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Holomorphic Lie Algebroid Connections on
Holomorphic Principal Bundles on

Compact Riemann Surfaces

By Indranil Biswas

Abstract. For a I'-equivariant holomorphic Lie algebroid (V, ¢),
on a compact Riemann surface X equipped with an action of a finite
group I', we investigate the equivariant holomorphic Lie algebroid con-
nections on holomorphic principal G-bundles over X, where G is a
connected affine complex reductive group. If (V, ¢) is nonsplit, then it
is proved that every holomorphic principal G—bundle admits an equiv-
ariant holomorphic Lie algebroid connection. If (V, ¢) is split, then it
is proved that the following four statements are equivalent:

(1) An equivariant principal G—bundle FE¢ admits an equivariant
holomorphic Lie algebroid connection.

(2) The equivariant principal G-bundle Eg admits an equivariant
holomorphic connection.

(3) The principal G-bundle Eg admits a holomorphic connection.

(4) For every triple (P, L(P), x), where L(P) is a Levi subgroup of a
parabolic subgroup P C G and x is a holomorphic character of
L(P), and every I'-equivariant holomorphic reduction of struc-
ture group Ep(py of Eg to L(P), the degree of the line bundle
over X associated to Eppy for x is zero.

The correspondence between I'-equivariant principal G—bundles
over X and parabolic G-bundles on X/T" translates the above result
to the context of parabolic G—bundles.
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1. Introduction

A well-known theorem of Atiyah and Weil says the following: A holomor-
phic vector bundle E on a compact connected Riemann surface X admits
a holomorphic connection if and only if the degree of each indecomposable
component of F is zero [At], [We]. This criterion for the existence of holo-
morphic connections extends to holomorphic principal G-bundles over X,
where G is a reductive affine algebraic group defined over C [AB].

The notion of a holomorphic connection on a holomorphic vector bundle
FE extends to the notion of holomorphic Lie algebroid connections on F,
which we briefly recall.

A holomorphic Lie algebroid over X is a pair (V, ¢), where V' is a holo-
morphic vector bundle over X equipped with the structure of a C—bilinear
Lie algebra on its sheaf of holomorphic sections, and ¢ : V — TX is an
Ox-linear homomorphism satisfying the Leibniz rule

[s, ft] = [fls: t] + o(s)(f)t

for all locally defined holomorphic sections s, t of V and all locally defined
holomorphic functions f.

We work with an equivariant set-up, meaning a finite subgroup I' C
Aut(X) is fixed, and all objects and structures on X are taken to be I'-
equivariant.

A Lie algebroid (V, ¢) is called split if there is a holomorphic I'-equiv-
ariant homomorphism 7 : TX — V such that pon = Idpx. If (V, ¢) is
not split, then it is called nonsplit. See Example 3.1 for nonsplit and split
Lie algebroids.

Let Eg be a I'-equivariant holomorphic principal G-bundle over X,
where G, as before, is a reductive affine algebraic group defined over C.
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Using the Atiyah bundle for E¢ and the pair (V, ¢), a C-Lie algebra bundle
A(E¢q) is constructed which fits in the following short exact sequence of I'-
equivariant vector bundles over X:

0 — ad(Eg) — A(BEg) 2 V. — 0,

where ad(E¢) is the adjoint bundle for Eg. An equivariant holomorphic Lie
algebroid connection on F¢ is a ['-equivariant holomorphic homomorphism
6 : V. — A(Eg) such that po ¢ = Idy. In the special case where
(V, ¢) = (T'X, Idrx), a holomorphic Lie algebroid connection on Eg is a
usual holomorphic connection on Fg.

There is a large body of research on Lie algebroids and Lie algebroid
connections. Bruzzo and Rubtsov investigated the cohomology and moduli
spaces of skew-holomorphic Lie algebroids [BR|. Tortella introduced mod-
ules over Lie algebroids and described moduli space of flat Lie algebroid
connections which are also called A-modules [Tol], [To2]. In [AO], Alfaya
and Oliveira studied the moduli space of flat Lie algebroid connections and
proved numerous properties of the moduli space [AO]. Bruzzo-Mencattini-
Rubtsov-Tortella investigated extensions of Lie algebroids [BMRT].
Laurent-Gengoux, Stiénon and Xu investigate the relationships between
holomorphic Lie algebroids and holomorphic Poisson structures.

Our aim here is to give a criterion for the existence of equivariant holo-
morphic Lie algebroid connections on an equivariant holomorphic principal
G-bundle over X. We prove the following (see Theorem 6.1):

THEOREM 1.1.

o Let (V, ¢) be a nonsplit I'—equivariant Lie algebroid. Then any equiv-
ariant principal G-bundle over X admits an equivariant holomorphic
Lie algebroid connection.

o Let (V, ¢) be a split I'—equivariant Lie algebroid. Let Eq be an equiv-
ariant principal G-bundle over X. The following four statements are
equivalent:

(1) Eg over X admits an equivariant holomorphic Lie algebroid con-
nection.

(2) Eg admits an equivariant holomorphic connection.
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(3) Eg admits a holomorphic connection.

(4) For every triple (P, L(P), x), where L(P) is a Levi subgroup of
a parabolic subgroup P C G and x is a holomorphic character of
L(P), and every I'—equivariant holomorphic reduction of struc-
ture group Erpy of Eg to L(P), the degree of the line bundle
over X associated to Erpy for x is zero.

In [ABKS], Theorem 1.1 was proved under the assumption that G =
GL(r,C).

