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Combinatorial Construction of the Absolute Galois
Group of the Field of Rational Numbers

By Yuichiro HosHi, Shinichi MocHI1ZUKI and Shota TSUJIMURA

Abstract. In this paper, we give a purely combinatorial/group-
theoretic construction of the conjugacy class of subgroups of the
Grothendieck-Teichmiiller group GT determined by the absolute Ga-

lois group Gg o Gal(Q/Q) [where Q denotes the field of algebraic
numbers]| of the field of rational numbers Q. In fact, this construction
also yields, as a by-product, a purely combinatorial/group-theoretic
characterization of the GT-conjugates of closed subgroups of G that
are “sufficiently large” in a certain sense. We then introduce the
notions of TKND-fields [i.e., “torally Kummer-nondegenerate fields”]
and AVKF-fields [i.e., “abelian variety Kummer-faithful fields”], which
generalize, respectively, the notions of “torally Kummer-faithful fields”
and “Kummer-faithful fields” [notions that appear in previous work
of Mochizuki]. For instance, if we write Q** C Q for the maximal
abelian extension field of Q, then every finite extension of Q2P is
a TKND-AVKF-field [i.e., both TKND and AVKF]. We then apply
the purely combinatorial/group-theoretic characterization referred to
above to prove that, if a subfield K C Q is TKND-AVKF, then the
commensurator in GT of the subgroup Gx C Gg determined by K is
contained in Gg. Finally, we combine this computation of the commen-
surator with a result of Hoshi-Minamide-Mochizuki concerning GT to
prove a semi-absolute version of the Grothendieck Conjecture for higher
dimensional [i.e., of dimension > 2] configuration spaces associated to
hyperbolic curves of genus zero over TKND-AVKF-fields.
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Introduction

The present paper builds on the theory of combinatorial Belyi cuspidal-
ization developed in [Tsjm], §1. The theory of combinatorial Belyi cuspidal-
ization may be understood as a certain combinatorial version of the theory
of Belyi cuspidalization developed in [AbsToplI], §3.

In the present paper, we apply the theory of combinatorial Belyi cus-
pidalization to give a purely combinatorial/group-theoretic definition of a
certain class of closed subgroups “BGT” [cf. Definition 3.3, (v)] of the
Grothendieck-Teichmdiller group

GT (C Out(I1tP4)),

where, for n > 1, 112" denotes the étale fundamental group of the n-th con-
figuration space associated to the projective line, minus the three points “0”,
“1”, “oc”, over the field of algebraic numbers Q [cf. [CmbCsp], Definition
1.11, (i); [CmbCsp], Remark 1.11.1; the first display of [CbGT], Corollary
C]. In the following, we shall also write TI*Pd def Htlpd. This class of closed
subgroups “BGT” is defined to be the class of closed subgroups of GT that

satisfy certain properties, which may be summarized roughly as follows:

e the COF-property, i.e., “cofiltered property” [cf. Definition 3.3,
(ii)]: for any pair of arithmetic Belyi diagrams [cf. [Tsjm], Defini-
tion 1.4], there exists an arithmetic Belyi diagram that dominates [cf.
Definition 3.3, (i)] both of the given arithmetic Belyi diagrams;

e the RGC-property, i.e., “Relative Grothendieck Conjecture prop-
erty” [cf. Definition 3.3, (iii)]: if there exists a geometric domination
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between two arithmetic Belyi diagrams, then it is the unique geometric
domination between the two arithmetic Belyi diagrams.

At a more conceptual level, these conditions may be understood as a single
condition of compatibility with Zariski localization on the projective
line minus three points.

Our first main result is the following [cf. Theorem 4.4]:

THEOREM A (Combinatorial construction of an algebraic closure of the
field of rational numbers). Let BGT C GT be a closed subgroup that sat-
isfies the COF- and RGC-properties [cf. Definition 3.3, (ii), (iii), (v)].
Then one may construct from BGT a set

Qgpar

equipped with a natural action by the commensurator Cqr(BGT) of BGT
in GT that satisfies the following properties:

(i) The set Qpqr is equipped with natural operations
Bear : Qeer X Qpar — Qe

Mper : Qpar X Qar — QAT

as well as natural involutions [i.e., self-bijections which are their own
inverses/

Ogar : @ear U {oc} — Qpar U {00},
(1 -D)sar : Qpar U {0} — Qpar U {oc},
all of which are equivariant with respect to the natural action of

Caor(BGT) on QpgrU{oc}. These operations and involutions satisfy
the following properties:

def def def
EﬂBGT(an) =Y gBGT(Ovy) =0, gBGT(L:’J) =Y,
_ def _ def — def
Opar(0) £ 0o, Ogar(l) =1, Oggp(co) =0,
def def def

(1 — D)BGT(O) = 1, (1 — D)BGT(l) = 0, (1 — D)BGT(OO) = OQ.
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(i3) If the operations Bpar and Rpar determine, on Qpar, the addition
and multiplication operations of a structure, on Qpgr, of field isomor-
phic to Q, then we shall say that BGT satisfies the ArBC-property
[i.e., “arithmetic Belyi compatibility property”]. If BGT satisfies the
ArBC-property, then there exists a field isomorphism Q = Qpgr, as
well as a natural homomorphism

def =
Car(BGT) — Gygr = Aut(Qpar)

to the group of automorphisms of the field Qggr. [We refer to The-

orem F below for a special case, which is of central interest in the

present paper, of this sort of situation.] In particular, one may con-

struct a natural outer homomorphism

Car(BGT) — Go o Gal(Q/Q)

to the absolute Galois group GQ of Q.

(iii) Suppose that BGT admits a conducting field K that satisfies the
ZISC-property /[cf. Definition 3.3, (vi)]. Then BGT satisfies the
ArBC-property.

At the time of writing, the authors do not know whether or not the outer
homomorphism Cgr(BGT) — G of Theorem A, (ii), is injective in gen-
eral. On the other hand, by imposing further purely combinatorial /group-
theoretic conditions — i.e., the QAA- and AA-properties [cf. Definition
5.12; the brief description following Theorem C below] — on BGT, one may
conclude that the following hold [cf. Theorems 5.15, (iii); 5.17, (i), (ii)]:

THEOREM B (Injectivity of the natural outer homomorphism
Car(BGT) — Gq). Let BGT C GT be a closed subgroup that satisfies
the COF- and RGC-properties [cf. Definition 3.3, (ii), (iii), (v)]. Suppose
further that BGT satisfies the QA A-property [cf. Definition 5.12]. Then
the natural outer homomorphism

Car(BGT) — Go

of Theorem A, (ii), is injective.
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THEOREM C (Combinatorial construction of G).

