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A Geometric Dynamical System with Relation to

Billiards

By Samuel Everett

Abstract. We introduce a geometric dynamical system where
iteration is defined as a cycling composition of a finite collection of
geometric maps, which act on a space composed of three or more lines
in R

2. This system is motivated by the dynamics of iterated function
systems, as well as billiards with modified reflection laws. We provide
conditions under which this dynamical system generates periodic or-
bits, and use this result to prove the existence of closed nonsmooth
curves over R

2 which satisfy particular structural constraints with re-
spect to a space of intersecting lines in the plane.

1. Introduction

The theory of mathematical billiards in polygons concerns the uniform

motion of a point mass (billiard) in a polygonal plane domain, with elastic

reflections off the boundary according to the mirror law of reflection: the

angle of incidence equals the angle of reflection. In addition to billiards

obeying the mirror law of reflection, well studied areas include billiards with

modified reflection laws, so that the angle of reflection is some function of

the angle of incidence (see e.g., [1, 2, 5, 6, 13] and the references therein),

and tiling billiards, where trajectories refract through planar tilings (see

[3, 7]).

A basic question one can ask is whether there exists a periodic billiard

trajectory. Indeed, a long-standing open question in polygonal billiards

with standard reflection laws is whether every polygon contains a periodic

billiard orbit (see Problem 10 in [14], and [15] for a survey); in fact, the

question remains unsolved for particular obtuse triangles. Intense study on

this problem has led to progress (see, e.g. [18] for results on rational poly-

gons, and [12, 16, 23, 26] for results on triangles), and many deep theorems

have been obtained, but the problem remains open.
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The aim of this paper is to provide a dynamical system suitable for

use in studying problems related to determining periodic trajectories in

various areas of billiards, and to generalize the system studied in [9]. The

dynamical system studied here can be analogized to an iterated function

system (see [17] for review) where the defining collection of contraction

mappings are geometrically defined over lines in the plane, and composed

in a fixed, cycling order. The system can also be thought of as billiards

where trajectories reflect off or refract through lines as a function of the line

they are incident to.

As an application of this dynamical system, we prove Theorem 1.1, which

asserts existence of nonsmooth closed curves satisfying particular geometric

constraints with respect to a space of lines on the plane. In fact, such closed

curves can coincide with periodic billiard trajectories. We state this result

after giving some notation.

Let Xm ⊂ R
2 denote a union of m ≥ 3 pairwise nonparallel and non-

perpendicular, nonconcurrent lines in R
2. Assign each line in Xm a unique

label Li, i ∈ {1, 2, ...,m}. Let p1, p2, ..., pn, be a sequence of n ≥ m points

in Xm such that consecutive points, including pn and p1, are distinct, and if

pk ∈ Li, then pk+1 ∈ Lj , i �= j (with the convention that pn+1 = p1). Join

consecutive pairs of such points, including pn and p1, with line segments to

construct a closed curve Γ over Xm. Traversal of a closed curve in a fixed

direction allows for construction of an incidence angle sequence θ1, θ2, ..., θn
with respect to a line sequence La1 , La2 , ..., Lan , by taking the acute or right

angle θi between each segment of the closed curve and a line with label Lai

it is incident to, with respect to the traversal direction. Refer to Figure 1

for visual demonstration.

Theorem 1.1. For any space Xm with labeled lines, let θ1, θ2, ..., θn,

n ≥ m ≥ 3, be any sequence of acute angles, and let La1 , La2 , ..., Lan be

a sequence of line labels such that no two consecutive labels are the same,

including Lan and La1, and each of the m labels occur at least once in the se-

quence. Then there exists a closed curve Γ over Xm that admits an incidence

angle sequence θ1, θ2, ..., θn with respect to the line sequence La1 , La2 , ..., Lan

when traversed in a fixed direction.

In the case where a closed curve is strictly contained within a polygon

formed by the intersecting lines composing Xm, the closed curve does not
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Fig. 1. The values θ1, θ2, θ3, θ4, θ5, θ6 compose an incidence angle sequence with respect
to the line sequence L3, L4, L2, L4, L3, L1.

cross over any lines in the space, so the angles of incidence implicitly define

angles of reflection. Hence, when the parameters of the closed curve are

such that the angles of incidence equal the angles of reflection, or the an-

gles of reflection are a function of the angles of incidence, the closed curve

corresponds to a periodic billiard trajectory obeying the mirror law of re-

flection or some modified reflection law. However, all closed curves need not

correspond to a periodic billiard trajectory.

This paper is organized into two main parts, separated by study of two

related dynamical systems. In the first, from Sections 2 through 3, we de-

fine a dynamical system that provides controllable and predictable behavior,

which we use to prove Theorem 1.1. In the second part, from Sections 4

through 5, we redefine components of the dynamical system given in Sec-

tion 2 in a way that introduces discontinuities. The introduction of such

discontinuities leads to far more complex dynamics that shares character-

istics with piecewise isometries, the farthest point map on compact metric

spaces, and generalizes [9]. We prove a theorem that asserts orbits of this

system are asymptotically stable when particular geometric conditions are

satisfied.
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to the anonymous reviewer of this article, whose detailed feedback substan-
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Fig. 2. An illustration of orientation 0 and 1, angle θ projections of x onto points z0, z1

in Lj . Note that an orientation o ∈ {0, 1} corresponds with a choice in line �o.

tially improved the quality of this paper.

2. Preliminaries

Let Li, Lj label distinct lines in the space Xm. Then, for every x ∈ Li

we may determine two lines, 0, 1 such that {x} = 0∩ 1 and 0, 1

intersect with line Lj at an angle θ in (0, π/2), with intersection points

z0 and z1 in Lj , respectively. For a visual demonstration, refer to Figure

2. We call z0, z1 the orientation 0 and 1, angle θ projections of x onto

Lj . If θ = π/2, then we call the line intersection point z the perpendicular

projection of x onto Lj . In the case when x ∈ Li ∩ Lj , the projection of x

onto Li or Lj is simply x itself.

Definition 2.1. Let θ ∈ (0, π/2], o ∈ {0, 1}, and i ∈ {1, ...,m}. We

call a mapping r : Xm → Xm a rule, if r(x) is an angle θ, orientation o

projection of x ∈ Xm onto a line Li in Xm, so r(Xm) = Li. We may also

notate rules as r(x; θ, o, Li) to make the parameters explicit.

