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Properties of Minimal Charts and Their
Applications X: Charts of Type (5,2)

By Teruo NAGASE and Akiko SHIMA*

Abstract. Charts are oriented labeled graphs in a disk. Any
simple surface braid (2-dimensional braid) can be described by using
a chart. Also, a chart represents an oriented closed surface embedded
in 4-space. In this paper, we investigate embedded surfaces in 4-space
by using charts. Let I" be a chart, and we denote by I';, the union of
all the edges of label m. A chart T is of type (5,2) if there exists a
label m such that w(T') =7, w(Tp, NTpp1) =5, W(Tpp1 N ppye) =2
where w(@) is the number of white vertices in G. In this paper, we
investigate a minimal chart of type (5,2).

1. Introduction

Charts are oriented labeled graphs in a disk (see [1],[5], and see Section 2
for the precise definition of charts). Let D7, D3 be 2-dimensional disks.
Any simple surface braid (2-dimensional braid) can be described by using a
chart, here a simple surface braid is a properly embedded surface S in the
4-dimensional disk D? x D3 such that a natural map 7 : S C D? x D3 — D3
is a simple branched covering map of D% and the boundary 95 is a trivial
closed braid in the solid torus D? x D3 (see [4], [5, Chapter 14 and Chapter
18]). Also, from a chart, we can construct a simple closed surface braid in
4-space R*. This surface is an oriented closed surface embedded in R
On the other hand, any oriented embedded closed surface in R* is ambient
isotopic to a simple closed surface braid (see [4],[5, Chapter 23]). A C-move
is a local modification between two charts in a disk (see Section 2 for C-
moves). A C-move between two charts induces an ambient isotopy between
oriented closed surfaces corresponding to the two charts. In this paper, we
investigate oriented closed surfaces in 4-space by using charts.
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We will work in the PL category or smooth category. All submanifolds
are assumed to be locally flat. In [18], we showed that there is no minimal
chart with exactly five white vertices (see Section 2 for the precise definition
of minimal charts). Hasegawa proved that there exists a minimal chart with
exactly six white vertices [2]. This chart represents a 2-twist spun trefoil. In
[3] and [17], we investigated minimal charts with exactly four white vertices.
In this paper, we investigate properties of minimal charts which support a
conjecture that there is no minimal chart with exactly seven white vertices
(see [6],[7],[8],[9].[10], [11],[12]. 18], 14]. 15]).

Let I' be a chart. For each label m, we denote by I',, the union of all
the edges of label m.

Now we define a type of a chart: Let I' be a chart with at least one white
vertex, and ny,na, ..., ng integers. The chart I is of type (n1,ng,...,ng) if
there exists a label m of I' satisfying the following three conditions:

(i) For each i = 1,2,...,k, the chart I" contains exactly n; white vertices
in Lyppio1 N D

(ii) If i < 0 or i > k, then I';,4; does not contain any white vertices.

(iii) Both of the two subgraphs I',,, and I',,,1 % contain at least one white
vertex.

If we want to emphasize the label m, then we say that T" is of type (m;n;,
ng,...,nk). Note that n; > 1 and ny > 1 by Condition (iii).

We proved in [7, Theorem 1.1] that if there exists a minimal n-chart T’
with exactly seven white vertices, then I is a chart of type (7), (5,2), (4, 3),
(3,2,2) or (2,3,2) (if necessary we change the label i by n — i for all label
i). In [10], we showed that there is no minimal chart of type (3,2,2). In
[11] and [12], there is no minimal chart of type (2,3,2). In [13], there is no
minimal chart of type (7). In [14], there is no minimal chart of type (4, 3).
In this paper, we investigate a minimal chart of type (5,2).

An edge in a chart is called a terminal edge if it has a white vertex and
a black vertex.

In our argument we often construct a chart I'. On the construction of
a chart I', for a white vertex w € I'), for some label m, among the three
edges of I, containing w, if one of the three edges is a terminal edge (see
Fig. 1(a) and (b)), then we remove the terminal edge and put a black dot
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(a) (b) (c)

Fig. 1. (a),(b) White vertices in terminal edges. (c) BW-vertex.

at the center of the white vertex as shown in Fig. 1(c). Namely Fig. 1(c)
means Fig. 1(a) or Fig. 1(b). We call the vertex in Fig. 1(c) a BW-vertex
with respect to I'y,.

In this paper we shall show the following:

THEOREM 1.1. Let T be a minimal chart of type (m;5,2). Suppose that
there exists a connected component of I'y, with exactly five white vertices.
Then Iy, contains one of the two graphs as shown in Fig. 2.

Fig. 2. Graphs with three black vertices.

In the last paper [15] in this series, we shall show that if I' is a minimal
chart of type (m;5,2), then there exists a connected component of '), with
exactly five white vertices. Moreover, by using the above theorem, we shall
show that there is no minimal chart of type (5,2), and there is no minimal
chart with exactly seven white vertices.

The paper is organized as follows. In Section 2, we define charts and
minimal charts. Let I' be a minimal chart, and m a label of I". In Section 3,
we review a useful lemma for a disk called a lens. In Section 4, we investigate
a disk called a k-angled disk of I',, with at most one white vertex in its
interior, where a k-angled disk is a disk whose boundary contains exactly k
white vertices and consists of edges of label m. In Section 5, we investigate
a b-angled disk of I';,. In Section 6, we investigate a 4-angled disk of I',,.
In Section 7, we shall show that if I' is a minimal chart of type (m;5,2),
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then the graph I',, contains neither graphs as shown in Fig. 13(a),(c). In
Section 8, we shall show that if I' is a minimal chart of type (m; 5, 2), then the
graph I, does not contain the graph as shown in Fig. 13(b). In Section 9,
we shall show that if I is a minimal chart of type (m;5,2), then the graph
'), does not contain the graph as shown in Fig. 13(d). In Section 10, we
review 10-Calculation(a property of numbers of inward arcs of label k£ and
outward arcs of label k£ in a closed domain F' with OF C I'y_; UT', UT'x4q
for some label k). In Section 11, we shall show that if I is a minimal chart
of type (m;5,2), then the graph I',,, does not contain the graph as shown
in Fig. 13(e). In Section 12, we shall show that if I' is a minimal chart of
type (m;5,2), then the graph I';,, does not contain the graph as shown in
Fig. 13(f). In Section 13, we review Triangle Lemma. These lemmas will be
used in Section 14. In Section 14, we shall show that if I' is a minimal chart
of type (m;5,2), then the graph I',,, does not contain the graph as shown
in Fig. 13(g). Moreover, we shall prove Theorem 1.1.

2. Preliminaries

In this section, we introduce the definition of charts and its related
words.

Let n be a positive integer. An n-chart (a braid chart of degree n [1]
or a surface braid chart of degree n [5]) is an oriented labeled graph in the
interior of a disk, which may be empty or have closed edges without vertices
satisfying the following four conditions (see Fig. 3):

(i) Every vertex has degree 1, 4, or 6.
(ii) The labels of edges are in {1,2,...,n —1}.

(iii) In a small neighborhood of each vertex of degree 6, there are six short
arcs, three consecutive arcs are oriented inward and the other three
are outward, and these six are labeled 7 and ¢ + 1 alternately for some
1, where the orientation and label of each arc are inherited from the
edge containing the arc.

(iv) For each vertex of degree 4, diagonal edges have the same label and
are oriented coherently, and the labels ¢ and j of the diagonals satisfy
li —j] > 1.
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We call a vertex of degree 1 a black vertez, a vertex of degree 4 a crossing,
and a vertex of degree 6 a white vertex respectively.

Among six short arcs in a small neighborhood of a white vertex, a central
arc of each three consecutive arcs oriented inward (resp. outward) is called
a middle arc at the white vertex (see Fig. 3(c)). For each white vertex v,
there are two middle arcs at v in a small neighborhood of v. An edge is said
to be middle at a white vertex v if it contains a middle arc at v.

Let e be an edge connecting vy and vs. If e is oriented from vy to vs,
then we say that e is oriented outward at vy and inward at vs.

(a) (b) (c). J

i
[i—ji]>1 li—il=1

Fig. 3. (a) A black vertex. (b) A crossing. (c) A white vertex. Each arc with three
transversal short arcs is a middle arc at the white vertex.

Now C-moves are local modifications of charts as shown in Fig. 4 (cf.
[1], [5] and [19]). Two charts are said to be C-move equivalent if there exists
a finite sequence of C-moves which modifies one of the two charts to the
other.

An edge in a chart is called a free edge if it has two black vertices.

For each chart T, let w(I') and f(T') be the number of white vertices,
and the number of free edges respectively. The pair (w(T'), —f(T")) is called
a complezity of the chart (see [4]). A chart I is called a minimal chart if its
complexity is minimal among the charts C-move equivalent to the chart T’
with respect to the lexicographic order of pairs of integers.

We showed the difference of a chart in a disk and in a 2-sphere (see [6,
Lemma 2.1]). This lemma follows from that there exists a natural one-to-
one correspondence between {charts in 52} /C-moves and {charts in D?}/C-
moves, conjugations ([5, Chapter 23 and Chapter 25]). To make the argu-
ment simple, we assume that the charts lie on the 2-sphere instead of the
disk.
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Fig. 4. For the C-III move, the edge with the black vertex is not middle at the white
vertex in the left figure.

ASSUMPTION 1. In this paper, all charts are contained in the 2-sphere
S2.

