
J. Math. Sci. Univ. Tokyo
33 (2026), 21–47.

A Universal Coefficient Theorem for Actions of Finite

Groups on C∗-Algebras

By Ralf Meyer and George Nadareishvili

Abstract. The equivariant bootstrap class in the Kasparov cat-
egory of actions of a finite group G consists of those actions that are
equivalent to one on a Type I C∗-algebra. Using a result by Arano and
Kubota, we show that this bootstrap class is already generated by the
continuous functions on G/H for all cyclic subgroups H of G. Then
we prove a Universal Coefficient Theorem for the localisation of this
bootstrap class at the group order |G|. This allows us to classify cer-
tain G-actions on stable Kirchberg algebras up to cocycle conjugacy.

1. Introduction

The Kirchberg–Phillips classification of nuclear, simple, purely infinite,

separable, stable C∗-algebras (see [19]) may be be split into two parts. The

first, analytic part shows that two such C∗-algebras are isomorphic once

they are KK-equivalent. The second, topological part shows that they are

KK-equivalent once they belong to the bootstrap class and have isomor-

phic K-theory. In addition, any pair of Z/2-graded Abelian groups is the

K-theory of some such C∗-algebra. Both topological statements follow from

the Universal Coefficient Theorem, which computes KK(A,B) in terms of

K∗(A) and K∗(B) provided A is in the bootstrap class.

There has been some recent progress on dynamical analogues of this clas-

sification, where the aim is to classify certain group actions. On the analytic

side, the dynamical Kirchberg–Phillips theorem by Gabe and Szabó in [10]

says that two pointwise outer actions of a discrete, countable, amenable

group on stable Kirchberg algebras are cocycle conjugate if and only if they
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are equivalent in the equivariant Kasparov category KKG. On the topolog-

ical side, Manuel Köhler [12] showed for a finite cyclic group of prime order

that isomorphism classes of objects in the equivariant bootstrap class are in

bijection with isomorphism classes of “exact” modules over a certain ring.

The relevant ring is, however, rather complicated. In [14], the classification

is worked out in detail in the special case when the K-theory is a cyclic

group. In addition, the case when G is torsion-free amenable is also treated

in [14]: actions of such groups are equivalent to locally trivial bundles over

the classifying space of G.

The classification in [14] for the cyclic group of prime order p is remark-

ably subtle in general, but it becomes rather simple if p is invertible in the

ring KKG(A,A). Here we generalise this easier part of the classification to

an arbitrary finite group G, assuming that the group order |G| is invertible

in KKG(A,A). Our result is related to recent independent work by Bouc,

Dell’Ambrogio and Martos [6]. They prove that the localisation of the boot-

strap class in KKG at Q is semisimple and compute KKG(A,A) when it is

a Q-vector space. Our approach is more elementary, using explicit polyno-

mials for some key computations. This allows us to prove the main result

after inverting only the group order |G|.
Another difference is that [6] treats only the Kasparov category of G-

cell algebras. Using an important theorem by Arano and Kubota [1], we

show that this subcategory is the same as the equivariant bootstrap class

in KKG, that is, the subcategory of all objects that are KKG-equivalent to

a G-action on a separable C∗-algebra of Type I. As a result, our main result

classifies pointwise outer actions of finite groups on A up to cocycle con-

jugacy provided A is a stable Kirchberg algebra, the action belongs to the

G-equivariant bootstrap class, and |G| is invertible in the ring KKG(A,A).

Incidentally, the results of Arano and Kubota [1] also imply that a G-action

belongs to the G-equivariant bootstrap class if and only if the restrictions

of the action belong to the H-equivariant bootstrap class for all cyclic sub-

groups H ⊆ G. This implies that A and A�H for cyclic subgroups H ⊆ G

are in the bootstrap class in KK. We do not know whether this necessary

condition is sufficient as well.

We end the introduction by formulating our main theorem. Writing

down the classifying invariant needs some preparation. Let H ⊆ G be a

cyclic subgroup and n ..= |H|. The representation ring of H is isomor-
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phic to Z[z]/(zn − 1). Let Φn ∈ Z[z] be the nth cyclotomic polynomial,

whose zeros are exactly the primitive nth roots of unity. This divides

zn − 1, so that Z[z]/(Φn) is a quotient of the representation ring of H.

The representation ring is isomorphic to the ring KKH
0 (C,C), and the in-

duction functor induces a map from this to KKG
0 (C(G/H),C(G/H)). Let

NH
..= {g ∈ G | gHg−1 = H}. This acts on G/H and thus on C(G/H)

by right translations, with the subgroup H of NH acting trivially. Thus

we get a homomorphism from the quotient group WH
..= NH/H into the

ring KKG
0 (C(G/H),C(G/H)). The group WH also acts on the representa-

tion ring of H because NH acts on H by automorphisms and inner auto-

morphisms act trivially on the representation ring. The homomorphisms

from the representation ring Z[z]/(zn − 1) and from the group WH to

KKG
0 (C(G/H),C(G/H)) are covariant and so combine to a homomorphism

on Z[z]/(zn − 1) �WH . Hence Z[z]/(zn − 1) �WH acts on the Z/2-graded

Abelian group KKG
∗ (C(G/H), B) ∼= K0(B � H) for any G-C∗-algebra B.

Let

FH
∗ (B) ..= {x ∈ KKG

∗ (C(G/H), B) | Φn(z) · x = 0}.

The graded subgroup FH
∗ (B) in KKG

∗ (C(G/H), B) is even a Z/2-graded

module over the ring Z[z]/(Φn(z)) �WH .

Theorem 1.1. Let G be a finite group. Let A and B be G-C∗-algebras.
Suppose that A is in the G-equivariant bootstrap class, that is, it is

KKG-equivalent to an action on a Type I C∗-algebra. Suppose that B is

|G|-divisible in the sense that multiplication by |G| on KKG(B,B) is invert-

ible. Then there is a Universal Coefficient Theorem short exact sequence

∏

H⊆up to conjugacy

Ext1
Z[z]/(Φn(z))�WH

(
FH
∗−1(A), FH

∗ (B)
)
� KKG(A,B)

�
∏

H⊆G cyclic

HomZ[z]/(Φn(z))�WH

(
FH
∗ (A), FH

∗ (B)
)
.

Here the products run over conjugacy classes of cyclic subgroups H ⊆ G.

If MH are countable Z/2-graded modules over Z[z, 1/|G|]/(Φn(z))�WH for

all cyclic subgroups H ⊆ G, then there is a |G|-divisible object B in the

bootstrap class in KKG with FH
∗ (B) ∼= MH for all cyclic subgroups H ⊆ G,

and this is unique up to KKG-equivalence.
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Together with the dynamical Kirchberg–Phillips theorem by Gabe and

Szabó, this theorem implies a classification of certain outer group actions

on Kirchberg algebras up to cocycle conjugacy. The proof of Theorem 1.1

is based on ideas of Manuel Köhler [12].