()

(i)

Write Out!®l(ITP4) C Out(IT*9) for the closed subgroup of outer auto-
morphisms that induce the identity automorphism on the set of conju-
gacy classes of cuspidal inertia subgroups of II'*d.  Then the con-
jugacy class of subgroups of Out‘cl(Htpd) determined by the ab-
solute Galois group of Q may be constructed from the abstract
topological group H;pd [cf. Corollary 4.5, Remark 4.5.1], in a purely
combinatorial/group-theoretic way, as the set of maximal elements
[relative to the relation of inclusion] in the set of closed subgroups of
OutlCI(IId) that arise as Out!Cl(IIP)-conjugates of closed subgroups
of GT that satisfy the QA A-property [cf. Definition 3.3, (v); The-
orem 4.4, (ii); Definition 5.12].

The conjugacy class of subgroups of GT determined by the abso-
lute Galois group of Q may be constructed from the abstract topo-
logical group H;pd [cf. Corollary 4.5, Remark 4.5.1], in a purely
combinatorial/group-theoretic way, as the set of maximal elements
[relative to the relation of inclusion] in the set of closed subgroups
of GT that arise as closed subgroups of G'T that satisfy the AA-
property [cf. Definition 3.3, (v); Theorem 4.4, (ii); Definition 5.12].

The class of closed subgroups “BGT” satisfying the QA A-property

ie.,
i.e.,

“quasi-algebraically ample property”] (respectively, the A A-property
“algebraically ample property”]) is defined to be the class of closed

subgroups of GT that satisfy the COF- and RGC-properties, together with
the ArBC-property [cf. Theorem A, (ii)], as well as certain further properties
(i), (ii), (iii) (respectively, (i), (ii), (iii), (iv)), which may be summarized
roughly as follows:

(i)
(i)

(iii)

The Kummer theory associated to BGT is sufficiently nondegenerate.

The Kummer theory associated to the various arithmetic Belyi dia-
grams arising from BGT is sufficiently nondegenerate.

There exists a family of Qgar-valued set-theoretic functions on a cer-
tain set of cuspidal inertia subgroups associated to the various arith-
metic Belyi diagrams arising from BG'T that satisfies properties satis-
fied by the function fields arising from these arithmetic Belyi diagrams.
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(iv) The family of set-theoretic functions in (iii) determines a Galois group
that satisfies a certain compatibility property involving ng d

Of course, it is by no means the case that the approach of Theorem C
to constructing the conjugacy class of subgroups of GT determined by G
is, in any sense, unique. On the other hand, the approach of Theorem C is
an attractive application of the technique of combinatorial Belyi cuspidal-
ization developed in [Tsjm], §1. Moreover, the approach of Theorem C has
interesting applications, i.e., Theorems F and G, given below.

The approach of Theorem C to constructing the conjugacy class of sub-
groups of GT determined by G may be thought of as a sort of

conditional [cf. the condition of mazimality within a certain
collection of closed subgroups| surjectivity counterpart of the
well-known injectivity result of Belyi, i.e., to the effect that
the natural outer homomorphism Gg — GT is injective, or, al-
ternatively, as one [of many possible] natural answer(s) to the
problem posed by Belyi in the discussion following the Corollary
to [Belyi|, Theorem 4, of giving a group-theoretic description of
the image of this outer injection Gg — GT.

The idea that there should exist such a [conditional] surjectivity counterpart
of Belyi injectivity that could be proven by applying Bely: maps in some
suitable fashion [i.e., just as in the case of Belyi injectivity!] was motivated
in part by the proofs given in [CmbCsp], §2, §3, of the injectivity /bijectivity
of the natural homomorphism

Out™®(11,,) — Out™(11,,_1)

of [CmbCsp], Theorem A, (i). That is to say, these proofs given in [CmbCsp],
§2, §3, are remarkable in the sense that

the conditional surjectivity proven in [CmbCsp], §3, is proven
by applying an argument that is entirely similar to the argument
applied in the proof of the corresponding injectivity result in
[CmbCsp], §2.

In this context, it is of interest to note that this fascinating general phe-
nomenon — i.e., of obtaining [conditional] surjectivity results by means of
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essentially similar arguments to the arguments used to verify correspond-
ing injectivity results — may also be observed in numerous well-known as-
pects of algebraic topology, such as the theory of long exact sequences of
(co)homology groups and the homotopy theory of CW-complezes.

The proofs of Theorems B and C depend on the following elementary
field-theoretic results proven in §1 [cf. Theorem 1.2, Corollary 1.3]:

THEOREM D (Non-algebricity of field automorphisms of algebraically
closed fields). Let K be an algebraically closed field. Write Aut(K) for the
group of field automorphisms of K. Let a € Aut(K). Write

aor: K — K x K = A*(K)

for the graph of «, i.e., the map K > x — (z,z2%) € K x K. If K is of
characteristic 0 (respectively, p > 0), then we shall write Fr € Aut(K) for
the identity automorphism (respectively, the Frobenius automorphism [i.e.,
given by raising to the p-th power|) of K; r C Aut(K) for the subgroup
generated by Fr. Then the image Im(ar) C A%(K) of ar is Zariski-dense
if and only if o ¢ FrZ.

COROLLARY E (A criterion for the algebricity of certain set-theoretic

automorphisms). In the notation of Theorem D, write X def PL [i.e., the
projective line over KJ. Let Y — X be a finite [possibly] ramified Galois
covering of smooth, proper, connected curves over K. Write X(K) (re-
spectively, Y (K)) for the set of K-valued points of X (respectively, Y );
Auty(g)(Y(K)) for the group of bijections Y (K) = Y (K) which preserve
the fibers of the natural map Y(K) — X(K); K(Y) for the rational func-
tion field of Y. For 7 € Autxg)(Y(K)), f € Fn(Y(K), K U{oo}) [where
“Fn(—,—)” denotes the set of maps from the first arqgument to the second
arqument/, write

FT f o7 e Pu(Y(K), K U {oo)).

We shall regard K(Y') as a subset of Fn(Y(K), K U {oo}) by evaluating
rational functions at closed points of Y and Gal(Y/X) as a subgroup of
Autx (g (Y (K)) by means of the natural action of Gal(Y/X) on Y (K). Let
k C K be a subfield such that the covering Y — X descends to a Galois
covering Y, — Xy defined over k, and

(Aut(K) D) Aut(K/k) ¢ Fr? (C Aut(K)),
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where we write Aut(K/k) C Aut(K) for the subgroup of automorphisms
that restrict to the identity automorphism of k. Let 0 € Autx(x)(Y(K))
that satisfies the following property: for each f € K(Y)*, there exist

¢r € Fn(Y(K),k*) (€ Fn(Y(K), K U{oc})), g€ K(Y)”

such that f7 = ¢y - gy. Then o € Gal(Y/X).