We have the special point in the 2-sphere S2, called the point at infinity,
denoted by co. In this paper, all charts are contained in a disk such that
the disk does not contain the point at infinity oco.

Let T" be a chart, and m a label of I'. A hoop is a closed edge of I' without
vertices (hence without crossings, neither). A ring is a simple closed curve
in I'},, containing at least one crossing but not containing any white vertices.
A hoop is said to be simple if one of the two complementary domains of the
hoop does not contain any white vertices.

We can assume that all minimal charts I' satisfy the following four con-
ditions (see [6],[7],[8],[16]):



Properties of Minimal Charts and Their Applications X 55

ASSUMPTION 2. If an edge of I' contains a black vertex, then the edge
is a free edge or a terminal edge. Moreover any terminal edge contains a
middle arc.

ASSUMPTION 3. All free edges and simple hoops in I are moved into a
small neighborhood Uy, of the point at infinity oo. Hence we assume that T’
does not contain free edges nor simple hoops, unless otherwise mentioned.

ASSUMPTION 4. FEach complementary domain of any ring and hoop
must contain at least one white verter.

ASSUMPTION 5. The point at infinity oo is moved into any comple-
mentary domain of I

In this paper for a subset X in a space we denote the interior of X, the
boundary of X and the closure of X by IntX, 0X and CI(X) respectively.

Let a be a simple arc or an edge, and p, ¢ the endpoints of . We denote
Oa = {p,q} and Inta = a — {p, ¢}.

3. Lenses

In this section, we review a useful lemma for a disk called a lens.

Let I be a chart, and m a label of I'. Let L be the closure of a connected
component of the set obtained by taking out all the white vertices from I',.
If L contains at least one white vertex but does not contain any black vertex,
then L is called an internal edge of label m. Note that an internal edge may
contain a crossing of I'.

Let I' be a chart. Let D be a disk such that

(1) the boundary 0D consists of an internal edge e; of label m and an
internal edge ey of label m + 1, and

(2) any edge containing a white vertex in e; does not intersect the open
disk IntD.

Note that 0D may contain crossings. Let w; and ws be the white vertices
in e1. If the disk D satisfies one of the following conditions, then D is called
a lens of type (m,m + 1) (see Fig. 5):
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(a) (b)

Fig. 5. Lenses.

(i) Neither e; nor ez contains a middle arc.

(ii) One of the two edges e; and ey contains middle arcs at both white
vertices wy and wsy simultaneously.

LEMMA 3.1 ([6, Theorem 1.1]). There exist at least three white vertices
in the interior of the lens for any minimal chart.

LeMMA 3.2 ([7, Corollary 1.3]).  There is no lens in any minimal chart
with at most seven white vertices.

Let I" be a chart, and m a label of I'. A loop is a simple closed curve in
'), with exactly one white vertex (possibly with crossings).

In our argument, we often need a name for an unnamed edge by using
a given edge and a given white vertex. For the convenience, we use the
following naming: Let €', e;, €’ be three consecutive edges containing a white
vertex w;. Here, the two edges ¢’ and €¢” are unnamed edges. There are six
arcs in a neighborhood U of the white vertex wj;. If the three arcs ¢’ N U,
e; NU, €' NU lie anticlockwise around the white vertex w; in this order,
then €’ and e” are denoted by a;; and b;; respectively (see Fig. 6). There is
a possibility a;; = b;; if they are contained in a loop.

LEMMA 3.3. Let T be a chart, and k a label of T'. Let e; be an internal
edge of label k with two white vertices w1 and wy (see Fig. 7). Suppose that
wy,we € Tgas for some 6 € {41, —1}, and suppose that one of the two edges
a1, b2 is a terminal edge. If 05 Ner = 0, and if T' satisfies one of the
following four conditions, then I' is not a minimal chart.

(a) The two edges ai11,bi2 are oriented inward (or outward) at wi,ws,
respectively.
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Fig. 6. The three edges aj, ei, bi; are consecutive edges around the white vertex wj.

¢

di b,

Fig. 7. The edge e; is of label k, and 6 € {+1,—1}.

(b) The edge a1y (resp. bi2) is a terminal edge, and bia (resp. ai1) is not
middle at the white vertex different from wa (resp. wy).

(¢) The two edges a1, b2 are middle at wy,wq, respectively.
(d) Both of ai1,b12 are terminal edges.

PROOF. Suppose that I' is a minimal chart. Without loss of generality

we can assume that
(1) aq is a terminal edge and oriented inward at w;.
Then by Assumption 2, the terminal edge aq; is middle at w;. Thus

(2) the edge e; is oriented inward at wy (i.e. the edge e; is oriented from

wy to wy).
Since e is an edge of label k, we have
(3) Tkys NIntey = 0.
Now by the condition of this lemma, we have

(4) IkyosNer = 0.



58 Teruo NAGASE and Akiko SHIMA

First, we shall show that if T" satisfies Condition (a), then we have a
contradiction. Since aj; is oriented inward at w; by (1), the edge b1 is also
oriented inward at ws by Condition (a) (see Fig. 8(a)). Hence by (2)

(5) the edge b2 is not middle at ws.

By (3),(4) and applying C-II moves along the edge e;, we can move the
black vertex in a;; near the white vertex ws (see Fig. 8(b)). Apply a C-I-M2
move between ay1 and by, we obtain a new terminal edge of label k 4 6 at
wy (see Fig. 8(c)). However by (5), the terminal edge is not middle at ws.
This contradicts Assumption 2.

Now by (1) and Lemma 3.3(a), we can assume that

(6) the edge by2 is oriented outward at wa (see Fig. 8(d)).

Next, we shall show that if I" satisfies Condition (b), then we have a
contradiction. Let wg be the white vertex in bio different from ws. Then by
Condition (b),

(7) the edge b1z is not middle at ws.

Fig. 8. The edge e; is of label k, and § € {+1, —1}.
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By the similar way of the proof of Lemma 3.3(a), we can move the black
vertex in aj; near the white vertex wy by C-II moves (see Fig. 8(e)). Apply
a C-I-M2 move between a11 and by2, we obtain an internal edge of label k+¢
with w; and ws, and a terminal edge of label k + 6§ at w3 (see Fig. 8(f)).
However we have the same contradiction by (7).

Next, we shall show that if I' satisfies Condition (c), then we have a
contradiction. By the similar way of the proof of Lemma 3.3(b), we obtain
an internal edge of label k + § with w; and we, say e (see Fig. 8(f)). Thus
by Condition (c), the edge e is middle at both white vertices wi, w2. Hence
e1Ue bounds a lens whose interior does not contain any white vertices. This
contradicts Lemma 3.1.

Finally, if T" satisfies Condition (d), then by Assumption 2 the two ter-
minal edges a11 and bio are middle at wy, ws, respectively. Thus I' satisfies
Condition (c). Hence we have the same contradiction.

Therefore we have a contradiction for all cases. Thus I' is not a minimal
chart. [J

4. Special k-Angled Disks

In this section, we investigate a disk called a k-angled disk.
Let X be a set in a chart I'. Let

w(X) = the number of white vertices in X.

LemMMA 4.1 ([10, Lemma 3.2(1)]). Let I' be a minimal chart, and m
a label of I'. Let G be a connected component of I'y,. If 1 < w(G), then
2 <w(G).

LEMMA 4.2 ([8, Lemma 6.1]). Let I' be a minimal chart. Let C be a
ring or a non simple hoop, and D a disk with 0D = C. If w(I'N D) =1,
then I' is C-move equivalent to the minimal chart CI(I' — C).

Let ' be a chart, m a label of I', D a disk with 9D C TI'y,, and k a
positive integer. If 9D contains exactly k white vertices, then D is called a
k-angled disk of T'y,. Note that the boundary D may contain crossings.
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LEMMA 4.3. Let I’ be a minimal chart, and m a label of I'. Let D be a
k-angled disk of T'y,. Suppose that all the white vertices on OD are contained
in Tpge for somee € {+1,—1}. Ifw(T'NIntD) < 1, then T’ can be modified
to a minimal chart T" by C-moves in IntD such that T, . N D = .

Proor. We shall show that IntD does not contain any white vertex in
I'n—e. Suppose that there exists a white vertex w in I',,_.. Let G be the
connected component of I';,_ with G 2 w. Then by the condition of this
lemma, we have G C IntD. Thus the condition w(I' N IntD) < 1 implies
w(G) = 1. This contradicts Lemma 4.1. Hence IntD does not contain any
white vertex in I';,_..

Suppose that I';,_- N D # (. Then we shall show that the set I",,_. N D
consists of rings and non simple hoops. Let e be an internal edge (possibly
a ring or a hoop) of label m — ¢ intersecting the disk D. Since all the white
vertices on D are contained in I'y,1¢, the condition 9D C T, implies
e C IntD. Since IntD does not contain any white vertex in I';,,_., the edge
e is a ring or a hoop. Thus by Assumption 4, the curve e is a ring or a non
simple hoop.

Since w(I' N IntD) < 1, by Lemma 4.2 we can eliminate each ring and
non simple hoop in IntD. Hence the chart I' can be modified to a minimal
chart IV by C-moves in IntD such that I}, . ND = 0. O

Let I' be a chart, and m a label of I'. An edge of label m is called a
feeler of a k-angled disk D of T'y, if the edge intersects N — 9D where N is
a regular neighborhood of 9D in D.

Let T" be a chart, and D a k-angled disk of I'y,. If any feeler of D of
label m is a terminal edge, then D is called a special k-angled disk.

