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A Geometric Dynamical System with Relation to
Billiards

By Samuel EVERETT

Abstract. We introduce a geometric dynamical system where
iteration is defined as a cycling composition of a finite collection of
geometric maps, which act on a space composed of three or more lines
in R2. This system is motivated by the dynamics of iterated function
systems, as well as billiards with modified reflection laws. We provide
conditions under which this dynamical system generates periodic or-
bits, and use this result to prove the existence of closed nonsmooth
curves over R? which satisfy particular structural constraints with re-
spect to a space of intersecting lines in the plane.

1. Introduction

The theory of mathematical billiards in polygons concerns the uniform
motion of a point mass (billiard) in a polygonal plane domain, with elastic
reflections off the boundary according to the mirror law of reflection: the
angle of incidence equals the angle of reflection. In addition to billiards
obeying the mirror law of reflection, well studied areas include billiards with
modified reflection laws, so that the angle of reflection is some function of
the angle of incidence (see e.g., [1, 2, 5, 6, 13| and the references therein),
and tiling billiards, where trajectories refract through planar tilings (see
3, 7).

A basic question one can ask is whether there exists a periodic billiard
trajectory. Indeed, a long-standing open question in polygonal billiards
with standard reflection laws is whether every polygon contains a periodic
billiard orbit (see Problem 10 in [14], and [15] for a survey); in fact, the
question remains unsolved for particular obtuse triangles. Intense study on
this problem has led to progress (see, e.g. [18] for results on rational poly-
gons, and [12, 16, 23, 26| for results on triangles), and many deep theorems
have been obtained, but the problem remains open.
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The aim of this paper is to provide a dynamical system suitable for
use in studying problems related to determining periodic trajectories in
various areas of billiards, and to generalize the system studied in [9]. The
dynamical system studied here can be analogized to an iterated function
system (see [17] for review) where the defining collection of contraction
mappings are geometrically defined over lines in the plane, and composed
in a fixed, cycling order. The system can also be thought of as billiards
where trajectories reflect off or refract through lines as a function of the line
they are incident to.

As an application of this dynamical system, we prove Theorem 1.1, which
asserts existence of nonsmooth closed curves satisfying particular geometric
constraints with respect to a space of lines on the plane. In fact, such closed
curves can coincide with periodic billiard trajectories. We state this result
after giving some notation.

Let X,, C R? denote a union of m > 3 pairwise nonparallel and non-
perpendicular, nonconcurrent lines in R?. Assign each line in X,, a unique
label L;, i € {1,2,...,m}. Let p1,p2,...,pn, be a sequence of n > m points
in X,,, such that consecutive points, including p,, and p1, are distinct, and if
pr € Li, then pyyy € Lj, i # j (with the convention that p,4+1 = p1). Join
consecutive pairs of such points, including p,, and p;, with line segments to
construct a closed curve I' over X,,. Traversal of a closed curve in a fixed
direction allows for construction of an incidence angle sequence 01,02, ..., 0,
with respect to a line sequence Lg,, Lq,, ..., Lq, , by taking the acute or right
angle 0; between each segment of the closed curve and a line with label L,
it is incident to, with respect to the traversal direction. Refer to Figure 1
for visual demonstration.

THEOREM 1.1. For any space X,, with labeled lines, let 01,09, ...,0,,
n > m > 3, be any sequence of acute angles, and let Lq,, Lq,, ..., Lq, be
a sequence of line labels such that no two consecutive labels are the same,
including L,, and Lg,, and each of the m labels occur at least once in the se-
quence. Then there exists a closed curve I' over X,, that admits an incidence
angle sequence 01,02, ..., 0, with respect to the line sequence Lq,, Loy, ..., Lq,
when traversed in a fixed direction.

In the case where a closed curve is strictly contained within a polygon
formed by the intersecting lines composing X,,, the closed curve does not
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Fig. 1. The values 601,02, 03,604, 05,06 compose an incidence angle sequence with respect
to the line sequence L3, L4, Lo, L4, L3, L.

cross over any lines in the space, so the angles of incidence implicitly define
angles of reflection. Hence, when the parameters of the closed curve are
such that the angles of incidence equal the angles of reflection, or the an-
gles of reflection are a function of the angles of incidence, the closed curve
corresponds to a periodic billiard trajectory obeying the mirror law of re-
flection or some modified reflection law. However, all closed curves need not
correspond to a periodic billiard trajectory.

This paper is organized into two main parts, separated by study of two
related dynamical systems. In the first, from Sections 2 through 3, we de-
fine a dynamical system that provides controllable and predictable behavior,
which we use to prove Theorem 1.1. In the second part, from Sections 4
through 5, we redefine components of the dynamical system given in Sec-
tion 2 in a way that introduces discontinuities. The introduction of such
discontinuities leads to far more complex dynamics that shares character-
istics with piecewise isometries, the farthest point map on compact metric
spaces, and generalizes [9]. We prove a theorem that asserts orbits of this
system are asymptotically stable when particular geometric conditions are
satisfied.

Acknowledgements. 'The author would like to thank Nikhil Krishnan
for the feedback in the early stages of this work. The author is also grateful
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Fig. 2. An illustration of orientation 0 and 1, angle 6 projections of x onto points zo, z1
in L;. Note that an orientation o € {0,1} corresponds with a choice in line &,.

tially improved the quality of this paper.
2. Preliminaries

Let L;, L; label distinct lines in the space X,,,. Then, for every x € L;
we may determine two lines, £, %1 such that {z} = £¢N¥1 and £, £
intersect with line L; at an angle 6 in (0,7/2), with intersection points
2o and 2 in Lj, respectively. For a visual demonstration, refer to Figure
2. We call zg, 21 the orientation 0 and 1, angle 6 projections of x onto
L;. If § = /2, then we call the line intersection point z the perpendicular
projection of x onto Lj;. In the case when x € L; N L;, the projection of x
onto L; or Lj is simply z itself.