There is a natural bijective correspondence between parabolic G-bundles
on X/T' and I'-equivariant principal G-bundles over X. Using this corre-
spondence, Theorem 1.1 translates into the following (see Theorem 6.3):

THEOREM 1.2. Let Y be a compact connected Riemann surface and
{s1, -+, sn} C Y a parabolic divisor. Fix an integer N; > 2 for each s;,
1 << n.

o Let (Vi, @) be a nonsplit parabolic Lie algebroid on Y. Then any
parabolic G-bundle on Y admits a parabolic Lie algebroid connection.

o Let (Vi, @) be a split parabolic Lie algebroid on Y. Let Eg be a
parabolic G-bundle on Y. The following three statements are equiva-
lent:

(1) &g admits a parabolic Lie algebroid connection.

(2) &g admits a parabolic holomorphic connection.

(3) For every triple (P, L(P), x), where L(P) is a Levi subgroup of
a parabolic subgroup P C G and x is a holomorphic character of
L(P), and every holomorphic reduction of structure group Er(p)
of & to L(P), the parabolic line bundle over X associated to
Er(py for x has parabolic degree zero.

2. Equivariant Lie Algebroids

Let X be a compact connected Riemann surface. Denote by Aut(X) the
group of all holomorphic automorphisms of X. Fix a finite subgroup

(2.1) T C Aut(X).
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So the group I' has a tautological action on X.

Let G be a complex Lie group. Note that in the introduction G was a
reductive affine algebraic group defined over C. An equivariant principal
G-bundle over X is a holomorphic principal G—bundle

(2.2) p: Eg — X
over X together with an action of I' on Eg such that

(1) for every v € TI', the automorphism of Eg given by the action of v is
holomorphic,

(2) the projection p in (2.2) is I'-equivariant, and
(3) the actions of G and I" on Eg commute.

A holomorphic vector bundle V' of rank r over X is called equivariant if
the corresponding holomorphic principal GL(r, C)-bundle over X, given by
the frames in the fibers of V, is equipped with an action of I' that satisfies
the above three conditions. This is equivalent to an action of I on V, via
holomorphic vector bundle automorphisms, over the action of I' on X.

The holomorphic tangent bundle of X will be denoted by TX, while
the holomorphic cotangent bundle of X will be denoted by Kx. Using the
action of I' on X, both T X and Kx are equivariant line bundles.

The first jet bundle of a holomorphic vector bundle W over X will be
denoted by J!'(W). An equivariant C-Lie algebra structure on an equiv-
ariant vector bundle V over X is a C—bilinear pairing defined by a sheaf

homomorphism
[—, -] : VecV — V,

which is given by a holomorphic homomorphism JY(V) ® JY(V) — V of
vector bundles, such that

(1) [v(s), v(O)] = ~([s, #]) for all v € T, and

(2) [s, t] = —[t, s] and [[s, t], u] +[[t, u], s]+[[u, s], t] = O for all locally
defined holomorphic sections s, ¢, u of V.

The Lie bracket operation on the sheaf of holomorphic vector fields on X
gives the structure of an equivariant C-Lie algebra on T'X.
An equivariant Lie algebroid over X is a pair (V, ¢), where
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(1) V is an equivariant vector bundle over X equipped with the structure
of an equivariant C-Lie algebra, and

(2) ¢ : V — TX is a I'-equivariant Ox—linear homomorphism such
that

(2.3) [s, f-1] = [-ls, ]+ o(s)(f) - ¢

for all locally defined holomorphic sections s, t of V' and all locally
defined holomorphic functions f on X.

The above homomorphism ¢ is called the anchor map of the Lie algebroid.
The two conditions in the definition of a Lie algebroid imply that

(2.4) o([s, t]) = [¢(s), o(t)]

for all locally defined holomorphic sections s, ¢ of V; this is explained in
Remark 2.1 below.

REMARK 2.1. To show that (2.4) holds for (V, ¢), note that for all
holomorphic local sections s, t, u of V' and each locally defined holomorphic
function f in Ox we have

(2.5) [[s, 2], fu] = flls, 1], ul + o(s, t)(f) - u

(see (2.3)). On the other hand,
(2.6)  [ls, tl, fu] = [[s, ful, 8]+ [s, [t, ful]l = [fls, u] + ¢(s)(f)u, t]

+ls, [l ul +o(0)(N)ul = flls, ul, ] = o) (F)ls, u] +o(s)(f)lw, 1]
=) (@(s)(N))u+ fls, [t, wl] +¢(s) (Nt ul + d(#)(f)s, u] +¢(s)(d(8)(f))u
= [lls: ], ul + (8(8)(@(8)(f)) = () (P(s)(f))) w
(

= [flls, t], u] + [0(s), S(D](f) - u

Combining (2.5) and (2.6) we conclude that ¢([s, t])(f)-u = [¢(s), ¢()](f)-
u. Since this holds for all locally defined f and wu, it follows that

o([s, t]) = [8(s), o(1)].

)
)
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This proves (2.4).

DEFINITION 2.2. An equivariant Lie algebroid (V, ¢) over X will be
called split if there is a I'—equivariant O x—linear homomorphism

p:TX — V

such that ¢pop = Idpx. An equivariant Lie algebroid (V, ¢) over X will be
called nonsplit if it is not split.

LEmMA 2.3. Let (V, ¢) be an equivariant Lie algebroid over X . If there
is an Ox —linear homomorphism

(. TX — V

such that po( = Idrx, then there is a I'—equivariant Ox —linear homomor-
phism
(:TX — V

such that ¢ o Z = Idrx.

