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A Universal Coefficient Theorem for Actions of Finite

Groups on C*-Algebras

By Ralf MEYER and George NADAREISHVILI

Abstract. The equivariant bootstrap class in the Kasparov cat-
egory of actions of a finite group G consists of those actions that are
equivalent to one on a Type I C*-algebra. Using a result by Arano and
Kubota, we show that this bootstrap class is already generated by the
continuous functions on G/H for all cyclic subgroups H of G. Then
we prove a Universal Coefficient Theorem for the localisation of this
bootstrap class at the group order |G|. This allows us to classify cer-
tain G-actions on stable Kirchberg algebras up to cocycle conjugacy.

1. Introduction

The Kirchberg—Phillips classification of nuclear, simple, purely infinite,
separable, stable C*-algebras (see [19]) may be be split into two parts. The
first, analytic part shows that two such C*-algebras are isomorphic once
they are KK-equivalent. The second, topological part shows that they are
KK-equivalent once they belong to the bootstrap class and have isomor-
phic K-theory. In addition, any pair of Z/2-graded Abelian groups is the
K-theory of some such C*-algebra. Both topological statements follow from
the Universal Coefficient Theorem, which computes KK (A, B) in terms of
K, (A) and K, (B) provided A is in the bootstrap class.

There has been some recent progress on dynamical analogues of this clas-
sification, where the aim is to classify certain group actions. On the analytic
side, the dynamical Kirchberg—Phillips theorem by Gabe and Szabé in [10]
says that two pointwise outer actions of a discrete, countable, amenable
group on stable Kirchberg algebras are cocycle conjugate if and only if they
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are equivalent in the equivariant Kasparov category KK®. On the topolog-
ical side, Manuel Kohler [12] showed for a finite cyclic group of prime order
that isomorphism classes of objects in the equivariant bootstrap class are in
bijection with isomorphism classes of “exact” modules over a certain ring.
The relevant ring is, however, rather complicated. In [14], the classification
is worked out in detail in the special case when the K-theory is a cyclic
group. In addition, the case when G is torsion-free amenable is also treated
in [14]: actions of such groups are equivalent to locally trivial bundles over
the classifying space of G.

The classification in [14] for the cyclic group of prime order p is remark-
ably subtle in general, but it becomes rather simple if p is invertible in the
ring KK (A, A). Here we generalise this easier part of the classification to
an arbitrary finite group G, assuming that the group order |G| is invertible
in KKY(A, A). Our result is related to recent independent work by Bouc,
Dell’Ambrogio and Martos [6]. They prove that the localisation of the boot-
strap class in KK at Q is semisimple and compute KK%(A, A) when it is
a Q-vector space. Our approach is more elementary, using explicit polyno-
mials for some key computations. This allows us to prove the main result
after inverting only the group order |G].

Another difference is that [6] treats only the Kasparov category of G-
cell algebras. Using an important theorem by Arano and Kubota [1], we
show that this subcategory is the same as the equivariant bootstrap class
in KK, that is, the subcategory of all objects that are KK%-equivalent to
a G-action on a separable C*-algebra of Type I. As a result, our main result
classifies pointwise outer actions of finite groups on A up to cocycle con-
jugacy provided A is a stable Kirchberg algebra, the action belongs to the
G-equivariant bootstrap class, and |G| is invertible in the ring KK (A, A).
Incidentally, the results of Arano and Kubota [1] also imply that a G-action
belongs to the G-equivariant bootstrap class if and only if the restrictions
of the action belong to the H-equivariant bootstrap class for all cyclic sub-
groups H C (. This implies that A and A x H for cyclic subgroups H C GG
are in the bootstrap class in KK. We do not know whether this necessary
condition is sufficient as well.

We end the introduction by formulating our main theorem. Writing
down the classifying invariant needs some preparation. Let H C G be a
cyclic subgroup and n := |H|. The representation ring of H is isomor-
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phic to Z[z]/(z™ — 1). Let ®,, € Z[z] be the nth cyclotomic polynomial,
whose zeros are exactly the primitive nth roots of unity. This divides
2" — 1, so that Z[z]/(®,) is a quotient of the representation ring of H.
The representation ring is isomorphic to the ring KKéI (C,C), and the in-
duction functor induces a map from this to KK§ (C(G/H),C(G/H)). Let
Ny :={g € G| gHg! = H}. This acts on G/H and thus on C(G/H)
by right translations, with the subgroup H of Np acting trivially. Thus
we get a homomorphism from the quotient group Wy := Ng/H into the
ring KK§ (C(G/H),C(G/H)). The group Wy also acts on the representa-
tion ring of H because Ny acts on H by automorphisms and inner auto-
morphisms act trivially on the representation ring. The homomorphisms
from the representation ring Z[z]/(2" — 1) and from the group Wpx to
KK§ (C(G/H),C(G/H)) are covariant and so combine to a homomorphism
on Z[z]/(z™ — 1) x Wg. Hence Z[z]/(z™ — 1) x Wy acts on the Z/2-graded
Abelian group KK (C(G/H), B) = Ko(B x H) for any G-C*-algebra B.
Let

FH(B) :={z e KK¢(C(G/H),B) | ®,,(z) -z = 0}.

The graded subgroup F!(B) in KKY(C(G/H), B) is even a Z/2-graded
module over the ring Z[z]/(®,(2)) x Wg.

THEOREM 1.1. Let G be a finite group. Let A and B be G-C*-algebras.
Suppose that A is in the G-equivariant bootstrap class, that is, it is
KKC -equivalent to an action on a Type I C*-algebra. Suppose that B is
|G|-divisible in the sense that multiplication by |G| on KKY(B, B) is invert-
ible. Then there is a Universal Coefficient Theorem short exact sequence

11 EXty01 (@, (2)) sy (Fre1 (A), BT (B)) — KK (4, B)
HCup to conjugacy

- JI Homzyy@,e)xw, (FF(A), FF(B)).
HCG cyclic

Here the products run over conjugacy classes of cyclic subgroups H C G.
If My are countable Z/2-graded modules over Z[z,1/|G|]/(®n(2)) x Wg for
all cyclic subgroups H C G, then there is a |G|-divisible object B in the
bootstrap class in KKE with FH(B) = My for all cyclic subgroups H C G,
and this is unique up to KK -equivalence.
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Together with the dynamical Kirchberg—Phillips theorem by Gabe and
Szabd, this theorem implies a classification of certain outer group actions
on Kirchberg algebras up to cocycle conjugacy. The proof of Theorem 1.1
is based on ideas of Manuel Kéhler [12].

