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Properties of Minimal Charts and Their

Applications X: Charts of Type (5, 2)

By Teruo Nagase and Akiko Shima∗

Abstract. Charts are oriented labeled graphs in a disk. Any
simple surface braid (2-dimensional braid) can be described by using
a chart. Also, a chart represents an oriented closed surface embedded
in 4-space. In this paper, we investigate embedded surfaces in 4-space
by using charts. Let Γ be a chart, and we denote by Γm the union of
all the edges of label m. A chart Γ is of type (5, 2) if there exists a
label m such that w(Γ) = 7, w(Γm ∩Γm+1) = 5, w(Γm+1 ∩Γm+2) = 2
where w(G) is the number of white vertices in G. In this paper, we
investigate a minimal chart of type (5, 2).

1. Introduction

Charts are oriented labeled graphs in a disk (see [1],[5], and see Section 2

for the precise definition of charts). Let D2
1, D

2
2 be 2-dimensional disks.

Any simple surface braid (2-dimensional braid) can be described by using a

chart, here a simple surface braid is a properly embedded surface S in the

4-dimensional disk D2
1×D2

2 such that a natural map π : S ⊂ D2
1×D2

2 → D2
2

is a simple branched covering map of D2
2 and the boundary ∂S is a trivial

closed braid in the solid torus D2
1×∂D2

2 (see [4], [5, Chapter 14 and Chapter

18]). Also, from a chart, we can construct a simple closed surface braid in

4-space R
4. This surface is an oriented closed surface embedded in R

4.

On the other hand, any oriented embedded closed surface in R
4 is ambient

isotopic to a simple closed surface braid (see [4],[5, Chapter 23]). A C-move

is a local modification between two charts in a disk (see Section 2 for C-

moves). A C-move between two charts induces an ambient isotopy between

oriented closed surfaces corresponding to the two charts. In this paper, we

investigate oriented closed surfaces in 4-space by using charts.
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We will work in the PL category or smooth category. All submanifolds

are assumed to be locally flat. In [18], we showed that there is no minimal

chart with exactly five white vertices (see Section 2 for the precise definition

of minimal charts). Hasegawa proved that there exists a minimal chart with

exactly six white vertices [2]. This chart represents a 2-twist spun trefoil. In

[3] and [17], we investigated minimal charts with exactly four white vertices.

In this paper, we investigate properties of minimal charts which support a

conjecture that there is no minimal chart with exactly seven white vertices

(see [6],[7],[8],[9],[10],[11],[12],[13],[14],[15]).

Let Γ be a chart. For each label m, we denote by Γm the union of all

the edges of label m.

Now we define a type of a chart: Let Γ be a chart with at least one white

vertex, and n1, n2, . . . , nk integers. The chart Γ is of type (n1, n2, . . . , nk) if

there exists a label m of Γ satisfying the following three conditions:

(i) For each i = 1, 2, . . . , k, the chart Γ contains exactly ni white vertices

in Γm+i−1 ∩ Γm+i.

(ii) If i < 0 or i > k, then Γm+i does not contain any white vertices.

(iii) Both of the two subgraphs Γm and Γm+k contain at least one white

vertex.

If we want to emphasize the label m, then we say that Γ is of type (m;n1,

n2, . . . , nk). Note that n1 ≥ 1 and nk ≥ 1 by Condition (iii).

We proved in [7, Theorem 1.1] that if there exists a minimal n-chart Γ

with exactly seven white vertices, then Γ is a chart of type (7), (5, 2), (4, 3),

(3, 2, 2) or (2, 3, 2) (if necessary we change the label i by n − i for all label

i). In [10], we showed that there is no minimal chart of type (3, 2, 2). In

[11] and [12], there is no minimal chart of type (2, 3, 2). In [13], there is no

minimal chart of type (7). In [14], there is no minimal chart of type (4, 3).

In this paper, we investigate a minimal chart of type (5, 2).

An edge in a chart is called a terminal edge if it has a white vertex and

a black vertex.

In our argument we often construct a chart Γ. On the construction of

a chart Γ, for a white vertex w ∈ Γm for some label m, among the three

edges of Γm containing w, if one of the three edges is a terminal edge (see

Fig. 1(a) and (b)), then we remove the terminal edge and put a black dot
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Fig. 1. (a),(b) White vertices in terminal edges. (c) BW-vertex.

at the center of the white vertex as shown in Fig. 1(c). Namely Fig. 1(c)

means Fig. 1(a) or Fig. 1(b). We call the vertex in Fig. 1(c) a BW-vertex

with respect to Γm.

In this paper we shall show the following:

Theorem 1.1. Let Γ be a minimal chart of type (m; 5, 2). Suppose that

there exists a connected component of Γm with exactly five white vertices.

Then Γm contains one of the two graphs as shown in Fig. 2.

Fig. 2. Graphs with three black vertices.

In the last paper [15] in this series, we shall show that if Γ is a minimal

chart of type (m; 5, 2), then there exists a connected component of Γm with

exactly five white vertices. Moreover, by using the above theorem, we shall

show that there is no minimal chart of type (5, 2), and there is no minimal

chart with exactly seven white vertices.

The paper is organized as follows. In Section 2, we define charts and

minimal charts. Let Γ be a minimal chart, and m a label of Γ. In Section 3,

we review a useful lemma for a disk called a lens. In Section 4, we investigate

a disk called a k-angled disk of Γm with at most one white vertex in its

interior, where a k-angled disk is a disk whose boundary contains exactly k

white vertices and consists of edges of label m. In Section 5, we investigate

a 5-angled disk of Γm. In Section 6, we investigate a 4-angled disk of Γm.

In Section 7, we shall show that if Γ is a minimal chart of type (m; 5, 2),
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then the graph Γm contains neither graphs as shown in Fig. 13(a),(c). In

Section 8, we shall show that if Γ is a minimal chart of type (m; 5, 2), then the

graph Γm does not contain the graph as shown in Fig. 13(b). In Section 9,

we shall show that if Γ is a minimal chart of type (m; 5, 2), then the graph

Γm does not contain the graph as shown in Fig. 13(d). In Section 10, we

review IO-Calculation(a property of numbers of inward arcs of label k and

outward arcs of label k in a closed domain F with ∂F ⊂ Γk−1 ∪ Γk ∪ Γk+1

for some label k). In Section 11, we shall show that if Γ is a minimal chart

of type (m; 5, 2), then the graph Γm does not contain the graph as shown

in Fig. 13(e). In Section 12, we shall show that if Γ is a minimal chart of

type (m; 5, 2), then the graph Γm does not contain the graph as shown in

Fig. 13(f). In Section 13, we review Triangle Lemma. These lemmas will be

used in Section 14. In Section 14, we shall show that if Γ is a minimal chart

of type (m; 5, 2), then the graph Γm does not contain the graph as shown

in Fig. 13(g). Moreover, we shall prove Theorem 1.1.

2. Preliminaries

In this section, we introduce the definition of charts and its related

words.

Let n be a positive integer. An n-chart (a braid chart of degree n [1]

or a surface braid chart of degree n [5]) is an oriented labeled graph in the

interior of a disk, which may be empty or have closed edges without vertices

satisfying the following four conditions (see Fig. 3):

(i) Every vertex has degree 1, 4, or 6.

(ii) The labels of edges are in {1, 2, . . . , n− 1}.

(iii) In a small neighborhood of each vertex of degree 6, there are six short

arcs, three consecutive arcs are oriented inward and the other three

are outward, and these six are labeled i and i+1 alternately for some

i, where the orientation and label of each arc are inherited from the

edge containing the arc.

(iv) For each vertex of degree 4, diagonal edges have the same label and

are oriented coherently, and the labels i and j of the diagonals satisfy

|i− j| > 1.
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We call a vertex of degree 1 a black vertex, a vertex of degree 4 a crossing,

and a vertex of degree 6 a white vertex respectively.

Among six short arcs in a small neighborhood of a white vertex, a central

arc of each three consecutive arcs oriented inward (resp. outward) is called

a middle arc at the white vertex (see Fig. 3(c)). For each white vertex v,

there are two middle arcs at v in a small neighborhood of v. An edge is said

to be middle at a white vertex v if it contains a middle arc at v.

Let e be an edge connecting v1 and v2. If e is oriented from v1 to v2,

then we say that e is oriented outward at v1 and inward at v2.

Fig. 3. (a) A black vertex. (b) A crossing. (c) A white vertex. Each arc with three
transversal short arcs is a middle arc at the white vertex.

Now C-moves are local modifications of charts as shown in Fig. 4 (cf.

[1], [5] and [19]). Two charts are said to be C-move equivalent if there exists

a finite sequence of C-moves which modifies one of the two charts to the

other.

An edge in a chart is called a free edge if it has two black vertices.

For each chart Γ, let w(Γ) and f(Γ) be the number of white vertices,

and the number of free edges respectively. The pair (w(Γ),−f(Γ)) is called

a complexity of the chart (see [4]). A chart Γ is called a minimal chart if its

complexity is minimal among the charts C-move equivalent to the chart Γ

with respect to the lexicographic order of pairs of integers.

We showed the difference of a chart in a disk and in a 2-sphere (see [6,

Lemma 2.1]). This lemma follows from that there exists a natural one-to-

one correspondence between {charts in S2}/C-moves and {charts in D2}/C-

moves, conjugations ([5, Chapter 23 and Chapter 25]). To make the argu-

ment simple, we assume that the charts lie on the 2-sphere instead of the

disk.
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Fig. 4. For the C-III move, the edge with the black vertex is not middle at the white
vertex in the left figure.

Assumption 1. In this paper, all charts are contained in the 2-sphere

S2.

We have the special point in the 2-sphere S2, called the point at infinity,

denoted by ∞. In this paper, all charts are contained in a disk such that

the disk does not contain the point at infinity ∞.

Let Γ be a chart, and m a label of Γ. A hoop is a closed edge of Γ without

vertices (hence without crossings, neither). A ring is a simple closed curve

in Γm containing at least one crossing but not containing any white vertices.