DEFINITION 2.1. Let 6 € (0,7/2], 0o € {0,1}, and i € {1,...,m}. We
call a mapping r : X,, — X, a rule, if r(x) is an angle 6, orientation o
projection of x € X, onto a line L; in X,,, so (X,,) = L;. We may also
notate rules as r(x; 6,0, L;) to make the parameters explicit.

When the rule projection angle § = 7/2, we simply write r(z; 6, L;) when
notating rules as there is only one possible orientation. Figure 3 provides
visual demonstration of the composition of two rules, r1 (x) := r1(x; 61,1, L2)
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and ro(z) := ro(x; 02,0, L) over a point zg € L1 C X3, so that
r1(xo) = x1 and r2(r1(xp)) = To.

We require rule orientation to be defined in a predictable and consistent
way, so that it is never ambiguous which projection points correspond to
which orientation value. For this paper, we choose a natural and mathemat-
ically convenient convention where the orientation 0 and 1 projection points
under a rule r(x) are the “left” and “right” points, “from the perspective
of z”. Figures 3 and 4 demonstrate this convention.

We define a rule sequence associated to a space X, to be a sequence
of n > m > 3 rules, denoted {r;}? ;, with the restriction that consecutive
rules in the rule sequence, including r; and r,, cannot map onto the same
line in X,,. Furthermore, we require each line in X,,, be mapped onto by at

L,

LH

Fig. 3. An illustration of the composition of two rules, r1(xz; 01,1, L2) and ra2(x; 62,0, L3)
over a point xo € L1, so that r1(xo) = z1, and r2(x1) = z2. The figure also shows the
two orientation options for each rule, and the dotted line corresponds to the § = w/2
case for each rule.
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Fig. 4. How orientation is preserved from translating x to w across line intersection point
z, under a rule with projection angle 6. Note how the projection lines corresponding
with a fixed orientation are antiparallel across line intersection point (z), and always
map opposite the same line intersection angle (6).

least one of the rules in an associated rule sequence.

DEFINITION 2.2. An n-rule map T, : X,, — X,, is defined to be a
cycling composition of n > 3 rules in an associated defining rule sequence
{r;}_y. That is, if {r;}}*, is a sequence of rules defining n-rule map 75,
then for x € X,,, define iteration of T}, so that

To(Ty (@) = Ty (@) = ra(ri(ru(.ra(r1(2))))).

Figure 5 gives a visual example of iterating a 3-rule map over Xj.

Unless otherwise stated, the pair (X,,,T},) denotes a dynamical system.
For a point x € X,,,, we let O(z) denote the orbit of  under n-rule map
T, so that

O(z) := {x, Tp(z), T2(2), ...}.

We call an n-rule map redundant if there exists a length n’ rule sequence
with m < n’/ < n, such that for all z € X,,,, the orbit of z under the n/-rule
map is equal to the orbit of x under the n-rule map. For the purpose of this
paper we assume all n-rule maps are not redundant.
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Fig. 5. Demonstration of six iterations of a 3-rule map T3 over X3, where T5(zo) = z1,
and T35 (xo) = 6. The defining rule sequence of Ts is (r1(z;7/2, L2), ra(x; 02,1, L1),
r3(x; 03,0, Ls)). The solid lines correspond to rule r1, the dashed lines to r2, and the
dotted lines to 7s3.

2.1. n-Rule maps and rules as similarities

Let L1, Ly denote lines in R?, intersecting at point z with acute or right
angle 8. Let x,y € L lie on the same side of the line intersection point z, and
take a rule r that projects onto line Lo with projection angle 6 € (0,7 /2].
Further, let the orientation value of r be chosen so that it maps x and
y farthest from z when 6 is acute (see Figure 4, where orientation o = 1
projects x & y farthest from z).

Let d be the Euclidean metric. Assume d(z,y) =€ > 0, and a = d(z, z),
a+e=d(z,y). Let y =7 —6—0, so that v = ZLzar(z) = Lzyr(y). Then
it follows by use of the law of sines that

_ esin(y)

d(r(z),r(y)) = sin(6) sin(0) ,  sin(f)

Let ¢ = sin(v)/sin(#), and hence d(r(z),r(y)) = cd(x,y). We see that if
0 <6< (m—06)/2 and ¢ is acute, then

asin(y) (a+ €)sin(y)

B sin(7y)
€= sin) "




134 Samuel EVERETT

Furthermore, if § = (7 — §)/2, then ¢ = 1, and when

T—230 T
f < —
2 < -2

then 0 < c¢ < 1.

By similar argument, when the rule r has opposite orientation parameter
(and hence maps x and y closer to z in this case), we see that d(r(x),r(y)) =
cd(z,y) for some constant ¢ = ¢(6,8), computable using the law of sines,
where 0 < ¢ < 1 when §/2 < 0 <7/2, and ¢ =1 when 6 = /2, and ¢ > 1
when 0 < 6 < 6/2.

When the points x and y are on opposite sides of the line intersection
point z, it still holds that d(r(z),r(y)) = cd(z,y). To see this, let x,y € Ly
lie on opposite sides of line intersection point z. Then d(r(z),z) = cd(z, 2)
and d(r(y),z) = cd(y, z), and hence

d(r(x),r(y)) = d(r(z), 2) +d(r(y), 2) = cd(x, 2) + cd(y, 2) = cd(z,y)

As such, by fixing the projection angle and orientation parameters 6 and o
of a rule r, and restricting the mapping of a rule from one line to another
X, then r becomes a similarity transformation. That is

d(r(z),r(y)) = cd(z,y), ¢ > 0.

We call the constant ¢ a similarity coefficient.

Iteration of n-rule maps is defined to be a cycling composition of rules in
an associated rule sequence, and as a consequence, after the first iteration
of a n-rule map over a point in X,,, each rule in the rule sequence will
always map between the same pair of lines since each rule in the sequence
always projects onto the same line. Hence, by way of the above analysis,
iteration of a fixed n-rule map can be thought of as a cycling composition
of similarity transformations, after the first iteration of the map.