PrOOF. Let ¢ : TX — V be an Ox-linear homomorphism such
that ¢ o ( = Idrx. For each v € T, let

¢ : TX — V

be the homomorphism given by the following composition of maps:

¢ vt

TX L% TX 1%

v,

where ~- (respectively, 7~ !.) is the action of v (respectively, y~1) on TX
(respectively, V). Then the homomorphism

~ 1
¢ = ﬁZQ;TX—W/,
~yel

where #1 is the order of T, is clearly I'-equivariant and it also satisfies the
condition that ¢ o ( = Idpx. O
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3. Lie Algebroid Connection on Principal Bundles

As before, G is a complex Lie group. Take an equivariant principal G—
bundle p : Eg — X (see (2.2)). The action of G on Eg produces an
action of G on the direct image p,T Eg of the holomorphic tangent bundle
TEgG. The invariant part

(3.1) ¥ At(Eg) = (pTEg)® — X

is the Atiyah bundle for Eg [At]. Tt fits in a short exact sequence of holo-
morphic vector bundles

(3.2) 0 — ad(Eg) — At(Eg) — TX — 0,

where ad(Eg) is the adjoint vector bundle for Eg (see [At]); the projection
w in (3.2) is given by the differential dp : TEg — p*TX of the map p.
The sequence in (3.2) is known as the Atiyah exact sequence for Eg.

The Lie bracket operation on the sheaf of holomorphic vector fields on
Eg produces a C-Lie algebra structure on At(Eg). The homomorphism w
in (3.2) intertwines the C-Lie algebra structures of At(Eg) and TX. In
fact, (At(Eg), w) is a Lie algebroid.

A holomorphic connection on the principal G-bundle Eg is a holomor-
phic splitting of the Atiyah exact sequence in (3.2) [At]. In other words, a
holomorphic connection on Eg is a holomorphic Ox—linear homomorphism
p: TX — At(Eg) such that wo u = Idpx, where w is the homomor-
phism in (3.2).

Example 3.1. Assume that Eg does not admit any holomorphic con-
nection. For example, set G = GL(r, C) and take Eg to be the holomorphic
principal GL(r, C)-bundle over X associated to a holomorphic vector bundle
of rank r and nonzero degree over X. Then the Lie algebroid (At(Eg), w)
in (3.2) is nonsplit.

On the other hand, if Eg admits a holomorphic connection, then the Lie
algebroid (At(Eg), w) in (3.2) is split. For example, take any indecompos-
able holomorphic vector bundle £ over X of rank r with degree(E) = 0.
Then E admits a holomorphic connection [At], [We]. Hence the holomorphic
principal GL(r, C)-bundle Eq1 ) over X associated to £ admits a holo-
morphic connection. Consequently, the Lie algebroid given by At(Eqr,c))
(see (3.2)) is split.
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The action of I' on Eg makes At(Eg) an equivariant vector bundle.
The homomorphism w in (3.2) is '-equivariant. Thus (At(Eg), w) is an
equivariant Lie algebroid. The action of I' on Eg produces an action of I"
on ad(Eg), and the homomorphism ¢ in (3.2) is I'-equivariant.

Take an equivariant Lie algebroid (V, ¢) over X. Consider the homo-
morphism

Vv VOA(Eg) — TX, (v,w) — o) —w(w),

where w is the homomorphism in (3.2). Note that 1 is surjective because
w is surjective. Define

(3.3) A(Eg) := kernel(y)) C V & At(Eg).

The C-Lie algebra structure on V @ At(Eg), given by the C-Lie alge-
bra structures on V and At(Eg), restricts to a C—Lie algebra structure
on A(Eg). Restricting the natural projection V & At(Eg) — V to
A(Eg) C V @ At(Eg) we obtain a homomorphism

(3.4) p: A(Eg) — V;

note that kernel(p) = kernel(w) = ad(Eg). Similarly, restricting the natu-
ral projection V & At(Eg) — At(Eg) to A(Eg) C V @& At(Eg) we obtain
a homomorphism

(3.5) v A(Eg) — At(Eg).

The action of I" on V & At(Eg), given by the actions of I' on V and At(Eg),
preserves the subbundle A(Eg).
We have the commutative diagram of homomorphisms of vector bundles

— AlEg -~ vV — 0

)
lso lcb
)

. At(Eg) -2 TX — 0

0 — ad(Eg
(3.6) H

0 — ad(Eg

where ¢ and p are constructed in (3.5) and (3.4) respectively. Note that
every vector bundle in (3.6) is equipped with an action of I', and all the
homomorphisms in (3.6) are I'-equivariant.
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DEFINITION 3.2. An equivariant holomorphic Lie algebroid connection
on Eg is a I'-equivariant holomorphic homomorphism

6V — A(Eg)
such that po ¢ = Idy, where p is the homomorphism in (3.4).

Let 6 be an equivariant holomorphic Lie algebroid connection on Eg.
For locally defined holomorphic sections s and ¢ of V', consider

a(s, t) = [6(s), 6(t)] — 6([s, t])-

For a locally defined holomorphic function f on X,

fra(s, t) = a(fs, t) = a(s, ft) = —a(ft, s).

Also, p(a(s, t)) = 0, where p is the homomorphism in (3.4); consequently,
a(s, t) is a locally defined section of ad(Eg). From these it follows that «
defines a I'-invariant holomorphic section

(3.7) K(6) € HOX, ad(Bg)® \ V.

The section K(6) in (3.7) is the curvature of the equivariant holomorphic
Lie algebroid connection 6.

When V = TX and ¢ = Idrx, an equivariant holomorphic Lie alge-
broid connection on Eg is a usual equivariant holomorphic connection on
the principal G-bundle Eg.