A hoop is said to be simple if one of the two complementary domains of the

hoop does not contain any white vertices.

We can assume that all minimal charts Γ satisfy the following four con-

ditions (see [6],[7],[8],[16]):
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Assumption 2. If an edge of Γ contains a black vertex, then the edge

is a free edge or a terminal edge. Moreover any terminal edge contains a

middle arc.

Assumption 3. All free edges and simple hoops in Γ are moved into a

small neighborhood U∞ of the point at infinity ∞. Hence we assume that Γ

does not contain free edges nor simple hoops, unless otherwise mentioned.

Assumption 4. Each complementary domain of any ring and hoop

must contain at least one white vertex.

Assumption 5. The point at infinity ∞ is moved into any comple-

mentary domain of Γ.

In this paper for a subset X in a space we denote the interior of X, the

boundary of X and the closure of X by IntX, ∂X and Cl(X) respectively.

Let α be a simple arc or an edge, and p, q the endpoints of α. We denote

∂α = {p, q} and Intα = α− {p, q}.

3. Lenses

In this section, we review a useful lemma for a disk called a lens.

Let Γ be a chart, and m a label of Γ. Let L be the closure of a connected

component of the set obtained by taking out all the white vertices from Γm.

If L contains at least one white vertex but does not contain any black vertex,

then L is called an internal edge of label m. Note that an internal edge may

contain a crossing of Γ.

Let Γ be a chart. Let D be a disk such that

(1) the boundary ∂D consists of an internal edge e1 of label m and an

internal edge e2 of label m + 1, and

(2) any edge containing a white vertex in e1 does not intersect the open

disk IntD.

Note that ∂D may contain crossings. Let w1 and w2 be the white vertices

in e1. If the disk D satisfies one of the following conditions, then D is called

a lens of type (m,m + 1) (see Fig. 5):
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Fig. 5. Lenses.

(i) Neither e1 nor e2 contains a middle arc.

(ii) One of the two edges e1 and e2 contains middle arcs at both white

vertices w1 and w2 simultaneously.

Lemma 3.1 ([6, Theorem 1.1]). There exist at least three white vertices

in the interior of the lens for any minimal chart.

Lemma 3.2 ([7, Corollary 1.3]). There is no lens in any minimal chart

with at most seven white vertices.

Let Γ be a chart, and m a label of Γ. A loop is a simple closed curve in

Γm with exactly one white vertex (possibly with crossings).

In our argument, we often need a name for an unnamed edge by using

a given edge and a given white vertex. For the convenience, we use the

following naming: Let e′, ei, e′′ be three consecutive edges containing a white

vertex wj . Here, the two edges e′ and e′′ are unnamed edges. There are six

arcs in a neighborhood U of the white vertex wj . If the three arcs e′ ∩ U ,

ei ∩ U , e′′ ∩ U lie anticlockwise around the white vertex wj in this order,

then e′ and e′′ are denoted by aij and bij respectively (see Fig. 6). There is

a possibility aij = bij if they are contained in a loop.

Lemma 3.3. Let Γ be a chart, and k a label of Γ. Let e1 be an internal

edge of label k with two white vertices w1 and w2 (see Fig. 7). Suppose that

w1, w2 ∈ Γk+δ for some δ ∈ {+1,−1}, and suppose that one of the two edges

a11, b12 is a terminal edge. If Γk+2δ ∩ e1 = ∅, and if Γ satisfies one of the

following four conditions, then Γ is not a minimal chart.

(a) The two edges a11, b12 are oriented inward (or outward) at w1, w2,

respectively.
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Fig. 6. The three edges aij , ei, bij are consecutive edges around the white vertex wj .

Fig. 7. The edge e1 is of label k, and δ ∈ {+1,−1}.

(b) The edge a11 (resp. b12) is a terminal edge, and b12 (resp. a11) is not

middle at the white vertex different from w2 (resp. w1).

(c) The two edges a11, b12 are middle at w1, w2, respectively.

(d) Both of a11, b12 are terminal edges.

Proof. Suppose that Γ is a minimal chart. Without loss of generality

we can assume that

(1) a11 is a terminal edge and oriented inward at w1.

Then by Assumption 2, the terminal edge a11 is middle at w1. Thus

(2) the edge e1 is oriented inward at w1 (i.e. the edge e1 is oriented from

w2 to w1).

Since e1 is an edge of label k, we have

(3) Γk+δ ∩ Inte1 = ∅.

Now by the condition of this lemma, we have

(4) Γk+2δ ∩ e1 = ∅.
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First, we shall show that if Γ satisfies Condition (a), then we have a

contradiction. Since a11 is oriented inward at w1 by (1), the edge b12 is also

oriented inward at w2 by Condition (a) (see Fig. 8(a)). Hence by (2)

(5) the edge b12 is not middle at w2.

By (3),(4) and applying C-II moves along the edge e1, we can move the

black vertex in a11 near the white vertex w2 (see Fig. 8(b)). Apply a C-I-M2

move between a11 and b12, we obtain a new terminal edge of label k + δ at

w2 (see Fig. 8(c)). However by (5), the terminal edge is not middle at w2.

This contradicts Assumption 2.

Now by (1) and Lemma 3.3(a), we can assume that

(6) the edge b12 is oriented outward at w2 (see Fig. 8(d)).

Next, we shall show that if Γ satisfies Condition (b), then we have a

contradiction. Let w3 be the white vertex in b12 different from w2. Then by

Condition (b),

(7) the edge b12 is not middle at w3.

Fig. 8. The edge e1 is of label k, and δ ∈ {+1,−1}.



Properties of Minimal Charts and Their Applications X 59

By the similar way of the proof of Lemma 3.3(a), we can move the black

vertex in a11 near the white vertex w2 by C-II moves (see Fig. 8(e)). Apply

a C-I-M2 move between a11 and b12, we obtain an internal edge of label k+δ

with w1 and w2, and a terminal edge of label k + δ at w3 (see Fig. 8(f)).

However we have the same contradiction by (7).

Next, we shall show that if Γ satisfies Condition (c), then we have a

contradiction. By the similar way of the proof of Lemma 3.3(b), we obtain

an internal edge of label k + δ with w1 and w2, say e (see Fig. 8(f)). Thus

by Condition (c), the edge e is middle at both white vertices w1, w2. Hence

e1∪e bounds a lens whose interior does not contain any white vertices. This

contradicts Lemma 3.1.

Finally, if Γ satisfies Condition (d), then by Assumption 2 the two ter-

minal edges a11 and b12 are middle at w1, w2, respectively. Thus Γ satisfies

Condition (c). Hence we have the same contradiction.

Therefore we have a contradiction for all cases. Thus Γ is not a minimal

chart. �

4. Special k-Angled Disks

In this section, we investigate a disk called a k-angled disk.

Let X be a set in a chart Γ. Let

w(X) = the number of white vertices in X.

Lemma 4.1 ([10, Lemma 3.2(1)]). Let Γ be a minimal chart, and m

a label of Γ. Let G be a connected component of Γm. If 1 ≤ w(G), then

2 ≤ w(G).

Lemma 4.2 ([8, Lemma 6.1]). Let Γ be a minimal chart. Let C be a

ring or a non simple hoop, and D a disk with ∂D = C. If w(Γ ∩ D) = 1,

then Γ is C-move equivalent to the minimal chart Cl(Γ − C).

Let Γ be a chart, m a label of Γ, D a disk with ∂D ⊂ Γm, and k a

positive integer. If ∂D contains exactly k white vertices, then D is called a

k-angled disk of Γm. Note that the boundary ∂D may contain crossings.
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Lemma 4.3. Let Γ be a minimal chart, and m a label of Γ. Let D be a

k-angled disk of Γm. Suppose that all the white vertices on ∂D are contained

in Γm+ε for some ε ∈ {+1,−1}. If w(Γ∩ IntD) � 1, then Γ can be modified

to a minimal chart Γ′ by C-moves in IntD such that Γ′
m−ε ∩D = ∅.

Proof. We shall show that IntD does not contain any white vertex in

Γm−ε. Suppose that there exists a white vertex w in Γm−ε. Let G be the

connected component of Γm−ε with G � w. Then by the condition of this

lemma, we have G ⊂ IntD. Thus the condition w(Γ ∩ IntD) � 1 implies

w(G) = 1. This contradicts Lemma 4.1. Hence IntD does not contain any

white vertex in Γm−ε.

Suppose that Γm−ε ∩D �= ∅. Then we shall show that the set Γm−ε ∩D

consists of rings and non simple hoops. Let e be an internal edge (possibly

a ring or a hoop) of label m− ε intersecting the disk D. Since all the white

vertices on ∂D are contained in Γm+ε, the condition ∂D ⊂ Γm implies

e ⊂ IntD. Since IntD does not contain any white vertex in Γm−ε, the edge

e is a ring or a hoop. Thus by Assumption 4, the curve e is a ring or a non

simple hoop.

Since w(Γ ∩ IntD) � 1, by Lemma 4.2 we can eliminate each ring and

non simple hoop in IntD. Hence the chart Γ can be modified to a minimal

chart Γ′ by C-moves in IntD such that Γ′
m−ε ∩D = ∅. �

Let Γ be a chart, and m a label of Γ. An edge of label m is called a

feeler of a k-angled disk D of Γm if the edge intersects N − ∂D where N is

a regular neighborhood of ∂D in D.

Let Γ be a chart, and D a k-angled disk of Γm. If any feeler of D of

label m is a terminal edge, then D is called a special k-angled disk.

Lemma 4.4. Let Γ be a minimal chart, and m a label of Γ. Let D

be a special k-angled disk of Γm with at least one feeler e1. Let w1 be

the white vertex in e1, and w2, w3, · · · , wk the other white vertices on ∂D

lying anticlockwise in this order. Suppose that all of w1, w2, · · · , wk are

contained in Γm+ε for some ε ∈ {+1,−1}. Let a11, b11 be internal edges

(possibly terminal edges) of label m + ε at w1 in D such that a11, e1, b11 lie

anticlockwise in this order (see Fig. 9(a)). If w(Γ ∩ IntD) � 1, then the

following five conditions hold:
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Fig. 9. The edge e1 is a terminal edge of label m, and a11, b11 are internal edges of label
m + ε for some {+1,−1}. The gray regions are disks E.