LEMMA 4.4. Let T' be a minimal chart, and m a label of I'. Let D
be a special k-angled disk of Iy, with at least one feeler ey. Let wy be
the white vertex in ey, and wo,ws, -+ ,wy, the other white vertices on 0D
lying anticlockwise in this order. Suppose that all of wy,wa, -+ ,wy are
contained in Ty e for some e € {+1,—1}. Let a11,b11 be internal edges
(possibly terminal edges) of label m + & at wy in D such that ai1, e, by lie
anticlockwise in this order (see Fig. 9(a)). If w(I' NIntD) < 1, then the
following five conditions hold:
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m+e& m+e

Fig. 9. The edge e; is a terminal edge of label m, and a11,b11 are internal edges of label
m + ¢ for some {41, —1}. The gray regions are disks F.

(a) If a1 2 w; or byy D w; for some i € {2,3,--- ,k}, then D does not
contain a feeler at w;.

) a11 Z wa and by # wy.

(¢) If a11 D w; for some i € {3,4,--- k— 1}, then b1y Z wi41.

(d) If bi1 > w; for some i € {3,4, -,k — 1}, then a1  wi—1.
)

bi1 Z we and a1y F wy.

PROOF. Let €],€),- -, e, be the internal edges of label m in 9D such
that de} = {w;, wi1} for i =1,2,---  k — 1 and e}, = {wy, w1 }. Without
loss of generality, we can assume that

(1) the terminal edge e; is oriented inward at w;.

Then by Assumption 2,
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(2) both of aj1,b1; are oriented inward at w; and

(3) both of e}, €} are oriented outward at w; (see Fig. 9(a)).
Since w(I' N IntD) < 1, by Lemma 4.3 we can assume that

(4) I'y_eND= 0 (mez-: Nay; =0 and e Nbip = @)

First, we shall show Statement (a). Now, suppose that a1; 3 w; for some
i€ {2,3,---,k}. Then the edge a1 separates the disk D into two disks.
One of the two disks contains the terminal edge e1, say E. Suppose that D
contains a feeler e at w;. Thene C Fore ¢ E.

If e C E (see Fig. 9(b)), then by (4) and Lemma 3.3(d) the chart I is
not minimal. This contradicts the fact that I" is minimal. Thus e ¢ E (see
Fig. 9(c)).

By (2), the edge aj; is oriented outward at w;. Thus by Assumption 2,
the edge €] is oriented inward at w;. Hence by (1),(4) and Lemma 3.3(a)
the chart I' is not minimal. This contradicts the fact that I' is minimal.
Therefore D does not contain a feeler at w;.

Similarly if b1; 3 w;, then we can show that D does not contain a feeler
at w;. Thus Statement (a) holds.

Next, we shall show Statement (b). If aj; 5 wa, then by Lemma 4.4(a)
the disk D does not contain a feeler at we. Thus the curve €} U aj; bounds
a lens whose interior contains at most one white vertex. This contradicts
Lemma 3.1. Thus a1 Z ws.

Similarly we can show b1; Z wg. Thus Statement (b) holds.

Next, we shall show Statement (c). Now, suppose that a;; > w; for
some i € {3,4,--- .k —1}. We shall show by; Z w;t1. If bj1 © w;y1, then
by Lemma 4.4(a), the disk D contains neither a feeler at w; nor a feeler at
wit1 (see Fig. 9(d)).

Now, by (1), the terminal edge e; is oriented inward at w;. Since the
edge e} is oriented inward at w; or w;41, the chart T' is not minimal by (4)
and Lemma 3.3(a). This contradicts the fact that I' is minimal. Therefore
b11 Z wit+1. Thus Statement (c) holds.

Similarly we can show Statement (d).

Finally, we shall show Statement (e). Suppose bj; 3 we. Then by
Lemma 4.4(a), the disk D does not contain a feeler at ws (see Fig. 9(e)).
Since the terminal edge e; is oriented inward at w; by (1), and since the
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edge €] is oriented inward at ws by (3), the chart T" is not minimal by (4)
and Lemma 3.3(a). This contradicts the fact that I'" is minimal. Therefore
b1 # wo.

Similarly we can show aj; # wg. Thus Statement (e) holds. [

5. Special 5-Angled Disks

In this section, we investigate a special 5-angled disk whose interior
contains at most one white vertex.

Let T" be a chart. Suppose that an object consists of some edges of T,
arcs in edges of I' and arcs around white vertices. Then the object is called
a pseudo chart.

LemMA 5.1 ([7, Corollary 5.8]). Let I' be a minimal chart. Let D be
a 2-angled disk of Ty, with at most one feeler. If w(I' N IntD) = 0, then a

regular neighborhood of D contains one of two pseudo charts as shown in
Fig. 10.

LEMMA 5.2. Let T be a minimal chart, and m a label of T'. Let D be a
special 5-angled disk of Ty, with at least one feeler e1. Suppose that all the
white vertices on 0D are contained in Uy, 4c for some e € {+1,—1}. Let wy
be the white vertex in e1. Let aj1,b11 be internal edges (possibly terminal
edges) of label m + ¢ at wy in D. If w(I' NIntD) < 1, then one of ay1,b11
contains a white verter in IntD.

PROOF. Let wsa,- - ,ws be the four white vertices on 9D different from
wy such that wq, wo, -+, ws lie anticlockwise in this order. Without loss of

(a) | b

Fig. 10. The 2-angled disks have no feelers where € € {+1, —1}.
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generality we can assume that a1, e1,b11 lie anticlockwise in this order. By
Assumption 2,

(1) neither aj; nor by; is a terminal edge.

Suppose that neither a1 nor by contains a white vertex in IntD. Then
by applying Lemma 4.4(b),(e) for the edge a11, we have a1 3 w3 or aj1 > wy.

If a11 © w3, then by (1) we have b1; 3 wy or by; 3 ws. This contradicts
Lemma 4.4(b),(c).

If a;1 > w4, then by (1) we have b;; > ws. This contradicts
Lemma 4.4(b).

Therefore we have a contradiction for both cases. Hence one of a1, b11
contains a white vertex in IntD. [J

Let I' be a chart, D a disk, and G a pseudo chart with G C D.
Let » : D — D be a reflection of D, and G* the pseudo chart obtained

from G by changing the orientations of all of the edges. Then the set
{G,G*,r(GQ),r(G¥)} is called the RO-family of the pseudo chart G.

LEMMA 5.3. LetT be a minimal chart, and m a label of T'. Let D be a
special 5-angled disk of Ty, with at least one feeler e1. Suppose that all the
white vertices on 0D are contained in Iy, 4 for some e € {+1,—1}. Let wy
be the white vertex in e1. Let aj1,b11 be internal edges (possibly terminal
edges) of label m + € at wy in D. Suppose that one of ai1,b11 contains a
white vertex in IntD, but the other contains a white vertex in 0D different
fromwy. Ifw(I'NIntD) < 1, then the disk D contains exactly one feeler ey .
Moreover, the disk D contains one of the RO-family of the pseudo chart as
shown in Fig. 11(a).

PROOF. Let ws,- - ,ws be the four white vertices on 9D different from
wy such that wy, ws, - -+, ws lie anticlockwise in this order. Let e}, e, - , et
be the five internal edges of label m in 9D with d¢; = {w;,wiy1} (i =
1,2,3,4) and def = {ws,w;}. Without loss of generality we can assume
that a11,e1,b11 lie anticlockwise in this order (see Fig. 11(b)).

Since w(I' N IntD) < 1, by Lemma 4.3 we can assume that

(1) I'y—eND = 1] (Fm_g Nail = @)

Without loss of generality, we can assume that the terminal edge e; is
oriented inward at wy. Then by Assumption 2,
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Fig. 11. Special 5-angled disks with one feeler e;.

(2) both of a11,b1; are oriented inward at wy,
(3) both of €}, et are oriented outward at w.

Without loss of generality, we can assume that the edge b11 contains a white
vertex in IntD, say wg. Thus by the condition of this lemma, the edge a1y
contains a white vertex in dD different from w;. Hence by Lemma 4.4(b),(e),
we have a1 D w3 or a1 O wy.

We shall show that a;; > ws. If a;; > wy, then by Lemma 4.4(a) the
disk D does not contain a feeler at wy. Hence by (1) and Lemma 3.3(a)
the internal edge €} is oriented from w4 to ws (because if not, then the
two edges eq, €} are oriented inward at wi,ws, respectively. Thus by (1)
and Lemma 3.3(a), the chart I' is not minimal. This is a contradiction.).
Moreover, by (1) and Lemma 3.3(b), the edge €/ is middle at ws. Hence
by Assumption 2, the disk D does not contain a feeler at ws. Thus by the
definition of the chart, the internal edge ef, is oriented from ws to w;. Hence
the edge e} must be oriented inward at w; (see Fig. 11(c)). This contradicts
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(3). Thus a1; > ws.
Similarly, by (1) and Lemma 3.3(a),(b), we can show that the disk D
contains neither feeler at ws nor feeler at wy, and

(4) the internal edge €4 is oriented from w3 to wy, and is middle at wa,
(5) the internal edge €/ is oriented from wy to ws (see Fig. 11(d)).

Let e4 be an internal edge (possibly a terminal edge) of label m + ¢ at wy
in D. Then by (4),

(6) the edge ey is oriented inward at wg4, but not middle at wy.

Thus by Assumption 2, we have e4 > ws or e4 > wg.

