ad(EL(P )) ⊗KX)Γ ⊂ H1(X, ad(EL(P )) ⊗KX).(5.3)

Consider the dual homomorphism φ∗ : KX −→ V ∗ for the anchor map.

Tensoring it with the identity map of ad(EL(P )), we have the homomorphism

Ψ := Idad(EL(P )) ⊗ φ
∗ : ad(EL(P )) ⊗KX −→ ad(EL(P )) ⊗ V ∗.
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Let

Ψ∗ : H1(X, ad(EL(P )) ⊗KX) −→ H1(X, ad(EL(P )) ⊗ V ∗)(5.4)

be the homomorphism of cohomologies induced by the above homomor-

phism Ψ.

Lemma 5.3. The equivariant principal L(P )–bundle EL(P ) admits an

equivariant holomorphic Lie algebroid connection if and only if

Ψ∗(β) = 0,

where β and Ψ∗ are constructed in (5.3) and (5.4) respectively.

Proof. Consider the short exact sequence

0 −→ ad(EL(P ))
ι′−−→ A(EL(P ))

ρ′−−→ V −→ 0(5.5)

in (5.1). Let

βV ∈ H1(X, ad(EL(P )) ⊗ V ∗)

be the extension class for it. Since (5.5) is an exact sequence of Γ–equivariant

vector bundles, we have

βV ∈ H1(X, ad(EL(P )) ⊗ V ∗)Γ ⊂ H1(X, ad(EL(P )) ⊗ V ∗).(5.6)

Note that the equivariant principal L(P )–bundle EL(P ) admits an equivari-

ant holomorphic Lie algebroid connection if and only if we have βV = 0;

indeed, βV = 0 if and only if EL(P ) admits a holomorphic Lie algebroid

connection, and, exactly as shown in Corollary 4.2, EL(P ) admits a holo-

morphic Lie algebroid connection if and only if if admits an equivariant

holomorphic Lie algebroid connection.

Now consider the commutative diagram

0 −→ ad(EL(P ))
ι′−−→ A(EL(P ))

ρ′−−→ V −→ 0∥∥∥
�

�φ
0 −→ ad(EL(P )) −→ At(EL(P )) −→ TX −→ 0

(5.7)

(see (3.6)). From (5.7) it follows immediately that

Ψ∗(β) = βV ,(5.8)
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where β and βV are the extension classes in (5.3) and (5.6) respectively

while Ψ∗ is the homomorphism in (5.4). Since EL(P ) admits an equivariant

holomorphic Lie algebroid connection if and only if we have βV = 0, it fol-

lows from (5.8) that EL(P ) admits an equivariant holomorphic Lie algebroid

connection if and only if Ψ∗(β) = 0. �

As before, L(P ) and EL(P ) are as in Remark 5.1. Denote the Lie alge-

bra of L(P ) by 0(p). Since L(P ) is reductive, there is an L(P )–invariant

nondegenerate symmetric bilinear form on 0(p). Fix a L(P )–invariant non-

degenerate symmetric bilinear form

B ∈ Sym2(0(p)∗)L(P ).(5.9)

The form B in (5.9) produces a holomorphic isomorphism

ad(EL(P ))
∼−→ ad(EL(P ))

∗.(5.10)

By Serre duality,

H1(X, ad(EL(P )) ⊗KX)Γ = (H0(X, ad(EL(P ))
∗)∗)Γ(5.11)

= (H0(X, ad(EL(P )))
∗)Γ = (H0(X, ad(EL(P )))

Γ)∗;

see (5.10).

Let

β̂ ∈ (H0(X, ad(EL(P )))
Γ)∗ = Hom(H0(X, ad(EL(P )))

Γ, C)(5.12)

be the element corresponding to β in (5.3) for the isomorphism in (5.11).

Let

Z(0(p)) ⊂ 0(p)(5.13)

be the center of 0(p). Since the adjoint action of L(P ) on its Lie algebra

0(p) fixes Z(0(p)) pointwise, we have an injective homomorphism

Φ : Z(0(p)) −→ H0(X, ad(EL(P )))
Γ.(5.14)
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Proposition 5.4.