(a) If a11 � wi or b11 � wi for some i ∈ {2, 3, · · · , k}, then D does not

contain a feeler at wi.

(b) a11 �� w2 and b11 �� wk.

(c) If a11 � wi for some i ∈ {3, 4, · · · , k − 1}, then b11 �� wi+1.

(d) If b11 � wi for some i ∈ {3, 4, · · · , k − 1}, then a11 �� wi−1.

(e) b11 �� w2 and a11 �� wk.

Proof. Let e′1, e
′
2, · · · , e′k be the internal edges of label m in ∂D such

that ∂e′i = {wi, wi+1} for i = 1, 2, · · · , k − 1 and ∂e′k = {wk, w1}. Without

loss of generality, we can assume that

(1) the terminal edge e1 is oriented inward at w1.

Then by Assumption 2,
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(2) both of a11, b11 are oriented inward at w1 and

(3) both of e′1, e
′
k are oriented outward at w1 (see Fig. 9(a)).

Since w(Γ ∩ IntD) � 1, by Lemma 4.3 we can assume that

(4) Γm−ε ∩D = ∅ (Γm−ε ∩ a11 = ∅ and Γm−ε ∩ b11 = ∅).

First, we shall show Statement (a). Now, suppose that a11 � wi for some

i ∈ {2, 3, · · · , k}. Then the edge a11 separates the disk D into two disks.

One of the two disks contains the terminal edge e1, say E. Suppose that D

contains a feeler e at wi. Then e ⊂ E or e �⊂ E.

If e ⊂ E (see Fig. 9(b)), then by (4) and Lemma 3.3(d) the chart Γ is

not minimal. This contradicts the fact that Γ is minimal. Thus e �⊂ E (see

Fig. 9(c)).

By (2), the edge a11 is oriented outward at wi. Thus by Assumption 2,

the edge e′i is oriented inward at wi. Hence by (1),(4) and Lemma 3.3(a)

the chart Γ is not minimal. This contradicts the fact that Γ is minimal.

Therefore D does not contain a feeler at wi.

Similarly if b11 � wi, then we can show that D does not contain a feeler

at wi. Thus Statement (a) holds.

Next, we shall show Statement (b). If a11 � w2, then by Lemma 4.4(a)

the disk D does not contain a feeler at w2. Thus the curve e′1 ∪ a11 bounds

a lens whose interior contains at most one white vertex. This contradicts

Lemma 3.1. Thus a11 �� w2.

Similarly we can show b11 �� wk. Thus Statement (b) holds.

Next, we shall show Statement (c). Now, suppose that a11 � wi for

some i ∈ {3, 4, · · · , k − 1}. We shall show b11 �� wi+1. If b11 � wi+1, then

by Lemma 4.4(a), the disk D contains neither a feeler at wi nor a feeler at

wi+1 (see Fig. 9(d)).

Now, by (1), the terminal edge e1 is oriented inward at w1. Since the

edge e′i is oriented inward at wi or wi+1, the chart Γ is not minimal by (4)

and Lemma 3.3(a). This contradicts the fact that Γ is minimal. Therefore

b11 �� wi+1. Thus Statement (c) holds.

Similarly we can show Statement (d).

Finally, we shall show Statement (e). Suppose b11 � w2. Then by

Lemma 4.4(a), the disk D does not contain a feeler at w2 (see Fig. 9(e)).

Since the terminal edge e1 is oriented inward at w1 by (1), and since the
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edge e′1 is oriented inward at w2 by (3), the chart Γ is not minimal by (4)

and Lemma 3.3(a). This contradicts the fact that Γ is minimal. Therefore

b11 �� w2.

Similarly we can show a11 �� wk. Thus Statement (e) holds. �

5. Special 5-Angled Disks

In this section, we investigate a special 5-angled disk whose interior

contains at most one white vertex.

Let Γ be a chart. Suppose that an object consists of some edges of Γ,

arcs in edges of Γ and arcs around white vertices. Then the object is called

a pseudo chart.

Lemma 5.1 ([7, Corollary 5.8]). Let Γ be a minimal chart. Let D be

a 2-angled disk of Γm with at most one feeler. If w(Γ ∩ IntD) = 0, then a

regular neighborhood of D contains one of two pseudo charts as shown in

Fig. 10.

Lemma 5.2. Let Γ be a minimal chart, and m a label of Γ. Let D be a

special 5-angled disk of Γm with at least one feeler e1. Suppose that all the

white vertices on ∂D are contained in Γm+ε for some ε ∈ {+1,−1}. Let w1

be the white vertex in e1. Let a11, b11 be internal edges (possibly terminal

edges) of label m + ε at w1 in D. If w(Γ ∩ IntD) � 1, then one of a11, b11

contains a white vertex in IntD.

Proof. Let w2, · · · , w5 be the four white vertices on ∂D different from

w1 such that w1, w2, · · · , w5 lie anticlockwise in this order. Without loss of

Fig. 10. The 2-angled disks have no feelers where ε ∈ {+1,−1}.
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generality we can assume that a11, e1, b11 lie anticlockwise in this order. By

Assumption 2,

(1) neither a11 nor b11 is a terminal edge.

Suppose that neither a11 nor b11 contains a white vertex in IntD. Then

by applying Lemma 4.4(b),(e) for the edge a11, we have a11 � w3 or a11 � w4.

If a11 � w3, then by (1) we have b11 � w4 or b11 � w5. This contradicts

Lemma 4.4(b),(c).

If a11 � w4, then by (1) we have b11 � w5. This contradicts

Lemma 4.4(b).

Therefore we have a contradiction for both cases. Hence one of a11, b11

contains a white vertex in IntD. �

Let Γ be a chart, D a disk, and G a pseudo chart with G ⊂ D.

Let r : D → D be a reflection of D, and G∗ the pseudo chart obtained

from G by changing the orientations of all of the edges. Then the set

{G,G∗, r(G), r(G∗)} is called the RO-family of the pseudo chart G.

Lemma 5.3. Let Γ be a minimal chart, and m a label of Γ. Let D be a

special 5-angled disk of Γm with at least one feeler e1. Suppose that all the

white vertices on ∂D are contained in Γm+ε for some ε ∈ {+1,−1}. Let w1

be the white vertex in e1. Let a11, b11 be internal edges (possibly terminal

edges) of label m + ε at w1 in D. Suppose that one of a11, b11 contains a

white vertex in IntD, but the other contains a white vertex in ∂D different

from w1. If w(Γ∩ IntD) � 1, then the disk D contains exactly one feeler e1.

Moreover, the disk D contains one of the RO-family of the pseudo chart as

shown in Fig. 11(a).

Proof. Let w2, · · · , w5 be the four white vertices on ∂D different from

w1 such that w1, w2, · · · , w5 lie anticlockwise in this order. Let e′1, e
′
2, · · · , e′5

be the five internal edges of label m in ∂D with ∂e′i = {wi, wi+1} (i =

1, 2, 3, 4) and ∂e′5 = {w5, w1}. Without loss of generality we can assume

that a11, e1, b11 lie anticlockwise in this order (see Fig. 11(b)).

Since w(Γ ∩ IntD) � 1, by Lemma 4.3 we can assume that

(1) Γm−ε ∩D = ∅ (Γm−ε ∩ a11 = ∅).
Without loss of generality, we can assume that the terminal edge e1 is

oriented inward at w1. Then by Assumption 2,



Properties of Minimal Charts and Their Applications X 65

Fig. 11. Special 5-angled disks with one feeler e1.

(2) both of a11, b11 are oriented inward at w1,

(3) both of e′1, e
′
5 are oriented outward at w1.

Without loss of generality, we can assume that the edge b11 contains a white

vertex in IntD, say w6. Thus by the condition of this lemma, the edge a11

contains a white vertex in ∂D different from w1. Hence by Lemma 4.4(b),(e),

we have a11 � w3 or a11 � w4.

We shall show that a11 � w3. If a11 � w4, then by Lemma 4.4(a) the

disk D does not contain a feeler at w4. Hence by (1) and Lemma 3.3(a)

the internal edge e′4 is oriented from w4 to w5 (because if not, then the

two edges e1, e
′
4 are oriented inward at w1, w4, respectively. Thus by (1)

and Lemma 3.3(a), the chart Γ is not minimal. This is a contradiction.).

Moreover, by (1) and Lemma 3.3(b), the edge e′4 is middle at w5. Hence

by Assumption 2, the disk D does not contain a feeler at w5. Thus by the

definition of the chart, the internal edge e′5 is oriented from w5 to w1. Hence

the edge e′5 must be oriented inward at w1 (see Fig. 11(c)). This contradicts
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(3). Thus a11 � w3.

Similarly, by (1) and Lemma 3.3(a),(b), we can show that the disk D

contains neither feeler at w3 nor feeler at w4, and

(4) the internal edge e′3 is oriented from w3 to w4, and is middle at w4,

(5) the internal edge e′4 is oriented from w4 to w5 (see Fig. 11(d)).

Let e4 be an internal edge (possibly a terminal edge) of label m + ε at w4

in D. Then by (4),

(6) the edge e4 is oriented inward at w4, but not middle at w4.

Thus by Assumption 2, we have e4 � w5 or e4 � w6.

We shall show that e4 � w6. If e4 � w5, then the disk D does not contain

a feeler at w5 by Lemma 4.4(b),(e). Thus there are three consecitive edges

e′4, e4, e
′
5 at w5 such that e′4, e

′
5 are oriented inward at w5 by (3) and (5), but

e4 is oriented outward at w5 by (6). This contradicts the definition of the

chart. Hence e4 � w6.

Let e6 be an internal edge (possibly a terminal edge) of label m + ε at

w6 different from b11, e4. Then by (2) and (6),

(7) the edge e6 is oriented inward at w6.