We shall show that e4 > wg. If e4 © ws, then the disk D does not contain
a feeler at ws by Lemma 4.4(b),(e). Thus there are three consecitive edges
e, eq, €5 at ws such that €}, e are oriented inward at ws by (3) and (5), but
ey is oriented outward at ws by (6). This contradicts the definition of the
chart. Hence e4 > wg.

Let eg be an internal edge (possibly a terminal edge) of label m + ¢ at
wg different from by, eq. Then by (2) and (6),

(7) the edge eg is oriented inward at wg.

We shall show that the disk D does not contain a feeler at ws. If D
contains a feeler at ws, then two internal edges e, e’ of label m + ¢ at ws
in D contain white vertices in IntD by Assumption 2. Hence the condition
w(IntD) < 1 implies that the two edges e, ¢’ contain the same white vertex
wg. Thus there exist four internal edges bi1,eq, e, €’ of label m + ¢ at wg.
This contradicts the definition of the chart. Hence D does not contain a
feeler at ws.

Let e5 be an internal edge (possibly a terminal edge) of label m + ¢ at
ws in D. Since both of €}, ef are oriented inward at ws by (3) and (5), the
edge e5 is oriented inward at ws. Thus by (7), we have e; # eg. Hence both
of es, eg are terminal edges.

Moreover by Assumption 2, we can show that the disk D does not con-
tain a feeler at wy and there exists a terminal edge of label m+¢ at wy in D.
Therefore the disk D contains the pseudo chart as shown in Fig. 11(a). O

LEMMA 5.4. Let I' be a minimal chart, and m a label of I'. Let D
be a special 5-angled disk of Ty, with at least one feeler. Suppose that all
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the white vertices on 0D are contained in T'pt. for some e € {+1,—1}. If
w(I'NIntD) < 1, then the disk D contains exactly one feeler. Moreover,
the disk D contains one of RO-families of the two pseudo charts as shown

in Fig. 11(a),(e).

PROOF. Let e; be a feeler of D, and w; the white vertex in e;. Let
wa, - -+ ,ws be the four white vertices on 0D different from w; such that
w1, we, -+ ,ws lie anticlockwise in this order. Let ai1,b11 be internal edges
(possibly terminal edges) of label m + € at w; such that a1y, e1,b1;1 lie an-
ticlockwise in this order (see Fig. 11(b)). By Lemma 5.2, one of aji,bi;
contains a white vertex in IntD. Without loss of generality, we can assume
that the edge by contains a white vertex in IntD, say wg. Moreover, by
Assumption 2, the edge a1 is not a terminal edge. Hence either a1 contains
a white vertex in IntD, or a1 contains a white vertex in 0D different from
w1.

If @11 contains a white vertex in 9D different from w1, then by Lemma 5.3
the disk D contains one of the RO-family of the pseudo chart as shown in
Fig. 11(a).

Suppose that a1 contains a white vertex in IntD. Since w(I'NIntD) < 1,
both of aq1,b11 contain the same white vertex wg in IntD. Thus a1 U byp
bounds a 2-angled disk in D. Hence by Lemma 5.1, the 2-angled disk has
no feeler.

Finally we shall show that D has exactly one feeler. If D has another
feeler ey at some w; (i = 2,3,4,5), then D has at least two feelers. Hence by
Lemma 5.2 and Lemma 5.3, the two internal edges e, ¢’ of label m + ¢ at w;
in D contain white vertices in IntD. However, the condition w(I'NIntD) < 1
implies that there are four edges ai1,b11,e,€ of label m + ¢ at wg. This
contradicts the definition of the chart. Thus D has exactly one feeler e;.
Hence D contains the pseudo chart as shown in Fig. 11(e). O

From the above three lemmas, we have the following corollary:

COROLLARY 5.5. Let I’ be a minimal chart, and m a label of I'. Let D
be a special 5-angled disk of T'y,. Suppose that all the white vertices on 0D
are contained in Uy, yc for some e € {+1,—1}. Then we have the following:

(a) If the disk D contains at least one feeler, then w(I' NIntD) = 1.
(b) If the disk D contains at least two feelers, then w(I'’ N IntD) = 2.
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6. Special 4-Angled Disks

In this section, we investigate a 4-angled disk whose interior contains at
most one white vertex. By the similar way of the proof of Lemma 5.2, we
can show the following lemma:

LEMMA 6.1. Let ' be a minimal chart, and m a label of I'. Let D be a
special 4-angled disk of Ty, with at least one feeler e1. Suppose that all the
white vertices on 0D are contained in Uy, 4c for some e € {+1,—1}. Let wy
be the white vertexr in e1. Let ai1,b11 be internal edges (possibly terminal
edges) of label m + ¢ at wy in D. If w(I' NIntD) < 1, then one of a1, b1y
contains a white verter in IntD.

By the similar way of the proof of Lemma 5.4, we can show the following
lemma:

LEMMA 6.2. Let I' be a minimal chart, and m a label of I'. Let D
be a special 4-angled disk of 'y, with at least one feeler. Suppose that all
the white vertices on 0D are contained in I'yic for some e € {+1,—1}. If
w(T NIntD) < 1, then the disk D contains exactly one feeler. Moreover,
the disk D contains one of RO-families of the two pseudo charts as shown
in Fig. 12.

From the above two lemmas, we have the following corollary:

COROLLARY 6.3. Let I’ be a minimal chart, and m a label of I'. Let D

Fig. 12. Special 4-angled disks with one feeler.
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be a special 4-angled disk of I'y,. Suppose that all the white vertices on 0D
are contained in I'y,o. for some e € {+1,—1}. Then we have the following:

(a) If the disk D contains at least one feeler, then w(I' NIntD) = 1.

(b) If the disk D contains at least two feelers, then w(I' NIntD) = 2.
7. Cases of the Graphs as Shown in Fig. 13(a),(c)

In this section, we shall show that if I is a minimal chart of type (m; 5, 2),
then the graph I';, contains neither graphs as shown in Fig. 13(a),(c).

LemMA 7.1 ([11, Lemma 3.4]). Let I' be a minimal chart, and m a
label of T'. Let G be a connected component of I'y,. If G contains exactly
five white vertices, and if G has no loop, then G is one of nine graphs as
shown in Fig. 2 and Fig. 13.

LEMMA 7.2 ([13, Lemma 7.2(a),(c)]). Let I' be a minimal chart, and
m a label of T'. Let G be a connected component of Ty, with w(G) = 5.
Then we have the following:

(a) If G is the graph as shown in Fig. 13(a) (resp. Fig. 13(b)), then G
is one of the RO-family of the graph as shown in Fig. 14(a) (resp.
Fig. 14(b)).

(b) If G is the graph as shown in Fig. 13(d) (resp. Fig. 15(e)), then G
is one of the RO-family of the graph as shown in Fig. 14(c) (resp.
Fig. 14(d)).

LEMMA 7.3 ([13, Lemma 3.6(a)]). Let I' be a minimal chart, and m
a label of I'. Let D be a 2-angled disk of I',, without feelers, and wi,wo
the white vertices in OD. Let ey, es be the internal edges (possibly terminal
edges) of label m at wy,ws, respectively, such that ey ¢ D and es ¢ D. Sup-
pose that the two edges ey, eq are oriented inward (resp. outward) at wy,ws,
respectively (see Fig. 15(a) and (b)). Then we have w(I’ NIntD) > 1.

LEMMA 7.4. LetT be a minimal chart of type (m;5,2). Then I'y, does
not contain the graph as shown in Fig. 13(a).
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Fig. 13. (a),(b),(c) Graphs with three black vertices. (d),(e),(f),(g) Graphs with one
black vertex.

(a) (b) (©) (d)

Fig. 14. Connected components of I';,, with five white vertices.

PROOF. Suppose that I',, contains the graph as shown in Fig. 13(a),
say G. Then G separates the 2-sphere S? into three disks. One of the three
disks is a 2-angled disk, say D;. Let Do, D3 be the other disks. Then D,
and Ds are special 5-angled disks. Since one of Ds, D3 has at least two
feelers, by Corollary 5.5(b) we have
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Fig. 15. 2-angled disks without feelers.

(1) w(I'NIntDy) 2 2 or w(I' N IntD3) = 2.

By Lemma 7.2(a), the graph G is one of the RO-family of the graph
as shown in Fig. 14(a). Without loss of generality, we can assume that
the graph G is the graph as shown in Fig. 14(a). Let wi,wy be the two
white vertices in 0D;1. Let eq,es be internal edges of label m at wi, wo,
respectively, with e; ¢ 0D and e ¢ 0D;. Then the two edges e, es
are oriented inward at wi, wa, respectively. Thus by Lemma 7.3, we have
w(I'NIntD;) = 1. Hence by (1), we have

7T=wl) = w(G) +wNIntD;)+ w(l'NIntDy) + w(I' N IntD3)
> 54+1+2=38.

This is a contradiction. Therefore I';, does not contain the graph as shown
in Fig. 13(a). O

LEMMA 7.5. LetT be a minimal chart of type (m;5,2). Then Iy, does
not contain the graph as shown in Fig. 13(c).

PROOF. Suppose that I',, contains the graph as shown in Fig. 13(c),
say G. Then G separates the 2-sphere S? into three disks. Let Dy, Do, D3
be the three disks. Then Di, Ds, D3 are special 4-angled disks. Without
loss of generality, we can assume that D; has at least one feeler. Then D,
has one feeler or two feelers.