Next, let K C Q be a subfield. Write Gx % Gal(@/K). If K is stably
x p-indivisible [cf. [Tsjm], Definition 3.3, (v)], then we recall from [Tsjm],
Corollary E, that one may construct a natural homomorphism

Car(Gk) — Go

whose restriction to Cgo(Gk) € Car(GK) is the natural inclusion.

In the present paper, we shall say that the subfield K C Q is an AVKF-
field [i.e., “abelian variety Kummer-faithful field”] if the following property
holds [cf. Definition 6.1, (iii)]:

Let A be an abelian variety over a finite extension L of K.
Write A(L)> for the group of divisible elements € A(L). Then
A(L)>® ={1}.

Here, we recall in passing that any finite extension of the maximal abelian
extension field Q** C Q of Q is a stably xpu-indivisible AVKF-field [cf.
Proposition 6.3, (i)]. On the other hand, it is not clear to the authors at
the time of writing

e whether or not there exist AVKF-fields that are not stably xpu-indi-
visible;
e whether or not there exist stably Xxpu-indivisible fields that are not

AVKF.

If K is an AVKF-field, then G satisfies the COF-, RGC-, and ArBC-
properties [cf. Corollary 6.5], hence may be taken to be the subgroup “BGT”
of Theorem A. In particular, by applying Theorem A, (ii), (iii) [cf. also
Proposition 6.4], one may also construct a natural homomorphism

Car(Gkr) — Go
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whose restriction to Cgo(Gk) C Car(Gk) is the natural inclusion [cf.
Corollary 6.5, (iii)].

At the time of writing, the authors do not know whether or not these
natural homomorphisms [i.e., of Corollary 6.5, (iii), and [Tsjm], Corollary E]
are injective in general. On the other hand, by imposing a further condition
on K, one may conclude that the natural homomorphism Car(Gr) — G@
arising from Corollary 6.5, (iii), is injective [cf. Theorem F below]. We
shall say that the subfield K C Q is a TKND-field [i.e., “torally Kummer-
nondegenerate field”] if the following property holds [cf. Definition 6.6, (ii)]:

Write

where L C Q ranges over the finite extensions of K, and we
write

DX IN{0}, L (L), Lo © QL*) C L.

m>1

Then Q is an infinite field extension of Kjgiy.

We shall say that the subfield K C Q is a TKND-AVKF-field if K is both
TKND and AVKF. Our main result concerning TKND-AVKF-fields is the
following [cf. Theorem 6.8]:

THEOREM F (Injectivity of the natural homomorphism Cgr(Gg) —
GqQ). Suppose that K C Q is a TKND-AVKF-field. Then its absolute
Galois group Gk satisfies the AA-, hence also the COF-, RGC-, ArBC-, and
QAA-properties. In particular, [cf. Theorem B] the natural homomorphism
Car(Gr) — Gq of Theorem A, (ii), is injective and restricts to the natural
inclusion Cgo(Gk) — G on Cae(Gk) € Car(Gk).

Theorem F is proved by applying the theory developed in §3, §4, §5 of
the present paper, i.e., the theory that underlies the proof of Theorem C
[cf. the discussion surrounding Theorem CJ.

Finally, by combining Theorem F with certain combinatorial anabelian
results proven in §2 of the present paper and applying the theory of [CbGT]
[cf. [CbGT], Theorem A; [CbGT], Corollary B; the first display of [CbGT],
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Corollary C], we obtain a semi-absolute version of the Grothendieck Con-
jecture for higher dimensional [i.e., of dimension > 2] configuration spaces
[cf. [MT], Definition 2.1, (i)] associated to hyperbolic curves of genus 0 over
K [cf. Theorem 6.10]:

THEOREM G (Semi-absolute Grothendieck Conjecture-type result over
TKND-AVKF-fields). Let (m,n) be a pair of positive integers; K,L C
Q TKND-AVKF-fields; Xy (respectively, Y1) a hyperbolic curve over K
(respectively, L). Write (9x,rx) (respectively, (gy,ry)) for the type [i.e.,
genus and degree of the divisor of marked points| of Xy (respectively, Yr,);
(XK )m (respectively, (Y1)n) for the m-th (respectively, n-th) configuration

space associated to X (respectively, Y1 ); Gk def Gal(Q/K) (respectively,

Gr % Gal(@/L));

Out(H(XK)m/GK, H(YL)n/GL)

Jor the set of outer isomorphisms I x ). = (y,), that induce outer iso-
morphisms between G and Gp. Then the following hold:

(i) Suppose that

em>4dorn>4ifrx =0 orry =0;
em>3o0orn>3ifrx #0 orry #0.

Then the outer isomorphism
Gk = Gy,

induced by any outer isomorphism € Out(Il(x,), /Gk,1y,),/GL)
arises from a field isomorphism K = L.

(ii) Suppose that

em>2o0rn>2;

e gx =0 orgy =0.
Then the natural map
Isom((Xx)m, (Y2)n) — Out(I(xy),,/Gr: My, /GL)

is bijective.
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In this context, we observe that any finite extension K of Q% is a
TKND-AVKF-field [cf. Proposition 6.3, (i); Remark 6.6.3]. Other inter-
esting examples of TKND-AVKF-fields are given in Proposition 6.3, (ii) [cf.
also Remarks 6.3.3, 6.3.4, 6.3.5, 6.6.3, 6.6.4]. In particular, we observe [cf.
Remark 6.3.5] that

Theorem G constitutes an interesting example of [semi-abso-
lute] anabelian geometry over fields that cannot be treated
by means of well-known techniques of anabelian geometry that
require the use of p-adic Hodge theory or Frobenius ele-
ments of absolute Galois groups of finite fields [cf. [Tamal,
Theorem 0.4; [LocAn], Theorem A; [AnabTop], Theorem 4.12].