When the rule projection angle θ = π/2, we simply write r(x; θ, Li) when

notating rules as there is only one possible orientation. Figure 3 provides

visual demonstration of the composition of two rules, r1(x) := r1(x; θ1, 1, L2)
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and r2(x) := r2(x; θ2, 0, L3) over a point x0 ∈ L1 ⊂ X3, so that

r1(x0) = x1 and r2(r1(x0)) = x2.

We require rule orientation to be defined in a predictable and consistent

way, so that it is never ambiguous which projection points correspond to

which orientation value. For this paper, we choose a natural and mathemat-

ically convenient convention where the orientation 0 and 1 projection points

under a rule r(x) are the “left” and “right” points, “from the perspective

of x”. Figures 3 and 4 demonstrate this convention.

We define a rule sequence associated to a space Xm to be a sequence

of n ≥ m ≥ 3 rules, denoted {ri}ni=1, with the restriction that consecutive

rules in the rule sequence, including r1 and rn, cannot map onto the same

line in Xm. Furthermore, we require each line in Xm be mapped onto by at

Fig. 3. An illustration of the composition of two rules, r1(x; θ1, 1, L2) and r2(x; θ2, 0, L3)
over a point x0 ∈ L1, so that r1(x0) = x1, and r2(x1) = x2. The figure also shows the
two orientation options for each rule, and the dotted line corresponds to the θ = π/2
case for each rule.
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Fig. 4. How orientation is preserved from translating x to w across line intersection point
z, under a rule with projection angle θ. Note how the projection lines corresponding
with a fixed orientation are antiparallel across line intersection point (z), and always
map opposite the same line intersection angle (δ).

least one of the rules in an associated rule sequence.

Definition 2.2. An n-rule map Tn : Xm → Xm is defined to be a

cycling composition of n ≥ 3 rules in an associated defining rule sequence

{ri}ni=1. That is, if {ri}ni=1 is a sequence of rules defining n-rule map Tn,

then for x ∈ Xm, define iteration of Tn so that

Tn(Tn+1
n (x)) = Tn+2

n (x) = r2(r1(rn(...r2(r1(x))))).

Figure 5 gives a visual example of iterating a 3-rule map over X3.

Unless otherwise stated, the pair (Xm, Tn) denotes a dynamical system.

For a point x ∈ Xm, we let O(x) denote the orbit of x under n-rule map

Tn, so that

O(x) := {x, Tn(x), T 2
n(x), ...}.

We call an n-rule map redundant if there exists a length n′ rule sequence

with m ≤ n′ < n, such that for all x ∈ Xm, the orbit of x under the n′-rule

map is equal to the orbit of x under the n-rule map. For the purpose of this

paper we assume all n-rule maps are not redundant.
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Fig. 5. Demonstration of six iterations of a 3-rule map T3 over X3, where T3(x0) = x1,
and T 6

3 (x0) = x6. The defining rule sequence of T3 is (r1(x;π/2, L2), r2(x; θ2, 1, L1),
r3(x; θ3, 0, L3)). The solid lines correspond to rule r1, the dashed lines to r2, and the
dotted lines to r3.

2.1. n-Rule maps and rules as similarities

Let L1, L2 denote lines in R
2, intersecting at point z with acute or right

angle δ. Let x, y ∈ L1 lie on the same side of the line intersection point z, and

take a rule r that projects onto line L2 with projection angle θ ∈ (0, π/2].

Further, let the orientation value of r be chosen so that it maps x and

y farthest from z when δ is acute (see Figure 4, where orientation o = 1

projects x & y farthest from z).

Let d be the Euclidean metric. Assume d(x, y) = ε > 0, and a = d(z, x),

a + ε = d(z, y). Let γ = π − δ − θ, so that γ = ∠zxr(x) = ∠zyr(y). Then

it follows by use of the law of sines that

d(r(x), r(y)) =

∣∣∣∣
∣∣∣∣a sin(γ)

sin(θ)
− (a+ ε) sin(γ)

sin(θ)

∣∣∣∣
∣∣∣∣
2

=
ε sin(γ)

sin(θ)
.

Let c = sin(γ)/ sin(θ), and hence d(r(x), r(y)) = cd(x, y). We see that if

0 < θ < (π − δ)/2 and δ is acute, then

c =
sin(γ)

sin(θ)
> 1.
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Furthermore, if θ = (π − δ)/2, then c = 1, and when

π − δ
2

< θ ≤ π

2

then 0 ≤ c < 1.

By similar argument, when the rule r has opposite orientation parameter

(and hence maps x and y closer to z in this case), we see that d(r(x), r(y)) =

cd(x, y) for some constant c = c(θ, δ), computable using the law of sines,

where 0 ≤ c < 1 when δ/2 < θ ≤ π/2, and c = 1 when θ = δ/2, and c > 1

when 0 < θ < δ/2.

When the points x and y are on opposite sides of the line intersection

point z, it still holds that d(r(x), r(y)) = cd(x, y). To see this, let x, y ∈ L1

lie on opposite sides of line intersection point z. Then d(r(x), z) = cd(x, z)

and d(r(y), z) = cd(y, z), and hence

d(r(x), r(y)) = d(r(x), z) + d(r(y), z) = cd(x, z) + cd(y, z) = cd(x, y)

As such, by fixing the projection angle and orientation parameters θ and o

of a rule r, and restricting the mapping of a rule from one line to another

Xm, then r becomes a similarity transformation. That is

d(r(x), r(y)) = cd(x, y), c ≥ 0.

We call the constant c a similarity coefficient.

Iteration of n-rule maps is defined to be a cycling composition of rules in

an associated rule sequence, and as a consequence, after the first iteration

of a n-rule map over a point in Xm, each rule in the rule sequence will

always map between the same pair of lines since each rule in the sequence

always projects onto the same line. Hence, by way of the above analysis,

iteration of a fixed n-rule map can be thought of as a cycling composition

of similarity transformations, after the first iteration of the map.