We shall show that the disk D does not contain a feeler at w5. If D

contains a feeler at w5, then two internal edges e, e′ of label m + ε at w5

in D contain white vertices in IntD by Assumption 2. Hence the condition

w(IntD) � 1 implies that the two edges e, e′ contain the same white vertex

w6. Thus there exist four internal edges b11, e4, e, e
′ of label m + ε at w6.

This contradicts the definition of the chart. Hence D does not contain a

feeler at w5.

Let e5 be an internal edge (possibly a terminal edge) of label m + ε at

w5 in D. Since both of e′4, e
′
5 are oriented inward at w5 by (3) and (5), the

edge e5 is oriented inward at w5. Thus by (7), we have e5 �= e6. Hence both

of e5, e6 are terminal edges.

Moreover by Assumption 2, we can show that the disk D does not con-

tain a feeler at w2 and there exists a terminal edge of label m+ε at w2 in D.

Therefore the disk D contains the pseudo chart as shown in Fig. 11(a). �

Lemma 5.4. Let Γ be a minimal chart, and m a label of Γ. Let D

be a special 5-angled disk of Γm with at least one feeler. Suppose that all
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the white vertices on ∂D are contained in Γm+ε for some ε ∈ {+1,−1}. If

w(Γ ∩ IntD) � 1, then the disk D contains exactly one feeler. Moreover,

the disk D contains one of RO-families of the two pseudo charts as shown

in Fig. 11(a),(e).

Proof. Let e1 be a feeler of D, and w1 the white vertex in e1. Let

w2, · · · , w5 be the four white vertices on ∂D different from w1 such that

w1, w2, · · · , w5 lie anticlockwise in this order. Let a11, b11 be internal edges

(possibly terminal edges) of label m + ε at w1 such that a11, e1, b11 lie an-

ticlockwise in this order (see Fig. 11(b)). By Lemma 5.2, one of a11, b11

contains a white vertex in IntD. Without loss of generality, we can assume

that the edge b11 contains a white vertex in IntD, say w6. Moreover, by

Assumption 2, the edge a11 is not a terminal edge. Hence either a11 contains

a white vertex in IntD, or a11 contains a white vertex in ∂D different from

w1.

If a11 contains a white vertex in ∂D different from w1, then by Lemma 5.3

the disk D contains one of the RO-family of the pseudo chart as shown in

Fig. 11(a).

Suppose that a11 contains a white vertex in IntD. Since w(Γ∩IntD) � 1,

both of a11, b11 contain the same white vertex w6 in IntD. Thus a11 ∪ b11

bounds a 2-angled disk in D. Hence by Lemma 5.1, the 2-angled disk has

no feeler.

Finally we shall show that D has exactly one feeler. If D has another

feeler e2 at some wi (i = 2, 3, 4, 5), then D has at least two feelers. Hence by

Lemma 5.2 and Lemma 5.3, the two internal edges e, e′ of label m+ ε at wi

in D contain white vertices in IntD. However, the condition w(Γ∩IntD) � 1

implies that there are four edges a11, b11, e, e
′ of label m + ε at w6. This

contradicts the definition of the chart. Thus D has exactly one feeler e1.

Hence D contains the pseudo chart as shown in Fig. 11(e). �

From the above three lemmas, we have the following corollary:

Corollary 5.5. Let Γ be a minimal chart, and m a label of Γ. Let D

be a special 5-angled disk of Γm. Suppose that all the white vertices on ∂D

are contained in Γm+ε for some ε ∈ {+1,−1}. Then we have the following:

(a) If the disk D contains at least one feeler, then w(Γ ∩ IntD) � 1.

(b) If the disk D contains at least two feelers, then w(Γ ∩ IntD) � 2.
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6. Special 4-Angled Disks

In this section, we investigate a 4-angled disk whose interior contains at

most one white vertex. By the similar way of the proof of Lemma 5.2, we

can show the following lemma:

Lemma 6.1. Let Γ be a minimal chart, and m a label of Γ. Let D be a

special 4-angled disk of Γm with at least one feeler e1. Suppose that all the

white vertices on ∂D are contained in Γm+ε for some ε ∈ {+1,−1}. Let w1

be the white vertex in e1. Let a11, b11 be internal edges (possibly terminal

edges) of label m + ε at w1 in D. If w(Γ ∩ IntD) � 1, then one of a11, b11

contains a white vertex in IntD.

By the similar way of the proof of Lemma 5.4, we can show the following

lemma:

Lemma 6.2. Let Γ be a minimal chart, and m a label of Γ. Let D

be a special 4-angled disk of Γm with at least one feeler. Suppose that all

the white vertices on ∂D are contained in Γm+ε for some ε ∈ {+1,−1}. If

w(Γ ∩ IntD) � 1, then the disk D contains exactly one feeler. Moreover,

the disk D contains one of RO-families of the two pseudo charts as shown

in Fig. 12.

From the above two lemmas, we have the following corollary:

Corollary 6.3. Let Γ be a minimal chart, and m a label of Γ. Let D

Fig. 12. Special 4-angled disks with one feeler.
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be a special 4-angled disk of Γm. Suppose that all the white vertices on ∂D

are contained in Γm+ε for some ε ∈ {+1,−1}. Then we have the following:

(a) If the disk D contains at least one feeler, then w(Γ ∩ IntD) � 1.

(b) If the disk D contains at least two feelers, then w(Γ ∩ IntD) � 2.

7. Cases of the Graphs as Shown in Fig. 13(a),(c)

In this section, we shall show that if Γ is a minimal chart of type (m; 5, 2),

then the graph Γm contains neither graphs as shown in Fig. 13(a),(c).

Lemma 7.1 ([11, Lemma 3.4]). Let Γ be a minimal chart, and m a

label of Γ. Let G be a connected component of Γm. If G contains exactly

five white vertices, and if G has no loop, then G is one of nine graphs as

shown in Fig. 2 and Fig. 13.

Lemma 7.2 ([13, Lemma 7.2(a),(c)]). Let Γ be a minimal chart, and

m a label of Γ. Let G be a connected component of Γm with w(G) = 5.

Then we have the following:

(a) If G is the graph as shown in Fig. 13(a) (resp. Fig. 13(b)), then G

is one of the RO-family of the graph as shown in Fig. 14(a) (resp.

Fig. 14(b)).

(b) If G is the graph as shown in Fig. 13(d) (resp. Fig. 13(e)), then G

is one of the RO-family of the graph as shown in Fig. 14(c) (resp.

Fig. 14(d)).

Lemma 7.3 ([13, Lemma 3.6(a)]). Let Γ be a minimal chart, and m

a label of Γ. Let D be a 2-angled disk of Γm without feelers, and w1, w2

the white vertices in ∂D. Let e1, e2 be the internal edges (possibly terminal

edges) of label m at w1, w2, respectively, such that e1 �⊂ D and e2 �⊂ D. Sup-

pose that the two edges e1, e2 are oriented inward (resp. outward) at w1, w2,

respectively (see Fig. 15(a) and (b)). Then we have w(Γ ∩ IntD) ≥ 1.

Lemma 7.4. Let Γ be a minimal chart of type (m; 5, 2). Then Γm does

not contain the graph as shown in Fig. 13(a).
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Fig. 13. (a),(b),(c) Graphs with three black vertices. (d),(e),(f),(g) Graphs with one
black vertex.

Fig. 14. Connected components of Γm with five white vertices.

Proof. Suppose that Γm contains the graph as shown in Fig. 13(a),

say G. Then G separates the 2-sphere S2 into three disks. One of the three

disks is a 2-angled disk, say D1. Let D2, D3 be the other disks. Then D2

and D3 are special 5-angled disks. Since one of D2, D3 has at least two

feelers, by Corollary 5.5(b) we have



Properties of Minimal Charts and Their Applications X 71

Fig. 15. 2-angled disks without feelers.

(1) w(Γ ∩ IntD2) � 2 or w(Γ ∩ IntD3) � 2.

By Lemma 7.2(a), the graph G is one of the RO-family of the graph

as shown in Fig. 14(a). Without loss of generality, we can assume that

the graph G is the graph as shown in Fig. 14(a). Let w1, w2 be the two

white vertices in ∂D1. Let e1, e2 be internal edges of label m at w1, w2,

respectively, with e1 �⊂ ∂D1 and e2 �⊂ ∂D1. Then the two edges e1, e2

are oriented inward at w1, w2, respectively. Thus by Lemma 7.3, we have

w(Γ ∩ IntD1) � 1. Hence by (1), we have

7 = w(Γ) = w(G) + w(Γ ∩ IntD1) + w(Γ ∩ IntD2) + w(Γ ∩ IntD3)

� 5 + 1 + 2 = 8.

This is a contradiction. Therefore Γm does not contain the graph as shown

in Fig. 13(a). �

Lemma 7.5. Let Γ be a minimal chart of type (m; 5, 2). Then Γm does

not contain the graph as shown in Fig. 13(c).

Proof. Suppose that Γm contains the graph as shown in Fig. 13(c),

say G. Then G separates the 2-sphere S2 into three disks. Let D1, D2, D3

be the three disks. Then D1, D2, D3 are special 4-angled disks. Without

loss of generality, we can assume that D1 has at least one feeler. Then D1

has one feeler or two feelers.

If D1 has two feelers, then one of D2, D3 has one feeler. Thus by Col-

orally 6.3, we have w(Γ∩IntD1) � 2 and (w(Γ∩IntD2) � 1 or w(Γ∩IntD3) �
1). By the similar way of the proof of Lemma 7.4, we have a contradiction.

Thus D1 has exactly one feeler.
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Since D1 has exactly one feeler, one of D2, D3 has at least one feeler.

If one of D2, D3 has exactly two feelers, then we have the same contra-

diction as above. Hence both of D2, D3 have exactly one feeler. Thus by

Colorally 6.3(a), we have w(Γ ∩ IntDi) � 1 for i = 1, 2, 3. Hence

7 = w(Γ) = w(G) + w(Γ ∩ IntD1) + w(Γ ∩ IntD2) + w(Γ ∩ IntD3)

� 5 + 1 + 1 + 1 = 8.