Let T}, := T" denote the induced map of n-rule map 7,,, so that T,ll =Tin
for I € N, and Tn : Lq, — Lg,, where L,, is the line the nth rule in
the defining rule sequence of T;,, maps onto. If the rules defining 7;, have
similarity coefficients ¢y, ..., ¢,, then let C' = ¢ - c3 - - - ¢,, label the similarity
coefficient for the induced map T,.

With every binary string s € {0,1}", we can associate an n-rule map
with fixed projections angles {6;} and line label parameters {L,, }, so that
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the orientation values are defined as {0; = s;}. It follows that for fixed
projection angle and line label parameter sets, we obtain a class of 2" n-
rule maps differing from one-another only in rule orientation values. Call
such a class an n-rule map orientation class. We say an n-rule map has
orientation configuration s € {0,1}™ if rule r; in the defining rule sequence
has orientation value 0; = s;, 1 = 1, ..., n.

LEMMA 2.1.  For any space X, of the 2™ distinct n-rule maps in any
given n-rule map orientation class, no more than (Ln72J) have an induced
map with similarity coefficient C' equal to 1.

Proor. Let cgo) and cgl) denote the similarity coefficients for rules
ri(z; 0,0, Lg;) and ri(x; 0;,1, Lg,), respectively. We aim to provide an
upper bound on the number of n-rule maps in any given orientation class
that have an induced map with similarity coefficient C' = 1. Hence, we must
give an upper bound on the number of bit-strings s € {0,1}" such that

cgsﬂcg”) o C%sn) —1

For each subset S C [n], let C's denote the product 6551) X -cﬁf") where 5; = 1
if 1 € S. Let € be the family of sets .S such that C's = 1.

By definition, the lines defining X,,, are not perpendicular or parallel, so
CED) #* cgl) for all i. Without loss of generality, suppose CEO) < cgl). It follows
that for distinct sets A, B C ¢, we cannot have A C B, as A C B implies
C4 < Cp (In general every factor is greater than or equal, with at least one
strictly greater). € is then an antichain. Applying Sperner’s Theorem we

have
12 (7))

3. n-Rule Maps and Closed Curves

In this section we prove Theorem 1.1. We begin by establishing the
following.

THEOREM 3.1. Let (X,,,T,) be a dynamical system, and let T,, be the
induced map of n-rule map T,,, with similarity coefficient C = cica - cn. If
0<C <1, then T,, admits a unique periodic orbit of period n.



136 Samuel EVERETT

Fig. 6. Result from a numerical simulation of iterating a 6-rule map in X4, which exhibits
an orbit (red) converging to a six-cycle (blue).

PROOF. Let O(x) denote the orbit of # € X,,, under T},. It follows from
definition of the induced map T}, that for any 2 € X,,, the orbit O(xz)\ {z}
of x under Tn, must be a subset of some line L,, C X, determined by
the nth rule in the defining rule sequence of T,. Further, by hypothesis
0 < C < 1, and hence

d(Ty(w), Tu(y)) < Cd(x,y)

for any x,y € Lg,, so T,, is a contraction mapping. But the line L,, is
a closed subset of R? and necessarily complete. Hence, by the contraction
mapping theorem there exists a unique z* € L; such that T, (z*) = z*.

Then T,, admits a unique periodic orbit of period n. [J

Refer to Figure 6 for visual demonstration of the type of dynamics The-
orem 3.1 provides.

Assume two lines L;, L; in X, intersect at angle 6 < m/2. Then if the
defining rule sequence of an n-rule map 7, over X,,, contains a rule mapping
from L; to L; (or vice-versa) with projection angle § = §, then depending
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Fig. 7. The closed curve corresponds to a periodic orbit generated by a collapsing 5-rule
map. The map is composed of five rules, where 64 = 6, the acute line intersection
angle of L1 and L2. And hence because the fourth rule maps from L; to Lo, with
projection angle 6 and orientation 1, the intersection point of L; and Lo is mapped
onto, becoming a periodic point.

on rule orientation, iteration of this rule may project onto the intersection
point of L; and L; every n iterations, and hence the system collapses to
a periodic orbit after at most n iterations of 7,. In such a case, we say
the n-rule map T, is collapsing. Collapsing maps correspond with the case
when the induced map of n-rule map 7, has similarity coefficient C' = 0.
Figure 7 gives a visual example of a collapsing map.

REMARK 1. If an n-rule map is not collapsing, then it is invertible.

If m/ lines in X, intersect at a common point z, with 2 < m’ < m,
then a rule sequence {r;}?_; may contain a subsequence of consecutive rules
which map strictly between the m/ lines intersecting at z. As a consequence,
such a subsequence of consecutive rules would map z to itself. In the case
that such a line intersection point z is a periodic point, and a subsequence of
rules map over this point, we say the periodic point z is absorbing, and that
the subsequence of rules is an absorbed subsequence. For visual example,
refer to Figure 8, demonstrating how a subsequence can be absorbed over a
line intersection point (left), compared to no absorption (right).
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Absorbing Non-absorbing

L1 Ll

Ly Ls Lo L3

Fig. 8. If a rule mapping onto line L2 hits the intersection point z = L1 N Ly N L3, then
the three following rules in the sequence mapping onto lines L3, L1, L2, respectively,
are “absorbed.”

An absorbed subsequence may be composed of 1 < k < n—2 rules. That
k < mn—2is given by the nonconcurrency assumption of the lines composing
X, and that every line in X,,, must be mapped onto by at least one rule in
every rule sequence associated to an X,,. Hence, there are always at least
two rules in a rule sequence that cannot be absorbed.

We are now in a position to prove Theorem 1.1.