Next, suppose that K is a sub-p-adic subfield [cf. [LocAn], Definition
15.4, ()] of Q, i.e., [as is easily verified] a subfield of Q that is isomorphic to a
subfield of a finite extension of the field of p-adic numbers @Q,, for some prime
number p. Then K is a Kummer-faithful field [cf. [AbsTopllI], Definition
1.5; [AbsToplII], Remark 1.5.4, (i)], hence, in particular, a TKND-AVKF-
field. Thus, Theorem G may be regarded as a sort of partial generalization of
[AbsToplIII], Theorem 1.9. On the other hand, let us recall that the proof
of [AbsToplll], Theorem 1.9, depends, in an essential way, on [LocAn],
Theorem A, hence, in particular, on Faltings’ p-adic Hodge theory. By
contrast, we observe [cf. Remark 3.3.2] that

the proof of Theorem G [say, in the case where K and L are
assumed to be sub-p-adic subfields of Q] is based solely on re-
sults and techniques from combinatorial anabelian geome-
try and hence is, in particular, entirely independent of re-
sults concerning the Grothendieck Conjecture for hyper-
bolic curves over sub-p-adic fields [i.e., [LocAn], Theorem A;
[Tamal, Theorem 0.4].

Moreover, unlike, for instance, [LocAn], Theorem A; [Tamal], Theorem 0.4;
[AbsCsp], Theorem 3.2,

the proof of Theorem G [say, in the case where K and L are
assumed to be sub-p-adic local subfields of Q] does not involve



12 Yuichiro HosHI, Shinichi MOCHIZUKI and Shota TSUJIMURA

the use of any arguments involving theories of “weights”, i.e.,
theories such as Fultings’ p-adic Hodge theory or the Weil
Conjectures.

Here, we recall that a somewhat weaker version of Theorem G in the
case where m = n = 1 and K and L are assumed to be stably p-xpu /X u-
indivisible fields of characteristic O [cf. [Tsjm], Definition 3.3, (v)], i.e., but
not necessarily to be TKND-AVKF, is given in [Tsjm], Theorem F. Also,
we recall that a version of Theorem G in the case where m = n = 1 and
K and L are assumed to be generalized sub-p-adic may be found in [Hsh2],
Corollary 5.6, (ii), (iii).

This paper is organized as follows. In §1, we prove Theorem D and
Corollary E, which will be of use in §5. In §2, we give some prelimi-
naries on combinatorial anabelian geometry which will be of use in later
sections. In §3, we give a purely combinatorial/group-theoretic definition
of a certain class of closed subgroups BGT of GT [cf. the discussion pre-
ceding Theorem A] and discuss the basic properties of this class of closed
subgroups of GT. In §4, for each such closed subgroup BGT C GT, we
give a purely combinatorial/group-theoretic construction of a set Qpar
that is equipped with “field-like” operations, as well as a natural action
by Cqr(BGT). In particular, when these “field-like” operations determine
a structure of field isomorphic to @, we obtain a natural outer homomor-
phism Cqr(BGT) — G [cf. Theorem A, (ii)]. In §5, by imposing on BGT
certain further combinatorial/group-theoretic conditions, we obtain a cer-
tain class of closed subgroups BGT [cf. the discussion following Theorem C]
— whose definition is purely combinatorial /group-theoretic — for which the
natural outer homomorphism Cqr(BGT) — Gg is injective [cf. Theorem
B]. Moreover, we obtain Theorem C as a consequence of this injectivity.
Finally, in §6, we study various types of fields and apply the theory of §1,
62, §3, 84, 85, to prove Theorems F and G.
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Notations and Conventions

Sets: Let A, B be sets. Then we shall write Fn(A, B) for the set of maps
from A to B. If Fn(A,B) > f: A — B is held fized in a discussion, then we

shall write Autp(A) for the group of bijections A = A which preserve the
fibers of f over B.

Numbers: The notation JPBrimes will be used to denote the set of prime
numbers. The notation N will be used to denote the set or, by a slight abuse
of notation, additive monoid of non-negative integers.

Fields: The notation Q will be used to denote the field of rational numbers.
The notation Z will be used to denote the ring of integers of QQ; by a slight
abuse of notation, the notation Z will also be used to denote the underlying
additive group of this ring. The notation C will be used to denote the field
of complex numbers. The notation Q C C will be used to denote the set or
field of algebraic numbers € C. We shall refer to a finite extension field of
Q as a number field. If g is a power of a prime number, then we shall write
IF, for the finite field consisting of ¢ elements.

Let F be a field, p a prime number, n a positive integer. Then we shall
write Aut(F') for the group of field automorphisms of F;

def

FXEP\{0}; FY"EF\{0,1} pa(F) = {z € F* | 2" =1},

w(F) ) p(F); P ) ()™

m>1 m>1
def . xp> def X \p™
Np"O(F) = U Npm(F)v F = ﬂ(F )
m>1 m>1

where m ranges over the positive integers. If K is an extension field of
F'| then we shall write Aut(K/F) C Aut(K) for the subgroup of automor-
phisms that restrict to the identity automorphism of F.

Topological groups: Let G be a topological group and H C G a closed
subgroup of G. Then we shall denote by Zg(H) (respectively, Ng(H);
Cq(H)) the centralizer (respectively, normalizer; commensurator) of H C

G,i.e.,
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Zq(H) o {g€ G |ghg~t=hforany h € H}

(respectively, Ng(H) def {9€G|g-H-g'=H};

Ca(H) & {9€G|HNg-H-g!is of finite index in H and g- H - g~ '}),

and write

def ..
= hi>n ZG(U)a

U

ZlOC(G)

where U ranges over the open subgroups of G, for the local centralizer of
G. We shall say that the closed subgroup H is normally terminal in G if
H = Ng(H). We shall say that the closed subgroup H is commensurably
terminal in G if H = Cq(H). We shall say that G is slim if Zg(U) = {1}
for any open subgroup U of G.

Let G be a topological group. Then we shall write G2 for the quotient
of G by the closure of the commutator subgroup [G, G] C G; Aut(G) for the

group of [continuous] automorphisms of G; Inn(G) C Aut(G) for the group

of inner automorphisms of G; Out(G) def Aut(G)/Inn(G). Now suppose

that G is center-free [i.e., Zg(G) = {1}]. Then we have an exact sequence
of groups

1 — G (& Inn(GQ)) — Aut(G) — Out(G) — 1.

If J is a group, and p : J — Out(G) is a homomorphism, then we shall
denote by

out

G xJ

the group obtained by pulling back the above exact sequence of groups via
p. Thus, we have a natural exact sequence of groups

G- G T J— 1.