This is a contradiction. Therefore Γm does not contain the graph as shown

in Fig. 13(c). �

8. Case of the Graph as Shown in Fig. 13(b)

In this section, we shall show that if Γ is a minimal chart of type (m; 5, 2),

then the graph Γm does not contain the graph as shown in Fig. 13(b).

Lemma 8.1 ([14, Lemma 4.2(a)]). Let Γ be a minimal chart, and m a

label of Γ. Let D be a special 3-angled disk of Γm with at most two feelers.

If w(Γ ∩ IntD) = 0, then a regular neighborhood of D contains one of the

RO-families of the two pseudo charts as shown in Fig. 16.

Lemma 8.2. Let Γ be a minimal chart of type (m; 5, 2). Then Γm does

not contain the graph as shown in Fig. 13(b).

Proof. Suppose that Γm contains the graph as shown in Fig. 13(b),

say G. Then G separates the 2-sphere S2 into three disks. One of the three

disks is a 3-angled disk, say D1. One of the three disks is a 4-angled disk,

Fig. 16. The 3-angled disks have no feelers where m is a label, ε ∈ {+1,−1}.
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say D2. The last one is a 5-angled disk, say D3. For the disk D3, there are

four cases: (i) D3 has no feeler, (ii) D3 has exactly one feeler, (iii) D3 has

exactly two feelers, (iv) D3 has exactly three feelers.

Case (i). Since D3 has no feeler, the 3-angled disk D1 has exactly

one feeler and the 4-angled disk D2 has exactly two feelers. Thus by Corol-

lary 6.3(b) and Lemma 8.1, we have w(Γ∩IntD1) � 1 and w(Γ∩IntD2) � 2.

Hence, we have

7 = w(Γ) � w(G) + w(Γ ∩ IntD1) + w(Γ ∩ IntD2)

� 5 + 1 + 2 = 8.

This is a contradiction. Thus Case (i) does not occur.

Case (ii). Since the 5-angled disk D3 has exactly one feeler, by Corol-

lary 5.5(a) we have w(Γ ∩ IntD3) � 1. Moreover, the 4-angled disk D2 has

one feeler or two feelers.

If D2 has exactly two feelers, then by Corollary 6.3(b) we have w(Γ ∩
IntD2) � 2. Thus we have the same contradiction of Case (i).

If D2 has exactly one feeler, then the 3-angled disk D1 has exactly one

feeler. Thus by Corollary 6.3(a) and Lemma 8.1, we have w(Γ∩ IntD2) � 1

and w(Γ ∩ IntD3) � 1. By the similar way of the proof of Lemma 7.5, we

have a contradiction.

Therefore both cases do not occur. Thus Case (ii) does not occur.

Case (iii). Since the 5-angled disk D3 has exactly two feelers, one of

the disks D1, D2 has exactly one feeler. Thus by Corollary 5.5(b), Corol-

lary 6.3(a) and Lemma 8.1, we have w(Γ∩IntD3) � 2 and (w(Γ∩IntD1) � 1

or w(Γ ∩ IntD2) � 1). Hence we have the same contradiction of Case (i).

Thus Case (iii) does not occur.

Case (iv). Since the 5-angled disk D3 has exactly three feelers, by

Corollary 5.5(b) we have w(Γ ∩ IntD3) � 2. Since w(Γ) = 7, we have

w(Γ ∩ IntD3) = 2 and w(Γ ∩ IntD2) = 0.

By Lemma 7.2(a), the graph G is one of the RO-family of the graph as

shown in Fig. 14(b). Without loss of generality, we can assume that the

graph G is the graph as shown in Fig. 14(b). Thus the chart Γ contains

the pseudo chart as shown in Fig. 17. We use the notations as shown in

Fig. 17, where e1, e2, e3 are internal edges (possibly terminal edges) of label

m+1 oriented outward at w1, w2, w3 in D2, respectively. Hence the condition

w(Γ∩IntD2) = 0 implies one of e1 or e2 is a terminal edge. However neither
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Fig. 17. The graph as shown in Fig. 13(b). The gray region is the 4-angled disk D2.

e1 nor e2 is middle at w1 or w2 (see Fig. 17). This contradicts Assumption 2.

Thus Case (iv) does not occur.

Therefore all four cases do not occur. Hence Γm does not contain the

graph as shown in Fig. 13(b). �

9. Case of the Graph as Shown in Fig. 13(d)

In this section, we shall show that if Γ is a minimal chart of type (m; 5, 2),

then the graph Γm does not contain the graph as shown in Fig. 13(d).

Lemma 9.1. Let Γ be a minimal chart of type (m; 5, 2). Then Γm does

not contain the graph as shown in Fig. 13(d).

Proof. Suppose that Γm contains the graph as shown in Fig. 13(d),

say G. By Lemma 7.2(b), the graph G is one of the RO-family of the graph

as shown in Fig. 14(c). Without loss of generality, we can assume that the

graph G is the graph as shown in Fig. 14(c). We use the notations as shown

in Fig. 18(a), where w1, w2, · · · , w5 are five white vertices, and

(1) e1, e2 are internal edges of label m oriented outward at w1, w2, respec-

tively.

Let D1, D2 be special 5-angled disks of Γm with IntD1 ∩ IntD2 = ∅ such

that the disk D2 contains the point at infinity, ∞. If necessary, we move
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Fig. 18. The graphs as shown in Fig. 13(d). (c) The edge e is oriented from w1 to w2.
(d) The edge e is oriented from w2 to w1.

the point ∞ by Assumption 5, and if necessary, we reflect the chart Γ, we

can assume that the disk D1 has one feeler. Thus by Corollary 5.5(a), we

have

(2) w(Γ ∩ IntD1) � 1.

Let D3, D4 be special 2-angled disks of Γm with ∂D3 � w1 and ∂D4 � w4.

Then by (1) and Lemma 7.3, we have w(Γ ∩ IntD3) � 1. Hence by (2), the

condition w(Γ) = 7 implies that

(3) w(Γ ∩ IntD1) = 1, w(Γ ∩ IntD2) = 0, w(Γ ∩ IntD4) = 0.

Thus by Lemma 5.1, a regular neighborhood of D4 contains the pseudo

chart as shown in Fig. 10(b). Therefore, the chart Γ contains the pseudo
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chart as shown in Fig. 18(b). We use the notations as shown in Fig. 18(b),

where e′i, e
′′
i (i = 1, 2, 3, 4) are internal edges (possibly terminal edges) of

label m + 1 at wi with e′i ⊂ D1 and e′′i ⊂ D2,

(4) e′3, e
′′
3 are oriented inward at w3, but not middle at w3, and

neither e′4 nor e′′4 is middle at w4. Thus by Assumption 2,

(5) none of e′3, e
′′
3, e

′
4, e

′′
4 are terminal edges.

Since w(Γ∩ IntD1) = 1 by (3) and since e′4 is not a terminal edge by (5),

by Lemma 5.4 the disk D1 contains the pseudo chart as shown in Fig. 11(e)

(see Fig. 18(c),(d)). Let e, e′ be internal edges of label m in ∂D3 with e ⊂ D1

and e′ ⊂ D2. Then there are two cases: (i) e is oriented from w1 to w2 (see

Fig. 18(c)), (ii) e is oriented from w2 to w1 (see Fig. 18(d)).

Case (i). By looking around the white vertex w1, we have that e′ is

oriented from w2 to w1, and

(6) e′2 is oriented inward at w2, but not middle at w2.

Thus by (5) and Assumption 2, none of e′2, e
′
3, e

′
4 are terminal edges. More-

over, by (4) and (6), the two edges e′2 and e′3 are oriented inward at w2, w3,

respectively. Hence, for the edge e′3, we must have e′3 = e′4. However, there

exists a lens. This contradicts Lemma 3.2. Thus Case (i) does not occur.

Case (ii). Looking around the white vertex w2, we have that e′ is

oriented from w1 to w2, and

(7) e′′2 is oriented inward at w2, but not middle at w2.

Now w(Γ ∩ IntD2) = 0 by (3). By the similar way of the proof of Case (i)

in this lemma, for the edge e′′3, we must have e′′3 = e′′4. However, there exists

a lens. This contradicts Lemma 3.2. Thus Case (ii) does not occur.

Therefore both two cases do not occur. Hence Γm does not contain the

graph as shown in Fig. 13(d). �

10. IO-Calculation

In this section, we review IO-Calculation.

Let Γ be a chart, and v a vertex. Let α be a short arc of Γ in a small

neighborhood of v such that v is an endpoint of α. If the arc α is oriented
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to v, then α is called an inward arc, and otherwise α is called an outward

arc.

Let Γ be an n-chart. Let F be a closed domain with ∂F ⊂ Γk−1 ∪ Γk ∪
Γk+1 for some label k of Γ, where Γ0 = ∅ and Γn = ∅. By Condition (iii) for

charts, in a small neighborhood of each white vertex, there are three inward

arcs and three outward arcs. Also in a small neighborhood of each black

vertex, there exists only one inward arc or one outward arc. We often use

the following fact, when we fix (inward or outward) arcs near white vertices

and black vertices:

(∗) The number of inward arcs contained in F ∩Γk is equal to the number

of outward arcs in F ∩ Γk.

When we use this fact, we say that we use IO-Calculation with respect to

Γk in F . For example, in a minimal chart Γ, consider the pseudo chart as

shown in Fig. 19 where

(1) F is a 4-angled disk of Γk+δ without feelers for some δ ∈ {+1,−1},

(2) e1, e2, e4 are internal edges (possibly terminal edges) of label k oriented

outward at w1, w2, w4, respectively,

(3) e3 is an internal edge (possibly a terminal edge) of label k oriented

inward at w3,

(4) neither e2 nor e4 is middle at w2 or w4.

Then we can show that w(Γ∩ IntF ) ≥ 1. Suppose w(Γ∩ IntF ) = 0. By (4)

and Assumption 2,

Fig. 19. The gray region is the 4-angled disk F where k is a label, δ ∈ {+1,−1}.
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(5) neither e2 nor e4 is a terminal edge.