If Dy has two feelers, then one of Do, D3 has one feeler. Thus by Col-
orally 6.3, we have w(I'NIntD;) = 2 and (w(I'NIntDy) = 1 or w(I'NIntD3) =
1). By the similar way of the proof of Lemma 7.4, we have a contradiction.
Thus D, has exactly one feeler.
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Since D; has exactly one feeler, one of Do, D3 has at least one feeler.
If one of Do, D3 has exactly two feelers, then we have the same contra-
diction as above. Hence both of Dy, D3 have exactly one feeler. Thus by
Colorally 6.3(a), we have w(I' N IntD;) = 1 for i = 1,2,3. Hence

T=wl) = wG)+wINntD;)+ w( NIntDy) + w(I' N IntDs3)
> 5414+1+1=8.

This is a contradiction. Therefore I',, does not contain the graph as shown
in Fig. 13(c). O

8. Case of the Graph as Shown in Fig. 13(b)

In this section, we shall show that if I is a minimal chart of type (m; 5, 2),
then the graph I';, does not contain the graph as shown in Fig. 13(b).

LeEMMA 8.1 ([14, Lemma 4.2(a)]). LetI' be a minimal chart, and m a
label of T'. Let D be a special 3-angled disk of I, with at most two feelers.
If w(I' N IntD) = 0, then a reqular neighborhood of D contains one of the
RO-families of the two pseudo charts as shown in Fig. 16.

LEMMA 8.2. LetT be a minimal chart of type (m;5,2). Then Iy, does
not contain the graph as shown in Fig. 13(b).

PROOF. Suppose that I}, contains the graph as shown in Fig. 13(b),
say G. Then G separates the 2-sphere S? into three disks. One of the three
disks is a 3-angled disk, say Dj. One of the three disks is a 4-angled disk,

@ Q (b)

mteé

Fig. 16. The 3-angled disks have no feelers where m is a label, € € {+1,—1}.
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say Dy. The last one is a 5-angled disk, say Dj3. For the disk Ds, there are
four cases: (i) D3 has no feeler, (ii) D3 has exactly one feeler, (iii) D3 has
exactly two feelers, (iv) D3 has exactly three feelers.

Case (i). Since D3 has no feeler, the 3-angled disk D; has exactly
one feeler and the 4-angled disk D2 has exactly two feelers. Thus by Corol-
lary 6.3(b) and Lemma 8.1, we have w(I'NIntD;) 2 1 and w(I'NIntDy) = 2.
Hence, we have

7=w(l) w(G) +w NIntD;) + w(I' N IntDy)

z
> 5414+2=8.
This is a contradiction. Thus Case (i) does not occur.

Case (ii). Since the 5-angled disk D3 has exactly one feeler, by Corol-
lary 5.5(a) we have w(I' N IntD3) = 1. Moreover, the 4-angled disk Ds has
one feeler or two feelers.

If Dy has exactly two feelers, then by Corollary 6.3(b) we have w(I' N
IntDjy) 2 2. Thus we have the same contradiction of Case (i).

If D5 has exactly one feeler, then the 3-angled disk D; has exactly one
feeler. Thus by Corollary 6.3(a) and Lemma 8.1, we have w(I' N IntDy) = 1
and w(I' N IntD3) = 1. By the similar way of the proof of Lemma 7.5, we
have a contradiction.

Therefore both cases do not occur. Thus Case (ii) does not occur.

Case (iii). Since the 5-angled disk D3 has exactly two feelers, one of
the disks Di, Do has exactly one feeler. Thus by Corollary 5.5(b), Corol-
lary 6.3(a) and Lemma 8.1, we have w(I'NIntD3) =2 2 and (w(I'NIntD;) = 1
or w(I'NIntDy) = 1). Hence we have the same contradiction of Case (i).
Thus Case (iii) does not occur.

Case (iv). Since the 5-angled disk D3 has exactly three feelers, by
Corollary 5.5(b) we have w(I' N IntD3) = 2. Since w(I') = 7, we have
w(I'NIntD3) = 2 and w(I' N IntDy) = 0.

By Lemma 7.2(a), the graph G is one of the RO-family of the graph as
shown in Fig. 14(b). Without loss of generality, we can assume that the
graph G is the graph as shown in Fig. 14(b). Thus the chart I' contains
the pseudo chart as shown in Fig. 17. We use the notations as shown in
Fig. 17, where ey, e2, e3 are internal edges (possibly terminal edges) of label
m+1 oriented outward at w1, we, w3 in Dy, respectively. Hence the condition
w(I'NIntDy) = 0 implies one of e; or ey is a terminal edge. However neither
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Fig. 17. The graph as shown in Fig. 13(b). The gray region is the 4-angled disk Ds.

e1 nor eg is middle at w; or wa (see Fig. 17). This contradicts Assumption 2.
Thus Case (iv) does not occur.

Therefore all four cases do not occur. Hence I',,, does not contain the
graph as shown in Fig. 13(b). O

9. Case of the Graph as Shown in Fig. 13(d)

In this section, we shall show that if I is a minimal chart of type (m; 5,2),
then the graph I'), does not contain the graph as shown in Fig. 13(d).

LEMMA 9.1. LetT be a minimal chart of type (m;5,2). Then Ty, does
not contain the graph as shown in Fig. 13(d).

PROOF. Suppose that I}, contains the graph as shown in Fig. 13(d),
say G. By Lemma 7.2(b), the graph G is one of the RO-family of the graph
as shown in Fig. 14(c). Without loss of generality, we can assume that the
graph G is the graph as shown in Fig. 14(c). We use the notations as shown
in Fig. 18(a), where wy,ws, -+ , w5 are five white vertices, and

(1) eg,eq are internal edges of label m oriented outward at wq, wa, respec-
tively.

Let Dy, D5 be special 5-angled disks of T',,, with IntD; NIntDs = () such
that the disk Dy contains the point at infinity, co. If necessary, we move
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€5

Fig. 18. The graphs as shown in Fig. 13(d). (c) The edge e is oriented from w; to ws.
(d) The edge e is oriented from ws to ws.

the point co by Assumption 5, and if necessary, we reflect the chart I', we
can assume that the disk D; has one feeler. Thus by Corollary 5.5(a), we
have

(2) w(ITNIntDy) 2 1.

Let D3, Dy be special 2-angled disks of I';,, with dD3 3 wy and 0Dy4 3 wy.
Then by (1) and Lemma 7.3, we have w(I' N IntD3) = 1. Hence by (2), the
condition w(I') = 7 implies that

(3) w(I'NIntD;) =1, w(I'NIntDy) = 0, w(I' N IntDy) = 0.

Thus by Lemma 5.1, a regular neighborhood of Dy contains the pseudo
chart as shown in Fig. 10(b). Therefore, the chart I" contains the pseudo
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chart as shown in Fig. 18(b). We use the notations as shown in Fig. 18(b),
where e}, e (i = 1,2,3,4) are internal edges (possibly terminal edges) of

label m + 1 at w; with e, C D; and €} C Da,

(4) ¢b, el are oriented inward at ws, but not middle at w3, and
neither e} nor €} is middle at wy. Thus by Assumption 2,

(5) none of ef, e, e}, €] are terminal edges.

Since w(I'NIntD;) = 1 by (3) and since €/ is not a terminal edge by (5),
by Lemma 5.4 the disk D; contains the pseudo chart as shown in Fig. 11(e)
(see Fig. 18(c),(d)). Let e, €’ be internal edges of label m in D3 with e C Dy
and €' C Djy. Then there are two cases: (i) e is oriented from w; to wy (see
Fig. 18(c)), (ii) e is oriented from wy to w; (see Fig. 18(d)).

Case (i). By looking around the white vertex wy, we have that €’ is
oriented from wo to wy, and

(6) €, is oriented inward at ws, but not middle at ws.

Thus by (5) and Assumption 2, none of €5, €5, € are terminal edges. More-
over, by (4) and (6), the two edges ¢, and e} are oriented inward at wg, ws,
respectively. Hence, for the edge e}, we must have e; = ¢/;. However, there
exists a lens. This contradicts Lemma 3.2. Thus Case (i) does not occur.

Case (ii). Looking around the white vertex wy, we have that €’ is
oriented from wy to ws, and

(7) € is oriented inward at wsg, but not middle at ws.

Now w(I' N IntD2) = 0 by (3). By the similar way of the proof of Case (i)

in this lemma, for the edge €4, we must have e = €j. However, there exists

a lens. This contradicts Lemma 3.2. Thus Case (ii) does not occur.
Therefore both two cases do not occur. Hence I',,, does not contain the

graph as shown in Fig. 13(d). O
10. IO-Calculation

In this section, we review 10-Calculation.
Let I' be a chart, and v a vertex. Let o be a short arc of I in a small
neighborhood of v such that v is an endpoint of «. If the arc « is oriented
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to v, then « is called an inward arc, and otherwise « is called an outward
arc.

Let T" be an n-chart. Let F' be a closed domain with 0F C I'j,_q UT';, U
[ky1 for some label k of T', where I’y = () and T, = (). By Condition (iii) for
charts, in a small neighborhood of each white vertex, there are three inward
arcs and three outward arcs. Also in a small neighborhood of each black
vertex, there exists only one inward arc or one outward arc. We often use
the following fact, when we fix (inward or outward) arcs near white vertices
and black vertices:

(%) The number of inward arcs contained in F' NIy is equal to the number
of outward arcs in FNT.