2. Equivariant KK-Theory

Let G be a second countable locally compact group. Let KKG denote the

Kasparov category of separable G-C∗-algebras. The spatial tensor product

of C∗-algebras with diagonal G-action induces a symmetric monoidal struc-

ture on KKG, which we denote by ⊗. By ⊕ we denote the C0-direct sum,

which exists for countable collections of G-C∗-algebras; it makes KKG an

additive category with countable coproducts. The category KKG is trian-

gulated (see [15], and see [18] for an introduction to triangulated categories

in general). The suspension functor is Σ ..= C0(R) ⊗ −. It is an involu-

tive equivalence by Bott periodicity. The exact triangles come either from

mapping cones of equivariant ∗-homomorphisms or from extensions of G-

C∗-algebras with a G-equivariant, completely positive contractive section

(for details see the Appendix of [15]).

2.1. Functors on KKG

Let H ⊆ G be a closed subgroup. The restriction of G-actions defines

a functor ResGH : KKG → KKH . It preserves coproducts, is triangulated,

and symmetric monoidal (see, for instance, [15]). The induction functor

IndG
H : KKH → KKG is defined by

IndG
H(A) ..= {G φ−→ A | φ continuous, hφ(gh) = φ(g) for all g ∈ G, h ∈ H,

(gH �→ ‖φ(g)‖) ∈ C0(G/H)},

equipped with the G-action (g · φ)(s) = φ(g−1s) for g, s ∈ G. This is a

triangulated functor preserving coproducts. If G/H is compact, then IndG
H

is right adjoint to ResGH (see [15, Equation (19)]). If G/H is discrete, then

IndG
H is left adjoint to ResGH (see [15, Equation (20)]). Thus, if G is finite,

then the restriction and induction functors are adjoint both ways for any

subgroup H ⊆ G.

For g ∈ G and a subgroup H ⊆ G, the conjugation functor

g(−) : KKH → KK
gH
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sends a C∗-algebra A with an H-action to the same C∗-algebra A with an

action of gH ..= gHg−1 defined by ghg−1 · a ..= ha for h ∈ H and a ∈ A.

The functor of conjugation by g is a triangulated, monoidal equivalence:

the inverse is conjugation by g−1. As such, it preserves coproducts.

This article is based on the following remarkable result of Arano and

Kubota:

Theorem 2.1 ([1, Corollary 3.13.(1)]). Let G be a finite group. If

A ∈ KKG is such that ResHG (A) ∼= 0 for all cyclic subgroups H ⊆ G, then

already A ∼= 0 in KKG.

In fact, the statement in [1] is more general. First, it allows G to be a

compact Lie group. Secondly, it allows A and B to be σ-C∗-algebras instead

of C∗-algebras.

2.2. Homological algebra in KKG

The main result of this paper is based on a Universal Coefficient Theorem

for KKG, and this fits in the context of relative homological algebra in

a triangulated category T (see [4, 7, 8, 13, 16]). Accordingly, we recall

some facts from the general theory. As in every non-abelian category, doing

homological algebra in a triangulated category requires extra structure. We

usually specify this through a stable homological functor.

A stable additive category is an additive category A with an auto-

equivalence functor Σ: A → A, which is called the suspension in A. A sta-

ble homological functor from a triangulated category T to a stable abelian

category A is a functor F : T → A that maps exact triangles in T to exact

sequences in A and that commutes with the suspension up to a natural

isomorphism. The kernel on morphisms of F is the family of subgroups

kerF (A,B) ..= {φ ∈ T(A,B) | F (φ) = 0}. This is an ideal in T, and an

ideal of this form for a stable homological functor F is called a stable homo-

logical ideal. If F : T → D is a triangulated functor to another triangulated

category, then the kernel on morphisms is a stable homological ideal as well

(see [16]). Such homological ideals play an important role in the localisation

approach to the Baum–Connes assembly map developed in [15] and will also

be crucial below.

Another homological functor H is called I-exact if H(φ) = 0 for all

φ ∈ I. An I-exact stable homological functor U : T → AI is called universal



26 Ralf Meyer and George Nadareishvili

if any I-exact stable homological functor H : T → A factors uniquely as

H̄ ◦ U for a stable exact functor H̄ : AI → A. Such a universal functor

often exists, and then the homological algebra in T is very closely related to

homological algebra in the abelian category AI. In particular, the derived

functors in T are those in AI composed with U .

Assume T to have countable coproducts. An object C ∈ T is called

ℵ1-compact if the functor T(C,−) : T → Ab commutes with countable co-

products. Let C be an at most countable set of ℵ1-compact objects in T,

such that Tn(C,A) ..= T(ΣnC,A) is countable for all A ∈ T, n ∈ Z. Let Ab
Z

denote the abelian category of Z-graded abelian groups with the suspension

homomorphism shifting degrees. Define the functor

FC: T →
∏

C∈C

Ab
Z, A �→

(
Tn(C,A)

)
C∈C,n∈Z.

Let IC be the kernel on morphisms of FC. Let 〈C〉 ⊆ T be the smallest

triangulated subcategory of T containing C and closed under countable co-

products. We are going to describe the universal IC-exact stable homological

functor. Let C also denote the Z-graded pre-additive category with C as its

object space and groups of arrows
⊕

n∈ZTn(A,B) for A,B ∈ C. A right C-

module is defined as a contravariant stable additive functor C → Ab
Z. These

modules form a stable abelian category with direct sums and enough pro-

jective objects, which we denote by Mod(Cop). The subcategory of count-

able modules is denoted by Mod(Cop)ℵ1 . Giving
(
Tn(C,A)

)
n∈Z the right

C-module structure coming from the composition in T, we enrich FC to a

functor

UC: T → Mod(Cop)ℵ1 .

Lemma 2.2. The universal IC-exact stable homological functor is UC.

Proof. This is shown during the proof of [17, Theorem 4.4]. �

Theorem 2.3. Let T be a triangulated category with countable coprod-

ucts and let C ⊆ T be a set of ℵ1-compact objects. Let A ∈ 〈C〉 and B ∈ T.

Then there is a natural, cohomologically indexed, right half-plane, condi-

tionally convergent spectral sequence of the form

Ep,q
2 = Extp

Mod(Cop)

(
UC(A), UC(B)

)
−q

⇒ Tp+q(A,B).
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If the object UC(A) has a projective resolution of length 1, then there is a

natural short exact sequence

Ext1C(UC(ΣA), UC(B)) � T(A,B) � HomC(UC(A), UC(B)).

Proof. These statements are contained in [8, Theorem 5.12] and [16,

Theorem 4.4]. �

Example 2.4. Let T = KK and C = {C}. Then 〈C〉 is the well known

bootstrap class, and the universal functor UC is K-theory, viewed as a func-

tor to the stable abelian category Ab
Z/2
ℵ1

of countable Z/2-graded abelian

groups. This has global homological dimension 1. So the second part of

Theorem 2.3 gives the Universal Coefficient Theorem (UCT) of Rosenberg

and Schochet [20].