(1) Take any ξn ∈ H0(X, ad(EL(P )))
Γ which is nilpotent over some point

of X. Then

β̂(ξn) = 0,

where β̂ is the homomorphism in (5.12).

(2) Take any ξs ∈ H0(X, ad(EL(P )))
Γ which is semisimple over every

point of X. Then there is an element w ∈ Z(0(p)) such that

Φ(w) = ξs,

where Φ is the homomorphism in (5.14).

Proof. The first statement follows immediately from [AB, p. 341,

Proposition 3.9].

For the proof of second statement, first recall from Remark 5.1 that

the center of L(P ) is the maximal torus of the group of all Γ–equivariant

holomorphic automorphisms of EL(P ). The automorphisms of EL(P ) given

by the center of L(P ) evidently commute with all the automorphisms of

EL(P ). On the other hand, the image of the connected component, con-

taining the identity element, of the center of L(P ) under the natural map

to the group of all Γ–equivariant holomorphic automorphisms of EL(P ), is

a maximal torus of the group of all Γ–equivariant holomorphic automor-

phisms of EL(P ). Therefore, we conclude that a maximal torus of the group

of all Γ–equivariant holomorphic automorphisms of EL(P ) is contained in

the center of the group of all Γ–equivariant holomorphic automorphisms of

EL(P ).

If the maximal torus of a connected complex reductive algebraic group

G is contained in the center of G, then G is abelian, which means that G is a

torus. Therefore, the semisimple part, i.e., the Levi factor, of the Lie alge-

bra of the group of all Γ–equivariant holomorphic automorphisms of EL(P )

coincides with the center Z(0(p)). Note that H0(X, ad(EL(P )))
Γ is the Lie

algebra of the group of all Γ–equivariant holomorphic automorphisms of

EL(P ). From these, the second statement of the proposition follows imme-

diately. �

Proposition 5.5. The equivariant principal L(P )–bundle EL(P ) ad-

mits an equivariant holomorphic Lie algebroid connection.
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Proof. In view of (5.8) and Lemma 5.3, it suffices to show that

βV = Ψ∗(β) = 0,(5.15)

where β and Ψ∗ are constructed in (5.3) and (5.4) respectively.

By Serre duality,

H1(X, ad(EL(P )) ⊗ V ∗)Γ = (H0(X, ad(EL(P ))
∗ ⊗ V ⊗KX)∗)Γ(5.16)

= (H0(X, ad(EL(P )) ⊗ V ⊗KX)∗)Γ = (H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ)∗;

see (5.10). Let

β̂V ∈ (H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ)∗(5.17)

= Hom(H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ, C)

be the element corresponding to βV in (5.6) for the isomorphism in (5.16).

Consider the anchor map φ ∈ H0(X, V ∗ ⊗ TX)Γ. We have the homo-

morphism

Φ1 : H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ(5.18)

−→ H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ ⊗H0(X, V ∗ ⊗ TX)Γ

that sends any s ∈ H0(X, ad(EL(P )) ⊗ V ⊗ KX)Γ to s ⊗ φ. There is a

natural homomorphism

Φ2 : H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ ⊗H0(X, V ∗ ⊗ TX)Γ(5.19)

−→ H0(X, ad(EL(P )) ⊗ V ⊗KX ⊗ V ∗ ⊗ TX)Γ

= H0(X, ad(EL(P )) ⊗ End(V ) ⊗ End(TX))Γ.

Using the trace maps

End(V ) −→ OX and End(TX) −→ OX ,(5.20)

we have the map

Φ3 : H0(X, ad(EL(P )) ⊗ End(V ) ⊗ End(TX))Γ(5.21)

−→ H0(X, ad(EL(P )))
Γ.
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Now consider the homomorphism

Φ̃ := Φ3 ◦ Φ2 ◦ Φ1 : H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ(5.22)

−→ H0(X, ad(EL(P )))
Γ,

where Φ1, Φ2 and Φ3 are constructed in (5.18), (5.19) and (5.21) respectively.