Suppose further that G is profinite and topologically finitely generated. Then
one verifies immediately that the topology of G admits a basis of char-
acteristic open subgroups, which thus induces a profinite topology on the
groups Aut(G) and Out(G) with respect to which the above exact se-
quence relating Aut(G) and Out(G) determines an exact sequence of profi-
nite groups. In particular, one verifies easily that if, moreover, J is profinite,
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and p : J — Out(G) is continuous, then the above exact sequence relating

out
G % J to G and J determines an exact sequence of profinite groups.

Fundamental groups: For a connected Noetherian scheme S, we shall
write Ilg for the étale fundamental group of S, relative to a suitable choice
of basepoint.

Schemes: For a morphism of scheme S — T, we shall write Autr(S) for
the group of automorphisms of the T-scheme S. If T' = Spec Z, then we
shall write Aut(S) for Autp(S).

Log schemes: We shall, by a slight abuse of notation, regard schemes as
log schemes equipped with the trivial log structure. If S1°% is a log scheme,
then we shall write S for the underlying scheme of S°¢ and Ug C S for
the interior of S1°8, i.e., the largest open subscheme of S over which the log
structure of S'°8 is trivial.

Curves: We shall use the terms “hyperbolic curve’, “cusp”, “stable log
curve”, “smooth log curve’, and “tripod’ as they are defined in [CmbGC],
§0; [CmbCsp], §0. We shall use the terms “n-th configuration space” and
“n-th log configuration space” as they are defined in [MT], Definition 2.1,

(i).
1. The Non-Algebricity of Field Automorphisms

In this section, we discuss an interesting elementary property of field
automorphisms of algebraically closed fields, namely, that, with the excep-
tion of integral powers of the Frobenius automorphism, such field automor-
phisms cannot be expressed algebraically [cf. Theorem 1.2]. We then apply
this property to give a criterion for the algebricity of certain set-theoretic
automorphisms of sets of rational points of curves valued in algebraically
closed fields [cf. Corollary 1.3]. This criterion will play an important role
in the theory to be developed in the present paper.

Lemma 1.1 (The inversion map on the multiplicative group of a field).
Let k be a field. Write

o:k*u{0} = kX u{o}
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for the bijection such that
e o(x) =27 for each x € kX,
e 0(0) =0.

Then the following hold:

(i) The bijection o is a field automorphism if and only if k = Fa, F3, or
Fy.

(ii) If k = Fy or F3 (respectively, k = Fy), then o is the identity (respec-
tively, the unique non-trivial) automorphism of k.

PRrROOF. First, we verify assertion (i). Sufficiency is immediate. Next,
to verify necessity, we observe that if o is a field automorphism, then, for
rek \ {07 _1}7

1+ = o(l)+o(z) = o(l+2) = H—Lx (<= 2> +2+1=0).

Since the equation 22 +  + 1 = 0 has at most 2 solutions in k, we thus
conclude that the cardinality of k is < 4. Assertion (ii) follows immediately
from the definitions. This completes the proof of Lemma 1.1. [J

THEOREM 1.2 (Non-algebricity of field automorphisms of algebraically
closed fields). Let K be an algebraically closed field; o € Aut(K). Write

ar: K — K x K = A*(K)

for the graph of «, i.e., the map K > z — (z,z2%) € K x K. If K is of
characteristic 0 (respectively, p > 0), then we shall write Fr € Aut(K) for
the identity automorphism (respectively, the Frobenius automorphism [i.e.,
given by raising to the p-th power]) of K; FrZ C Aut(K) for the subgroup
generated by Fr. Then the image Im(ar) C A%(K) of ar is Zariski-dense if
and only if o ¢ FrZ.

PROOF. Necessity is immediate. Thus, it remains to verify sufficiency.
If ar is not Zariski-dense, then there exists a nonzero polynomial

0# f=f(X,Y)=) a;; X'V’ € K[X,Y]
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such that
Im(ar) C V(f) C A*(K),

where V' (f) denotes the zero set of f. In particular, for z € K, we have
Y aiga'(@)* =0.

For x € K*, write p; ;(x) aof z'(27)* € K*. Then p;; : K* — K* is
a character. Thus, it follows immediately from Artin’s well-known result
on the linear independence of characters that there exist pairs of integers
(i1,71) # (42, J2) € Nx N such that p;, j, = pi, j,. In particular, there exists
a pair of integers

(1,5) € Z x Z\{(0,0)}

such that
zt = (27)"

for every x € K*. Since K is algebraically closed, it follows that i # 0,
j # 0. Moreover, since K* is divisible, we may assume without loss of
generality that ¢ and j are co-prime.

Now suppose that the characteristic of K is p > 0. Write ¢; : K* — K*
(respectively, ¢; : KX — K*) for the surjection determined by z +— z°
(respectively,  +— 7). Since 2! = (27)® for x € K*, it follows that
Ker(¢;) = Ker(¢;). Since ¢ and j are co-prime, we thus conclude that
i,j € {£p%}. Moreover, we may assume without loss of generality that
j = 1. Thus, by applying Lemma 1.1, (i), we conclude that « € FrZ.

Next, we consider the case where the characteristic of K is 0. In this
case, we have, for example, 2° = 2J. This implies that ¢ = j. Thus, since 4
and j are co-prime, we conclude that a € FrZ. This completes the proof of
Theorem 1.2. [J

REMARK 1.2.1.

(i) Theorem 1.2 was in some sense motivated by the following complex
analytic analogue of Theorem 1.2, i.e., the non-holomorphicity of the
automorphism of C given by complex conjugation. Let n be a pos-
itive integer; U C C a nonempty relatively compact open subset;
{fi(2)}1<j<n a family of holomorphic functions on U. Write p for the
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Lebesgue measure on C; Z € C for the complex conjugate of z € C.
Then
Jdz € U such that Z ¢ {f;(2) }1<j<n.

Indeed, suppose that Z € {f;(2)}i<j<n for every z € U. By enlarging
the family of holomorphic functions { f;(2) }1<j<n if necessary, we may
assume without loss of generality that it is stabilized by multiplication
by —1. Write
def def _
gj(z) = fj(Z)-i-Z, Ej = {ZEU | ﬂ:Z:fj(Z)}.
Then it follows immediately from the definitions that E; C U is a

closed [hence, in particular, Lebesgue measurable] subset, and U =
Ui<j<n Ej- Thus, we conclude that

0<u(U)< > k) < oo,
150

In particular, there exists an element j € {1,...,n} such that u(E;) >
0. Fix such an element j. Since the family of holomorphic func-
tions {f;(2) }i<j<n is stabilized by multiplication by —1, by possibly
replacing j by j° € {1,...,n} such that f;j(z) = —fj(2) for z € U
[which implies that E; = Ej|, we may assume without loss of gen-
erality that g;(z) is a non-constant holomorphic function. But then
g;(E;) CRU+/—=1-R, which implies that

0 < pu(g;(E;) < p(RUV-1-R) =0
— a contradiction!