2. Equivariant KK-Theory

Let G be a second countable locally compact group. Let KK denote the
Kasparov category of separable G-C*-algebras. The spatial tensor product
of C*-algebras with diagonal G-action induces a symmetric monoidal struc-
ture on KK, which we denote by ®. By @ we denote the Cg-direct sum,
which exists for countable collections of G-C*-algebras; it makes KK an
additive category with countable coproducts. The category KK is trian-
gulated (see [15], and see [18] for an introduction to triangulated categories
in general). The suspension functor is ¥ := Cyp(R) ® —. It is an involu-
tive equivalence by Bott periodicity. The exact triangles come either from
mapping cones of equivariant *~-homomorphisms or from extensions of G-
C*-algebras with a G-equivariant, completely positive contractive section
(for details see the Appendix of [15]).

2.1. Functors on KK¢
Let H C G be a closed subgroup. The restriction of G-actions defines
a functor Resg: KKY — KK¥. It preserves coproducts, is triangulated,

and symmetric monoidal (see, for instance, [15]). The induction functor
Ind%: KK¥ — KK is defined by

nd%(A) == {G 2 A | ¢ continuous, ho(gh) = ¢(g) for all g € G,h € H,
(gH — [|6(g)l]) € Co(G/H)},

equipped with the G-action (g - ¢)(s) = ¢(g~'s) for g,s € G. This is a
triangulated functor preserving coproducts. If G/H is compact, then Indg
is right adjoint to Res% (see [15, Equation (19)]). If G/H is discrete, then
Ind% is left adjoint to Res$ (see [15, Equation (20)]). Thus, if G is finite,
then the restriction and induction functors are adjoint both ways for any
subgroup H C G.

For g € G and a subgroup H C G, the conjugation functor

9(—): KKH — KK
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sends a C*-algebra A with an H-action to the same C*-algebra A with an
action of 9H := gHg~ ' defined by ghg™'-a := ha for h € H and a € A.
The functor of conjugation by ¢ is a triangulated, monoidal equivalence:
the inverse is conjugation by ¢g~!. As such, it preserves coproducts.

This article is based on the following remarkable result of Arano and
Kubota:

THEOREM 2.1 ([1, Corollary 3.13.(1)]). Let G be a finite group. If
A € KKY is such that ResZ (A) = 0 for all cyclic subgroups H C G, then
already A =0 in KKC.

In fact, the statement in [1] is more general. First, it allows G to be a
compact Lie group. Secondly, it allows A and B to be 0-C*-algebras instead
of C*-algebras.

2.2. Homological algebra in KK

The main result of this paper is based on a Universal Coefficient Theorem
for KK, and this fits in the context of relative homological algebra in
a triangulated category T (see [4, 7, 8, 13, 16]). Accordingly, we recall
some facts from the general theory. As in every non-abelian category, doing
homological algebra in a triangulated category requires extra structure. We
usually specify this through a stable homological functor.

A stable additive category is an additive category 2 with an auto-
equivalence functor >: 2 — 2, which is called the suspension in A. A sta-
ble homological functor from a triangulated category ¥ to a stable abelian
category 2l is a functor F': ¥ — 2l that maps exact triangles in T to exact
sequences in 2 and that commutes with the suspension up to a natural
isomorphism. The kernel on morphisms of F is the family of subgroups
ker F(A,B) := {¢ € T(A,B) | F(¢) = 0}. This is an ideal in ¥, and an
ideal of this form for a stable homological functor F' is called a stable homo-
logical ideal. If F': ¥ — ® is a triangulated functor to another triangulated
category, then the kernel on morphisms is a stable homological ideal as well
(see [16]). Such homological ideals play an important role in the localisation
approach to the Baum—Connes assembly map developed in [15] and will also
be crucial below.

Another homological functor H is called J-ezact if H(¢) = 0 for all
¢ € J. An J-ezxact stable homological functor U: ¥ — 205 is called universal
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if any J-exact stable homological functor H: ¥ — 2 factors uniquely as
H o U for a stable exact functor H: A5 — 2A. Such a universal functor
often exists, and then the homological algebra in ¥ is very closely related to
homological algebra in the abelian category 25. In particular, the derived
functors in ¥ are those in 2y composed with U.

Assume T to have countable coproducts. An object C' € ¥ is called
N;-compact if the functor T(C, —): T — 2Ab commutes with countable co-
products. Let € be an at most countable set of Nj-compact objects in ¥,
such that T,,(C, A) := T(X"C, A) is countable for all A € T, n € Z. Let Ab%
denote the abelian category of Z-graded abelian groups with the suspension
homomorphism shifting degrees. Define the functor

Fe: T— [ 2% A (T4(C, A))
cec

Let J¢ be the kernel on morphisms of Fg. Let (€) C ¥ be the smallest
triangulated subcategory of ¥ containing € and closed under countable co-
products. We are going to describe the universal Jg-exact stable homological
functor. Let € also denote the Z-graded pre-additive category with € as its
object space and groups of arrows @,y Tn(A, B) for A, B € €. A right ¢-
module is defined as a contravariant stable additive functor € — 2b%. These
modules form a stable abelian category with direct sums and enough pro-
jective objects, which we denote by 900 (€°P). The subcategory of count-
able modules is denoted by 9Mod(€°P)y,. Giving (T, (C, A))neZ the right
¢-module structure coming from the composition in ¥, we enrich Fg to a
functor

CeCnel’

Ug: T — Moo (€P)y, .

LEMMA 2.2.  The universal Jg-exact stable homological functor is Ug.
ProoF. This is shown during the proof of [17, Theorem 4.4]. O

THEOREM 2.3. Let ¥ be a triangulated category with countable coprod-
ucts and let € C X be a set of Xy-compact objects. Let A € (€) and B € T.
Then there is a natural, cohomologically indexed, right half-plane, condi-
tionally convergent spectral sequence of the form

E5 = Exctlyo e (Ue(A), Ue(B)) _, = Tpiqg(A, B).
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If the object Ug(A) has a projective resolution of length 1, then there is a
natural short exact sequence

Exty(Ue(XA),Ug(B)) — T(A, B) - Homg(Ue(A), Ug(B)).