When G = GL(r,C), the notions of Lie algebroid connection and cur-
vature coincide with those for holomorphic vector bundles.

4. Equivariant Holomorphic Connections and Split Lie Alge-
broids

Earlier the notation G was used to denote a complex Lie group. Now-
onwards, we will consider principal bundles whose structure group is a con-
nected reductive affine algebraic group defined over C. To distinguish it
from a general complex Lie group, the notation G will be used instead of G.
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4.1. Equivariant holomorphic connections
Let G be a connected reductive affine algebraic group defined over C.
Take any parabolic subgroup P C G. Let R,(P) C P be the unipotent rad-
ical of P. A Levi subgroup of P is a connected reductive complex algebraic
subgroup L(P) C P such that the following composition of homomorphisms
is an isomorphism:
L(P) — P — P/Ry(P)

(see [Hu, p. 125], [Bo]).

Take a holomorphic principal G-bundle over X. Take a holomorphic
character y : L(P) — G,, = C* of a Levi subgroup L(P) of a parabolic
subgroup P of G. Let Erpy C Eg be a holomorphic reduction of structure
group of Eg to L(P) C G. Let Epp x P C* be the holomorphic principal
C*~bundle on X obtained by extending the structure group of E(p) using
the character y. Using the standard multiplication action of C* on C,
the principal C*~bundle Er,p) xP C* produces a holomorphic line bundle
ﬁ(EL(P)a)() — X.

The principal G—bundle Eg admits a holomorphic connection if and only
if for every triple (P, L(P), x) as above, and every holomorphic reduction
of structure group Epp) of Eg to L(P), we have

degree(L(ELp),x)) = 0

[AB, Theorem 4.1].

Let Fg be an equivariant principal G—bundle over X. A reduction of
structure group Epp) of Eg to L(P) C G is called equivariant if the action
of I' on E¢ preserves the submanifold Eppy C Eg. The following lemma
gives a criterion for the existence of an equivariant holomorphic connection
on an equivariant principal G—bundle.

LEMMA 4.1. An equivariant principal G-bundle Eg over X admits
an equivariant holomorphic connection if and only if for every triple
(P, L(P), x) as above, and every I'—equivariant holomorphic reduction of
structure group Eppy of Eg to L(P),

(4.1) degree(L(ELp),x)) = 0.
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ProOOF. First, assume that E admits an equivariant holomorphic con-
nection. Then, from the above criterion of [AB] it follows immediately that
(4.1) holds.

To prove converse, assume that (4.1) holds for every triple (P, L(P), x)
as above, and every I'-equivariant holomorphic reduction of structure group
Erpy of Eg to L(P). This implies that the principal G-bundle Eg admits
a holomorphic connection (see [Bi, p. 274, Lemma 4.2]). Let

§ 1 TX — At(Eg)

be a holomorphic connection on Eg; so we have woé = Idpx, where w is
the homomorphism in (3.2) (see [At]). For any v € T, let

6y : TX — At(Eq)
be the homomorphism given by the following composition of maps:
. _1.
X 2 TX 2 At(Bg) L At(Eg),
where - (respectively, 7~ !-) is the action of v (respectively, y~1) on T X

(respectively, At(Eq)); recall that T' acts on both TX and At(Eg).
Now consider the homomorphism

#FZ<5 . TX — At(Eq).
vel’

Since woé = Idryx, it follows immediately that wob = Id7rx. It is also evi-
dent that & is [ equivariant. Consequently, § is an equivariant holomorphic
connection on the equivariant principal G-bundle Fg. U

The second part of the proof of Lemma 4.1 gives the following:

COROLLARY 4.2. An equivariant principal G-bundle Eg admits a
holomorphic connection if and only if Eq admits an equivariant holomorphic
connection.
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4.2. Split equivariant Lie algebroid connections
Let (V, ¢) be a split equivariant Lie algebroid (see Definition 2.2). As
before, G is a connected reductive affine algebraic group defined over C.

PROPOSITION 4.3.  An equivariant principal G-bundle Eg over X ad-
mits an equivariant holomorphic Lie algebroid connection (see Definition
3.2) if and only if for every triple (P, L(P), x) as in Lemma 4.1, and ev-
ery I'—equivariant holomorphic reduction of structure group Erpy of Eg to
L(P)7

(4.2) degree(L(ELp),x)) = 0.

ProOF. We will show that Fg admits an equivariant holomorphic Lie
algebroid connection if and only if Eg admits an equivariant holomorphic
connection. To prove this, first assume that Eg admits an equivariant
holomorphic connection. Take an equivariant holomorphic connection

b : TX —> At(E(;)

on Eg. Since wody = Idrx, where w is the homomorphism in (3.2), there
is a unique holomorphic homomorphism

5’0 : At(Eg) — ad(Eg)

such that kernel(é)) = 60(TX) and 80t = Idug(g,,), where ¢ is the homo-
morphism in (3.2). Now, consider the homomorphism

oy : A(Eg) — ad(Eg),

where ¢ is the homomorphism in (3.5). There is a unique holomorphic
homomorphism
6V — A(Eg)

such that 6(V) = kernel(é, o ¢) and po § = Idy, where p is the homo-
morphism in (3.4). Since ¢ is also I'-equivariant, it defines an equivariant
holomorphic Lie algebroid connection on Fg.