PRrROOF or THEOREM 1.1. Take a space X,,, a sequence 01, 0o, ...,0,
of acute angles, as well as a sequence L, Lq,, ..., Lq, of line labels over X,
with no two consecutive labels the same, and each possible label occurring
at least once in the sequence. Let 7 label the n-rule map orientation class
corresponding to parameters {6;} and {L,,}. We aim to show that there
is an n-rule map in 7 realizing a closed curve I' over X,, that admits an
incidence angle sequence 01, ...,0, with respect to the line label sequence
Ly, ..., Lg,. This is accomplished by studying how periodic orbits change
under rule orientation alterations. Refer to Figure 9 for visual example
throughout.

Fix a binary string s € {0,1}", and consider the n-rule map in 7 with
orientation configuration s. Consider the case when the angles 64, ...,0,
and binary orientation values o; = s; of the n-rule map are such that the
similarity coefficient for the induced map is C' < 1. Then by Theorem 3.1,
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Fig. 9. Closed curves generated by three 3-rule maps, which only differ in rule orientation
values. The red triangle in the center exemplifies the C' = 1 case and is the Fagnano
periodic billiard orbit. The green triangle exemplifies a C' # 1 case, and is in fact
similar to the red triangle. The blue line is a period 3 orbit exemplifying an orbit
with an absorbed rule at the line intersection point. Typical instances of n-rule maps
over a space X,, will have only C # 1 configurations with no absorbed rules. The
case pictured is a pathological case where we have two C' = 1 configurations, three
absorbing, and three non-absorbing configurations.

T, admits a periodic orbit, and by joining consecutive periodic points of this
orbit with line segments, we obtain a closed curve I' over X, that admits
an incidence angle sequence 601, 0s, ..., 0, with respect to the line sequence
Ly, Ly, ..., Lg, , by the definition of 7;,. Similarly, if T, is collapsing, then it
has a periodic orbit, and this orbit corresponds to a closed curve I' admitting
an incidence angle sequence 01, 0s, ..., 0, with respect to the line sequence
Loy, Lay, s La,, -

If the n-rule map parameters {6;} and {o;} are such that C' > 1, then
T,, is not collapsing, and has an inverse n-rule map 7}, * with corresponding
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induced map Zf’n_ 1 and similarity coefficient ¢’ = 1/C. Then by Theorem
3.1 T,/ has a periodic orbit. But T,;! is the inverse of T,, and hence this
is also a periodic orbit for 7;,. Constructing a closed curve I' from this
periodic orbit as above, we see that I' admits an incidence angle sequence
01,02, ...,0,, with respect to the line sequence Lg,, La,, ..., Lq,, -

Consider the case when parameters {6;} and {o;} give C' = 1; Then
iteration of the map does not converge to a periodic orbit. Fix any ¢ € [n],
and change the orientation value o; = s; of the rule r; to 0;, where 0; = 0;®1
with 0; = s; € {0,1}, and & denotes addition modulo 1. By definition, the
lines composing X, are pairwise nonparallel and non-perpendicular. Hence,
since the projection angles 6; are taken to be acute, it follows that changing
the orientation of the rule r; must change the value of C' so that C' no longer
equals 1. As such, upon making a rule orientation change we are left with
either C' < 1 or C' > 1, and we construct a closed curve by referring to the
corresponding case above.

Finally, we show that there must always exist an s € {0,1}" so that
n-rule map T,, with orientation configuration s has a corresponding induced
map with similarity coefficient C' # 1, and that the periodic orbit has no ab-
sorbed subsequences. This is exhibited in Figure 9, where the green closed
curve corresponds to the C' # 1 case without absorbed rule subsequences,
while the blue line illustrates a C' # 1 case where the periodic orbit has an
absorbed rule, and thus does not satisfy the theorem because two consecu-
tive periodic points of the orbit are equal.

We begin by establishing an upper bound on the number of n-rule maps
in .7 that have periodic orbits with absorbed subsequences. We recall that
given a line label sequence Ly, , ..., Ly, With no consecutive labels the same,
any absorbed subsequence of rules cannot have length greater than n — 2,
and there are hence always at least two rules that cannot be absorbed. In
particular, note that if a subsequence of rules is absorbed, the rules leading
into and out of the absorbed subsequence cannot be absorbed simultane-
ously with the absorbed subsequence. Any line label sequence can then
be partitioned into an alternating sequence of absorbed and non-absorbed
subsequences.

In addition, if there is a sequence of k rules mapping over lines inter-
secting at a single point z, then there can be at most k different ways rules
of the subsequence can be absorbed over the line intersection point z. This
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follows from the fact that if one rule is absorbed, all the following rules in
the subsequence must be absorbed as well. It follows that orientation classes
maximizing the number of n-rule maps with degenerate periodic orbits are
those where every rule in a rule-sequence can be absorbed over a distinct
line intersection point.

Equipped with the above considerations, we conclude that in any orien-
tation class, an upper bound on the number of n-rule maps whose periodic
orbits have at least one absorbed rule, corresponds to the number of ways
to choose up to [n/2] objects from a list of n objects so that none of the
chosen objects are consecutive. Namely

2
f”f <n i 1)
=1

Moreover, Lemma 2.1 gives us a bound of (Ln% J) on the number of n-rule
maps in an orientation class that can have an orientation configuration so

that the corresponding induced maps have similarity coefficient C' = 1. But
it is easy to confirm that

n 2 n—1i+1 n g S
/2] —i-z ; < 2" for all n > 3.

i=1
Hence, there must always exist an n-rule map in any orientation class with

induced map having similarity coefficient C' # 1, and so that the corre-
sponding periodic orbit has no absorbed rule subsequence. [J

We remark that in the polygonal billiard case our proof does not find
the actual periodic polygonal billiard orbit (red orbit in Figure 9), rather
we show that another solution always exists (green orbit in Figure 9).