PROOF. These statements are contained in [8, Theorem 5.12] and [16,
Theorem 4.4]. O

Ezample 2.4. Let ¥ = KK and € = {C}. Then (€) is the well known
bootstrap class, and the universal functor Ug is K-theory, viewed as a func-
tor to the stable abelian category lez'{ % of countable Z/2-graded abelian
groups. This has global homological dimension 1. So the second part of
Theorem 2.3 gives the Universal Coefficient Theorem (UCT) of Rosenberg
and Schochet [20].

REMARK 2.5. The suspension functor ¥ = Cg(R) ® — in KK squares
to the identity. In this situation, the Z-graded modules in the above discus-
sion become Z/2-graded.

The following example is crucial for us. Fix a finite group G and a
conjugation-invariant family F of subgroups of G. Let T = KK and let ¢ C
KK consist of C(G/H) with the G-action by translation, for all subgroups

H € F. Since C(G/H) = Ind% C and Ind§ is left adjoint to ResZ, we
compute

KKY(C(G/H),B) = KK (C, B) 2 K.(B x H).

Consequently, € consists of Nj-compact objects. So Lemma 2.2 applies. To
describe the universal exact functor in this case, it mostly remains to under-
stand the arrows in KK between the generators C(G/H) for H € F. This
was done by Dell’Ambrogio in [8]. He shows that the family of Z/2-graded
countable Abelian groups KK&(C(G/H), B) carries the extra structure of
a Mackey module over the representation Green ring R® of G. We denote
this Mackey module by k&(B) (see [21] for a general, brief introduction to
Mackey and Green functors). We will do some computations with Mackey
modules in the proofs below and give more details when they are needed. It
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is shown in [8] that the functor k& to the category RG—MacZ/ZNI of count-
able Z/2-graded Mackey modules over the representation Green ring RY
of G is the universal homological invariant for the homological ideal Jg. In
particular, the following theorem holds:

THEOREM 2.6 (Dell’Ambrogio [8, Theorem 4.9]). The restriction of
kG : KKY — RC-Mac to the full subcategory {C(G/H) | H C G} of KK is
fully faithful, that is, for all pairs of subgroups H, . C G there are canonical
isomorphisms

KKC(C(G/H), C(G/L)) X5 RE-Mac(kGC(G/H), kGC(G/L)).
3. Generators for the Equivariant Bootstrap Class

One way to define the bootstrap class in ordinary KK-theory is as the
class of all separable C*-algebras that are KK-equivalent to a commutative
C*-algebra. Since all C*-algebras of Type I belong to the bootstrap class,
we may also say that it is the class of all separable C*-algebras that are
KK-equivalent to a Type I C*-algebra. We choose this definition in the
equivariant case. For any compact group G, it is shown in [9, Theorem 3.10]
that a separable G-C*-algebras is KK -equivalent to a G-action on a Type I
C*-algebra if and only if it belongs to the localising subcategory of KK that
is generated by the G-actions on “elementary” C*-algebras. Here a G-action
on a C*-algebra is called elementary if it is isomorphic to Ind% M, (C) for
some closed subgroup H C G and some group action of H on the matrix
algebra M, (C) (by automorphisms). It is shown in the proof that any G-
action on a C*-algebra of the form € A,, where each A,, is isomorphic to
K(H) for a finite-dimensional or separable Hilbert space H is equivariantly
Morita equivalent to a direct sum of elementary G-actions. We also call a
C*-algebra of this form € A,, elementary. The Arano-Kubota Theorem 2.1
shows that many of the above generators are redundant:

THEOREM 3.1. Let G be a finite group. Then A € KK belongs to the
localising subcategory of KK that is generated by C(G/H) ® A for cyclic
subgroups H C G.

PROOF. Let J := () ker(ResZ), where the intersection runs over all
cyclic subgroups H C G. Since Resg has Indg as a left adjoint functor,
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objects of the form Ind%(A) for A € KK are J-projective and there are
enough J-projective objects in KK (see [16, Proposition 55]). Since both
restriction and induction functors commute with direct sums, the localising
subcategory generated by the induced objects and the localising subcategory
of J-contractible objects are a complementary pair by [13, Theorem 3.16].
Theorem 2.1 says that any J-contractible object is already 0. This means
that the induced objects generate all of KK&.

Next, we build a specific J-projective resolution of A. First, J is the
kernel on morphisms of the triangulated functor

(Resg)H cyclic * KKG - H KKH
H cyclic

This functor has a left adjoint, namely, the functor [], KK? — KK,
(Ag) — @y Ind$%(Ag). Then the functor

T:KKY - KK® — A~ P IndfResf(A)
H cyclic

with the counit of the adjunction e: T" = idgyce and the comultiplication
T = T? induced by the unit of the adjunction is a comonad in KK&.
Now we can build the bar resolution of A with the objects T""!(A) and the
boundary map Z?;Lll (=1)7ej: T™(A) — T™ 1(A), where ¢; is the whiskering
of e: T = idgge by TV~ on the left and T/ on the right (see [2] for the
construction and properties of the bar resolution in this generality).

Since the objects of the form 7T'(A) are all J-projective, the bar resolution
above is an J-projective resolution of A. Next, we build a “phantom castle”
from this J-projective resolution as in [13, Section 3]. This contains J-
cellular approximations of A, and their homotopy colimit is isomorphic to A
by [13, Proposition 3.18] because all J-contractible objects are 0. It follows
that A belongs to the localising subcategory of KK that is generated by
TF(A) for k> 1.

By construction, T%(A) is the direct sum of the tensor products

C(G/Hl) ®C(G/H2) SR ®C(G/Hk) ® A
= C(G/Hl X G/HQ X X G/Hk,A)

for cyclic subgroups Hi,...,H, € G. Decomposing G/H; x --- x G/Hj,
into orbits, we further decompose this as a direct sum of C(G/H, A) where
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H C @ is the stabiliser of an orbit representative. Each such stabiliser will
be contained in a group that is conjugate to Hi, making it cyclic as well.
Therefore, T*(A) is isomorphic to a direct sum of C(G/H, A) for cyclic
subgroups H C G. [J

COROLLARY 3.2. An object A in KK belongs to the equivariant boot-
strap class if and only if Resg(A) belongs to the equivariant bootstrap class
in KK for each cyclic subgroup H C G.

PrRoOOF. Both restriction and induction functors map actions on Type I
C*-algebras again to actions on Type I C*-algebras. Therefore, they map
the equivariant bootstrap classes to each other. If Resg A is in the H-
equivariant bootstrap class, so is C(G/H, A) = Ind% Resg A. Now Theo-
rem 3.1 implies the result. [J

COROLLARY 3.3. The objects C(G/H) for cyclic subgroups H C G
generate the equivariant bootstrap class in KK.