When we use this fact, we say that we use [0-Calculation with respect to
I'y in F. For example, in a minimal chart I', consider the pseudo chart as
shown in Fig. 19 where

(1) Fis a 4-angled disk of T'y1s without feelers for some 6 € {+1, —1},

(2) eq,e2,e4 are internal edges (possibly terminal edges) of label k oriented
outward at wi, ws, wy, respectively,

(3) es is an internal edge (possibly a terminal edge) of label k& oriented
inward at ws,

(4) neither es nor ey is middle at ws or wy.

Then we can show that w(I'NIntF) > 1. Suppose w(I'NIntF) = 0. By (4)
and Assumption 2,

Fig. 19. The gray region is the 4-angled disk F' where k is a label, § € {+1, —1}.
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(5) neither es nor ey is a terminal edge.

If both two edges ej,e3 are a terminal edge, then by (2) and (3) the
number of inward arcs in F' NI} is two, but the number of outward arcs
in F NIy is four. This contradicts the fact (x). If e; is a terminal edge,
but e3 is not a terminal edge, then by (2) and (3) the number of inward
arcs in F'N T} is two, but the number of outward arcs in F' NI, is three.
This contradicts the fact (x). Similarly for the other cases we have the same
contradiction. Thus w(I' N IntF) > 1. Instead of the above argument, we
say that

we have w(I' NIntF) > 1 by I0-Calculation with respect to T'y, in F.
11. Case of the Graph as Shown in Fig. 13(e)

In this section, we shall show that if I is a minimal chart of type (m; 5, 2),
then the graph I';, does not contain the graph as shown in Fig. 13(e).

Let I and IV be C-move equivalent charts. Suppose that a pseudo chart
X of T is also a pseudo chart of IV. Then we say that I' is modified to IV by
C-mowes keeping X fized. In Fig. 20, we give examples of C-moves keeping
pseudo charts fixed.

Let I' be a chart, and X a subset of I'. Let

¢(X) = the number of crossings in X.

Let D be a k-angled disk of I',;, for a minimal chart I'. The pair of
integers (w(I' N IntD), c(9D)) is called the local complexity with respect to
D, denoted by £e(D;T'). Let S be the set of all minimal charts each of which

Fig. 20. C-moves keep thicken figures fixed.
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can be moved from I" by C-moves in a regular neighborhood of D keeping
0D fixed. The chart I' is said to be locally minimal with respect to D if its
local complexity with respect to D is minimal among the charts in S with
respect to the lexicographic order.

LeEMMA 11.1 ([8, Theorem 1.1]). Let I' be a minimal chart. Let D be
a 2-angled disk of I'y, with at most one feeler such that I" is locally minimal
with respect to D. If w(I' NIntD) < 1, then a regular neighborhood of D
contains an element in the RO-families of the five pseudo charts as shown
i Fig. 10 and Fig. 21.

LEMMA 11.2. LetT be a minimal chart of type (m;5,2). Then T, does
not contain the graph as shown in Fig. 13(e).

PROOF. Suppose that T, contains the graph as shown in Fig. 13(e),
say G. Then G separates the 2-sphere S? into four disks. One of the four
disks is a b-angled disk, say Di. One of the four disks is a 4-angled disk,
say Do. One of the four disks is a 3-angled disk, say D3. Let D4 be the last
disk.

Since one of Dy, D3 has one feeler, by Corollary 5.5(a) and Lemma 8.1
we have

(1) w(TNIntD;) 21 or w(I' NIntD3) = 1.

(a) .

m+Q

(b) m :%; E (©) m
\(/ \(/

mte mte

Fig. 21. The 2-angled disk (a) has one feeler, the others do not have any feelers.
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Thus the condition w(I') = 7 implies that w(I’ N IntDy) < 1. We can
assume that I' is locally minimal with respect to D4. Hence by Lemma 11.1
a regular neighborhood of D, contains one of the RO-families of the three
pseudo charts as shown in Fig. 10(b) and Fig. 21(b),(c). Moreover, by
Lemma 7.2(b), the graph G is the graph as shown in Fig. 14(d). Thus the
chart I' contains one of the RO-families of the three pseudo charts as shown
in Fig. 22, where the pseudo charts as shown in Fig. 22(b),(c) are contained
in one of the pseudo charts as shown in Fig. 21(b),(c). Without loss of
generality, we can assume that the chart I' contains one of the three pseudo
charts as shown in Fig. 22.

Suppose that the chart I" contains the pseudo chart as shown in
Fig. 22(b). Then we have w(I' N IntD4) = 1. Moreover, we have w(I' N
IntD3) = 1 by considering as F = Dy, k = m + 1 and § = —1 in the
example of IO-Calculation in Section 10. Hence by (1)

7=w(l)
=w(G) +w('NIntDy) + w( NIntD2) + w(I' N IntD3) + w(I' N IntDy)
>5414+141=S8.

This is a contradiction. Thus I' does not contain the pseudo chart as shown
in Fig. 22(b).

Similarly, we can show that I' does not contain the pseudo chart as
shown in Fig. 22(c).

Fig. 22. The graphs as shown in Fig. 13(e). (a) The two internal edges in 9D are oriented
from wa to ws. (b) dD4 is oriented anticlockwise. (c) Dy is oriented clockwise.
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Now, suppose that the chart I' contain the pseudo chart as shown in
Fig. 22(a). We use the notations as shown in Fig. 22(a), where ¢; (i =
1,2,3,4) is an internal edge (possibly a terminal edge) of label m + 1 at w;
in the 4-angled disk Do, and

(2) the three edges e, ea,e3 are oriented outward at wi,wa, w3, respec-
tively,

none of e, es, e3, e4 are middle at w1y, we, w3 or wy. Thus by Assumption 2,
(3) none of eq, ea, €3, e4 are terminal edges.

Hence by IO-Calculation with respect to I'y,41 in Do, we have w(I' N
IntDy) 2 1. Thus by (1), the condition w(I') = 7 implies that

(4) w(I'NIntDy) = 1.

Let ws be the white vertex in IntDy. Then for the edge ey4, there are
four cases: (i) eq = ey, (ii) e4 = eg, (iii) e4 = ez, (iv) €4 > ws.

Case (i) and Case (iii). There exists a lens. This contradicts
Lemma 3.2. Hence neither Case (i) nor Case (iii) occurs.

Case (ii). By (2) and (3), both of e, e3 contain the white vertex ws.
Thus one of the edges e1, e3 of label m + 1 intersects the edge e4 of label
m + 1. This contradicts the definition of the chart. Hence Case (ii) does
not occur.

Case (iv). Since e4 contains the white vertex ws, one of the three
edges e, ez, e3 does not contain white vertex ws. Thus by (4), one of the
three edges ej, €2, e is a terminal edge. This contradicts (3). Hence Case
(iv) does not occur.

Therefore all the four cases do not occur. Thus I' does not contain the
pseudo chart as shown in Fig. 22(a). Hence I';,, does not contain the graph
as shown in Fig. 13(e). O

12. Case of the Graph as Shown in Fig. 13(f)

In this section, we shall show that if I is a minimal chart of type (m; 5, 2),
then the graph I, does not contain the graph as shown in Fig. 13(f).

LEMMA 12.1. LetT be a minimal chart of type (m;5,2). IfT'y, contains
the graph as shown in Fig. 13(f), then I contains one of RO-families of the
three pseudo charts as shown in Fig 23(a),(b),(c).
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Fig. 23. The graphs as shown in Fig. 13(f).

PROOF. Let G be the graph in T',, as shown in Fig. 13(f). We use
the notations as shown in Fig. 23(d), where w; is the BW-vertex, and
e, ey, eh, e, e, e, €} are seven internal edges of label m with €] Nef 3wy,
ehne,nessws, el NebNes > ws, and de) = {wq, ws}.

Since the graph G separates the 2-sphere S? into four disks. Two of the
four disks are 4-angled disks, say D1, Ds. Two of the four disks are 3-angled
disks, say D3, D4. Without loss of generality we can assume that 0D 3 wy,
0Dy > ws and D4 contains the point at infinity, co (see Fig. 23(d)).

Without loss of generality we can assume that the terminal edge of label
m at w; is oriented inward at wy. Then by Assumption 2,

(1) both of €],/ are oriented outward at w; (see Fig. 23(d)).

There are two cases: (i) one of €], e/ is middle at wy or ws, (ii) neither €}
nor e/ is middle at wy or ws.

Case (i). If necessary we move the point co in D3, we can assume
that €| is middle at we. By Condition (iii) of the definition of a chart,
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both of €, e} are oriented outward at ws. If necessary we reflect the chart
I, we can assume that the edge €} is oriented from w4 to ws. Since both
of €}, e/ are oriented inward at ws, the edge €} is oriented from ws to ws.
Moreover, since both of €, €4 are oriented inward at ws by (1), the edge ef
is oriented from ws to wy. Therefore I' contains the pseudo chart as shown
in Fig. 23(a).

Case (ii). One of €, €} is oriented inward at wy, and the other is
oriented outward at ws. If necessary we reflect the chart I', we can assume
that the edge €}, is oriented inward at wq, and the edge €/ is oriented outward
at ws.

Next, we shall show that ef is oriented outward at ws. If €} is oriented
inward at ws, then e} is oriented outward at ws (because, €] is oriented
inward at ws by (1)). Thus both of € and ef are oriented inward at ws.
Hence the edge € is oriented from ws to wy (see Fig. 23(e)). Thus, both of
0D3 and 9D, are oriented clockwise or anticlockwise. Hence, by Lemma 8.1,
we have w(I' N IntD3) = 1 and w(I' N IntDy4) = 1. Moreover, since one of
Dy and Dy is a 4-angled disk with one feeler, by Corollary 6.3(a) we have
w('NIntD;) 2 1 or w(I'NIntDg) = 1. Thus

7

w(I')
=w(G) +w(NIntDy) + w(T' NIntDs) + w(I' NIntD3) + w(I' N IntDy)
25+1+14+1=8.