Let T̂n := Tn
n denote the induced map of n-rule map Tn, so that T̂ l

n = T ln
n

for l ∈ N, and T̂n : Lan → Lan , where Lan is the line the nth rule in

the defining rule sequence of Tn maps onto. If the rules defining Tn have

similarity coefficients c1, ..., cn, then let C = c1 · c2 · · · cn label the similarity

coefficient for the induced map T̂n.

With every binary string s ∈ {0, 1}n, we can associate an n-rule map

with fixed projections angles {θi} and line label parameters {Lai}, so that
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the orientation values are defined as {oi = si}. It follows that for fixed

projection angle and line label parameter sets, we obtain a class of 2n n-

rule maps differing from one-another only in rule orientation values. Call

such a class an n-rule map orientation class. We say an n-rule map has

orientation configuration s ∈ {0, 1}n if rule ri in the defining rule sequence

has orientation value oi = si, i = 1, ..., n.

Lemma 2.1. For any space Xm, of the 2n distinct n-rule maps in any

given n-rule map orientation class, no more than
(

n
�n/2�

)
have an induced

map with similarity coefficient C equal to 1.

Proof. Let c
(0)
i and c

(1)
i denote the similarity coefficients for rules

ri(x; θi, 0, Lai) and ri(x; θi, 1, Lai), respectively. We aim to provide an

upper bound on the number of n-rule maps in any given orientation class

that have an induced map with similarity coefficient C = 1. Hence, we must

give an upper bound on the number of bit-strings s ∈ {0, 1}n such that

c
(s1)
1 c

(s2)
2 · · · c(sn)

n = 1.

For each subset S ⊆ [n], let CS denote the product c
(s1)
1 · · · c(sn)

n where si = 1

if i ∈ S. Let be the family of sets S such that CS = 1.

By definition, the lines defining Xm are not perpendicular or parallel, so

c
(0)
i �= c

(1)
i for all i. Without loss of generality, suppose c

(0)
i < c

(1)
i . It follows

that for distinct sets A,B ⊂ , we cannot have A ⊂ B, as A ⊂ B implies

CA < CB (In general every factor is greater than or equal, with at least one

strictly greater). is then an antichain. Applying Sperner’s Theorem we

have

| | ≤
(

n

�n/2�

)
. �

3. n-Rule Maps and Closed Curves

In this section we prove Theorem 1.1. We begin by establishing the

following.

Theorem 3.1. Let (Xm, Tn) be a dynamical system, and let T̂n be the

induced map of n-rule map Tn, with similarity coefficient C = c1c2 · · · cn. If

0 ≤ C < 1, then Tn admits a unique periodic orbit of period n.
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Fig. 6. Result from a numerical simulation of iterating a 6-rule map in X4, which exhibits
an orbit (red) converging to a six-cycle (blue).

Proof. Let Ô(x) denote the orbit of x ∈ Xm under T̂n. It follows from

definition of the induced map T̂n, that for any x ∈ Xm, the orbit Ô(x)\{x}
of x under T̂n, must be a subset of some line Lan ⊂ Xm determined by

the nth rule in the defining rule sequence of Tn. Further, by hypothesis

0 ≤ C < 1, and hence

d(T̂n(x), T̂n(y)) ≤ Cd(x, y)

for any x, y ∈ Lan , so T̂n is a contraction mapping. But the line Lan is

a closed subset of R
2 and necessarily complete. Hence, by the contraction

mapping theorem there exists a unique x∗ ∈ Li such that T̂n(x∗) = x∗.
Then Tn admits a unique periodic orbit of period n. �

Refer to Figure 6 for visual demonstration of the type of dynamics The-

orem 3.1 provides.

Assume two lines Li, Lj in Xm intersect at angle δ ≤ π/2. Then if the

defining rule sequence of an n-rule map Tn over Xm contains a rule mapping

from Li to Lj (or vice-versa) with projection angle θ = δ, then depending
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Fig. 7. The closed curve corresponds to a periodic orbit generated by a collapsing 5-rule
map. The map is composed of five rules, where θ4 = δ, the acute line intersection
angle of L1 and L2. And hence because the fourth rule maps from L1 to L2, with
projection angle δ and orientation 1, the intersection point of L1 and L2 is mapped
onto, becoming a periodic point.

on rule orientation, iteration of this rule may project onto the intersection

point of Li and Lj every n iterations, and hence the system collapses to

a periodic orbit after at most n iterations of Tn. In such a case, we say

the n-rule map Tn is collapsing. Collapsing maps correspond with the case

when the induced map of n-rule map Tn has similarity coefficient C = 0.

Figure 7 gives a visual example of a collapsing map.

Remark 1. If an n-rule map is not collapsing, then it is invertible.

If m′ lines in Xm intersect at a common point z, with 2 ≤ m′ < m,

then a rule sequence {ri}ni=1 may contain a subsequence of consecutive rules

which map strictly between them′ lines intersecting at z. As a consequence,

such a subsequence of consecutive rules would map z to itself. In the case

that such a line intersection point z is a periodic point, and a subsequence of

rules map over this point, we say the periodic point z is absorbing, and that

the subsequence of rules is an absorbed subsequence. For visual example,

refer to Figure 8, demonstrating how a subsequence can be absorbed over a

line intersection point (left), compared to no absorption (right).
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Fig. 8. If a rule mapping onto line L2 hits the intersection point z = L1 ∩ L2 ∩ L3, then
the three following rules in the sequence mapping onto lines L3, L1, L2, respectively,
are “absorbed.”

An absorbed subsequence may be composed of 1 ≤ k ≤ n−2 rules. That

k ≤ n−2 is given by the nonconcurrency assumption of the lines composing

Xm, and that every line in Xm must be mapped onto by at least one rule in

every rule sequence associated to an Xm. Hence, there are always at least

two rules in a rule sequence that cannot be absorbed.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Take a space Xm, a sequence θ1, θ2, ..., θn
of acute angles, as well as a sequence La1 , La2 , ..., Lan of line labels over Xm

with no two consecutive labels the same, and each possible label occurring

at least once in the sequence. Let label the n-rule map orientation class

corresponding to parameters {θi} and {Lai}. We aim to show that there

is an n-rule map in realizing a closed curve Γ over Xm that admits an

incidence angle sequence θ1, ..., θn with respect to the line label sequence

La1 , ..., Lan . This is accomplished by studying how periodic orbits change

under rule orientation alterations. Refer to Figure 9 for visual example

throughout.