The dynamics of “classical billiards” in which the billiard undergoes
specular reflection at the boundary is an archetypal example of conserva-
tive dynamics: the Liouville measure is preserved. Classical billiards then
fail to model phenomena that hold in regimes far from equilibrium. In the
direction of overcoming these restrictions, in [4] the authors consider a dy-
namical system which corresponds to motion of a single particle reflecting
off scatterers, but so that the particle is subjected to an electric field and a
momentum dependent frictional force, so the Liouville measure is not pre-
served. In a similar direction, a number of recent papers (e.g. [1, 2, 13, 19])
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have study the dynamics of a type of non-conservative “pinball billiards”
where the ball is “kicked” by the wall, giving a new impulse in the direction
of the normal. That is, the outgoing angle from a collision is a uniform con-
traction by a factor A < 1, where the classical Hamiltonian case of elastic
collisions is when A = 1. For A < 1 the dynamics is dissipative, and thus
gives rise to attractors.

Similarly, in the case of the dynamical system studied in this paper, the
system resembles a particle that reflects off or refracts through a boundary
as a function of the section of the boundary it is incident to. In fact, the
role of X in pinball billiards papers is nearly identical to the role of similarity
coefficient C' in our paper: C' = 1 represents the Hamiltonian case just as
A =1, and when C < 1 the dynamics give rise to attractors, just as in the
A < 1 case. Indeed, the methods of studying classical polygonal billiards
by way of pinball billiards can be carried over to study classical billiards
using n-rule maps in a similar way, although additional analysis is needed
along with the techniques used in proving Theorem 1.1 to actually obtain
classical billiard orbits.

For instance, in [13] the authors introduce the notion of A-stability, in
which polygonal billiard periodic trajectories can be classified as A-stable if
there is a periodic trajectory from the corresponding pinball billiard which
converges to it as A — 1. In particular, the billiard of any polygon can
be embedded in a one-parameter family, parameterized by A € (0,00), of
billiards having periodic trajectories whenever A # 1. The authors use these
facts to characterize the A-stable periodic trajectories of the billiard in P.

In our case, we obtain the conservative limit as C' — 1. It is easy to show
that if there exists a periodic billiard trajectory in a polygon, then there
exists a closed curve generated by an n-rule map with C # 1 approximat-
ing the periodic billiard trajectory. To this end, a natural and important
question that arises would be to determine when an n-rule map with C' # 1
has a periodic orbit contained strictly within a polygon cut out by the lines
composing X,,.

Tiling billiards are also a recently studied type of billiards, in which
trajectories refract through planar tilings, with positive and negative indices
of refraction [3, 7]. We obtain a similar physical interpretation in our case:
consider a cracked pane of glass that a beam of light shines through the edge
of. If various materials are allowed between the edges of the broken glass,
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or the fragments of glass themselves are of different types, the beam of light
will reflect off or refract through the pieces in various ways that could lead
to asymptotically stable behavior. n-Rule maps provide a natural tool to
determine the asymptotic behavior of such a system.

4. n-Rule Maps Defined Using Piecewise Continuous Rules

This section begins the second part of our analysis, in which we rede-
fine n-rule maps so that rules map onto lines not on a basis of some fixed
line label, but rather on a basis of a distance between points and lines.
Rules then become piecewise continuous, and this redefinition introduces
discontinuities that complicate the dynamics. In this section we give basic
results concerning the redefined n-rule maps, and then in Section 5 we prove
Theorem 5.1, which shows when their orbits are asymptotically periodic.

The following dynamical system most directly generalizes the system
studied in [9] and shares characteristics with piecewise isometric dynami-
cal systems [10, 11]. However, perhaps the most closely related dynamical
system is that coming from the farthest point map, defined as follows. If X
is a compact metric space, the farthest point map f is defined so that for
p € X, f(p) is the the set of all points ¢ such that the distance from p is
maximized at ¢q. Typically, f is single valued, so we obtain a well-defined
map with which we can construct a dynamical system. The farthest point
map is a well studied dynamical system; see [25] and [24] for recent work
on the regular octahedron and dodecahedron, and [21, 22, 28] for study of
the farthest point map on convex polyhedron, and [27] for a survey.

4.1. Redefining n-rule maps

Let Y, C R? label the space of m > 3 pairwise nonparallel, noncon-
current line in R2. If L;, L; are two distinct lines in Y}, where z € L;, we
define

d(z, Lj) = inf{d(x,y)|ly € L;}

to be the distance between point z and line L;, where d is the Euclidean
metric, and, in particular d(z, L;) = 0.
For every point x € Y,,,, we construct the set

D(z) ={d(z,L;)|1 <i<m}
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and define the partially ordered set D(z) := (D(x),<). We let | denote an
index on D(z), so that [ =i, 1 < i < m corresponds with the ith farthest
line from point z. Note that if there exist m’ lines in Y,,, m’ < m, that
are all the same distance from point x, then there are m’ values of [ that
do not correspond with a unique distance value in D(z), and thus do not
correspond with a unique line in Y,,.

DEFINITION 4.1. Let 6 € (0,7/2], o € {0,1}, and [ € {2,3,...,m}.
We call a mapping r : Y,, — Y, a piecewise rule, if r(z) is an angle 0,
orientation o projection x € Y, onto the Ith farthest line from z. If the
index [ corresponds with a distance value in D(z) that is not unique in D(z),
put r(z) = x.

As before, we notate piecewise rules as r(x;6,0,1) to make the parame-
ters of the rule explicit. Furthermore, for the rest of the paper, we will refer
to “piecewise rules” as “rules” for convenience, and when needed refer to
the rules used in Sections 2 and 3 as “symbolic rules.”

In the case when the index [ corresponds to a distance value in D(x)
that is not unique so that r(x) = x, then we say x is an invariant point
under rule r. Figure 3 provides visual demonstration of the composition of
two rules,

ri(x) :=r(x;61,1,2) and ro(z) := r(x; 62,0, 3)

over a point zg € Y3, so that r(zg) = z1 and ra(r1(zo)) = z2. Intuitively,
rule 71 maps to the closest line from a point x, and rule ro maps to the
farthest line from a point z when applied to a space Y3. We leave rule
orientation to be defined as previously, with the convention made visually
explicit for this new class of rules in Figures 3 and 4.