ProOF. It suffices to prove that the localising subcategory generated
by C(G/H) for cyclic subgroups H C G contains all the generators of the
equivariant bootstrap class. We therefore pick one or, a bit more generally, a
direct sum of these generators. So let A be a G-action on an elementary C*-
algebra. By Theorem 3.1, A belongs to the localising subcategory generated
by C(G/H,A) = Ind% ResZ A for cyclic subgroups H C G. Thus G-C*-
algebras of the form Indg B for cyclic subgroups H C G and an action of H
on an elementary C*-algebra B also generate the equivariant bootstrap class;
they cannot generate a larger subcategory because Indg B is an elementary
C*-algebra if B is. Now for a cyclic group H, any 2-cocycle is trivial, so any
elementary H-C*-algebra is Morita equivalent to C(H/K) for a subgroup
K C H, which is again cyclic. Thus A belongs to the localising subcategory
generated by Ind% C(H/K) = C(G/K) for cyclic subgroups K C G. [

The next corollary removes the finite generation assumption from [1,
Corollary 3.23.(1)].

COROLLARY 3.4. Let A and B be objects of KK¢. If KKI (A, B) =0
for all cyclic subgroups H C G, then KKf(A, B) =0.
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PROOF. Since induction is left adjoint to restriction, the assumption
is equivalent to KK¢(C(G/H) ® A, B) = 0 for all cyclic subgroups H C G.
The class of objects D with KK (D, B) = 0 is localising. So the claim
follows from Theorem 3.1. [

The following corollary relates certain conditions that are clearly neces-
sary for A € KK to belong to the equivariant bootstrap class. We do not
know whether they are also sufficient.

COROLLARY 3.5. Let A be an object of KKC. If A x H belongs to
the bootstrap class in KK for all cyclic subgroups H C G, then A x K is
in the bootstrap class in KK for all subgroups, cyclic or not. In addition,
(A® B) x G is in the bootstrap class in KK if B is in the bootstrap class in
KK,

PRrROOF. Since (A®C(G/H)) G is Morita—Rieffel equivalent to Ax H,
the assumption means that (A ® C(G/H)) x G belongs to the bootstrap
class. Since tensoring with A and the crossed product with G are triangu-
lated functors that commute with countable direct sums, this implies that
(A ® B) x G belongs to the bootstrap class for all B in the localising sub-
category generated by C(G/H) for the cyclic subgroups H C G. This is
the equivariant bootstrap class by Corollary 3.3. Since it contains C(G/K)
for any subgroup K C G, we also get the claim about A x K, which is
Morita—Rieffel equivalent to (A ® C(G/K)) x G. O

Let B be a separable G-C*-algebra in the equivariant bootstrap class.
Using the Ind-Res adjunction, for all H C G,

KK&(C(G/H), B) = KK¢(Ind$ C, B) = KK (C, Res§; B) = KH (B)

is a countable Z/2-graded module over the representation ring of H. The
representation rings of all subgroups of G form a Green functor R (see [8]).
The set of cyclic subgroups of G is closed under taking subgroups and con-
jugation. This allows to consider the representation Green functor only on
cyclic subgroups of G. We denote it by Rg,. Then the countable Z/2-graded
R(H)-modules K (B) for the cyclic H C G form a Mackey functor on cyclic
subgroups of G over RCGy.
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PROPOSITION 3.6 ([8]). The representable functor
Ckf: KKG — mODZ/z(Rg/)Np B {K*H(B)}cyclic HQG’

into the abelian category of Z/2-graded countable right Mackey modules on
cyclic subgroups of G over RCGy 1s the universal stable ker Ck*G—e:mct functor.

COROLLARY 3.7. Let G be a finite group. For every A,B € KK&
with A in the G-equivariant boostrap class, there is a cohomologically in-
dexed, right half plane, conditionally convergent spectral sequence

n=p-+
B! = Bxtyg (ck$'(A), k' (B)) _ === KK/ (4, B)
that depends functorially on A and B.

Proor. This follows from Corollary 3.3, Theorem 2.3, and Proposi-
tion 3.6. U

4. Localisation

4.1. Localisation at a set of primes

We recall how to localise KK at a set of primes S; this works also if G
is an arbitrary locally compact group, or for other types of equivariant KK-
theory. Let Z[S™!] := Z[1/p,p € S]. There are two useful ways to localise
the category KK® by Z[S~1]. We may either take the arrows between
A and B to be KKY(A, B) ®7 Z[S™!] as in [11] or KK%(A, B ® Mge)
as in [5, Exercise 23.15.6]; here Mge denotes the UHF algebra of type
HpE ¢ P> with the trivial action of G. The first localisation yields again
a triangulated category, but the canonical functor from KK to it does
not preserve coproducts. Therefore, our machinery of relative homological
algebra applies only partially. This is why we prefer the second approach
to localisation here.

DEFINITION 4.1. A separable G-C*-algebra A is S-divisible if p-idg €
KK%(A, A) is invertible for all p € S.

REMARK 4.2. If A is S-divisible, then for each p € S there is h €
KKG(A, A) with p-h =id 4. The converse is also true because the Kasparov
product with p -idy € KK%(A, A) on either side simply multiplies by p.
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ProrosiTION 4.3. A separable G-C*-algebra A is S-divisible if and
only if the canonical map A — A @ Mgeo is a KKC-equivalence, if and
only if A is isomorphic to B ® Mg for some separable G-C*-algebra B.
If B is S-divisible, then

(4.1) KKY%(A, B) 2 KK%(A ® Mgw, B).

Proor. Let B be S-divisible. We are going to prove that the canonical
inclusion A — A ® Mg~ induces an isomorphism as in (4.1). The C*-
algebra Mg is defined as the C*-algebraic inductive limit of an inductive
system formed of maps M,,,(C) — M,,,,,(C) for m, € N* with mg = 1
and Mp41 = Ppn - My, such that p, € S for all n € N and each element
of S occurs infinitely many times among the p,. Since Mg is nuclear,
the inductive system considered is “admissible” (see [15]). So Mge is a
homotopy colimit as well, that is, there is an exact triangle

P M, (C) =% Mo, (C) — Ms= — S M, (C),

where ¢ is the map induced by the inclusions M,,, (C) — M, (C). Since
the tensor product with A is a triangulated functor, A ® Mg is the homo-
topy colimit of the induced inductive system

(4.2) A=M,,,(A) - My, (A) = - = My, (4) = My, (A) — -+

When we compose the induced map KK¢(M,,,,,(A),B) —
KKY(M,,, (A), B) with the canonical Morita equivalences between A and
M, (A) it becomes multiplication by p, on KKY(A, B). Since B is as-
sumed S-divisible, this is invertible for all n. Therefore, the long exact
sequence for a homotopy colimit simplifies to show that the inclusions
M, (A) — A ® Mg induce isomorphisms on KK%(—, B) for all n € N.
For n = 0, this becomes the isomorphism in (4.1).