Fix a binary string s ∈ {0, 1}n, and consider the n-rule map in with

orientation configuration s. Consider the case when the angles θ1, ..., θn
and binary orientation values oi = si of the n-rule map are such that the

similarity coefficient for the induced map is C < 1. Then by Theorem 3.1,
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Fig. 9. Closed curves generated by three 3-rule maps, which only differ in rule orientation
values. The red triangle in the center exemplifies the C = 1 case and is the Fagnano
periodic billiard orbit. The green triangle exemplifies a C �= 1 case, and is in fact
similar to the red triangle. The blue line is a period 3 orbit exemplifying an orbit
with an absorbed rule at the line intersection point. Typical instances of n-rule maps
over a space Xm will have only C �= 1 configurations with no absorbed rules. The
case pictured is a pathological case where we have two C = 1 configurations, three
absorbing, and three non-absorbing configurations.

Tn admits a periodic orbit, and by joining consecutive periodic points of this

orbit with line segments, we obtain a closed curve Γ over Xm that admits

an incidence angle sequence θ1, θ2, ..., θn with respect to the line sequence

La1 , La2 , ..., Lan , by the definition of Tn. Similarly, if Tn is collapsing, then it

has a periodic orbit, and this orbit corresponds to a closed curve Γ admitting

an incidence angle sequence θ1, θ2, ..., θn with respect to the line sequence

La1 , La2 , ..., Lan .

If the n-rule map parameters {θi} and {oi} are such that C > 1, then

Tn is not collapsing, and has an inverse n-rule map T−1
n with corresponding
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induced map T̂−1
n and similarity coefficient C ′ = 1/C. Then by Theorem

3.1 T−1
n has a periodic orbit. But T−1

n is the inverse of Tn, and hence this

is also a periodic orbit for Tn. Constructing a closed curve Γ from this

periodic orbit as above, we see that Γ admits an incidence angle sequence

θ1, θ2, ..., θn with respect to the line sequence La1 , La2 , ..., Lan .

Consider the case when parameters {θi} and {oi} give C = 1; Then

iteration of the map does not converge to a periodic orbit. Fix any i ∈ [n],

and change the orientation value oi = si of the rule ri to oi, where oi = oi⊕1

with oi = si ∈ {0, 1}, and ⊕ denotes addition modulo 1. By definition, the

lines composingXm are pairwise nonparallel and non-perpendicular. Hence,

since the projection angles θi are taken to be acute, it follows that changing

the orientation of the rule ri must change the value of C so that C no longer

equals 1. As such, upon making a rule orientation change we are left with

either C < 1 or C > 1, and we construct a closed curve by referring to the

corresponding case above.

Finally, we show that there must always exist an s ∈ {0, 1}n so that

n-rule map Tn with orientation configuration s has a corresponding induced

map with similarity coefficient C �= 1, and that the periodic orbit has no ab-

sorbed subsequences. This is exhibited in Figure 9, where the green closed

curve corresponds to the C �= 1 case without absorbed rule subsequences,

while the blue line illustrates a C �= 1 case where the periodic orbit has an

absorbed rule, and thus does not satisfy the theorem because two consecu-

tive periodic points of the orbit are equal.

We begin by establishing an upper bound on the number of n-rule maps

in that have periodic orbits with absorbed subsequences. We recall that

given a line label sequence La1 , ..., Lan with no consecutive labels the same,

any absorbed subsequence of rules cannot have length greater than n − 2,

and there are hence always at least two rules that cannot be absorbed. In

particular, note that if a subsequence of rules is absorbed, the rules leading

into and out of the absorbed subsequence cannot be absorbed simultane-

ously with the absorbed subsequence. Any line label sequence can then

be partitioned into an alternating sequence of absorbed and non-absorbed

subsequences.

In addition, if there is a sequence of k rules mapping over lines inter-

secting at a single point z, then there can be at most k different ways rules

of the subsequence can be absorbed over the line intersection point z. This
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follows from the fact that if one rule is absorbed, all the following rules in

the subsequence must be absorbed as well. It follows that orientation classes

maximizing the number of n-rule maps with degenerate periodic orbits are

those where every rule in a rule-sequence can be absorbed over a distinct

line intersection point.

Equipped with the above considerations, we conclude that in any orien-

tation class, an upper bound on the number of n-rule maps whose periodic

orbits have at least one absorbed rule, corresponds to the number of ways

to choose up to �n/2� objects from a list of n objects so that none of the

chosen objects are consecutive. Namely

�n/2�∑
i=1

(
n− i+ 1

i

)
.

Moreover, Lemma 2.1 gives us a bound of
(

n
�n/2�

)
on the number of n-rule

maps in an orientation class that can have an orientation configuration so

that the corresponding induced maps have similarity coefficient C = 1. But

it is easy to confirm that

(
n

�n/2�

)
+

�n/2�∑
i=1

(
n− i+ 1

i

)
< 2n for all n ≥ 3.

Hence, there must always exist an n-rule map in any orientation class with

induced map having similarity coefficient C �= 1, and so that the corre-

sponding periodic orbit has no absorbed rule subsequence. �

We remark that in the polygonal billiard case our proof does not find

the actual periodic polygonal billiard orbit (red orbit in Figure 9), rather

we show that another solution always exists (green orbit in Figure 9).

The dynamics of “classical billiards” in which the billiard undergoes

specular reflection at the boundary is an archetypal example of conserva-

tive dynamics: the Liouville measure is preserved. Classical billiards then

fail to model phenomena that hold in regimes far from equilibrium. In the

direction of overcoming these restrictions, in [4] the authors consider a dy-

namical system which corresponds to motion of a single particle reflecting

off scatterers, but so that the particle is subjected to an electric field and a

momentum dependent frictional force, so the Liouville measure is not pre-

served. In a similar direction, a number of recent papers (e.g. [1, 2, 13, 19])
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have study the dynamics of a type of non-conservative “pinball billiards”

where the ball is “kicked” by the wall, giving a new impulse in the direction

of the normal. That is, the outgoing angle from a collision is a uniform con-

traction by a factor λ ≤ 1, where the classical Hamiltonian case of elastic

collisions is when λ = 1. For λ < 1 the dynamics is dissipative, and thus

gives rise to attractors.