Remark 2.5. The suspension functor Σ = C0(R)⊗− in KKG squares

to the identity. In this situation, the Z-graded modules in the above discus-

sion become Z/2-graded.

The following example is crucial for us. Fix a finite group G and a

conjugation-invariant family F of subgroups ofG. Let T = KKG and let C ⊆
KKG consist of C(G/H) with the G-action by translation, for all subgroups

H ∈ F . Since C(G/H) = IndG
H C and IndG

H is left adjoint to ResHG , we

compute

KKG
∗ (C(G/H), B) ∼= KKH

∗ (C, B) ∼= K∗(B �H).

Consequently, C consists of ℵ1-compact objects. So Lemma 2.2 applies. To

describe the universal exact functor in this case, it mostly remains to under-

stand the arrows in KKG between the generators C(G/H) for H ∈ F . This

was done by Dell’Ambrogio in [8]. He shows that the family of Z/2-graded

countable Abelian groups KKG
∗ (C(G/H), B) carries the extra structure of

a Mackey module over the representation Green ring RG of G. We denote

this Mackey module by kG∗ (B) (see [21] for a general, brief introduction to

Mackey and Green functors). We will do some computations with Mackey

modules in the proofs below and give more details when they are needed. It
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is shown in [8] that the functor kG∗ to the category RG-MacZ/2,ℵ1
of count-

able Z/2-graded Mackey modules over the representation Green ring RG

of G is the universal homological invariant for the homological ideal IC. In

particular, the following theorem holds:

Theorem 2.6 (Dell’Ambrogio [8, Theorem 4.9]). The restriction of

kG : KKG → RG-Mac to the full subcategory {C(G/H) | H ⊆ G} of KKG is

fully faithful, that is, for all pairs of subgroups H,L ⊆ G there are canonical

isomorphisms

KKG(C(G/H),C(G/L))
kG

−→ RG-Mac(kGC(G/H), kGC(G/L)).

3. Generators for the Equivariant Bootstrap Class

One way to define the bootstrap class in ordinary KK-theory is as the

class of all separable C∗-algebras that are KK-equivalent to a commutative

C∗-algebra. Since all C∗-algebras of Type I belong to the bootstrap class,

we may also say that it is the class of all separable C∗-algebras that are

KK-equivalent to a Type I C∗-algebra. We choose this definition in the

equivariant case. For any compact group G, it is shown in [9, Theorem 3.10]

that a separable G-C∗-algebras is KKG-equivalent to a G-action on a Type I

C∗-algebra if and only if it belongs to the localising subcategory of KKG that

is generated by the G-actions on “elementary” C∗-algebras. Here a G-action

on a C∗-algebra is called elementary if it is isomorphic to IndG
H Mn(C) for

some closed subgroup H ⊆ G and some group action of H on the matrix

algebra Mn(C) (by automorphisms). It is shown in the proof that any G-

action on a C∗-algebra of the form
⊕

An where each An is isomorphic to

K(H) for a finite-dimensional or separable Hilbert space H is equivariantly

Morita equivalent to a direct sum of elementary G-actions. We also call a

C∗-algebra of this form
⊕

An elementary. The Arano–Kubota Theorem 2.1

shows that many of the above generators are redundant:

Theorem 3.1. Let G be a finite group. Then A ∈ KKG belongs to the

localising subcategory of KKG that is generated by C(G/H) ⊗ A for cyclic

subgroups H ⊆ G.

Proof. Let I ..=
⋂

H ker(ResHG ), where the intersection runs over all

cyclic subgroups H ⊆ G. Since ResHG has IndG
H as a left adjoint functor,
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objects of the form IndG
H(A) for A ∈ KKH are I-projective and there are

enough I-projective objects in KKG (see [16, Proposition 55]). Since both

restriction and induction functors commute with direct sums, the localising

subcategory generated by the induced objects and the localising subcategory

of I-contractible objects are a complementary pair by [13, Theorem 3.16].

Theorem 2.1 says that any I-contractible object is already 0. This means

that the induced objects generate all of KKG.

Next, we build a specific I-projective resolution of A. First, I is the

kernel on morphisms of the triangulated functor

(ResHG )H cyclic : KKG →
∏

H cyclic

KKH .

This functor has a left adjoint, namely, the functor
∏

H KKH → KKG,

(AH) �→
⊕

H IndG
H(AH). Then the functor

T : KKG → KKG, A �→
⊕

H cyclic

IndG
H ResHG (A)

with the counit of the adjunction ε : T ⇒ idKKG and the comultiplication

T ⇒ T 2 induced by the unit of the adjunction is a comonad in KKG.

Now we can build the bar resolution of A with the objects Tn+1(A) and the

boundary map
∑n+1

j=1 (−1)jεj : Tn(A) → Tn−1(A), where εj is the whiskering

of ε : T ⇒ idKKG by T j−1 on the left and Tn−j on the right (see [2] for the

construction and properties of the bar resolution in this generality).

Since the objects of the form T (A) are all I-projective, the bar resolution

above is an I-projective resolution of A. Next, we build a “phantom castle”

from this I-projective resolution as in [13, Section 3]. This contains I-

cellular approximations of A, and their homotopy colimit is isomorphic to A

by [13, Proposition 3.18] because all I-contractible objects are 0. It follows

that A belongs to the localising subcategory of KKG that is generated by

T k(A) for k ≥ 1.

By construction, T k(A) is the direct sum of the tensor products

C(G/H1) ⊗ C(G/H2) ⊗ · · · ⊗ C(G/Hk) ⊗A

∼= C(G/H1 ×G/H2 × · · · ×G/Hk, A)

for cyclic subgroups H1, . . . , Hk ⊆ G. Decomposing G/H1 × · · · × G/Hk

into orbits, we further decompose this as a direct sum of C(G/H,A) where
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H ⊆ G is the stabiliser of an orbit representative. Each such stabiliser will

be contained in a group that is conjugate to H1, making it cyclic as well.

Therefore, T k(A) is isomorphic to a direct sum of C(G/H,A) for cyclic

subgroups H ⊆ G. �

Corollary 3.2. An object A in KKG belongs to the equivariant boot-

strap class if and only if ResHG (A) belongs to the equivariant bootstrap class

in KKH for each cyclic subgroup H ⊆ G.

Proof. Both restriction and induction functors map actions on Type I

C∗-algebras again to actions on Type I C∗-algebras. Therefore, they map

the equivariant bootstrap classes to each other. If ResHG A is in the H-

equivariant bootstrap class, so is C(G/H,A) ∼= IndG
H ResHG A. Now Theo-

rem 3.1 implies the result. �

Corollary 3.3. The objects C(G/H) for cyclic subgroups H ⊆ G

generate the equivariant bootstrap class in KKG.