Next, assume that A is S-divisible. Then the maps in (4.2) are KK-
equivalences. It follows that the homotopy colimit of this inductive system
is KK%-equivalent to M, (A) for all n € N. For n = 0, this gives the desired
KK®-equivalence between A and A @ Mge. Conversely, since p - idMgeo is
invertible in KK(Mge,Mge) for all p € S, anything KK%-equivalent to
A ® Mg for some A is S-divisible. [J
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LEMMA 4.4. The S-divisible objects in KK form a localising subcate-

gory, that is, it is thick and closed under countable coproducts. We denote
it by KK§.

PrRoOOF. The functoriality of suspensions and coproducts shows that
a countable coproduct of suspensions of S-divisible objects is again S-
divisible. Let A — B — C — YA be an exact triangle in KK¢. Mul-
tiplication by p is a KK%-equivalence if and only if its mapping cone is
KK%-equivalent to 0. Since multiplication by p is natural, the cones of
multiplication by p on A, B and C also form an exact triangle by [3, Propo-
sition 1.1.11]. Therefore, if two of A, B and C are p-divisible for a prime p,
so is the third. Thus the class of S-divisible objects in KK is triangulated.

It is known that a triangulated category with at least countable direct
sums is Karoubian, that is, any idempotent has an image object; in par-
ticular, a triangulated subcategory closed under direct sums — such as that
of S-divisible objects — is closed under direct summands, making it thick
(see [18, Remark 3.2.7]). We recall how this is shown. A direct summand of
an object A is the image of an idempotent endomorphism p: A — A. The
homotopy colimit of the constant inductive system

(4.3) AL Al Al A ...
exists and has the universal property of an image object for p. [J

ProrosiTiON 4.5.  The localising subcategory KKg C KK is equiva-
lent to the category with the same objects as KK and KKG(A, B®Mg=) as
the arrows from A to B, and with the composition induced by the Kasparov
product in KK followed by the canonical KK -equivalence Mgeo @ Mgoo 2
MSOO .

Proor. It is straightforward to check that there is a category with the
same objects as KK, with the arrows KK%(A, B ® Mge), and with the
multiplication specified in the statement. Proposition 4.3 shows first that,
in this category, every object A is isomorphic to A ® Mg, secondly, that
the latter is S-divisible, and, thirdly, that among S-divisible objects, arrows
in this category simplify to KK%(A, B) with the usual Kasparov product as
composite. [
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We now apply the machinery of relative homological algebra to the class
of objects C(G/H) @ Mg for cyclic H C G in the category KK§. Whereas
these objects are not Rj-compact in KK, they are Nj-compact in KK?
because of (4.1).

PROPOSITION 4.6. The localising subcategory of KKg generated by the
objects C(G/H)®@Mge for cyclic H C G consists precisely of the S-divisible
objects in the equivariant bootstrap class in KK. An object B in the equiv-
ariant bootstrap class in KK is S-divisible if and only if multiplication by p
is an isomorphism on KK%(C(G/H), B) for all cyclic H C G and allp € S.

PROOF. As a homotopy colimit of objects of the form M,,(C(G/H)),
the generators C(G/H) ® Mg~ belong to the equivariant bootstrap class.
Hence the localising subcategory generated by them is contained in the
latter. It consists of S-divisible objects by Lemma 4.4.

Conversely, let B be S-divisible and in the equivariant bootstrap class.
We do homological algebra in KK using the objects {C(G/H) | H C
G cyclic}; these are the generators of the bootstrap class by Corollary 3.3.
There are enough relative projective objects and we may build a cellular
approximation tower for B from a projective resolution (P,) as in [13].
This is a sequence of exact triangles

B, — Bn+1 — P, — Eén.

with certain properties. It follows that B, and P, are in the equivari-
ant bootstrap class. The homotopy colimit of (B,,) is B by [13, Proposi-
tion 3.18]. Now, the tensor product of our cellular approximation tower
with Migeo,

Bn ® Mgoo — Bn—i—l ® Migoo — P, ® Migoo — Eén ® Migoo,

gives a cellular approximation tower in KKg Its homotopy colimit is B ®
Mge. Therefore, the latter belongs to the localising subcategory generated
by the objects C(G/H) ® Mge with cyclic H. Since B is S-divisible, B =
B® Msoo .

Finally, we prove the criterion for S-divisibility. Since each C(G/H) is
N{-compact,

KKY(C(G/H), B ® Mg~) = KKY(C(G/H), B) ® Z[S™]
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holds for all B. (We remark that this isomorphism relates the approach
to localisation that we follow here to that by tensoring the arrow spaces
with Z[S~'].) Therefore, KK¢(C(G/H),B) = KK%(C(G/H), B) ® Z[S~!]
holds if B is S-divisible, and multiplication by p for p € S is invertible on
this group. Conversely, assume multiplication by p for p € S is invertible
on KKY(C(G/H),B) for all cyclic H C G. We must show that p - idp
is invertible in KKg(B, B). Equivalently, its mapping cone C' is 0. Since
this mapping cone still belongs to the equivariant bootstrap class, C' = 0
if and only KK%(C(G/H),C) = 0 for all cyclic H C G. By the Puppe
sequence, this happens if and only if multiplication by p is an isomorphism
on KK¢(C(G/H),B). O

5. Localisation at the Group Order

While the modular representation theory of groups may be very com-
plicated, it becomes relatively easy over a field in which the group order is
invertible. In this section, we simplify the equivariant bootstrap class after
localising at the group order. For finite cyclic groups, this is already shown
by Manuel Kohler (see [12, Theorem 13.1]).

Let S be the (finite) set of primes that divide the order |G| of G. We
are going to work in the localising subcategory of S-divisible objects in the
equivariant bootstrap class in KK“. This is described in Proposition 4.6
as the localising subcategory generated by the objects C(G/H) ® Mge for
cyclic subgroups H C G.