This is a contradiction. Hence e} is oriented outward at ws.

Since €] is not middle at ws, the edge eg’ is oriented inward at ws. If
necessary we move the point co in D3, we can assume that the edge €/ is
oriented from wy to ws. Therefore, if Dy (resp. D) has one feeler, then T’
contains the pseudo chart as shown in Fig. 23(b) (resp. Fig. 23(c)). O

PROPOSITION 12.2. Let I' be a minimal chart of type (m;5,2). Then
T, does not contain the graph as shown in Fig. 15(f).

PROOF. Suppose that I',, contains the graph as shown in Fig. 13(f),
say G. Since the graph G separates the 2-sphere S? into four disks. Two
of the four disks are 4-angled disks, say D1, Ds. Two of the four disks are
3-angled disks, say Ds, Dy. Without loss of generality we can assume that
Dy contains the point at infinity, co (see Fig. 23(d)). By Lemma 12.1, we



84 Teruo NAGASE and Akiko SHIMA

can assume that I' contains one of the three pseudo charts as shown in
Fig. 23(a),(b),(c).

Suppose that I' contains the pseudo chart as shown in Fig. 23(a). We
use the notations as shown in Fig. 23(a), where

(1) es,eq,e5 are internal edges (possibly terminal edges) of label m + 1
oriented outward at ws, wy, w5 in Dy, respectively,

but none of es, e4, e5 are middle at ws, w4 or ws. Thus by Assumption 2,
(2) none of e3, eyq, e5 are terminal edges.

Hence by IO-Calculation with respect to I'y,41 in Dy, we have w(I' N
IntDy) = 2. Moreover, since one of Dj, Dy contains one feeler, by Corol-
lary 6.3(a) we have w(I' NIntD;) = 1 or w(I' NIntDs) = 1. Thus

7 = w()
2 w(G)+wNIntDy) + w(I' NIntDy) + w(I' N IntDy)
> 54+1+2=38.

This is a contradiction. Hence I' does not contain the pseudo chart as shown
in Fig. 23(a).

Suppose that I' contains the pseudo chart as shown in Fig. 23(b). With-
out loss of generality, we can assume that D; has one feeler. Thus by
Corollary 6.3(a) we have w(I' N IntD;) = 1.

We use the notations as shown in Fig. 23(b), where

(3) e1,e9,e5 are internal edges (possibly terminal edges) of label m + 1
oriented outward at wy, ws, w5 in Da, respectively,

but neither es nor e5 is middle at wy or ws. Thus by Assumption 2,
(4) neither es nor ej is a terminal edge.

Hence by IO-Caclulation with respect to I'y,11 in D2, we have w(I' N
Inth) 2 1.

Since the boundary 0Dy is oriented anticlockwise, by Lemma 8.1 we
have w(I' N IntDy) = 1. Thus
w(l’)
w(G) +w( NIntDy) +w(I' N IntDa) + w(I' N IntDy)
5+14+141=28.

7

v v
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This is a contradiction. Hence I" does not contain the pseudo chart as shown
in Fig. 23(b).

Suppose that I" contains the pseudo chart as shown in Fig. 23(c). With-
out loss of generality, we can assume that D, has one feeler. Thus by
Corollary 6.3(a) we have w(I' N IntD9) = 1.

Since the boundary 0D, is oriented anticlockwise, by Lemma 8.1 we
have w(I' N IntDy) = 1. Hence the condition w(I") = 7 implies that

(5) w(l' NIntDy) = 0.

We use the notations as shown in Fig. 23(c), where ej,es,eq are in-
ternal edges (possibly terminal edges) of label m + 1 at wi, w3, wy in Dy,
respectively,

(6) e1,es are oriented outward at wy, ws, respectively,

but neither e3 nor e4 is middle at ws or wy. Thus by Assumption 2, neither
es nor ey is a terminal edge. Hence by (5) and (6), we have e3 = e4. However
there exists a lens. This contradicts Lemma 3.2. Thus I' does not contain
the pseudo chart as shown in Fig. 23(c).

Therefore we have a contradiction for all cases. Hence I',,, does not
contain the graph as shown in Fig. 13(f). O

13. Triangle Lemma

In this section, we review Triangle Lemma. These lemmas will be used
in the next section.

LeEMMA 13.1 ([6, Lemma 5.4]). If a minimal chart T' contains the
pseudo chart as shown in Fig. 24, then the interior of the disk D contains
at least one white vertex, where D is the disk with the boundary esUeqUe.

LEMMA 13.2 ([14, Lemma 4.2(b)]). Let T' be a minimal chart, and m
a label of I'. Let D be a special 3-angled disk of Iy, with at most two feelers.
Ifw(I'NIntD) = w4 NIntD) =1 for some e € {+1,—1}, then a regular
neighborhood of D contains one of the RO-families of the siz pseudo charts
as shown in Fig. 25.
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Fig. 24. The white vertices w; and ws are in Iy, N T'pyqe where € € {+1, —1}.

mte

Y

Fig. 25. (a),(b),(c),(d) 3-angled disks without feelers. (e),(f) 3-angled disks with one
feeler. Here, €,6 € {+1,—1}.

LeMMA 13.3 (Triangle Lemma) (]9, Lemma 8.3]).

(a) For a chart T, if there exists a 3-angled disk Dy of ', without feelers
in a disk D as shown in Fig. 26(a) and if w(I'NIntD;) = 0, then there
exists a chart obtained from I' by C-moves in D which contains the
pseudo chart in D as shown in Fig. 26(b).

(b) For a minimal chart T, if there exists a 3-angled disk Dy of 'y, without
feelers in a disk D as shown in Fig. 26(c), then w(I'NIntD;) > 1.
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Fig. 26. The gray region is the 3-angled disk D;. The thick lines are edges of label m,
and € € {+1,—-1}.

Fig. 27. The gray region is the 3-angled disk D;. The thick lines are edges of label m,
and € € {+1,—1}.

By the above lemma, we can show the following corollary by using C-II
moves and a C-III move:

COROLLARY 13.4. For a chart ', if there exists a 3-angled disk Dy of
T, without feelers in a disk D as shown in Fig. 27(a) and if w(I'NIntD;) =
0, then there exists a chart obtained from I' by C-mowves in D which contains
the pseudo chart in D as shown in Fig. 27(D).

LEmMA 13.5 ([14, Theorem 1.1]). There is no minimal chart of type
(4,3).

14. Case of the Graph as Shown in Fig. 13(g)

In this section, we shall show that if I is a minimal chart of type (m; 5, 2),
then the graph I'),, does not contain the graph as shown in Fig. 13(g).



88 Teruo NAGASE and Akiko SHIMA

Moreover, we shall show the main theorem.

Suppose that the graph I',, contains the graph as shown in Fig. 13(g).
Form now on throughout this section, we use the notations as shown in
Fig. 28, where

(a) wy,ws, - ,ws are five white vertices, and

(b) e1,ea, -+ ,e7 are seven internal edges of label m with de; = des =
{wi,wa}, Oez = {wo, w3}, Oes = {ws,ws}, Oes = {ws,ws}, Oeg =
de7 = {wy, ws},

(¢) Dy, Ds are special 2-angled disks with 9D = ejUey and D9 = egUer,

(d) Ds is the special 3-angled disk with 0D3 = eq U e5 U eg.

Fig. 28. The graph as shown in Fig. 13(g).

LEMMA 14.1. LetT be a minimal chart of type (m;5,2). IfT'y, contains
the graph as shown in Fig. 13(g), then Ty, contains one of RO-families of
the four graphs as shown in Fig. 29.

PrROOF. We use the notations as shown in Fig. 28. Without loss of
generality, we can assume that the terminal edge of label m at wy is oriented
inward at wy. Then by Assumption 2, both of eq, eo are oriented from w;
to wy. Thus the edge e is oriented form wy to ws. There are two cases: (i)
es is middle at ws, (ii) e3 is not middle at ws.

Case (i). Since e3 is middle at ws, both of ey, e5 are oriented outward
at ws. Hence

(1) es is oriented inward at ws.
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Fig. 29. The graphs as shown in Fig. 13(g).

If necessary we reflect the chart I', we can assume that eg is oriented
from wy to ws. Thus by (1), the edge e is oriented from ws to wy. Hence
'), contains the graph as shown in Fig. 29(a).

Case (ii). Since eg is not middle at ws, one of ey, e5 is oriented inward
at ws and the other is oriented outward at ws. If necessary we reflect the
chart I', we can assume that ey is oriented inward at ws and es5 is oriented
outward at ws. Thus

(2) e5 is oriented inward at ws.

If eg is oriented from wy to ws, then by (2) the edge ey is oriented from
ws to wy. Hence T, contains the graph as shown in Fig. 29(b).

If eg is oriented from ws to wy, then I',, contains one of the two graphs
as shown in Fig. 29(c),(d). O

LEMMA 14.2. LetT be a minimal chart of type (m;5,2). Then T, does
not contain the graph as shown in Fig. 29(c).

PROOF. Suppose that I, contains the graph as shown in Fig. 29(c),
say G. We use the notations as shown in Fig. 28 and Fig. 29(c).