Proof. It suffices to prove that the localising subcategory generated

by C(G/H) for cyclic subgroups H ⊆ G contains all the generators of the

equivariant bootstrap class. We therefore pick one or, a bit more generally, a

direct sum of these generators. So let A be a G-action on an elementary C∗-
algebra. By Theorem 3.1, A belongs to the localising subcategory generated

by C(G/H,A) ∼= IndG
H ResHG A for cyclic subgroups H ⊆ G. Thus G-C∗-

algebras of the form IndG
H B for cyclic subgroups H ⊆ G and an action of H

on an elementary C∗-algebraB also generate the equivariant bootstrap class;

they cannot generate a larger subcategory because IndG
H B is an elementary

C∗-algebra if B is. Now for a cyclic group H, any 2-cocycle is trivial, so any

elementary H-C∗-algebra is Morita equivalent to C(H/K) for a subgroup

K ⊆ H, which is again cyclic. Thus A belongs to the localising subcategory

generated by IndG
H C(H/K) ∼= C(G/K) for cyclic subgroups K ⊆ G. �

The next corollary removes the finite generation assumption from [1,

Corollary 3.23.(1)].

Corollary 3.4. Let A and B be objects of KKG. If KKH
∗ (A,B) = 0

for all cyclic subgroups H ⊆ G, then KKG
∗ (A,B) = 0.
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Proof. Since induction is left adjoint to restriction, the assumption

is equivalent to KKG
∗ (C(G/H) ⊗A,B) = 0 for all cyclic subgroups H ⊆ G.

The class of objects D with KKG
∗ (D,B) = 0 is localising. So the claim

follows from Theorem 3.1. �

The following corollary relates certain conditions that are clearly neces-

sary for A ∈ KKG to belong to the equivariant bootstrap class. We do not

know whether they are also sufficient.

Corollary 3.5. Let A be an object of KKG. If A � H belongs to

the bootstrap class in KK for all cyclic subgroups H ⊆ G, then A � K is

in the bootstrap class in KK for all subgroups, cyclic or not. In addition,

(A⊗B) �G is in the bootstrap class in KK if B is in the bootstrap class in

KKG.

Proof. Since
(
A⊗C(G/H)

)
�G is Morita–Rieffel equivalent to A�H,

the assumption means that
(
A ⊗ C(G/H)

)
� G belongs to the bootstrap

class. Since tensoring with A and the crossed product with G are triangu-

lated functors that commute with countable direct sums, this implies that(
A⊗B

)
�G belongs to the bootstrap class for all B in the localising sub-

category generated by C(G/H) for the cyclic subgroups H ⊆ G. This is

the equivariant bootstrap class by Corollary 3.3. Since it contains C(G/K)

for any subgroup K ⊆ G, we also get the claim about A � K, which is

Morita–Rieffel equivalent to
(
A⊗ C(G/K)

)
�G. �

Let B be a separable G-C∗-algebra in the equivariant bootstrap class.

Using the Ind-Res adjunction, for all H ⊆ G,

KKG
∗ (C(G/H), B) ∼= KKG

∗ (IndG
H C, B) ∼= KKH

∗ (C,ResGH B) ∼= KH
∗ (B)

is a countable Z/2-graded module over the representation ring of H. The

representation rings of all subgroups of G form a Green functor RG (see [8]).

The set of cyclic subgroups of G is closed under taking subgroups and con-

jugation. This allows to consider the representation Green functor only on

cyclic subgroups of G. We denote it by RG
cy. Then the countable Z/2-graded

R(H)-modules KH
∗ (B) for the cyclic H ⊆ G form a Mackey functor on cyclic

subgroups of G over RG
cy.
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Proposition 3.6 ([8]). The representable functor

ckG∗ : KKG → Mod
Z/2(RG

cy)ℵ1 , B �→
{
KH

∗
(
B)

}cyclic H⊆G
,

into the abelian category of Z/2-graded countable right Mackey modules on

cyclic subgroups of G over RG
cy is the universal stable ker ckG∗ -exact functor.

Corollary 3.7. Let G be a finite group. For every A,B ∈ KKG

with A in the G-equivariant boostrap class, there is a cohomologically in-

dexed, right half plane, conditionally convergent spectral sequence

Ep,q
2 = Extp

RG
cy

(
ckG∗ (A), ckG∗ (B)

)
−q

KKG
n (A,B)

that depends functorially on A and B.

Proof. This follows from Corollary 3.3, Theorem 2.3, and Proposi-

tion 3.6. �

4. Localisation

4.1. Localisation at a set of primes

We recall how to localise KKG at a set of primes S; this works also if G

is an arbitrary locally compact group, or for other types of equivariant KK-

theory. Let Z[S−1] ..= Z[1/p, p ∈ S]. There are two useful ways to localise

the category KKG by Z[S−1]. We may either take the arrows between

A and B to be KKG(A,B) ⊗Z Z[S−1] as in [11] or KKG(A,B ⊗ MS∞)

as in [5, Exercise 23.15.6]; here MS∞ denotes the UHF algebra of type∏
p∈S p

∞ with the trivial action of G. The first localisation yields again

a triangulated category, but the canonical functor from KKG to it does

not preserve coproducts. Therefore, our machinery of relative homological

algebra applies only partially. This is why we prefer the second approach

to localisation here.

Definition 4.1. A separable G-C∗-algebra A is S-divisible if p · idA ∈
KKG(A,A) is invertible for all p ∈ S.

Remark 4.2. If A is S-divisible, then for each p ∈ S there is h ∈
KKG(A,A) with p ·h = idA. The converse is also true because the Kasparov

product with p · idA ∈ KKG(A,A) on either side simply multiplies by p.
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Proposition 4.3. A separable G-C∗-algebra A is S-divisible if and

only if the canonical map A → A ⊗ MS∞ is a KKG-equivalence, if and

only if A is isomorphic to B ⊗ MS∞ for some separable G-C∗-algebra B.

If B is S-divisible, then

KKG(A,B) ∼= KKG(A⊗ MS∞ , B).(4.1)

Proof. Let B be S-divisible. We are going to prove that the canonical

inclusion A ↪→ A ⊗ MS∞ induces an isomorphism as in (4.1). The C∗-
algebra MS∞ is defined as the C∗-algebraic inductive limit of an inductive

system formed of maps Mmn(C) → Mmn+1(C) for mn ∈ N× with m0 = 1

and mn+1 = pn · mn, such that pn ∈ S for all n ∈ N and each element

of S occurs infinitely many times among the pn. Since MS∞ is nuclear,

the inductive system considered is “admissible” (see [15]). So MS∞ is a

homotopy colimit as well, that is, there is an exact triangle

⊕
Mmn(C)

id−σ−−−→
⊕

Mmn(C) → MS∞ → Σ
⊕

Mmn(C),

where σ is the map induced by the inclusions Mmn(C) → Mmn+1(C). Since

the tensor product with A is a triangulated functor, A⊗MS∞ is the homo-

topy colimit of the induced inductive system

A = Mm0(A) → Mm1(A) → · · · → Mmn(A) → Mmn+1(A) → · · · .(4.2)

When we compose the induced map KKG(Mmn+1(A), B) →
KKG(Mmn(A), B) with the canonical Morita equivalences between A and

Mpn(A) it becomes multiplication by pn on KKG(A,B). Since B is as-

sumed S-divisible, this is invertible for all n. Therefore, the long exact

sequence for a homotopy colimit simplifies to show that the inclusions

Mmn(A) ↪→ A ⊗ MS∞ induce isomorphisms on KKG(−, B) for all n ∈ N.