To prove the converse, assume that Eg has an equivariant holomorphic
Lie algebroid connection

6V — A(EG).
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Fix a I'-equivariant holomorphic homomorphism
n:TX —V

such that ¢ onp = Idrx; see Definition 2.2 (recall that (V, ¢) is a split
equivariant Lie algebroid). Now it is straightforward to check that the
composition of homomorphisms

podon : TX — At(Eq),

where ¢ is the homomorphism in (3.5), is an equivariant holomorphic con-
nection on Eg.

Since Eg admits an equivariant holomorphic Lie algebroid connection if
and only if Eg admits an equivariant holomorphic connection, Lemma 4.1
completes the proof of the proposition. [

Proposition 4.3, Corollary 4.2 and Lemma 4.1 together give the follow-
ing:

COROLLARY 4.4. Let (V, ¢) be a split equivariant Lie algebroid and G
a reductive affine algebraic group over C. Let Eg be an equivariant principal
G-bundle over X. The following four statements are equivalent:

(1) Eg over X admits an equivariant holomorphic Lie algebroid connec-
tion.

(2) Eg admits an equivariant holomorphic connection.
(3) Eg admits a holomorphic connection.

(4) For every triple (P, L(P), x) as in Lemma 4.1, and every I'—equiv-
ariant holomorphic reduction of structure group Er,py of Eg to L(P),

degree(L(ELp),x)) = 0.
5. Nonsplit Equivariant Lie Algebroid Connections

Let (V, ¢) be a nonsplit equivariant Lie algebroid (see Definition 2.2).
As before, GG is a connected reductive affine algebraic group defined over C.
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We will show that any equivariant principal G-bundle over X admits an
equivariant holomorphic Lie algebroid connection.

REMARK 5.1. Take an equivariant principal G-bundle Eg over X.
There is a Levi subgroup L(P) of a parabolic subgroup P C G, and a holo-
morphic reduction of structure group Eppy C Eg of Eg to L(P) C G,
satisfying the following conditions:

(1) The action of I' on Eg preserves Eppy C Eg, and

(2) the maximal torus of the group of all '—equivariant holomorphic au-
tomorphisms of E7p) coincides with the center of L(P). (Note that
any element z of the center of L(P) gives a I'-equivariant holomorphic
automorphisms of Eyp) defined by x +— zz.)

Moreover if P’ C G is another parabolic subgroup, L(P’) is a Levi subgroup
of P/, and r(py C Eg is a holomorphic reduction of structure group of
E¢ to L(P’) satisfying the above two conditions, then there is an element
x € G such that L(P') = z7'L(P)z and Eppy = Eppyz. (See [BP,
p. 63, Theorem 4.1].)

LEMMA 5.2, Assume that the equivariant principal L(P)-bundle Er,p)
i Remark 5.1 admits an equivariant holomorphic Lie algebroid connection.
Then the equivariant principal G-bundle Eq admits an equivariant holo-
morphic Lie algebroid connection.

PROOF. There are natural homomorphisms a : ad(Erp)) — ad(Eg)
and b : At(ELp)) — At(Eg) because Epp) is a holomorphic reduction of
structure group of Eg to L(P), and they fit in the following commutative
diagram:

0 — ad(EL(p)) — At ELP — TX — 0

Jo I H

0 — ad(Eg) — At(Eg) — TX — 0
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where the rows are the Atiyah exact sequences (for Eppy and Eg); see (3.2).
This commutative diagram produces the following commutative diagram:

(5.1) a lb/ H

(see (3.6)).

Since the principal L(P)-bundle Ep) admits an equivariant holomor-
phic Lie algebroid connection, we have a I'-equivariant holomorphic homo-
morphism

6, V. — A(EL(p))

such that p’ 0 8’ = Idy, where p’ is the homomorphism in (5.1). Now, the
homomorphism

Vod :V — A(Eg),

where b/ is the homomorphism in (5.1), is an equivariant holomorphic Lie
algebroid connection on Eg. [

As before, L(P) and Ep(py are as in Remark 5.1. Consider the Atiyah
exact sequence

for the equivariant principal L(P)-bundle Erp). Let
B € H'(X, ad(Eyp)) ® Kx)

be the extension class for the short exact sequence in (5.2). Since (5.2) is
an exact sequence of I'-equivariant vector bundles, we have

(5:3) B € H'(X,ad(Byp) ® Kx)' ¢ H'(X, ad(Eyp) ® Kx).

Consider the dual homomorphism ¢* : Kx —— V* for the anchor map.
Tensoring it with the identity map of ad(Ep(p)), we have the homomorphism

U = Idad(EL(p))®¢* : ad(EL(p))®KX — ad(EL(p))®V*.



Lie Algebroid Connections on Holomorphic Principal Bundles 113

Let
(54) U, : H'(X, ad(ELp) ® Kx) — H'(X, ad(Epp) @ V)

be the homomorphism of cohomologies induced by the above homomor-
phism V.

LeEMMA 5.3.  The equivariant principal L(P)-bundle Erpy admits an
equivariant holomorphic Lie algebroid connection if and only if

v.(8) = 0,

where B and ¥, are constructed in (5.3) and (5.4) respectively.

Proor. Consider the short exact sequence

/

(5.5) 0 — ad(Epp) —— A(Eyp) — V — 0

n (5.1). Let
By € HY(X, ad(Epp) ® V)

be the extension class for it. Since (5.5) is an exact sequence of I'-equivariant
vector bundles, we have

(5.6) By € H'(X,ad(Eyp) @ V)" C HY(X, ad(Epp) @ V).