Similarly, in the case of the dynamical system studied in this paper, the

system resembles a particle that reflects off or refracts through a boundary

as a function of the section of the boundary it is incident to. In fact, the

role of λ in pinball billiards papers is nearly identical to the role of similarity

coefficient C in our paper: C = 1 represents the Hamiltonian case just as

λ = 1, and when C < 1 the dynamics give rise to attractors, just as in the

λ < 1 case. Indeed, the methods of studying classical polygonal billiards

by way of pinball billiards can be carried over to study classical billiards

using n-rule maps in a similar way, although additional analysis is needed

along with the techniques used in proving Theorem 1.1 to actually obtain

classical billiard orbits.

For instance, in [13] the authors introduce the notion of λ-stability, in

which polygonal billiard periodic trajectories can be classified as λ-stable if

there is a periodic trajectory from the corresponding pinball billiard which

converges to it as λ → 1. In particular, the billiard of any polygon can

be embedded in a one-parameter family, parameterized by λ ∈ (0,∞), of

billiards having periodic trajectories whenever λ �= 1. The authors use these

facts to characterize the λ-stable periodic trajectories of the billiard in P .

In our case, we obtain the conservative limit as C → 1. It is easy to show

that if there exists a periodic billiard trajectory in a polygon, then there

exists a closed curve generated by an n-rule map with C �= 1 approximat-

ing the periodic billiard trajectory. To this end, a natural and important

question that arises would be to determine when an n-rule map with C �= 1

has a periodic orbit contained strictly within a polygon cut out by the lines

composing Xm.

Tiling billiards are also a recently studied type of billiards, in which

trajectories refract through planar tilings, with positive and negative indices

of refraction [3, 7]. We obtain a similar physical interpretation in our case:

consider a cracked pane of glass that a beam of light shines through the edge

of. If various materials are allowed between the edges of the broken glass,
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or the fragments of glass themselves are of different types, the beam of light

will reflect off or refract through the pieces in various ways that could lead

to asymptotically stable behavior. n-Rule maps provide a natural tool to

determine the asymptotic behavior of such a system.

4. n-Rule Maps Defined Using Piecewise Continuous Rules

This section begins the second part of our analysis, in which we rede-

fine n-rule maps so that rules map onto lines not on a basis of some fixed

line label, but rather on a basis of a distance between points and lines.

Rules then become piecewise continuous, and this redefinition introduces

discontinuities that complicate the dynamics. In this section we give basic

results concerning the redefined n-rule maps, and then in Section 5 we prove

Theorem 5.1, which shows when their orbits are asymptotically periodic.

The following dynamical system most directly generalizes the system

studied in [9] and shares characteristics with piecewise isometric dynami-

cal systems [10, 11]. However, perhaps the most closely related dynamical

system is that coming from the farthest point map, defined as follows. If X

is a compact metric space, the farthest point map f is defined so that for

p ∈ X, f(p) is the the set of all points q such that the distance from p is

maximized at q. Typically, f is single valued, so we obtain a well-defined

map with which we can construct a dynamical system. The farthest point

map is a well studied dynamical system; see [25] and [24] for recent work

on the regular octahedron and dodecahedron, and [21, 22, 28] for study of

the farthest point map on convex polyhedron, and [27] for a survey.

4.1. Redefining n-rule maps

Let Ym ⊂ R
2 label the space of m ≥ 3 pairwise nonparallel, noncon-

current line in R
2. If Li, Lj are two distinct lines in Ym where x ∈ Li, we

define

d(x, Lj) := inf{d(x, y)|y ∈ Lj}

to be the distance between point x and line Lj , where d is the Euclidean

metric, and, in particular d(x, Li) = 0.

For every point x ∈ Ym, we construct the set

D(x) = {d(x, Li)|1 ≤ i ≤ m}
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and define the partially ordered set D(x) := (D(x),≤). We let l denote an

index on D(x), so that l = i, 1 ≤ i ≤ m corresponds with the ith farthest

line from point x. Note that if there exist m′ lines in Ym, m′ < m, that

are all the same distance from point x, then there are m′ values of l that

do not correspond with a unique distance value in D(x), and thus do not

correspond with a unique line in Ym.

Definition 4.1. Let θ ∈ (0, π/2], o ∈ {0, 1}, and l ∈ {2, 3, ...,m}.
We call a mapping r : Ym → Ym a piecewise rule, if r(x) is an angle θ,

orientation o projection x ∈ Ym onto the lth farthest line from x. If the

index l corresponds with a distance value in D(x) that is not unique in D(x),

put r(x) = x.

As before, we notate piecewise rules as r(x; θ, o, l) to make the parame-

ters of the rule explicit. Furthermore, for the rest of the paper, we will refer

to “piecewise rules” as “rules” for convenience, and when needed refer to

the rules used in Sections 2 and 3 as “symbolic rules.”

In the case when the index l corresponds to a distance value in D(x)

that is not unique so that r(x) = x, then we say x is an invariant point

under rule r. Figure 3 provides visual demonstration of the composition of

two rules,

r1(x) := r(x; θ1, 1, 2) and r2(x) := r(x; θ2, 0, 3)

over a point x0 ∈ Y3, so that r1(x0) = x1 and r2(r1(x0)) = x2. Intuitively,

rule r1 maps to the closest line from a point x, and rule r2 maps to the

farthest line from a point x when applied to a space Y3. We leave rule

orientation to be defined as previously, with the convention made visually

explicit for this new class of rules in Figures 3 and 4.

We leave rule sequences and n-rule maps defined as before, except for

noting that n-rule maps defined by piecewise rules may only have one rule

in the defining rule sequence, unlike those defined with symbolic rules which

required at least three. We let Kn denote an n-rule map where the defining

rules in the rule sequence are piecewise rules. We may call such maps

piecewise n-rule maps for clarity, although for the remainder of this paper

we will only work with piecewise n-rule maps, and hence we refer to them

simply as “n-rule maps” when the context is clear.
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For any piecewise n-rule map Kn, it is required that at least one of the

rules in the associated rule sequence has index value l > 2; such a restriction

ensures the dynamics of a piecewise n-rule map are nontrivial. If all rules

of the rule sequence have l index value of l = 2, then each iteration maps

to the “closest” line, and orbits approach a line intersection point of Ym,

failing to exhibit behavior of interest.