REMARK 5.1. We could also localise at a larger set of primes or even
tensor with Q as in [6]. We do not discuss this because such a localisation
may be obtained by first localising at the primes dividing |G| and then
localising once again at the remaining primes. So the statements we are
going to prove imply the more general statements.

The main result in this section is a Universal Coefficient Theorem in
this setting. We first formulate this theorem, which requires some notation.
For a cyclic subgroup H C G, let n := |H|, let 9,, be a primitive nth root
of unity, and let

Ny :={ycG|yHy ' = H}, Wy = Ny /H.
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The representation ring of H is isomorphic to Z[z]/(z" — 1), and Z[¢,] C C
is a quotient of that by evaluation at 1J,,. The nth cyclotomic polynomial ®,,
is the minimal polynomial of ¥, that is, Z[,] = Z[z]/(®,). The quotient
Z[V9,] of the representation ring of H is invariant under the induced action
of group automorphisms of H. Conjugation by elements of Ny defines au-
tomorphisms of H, so that Ny acts on Z[J,] in a canonical way. Since
elements of H act trivially, this induces an action of Wi on the representa-
tion ring and then on the quotient Z[J,]. Let Z[¥,] x Wy be the resulting
semidirect product.

Let B be an object of KK, that is, B is a G-action on a separable C*-
algebra and B is KK%-equivalent to Mg~ ® B. The elements corresponding
to H-representations and conjugations span a subring in the endomorphism
ring KK%(C(G/H), C(G/H)) that is isomorphic to Z[z] /(2" — 1) x Wg. We
quickly explained this in the introduction, and it also follows from Theo-
rem 2.6. So KK (C(G/H), B) becomes a Z/2-graded module over the latter
ring. Let

F(B) = {z € KK{(C(G/H), B) | ®4(2) - = = 0}.

This subgroup is a Z/2-graded module over the quotient ring Z[J,] x Wy.
Since B is S-divisible, multiplication by |G| is invertible on F¥ (B), so that
it becomes a Z/2-graded module over Z[Y,,1/|G|] x Wg.

THEOREM 5.2. Let G be a finite group. Let *Ug be the product of the
categories of 7Z/2-graded, countable modules over the rings Z[9,,1/|G|]
Wi, where H runs through a set of representatives for the conjugacy classes
of cyclic subgroups in G. This stable Abelian category is hereditary, that
is, any object has a projective resolution of length 1. The functors FH
for these H combine to a stable homological functor F: KKg — Aq. If
A Be KKg and A belongs to the equivariant bootstrap class in KKC, then
there is a Universal Coefficient Theorem

Extyy, (F(A), F(£B)) — KK§ (A, B) - Homg, (F(A), F(B)).

The functor F induces a bijection between isomorphism classes of S-
divisible objects in the G-equivariant bootstrap class and isomorphism classes
of objects in Agq.

We will prove this theorem in the remainder of this section.
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We begin by defining an idempotent in C(G/H) that produces the in-
variant FX. Tt involves fractions with |G| in the denominator, so that it
only exists after inverting the primes in S. The construction uses some
facts about representation rings and cyclotomic polynomials which are al-
ready used by Koéhler in [12] to prove the special case of our main result
when the whole group G is cyclic.

Let ®x(z) € Z[z] be the kth cyclotomic polynomial, whose roots are
exactly the primitive kth roots of unity. Then

(5.1) " —1=]]®(2).

For k | n, let

s
K |n.k'#k

By definition, n - ¢y, i € Z[2]. So 1y, 1, only becomes available after localisa-
tion at n.

LEMMA 5.3 ([12, Lemmas 22.5 and 22.6]). The polynomials 1y, 1, form
a complementary set of idempotent elements in the ring Z[z,1/n]/(z" — 1),
that is,

Un ks - Yt = 6 1Pk mod (2" — 1), > thn = 1mod (2" - 1).

kln

PrOOF. The relation 3, ¥n, = 1 mod (2" — 1) follows by differenti-
ating 2" —1 = [],, ®x(z) and multiplying by z/n. The relation (5.1) implies
that 2" —1 divides ¢y, gt if k # 1, giving 1y, -1, = 0 mod (2" —1) in this
case. Together with ka Ynr = 1 mod (2" — 1), this implies ¥y, - Ynp =
tpr mod (2" —1). O

The lemma implies an isomorphism of rings

(5.2) Zlz,1/n)/(z" — 1) = @ Z[z, 1/n]/(24) = @D Z[V, 1/n],

k|n k|n

where 9, € C is a primitive kth root of unity (see [12, Proposition 22.8]).
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Next we are going to compute the character of v, .. Mapping a represen-
tation to its character defines an injective map from the representation ring
to the ring of class functions with pointwise multiplication. This remains
injective after inverting some rational numbers. Since our cyclic group H
is Abelian, all functions are class functions. The character homomorphism
maps the generator z € Z[z]/(z™ — 1) of the representation ring to the func-
tion Z/n — C, j + . Thus the image of p € Z[z,1/n]/(2" — 1) is the
function that maps j € Z/n to p(9).

LEMMA 5.4. The character of vy, . is the characteristic function of the
subset of elements of Z/n of order equal to k.

PROOF. By construction, 1, vanishes at the primitive /th roots of
unity for all divisors [ | n with [ # k. Then Lemma 5.3 shows that the
character of 1,  is the characteristic function of the set of all j € Z/n for
which 9%, is a primitive kth root of unity. This is equivalent to j having
order equal to k in Z/n. O

The endomorphism ring KKY(C(G/H),C(G/H)) in Theorem 2.6 was
computed by Kohler [12] for cyclic groups and in general by Ivo
Dell’Ambrogio [8]. We have already explained in the introduction how to
map the representation ring of H into it. When H is a cyclic subgroup of
order n, we thus get an embedding

Z[z]/(z" — 1) — KKY(C(G/H),C(G/H)).

In particular, the integer polynomials n, ;, give elements in this ring. After
localising at |G|, we may divide these elements by n and get idempotent
elements

pnk € KKG(C(G/H) ® Mg, C(G/H) @ Mgs).

These satisfy the relations in Lemma 5.3. In particular, they are com-
plementary idempotents. Actually, we only need the idempotent element
Dn = Dnn- The proof of Lemma 4.4 shows that it has an image object in
KK¢, which we denote by AY,.