If both two edges e1, e3 are a terminal edge, then by (2) and (3) the

number of inward arcs in F ∩ Γk is two, but the number of outward arcs

in F ∩ Γk is four. This contradicts the fact (∗). If e1 is a terminal edge,

but e3 is not a terminal edge, then by (2) and (3) the number of inward

arcs in F ∩ Γk is two, but the number of outward arcs in F ∩ Γk is three.

This contradicts the fact (∗). Similarly for the other cases we have the same

contradiction. Thus w(Γ ∩ IntF ) ≥ 1. Instead of the above argument, we

say that

we have w(Γ ∩ IntF ) ≥ 1 by IO-Calculation with respect to Γk in F .

11. Case of the Graph as Shown in Fig. 13(e)

In this section, we shall show that if Γ is a minimal chart of type (m; 5, 2),

then the graph Γm does not contain the graph as shown in Fig. 13(e).

Let Γ and Γ′ be C-move equivalent charts. Suppose that a pseudo chart

X of Γ is also a pseudo chart of Γ′. Then we say that Γ is modified to Γ′ by

C-moves keeping X fixed. In Fig. 20, we give examples of C-moves keeping

pseudo charts fixed.

Let Γ be a chart, and X a subset of Γ. Let

c(X) = the number of crossings in X.

Let D be a k-angled disk of Γm for a minimal chart Γ. The pair of

integers (w(Γ ∩ IntD), c(∂D)) is called the local complexity with respect to

D, denoted by %c(D; Γ). Let S be the set of all minimal charts each of which

Fig. 20. C-moves keep thicken figures fixed.
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can be moved from Γ by C-moves in a regular neighborhood of D keeping

∂D fixed. The chart Γ is said to be locally minimal with respect to D if its

local complexity with respect to D is minimal among the charts in S with

respect to the lexicographic order.

Lemma 11.1 ([8, Theorem 1.1]). Let Γ be a minimal chart. Let D be

a 2-angled disk of Γm with at most one feeler such that Γ is locally minimal

with respect to D. If w(Γ ∩ IntD) � 1, then a regular neighborhood of D

contains an element in the RO-families of the five pseudo charts as shown

in Fig. 10 and Fig. 21.

Lemma 11.2. Let Γ be a minimal chart of type (m; 5, 2). Then Γm does

not contain the graph as shown in Fig. 13(e).

Proof. Suppose that Γm contains the graph as shown in Fig. 13(e),

say G. Then G separates the 2-sphere S2 into four disks. One of the four

disks is a 5-angled disk, say D1. One of the four disks is a 4-angled disk,

say D2. One of the four disks is a 3-angled disk, say D3. Let D4 be the last

disk.

Since one of D1, D3 has one feeler, by Corollary 5.5(a) and Lemma 8.1

we have

(1) w(Γ ∩ IntD1) � 1 or w(Γ ∩ IntD3) � 1.

Fig. 21. The 2-angled disk (a) has one feeler, the others do not have any feelers.
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Thus the condition w(Γ) = 7 implies that w(Γ ∩ IntD4) � 1. We can

assume that Γ is locally minimal with respect to D4. Hence by Lemma 11.1

a regular neighborhood of D4 contains one of the RO-families of the three

pseudo charts as shown in Fig. 10(b) and Fig. 21(b),(c). Moreover, by

Lemma 7.2(b), the graph G is the graph as shown in Fig. 14(d). Thus the

chart Γ contains one of the RO-families of the three pseudo charts as shown

in Fig. 22, where the pseudo charts as shown in Fig. 22(b),(c) are contained

in one of the pseudo charts as shown in Fig. 21(b),(c). Without loss of

generality, we can assume that the chart Γ contains one of the three pseudo

charts as shown in Fig. 22.

Suppose that the chart Γ contains the pseudo chart as shown in

Fig. 22(b). Then we have w(Γ ∩ IntD4) � 1. Moreover, we have w(Γ ∩
IntD2) � 1 by considering as F = D2, k = m + 1 and δ = −1 in the

example of IO-Calculation in Section 10. Hence by (1)

7 = w(Γ)

= w(G) + w(Γ ∩ IntD1) + w(Γ ∩ IntD2) + w(Γ ∩ IntD3) + w(Γ ∩ IntD4)

� 5 + 1 + 1 + 1 = 8.

This is a contradiction. Thus Γ does not contain the pseudo chart as shown

in Fig. 22(b).

Similarly, we can show that Γ does not contain the pseudo chart as

shown in Fig. 22(c).

Fig. 22. The graphs as shown in Fig. 13(e). (a) The two internal edges in ∂D4 are oriented
from w4 to w3. (b) ∂D4 is oriented anticlockwise. (c) ∂D4 is oriented clockwise.
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Now, suppose that the chart Γ contain the pseudo chart as shown in

Fig. 22(a). We use the notations as shown in Fig. 22(a), where ei (i =

1, 2, 3, 4) is an internal edge (possibly a terminal edge) of label m + 1 at wi

in the 4-angled disk D2, and

(2) the three edges e1, e2, e3 are oriented outward at w1, w2, w3, respec-

tively,

none of e1, e2, e3, e4 are middle at w1, w2, w3 or w4. Thus by Assumption 2,

(3) none of e1, e2, e3, e4 are terminal edges.

Hence by IO-Calculation with respect to Γm+1 in D2, we have w(Γ ∩
IntD2) � 1. Thus by (1), the condition w(Γ) = 7 implies that

(4) w(Γ ∩ IntD2) = 1.

Let w5 be the white vertex in IntD2. Then for the edge e4, there are

four cases: (i) e4 = e1, (ii) e4 = e2, (iii) e4 = e3, (iv) e4 � w5.

Case (i) and Case (iii). There exists a lens. This contradicts

Lemma 3.2. Hence neither Case (i) nor Case (iii) occurs.

Case (ii). By (2) and (3), both of e1, e3 contain the white vertex w5.

Thus one of the edges e1, e3 of label m + 1 intersects the edge e4 of label

m + 1. This contradicts the definition of the chart. Hence Case (ii) does

not occur.

Case (iv). Since e4 contains the white vertex w5, one of the three

edges e1, e2, e3 does not contain white vertex w5. Thus by (4), one of the

three edges e1, e2, e3 is a terminal edge. This contradicts (3). Hence Case

(iv) does not occur.

Therefore all the four cases do not occur. Thus Γ does not contain the

pseudo chart as shown in Fig. 22(a). Hence Γm does not contain the graph

as shown in Fig. 13(e). �

12. Case of the Graph as Shown in Fig. 13(f)

In this section, we shall show that if Γ is a minimal chart of type (m; 5, 2),

then the graph Γm does not contain the graph as shown in Fig. 13(f).

Lemma 12.1. Let Γ be a minimal chart of type (m; 5, 2). If Γm contains

the graph as shown in Fig. 13(f), then Γ contains one of RO-families of the

three pseudo charts as shown in Fig 23(a),(b),(c).
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Fig. 23. The graphs as shown in Fig. 13(f).

Proof. Let G be the graph in Γm as shown in Fig. 13(f). We use

the notations as shown in Fig. 23(d), where w1 is the BW-vertex, and

e′1, e
′′
1, e

′
2, e

′′
2, e

′
3, e

′′
3, e

′
4 are seven internal edges of label m with e′1 ∩ e′′1 � w1,

e′1 ∩ e′2 ∩ e′′2 � w2, e
′′
1 ∩ e′3 ∩ e′′3 � w3, and ∂e′4 = {w4, w5}.

Since the graph G separates the 2-sphere S2 into four disks. Two of the

four disks are 4-angled disks, say D1, D2. Two of the four disks are 3-angled

disks, say D3, D4. Without loss of generality we can assume that ∂D1 � w4,

∂D2 � w5 and D4 contains the point at infinity, ∞ (see Fig. 23(d)).

Without loss of generality we can assume that the terminal edge of label

m at w1 is oriented inward at w1. Then by Assumption 2,

(1) both of e′1, e
′′
1 are oriented outward at w1 (see Fig. 23(d)).

There are two cases: (i) one of e′1, e
′′
1 is middle at w2 or w3, (ii) neither e′1

nor e′′1 is middle at w2 or w3.

Case (i). If necessary we move the point ∞ in D3, we can assume

that e′1 is middle at w2. By Condition (iii) of the definition of a chart,
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both of e′2, e
′′
2 are oriented outward at w2. If necessary we reflect the chart

Γ, we can assume that the edge e′4 is oriented from w4 to w5. Since both

of e′′2, e
′
4 are oriented inward at w5, the edge e′′3 is oriented from w5 to w3.

Moreover, since both of e′′1, e
′′
3 are oriented inward at w3 by (1), the edge e′3

is oriented from w3 to w4. Therefore Γ contains the pseudo chart as shown

in Fig. 23(a).

Case (ii). One of e′2, e
′′
2 is oriented inward at w2, and the other is

oriented outward at w2. If necessary we reflect the chart Γ, we can assume

that the edge e′2 is oriented inward at w2, and the edge e′′2 is oriented outward

at w2.

Next, we shall show that e′3 is oriented outward at w3. If e′3 is oriented

inward at w3, then e′′3 is oriented outward at w3 (because, e′′1 is oriented

inward at w3 by (1)). Thus both of e′′2 and e′′3 are oriented inward at w5.

Hence the edge e′4 is oriented from w5 to w4 (see Fig. 23(e)). Thus, both of

∂D3 and ∂D4 are oriented clockwise or anticlockwise. Hence, by Lemma 8.1,

we have w(Γ ∩ IntD3) � 1 and w(Γ ∩ IntD4) � 1. Moreover, since one of

D1 and D2 is a 4-angled disk with one feeler, by Corollary 6.3(a) we have

w(Γ ∩ IntD1) � 1 or w(Γ ∩ IntD2) � 1. Thus

7 = w(Γ)

= w(G) + w(Γ ∩ IntD1) + w(Γ ∩ IntD2) + w(Γ ∩ IntD3) + w(Γ ∩ IntD4)

� 5 + 1 + 1 + 1 = 8.