We leave rule sequences and n-rule maps defined as before, except for
noting that n-rule maps defined by piecewise rules may only have one rule
in the defining rule sequence, unlike those defined with symbolic rules which
required at least three. We let K, denote an n-rule map where the defining
rules in the rule sequence are piecewise rules. We may call such maps
piecewise n-rule maps for clarity, although for the remainder of this paper
we will only work with piecewise n-rule maps, and hence we refer to them
simply as “n-rule maps” when the context is clear.
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For any piecewise n-rule map K,, it is required that at least one of the
rules in the associated rule sequence has index value [ > 2; such a restriction
ensures the dynamics of a piecewise n-rule map are nontrivial. If all rules
of the rule sequence have [ index value of [ = 2, then each iteration maps
to the “closest” line, and orbits approach a line intersection point of Y,
failing to exhibit behavior of interest.

Unless otherwise stated, the pair (Y,,, K,,) denotes a dynamical system.

If a point * € Y,, is invariant for n’ < n of the rules in the n-rule
sequence defining K, then we say z* is sometimes invariant under K,. If

*

x* is invariant under all rules defining K,, we say x* is strictly invariant
under K,. As such, any 1-rule map has only strictly invariant points.

REMARK 2. For any (Y, K,) dynamical system, the set of strictly
invariant and sometimes invariant points is finite.

As before, we call an n-rule map redundant if there exists a length n’
rule sequence with 1 < n/ < n, such that for all x € Y,,,, the orbit of z under
the n’-rule map is equal to the orbit of x under the n-rule map. We assume
all piecewise n-rule maps are not redundant.

4.2. Convergence and contraction of piecewise n-rule maps

We now give results pertaining to piecewise n-rule maps that are used
in determining asymptotic behavior of orbits.

The space Y, is composed of m pairwise nonparallel, nonconcurrent
lines, so any given space Y,,, has (’;) pairwise line intersection points. Then,
for each pairwise intersection point, let n; label the ith pairwise line inter-
section angle, where 0 < 7; < 7/2. Let

6:min{77i|1 << <ZL>}

label the least pairwise intersection angle between any two lines in Y,,,. Note
6 must be acute by definition of Yy,.

DEFINITION 4.2 (Average Contraction Condition). For piecewise n-
rule map K, let 0 label the average of all projection angles in the n-rule
sequence defining K,,. Then if

T—90

— T
1 < —
(1) 5 <9_2
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for least angle 6 in Y,,, we say K, satisfies the average contraction condition
with respect to Y,,.

We motivate the introduction of the average contraction condition
through the following observations, which are similar to those given in Sec-
tion 2.1.

Let Ly, Ly denote lines in R?, intersecting at point z with acute angle
6. Without loss of generality, let z,y € L, and take a rule r, such that
r(x),r(y) € Lo, and x,y,r(x),r(y) are on the same side of intersection point
z. Further, let the orientation value of r be the choice that maps farthest
from z. For example, in Figure 4 rule orientation value o = 1 maps farther
away from the line intersection point when mapping from the particular
line.

Assume d(z,y) = € > 0, and a = d(z,2), a + € = d(z,y). Let 6 denote
the projection angle of rule r, and let v = 7 — 6 — 6, so that v = Zzzr(z) =
Zzyr(y). Then if

T—26

0
0<<2

it follows by use of the law of sines that

esin(vy)

,  sin(f)

asin(y) (a4 €)sin(y)

sin(#) sin(#)

d(r(z),r(y)) =

but § < (r — ¢)/2 and 6 is acute, so under our choice of rule orientation
value

siny)

1
sin(0)

and then d(r(x),r(y)) > d(z,y): iteration of r over L1 and L9 in such a way
is then expansive. By similar argument, we see that if § = (7 — §)/2, then
the rule defines an isometry and d(r(z),r(y)) = d(x,y). When

T—0 T
f < —
2 < -2

then d(r(z),r(y)) < cd(z,y), 0 < ¢ < 1. Further, ¢ is acute, so in the
case when r(x) maps opposite the angle 7 — 6, we have m — § > 6, so if r
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is contractive when mapping opposite ¢, it must also be contractive when
mapping opposite m — 6.

From the above example, we see that for any rule r, with colinear z,y
and colinear r(z),r(y) all on the same side of the line intersection point, we
have

d(r(z),r(y)) < cd(z,y), ¢ =0

where ¢ can be computed directly via the law of sines, as a function of the
rule projection angle and the opposite line intersection angle. In this case,
we call such values ¢, separation coefficients.

LEMMA 4.1.  Let lines Ly, Ly C Y, intersect at a point z with acute
angle 6, and let x,y € Ly lie on the same side of z. Let 1,79 label rules with
distinct orientation values, which are chosen so that the rules map farthest
from z, and let the points ri(z),r;(y) € Lo and ri(rj(x)),ri(rj(y)) € L1,
i,j = 1,2, 1 % j all lie on the same side of z. Then for corresponding rule
separation constants c1 and co, we have that 0 < cico < 1 if and only if

T—30 01 + 6o ™
<
(2) 2 < 2 -2

for rule projection angles 01,02 corresponding with rules r1,75.

Note that cico < 1 implies composition of the two rules defines a con-
traction:

d(ri(rj()),mi(r;(y))) < crcad(z,y), 0 <ecrep <1

for distinct ¢,j. Further, the orientation values of the rules are chosen so
that the rules map farthest from the line intersection point in each case,
and thus the corresponding separation constants are maximized.