For n = 0, this becomes the isomorphism in (4.1).

Next, assume that A is S-divisible. Then the maps in (4.2) are KKG-

equivalences. It follows that the homotopy colimit of this inductive system

is KKG-equivalent to Mmn(A) for all n ∈ N. For n = 0, this gives the desired

KKG-equivalence between A and A ⊗ MS∞ . Conversely, since p · idMS∞ is

invertible in KK(MS∞ ,MS∞) for all p ∈ S, anything KKG-equivalent to

A⊗ MS∞ for some A is S-divisible. �
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Lemma 4.4. The S-divisible objects in KKG form a localising subcate-

gory, that is, it is thick and closed under countable coproducts. We denote

it by KKG
S .

Proof. The functoriality of suspensions and coproducts shows that

a countable coproduct of suspensions of S-divisible objects is again S-

divisible. Let A → B → C → ΣA be an exact triangle in KKG. Mul-

tiplication by p is a KKG-equivalence if and only if its mapping cone is

KKG-equivalent to 0. Since multiplication by p is natural, the cones of

multiplication by p on A, B and C also form an exact triangle by [3, Propo-

sition 1.1.11]. Therefore, if two of A, B and C are p-divisible for a prime p,

so is the third. Thus the class of S-divisible objects in KKG is triangulated.

It is known that a triangulated category with at least countable direct

sums is Karoubian, that is, any idempotent has an image object; in par-

ticular, a triangulated subcategory closed under direct sums – such as that

of S-divisible objects – is closed under direct summands, making it thick

(see [18, Remark 3.2.7]). We recall how this is shown. A direct summand of

an object A is the image of an idempotent endomorphism p : A → A. The

homotopy colimit of the constant inductive system

A
p→ A

p→ A
p→ A→ · · ·(4.3)

exists and has the universal property of an image object for p. �

Proposition 4.5. The localising subcategory KKG
S ⊆ KKG is equiva-

lent to the category with the same objects as KKG and KKG(A,B⊗MS∞) as

the arrows from A to B, and with the composition induced by the Kasparov

product in KKG followed by the canonical KKG-equivalence MS∞ ⊗MS∞ ∼=
MS∞.

Proof. It is straightforward to check that there is a category with the

same objects as KKG, with the arrows KKG(A,B ⊗ MS∞), and with the

multiplication specified in the statement. Proposition 4.3 shows first that,

in this category, every object A is isomorphic to A ⊗ MS∞ , secondly, that

the latter is S-divisible, and, thirdly, that among S-divisible objects, arrows

in this category simplify to KKG(A,B) with the usual Kasparov product as

composite. �



A UCT for Actions of Finite Group on C∗-Algebras 35

We now apply the machinery of relative homological algebra to the class

of objects C(G/H)⊗MS∞ for cyclic H ⊆ G in the category KKG
S . Whereas

these objects are not ℵ1-compact in KKG, they are ℵ1-compact in KKG
S

because of (4.1).

Proposition 4.6. The localising subcategory of KKG
S generated by the

objects C(G/H)⊗MS∞ for cyclic H ⊆ G consists precisely of the S-divisible

objects in the equivariant bootstrap class in KKG. An object B in the equiv-

ariant bootstrap class in KKG is S-divisible if and only if multiplication by p

is an isomorphism on KKG(C(G/H), B) for all cyclic H ⊆ G and all p ∈ S.

Proof. As a homotopy colimit of objects of the form Mm(C(G/H)),

the generators C(G/H) ⊗ MS∞ belong to the equivariant bootstrap class.

Hence the localising subcategory generated by them is contained in the

latter. It consists of S-divisible objects by Lemma 4.4.

Conversely, let B be S-divisible and in the equivariant bootstrap class.

We do homological algebra in KKG using the objects {C(G/H) | H ⊆
G cyclic}; these are the generators of the bootstrap class by Corollary 3.3.

There are enough relative projective objects and we may build a cellular

approximation tower for B from a projective resolution (Pn) as in [13].

This is a sequence of exact triangles

B̃n → B̃n+1 → Pn → ΣB̃n.

with certain properties. It follows that B̃n and Pn are in the equivari-

ant bootstrap class. The homotopy colimit of (B̃n) is B by [13, Proposi-

tion 3.18]. Now, the tensor product of our cellular approximation tower

with MS∞ ,

B̃n ⊗ MS∞ → B̃n+1 ⊗ MS∞ → Pn ⊗ MS∞ → ΣB̃n ⊗ MS∞ ,

gives a cellular approximation tower in KKG
S . Its homotopy colimit is B ⊗

MS∞ . Therefore, the latter belongs to the localising subcategory generated

by the objects C(G/H) ⊗ MS∞ with cyclic H. Since B is S-divisible, B ∼=
B ⊗ MS∞ .

Finally, we prove the criterion for S-divisibility. Since each C(G/H) is

ℵ1-compact,

KKG
∗ (C(G/H), B ⊗ MS∞) ∼= KKG

∗ (C(G/H), B) ⊗ Z[S−1]
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holds for all B. (We remark that this isomorphism relates the approach

to localisation that we follow here to that by tensoring the arrow spaces

with Z[S−1].) Therefore, KKG
∗ (C(G/H), B) ∼= KKG

∗ (C(G/H), B) ⊗ Z[S−1]

holds if B is S-divisible, and multiplication by p for p ∈ S is invertible on

this group. Conversely, assume multiplication by p for p ∈ S is invertible

on KKG
∗ (C(G/H), B) for all cyclic H ⊆ G. We must show that p · idB

is invertible in KKG
0 (B,B). Equivalently, its mapping cone C is 0. Since

this mapping cone still belongs to the equivariant bootstrap class, C ∼= 0

if and only KKG
∗ (C(G/H), C) ∼= 0 for all cyclic H ⊆ G. By the Puppe

sequence, this happens if and only if multiplication by p is an isomorphism

on KKG
∗ (C(G/H), B). �

5. Localisation at the Group Order

While the modular representation theory of groups may be very com-

plicated, it becomes relatively easy over a field in which the group order is

invertible. In this section, we simplify the equivariant bootstrap class after

localising at the group order. For finite cyclic groups, this is already shown

by Manuel Köhler (see [12, Theorem 13.1]).

Let S be the (finite) set of primes that divide the order |G| of G. We

are going to work in the localising subcategory of S-divisible objects in the

equivariant bootstrap class in KKG. This is described in Proposition 4.6

as the localising subcategory generated by the objects C(G/H) ⊗ MS∞ for

cyclic subgroups H ⊆ G.