From (5.8) we know that the following diagram is commutative:

H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ
Φ̃−−→ H0(X, ad(EL(P )))

Γ�β̂V
�β̂

C
Id−−→ C

where β̂ and β̂V are the homomorphisms constructed in (5.12) and (5.17)

respectively, and Φ̃ is defined in (5.22). In other words, we have

β̂ ◦ Φ̃ = β̂V(5.23)

as elements of Hom(H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ, C).

To prove (5.15) by contradiction, assume that

βV = Ψ∗(β) �= 0.(5.24)

From (5.24) it follows that there is a section s ∈ H0(X, ad(EL(P )) ⊗ V ⊗
KX)Γ such that

β̂V (s) �= 0,(5.25)

where β̂V is constructed in (5.17). Consider the section

ŝ := Φ̃(s) ∈ H0(X, ad(EL(P )))
Γ,(5.26)

where s is the section in (5.25) and Φ̃ is constructed in (5.22). From (5.24),

(5.23) and (5.26) we know that

β̂(ŝ) �= 0.(5.27)

In view of (5.27), from Proposition 5.4(1) we know that for each point

x ∈ X, the element ŝ(x) ∈ ad(EL(P ))x is not nilpotent.
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So for each point x ∈ X, the semisimple component of ŝ(x) ∈
ad(EL(P ))x, for the Jordan decomposition, is nonzero. Moreover, the con-

jugacy class of the semisimple component of ŝ(x) is actually independent

of the point x ∈ X. To see this, take any L(P )–invariant holomorphic

function I on 0(p). Then x �−→ I(ŝ(x)) is a holomorphic function on X.

This function is a constant one because X is compact and connected. From

this it follows that the conjugacy class of the semisimple component of ŝ(x)

is independent of x ∈ X.

Take a holomorphic character χ : L(P ) −→ Gm = C
∗. Let

dχ : 0(p) −→ C

be the homomorphism of Lie algebras given by χ. This homomorphism dχ

produces a homomorphism

χ̃ : ad(EL(P )) −→ OX .(5.28)

Let

χ̃∗ : H0(X, ad(EL(P )))
Γ −→ H0(X, OX) = C(5.29)

be the homomorphism of global sections given by χ̃ in (5.28).

From Proposition 5.4(2) it follows that there is a holomorphic character

χ : L(P ) −→ C
∗ such that

χ̃∗(ŝ) �= 0,(5.30)

where ŝ and χ̃∗ are constructed in (5.26) and (5.29) respectively.

The homomorphism χ̃ in (5.28) produces a homomorphism

χ̃′ : H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ −→ H0(X, V ⊗KX)Γ.(5.31)

Define the map

Ψ1 : H0(X, V ⊗KX)Γ(5.32)

−→ H0(X, V ⊗KX) ⊗H0(X, V ∗ ⊗ TX)Γ, v �−→ v ⊗ φ,
where φ is the anchor map. We have the natural map

Ψ2 : H0(X, V ⊗KX)Γ ⊗H0(X, V ∗ ⊗ TX)Γ(5.33)
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−→ H0(X, V ⊗KX ⊗ V ∗ ⊗ TX)Γ

= H0(X, End(V ) ⊗ End(TX))Γ.

Using the trace maps in (5.20) we have the homomorphism

Ψ3 : H0(X, End(V ) ⊗ End(TX))Γ −→ H0(X, OX) = C.(5.34)

Now define

Ψ̃ := Ψ3 ◦ Ψ2 ◦ Ψ1 : H0(X, V ⊗KX) −→ C,(5.35)

where Ψ1, Ψ2 and Ψ3 are constructed in (5.32), (5.33) and (5.34) respec-

tively. We note that the following diagram is commutative:

H0(X, ad(EL(P )) ⊗ V ⊗KX)Γ
χ̃′

−−→ H0(X, V ⊗KX)Γ�Φ̃
�Ψ̃

C
Id−−→ C

where χ̃′, Φ̃ and Ψ̃ are constructed in (5.31), (5.22) and (5.35) respectively.