This is a contradiction. Hence e′3 is oriented outward at w3.

Since e′′1 is not middle at w3, the edge e′′3 is oriented inward at w3. If

necessary we move the point ∞ in D3, we can assume that the edge e′4 is

oriented from w4 to w5. Therefore, if D1 (resp. D2) has one feeler, then Γ

contains the pseudo chart as shown in Fig. 23(b) (resp. Fig. 23(c)). �

Proposition 12.2. Let Γ be a minimal chart of type (m; 5, 2). Then

Γm does not contain the graph as shown in Fig. 13(f).

Proof. Suppose that Γm contains the graph as shown in Fig. 13(f),

say G. Since the graph G separates the 2-sphere S2 into four disks. Two

of the four disks are 4-angled disks, say D1, D2. Two of the four disks are

3-angled disks, say D3, D4. Without loss of generality we can assume that

D4 contains the point at infinity, ∞ (see Fig. 23(d)). By Lemma 12.1, we
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can assume that Γ contains one of the three pseudo charts as shown in

Fig. 23(a),(b),(c).

Suppose that Γ contains the pseudo chart as shown in Fig. 23(a). We

use the notations as shown in Fig. 23(a), where

(1) e3, e4, e5 are internal edges (possibly terminal edges) of label m + 1

oriented outward at w3, w4, w5 in D4, respectively,

but none of e3, e4, e5 are middle at w3, w4 or w5. Thus by Assumption 2,

(2) none of e3, e4, e5 are terminal edges.

Hence by IO-Calculation with respect to Γm+1 in D4, we have w(Γ ∩
IntD4) � 2. Moreover, since one of D1, D2 contains one feeler, by Corol-

lary 6.3(a) we have w(Γ ∩ IntD1) � 1 or w(Γ ∩ IntD2) � 1. Thus

7 = w(Γ)

� w(G) + w(Γ ∩ IntD1) + w(Γ ∩ IntD2) + w(Γ ∩ IntD4)

� 5 + 1 + 2 = 8.

This is a contradiction. Hence Γ does not contain the pseudo chart as shown

in Fig. 23(a).

Suppose that Γ contains the pseudo chart as shown in Fig. 23(b). With-

out loss of generality, we can assume that D1 has one feeler. Thus by

Corollary 6.3(a) we have w(Γ ∩ IntD1) � 1.

We use the notations as shown in Fig. 23(b), where

(3) e1, e2, e5 are internal edges (possibly terminal edges) of label m + 1

oriented outward at w1, w2, w5 in D2, respectively,

but neither e2 nor e5 is middle at w2 or w5. Thus by Assumption 2,

(4) neither e2 nor e5 is a terminal edge.

Hence by IO-Caclulation with respect to Γm+1 in D2, we have w(Γ ∩
IntD2) � 1.

Since the boundary ∂D4 is oriented anticlockwise, by Lemma 8.1 we

have w(Γ ∩ IntD4) � 1. Thus

7 = w(Γ)

� w(G) + w(Γ ∩ IntD1) + w(Γ ∩ IntD2) + w(Γ ∩ IntD4)

� 5 + 1 + 1 + 1 = 8.
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This is a contradiction. Hence Γ does not contain the pseudo chart as shown

in Fig. 23(b).

Suppose that Γ contains the pseudo chart as shown in Fig. 23(c). With-

out loss of generality, we can assume that D2 has one feeler. Thus by

Corollary 6.3(a) we have w(Γ ∩ IntD2) � 1.

Since the boundary ∂D4 is oriented anticlockwise, by Lemma 8.1 we

have w(Γ ∩ IntD4) � 1. Hence the condition w(Γ) = 7 implies that

(5) w(Γ ∩ IntD1) = 0.

We use the notations as shown in Fig. 23(c), where e1, e3, e4 are in-

ternal edges (possibly terminal edges) of label m + 1 at w1, w3, w4 in D1,

respectively,

(6) e1, e3 are oriented outward at w1, w3, respectively,

but neither e3 nor e4 is middle at w3 or w4. Thus by Assumption 2, neither

e3 nor e4 is a terminal edge. Hence by (5) and (6), we have e3 = e4. However

there exists a lens. This contradicts Lemma 3.2. Thus Γ does not contain

the pseudo chart as shown in Fig. 23(c).

Therefore we have a contradiction for all cases. Hence Γm does not

contain the graph as shown in Fig. 13(f). �

13. Triangle Lemma

In this section, we review Triangle Lemma. These lemmas will be used

in the next section.

Lemma 13.1 ([6, Lemma 5.4]). If a minimal chart Γ contains the

pseudo chart as shown in Fig. 24, then the interior of the disk D contains

at least one white vertex, where D is the disk with the boundary e3 ∪ e4 ∪ e.

Lemma 13.2 ([14, Lemma 4.2(b)]). Let Γ be a minimal chart, and m

a label of Γ. Let D be a special 3-angled disk of Γm with at most two feelers.

If w(Γ∩IntD) = w(Γm+ε∩IntD) = 1 for some ε ∈ {+1,−1}, then a regular

neighborhood of D contains one of the RO-families of the six pseudo charts

as shown in Fig. 25.
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Fig. 24. The white vertices w1 and w2 are in Γm ∩ Γm+ε where ε ∈ {+1,−1}.

Fig. 25. (a),(b),(c),(d) 3-angled disks without feelers. (e),(f) 3-angled disks with one
feeler. Here, ε, δ ∈ {+1,−1}.

Lemma 13.3 (Triangle Lemma) ([9, Lemma 8.3]).

(a) For a chart Γ, if there exists a 3-angled disk D1 of Γm without feelers

in a disk D as shown in Fig. 26(a) and if w(Γ∩IntD1) = 0, then there

exists a chart obtained from Γ by C-moves in D which contains the

pseudo chart in D as shown in Fig. 26(b).

(b) For a minimal chart Γ, if there exists a 3-angled disk D1 of Γm without

feelers in a disk D as shown in Fig. 26(c), then w(Γ∩IntD1) ≥ 1.
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Fig. 26. The gray region is the 3-angled disk D1. The thick lines are edges of label m,
and ε ∈ {+1,−1}.

Fig. 27. The gray region is the 3-angled disk D1. The thick lines are edges of label m,
and ε ∈ {+1,−1}.

By the above lemma, we can show the following corollary by using C-II

moves and a C-III move:

Corollary 13.4. For a chart Γ, if there exists a 3-angled disk D1 of

Γm without feelers in a disk D as shown in Fig. 27(a) and if w(Γ∩IntD1) =

0, then there exists a chart obtained from Γ by C-moves in D which contains

the pseudo chart in D as shown in Fig. 27(b).

Lemma 13.5 ([14, Theorem 1.1]). There is no minimal chart of type

(4, 3).

14. Case of the Graph as Shown in Fig. 13(g)

In this section, we shall show that if Γ is a minimal chart of type (m; 5, 2),

then the graph Γm does not contain the graph as shown in Fig. 13(g).
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Moreover, we shall show the main theorem.

Suppose that the graph Γm contains the graph as shown in Fig. 13(g).

Form now on throughout this section, we use the notations as shown in

Fig. 28, where

(a) w1, w2, · · · , w5 are five white vertices, and

(b) e1, e2, · · · , e7 are seven internal edges of label m with ∂e1 = ∂e2 =

{w1, w2}, ∂e3 = {w2, w3}, ∂e4 = {w3, w4}, ∂e5 = {w3, w5}, ∂e6 =

∂e7 = {w4, w5},

(c) D1, D2 are special 2-angled disks with ∂D1 = e1∪e2 and ∂D2 = e6∪e7,

(d) D3 is the special 3-angled disk with ∂D3 = e4 ∪ e5 ∪ e6.

Fig. 28. The graph as shown in Fig. 13(g).

Lemma 14.1. Let Γ be a minimal chart of type (m; 5, 2). If Γm contains

the graph as shown in Fig. 13(g), then Γm contains one of RO-families of

the four graphs as shown in Fig. 29.

Proof. We use the notations as shown in Fig. 28. Without loss of

generality, we can assume that the terminal edge of label m at w1 is oriented

inward at w1. Then by Assumption 2, both of e1, e2 are oriented from w1

to w2. Thus the edge e3 is oriented form w2 to w3. There are two cases: (i)

e3 is middle at w3, (ii) e3 is not middle at w3.

Case (i). Since e3 is middle at w3, both of e4, e5 are oriented outward

at w3. Hence

(1) e5 is oriented inward at w5.
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Fig. 29. The graphs as shown in Fig. 13(g).

If necessary we reflect the chart Γ, we can assume that e6 is oriented

from w4 to w5. Thus by (1), the edge e7 is oriented from w5 to w4. Hence

Γm contains the graph as shown in Fig. 29(a).

Case (ii). Since e3 is not middle at w3, one of e4, e5 is oriented inward

at w3 and the other is oriented outward at w3. If necessary we reflect the

chart Γ, we can assume that e4 is oriented inward at w3 and e5 is oriented

outward at w3. Thus

(2) e5 is oriented inward at w5.

If e6 is oriented from w4 to w5, then by (2) the edge e7 is oriented from

w5 to w4. Hence Γm contains the graph as shown in Fig. 29(b).

If e6 is oriented from w5 to w4, then Γm contains one of the two graphs

as shown in Fig. 29(c),(d). �

Lemma 14.2. Let Γ be a minimal chart of type (m; 5, 2). Then Γm does

not contain the graph as shown in Fig. 29(c).

Proof. Suppose that Γm contains the graph as shown in Fig. 29(c),

say G. We use the notations as shown in Fig. 28 and Fig. 29(c).

Since ∂D2 is oriented clockwise, since e4 is oriented outward at w4 and

since e5 is oriented inward at w5, by Lemma 11.1 we have w(Γ∩ IntD2) � 2.
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Since ∂D3 is oriented anticlockwise, by Lemma 8.1 we have w(Γ ∩
IntD3) � 1. Thus we have

7 = w(Γ) � w(G) + w(Γ ∩ IntD2) + w(Γ ∩ IntD3)

� 5 + 2 + 1 = 8.