Unless otherwise stated, the pair (Ym,Kn) denotes a dynamical system.

If a point x∗ ∈ Ym is invariant for n′ < n of the rules in the n-rule

sequence defining Kn, then we say x∗ is sometimes invariant under Kn. If

x∗ is invariant under all rules defining Kn, we say x∗ is strictly invariant

under Kn. As such, any 1-rule map has only strictly invariant points.

Remark 2. For any (Ym,Kn) dynamical system, the set of strictly

invariant and sometimes invariant points is finite.

As before, we call an n-rule map redundant if there exists a length n′

rule sequence with 1 ≤ n′ < n, such that for all x ∈ Ym, the orbit of x under

the n′-rule map is equal to the orbit of x under the n-rule map. We assume

all piecewise n-rule maps are not redundant.

4.2. Convergence and contraction of piecewise n-rule maps

We now give results pertaining to piecewise n-rule maps that are used

in determining asymptotic behavior of orbits.

The space Ym is composed of m pairwise nonparallel, nonconcurrent

lines, so any given space Ym has
(
m
2

)
pairwise line intersection points. Then,

for each pairwise intersection point, let ηi label the ith pairwise line inter-

section angle, where 0 < ηi ≤ π/2. Let

δ = min

{
ηi|1 ≤ i ≤

(
m

2

)}

label the least pairwise intersection angle between any two lines in Ym. Note

δ must be acute by definition of Ym.

Definition 4.2 (Average Contraction Condition). For piecewise n-

rule map Kn, let θ̄ label the average of all projection angles in the n-rule

sequence defining Kn. Then if

π − δ
2

< θ̄ ≤ π

2
(1)
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for least angle δ in Ym, we say Kn satisfies the average contraction condition

with respect to Ym.

We motivate the introduction of the average contraction condition

through the following observations, which are similar to those given in Sec-

tion 2.1.

Let L1, L2 denote lines in R
2, intersecting at point z with acute angle

δ. Without loss of generality, let x, y ∈ L1, and take a rule r, such that

r(x), r(y) ∈ L2, and x, y, r(x), r(y) are on the same side of intersection point

z. Further, let the orientation value of r be the choice that maps farthest

from z. For example, in Figure 4 rule orientation value o = 1 maps farther

away from the line intersection point when mapping from the particular

line.

Assume d(x, y) = ε > 0, and a = d(z, x), a + ε = d(z, y). Let θ denote

the projection angle of rule r, and let γ = π− δ− θ, so that γ = ∠zxr(x) =

∠zyr(y). Then if

0 < θ <
π − δ

2

it follows by use of the law of sines that

d(r(x), r(y)) =

∣∣∣∣
∣∣∣∣a sin(γ)

sin(θ)
− (a+ ε) sin(γ)

sin(θ)

∣∣∣∣
∣∣∣∣
2

=
ε sin(γ)

sin(θ)

but θ < (π − δ)/2 and δ is acute, so under our choice of rule orientation

value

sin(γ)

sin(θ)
> 1

and then d(r(x), r(y)) > d(x, y): iteration of r over L1 and L2 in such a way

is then expansive. By similar argument, we see that if θ = (π − δ)/2, then

the rule defines an isometry and d(r(x), r(y)) = d(x, y). When

π − δ
2

< θ ≤ π

2

then d(r(x), r(y)) ≤ cd(x, y), 0 ≤ c < 1. Further, δ is acute, so in the

case when r(x) maps opposite the angle π − δ, we have π − δ > δ, so if r
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is contractive when mapping opposite δ, it must also be contractive when

mapping opposite π − δ.
From the above example, we see that for any rule r, with colinear x, y

and colinear r(x), r(y) all on the same side of the line intersection point, we

have

d(r(x), r(y)) ≤ cd(x, y), c ≥ 0

where c can be computed directly via the law of sines, as a function of the

rule projection angle and the opposite line intersection angle. In this case,

we call such values c, separation coefficients.

Lemma 4.1. Let lines L1, L2 ⊂ Ym intersect at a point z with acute

angle δ, and let x, y ∈ L1 lie on the same side of z. Let r1, r2 label rules with

distinct orientation values, which are chosen so that the rules map farthest

from z, and let the points ri(x), ri(y) ∈ L2 and ri(rj(x)), ri(rj(y)) ∈ L1,

i, j = 1, 2, i �= j all lie on the same side of z. Then for corresponding rule

separation constants c1 and c2, we have that 0 ≤ c1c2 < 1 if and only if

π − δ
2

<
θ1 + θ2

2
≤ π

2
(2)

for rule projection angles θ1, θ2 corresponding with rules r1, r2.

Note that c1c2 < 1 implies composition of the two rules defines a con-

traction:

d(ri(rj(x)), ri(rj(y))) ≤ c1c2d(x, y), 0 ≤ c1c2 < 1

for distinct i, j. Further, the orientation values of the rules are chosen so

that the rules map farthest from the line intersection point in each case,

and thus the corresponding separation constants are maximized.

Proof of Lemma 4.1. Let γ1 = π − θ1 − δ and γ2 = π − θ2 − δ. We

assume that

π − δ
2

< θ1 ≤ π

2

so by Equation 2, we require that

π − θ1 − δ < θ2 ≤ π − θ1(3)
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By Equation 3 we see that sin(θ2) > sin(π − θ1 − δ), and that

sin(γ2) = sin(π − θ2 − δ)
= sin(θ2 + δ)

≤ sin(π − θ1 + δ)

Then, through substitution we obtain

c1c2 =
sin(γ1)

sin(θ1)

sin(γ2)

sin(θ2)
<

sin(π − θ1 − δ)
sin(θ1)

sin(π − θ1 + δ)

sin(π − θ1 − δ)

but sin(π − θ1 + δ) = sin(θ1 − δ) < sin(θ1), so

sin(π − θ1 − δ)
sin(θ1)

sin(π − θ1 + δ)

sin(π − θ1 − δ)
=

sin(π − θ1 + δ)

sin(θ1)
< 1

Going the other direction, let γ1 = π − θ1 − δ and γ2 = π − θ2 − δ. Then

from

c1c2 =
sin(γ1) sin(γ2)

sin(θ1) sin(θ2)
< 1

with substitution we obtain

sin(π − θ1 − δ) sin(π − θ2 − δ) < sin(θ1) sin(θ2)