Note that the equivariant principal L(P)-bundle E r(p) admits an equivari-
ant holomorphic Lie algebroid connection if and only if we have Gy = 0;
indeed, By = 0 if and only if E7p) admits a holomorphic Lie algebroid
connection, and, exactly as shown in Corollary 4.2, Erp) admits a holo-
morphic Lie algebroid connection if and only if if admits an equivariant
holomorphic Lie algebroid connection.

Now consider the commutative diagram

/

0 — ad(Eyp) —— AELp) 2 V — 0

o s

0 — ad( EL — At(EL(P)) — TX — 0
(see (3.6)). From (5.7) it follows immediately that

(5.8) . (8) = Bv,
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where  and [y are the extension classes in (5.3) and (5.6) respectively
while U, is the homomorphism in (5.4). Since Ep(py admits an equivariant
holomorphic Lie algebroid connection if and only if we have By = 0, it fol-
lows from (5.8) that E r(p) admits an equivariant holomorphic Lie algebroid
connection if and only if ¥, (8) = 0. O

As before, L(P) and Epp) are as in Remark 5.1. Denote the Lie alge-
bra of L(P) by ¢(p). Since L(P) is reductive, there is an L(P)-invariant
nondegenerate symmetric bilinear form on ¢(p). Fix a L(P)-invariant non-
degenerate symmetric bilinear form

(5.9) B e Sym®(¢(p)*)"").
The form B in (5.9) produces a holomorphic isomorphism
(5.10) ad(Eppy) — ad(Erp))"
By Serre duality,
(5.11) H'(X, ad(Eyp) @ Kx)' = (H(X, ad(Ep))*)")"

= (H(X, ad(Erp))")" = (H(X, ad(Brep))')s

see (5.10).
Let

(5.12) B € (H(X, ad(Erp))")* = Hom(H'(X, ad(Erp)))", C)

be the element corresponding to 3 in (5.3) for the isomorphism in (5.11).
Let

(5.13) Z(tp)) < Lp)

be the center of /(p). Since the adjoint action of L(P) on its Lie algebra
£(p) fixes Z(£(p)) pointwise, we have an injective homomorphism

(5.14) ® : Z(l(p)) — H(X, ad(Enp))).
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PROPOSITION 5.4.

(1) Take any &, € HO(X, ad(Eppy))" which is nilpotent over some point
of X. Then

~

B(‘fn) = 0,

where 3 is the homomorphism in (5.12).

(2) Take any & € HO(X, aud(EL(p)))F which is semisimple over every
point of X. Then there is an element w € Z({(p)) such that

(I)(w) = &

where ® is the homomorphism in (5.14).

PrROOF. The first statement follows immediately from [AB, p. 341,
Proposition 3.9].

For the proof of second statement, first recall from Remark 5.1 that
the center of L(P) is the maximal torus of the group of all I'-equivariant
holomorphic automorphisms of E7py. The automorphisms of Epp) given
by the center of L(P) evidently commute with all the automorphisms of
Erp). On the other hand, the image of the connected component, con-
taining the identity element, of the center of L(P) under the natural map
to the group of all I'-equivariant holomorphic automorphisms of Erp), is
a maximal torus of the group of all ['-equivariant holomorphic automor-
phisms of E7,p). Therefore, we conclude that a maximal torus of the group
of all I'-equivariant holomorphic automorphisms of Ep(p) is contained in
the center of the group of all I'-equivariant holomorphic automorphisms of

If the maximal torus of a connected complex reductive algebraic group
G is contained in the center of G, then G is abelian, which means that G is a
torus. Therefore, the semisimple part, i.e., the Levi factor, of the Lie alge-
bra of the group of all I'-equivariant holomorphic automorphisms of Er,p)
coincides with the center Z(£(p)). Note that HY(X, ad(EL(p)))F is the Lie
algebra of the group of all '-equivariant holomorphic automorphisms of
Er(p). From these, the second statement of the proposition follows imme-
diately. [J

PROPOSITION 5.5.  The equivariant principal L(P)-bundle Erpy ad-
mits an equivariant holomorphic Lie algebroid connection.
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PrOOF. In view of (5.8) and Lemma 5.3, it suffices to show that

(5.15) Bv = V. (B) =0,

where (8 and WU, are constructed in (5.3) and (5.4) respectively.
By Serre duality,

(5.16) H'(X, ad(Erp) @ V' = (H(X, ad(Ep)* @V @ Kx)*)"

= (H°(X, ad(Eppp) @ Ve Kx))' = (H'(X, ad(Erp) ® V& Kx)')*;
see (5.10). Let

(5.17) By € (HX, ad(Epp) ®V @ Kx)')*

= Hom(H°(X, ad(ELp) © V ® Kx)', C)

be the element corresponding to Sy in (5.6) for the isomorphism in (5.16).
Consider the anchor map ¢ € H(X, V*® TX)'. We have the homo-
morphism

(5.18) @ : H(X, ad(Erp) @ V@ Kx)"

— H%X, ad(Erp) ® V@ Kx)" @ H'(X, V'@ TX)"

that sends any s € H(X, ad(Ep) ® V @ Kx)'' to s ® ¢. There is a
natural homomorphism

(5.19) @y HYX, ad(Epp) @V @ Kx)' @ H'(X, V* @ TX)"

— H(X, ad(Erp) @ V@ Kx @ V@ TX)"
= H°(X, ad(Epp)) ® End(V) ® End(TX))".