This is a contradiction. Therefore Γm does not contain the graph as shown

in Fig. 29(c). �

Lemma 14.3. Let Γ be a minimal chart of type (m; 5, 2). Then Γm does

not contain the graph as shown in Fig. 29(b).

Proof. Suppose that Γm contains the graph as shown in Fig. 29(b).

We use the notations as shown in Fig. 28 and Fig. 29(b).

By the similar way of the proof of Lemma 14.2, we have w(Γ∩IntD2) � 2.

Thus the condition w(Γ) = 7 implies that

(1) w(Γ ∩ IntD1) = 0 and w(Γ ∩ (S2 − (D1 ∪D2 ∪D3))) = 0.

Hence by Lemma 5.1, a regular neighborhood of D1 contains the pseudo

chart as shown in Fig. 10(b) (see Fig. 30(a)).

We use the notations as shown in Fig. 30(a), where

(2) e′1, e
′′
1, e

′
3, e

′
4 are internal edges (possibly terminal edges) of label m+1

oriented inward at w1, w1, w3, w4, respectively,

(3) e′2, e
′′
2, e

′′
3, e

′
5 are internal edges (possibly terminal edges) of label m+1

oriented outward at w2, w2, w3, w5, respectively.

Moreover, none of e′2, e
′′
2, e

′′
3, e

′
5 are middle at w2, w3 or w5. Thus by As-

sumption 2,

(4) none of e′2, e
′′
2, e

′′
3, e

′
5 are terminal edges.

Hence by (1),(2),(3), none of e′1, e
′′
1, e

′
3, e

′
4 are terminal edges. Thus for the

edge e′′2, we have e′′2 = e′′1. However e2 ∪ e′′2 bounds a lens. This contra-

dicts Lemma 3.2. Therefore Γm does not contain the graph as shown in

Fig. 29(b). �

Lemma 14.4. Let Γ be a minimal chart of type (m; 5, 2). If Γm contains

the graph as shown in Fig. 29(d), then w(Γ∩IntD2) = 0 and w(Γ∩IntD3) =

1.
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Fig. 30. The graphs as shown in Fig. 13(g). The gray region is the 3-angled disk D.

Proof. We use the notations as shown in Fig. 28 and Fig. 29(d). Since

∂D3 is oriented anticlockwise, by Lemma 8.1 we have

(1) w(Γ ∩ IntD3) � 1.

Let e be the terminal edge of label m at w1. If e ⊂ D1, then by

Lemma 5.1 we have w(Γ ∩ IntD1) � 1. Thus by (1) and w(Γ) = 7, we

have w(Γ ∩ IntD2) = 0 and w(Γ ∩ IntD3) = 1.

Now, suppose e �⊂ D1. We use the notations as shown in Fig. 30(b),

where

(2) e′1, e
′′
1, e

′
3, e

′
5 are internal edges (possibly terminal edges) of label m+1

oriented inward at w1, w1, w3, w5, respectively, and
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(3) e′2, e
′′
2, e

′′
3, e

′
4 are internal edges (possibly terminal edges) of label m+1

oriented outward at w2, w2, w3, w4, respectively.

Moreover, none of e′2, e
′′
2, e

′′
3, e

′
4 are middle at w2, w3 or w4. Thus by As-

sumption 2, none of the four edges e′2, e
′′
2, e

′′
3, e

′
4 are terminal edges.

If w(Γ ∩ (S2 − (D1 ∪ D2 ∪ D3))) = 0, then by (2) and (3) none of the

four edges e′1, e
′′
1, e

′
3, e

′
5 are terminal edges. Hence for the edge e′′2, we have

e′′2 = e′′1. However, there exists a lens. This contradicts Lemma 3.2. Thus

w(Γ ∩ (S2 − (D1 ∪D2 ∪D3))) � 1.

Hence by (1) and w(Γ) = 7, we have w(Γ∩IntD2) = 0 and w(Γ∩IntD3) =

1. �

Lemma 14.5. Let Γ be a minimal chart of type (m; 5, 2). Then Γm does

not contain the graph as shown in Fig. 29(d).

Proof. Suppose that Γm contains the graph as shown in Fig. 29(d).

We use the notations as shown in Fig. 28 and Fig. 29(d).

Since ∂D3 is oriented anticlockwise, by Lemma 13.2 and Lemma 14.4 a

regular neighborhood of D3 contains the pseudo chart as shown in Fig. 25(d).

Moreover, by Lemma 5.1 and Lemma 14.4 a regular neighborhood of D2

contains the pseudo chart as shown in Fig. 10(b) (see Fig. 30(c)). Hence the

chart Γ contains the pseudo chart as shown in Fig. 24. Thus by Lemma 13.1,

we have w(Γ∩IntD3) ≥ 2. This contradicts Lemma 14.4. Thus we complete

the proof of Lemma 14.5. �

Lemma 14.6. Let Γ be a minimal chart of type (m; 5, 2). If Γm contains

the graph as shown in Fig. 29(a), then w(Γ∩IntD2) = 1 and w(Γ∩IntD3) =

0.

Proof. We use the notations as shown in Fig. 28 and Fig. 29(a). Since

∂D2 is oriented anticlockwise, by Lemma 5.1 we have

(1) w(Γ ∩ IntD2) � 1.

Let e be the terminal edge of label m at w1. If e ⊂ D1, then by

Lemma 5.1 we have w(Γ ∩ IntD1) � 1. Thus by (1) and w(Γ) = 7, we

have w(Γ ∩ IntD2) = 1 and w(Γ ∩ IntD3) = 0.

Now, suppose e �⊂ D1. We use the notations as shown in Fig. 30(d),

where
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(2) e′1, e
′′
1, e

′
3, e

′′
3, e

′
4 are internal edges (possibly terminal edges) of label

m + 1 oriented inward at w1, w1, w3, w3, w4, respectively.

Moreover, none of e′1, e
′′
1, e

′
3, e

′′
3 are middle at w1 or w3. Thus by Assump-

tion 2, none of the four edges e′1, e
′′
1, e

′
3, e

′′
3 are terminal edges. Thus by (2)

and by IO-Calculation with respect to Γm+1 in Cl(S2 − (D1 ∪ D2 ∪ D3)),

we have w(Γ∩ (S2 − (D1 ∪D2 ∪D3))) � 1. Hence by (1) and w(Γ) = 7, we

have w(Γ ∩ IntD2) = 1 and w(Γ ∩ IntD3) = 0. �

Proposition 14.7. Let Γ be a minimal chart of type (m; 5, 2). Then

Γm does not contain the graph as shown in Fig. 13(g).

Proof. Suppose that Γm contains the graph as shown in Fig. 13(g).

Then by Lemma 14.1, the graph Γm contains one of RO-families of the

four graphs as shown in Fig. 29. Hence by Lemma 14.2, Lemma 14.3 and

Lemma 14.5, the graph Γm contains one of the RO-family of the graph as

shown in Fig. 29(a). Without loss of generality, we can assume that the

graph Γm contains of the graph as shown in Fig. 29(a).

By Lemma 8.1 and Lemma 14.6, a regular neighborhood of D3 contains

the pseudo chart as shown in Fig. 16(b). Moreover, by Lemma 11.1 and

Lemma 14.6, a regular neighborhood of D2 contains one of the two pseudo

charts as shown in Fig. 21(b),(c). Hence there exists a 3-angled disk D of

Γm+1 in D2 ∪D3.

Let w6 be the white vertex in IntD2, and e′ the terminal edge of label

m+1 at w6. Since w(Γ∩IntD) = 0 by Lemma 14.6, a regular neighborhood

of D contains the pseudo chart as shown in Fig. 16(a). Hence e′ �⊂ D (see

Fig. 30(e)). Thus Γ contains the pseudo chart as shown in Fig. 27(a).

Thus by Corollary 13.4, there exists a minimal chart Γ′ obtained from Γ

by C-moves which contains the pseudo chart as shown in Fig. 27(b) (see

Fig. 30(f)). Hence Γ is C-move equivalnet to the minimal chart Γ′ of type

(m; 4, 3). This contradicts Lemma 13.5. Hence Γm does not contain the

graph as shown in Fig. 29(a).

Hence Γm does not contains the graph as shown in Fig. 13(g). Therefore

we complete the proof of Proposition 14.7. �

Lemma 14.8 ([9, Theorem 1.1]). There is no loop in any minimal

chart with exactly seven white vertices.
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Now, we shall show the main theorem.

Proof of Theorem 1.1. Let Γ be a minimal chart of type (m; 5, 2).

Suppose that there exists a connected component G of Γm with w(G) = 5.

Then by Lemma 14.8, the graph G does not contain any loop. Thus by

Lemma 7.1, the graph G is one of nine graphs as shown in Fig. 2 and Fig. 13.

Hence the main theorem follows from the seven propositions (Lemma 7.4,

Lemma 7.5, Lemma 8.2, Lemma 9.1, Lemma 11.2, Proposition 12.2 and

Proposition 14.7). Therefore we complete the proof of the main theorem. �
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List of terminologies

k-angled disk p59
BW-vertex p51
C-move equivalent p53
chart p52
complexity (w(Γ),−f(Γ)) p53
feeler p60
free edge p53
hoop p54
internal edge p55
inward p53
inward arc p77
IO-Calculation p77
keeping X fixed p78
lens p55
locally minimal p79

loop p56
middle arc p53
middle at v p53
minimal chart p53
outward p53
outward arc p77
point at infinity ∞ p54
pseudo chart p63
ring p54
RO-family p64
simple hoop p54
special k-angled disk p60
terminal edge p50
type (m;n1, n2, · · · , nk) for a chart p50

List of notations

Γm p50
w(Γ) p53
f(Γ) p53
IntX p55
∂X p55
Cl(X) p55

∂α p55
Intα p55
aij , bij p56
w(X) p59
c(X) p78