Consequently, using (5.26) we have

Ψ̃ ◦ χ̃′(s) = χ̃∗(ŝ)(5.36)

as elements of C. From (5.30) and (5.36) we conclude that

χ̃′(s) �= 0.(5.37)

In view of the construction of χ̃′ done in (5.31), from (5.37) it is deduced

that the following composition of maps

TX
χ̃′(s)−−−−→ V

φ−−→ TX

coincides with multiplication by the nonzero constant χ̃∗(ŝ) ∈ C \ {0} in

(5.30). Consequently, the homomorphism

1

χ̃∗(ŝ)
· χ̃′(s) : TX −→ V

gives a splitting of the equivariant Lie algebroid (V, φ). But (V, φ) does

not split. In view of this contradiction, it follows that (5.24) does not hold.

This completes the proof. �
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Corollary 5.6. The equivariant principal G–bundle EG admits an

equivariant holomorphic Lie algebroid connection.

Proof. This follows from the combination of Lemma 5.2 and Propo-

sition 5.5. �

6. Criterion for Lie Algebroid Connection

As before, G is a complex reductive affine algebraic group. The combi-

nation of Corollary 4.4 and Corollary 5.6 gives the following:

Theorem 6.1.

• Let (V, φ) be a nonsplit equivariant Lie algebroid. Then any equiv-

ariant principal G–bundle over X admits an equivariant holomorphic

Lie algebroid connection.

• Let (V, φ) be a split equivariant Lie algebroid. Let EG be an equiv-

ariant principal G–bundle over X. The following four statements are

equivalent:

(1) EG over X admits an equivariant holomorphic Lie algebroid con-

nection.

(2) EG admits an equivariant holomorphic connection.

(3) EG admits a holomorphic connection.

(4) For every triple (P, L(P ), χ) as in Lemma 4.1, and every Γ–

equivariant holomorphic reduction of structure group EL(P ) of

EG to L(P ),

degree(L(EL(P ), χ)) = 0.

Remark 6.2. Take a complex Lie group G and a holomorphic principal

G–bundleEG overX. Consider the corresponding Lie algebroid (At(EG),  )

as in (3.2). Assume that EG does not admit any holomorphic connection.

It was shown in Example 3.1 that the Lie algebroid (At(EG),  ) is nonsplit.

Assume that EG is equivariant. Therefore, Theorem 6.1 says that any equiv-

ariant principal G–bundle EG over X admits an equivariant holomorphic

Lie algebroid connection for the Lie algebroid (At(EG),  ).
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Next consider the case where the equivariant holomorphic principal G–

bundle EG does not admit any holomorphic connection. Now Theorem 6.1

says that the following four statements are equivalent:

(1) EG over X admits an equivariant holomorphic Lie algebroid connec-

tion.

(2) EG admits an equivariant holomorphic connection.

(3) EG admits a holomorphic connection.

(4) For every triple (P, L(P ), χ) as in Lemma 4.1, and every Γ–equivari-

ant holomorphic reduction of structure group EL(P ) of EG to L(P ),

degree(L(EL(P ), χ)) = 0.

We will reformulate Theorem 6.1 in the set-up of parabolic bundles.

Fix n ordered distinct points

S = {s1, · · · , sn} ⊂ X.(6.1)

For each 1 ≤ i ≤ n, fix an integer Ni ≥ 2. We assume the following:

(1) If genus(X) = 0, then n �= 1.

(2) If genus(X) = 0, and n = 2, then N1 = N2.

A parabolic G–bundle consists of a complex manifold EG, a surjective

holomorphic map p : EG −→ X and a holomorphic right action of G

Ψ : EG ×G −→ EG

such that the following conditions hold:

(1) Ψ(y, h) = Ψ(x) for all x ∈ EG and h ∈ G.

(2) For every x ∈ X, the action of G on p−1(x) is transitive.

(3) The restriction p
∣∣
p−1(X\S)

: p−1(X \ S) −→ X \ S (see (6.1)) is a

holomorphic principal G–bundle on X \ S.
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(4) The isotropy subgroup for any y ∈ p−1(si) is a finite cyclic subgroup

of G whose order divides Ni.

(See [BBN], [Bi], [BS].) For 1 ≤ i ≤ n, the parabolic weights, at si, of a

parabolic vector bundle will be integral multiples of 1
Ni

.