Finally, we observe that Theorem 1.2 in the case where K = C, and
« is the automorphism given by complex conjugation follows immedi-
ately from the fact verified in Remark 1.2.1, (i). Indeed, if ar is not
Zariski-dense, then there exists a nonzero polynomial

0# f=f(X,Y)=) a;; X'V’ € C[X,Y]

such that
Im(ar) C V(f) € A*(C),
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where V(f) denotes the zero set of f. Since the map V(f) — C in-
duced by the first projection CxC — C is a nonconstant algebraic map
[i.e., corresponds to a dominant morphism between one-dimensional
schemes of finite type over C], there exists a nonempty relatively com-
pact open subset U C C such that the induced map

def
VIHlu S VIHNUXC) — U
determines a split finite étale morphism of complex analytic spaces.
The finite collection of sections of this induced map thus determines
a family of holomorphic functions as in Remark 1.2.1, (i). This yields
the desired contradiction.

COROLLARY 1.3 (A criterion for the algebricity of certain set-theoretic
automorphisms). In the notation of Theorem 1.2, write X def Pl fi.e.,
the projective line over K]. Let Y — X be a finite [possibly] ramified Ga-
lois covering of smooth, proper, connected curves over K. Write X (K)
(respectively, Y (K)) for the set of K-valued points of X (respectively, Y );
Autx () (Y(K)) for the group of bijections Y (K) = Y (K) which preserve
the fibers of the natural map Y (K) — X (K); K(Y) for the rational function
field of Y. For T € Autx k) (Y(K)), f € Fn(Y (K), K U {oo}), write

F Y for e Fn(Y(K), K U {oo}).

We shall regard K(Y') as a subset of Fn(Y(K), K U {oo}) by evaluating
rational functions at closed points of Y and Gal(Y/X) as a subgroup of
Autx (g (Y (K)) by means of the natural action of Gal(Y/X) on Y (K). Let
k C K be a subfield such that the covering Y — X descends to a Galois
covering Y — Xy defined over k, and

(Aut(K) D) Aut(K/k) € Fr? (C Aut(K)).

Let 0 € Autx(g)(Y(K)) that satisfies the following property: for each f €
K(Y)*, there exist

¢y € Fn(Y(K), k™) (€ Fn(Y(K), K U{o0})), gy € K(Y)"

such that f7 = ¢5-g¢. Then o € Gal(Y/X).
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PrROOF. Write n for the degree of the covering Y — X; oy,...,0, for
the n distinct elements of Gal(Y/X). Let o € Aut(K/k) \ Fr%. Write

arx - X(K) — X(K) x X(K),

ary : Y(K) — Y(K) x Y (K)

for the respective graphs of «, i.e., the maps X(K) > z — (z,2%) €
X(K)x X(K)and Y(K) >y +— (y,y*) € Y(K) x Y(K). Then it follows
immediately from Theorem 1.2 that the subset Im(ar x) € X (K) x X(K)
is Zariski-dense in X (K) x X(K). Next, we observe that

e the covering Y — X hence also the morphism ¥ x Y — X x X [i.e.,
the product over K of two copies of the covering Y — X]| is finite;

e the map Im(ar;y) — Im(ar x) induced by the finite morphism Y x
Y — X x X is surjective.

Thus, since the Zariski closure of Im(ary) is an algebraic set in Y'(K) x
Y (K), it follows immediately from the above observations that Im(ary) is
Zariski-dense in Y (K) x Y (K).

Next, we observe that the existence of the Galois covering Y, — X} [i.e.,
whose base-change over k to K is the covering Y — X] implies that the
natural action of Aut(K/k) on K induces a natural action of Aut(K/k) on
Y (K) that commutes with the natural action of Gal(Y/X) on Y (K). If,
moreover, 3 € Aut(K/k), h € Fn(Y (K), K U {oco}), then we shall write

B 316 ho B e Fn(Y (K), K U {oo}).
For each pair of integers (i, 7) such that 1 <i,j < n, write
def oo ca"lo; 04_1‘7]'
Yij = A{(y1,y2) € Y(E) x Y(K) | 47 =1, v3 =y '}
Since o € Autx(g) (Y (K)), it follows immediately that
Y(K)xY(K)= |] Y.
1<i,j<n

Write
Zij
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for the Zariski closure of Im(ary)NY;; in Y (K) x Y(K). Since the subset
Im(ary) C Y(K) x Y(K) is Zariski-dense, there exists a pair of integers
(i,7) such that
Y(K) X Y(K) = Z@j.
Fix such a pair of integers (i, 7).
Next, we observe that, for each f € K(Y)*, we have equalities

T; a !l o\ __ oo —1\o; oya L a; —1ya ! ag;
(@7, (6F )7) = (77 (gr )7 U™ 7 Algr )Y 1)
—1\o; a~ Mo —1\a ! g;
:(f‘(gfl) , (f )J'{(gfl) 1)
[of ordered pairs of elements of Fn(Y (K), K U {occ})] on some subset V;*; C
Y;; [i-e., so that all of the values of functions that appear are finite] such
that Y; ;\ Y;%; is contained in an algebraic set C Y (K) x Y (K) of dimension

1 — which implies that the Zariski closure Z7; of Im(ary) NY}"; is equal
to Y(K) x Y(K). Now consider the morphism

Y& (b nl) Y xg Y — Pk xx Pk
determined by the rational functions h} & f- (gj?l)c” and hfc o (fo )i
{( g?l)"‘_1 }9i. Write A for the diagonal divisor of P}, x xPL-. Then it follows
immediately from the above observation [i.e., the observation discussed at

the beginning of the present paragraph], together with the fact that the
natural actions of a and o; on Y (K) commute, that

Y(Im(ary) NY75) C Ak) C A(K) (C Pic(K) x Pic(K)).