Remark 5.1. We could also localise at a larger set of primes or even

tensor with Q as in [6]. We do not discuss this because such a localisation

may be obtained by first localising at the primes dividing |G| and then

localising once again at the remaining primes. So the statements we are

going to prove imply the more general statements.

The main result in this section is a Universal Coefficient Theorem in

this setting. We first formulate this theorem, which requires some notation.

For a cyclic subgroup H ⊆ G, let n ..= |H|, let ϑn be a primitive nth root

of unity, and let

NH
..= {y ∈ G | yHy−1 = H}, WH

..= NH/H.
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The representation ring of H is isomorphic to Z[z]/(zn − 1), and Z[ϑn] ⊆ C

is a quotient of that by evaluation at ϑn. The nth cyclotomic polynomial Φn

is the minimal polynomial of ϑn, that is, Z[ϑn] ∼= Z[z]/(Φn). The quotient

Z[ϑn] of the representation ring of H is invariant under the induced action

of group automorphisms of H. Conjugation by elements of NH defines au-

tomorphisms of H, so that NH acts on Z[ϑn] in a canonical way. Since

elements of H act trivially, this induces an action of WH on the representa-

tion ring and then on the quotient Z[ϑn]. Let Z[ϑn] �WH be the resulting

semidirect product.

Let B be an object of KKG
S , that is, B is a G-action on a separable C∗-

algebra and B is KKG-equivalent to MS∞ ⊗B. The elements corresponding

to H-representations and conjugations span a subring in the endomorphism

ring KKG(C(G/H),C(G/H)) that is isomorphic to Z[z]/(zn−1)�WH . We

quickly explained this in the introduction, and it also follows from Theo-

rem 2.6. So KKG
∗ (C(G/H), B) becomes a Z/2-graded module over the latter

ring. Let

FH
∗ (B) ..= {x ∈ KKG

∗ (C(G/H), B) | Φn(z) · x = 0}.

This subgroup is a Z/2-graded module over the quotient ring Z[ϑn] �WH .

Since B is S-divisible, multiplication by |G| is invertible on FH
∗ (B), so that

it becomes a Z/2-graded module over Z[ϑn, 1/|G|] �WH .

Theorem 5.2. Let G be a finite group. Let AG be the product of the

categories of Z/2-graded, countable modules over the rings Z[ϑn, 1/|G|] �

WH , where H runs through a set of representatives for the conjugacy classes

of cyclic subgroups in G. This stable Abelian category is hereditary, that

is, any object has a projective resolution of length 1. The functors FH
∗

for these H combine to a stable homological functor F : KKG
S → AG. If

A,B ∈ KKG
S and A belongs to the equivariant bootstrap class in KKG, then

there is a Universal Coefficient Theorem

ExtAG

(
F (A), F (ΣB)

)
� KKG

S (A,B) � HomAG

(
F (A), F (B)

)
.

The functor F induces a bijection between isomorphism classes of S-

divisible objects in the G-equivariant bootstrap class and isomorphism classes

of objects in AG.

We will prove this theorem in the remainder of this section.
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We begin by defining an idempotent in C(G/H) that produces the in-

variant FH
∗ . It involves fractions with |G| in the denominator, so that it

only exists after inverting the primes in S. The construction uses some

facts about representation rings and cyclotomic polynomials which are al-

ready used by Köhler in [12] to prove the special case of our main result

when the whole group G is cyclic.

Let Φk(z) ∈ Z[z] be the kth cyclotomic polynomial, whose roots are

exactly the primitive kth roots of unity. Then

zn − 1 =
∏

k|n
Φk(z).(5.1)

For k | n, let

ψn,k(z) ..=
z

n

dΦk(z)

dz
·

∏

k′|n,k′ 	=k

Φk′(z) =
z(zn − 1)

nΦk(z)

dΦk(z)

dz
.

By definition, n · ψn,k ∈ Z[z]. So ψn,k only becomes available after localisa-

tion at n.

Lemma 5.3 ([12, Lemmas 22.5 and 22.6]). The polynomials ψn,k form

a complementary set of idempotent elements in the ring Z[z, 1/n]/(zn − 1),

that is,

ψn,k · ψn,l ≡ δk,lψn,k mod (zn − 1),
∑

k|n
ψn,k ≡ 1 mod (zn − 1).

Proof. The relation
∑

k|n ψn,k ≡ 1 mod (zn− 1) follows by differenti-

ating zn−1 =
∏

k|n Φk(z) and multiplying by z/n. The relation (5.1) implies

that zn−1 divides ψn,kψn,l if k �= l, giving ψn,k ·ψn,l ≡ 0 mod (zn−1) in this

case. Together with
∑

k|n ψn,k ≡ 1 mod (zn − 1), this implies ψn,k · ψn,k ≡
ψn,k mod (zn − 1). �

The lemma implies an isomorphism of rings

Z[z, 1/n]/(zn − 1) ∼=
⊕

k|n
Z[z, 1/n]/(Φk) ∼=

⊕

k|n
Z[ϑk, 1/n],(5.2)

where ϑk ∈ C is a primitive kth root of unity (see [12, Proposition 22.8]).
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Next we are going to compute the character of ψn,k. Mapping a represen-

tation to its character defines an injective map from the representation ring

to the ring of class functions with pointwise multiplication. This remains

injective after inverting some rational numbers. Since our cyclic group H

is Abelian, all functions are class functions. The character homomorphism

maps the generator z ∈ Z[z]/(zn− 1) of the representation ring to the func-

tion Z/n → C, j �→ ϑjn. Thus the image of p ∈ Z[z, 1/n]/(zn − 1) is the

function that maps j ∈ Z/n to p(ϑjn).

Lemma 5.4. The character of ψn,k is the characteristic function of the

subset of elements of Z/n of order equal to k.

Proof. By construction, ψn,k vanishes at the primitive lth roots of

unity for all divisors l | n with l �= k. Then Lemma 5.3 shows that the

character of ψn,k is the characteristic function of the set of all j ∈ Z/n for

which ϑjn is a primitive kth root of unity. This is equivalent to j having

order equal to k in Z/n. �

The endomorphism ring KKG(C(G/H),C(G/H)) in Theorem 2.6 was

computed by Köhler [12] for cyclic groups and in general by Ivo

Dell’Ambrogio [8]. We have already explained in the introduction how to

map the representation ring of H into it. When H is a cyclic subgroup of

order n, we thus get an embedding

Z[z]/(zn − 1) ↪→ KKG(C(G/H),C(G/H)).

In particular, the integer polynomials nψn,k give elements in this ring. After

localising at |G|, we may divide these elements by n and get idempotent

elements

pn,k ∈ KKG
S (C(G/H) ⊗ MS∞ ,C(G/H) ⊗ MS∞).

These satisfy the relations in Lemma 5.3. In particular, they are com-

plementary idempotents. Actually, we only need the idempotent element

pn ..= pn,n. The proof of Lemma 4.4 shows that it has an image object in

KKG
S , which we denote by A0

H .