Since dDs is oriented clockwise, since e4 is oriented outward at w4 and
since e5 is oriented inward at ws, by Lemma 11.1 we have w(I'NIntDy) = 2.
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Since 0Ds3 is oriented anticlockwise, by Lemma 8.1 we have w(I' N
IntD3) = 1. Thus we have

7T=wl) 2 w(G)+wlNIntDy)+ w(I' NIntD3)
= 54+2+1=8.

This is a contradiction. Therefore I',, does not contain the graph as shown
in Fig. 29(c). O

LEMMA 14.3. Let T be a minimal chart of type (m;5,2). Then T, does
not contain the graph as shown in Fig. 29(b).

PROOF. Suppose that Iy, contains the graph as shown in Fig. 29(b).
We use the notations as shown in Fig. 28 and Fig. 29(b).

By the similar way of the proof of Lemma 14.2, we have w(I'NIntDy) = 2.
Thus the condition w(I') = 7 implies that

(1) w(T' NIntD;) = 0 and w(I' N (S? — (D; U Dy U D3))) = 0.

Hence by Lemma 5.1, a regular neighborhood of D; contains the pseudo
chart as shown in Fig. 10(b) (see Fig. 30(a)).
We use the notations as shown in Fig. 30(a), where

(2) €}, €], e, e are internal edges (possibly terminal edges) of label m + 1
oriented inward at w1, wy, ws, wy, respectively,

(3) €, €l es, ek are internal edges (possibly terminal edges) of label m + 1
oriented outward at wo, we, w3, ws, respectively.

Moreover, none of €, €5, e5,er are middle at wy, w3 or ws. Thus by As-
sumption 2,

(4) none of €f, e, €4, ef are terminal edges.

Hence by (1),(2),(3), none of €], e, e}, €} are terminal edges. Thus for the
edge ef, we have ej = e]. However ey U el bounds a lens. This contra-
dicts Lemma 3.2. Therefore I';, does not contain the graph as shown in
Fig. 29(b). O

LEMMA 14.4. LetT be a minimal chart of type (m;5,2). IfT'y, contains
the graph as shown in Fig. 29(d), then w(I'NIntDy) = 0 and w(I'NIntD3) =
1.
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Fig. 30. The graphs as shown in Fig. 13(g). The gray region is the 3-angled disk D.

PrROOF. We use the notations as shown in Fig. 28 and Fig. 29(d). Since
0Ds is oriented anticlockwise, by Lemma 8.1 we have

(1) w(I'NIntD3) = 1.

Let e be the terminal edge of label m at wy. If e C Dp, then by
Lemma 5.1 we have w(I' N IntD;) = 1. Thus by (1) and w(I') = 7, we
have w(I' N IntD2) = 0 and w(I’ N IntD3) = 1.

Now, suppose e ¢ D;. We use the notations as shown in Fig. 30(b),
where

(2) €}, €], e, ef are internal edges (possibly terminal edges) of label m + 1
oriented inward at wiy, w1, w3, ws, respectively, and
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(3) €h,eh,es, e} are internal edges (possibly terminal edges) of label m +1
oriented outward at wa, wa, w3, wy, respectively.

Moreover, none of €, €5, e5, ey are middle at wy, w3 or wy. Thus by As-
sumption 2, none of the four edges €, €5, €4, ¢/ are terminal edges.

If w(I' N (S? — (D1 U Dy U D3))) = 0, then by (2) and (3) none of the
four edges €}, €/, €4, €L are terminal edges. Hence for the edge €}, we have
ey = e{. However, there exists a lens. This contradicts Lemma 3.2. Thus
w(I‘ N (52 — (D1 UDyU Dg))) Z 1.

Hence by (1) and w(I') = 7, we have w(I'NIntD2) = 0 and w(I'NIntD3) =
1.0

LEMMA 14.5. Let T be a minimal chart of type (m;5,2). Then T, does
not contain the graph as shown in Fig. 29(d).

PROOF. Suppose that I'y, contains the graph as shown in Fig. 29(d).
We use the notations as shown in Fig. 28 and Fig. 29(d).

Since 0Ds3 is oriented anticlockwise, by Lemma 13.2 and Lemma 14.4 a
regular neighborhood of D3 contains the pseudo chart as shown in Fig. 25(d).
Moreover, by Lemma 5.1 and Lemma 14.4 a regular neighborhood of Dy
contains the pseudo chart as shown in Fig. 10(b) (see Fig. 30(c)). Hence the
chart I' contains the pseudo chart as shown in Fig. 24. Thus by Lemma 13.1,
we have w(I'NIntD3) > 2. This contradicts Lemma 14.4. Thus we complete
the proof of Lemma 14.5. [

LEMMA 14.6. LetT be a minimal chart of type (m;5,2). IfT'y, contains
the graph as shown in Fig. 29(a), then w(I'NIntDy) = 1 and w(I'NIntD3) =
0.

PROOF. We use the notations as shown in Fig. 28 and Fig. 29(a). Since
0Ds is oriented anticlockwise, by Lemma 5.1 we have

(1) w(I'NIntDy) 2= 1.

Let e be the terminal edge of label m at w;. If e C D;, then by
Lemma 5.1 we have w(I' N IntD;) = 1. Thus by (1) and w(I') = 7, we
have w(I' N IntDy) = 1 and w(I' N IntD3) = 0.

Now, suppose e ¢ D;. We use the notations as shown in Fig. 30(d),
where
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(2) €, €l e, €5, €} are internal edges (possibly terminal edges) of label
m + 1 oriented inward at w1, wi, ws, w3, wy, respectively.

Moreover, none of ¢, e, e}, €4 are middle at w; or wz. Thus by Assump-
tion 2, none of the four edges e}, e/, e}, €4 are terminal edges. Thus by (2)
and by IO-Calculation with respect to I'y,11 in CI(S? — (D1 U Dy U D3)),
we have w(I'N (8?2 — (D; U D2 U D3))) = 1. Hence by (1) and w(T') = 7, we
have w(I' N IntD2) = 1 and w(I’ NIntD3) = 0. O

PROPOSITION 14.7. Let T' be a minimal chart of type (m;5,2). Then
Ty, does not contain the graph as shown in Fig. 13(g).

PROOF. Suppose that Iy, contains the graph as shown in Fig. 13(g).
Then by Lemma 14.1, the graph I',, contains one of RO-families of the
four graphs as shown in Fig. 29. Hence by Lemma 14.2, Lemma 14.3 and
Lemma 14.5, the graph I',, contains one of the RO-family of the graph as
shown in Fig. 29(a). Without loss of generality, we can assume that the
graph I, contains of the graph as shown in Fig. 29(a).

By Lemma 8.1 and Lemma 14.6, a regular neighborhood of D3 contains
the pseudo chart as shown in Fig. 16(b). Moreover, by Lemma 11.1 and
Lemma 14.6, a regular neighborhood of Dy contains one of the two pseudo
charts as shown in Fig. 21(b),(c). Hence there exists a 3-angled disk D of
I'g1 in Do U Ds.

Let wg be the white vertex in IntDs, and €’ the terminal edge of label
m+1 at wg. Since w(I'NIntD) = 0 by Lemma 14.6, a regular neighborhood
of D contains the pseudo chart as shown in Fig. 16(a). Hence ¢/ ¢ D (see
Fig. 30(e)). Thus I' contains the pseudo chart as shown in Fig. 27(a).
Thus by Corollary 13.4, there exists a minimal chart I obtained from T"
by C-moves which contains the pseudo chart as shown in Fig. 27(b) (see
Fig. 30(f)). Hence I' is C-move equivalnet to the minimal chart T” of type
(m;4,3). This contradicts Lemma 13.5. Hence I',,, does not contain the
graph as shown in Fig. 29(a).

Hence I, does not contains the graph as shown in Fig. 13(g). Therefore
we complete the proof of Proposition 14.7. [J

LeEMMA 14.8 ([9, Theorem 1.1]). There is no loop in any minimal
chart with exactly seven white vertices.
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Now, we shall show the main theorem.

PROOF OF THEOREM 1.1. Let I" be a minimal chart of type (m;5,2).

Suppose that there exists a connected component G of I';,, with w(G) = 5.
Then by Lemma 14.8, the graph G does not contain any loop. Thus by
Lemma 7.1, the graph G is one of nine graphs as shown in Fig. 2 and Fig. 13.

Hence the main theorem follows from the seven propositions (Lemma 7.4,
Lemma 7.5, Lemma 8.2, Lemma 9.1, Lemma 11.2, Proposition 12.2 and
Proposition 14.7). Therefore we complete the proof of the main theorem. O
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List of terminologies

k-angled disk
BW-vertex
C-move equivalent
chart

complexity (w(I"),—f(T))
feeler

free edge

hoop

internal edge
inward

inward arc
I10-Calculation
keeping X fixed
lens

locally minimal

List of notations

T,  p50

w()  p53 ?Iia
fIO) - ps3
IntX  p55 ”}(”
80X  p55 “’(X)
cux) pss|l X

p59
pHl
P53
P52
p53
p60
P53
pd4
pd>
P53
pr7
pT7
P78
pbd
P79

P55
P55
p56
P59
P78

loop

middle arc

middle at v

minimal chart
outward

outward arc

point at infinity oo
pseudo chart

ring

RO-family

simple hoop

special k-angled disk
terminal edge

type (m;ny,ng,--- ,ng) for a chart

P56
P53
pb3
P53
ph3
piT
p54
p63
p54
p64
pb4
p60
p50
p50