PrROOF OF LEMMA 4.1. Let yy=7—60; —d and vo =7 — 0y — 5. We
assume that

7r—5<0 <7T
2 =79

so by Equation 2, we require that

(3) 7T—91—(5<(92§7T—91
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By Equation 3 we see that sin(f2) > sin(m — 6; — ¢), and that
sin(vy2) = sin(m — 0 — )
= sin(f2 + §)
<sin(w — 601 + 6)
Then, through substitution we obtain

sin(vy) sin(y2)  sin(m — 61 — 6) sin(w — 01 + 6)
sin(#;) sin(62) sin(6;) sin(m — 01 — 6)

C1C2 =

but sin(r — 61 + 6) = sin(f; — §) < sin(61), so

sin(m — 61 — 6) sin(m — 61 +6)  sin(w — 61 + 0) <1
sin(6) sin(m — 6, —6) sin(6)

Going the other direction, let vy = 7 — 61 — 6 and o = 7 — 03 — 6. Then
from

sin(71) sin(72)

sin(01) sin(0y)

C1C2 =

with substitution we obtain
sin(m — 61 — 6) sin(m — 62 — §) < sin(f;) sin(6z)
By the product identity for sine, we have

cos(—61 + 02) — cos(2m — 01 — B2 — 20) < cos(fy — 02) — cos(61 + 02)
2 2

but cos(—1(0; — 02)) = cos(f; — O2) so upon simplifying we have
cos(2m — 61 — Oy — 26) > cos(01 + 6)
and by removing cosine we obtain
21 — 01 — 03 — 26 < 61 + 69

Note that although cosine is not monotone, by the restrictions on the angles
we can remove cosine in such a way. This gives us
T—20 < 01 + 65

2 2

T—0< b0+ 0 =
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The case for the upper bound (61 + 602)/2 < 7/2 is clear. OJ

In the above lemma, we took the rule orientation values to be chosen in
a way that ensures the rules map farthest from the line intersection point.
If we instead use rule orientation values that force the rules to map closer to
the line intersection points, then so long as the two projection angles 61, 6
satisfy Equation 2, both rules must provide contraction (i.e. ¢; < 1 and
co < 1).

That is, if 9 =7 — 6 — 8, and

sin(72)
sin(y)

under a rule orientation value mapping farther from a line intersection point,
then under opposite rule orientation value, we have v, = 7 — (7 — 63) — 6,
SO

sin(y,)  sin(fa — 9)

= 1.
sn(r—0)  sin(f)

As an immediate consequence of the above remark and Lemma 4.1, we
obtain the following corollary.

COROLLARY 4.2. Let L1, Loy C Yy, intersect at point z with acute angle
6. Further, let K, be a piecewise n-rule map so that iterates of K, map
between L1 and Lo, opposite angle 6, and for initial points x,y € Ly, let
the first n points of O(x), O(y) remain on the same side of z. Then if K,
satisfies the average contraction condition for least angle 0,

d(Kp(2), K, (y)) < Cd(x,y), 0<C <1

We remark that here C = cico - - - ¢, is the product of the n separation
constants coming from the piecewise rule sequence.

LEMMA 4.3.  For all lines L; CY,, and x,y € L;, if each closed interval

(KL (z), K (y)] C Y, 0<i<m
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contains no line intersection points or invariant points, then if K, satisfies
the average contraction condition in Y,

d(Ky(z), Ky (y)) < Cd(z,y), 0<C <1

PRrROOF. Let ¢ label the least pairwise intersection angle in Y,,,. Then by
Corollary 4.2, if K,, satisfies the average contraction condition over Y,,, and
iteration of K, is strictly opposite angle 6, then d(K(z), K]'(y)) < Cd(z,y)
for C € [0,1). But 4 is the least angle in Y,,, so if iteration of K,, contracts
opposite angle § on average, then it must also contract opposite every other
angle in Y, on average: if 7; is a distinct line intersection angle, then n; > 6,
and

L/ 6‘
2 = 2
As such, assuming the conditions of the statement, it follows that
d(Ky (2) Ky (y) < Cd(z, y)
for C €[0,1). O

We note the average contraction condition ensures contraction regardless
of rule orientation. The average contraction condition provides sufficient
but not necessary conditions for an n-rule map to define a contraction on
average.

LEMMA 4.4. If K, satisfies the average contraction condition over Yy,
then there exists bounded regions R, R’ C Y, such that for all v € R,
O(x) C R.

PROOF. By definition of n-rule maps and the average contraction con-
dition, iteration of an n-rule map K, in Y,, must, on average, map closer to
line intersection points. The lines composing Y,, are pairwise nonparallel, so
all lines must intersect, and there must exist a bounded region R containing
all such line intersection points. As such, if iteration of K, maps closer to
line intersection points on average, then iteration of the map must remain
in a bounded region R’. (]
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Immediate from proof of Lemma 4.4, we obtain the following corollary.

COROLLARY 4.5. If K, satisfies the average contraction condition over
Y, then any sequence of points taken from successive preimages of K, over
noninvariant points x € Yy, diverges in Yo,.

5. Asymptotic Behavior of Piecewise n-Rule Maps

In this section, we study the asymptotic properties of piecewise n-rule
maps satisfying the average contraction condition over Y,,. For piecewise n-
rule map K, and point z € Y,,, we call a cycle of K,, over z the application
of K,, to x, n times; the cycle of x¢ € Y,,, under K, is the sequence of points
XOy L1, -ery Tp, Where K" (xg) = x,,. We let K, := K] label the cycle map of
K, so that for zg € Yy, Ky (20) = 2y, and K! (z0) = K (20) = T

If rule r; in the rule sequence of n-rule map K, has sometimes invariant
point ¢ in Y;,, then for every h € Y,, such that K (h) = q for 1 < i < n,
we call h a pre-invariant point of rule r;. Associated with the (Y, K,)
dynamical system, we let €2 denote the set of invariant points of all types,
as well as preimages of the cycle map K, from all pre-invariant points.
Further, if p is a strictly invariant point under K,, then all points a € Y,,
such that KJ(a) = p, j € Z*, are also contained in .

Put Y}, =Y, \ Q. We call the dynamical system (Y,,, K,,) degenerate
when iteration of K, eventually maps to an invariant point of any type; it
follows that for the dynamical system (Y,,, K,) to be well defined, (Y, K,,)
must be a non-degenerate dynamical system. Such degenerate systems arise
at bifurcation points, and the remainder of this section focuses on the study
of non-degenerate systems. The main result of this section is as follows.