Using the trace maps

(5.20) End(V) — Ox and End(TX) — Oy,
we have the map

(5.21) ®3 : H(X, ad(Erp)) ® End(V) ® End(TX))"

— HO(X, ad(EL(P)))F.
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Now consider the homomorphism
(5.22) = P30Py0®; : HX, ad(Epp) @V @ Kx)"

— H(X, ad(EL(P)))Fa

where @1, &3 and @3 are constructed in (5.18), (5.19) and (5.21) respectively.
From (5.8) we know that the following diagram is commutative:

HO(X, ad(Epp) @V © Kx)' =" HO(X, ad(Eyp)"
| B |3

C _d, C

where 3 and Sy are the homomorphisms constructed in (5.12) and (5.17)
respectively, and @ is defined in (5.22). In other words, we have

(5.23) Bod = By

as elements of Hom(H"(X, ad(Epp)) ® V ® Kx)'', C).
To prove (5.15) by contradiction, assume that

(5.24) Pv = W.(B) # 0.

From (5.24) it follows that there is a section s € H(X, ad(Epp)) @ V ®
Kx)' such that

(5.25) Bv(s) # 0,
where Jy is constructed in (5.17). Consider the section
(5.26) § = ¥(s) € HUX, ad(Erp)),

where s is the section in (5.25) and ® is constructed in (5.22). From (5.24),
(5.23) and (5.26) we know that

(5.27) B(3) # 0.

In view of (5.27), from Proposition 5.4(1) we know that for each point
r € X, the element 5(z) € ad(Epp)): is not nilpotent.
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So for each point z € X, the semisimple component of s(z) €
ad(ErL(p))z, for the Jordan decomposition, is nonzero. Moreover, the con-
jugacy class of the semisimple component of 5(x) is actually independent
of the point x € X. To see this, take any L(P)-invariant holomorphic
function I on ¢(p). Then x +—— I(5(z)) is a holomorphic function on X.
This function is a constant one because X is compact and connected. From
this it follows that the conjugacy class of the semisimple component of 5(x)
is independent of x € X.

Take a holomorphic character x : L(P) — G,, = C*. Let

dx : l(p) — C

be the homomorphism of Lie algebras given by x. This homomorphism dy
produces a homomorphism

(5.28) S(V : ad(EL(p)) — Ox.
Let
(5.29) X+ 1 HY(X, ad(Erp))" — HY(X,0x) = C

be the homomorphism of global sections given by X in (5.28).
From Proposition 5.4(2) it follows that there is a holomorphic character
X : L(P) — C* such that

where s and X, are constructed in (5.26) and (5.29) respectively.
The homomorphism X in (5.28) produces a homomorphism

(5.31) X : HYX, ad(Epp)®V®Kx)' — HYX, Ve Kx)".
Define the map
(5.32) Uy HY(X, Ve Kx)'

— HY(X, Vo Kx) H'X,V*oTX)', v — v®o¢,
where ¢ is the anchor map. We have the natural map

(5.33) Uy : HY(X, Ve Kx)' @ HY(X, V* @ TX)"
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— HYX, Vo KxyoV*e®TX)"
= H°(X, End(V) ® End(TX))".
Using the trace maps in (5.20) we have the homomorphism
(5.34) VU3 : HY(X, End(V)®End(TX))" — HX, Ox) = C.
Now define
(5.35) U = Uy0Wy00; : H(X,V®Kyx) — C,

where ¥y, Wy and W3 are constructed in (5.32), (5.33) and (5.34) respec-
tively. We note that the following diagram is commutative:

HO(X, ad(Eyp) © Ve Kx)' —Xo HOX, Ve Kx)T

& 7

C 4, C

where ¥/, ® and U are constructed in (5.31), (5.22) and (5.35) respectively.
Consequently, using (5.26) we have

(5.36) ToY(s) = X3
as elements of C. From (5.30) and (5.36) we conclude that
(5.37) X' (s) # 0.

In view of the construction of X’ done in (5.31), from (5.37) it is deduced
that the following composition of maps

X' (s)

TXX [

|4 TX

coincides with multiplication by the nonzero constant y.(s) € C\ {0} in
(5.30). Consequently, the homomorphism

1
— - s) : TX — V
A6 X (s)

gives a splitting of the equivariant Lie algebroid (V, ¢). But (V, ¢) does
not split. In view of this contradiction, it follows that (5.24) does not hold.
This completes the proof. [
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COROLLARY 5.6. The equivariant principal G-bundle Eg admits an
equivariant holomorphic Lie algebroid connection.

ProoF. This follows from the combination of Lemma 5.2 and Propo-
sition 5.5. [

6. Criterion for Lie Algebroid Connection

As before, G is a complex reductive affine algebraic group. The combi-
nation of Corollary 4.4 and Corollary 5.6 gives the following:

THEOREM 6.1.

o Let (V, ¢) be a nonsplit equivariant Lie algebroid. Then any equiv-
ariant principal G-bundle over X admits an equivariant holomorphic
Lie algebroid connection.

o Let (V, @) be a split equivariant Lie algebroid. Let Eg be an equiv-
ariant principal G-bundle over X. The following four statements are
equivalent:

(1) Eg over X admits an equivariant holomorphic Lie algebroid con-
nection.

(2) Eg admits an equivariant holomorphic connection.
(3) Eg admits a holomorphic connection.

(4) For every triple (P, L(P), x) as in Lemma 4.1, and every I'—
equivariant holomorphic reduction of structure group Erp) of
Eq to L(P),

degree(L(ELp),x)) = 0.