The parabolic tangent bundle, denoted by (TX)∗, is TX ⊗
OX(−

∑n
i=1 si) equipped with parabolic weight 1

Ni
at si, 1 ≤ i ≤ n.

A parabolic Lie algebroid is a pair (V∗, φ), where V∗ is a parabolic vector

bundle, and φ : V∗ −→ (TX)∗ is a parabolic homomorphism, such that

(1) V∗ is equipped with a C–Lie algebra structure

[−, −] : V∗ ⊗C V∗ −→ V∗

which is compatible with the parabolic structure, and

(2) [s, f · t] = f · [s, t]+φ(s)(f) · t for locally defined holomorphic sections

s, t of V∗ and all locally defined holomorphic functions f on X.

A parabolic Lie algebra (V∗, φ) is called split if there is a parabolic

homomorphism β : (TX)∗ −→ V∗ such that φ ◦ β = Id(TX)∗ . A parabolic

Lie algebra (V∗, φ) is called nonsplit if it is not split.

Take a parabolic G–bundle p : EG −→ X. The invariant direct image,

on X, of the holomorphic tangent bundle TEG

(p∗TEG)G ⊂ p∗TEG

has a natural parabolic structure. The resulting parabolic vector bundle

is called the Atiyah bundle for EG, and it is denoted by At(EG)∗. Let

Tp ⊂ TEG be the relative tangent bundle for the projection p. The parabolic

adjoint bundle ad(EG)∗ is defined to be the invariant direct image.(p∗Tp)G.

The parabolic vector bundle At(EG)∗ fits in the following short exact se-

quence of parabolic vector bundles over X:

0 −→ ad(EG)∗ −→ At(EG)∗
ψ−→ (TX)∗ −→ 0.(6.2)

A holomorphic connection on EG is a holomorphic splitting of (6.2) (see

[Bi]).
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Define A(EG)∗ to be the parabolic vector bundle given by the kernel of

the parabolic homomorphism

V ∗ ⊕ At(EG)∗ −→ (TX)∗, (a, b) �−→ φ(a) − ψ(b),

where ψ is the homomorphism in (6.2). The parabolic vector bundle A(EG)∗
fits in the following short exact sequence of parabolic vector bundles over

X:

0 −→ ad(EG)∗ −→ A(EG)∗ −→ V −→ 0.(6.3)

A holomorphic Lie algebroid connection on EG is a holomorphic splitting of

(6.3).

There is a ramified Galois covering  : Y −→ X such that

(1) the branch locus of  is S = {s1, · · · , sn} ⊂ X (see (6.1)), and

(2) for every 1 ≤ i ≤ n, the multiplicity of  at any y ∈  −1(si) is Ni.

(See [Na, p. 26, Proposition 1.2.12] for the existence of such a covering  .)

Let Γ = Gal( ) be the Galois group for  .

The parabolic G–bundles over X correspond to Γ–equivariant principal

G–bundles on Y [BBN], [BS]. In particular, the parabolic vector bundles

over X correspond to Γ–equivariant vector bundles on Y . The parabolic

Lie algebroids over X correspond to the Γ–equivariant Lie algebroids on

Y . Parabolic G–bundles over X equipped with a parabolic connection cor-

respond to the Γ–equivariant principal G–bundles on Y equipped with a

Γ–equivariant connection.

Consequently, Theorem 6.1 gives the following:

Theorem 6.3.

• Let (V∗, φ) be a nonsplit parabolic Lie algebroid. Then any parabolic

G–bundle over X admits a parabolic Lie algebroid connection.

• Let (V∗, φ) be a split parabolic Lie algebroid. Let EG be a parabolic

G–bundle over X. The following three statements are equivalent:

(1) EG over X admits a parabolic Lie algebroid connection.

(2) EG admits a parabolic holomorphic connection.
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(3) For every triple (P, L(P ), χ) as in Lemma 4.1, and every holo-

morphic reduction of structure group EL(P ) of EG to L(P ), the

parabolic line bundle over X associated to EL(P ) for χ has

parabolic degree zero.
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