THEOREM 5.1.  Let (Y, K),) be a non-degenerate system, with piece-
wise n-rule map K, satisfying the average contraction condition over Yy,.
Then there exists k € Zt such that for all v € Y}, the orbit O(z) converges
to a periodic orbit of period kn.

Figure 10 illustrates the kind of dynamics Theorem 5.1 provides, showing
the periodic orbit iteration of a 4-rule map converged to in a space Ys.

We need some preparatory lemmas to prove Theorem 5.1. First, note
that as consequence of Corollary 4.5, if K, satisfies the average contraction
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Fig. 10. TIteration of a piecewise 4-rule map in Y5, with the orbit converging to a
four-cycle. This was the output of a numerical simulation.

condition, then sequences of points taken from preimages of invariant points
diverge in Y;,, so €2 is guaranteed not to be dense in Y,,, since the collection
of sometimes invariant and strictly invariant points is finite. If, however,
K, fails to satisfy the average contraction condition then such a guarantee
may not be made.

If K, satisfies the average contraction conditions in Y,,, then let U,
denote the set of open intervals I, C Y,, such that the boundary values of
each I, are given by elements in {2; no element in €2 is contained within an
open interval I,. Let

O(x) = {z, Kn(z), K2(x),..}
denote the orbit of x under cycle map KC,,.
LEMMA 5.2. For non-degenerate dynamical system (Y, K,) and
piecewise n-rule map K, satisfying the average contraction condition over

Yo, if Io € Up, then there exists an I, € Uy, such that KC,[1,] C I, where
1,, I need not be distinct.
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PROOF. We proceed by contradiction and assume IC,,[I,] C I U L.
By definition, the boundary values of each I, € U, are invariant points or
preimages of invariant points under C,,. It follows that if 1C,,[I,] C I U I,
then I, = I; U I, as I, would contain preimages of such boundary values,
a contradiction. [

LEmMA 5.3. If (Y, Ky) is non-degenerate with K,, satisfying the av-
erage contraction condition and x € Y,,, then O(x) C |J;_ I; for finite s
and I; € Uy,.

PROOF. We first note that taking x € Y, is, by definition, equivalent
to taking z € I,, for I, in U,,. For any (Y,,, K,,) dynamical system, there
may only be a finite number of invariant points of any type under K,,, and by
Corollary 4.5, preimages of n-rule maps satisfying the average contraction
condition diverge from points in Y,,,. It then follows by definition of the set
Q) and corresponding construction of intervals in U,,, that for any bounded
region R C Y,,, there may only be a finite number of such intervals I, in
R. Further, by Lemma 4.4, orbits of n-rule maps satisfying the average
contraction condition must remain in a bounded region. Finally, by Lemma
5.2, for every I, € Up, K,[l,] C Iy, and it thus follows that the orbit of x
under /C,, is contained in a finite number of intervals. [J

We call an interval I. € U, confining if there is a t € Z1, t = t(I., K,),
such that K% [I.] C L.

LEmMA 54. If (Y, Ky) is a non-degenerate dynamical system with
n-rule map K, satisfying the average contraction conditions over Y,,, then
there exists a confining interval I. in Yy,, and iteration of IC,, over any
x €Y, maps into a confining interval in a finite number of iterations.

PROOF. By Lemma 5.3, the orbit of any « € Y, under KC,, is restricted
to a finite number of intervals. Thus, by way of the pigeon hole principle,
iteration of IC,, is forced to map to an interval it has already visited in a
finite number of iterations: a confining interval. And because the orbit
is restricted to a finite number of intervals, it must map into a confining
interval after a finite number of iterations. [

DEerFINITION 5.1. Let I. € Uy, be a confining interval in Y,,, and let
Kn: I. — I. be the induced map of KC,, over the interval of continuity I,
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defined so that if z € I. and KF(z) € I. for minimal k, we put K,(z) =
() = K" (x).

LEmMA 5.5. If (Y, Ky) is a non-degenerate dynamical system with
n-rule map K, satisfying the average contraction condition over Y, and
let I. be a confining interval in Yy,. Then the induced map K, has a unique
fized point in I..

ProOOF. By hypothesis, K,, satisfies the average contraction condition
over Y,,, so K., is a contraction mapping over confining interval I. as con-
sequence of Lemma 4.3. Further, we take the system (Y,,, K,,) to be non-
degenerate, so by Lemma 5.2, K, [I.] C I. (strict subset). As such, for any
x € I, the sequence of points , I@n(:p), I@%(J:), ... is a Cauchy sequence, and
must converge to a unique point in the interval of continuity I.. It follows
that there is a point z* € I, such that K, (z*) = z*. O

We now prove Theorem 5.1.

PROOF OF THEOREM 5.1. By hypothesis, (Y;,,, K,,) is a non-degener-
ate dynamical system, K, satisfies the average contraction condition, and
we take 2 € Y, so iteration of K, over x does not map to an invariant point
of any type. It then follows as a consequence of Lemma 5.4 that iteration of
K, over x € Y, maps into a confining interval I. € U,, in a finite number of
iterations. And by consequence of Lemma 5.5 and Definition 5.1, iteration
of K, in a confining interval must converge to a periodic orbit of period kn,
kezZt.O

We remark that for particular periodic orbits generated by an n-rule
map in Y,,, we cannot claim that the corresponding basin of attraction
is all of Y’, as the periodic orbit is also dependent on initial condition
zo € Y’'. Indeed, work established in [20] for example, which concerns
piecewise contractions of the interval, motivates questions regarding upper
bounds for the number of distinct periodic orbits a fixed (Y, K, ) dynamical
system can admit. Omne other question that arises from our analysis is
whether there are conditions that can be used to tell whether a dynamical
system (Y, K,) is degenerate or not.

Software that can be used to simulate both types of n-rule maps is
publicly available at [8].
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