Proposition 5.5. Let H ⊆ G be a cyclic subgroup. Assume that S

contains all prime divisors of |H|. In the localisation of KKG at S, the
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object C(G/H) in KKG becomes isomorphic to a direct sum of A0
H and

certain direct summands of A0
K for subgroups K ⊆ H.

Proof. Recall that any idempotent in KKG has an image object.

Therefore, we may write AH as the direct sum of the image objects of

the complementary orthogonal idempotents pn,k for k | n. By definition,

A0
H is an image object for pn,n. We finish the proof of the proposition by

showing that the image object of pn,k for a proper divisor k of n is isomor-

phic to a direct summand of A0
K , where K ⊆ H is the cyclic subgroup with

k elements. Here we use the Frobenius relation for the induction and restric-

tion generators for the subgroup K ⊆ H and the idempotent element pk,k
that projects AK onto A0

K (see [8, Section 3.1]); this applies here because

the groups KKG
∗ (C(G/H),−) for H ⊆ G form a Mackey module over the

Green functor of representation rings, tensored by Z[S−1]. The Frobenius

formula says that indH
K(resHK(y) ·x) = y · indH

K(x) for all x ∈ R(K)⊗Z[S−1],

y ∈ R(H) ⊗ Z[S−1]; this is a relation in KKG
S (C(G/H),C(G/H)). We are

interested in x = pk,k, y = pn,k. The induction of representations is com-

puted most easily on the level of characters: there we simply map a function

χ : K → C to the function χ′ : H → C given by χ′(h) = 0 for h /∈ K and

χ′(h) = |H : K|·χ(h) for h ∈ H because H is Abelian. Using Lemma 5.4, we

see that the induced character of pk,k is |H : K| · pn,k. Therefore, |H : K|−1

times the product of the restriction generator, pk,k and the induction genera-

tor gives the idempotent pn,k in KKG
S (C(G/H),C(G/H)). Thus, the restric-

tion and induction generators provide a Murray–von Neumann equivalence

between pn,k and a certain subprojection of pk,k in KKG
S (C(G/K),C(G/K)),

as needed. �

Corollary 5.6. The homological functors that combine

KKG
S (C(G/H),−) and KKG

S (A0
H ,−), respectively, for all cyclic subgroups

H ⊆ G, have the same kernels on morphisms. As a consequence, they

generate the same relative homological algebra.

Proof. The kernel on morphisms does not change if we add a direct

summand of a homological functor to a list of homological functors or if we

leave out several objects that are direct sums of others in the list. Using

this repeatedly, the claim follows from Proposition 5.5. �

The objects A0
H for two conjugate cyclic subgroups are isomorphic in
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KKG
S through conjugation. Therefore, our homological ideal does not change

if we only take one cyclic subgroup H ⊆ G in each conjugacy class. The

resulting generators have the nice extra property that they are orthogonal,

that is, any element KKG(A0
H , A

0
H′) for H not conjugate to H ′ vanishes:

Lemma 5.7. If there is a nonzero element in KKG
S (A0

H , A
0
H′) for two

cyclic subgroups H,H ′ ⊆ G, then H is conjugate to H ′.

Proof. In the proof of Theorem 2.6 in [8], it is shown that any element

of

KKG(C(G/H),C(G/H ′))

may be written as a sum of products

C(G/H) → C
(
G/(H ∩ (H ′)g

−1
)
) cg−→∼= C

(
G/(Hg ∩H ′)

)

mE−−→ C
(
G/(Hg ∩H ′)

)
→ C(G/H ′),

where the first and last arrow are the generators that act by induction and

restriction on KH
∗ (B), cg is induced by right multiplication by g, and mE

is obtained by induction from E ∈ KKHg∩H′
(C,C) ∼= R(Hg ∩ H ′). When

we replace C(G/H) and C(G/H ′) by A0
H and A0

H′ , respectively, then we

multiply these composites on both sides by the idempotents pn,n and pn′,n′ ,

where n ..= |H| and n′ ..= |H ′|. These idempotents restrict to 0 in any

proper subgroup. Hence, by the Frobenius formula for Mackey modules

in [8], these products kill the restriction and induction generators unless

H ∩ (H ′)g
−1

= H and Hg ∩H ′ = H ′ or, equivalently, Hg = H ′. Therefore,

KKG
S (A0

H , A
0
H′) vanishes unless H and H ′ are conjugate. �

Lemma 5.8. Let H ⊆ G be a cyclic subgroup. Let NH
..= {g ∈ G |

gHg−1 = H} and n ..= |H|. The canonical action of NH on H induces

an action on its representation ring, which further induces an action on

Z[ϑn, 1/|G|]. This action is trivial on H ⊆ NH and therefore descends to

an action of the quotient group WH
..= NH/H. The endomorphism ring

KKG
S (A0

H , A
0
H) is isomorphic to the crossed product ring Z[ϑn, 1/|G|]�WH .
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Proof. The direct summand in the localised representation ring of H

that is the image of pn is isomorphic to Z[ϑn, 1/|G|] by (5.2). This sum-

mand is invariant under group automorphisms, so that WH acts naturally

on it. The span of the elements corresponding to representations of H in

the endomorphism ring of A0
H in KKG

S is isomorphic to Z[ϑn, 1/|G|]. Con-

jugation by any one of g ∈ NH leaves this subspace invariant and acts by

the canonical NH -action on Z[ϑn, 1/|G|] mentioned above. An argument

as in the proof of Lemma 5.7 shows that products of elements correspond-

ing to group representations and conjugations for g ∈ NH/H span the

endomorphism ring of A0
H in KKG

S and satisfy the relations in the crossed

product Z[ϑn, 1/|G|] � WH . Theorem 2.6 shows that the canonical map

from Z[z]/(zn − 1) �WH to the endomorphism ring of C(G/H) in KKG is

injective. This remains so after inverting |G| because the groups involved

are torsion-free. And then it follows that the map from Z[ϑn, 1/|G|] � WH

to the endomorphism ring of A0
H in KKG

S is injective. �

Remark 5.9. Let X be a set of representatives for the conjugacy

classes of cyclic subgroups of G. Recall that A0
H

∼= A0
H′ if H and H ′ are

conjugate. This and Proposition 5.5 imply that the endomorphism rings

of
⊕

H∈X A0
H and

⊕
cyclic H⊆G C(G/H) in the localisation of KKG at S are

Morita equivalent: each ring is isomorphic to a corner in a matrix algebra

over the other ring. These rings usually fail, however, to be isomorphic. The

module category over the first ring is AG, and the second ring is the local-

isation of RG
cy at S. Therefore, the categories Mod

Z/2(RG
cy)ℵ1 [S

−1] and AG

are equivalent, but not isomorphic.

At this point, the general machinery of homological algebra in triangu-

lated categories shows that the universal Abelian approximation for KKG
S

with respect to the homological ideal that we are looking at is the functor to

the category of countable Z/2-graded modules over
⊕

H Z[ϑn, 1/|G|] �WH

which maps an object B to the family KKG
S,∗(A

0
H , B); here H runs through

a set of representatives for the conjugacy classes of cyclic subgroups in G.