By the product identity for sine, we have

cos(−θ1 + θ2) − cos(2π − θ1 − θ2 − 2δ)

2
<

cos(θ1 − θ2) − cos(θ1 + θ2)

2

but cos(−1(θ1 − θ2)) = cos(θ1 − θ2) so upon simplifying we have

cos(2π − θ1 − θ2 − 2δ) > cos(θ1 + θ2)

and by removing cosine we obtain

2π − θ1 − θ2 − 2δ < θ1 + θ2

Note that although cosine is not monotone, by the restrictions on the angles

we can remove cosine in such a way. This gives us

π − δ < θ1 + θ2 =⇒ π − δ
2

<
θ1 + θ2

2
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The case for the upper bound (θ1 + θ2)/2 ≤ π/2 is clear. �

In the above lemma, we took the rule orientation values to be chosen in

a way that ensures the rules map farthest from the line intersection point.

If we instead use rule orientation values that force the rules to map closer to

the line intersection points, then so long as the two projection angles θ1, θ2
satisfy Equation 2, both rules must provide contraction (i.e. c1 < 1 and

c2 < 1).

That is, if γ2 = π − θ2 − δ, and

sin(γ2)

sin(θ2)
> 1

under a rule orientation value mapping farther from a line intersection point,

then under opposite rule orientation value, we have γ′2 = π − (π − θ2) − δ,
so

sin(γ′2)

sin(π − θ2)
=

sin(θ2 − δ)
sin(θ2)

< 1.

As an immediate consequence of the above remark and Lemma 4.1, we

obtain the following corollary.

Corollary 4.2. Let L1, L2 ⊂ Ym intersect at point z with acute angle

δ. Further, let Kn be a piecewise n-rule map so that iterates of Kn map

between L1 and L2, opposite angle δ, and for initial points x, y ∈ L1, let

the first n points of O(x),O(y) remain on the same side of z. Then if Kn

satisfies the average contraction condition for least angle δ,

d(Kn
n (x),Kn

n (y)) ≤ Cd(x, y), 0 ≤ C < 1.

We remark that here C = c1c2 · · · cn, is the product of the n separation

constants coming from the piecewise rule sequence.

Lemma 4.3. For all lines Li ⊂ Ym and x, y ∈ Li, if each closed interval

[Ki
n(x),Ki

n(y)] ⊂ Ym, 0 ≤ i ≤ n
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contains no line intersection points or invariant points, then if Kn satisfies

the average contraction condition in Ym,

d(Kn
n (x),Kn

n (y)) ≤ Cd(x, y), 0 ≤ C < 1.

Proof. Let δ label the least pairwise intersection angle in Ym. Then by

Corollary 4.2, if Kn satisfies the average contraction condition over Ym, and

iteration ofKn is strictly opposite angle δ, then d(Kn
n (x),Kn

n (y)) ≤ Cd(x, y)
for C ∈ [0, 1). But δ is the least angle in Ym, so if iteration of Kn contracts

opposite angle δ on average, then it must also contract opposite every other

angle in Ym on average: if ηi is a distinct line intersection angle, then ηi ≥ δ,
and

π − ηi
2

≤ π − δ
2
.

As such, assuming the conditions of the statement, it follows that

d(Kn
n (x)Kn

n (y)) ≤ Cd(x, y)

for C ∈ [0, 1). �

We note the average contraction condition ensures contraction regardless

of rule orientation. The average contraction condition provides sufficient

but not necessary conditions for an n-rule map to define a contraction on

average.

Lemma 4.4. If Kn satisfies the average contraction condition over Ym,

then there exists bounded regions R,R′ ⊂ Ym such that for all x ∈ R,

O(x) ⊂ R′.

Proof. By definition of n-rule maps and the average contraction con-

dition, iteration of an n-rule map Kn in Ym must, on average, map closer to

line intersection points. The lines composing Ym are pairwise nonparallel, so

all lines must intersect, and there must exist a bounded region R containing

all such line intersection points. As such, if iteration of Kn maps closer to

line intersection points on average, then iteration of the map must remain

in a bounded region R′. �
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Immediate from proof of Lemma 4.4, we obtain the following corollary.

Corollary 4.5. If Kn satisfies the average contraction condition over

Ym, then any sequence of points taken from successive preimages of Kn over

noninvariant points x ∈ Ym diverges in Ym.

5. Asymptotic Behavior of Piecewise n-Rule Maps

In this section, we study the asymptotic properties of piecewise n-rule

maps satisfying the average contraction condition over Ym. For piecewise n-

rule map Kn and point x ∈ Ym, we call a cycle of Kn over x the application

of Kn to x, n times; the cycle of x0 ∈ Ym under Kn is the sequence of points

x0, x1, ..., xn, where Kn
n (x0) = xn. We let Kn := Kn

n label the cycle map of

Kn, so that for x0 ∈ Ym, Kn(x0) = xn, and Kt
n(x0) = Ktn

n (x0) = xtn.

If rule ri in the rule sequence of n-rule map Kn has sometimes invariant

point q in Ym, then for every h ∈ Ym such that Ki
n(h) = q for 1 ≤ i ≤ n,

we call h a pre-invariant point of rule ri. Associated with the (Ym,Kn)

dynamical system, we let Ω denote the set of invariant points of all types,

as well as preimages of the cycle map Kn from all pre-invariant points.

Further, if p is a strictly invariant point under Kn, then all points a ∈ Ym
such that Kj

n(a) = p, j ∈ Z
+, are also contained in Ω.

Put Y ′
m = Ym \ Ω. We call the dynamical system (Ym,Kn) degenerate

when iteration of Kn eventually maps to an invariant point of any type; it

follows that for the dynamical system (Y ′
m,Kn) to be well defined, (Ym,Kn)

must be a non-degenerate dynamical system. Such degenerate systems arise

at bifurcation points, and the remainder of this section focuses on the study

of non-degenerate systems. The main result of this section is as follows.

Theorem 5.1. Let (Ym,Kn) be a non-degenerate system, with piece-

wise n-rule map Kn satisfying the average contraction condition over Ym.