PropPoSITION 5.5. Let H C G be a cyclic subgroup. Assume that S
contains all prime divisors of |H|. In the localisation of KK at S, the
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object C(G/H) in KK becomes isomorphic to a direct sum of AY and
certain direct summands of A(}( for subgroups K C H.

PROOF. Recall that any idempotent in KK has an image object.
Therefore, we may write Ay as the direct sum of the image objects of
the complementary orthogonal idempotents p, j for k& | n. By definition,
A(}{ is an image object for p, ,. We finish the proof of the proposition by
showing that the image object of p,, j for a proper divisor k of n is isomor-
phic to a direct summand of A%, where K C H is the cyclic subgroup with
k elements. Here we use the Frobenius relation for the induction and restric-
tion generators for the subgroup K C H and the idempotent element py, j
that projects Ax onto A% (see [8, Section 3.1]); this applies here because
the groups KK¢(C(G/H),—) for H C G form a Mackey module over the
Green functor of representation rings, tensored by Z[S~!]. The Frobenius
formula says that ind (rest (y) - x) = y-indf (z) for all 2 € R(K) ® Z[S™],
y € R(H) ® Z[S™']; this is a relation in KK§(C(G/H),C(G/H)). We are
interested in @ = pyr, ¥y = pp k- The induction of representations is com-
puted most easily on the level of characters: there we simply map a function
x: K — C to the function x': H — C given by x/(h) = 0 for h ¢ K and
X'(h) = |H : K|-x(h) for h € H because H is Abelian. Using Lemma 5.4, we
see that the induced character of py y is |H : K| py ;. Therefore, |H : K|7!
times the product of the restriction generator, py, . and the induction genera-
tor gives the idempotent p,, , in KK (C(G/H), C(G/H)). Thus, the restric-
tion and induction generators provide a Murray—von Neumann equivalence
between pj, . and a certain subprojection of py 1, in KK§ (C(G/K), C(G/K)),
as needed. [J

COROLLARY 5.6. The homological — functors that combine
KK (C(G/H),—) and KKG(AY, —), respectively, for all cyclic subgroups
H C G, have the same kernels on morphisms. As a consequence, they
generate the same relative homological algebra.

Proor. The kernel on morphisms does not change if we add a direct
summand of a homological functor to a list of homological functors or if we
leave out several objects that are direct sums of others in the list. Using
this repeatedly, the claim follows from Proposition 5.5. [

The objects A% for two conjugate cyclic subgroups are isomorphic in
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KKg through conjugation. Therefore, our homological ideal does not change
if we only take one cyclic subgroup H C G in each conjugacy class. The
resulting generators have the nice extra property that they are orthogonal,
that is, any element KK¢ (AY,, A%[,) for H not conjugate to H’ vanishes:

LEMMA 5.7. If there is a nonzero element in KK§(AY, A%, for two
cyclic subgroups H, H' C G, then H is conjugate to H'.

PROOF. In the proof of Theorem 2.6 in [8], it is shown that any element
of

KK“(C(G/H),C(G/H"))
may be written as a sum of products

C(G/H) — C(G/(H N (H ) <% C(G/(HI N H'))

o

TE, C(G/(HI N H')) — C(G/H"),

where the first and last arrow are the generators that act by induction and
restriction on K (B), ¢, is induced by right multiplication by g, and mg
is obtained by induction from E € KK (C,C) = R(HY N H'). When
we replace C(G/H) and C(G/H') by A}, and AY%,, respectively, then we
multiply these composites on both sides by the idempotents py, ,, and py/ p,
where n := |H| and n’ := |H’'|. These idempotents restrict to 0 in any
proper subgroup. Hence, by the Frobenius formula for Mackey modules
in [8], these products kill the restriction and induction generators unless
HnN (H’)Ef1 = H and HY N H' = H' or, equivalently, HY = H’. Therefore,
KKE(A(}I, A%,) vanishes unless H and H' are conjugate. [J

LEMMA 5.8. Let H C G be a cyclic subgroup. Let Ny = {g € G |
gHg™' = H} and n := |H|. The canonical action of Ny on H induces
an action on its representation ring, which further induces an action on
Z[0n,1/|G|]. This action is trivial on H C Npg and therefore descends to
an action of the quotient group Wy := Ny /H. The endomorphism ring
KK§ (A9, A%) is isomorphic to the crossed product ring Z[9,,1/|G|] x Wi.
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PROOF. The direct summand in the localised representation ring of H
that is the image of p,, is isomorphic to Z[J,,1/|G|] by (5.2). This sum-
mand is invariant under group automorphisms, so that Wy acts naturally
on it. The span of the elements corresponding to representations of H in
the endomorphism ring of A% in KK is isomorphic to Z[d,,1/|G|]. Con-
jugation by any one of g € Ny leaves this subspace invariant and acts by
the canonical Ny-action on Z[Y,,1/|G|] mentioned above. An argument
as in the proof of Lemma 5.7 shows that products of elements correspond-
ing to group representations and conjugations for g € Ny/H span the
endomorphism ring of A% in KKg and satisfy the relations in the crossed
product Z[9,,1/|G|] x Wg. Theorem 2.6 shows that the canonical map
from Z[z]/(z™ — 1) x Wg to the endomorphism ring of C(G/H) in KK is
injective. This remains so after inverting |G| because the groups involved
are torsion-free. And then it follows that the map from Z[¥,,1/|G|] x Wg
to the endomorphism ring of A% in KKg is injective. O

REMARK 5.9. Let X be a set of representatives for the conjugacy
classes of cyclic subgroups of G. Recall that AY, = A%/ if H and H' are
conjugate. This and Proposition 5.5 imply that the endomorphism rings
of @ pex A% and Dcyciic ncg C(G/H) in the localisation of KK at S are
Morita equivalent: each ring is isomorphic to a corner in a matrix algebra
over the other ring. These rings usually fail, however, to be isomorphic. The
module category over the first ring is (g, and the second ring is the local-
isation of Rg, at S. Therefore, the categories SRODZ/2(R(§,)N1[S_1] and g
are equivalent, but not isomorphic.

At this point, the general machinery of homological algebra in triangu-
lated categories shows that the universal Abelian approximation for KKg
with respect to the homological ideal that we are looking at is the functor to
the category of countable Z/2-graded modules over @, Z[V,,1/|G|] x Wy
which maps an object B to the family KKg*(A%, B); here H runs through
a set of representatives for the conjugacy classes of cyclic subgroups in G.
Inspection shows that this functor is naturally isomorphic to the functor F'
in Theorem 5.2. To get the Universal Coefficient Theorem in that theorem,
it remains to prove that the target category is hereditary.