Since Y(K) x Y(K) = Z;;, we conclude that Im(y)) C A(K), hence, in

particular, that the morphism v is not dominant. On the other hand, if
both h} and h§c are nonconstant rational functions, then the morphism  is

easily verified to be dominant. Thus, we conclude that either h} or hfc is
constant, and hence, since Im(v)) C A(K), that both h} and hfc are constant.
Write ¢y € K for the unique constant value of h}. Thus,

-1
fr=dpgr=c;'dp- 7

for every f € K(Y)*. In particular, if we write 7 def ooj, qSJJrc def qﬁ?, then

fr=ct o f,
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for every f € K(Y)*. For each y € Y (K), let f, € K(Y)* be a rational
function on Y such that f, has a pole at y and no pole on Y (K)\ {y}. [The
existence of such rational functions follows immediately from the Riemann-
Roch theorem.|] Thus, since fy = c;yl : gf)}y - fy, we conclude that y” = y for
each y € Y(K), hence that 7 is the identity automorphism, i.e., o = O'i_l €
Gal(Y/X). This completes the proof of Corollary 1.3. O

REMARK 1.3.1.

(i) Corollary 1.3 was in some sense motivated by the following complex

analytic analogue of Corollary 1.3. Write S & {zeC||z/=1} C
C*. In the notation of Corollary 1.3 in the case where K C C, let
¢ € Autxx)(Y(K)) that satisfies the following property: for each
f e K(Y)*, there exist

wr € Fn(Y(K),SY, ¢ € K(Y)*
such that f¢ = wyr - qf. Then
¢ € Gal(Y/X).

Indeed, write u for the Lebesgue measure on C; uy for the measure on
Y (C) induced by a [nowhere-vanishing] volume form on the Riemann
surface associated to Y x i C; n for the degree of the covering Y — X;
Cly-..,Cpn for the n distinct elements of Gal(Y/X). For each j =
1,...,n, write

def )
E; = {yeY(K) |y =y} CY(C);

F; CY(C)

for the closure of E; C Y (C) in the complex topology [i.e., the topology
induced by the topology of the topological field C|. Thus, F; C Y (C)
is measurable [i.e., with respect to the measure uy]. Note that, since
¢ € Autx (i) (Y(K)),

U E =v(&).

1<j<n
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Since the subset Y (K) C Y(C) is easily verified to be dense in the
complex topology, it follows immediately that

U F=v(@©).

1<j<n

Thus, we conclude that

0<py(Y(C) < ) py(Fy) < oo
1<j<n

In particular, there exists an element j; € {1,...,n} such that
py (Fj) > 0. Fix such an element j. Next, for each f € K(Y)*,
it follows immediately that

WP =19 @) = f )

on some subset EY C Ej [i.e., so that all of the values of functions
that appear are finite] such that E; \E‘;k is a finite set — which implies
that py (F7) > 0, where F} denotes the closure of EF C Y/(C) in the
complex topology. Thus, we conclude that, for y € F; (C Y(C)),

(F- () D) =1 (== (f (7)) €SH.

In particular, since x(S') = 0 and ,uy(F;-k) > 0, the meromorphicity of
[the function Y (C) — CU{oo} determined by] f - (qfcj )~! implies that

f- (qfcj )~1is in fact a constant function. Thus, we conclude as in the
final portion of the proof of Corollary 1.3 that ( € Gal(Y/X).

Finally, we observe that Corollary 1.3 in the case where

« K=Q k=0"% Qu@) (CQcC);
e for each f e K(Y)*,

¢5 € Fu(Y (@), 1(Q™)) (S Fu(Y(Q), (@™)")),

follows immediately [since (Q*) C S'] from the fact verified in Re-
mark 1.3.1, (i).
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2. Preliminaries on Combinatorial Anabelian Geometry

In this section, we give some preliminaries on combinatorial anabelian
geometry which will be of use in the theory developed in the present paper.

THEOREM 2.1 (Outer automorphisms of configuration space groups in-
duced by open immersions). Let n be an integer such that n > 2; k an
algebraically closed field of characteristic 0; X a hyperbolic curve over k of
type (g,7x); U an open subscheme of X which is a hyperbolic curve over k
of type (g9,7v), where riy > rx [which implies that (g,rv) ¢ {(0,3),(1,1)};
ry > 0], Write &,, for the symmetric group on n letters; X,, (respectively,
Uy) for the n-th configuration space associated to X (respectively, U). Let

a € Out(Ily,).

Recall that there exists a unique permutation o € &, C Out(Ily, ) of the
factors of Uy, [cf. [CbTpII], Theorem B] such that

e aoo c OutV'(Ily,) [ef. [CbTpII], Theorem B, (i)];

e the outer automorphism «y € Out(Ily) induced by oo o [which does
not depend on the choice of projection morphisms of co-length 1 —
cf. [CbTpl], Theorem A, (i)] preserves the set of cuspidal inertia
subgroups of g [cf. [CoTpl], Theorem A, (i1)].

Suppose that

(a) if n = 2, then either rx > 0 or a oo € Owt¥“(IIy,) [cf. [CmbCsp],
Definition 1.1, (ii)];

(b) aq stabilizes the set of conjugacy classes of cuspidal inertia subgroups
of Iy associated to the cusps of U that arise from the cusps of X;

Then o determines an outer automorphism of Illx, via the natural outer
surjection Iy — Ilx, induced by the natural open tmmersion Uy, — X,,.

Proor. First, since G,, acts compatibly on U, and X,,, by replacing
a oo by a, we may assume without loss of generality that

o€ Out” (HUn ) .
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Next, observe that it follows immediately from condition (b) that, by re-
placing a by the composite of a with a suitable element € OutFC(HUn)
that

e arises, via various specialization and generization isomorphisms, from
[log] scheme theory, and, moreover,

e determines an outer automorphism of Iy, via the natural outer sur-
jection Iy, — Ilx,

[cf. the proof of [CmbCsp], Lemma 2.4], we may also assume without loss
of generality that

(¢) aq induces the identity automorphism on the set of conjugacy classes
of cuspidal inertia subgroups of II.

Let V C U be an open subscheme which is a hyperbolic curve over k of
type (g,ry + 1); @ € Aut¥' (Il ) a lifting of o € Out? (I, ). Write

2} %u\v, x,¥x\{z}CX.

Then, for suitable choices of basepoints, we obtain a commutative diagram
of homomorphisms of profinite groups

1 — Hanl HUn HU - 1

| “| |

IIx

1 —— T, My — 1,

)nfl n

where V,,_1 (respectively, (X;)n—1) denotes the (n — 1)-th configuration
space of V' (respectively, X, ); the horizontal sequences denote the homotopy
exact sequences induced by the first projections U,, — U and X,, — X; the
vertical arrows denote the homomorphisms induced by the natural open
immersions V,,_1 — (Xg)n-1, Upn — Xy, and U — X [cf. [MT], Proposition
2.4, (1)].