Inspection shows that this functor is naturally isomorphic to the functor F

in Theorem 5.2. To get the Universal Coefficient Theorem in that theorem,

it remains to prove that the target category is hereditary.

Lemma 5.10. Let H ⊆ G be a cyclic subgroup, let WH and n be as in
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the previous lemma. The crossed product ring Z[ϑn, 1/|G|] �WH is heredi-

tary, that is, any module over it has a projective resolution of length 1.

Proof. We claim that a module over Z[ϑn] is projective if and only

if it is free as an Abelian group. This is shown in the proof of [12, Theo-

rem 12.14]. That theorem is only stated if n is prime because that is the case

that is needed by Köhler at the time. The proof, however, only uses that

Z[ϑp] for a prime p is a Dedekind domain, and this remains true for all n.

As a consequence, any submodule of a free module over Z[ϑn] is projective.

Then it follows that any module M over Z[ϑn] has a projective resolution

0 → P1 → P0 → M of length 1. This remains a resolution if we tensor

by Z[|G|−1] because the latter is flat, and Pj ⊗Z Z[|G|−1] is projective as a

module over Z[ϑn, 1/|G|] because

Hom(Pj ⊗Z Z[|G|−1], N) ∼= Hom(Pj , N)

if N is a module over Z[ϑn, 1/|G|]. As a consequence, any submodule of a

projective module over Z[ϑn, 1/|G|] is itself projective.

Since |WH | divides |G|, averaging over the group WH is possible after

inverting |G|. Therefore, an extension of modules over Z[ϑn, 1/|G|] � WH

that splits by a Z[ϑn, 1/|G|]-module map also splits by a Z[ϑn, 1/|G|]�WH -

module map. Thus, a module is projective over Z[ϑn, 1/|G|]�WH once it is

projective over the subring Z[ϑn, 1/|G|]. Now it follows that any submodule

of a projective module over Z[ϑn, 1/|G|] � WH is itself projective. This is

equivalent to our statement. �

Any countable module over a countable ring is a quotient of a count-

able free module. Therefore, Lemma 5.10 implies that the category AG is

hereditary. Now the Universal Coefficient in Theorem 5.2 follows from The-

orem 2.3. This implies Theorem 1.1 by well known arguments, as with the

usual Universal Coefficient Theorem (see, for example, [5, Section 23.10]).

By Proposition 4.6, an object B in the G-equivariant bootstrap

class is S-divisible if and only if multiplication by |G| is invertible on

KKG(C(G/H), B) for all cyclic subgroups H. This makes it easier to check

this hypothesis if we already know that B is in the equivariant bootstrap

class. We do not know a checkable necessary and sufficient criterion for the

latter, however.
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Now we specialise to Kirchberg algebras, that is, nonzero, simple, purely

infinite, nuclear C∗-algebras. In that case, we may lift the classification of

actions up to KKG-equivalence to a classification up to cocycle conjugacy:

Theorem 5.11 (Gabe and Szabó [10]). Let G be a finite group. Any

G-action on a separable, nuclear C∗-algebra is KKG-equivalent to a point-

wise outer action on a stable Kirchberg algebra. Two pointwise outer G-

actions on stable Kirchberg algebras are KKG-equivalent if and only if they

are cocycle conjugate.

Proof. The first claim is a special case of [14, Theorem 2.1]. The

second claim is a special case of [10, Theorem A]. �

Corollary 5.12. Let G be a finite group. There is a bijection between

the set of isomorphism classes of objects of AG and the set of cocycle conju-

gacy classes of pointwise outer G-actions on stable Kirchberg algebras that

belong to the G-equivariant bootstrap class and are S-divisible in KKG.

Example 5.13. Let G = Z/p be a cyclic group whose order is a prime

number p. Then G only has the cyclic subgroups {1} and G. So our invari-

ant F takes values in the product of the categories of Z/2-graded countable

Z � G-modules and of Z/2-graded countable Z[ϑp]-modules. The crossed

product Z � G is the group ring of G, which is naturally isomorphic to

Z[z]/(zp − 1). After inverting p, this splits as Z[1/p] ⊕ Z[ϑp, 1/p] by (5.2).

Thus our classification theorem implies that isomorphism classes of objects

in KKG are in bijection with triples (X,Y, Z) where X is a Z/2-graded

Abelian group and Y,Z are Z/2-graded Z[ϑp, 1/p]-modules. This is equiv-

alent to the classification that follows from Köhler’s UCT and [14, Theo-

rem 7.2].

Example 5.14. Let V = Z/2 × Z/2 be the Klein four-group with gen-

erators a, b subject to the relations a2 = b2 = (ab)2 = 1. Besides the

trivial subgroup, this has exactly three cyclic subgroups, namely, those gen-

erated by a, b, ab, and they are of order 2. For these three subgroups, we

find Z[ϑ2] = Z and NH/H ∼= Z/2, acting trivially. So the crossed product

Z[ϑ2, 1/2] � Z/2 is isomorphic to Z[1/2]⊕2 because of the two characters

of Z/2. For the trivial subgroup, the relevant ring is Z[ϑ1, 1/2] � V , the
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group ring of V with coefficients in Z[1/2]. The evaluation at the four char-

acters splits this group ring as Z[1/2]⊕4. So altogether, we get 4 + 6 = 10

summands Z[1/2]. Thus isomorphism classes of 2-divisible objects in the

V -equivariant bootstrap class in KKV are in bijection with 10-tuples of

2-divisible Z/2-graded Abelian groups.

Remark 5.15. Let B be any object in the G-equivariant bootstrap

class. The inclusion map B → B ⊗ MS∞ is part of an exact triangle B →
B ⊗ MS∞ → B ⊗ C → ΣB with K1(C) = 0 and

K0(C) = Z[S−1]/Z ∼=
⊕

p∈S
Z[p−1]/Z,

where the last isomorphism follows from the Chinese Remainder Theo-

rem. Thus we may decompose C =
⊕

p∈S Cp with K1(Cp) = 0, K0(Cp) =

Z[1/p]/Z. We may write B as the desuspended mapping cone of the map

B⊗MS∞ →
⊕

p∈S B⊗Cp in the above exact triangle. If we know this arrow

in KKG, we know B up to isomorphism. We may further write Cp = lim−→Cp,n

where Cp,n is the object in the bootstrap class with K1(Cp,n) = 0 and

K0(Cp,n) = Z/pn. Thus B ⊗ Cp,n has the extra property that multiplica-

tion by pn vanishes in its KKG-endomorphism ring. Thus, one may try to

classify general objects of the equivariant bootstrap class by first classifying

those objects with the property that multiplication by pn vanishes in their

KKG-endomorphism ring for some p | |G|, n ∈ N. Even when this can be

done, it still remains to classify the maps in KKG from an S-divisible object

to one of the form B ⊗ Cp.
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[3] Bĕılinson, A. A., Bernstein, J. and P. Deligne, Faisceaux pervers, Analysis
and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc.
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