Then there exists k ∈ Z
+ such that for all x ∈ Y ′

m, the orbit O(x) converges

to a periodic orbit of period kn.

Figure 10 illustrates the kind of dynamics Theorem 5.1 provides, showing

the periodic orbit iteration of a 4-rule map converged to in a space Y5.

We need some preparatory lemmas to prove Theorem 5.1. First, note

that as consequence of Corollary 4.5, if Kn satisfies the average contraction
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Fig. 10. Iteration of a piecewise 4-rule map in Y5, with the orbit converging to a
four-cycle. This was the output of a numerical simulation.

condition, then sequences of points taken from preimages of invariant points

diverge in Ym, so Ω is guaranteed not to be dense in Ym since the collection

of sometimes invariant and strictly invariant points is finite. If, however,

Kn fails to satisfy the average contraction condition then such a guarantee

may not be made.

If Kn satisfies the average contraction conditions in Ym, then let Um

denote the set of open intervals Ia ⊂ Ym such that the boundary values of

each Ia are given by elements in Ω; no element in Ω is contained within an

open interval Ia. Let

Ô(x) := {x,Kn(x),K2
n(x), ...}

denote the orbit of x under cycle map Kn.

Lemma 5.2. For non-degenerate dynamical system (Ym,Kn) and

piecewise n-rule map Kn satisfying the average contraction condition over

Ym, if Ia ∈ Um, then there exists an Ib ∈ Um such that Kn[Ia] ⊂ Ib, where

Ia, Ib need not be distinct.
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Proof. We proceed by contradiction and assume Kn[Ia] ⊂ Ib ∪ Ic.
By definition, the boundary values of each Ia ∈ Um are invariant points or

preimages of invariant points under Kn. It follows that if Kn[Ia] ⊂ Ib ∪ Ic,
then Ia = Id ∪ Ie, as Ia would contain preimages of such boundary values,

a contradiction. �

Lemma 5.3. If (Ym,Kn) is non-degenerate with Kn satisfying the av-

erage contraction condition and x ∈ Y ′
m, then Ô(x) ⊂

⋃s
i=1 Ii for finite s

and Ii ∈ Um.

Proof. We first note that taking x ∈ Y ′
m is, by definition, equivalent

to taking x ∈ Ia, for Ia in Um. For any (Ym,Kn) dynamical system, there

may only be a finite number of invariant points of any type underKn, and by

Corollary 4.5, preimages of n-rule maps satisfying the average contraction

condition diverge from points in Ym. It then follows by definition of the set

Ω and corresponding construction of intervals in Um, that for any bounded

region R ⊂ Ym, there may only be a finite number of such intervals Ia in

R. Further, by Lemma 4.4, orbits of n-rule maps satisfying the average

contraction condition must remain in a bounded region. Finally, by Lemma

5.2, for every Ia ∈ Um, Kn[Ia] ⊂ Ib, and it thus follows that the orbit of x

under Kn is contained in a finite number of intervals. �

We call an interval Ic ∈ Um confining if there is a t ∈ Z
+, t = t(Ic,Kn),

such that Kt
n[Ic] ⊂ Ic.

Lemma 5.4. If (Ym,Kn) is a non-degenerate dynamical system with

n-rule map Kn satisfying the average contraction conditions over Ym, then

there exists a confining interval Ic in Ym, and iteration of Kn over any

x ∈ Y ′
m maps into a confining interval in a finite number of iterations.

Proof. By Lemma 5.3, the orbit of any x ∈ Y ′
m under Kn is restricted

to a finite number of intervals. Thus, by way of the pigeon hole principle,

iteration of Kn is forced to map to an interval it has already visited in a

finite number of iterations: a confining interval. And because the orbit

is restricted to a finite number of intervals, it must map into a confining

interval after a finite number of iterations. �

Definition 5.1. Let Ic ∈ Um be a confining interval in Ym, and let

K̂n : Ic → Ic be the induced map of Kn over the interval of continuity Ic,
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defined so that if x ∈ Ic and Kk
n(x) ∈ Ic for minimal k, we put K̂n(x) =

Kk
n(x) = Kkn

n (x).

Lemma 5.5. If (Ym,Kn) is a non-degenerate dynamical system with

n-rule map Kn satisfying the average contraction condition over Ym, and

let Ic be a confining interval in Ym. Then the induced map K̂n has a unique

fixed point in Ic.

Proof. By hypothesis, Kn satisfies the average contraction condition

over Ym, so K̂n is a contraction mapping over confining interval Ic as con-

sequence of Lemma 4.3. Further, we take the system (Ym,Kn) to be non-

degenerate, so by Lemma 5.2, K̂n[Ic] ⊂ Ic (strict subset). As such, for any

x ∈ Ic, the sequence of points x, K̂n(x), K̂2
n(x), ... is a Cauchy sequence, and

must converge to a unique point in the interval of continuity Ic. It follows

that there is a point x∗ ∈ Ic such that K̂n(x∗) = x∗. �

We now prove Theorem 5.1.

Proof of Theorem 5.1. By hypothesis, (Ym,Kn) is a non-degener-

ate dynamical system, Kn satisfies the average contraction condition, and

we take x ∈ Y ′
m so iteration of Kn over x does not map to an invariant point

of any type. It then follows as a consequence of Lemma 5.4 that iteration of

Kn over x ∈ Y ′
m maps into a confining interval Ic ∈ Um in a finite number of

iterations. And by consequence of Lemma 5.5 and Definition 5.1, iteration

of Kn in a confining interval must converge to a periodic orbit of period kn,

k ∈ Z
+. �

We remark that for particular periodic orbits generated by an n-rule

map in Ym, we cannot claim that the corresponding basin of attraction

is all of Y ′, as the periodic orbit is also dependent on initial condition

x0 ∈ Y ′. Indeed, work established in [20] for example, which concerns

piecewise contractions of the interval, motivates questions regarding upper

bounds for the number of distinct periodic orbits a fixed (Ym,Kn) dynamical

system can admit. One other question that arises from our analysis is

whether there are conditions that can be used to tell whether a dynamical

system (Ym,Km) is degenerate or not.

Software that can be used to simulate both types of n-rule maps is

publicly available at [8].
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