REMARK 6.2. Take a complex Lie group G and a holomorphic principal
G-bundle Eg over X. Consider the corresponding Lie algebroid (At(Eg), @)
as in (3.2). Assume that Eg does not admit any holomorphic connection.
It was shown in Example 3.1 that the Lie algebroid (At(Eg), w) is nonsplit.
Assume that Eg is equivariant. Therefore, Theorem 6.1 says that any equiv-
ariant principal G-bundle Eg over X admits an equivariant holomorphic
Lie algebroid connection for the Lie algebroid (At(Eg), ).
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Next consider the case where the equivariant holomorphic principal G—
bundle Eg does not admit any holomorphic connection. Now Theorem 6.1
says that the following four statements are equivalent:

(1) Eg over X admits an equivariant holomorphic Lie algebroid connec-
tion.

(2) E¢g admits an equivariant holomorphic connection.
(3) Eg admits a holomorphic connection.

(4) For every triple (P, L(P), x) as in Lemma 4.1, and every I'-equivari-
ant holomorphic reduction of structure group Eyp(py of Eg to L(P),

degree(L(Er(p),x)) = 0.

We will reformulate Theorem 6.1 in the set-up of parabolic bundles.
Fix n ordered distinct points

(6.1) S = {s1,,sn} C X.

For each 1 < i <mn, fix an integer N; > 2. We assume the following:
(1) If genus(X) = 0, then n # 1.
(2) If genus(X) = 0, and n = 2, then N3 = Na.

A parabolic G-bundle consists of a complex manifold £z, a surjective
holomorphic map p : £&¢ — X and a holomorphic right action of G

U : EaxG — &g
such that the following conditions hold:
(1) U(y, h) = ¥(z) forallz € E; and h € G.
(2) For every x € X, the action of G on p~!(z) is transitive.

(3) The restriction p}p_l(X\S) cpHX\S) — X\ S (see (6.1)) is a

holomorphic principal G—bundle on X \ S.
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(4) The isotropy subgroup for any y € p~!(s;) is a finite cyclic subgroup
of GG whose order divides NV;.

(See [BBN], [Bi], [BS].) For 1 < i < n, the parabolic weights, at s;, of a
parabolic vector bundle will be integral multiples of N%
The parabolic tangent bundle, denoted by (TX)., is TX ®
Ox (=>4 s;) equipped with parabolic weight N% at s;, 1 < i < n.
A parabolic Lie algebroid is a pair (V, ¢), where V, is a parabolic vector
bundle, and ¢ : V, — (T X), is a parabolic homomorphism, such that

(1) Vi is equipped with a C—Lie algebra structure
- -] : ViecVs — Vi
which is compatible with the parabolic structure, and

(2) [s, f-t] = f-[s, t]+&(s)(f)-t for locally defined holomorphic sections
s, t of V, and all locally defined holomorphic functions f on X.

A parabolic Lie algebra (Vi, ¢) is called split if there is a parabolic
homomorphism 3 : (T'X). — Vi such that o3 = Id(rx,. A parabolic
Lie algebra (V, ¢) is called nonsplit if it is not split.

Take a parabolic G-bundle p : £ — X. The invariant direct image,
on X, of the holomorphic tangent bundle TEg

(psTE)® C pTEq

has a natural parabolic structure. The resulting parabolic vector bundle
is called the Atiyah bundle for £z, and it is denoted by At(€g)«. Let
T, C T&q be the relative tangent bundle for the projection p. The parabolic
adjoint bundle ad(Eg )« is defined to be the invariant direct image.(p.T},)°.
The parabolic vector bundle At(Eg)s fits in the following short exact se-
quence of parabolic vector bundles over X:

(6.2) 0 — ad(&e)s — At(Ee)s % (TX)e — 0.

A holomorphic connection on &g is a holomorphic splitting of (6.2) (see
[Bi]).
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Define A(Eg)« to be the parabolic vector bundle given by the kernel of
the parabolic homomorphism

Vi@ At(a)e — (TX)s, (a,0) — oé(a) —1(b),

where 1) is the homomorphism in (6.2). The parabolic vector bundle A(Eq )«
fits in the following short exact sequence of parabolic vector bundles over
X:

(6.3) 0 — ad(ég)s — Alg)x — V. — 0.

A holomorphic Lie algebroid connection on &g is a holomorphic splitting of
(6.3).
There is a ramified Galois covering @w : ¥ — X such that

(1) the branch locus of w is S = {s1, ---, sp} C X (see (6.1)), and
(2) for every 1 < i < n, the multiplicity of o at any y € w™!(s;) is N;.

(See [Na, p. 26, Proposition 1.2.12] for the existence of such a covering w.)

Let I' = Gal(w) be the Galois group for w.

The parabolic G-bundles over X correspond to I'-equivariant principal
G-bundles on Y [BBN], [BS]. In particular, the parabolic vector bundles
over X correspond to I'—equivariant vector bundles on Y. The parabolic
Lie algebroids over X correspond to the I'-equivariant Lie algebroids on
Y. Parabolic G-bundles over X equipped with a parabolic connection cor-
respond to the I'-equivariant principal G-bundles on Y equipped with a
I'—equivariant connection.

Consequently, Theorem 6.1 gives the following:

THEOREM 6.3.

o Let (Vi, ¢) be a nonsplit parabolic Lie algebroid. Then any parabolic
G-bundle over X admits a parabolic Lie algebroid connection.

o Let (Vi, @) be a split parabolic Lie algebroid. Let Eg be a parabolic
G-bundle over X. The following three statements are equivalent:

(1) &g over X admits a parabolic Lie algebroid connection.

(2) &g admits a parabolic holomorphic connection.
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(3) For every triple (P, L(P), x) as in Lemma 4.1, and every holo-

morphic reduction of structure group Erpy of Eg to L(P), the
parabolic line bundle over X associated to Eppy for x has
parabolic degree zero.
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