LEMMA 5.10. Let H C G be a cyclic subgroup, let W and n be as in
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the previous lemma. The crossed product ring Z[Vy,1/|G|] x Wy is heredi-
tary, that is, any module over it has a projective resolution of length 1.

PROOF. We claim that a module over Z[¢,] is projective if and only
if it is free as an Abelian group. This is shown in the proof of [12, Theo-
rem 12.14]. That theorem is only stated if n is prime because that is the case
that is needed by Kohler at the time. The proof, however, only uses that
Z[9,] for a prime p is a Dedekind domain, and this remains true for all n.
As a consequence, any submodule of a free module over Z[#,,] is projective.
Then it follows that any module M over Z[1J,] has a projective resolution
0 - P - Py — M of length 1. This remains a resolution if we tensor
by Z[|G|7] because the latter is flat, and P; ®z Z[|G|7!] is projective as a
module over Z[J,, 1/|G|] because

Hom(P; @7 Z[|G| "], N)  Hom(P;, N)

if N is a module over Z[9,,1/|G|]. As a consequence, any submodule of a
projective module over Z[V,, 1/|G]|] is itself projective.

Since |Wpg| divides |G|, averaging over the group Wy is possible after
inverting |G|. Therefore, an extension of modules over Z[J,,1/|G|] x Wg
that splits by a Z[9,, 1/|G|]-module map also splits by a Z[J,, 1/|G|] x Wg-
module map. Thus, a module is projective over Z[9,, 1/|G|] x Wg once it is
projective over the subring Z[¢,,1/|G|]. Now it follows that any submodule
of a projective module over Z[VJ,,1/|G|] x W is itself projective. This is
equivalent to our statement. []

Any countable module over a countable ring is a quotient of a count-
able free module. Therefore, Lemma 5.10 implies that the category g is
hereditary. Now the Universal Coefficient in Theorem 5.2 follows from The-
orem 2.3. This implies Theorem 1.1 by well known arguments, as with the
usual Universal Coefficient Theorem (see, for example, [5, Section 23.10]).

By Proposition 4.6, an object B in the G-equivariant bootstrap
class is S-divisible if and only if multiplication by |G| is invertible on
KKY(C(G/H), B) for all cyclic subgroups H. This makes it easier to check
this hypothesis if we already know that B is in the equivariant bootstrap
class. We do not know a checkable necessary and sufficient criterion for the
latter, however.
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Now we specialise to Kirchberg algebras, that is, nonzero, simple, purely
infinite, nuclear C*-algebras. In that case, we may lift the classification of
actions up to KK%-equivalence to a classification up to cocycle conjugacy:

THEOREM 5.11 (Gabe and Szabé [10]). Let G be a finite group. Any
G-action on a separable, nuclear C*-algebra is KK -equivalent to a point-
wise outer action on a stable Kirchberg algebra. Two pointwise outer G-
actions on stable Kirchberg algebras are KK -equivalent if and only if they
are cocycle conjugate.

PrROOF. The first claim is a special case of [14, Theorem 2.1]. The
second claim is a special case of [10, Theorem A]. O

COROLLARY 5.12.  Let G be a finite group. There is a bijection between
the set of isomorphism classes of objects of Aq and the set of cocycle conju-
gacy classes of pointwise outer G-actions on stable Kirchberg algebras that
belong to the G-equivariant bootstrap class and are S-divisible in KKC.

Ezample 5.13. Let G = Z/p be a cyclic group whose order is a prime
number p. Then G only has the cyclic subgroups {1} and G. So our invari-
ant F' takes values in the product of the categories of Z/2-graded countable
Z x G-modules and of Z/2-graded countable Z[J,]-modules. The crossed
product Z x G is the group ring of G, which is naturally isomorphic to
Z[z]/ (2P — 1). After inverting p, this splits as Z[1/p] @ Z[J,, 1/p] by (5.2).
Thus our classification theorem implies that isomorphism classes of objects
in KK are in bijection with triples (X,Y, Z) where X is a Z/2-graded
Abelian group and Y, Z are Z/2-graded Z[J,, 1/p]-modules. This is equiv-
alent to the classification that follows from Kohler’s UCT and [14, Theo-
rem 7.2].

Ezample 5.14. Let V =7/2 x Z/2 be the Klein four-group with gen-
erators a,b subject to the relations a?> = > = (ab)? = 1. Besides the
trivial subgroup, this has exactly three cyclic subgroups, namely, those gen-
erated by a,b,ab, and they are of order 2. For these three subgroups, we
find Z[Y2] = Z and Ny /H = 72, acting trivially. So the crossed product
Z[¥2,1/2] x Z/2 is isomorphic to Z[1/2]%? because of the two characters
of Z/2. For the trivial subgroup, the relevant ring is Z[¥1,1/2] x V, the
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group ring of V' with coefficients in Z[1/2]. The evaluation at the four char-
acters splits this group ring as Z[1/2]%*. So altogether, we get 4 + 6 = 10
summands Z[1/2]. Thus isomorphism classes of 2-divisible objects in the
V-equivariant bootstrap class in KK" are in bijection with 10-tuples of
2-divisible Z/2-graded Abelian groups.

REMARK 5.15. Let B be any object in the G-equivariant bootstrap

class. The inclusion map B — B ® Mg~ is part of an exact triangle B —
B®Mge — B® C — B with K;(C) =0 and

Ko(C) =z[sY)/z= Pz /2,

peES

where the last isomorphism follows from the Chinese Remainder Theo-
rem. Thus we may decompose C' = P, Cp with Ki(Cp) = 0, Ko(Cp) =
Z[1/p|/Z. We may write B as the desuspended mapping cone of the map
B®Mge — @pes B®C) in the above exact triangle. If we know this arrow
in KK, we know B up to isomorphism. We may further write Cp=1mCy
where C}, is the object in the bootstrap class with K;(Cp,) = 0 and
Ko(Cpn) = Z/p"™. Thus B ® Cp,, has the extra property that multiplica-
tion by p” vanishes in its KK%-endomorphism ring. Thus, one may try to
classify general objects of the equivariant bootstrap class by first classifying
those objects with the property that multiplication by p™ vanishes in their
KK%-endomorphism ring for some p | |G|, n € N. Even when this can be
done, it still remains to classify the maps in KK from an S-divisible object
to one of the form B ® C)p.
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