Next, we verify the following assertion:

Claim 2.1.A: Suppose that n = 2. Then the automorphism
alm, € Aut(Ily) [induced by @ € Aut"(TIy;,) via the injection
Iy — IIy, in the above commutative diagram] preserves and
fixes the conjugacy classes of cuspidal inertia subgroups of Ily
that are not associated to .
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In the case where a € Out¥(Ily,), it follows immediately from condition
(c) that &|m, preserves and fixes the conjugacy classes of cuspidal inertia
subgroups of Iy [cf. [CmbCsp], Proposition 1.2, (iii); [CbTpII], Lemma 3.2,
(iv)]. Thus, by condition (a), we may assume without loss of generality that
rx > 0. Then it follows from our assumption that ry > rx that ry > 2.
Write

e Cusp(U) for the set of cusps of U,

e py : Iy — Out(Ily) for the outer representation determined by the
exact sequence in the above commutative diagram

1 — Iy — Iy, — Iy — 1

e Y198 for the [uniquely determined, up to unique isomorphism] smooth
log curve over Spec k such that Uy = U;

. Y2log for the second log configuration space associated to Y'°8;

e for each y € Cusp(U), y'°8 def y Xy Y'°8 [where the fiber product is
determined by the natural morphism Y'°¢ — Y obtained by forgetting
the log structurel;

. Yylog & Y210g Xyloz Y18 [where the fiber product is determined by the
first projection Y;Og — Y98 and the natural projection y'°8 — Y1°8];

e G, for the semi-graph of anabelioids of pro-Primes PSC-type deter-
mined by the stable log curve Yylog over y'°¢ [cf. [CmbGC], Definition

1.1, (0)];

y " (respectively, vy) for the vertex of G, associated to the irreducible

component that contains (respectively, does not contain) the cusp that
arises from the diagonal divisor of Y,°%;

® U

e Ilg, for the PSC-fundamental group of G, [cf. [CmbGC], Definition
1.1, (ii)].

Thus, for each y € Cusp(U), we have a natural Im(py) (C Out(Ily))-
torsor of outer isomorphisms

Iy = Ilg,
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that induces a bijection between the respective sets of cuspidal inertia sub-
groups. For each y € Cusp(U), let us fiz an outer isomorphism

Iy = g,

that belongs to this collection. Then, by conjugating by this fixed outer
isomorphism, we conclude that &|r, determines an outer automorphism
a, € Out(Ilg,) for each y € Cusp(U).

Let y, z € Cusp(U) such that y # z. [Recall that iy > 2.] Then observe
[by varying y, z € Cusp(U)] that it suffices to prove that o, preserves and
fizes the conjugacy class of cuspidal inertia subgroups of Ilg, associated to
z [where we identify naturally the set of cusps of V' with the set of cusps of
G,).

Next, we recall that ay € Out(Ily) preserves and fixes the conjugacy
class of cuspidal inertia subgroups of II;; associated to y [cf. condition (c)].
Thus, it follows from [CbTplI], Theorem 1.9, (ii), that, by replacing & by
the composite of & with an inner automorphism of Ily;,, we may assume
without loss of generality that o, preserves the set of verticial subgroups of
Ig,. Since (g,7v) ¢ {(0,3),(1,1)}, it follows [cf. [MT], Remark 1.2.2] that
ay preserves and fizes the conjugacy classes of verticial subgroups of Ilg, .
Let II,, C Ilg, be a verticial subgroup associated to v,; &, € Aut(Ilg,) a
lifting of oy, such that &, (Il,,) = Il,,. On the other hand, observe that the
composite

II,, C g, < Iy — My, - Iy

— where the final arrow denotes the natural outer surjection induced by
the second projection Uy — U — determines an outer isomorphism I, =
IIy that induces a bijection between the respective sets of cuspidal inertia
subgroups and is compatible with the respective outer automorphisms a,
and ai. Here, we recall that the cusp z abuts to the vertex v,. Thus, by
condition (c), we conclude that o, preserves and fixes the conjugacy class
of cuspidal inertia subgroups of Ilg, associated to z. This completes the
proof of Claim 2.1.A.

In the remainder of the proof of Theorem 2.1, we proceed by induction
on n > 2. Next, we verify the following assertion:

Claim 2.1.B: Suppose that n = 2. Then Theorem 2.1 holds.



28 Yuichiro HosHI, Shinichi MOCHIZUKI and Shota TSUJIMURA

Indeed, let us note that, by condition (c), a1 preserves the kernel of the
natural surjection IIyy — IIx. On the other hand, it follows immediately
from Claim 2.1.A that &|r;, € Aut(Ily) preserves the kernel of the surjection
Iy — Ilx,. Thus, since Ilx, is center-free, we conclude that & induces an

automorphism of Iy, = IIx, Oit IIx. This completes the proof of Claim
2.1.B.

Next, we verify the following assertion [by a similar argument to the
argument used to prove Claim 2.1.B]:

Claim 2.1.C: Let m be an integer such that m > 2. Suppose that
Theorem 2.1 holds in the case where n = m. Then Theorem 2.1
holds in the case where n = m + 1.

Indeed, let us note that, by condition (c), «; preserves the kernel of the
natural surjection Il — Ilx. Moreover, since m > 2, it follows from
[CbTpI], Theorem A, (ii) [cf. also condition (c); [CbTpl], Theorem A, (i);
[CbTplI], Lemma 3.2, (iv)], that the automorphism &, € Aut(Ily,,)
induced by & € Aut"(ITy;,,,, ) via the injection IIy,, — IIy;,,,, in the above
commutative diagram| induces an automorphism of Iy that induces the
identity automorphism on the set of conjugacy classes of cuspidal inertia
subgroups of IIyy. On the other hand, since X, is an affine hyperbolic curve,
it follows from the induction hypothesis that the automorphism &, €
Aut(Ily,,) preserves the kernel of the surjection Iy, — Il(x,),. Thus,
since I1(x,),, is center-free [cf. [MT], Proposition 2.2, (ii)], we conclude that

t
& induces an automorphism of Ilx, ,, =1(x,),. % IIx. This completes the
proof of Claim 2.1.C, hence of Theorem 2.1. [J

COROLLARY 2.2 (Group-theoreticity of cuspidal inertia subgroups in
configuration space groups of genus 0). In the notation of Theorem 2.1,
suppose that g =0 [so ry > 4]. Then

Out*“(Ily, ) = Out (I, )
[ef. [CmbCsp], Definition 1.1, (ii); [CbTpll], Theorem A, (ii), in the case
where n > 3/. In particular,
Out(HUn) = OU.tgF(HUn) x &,

outf'(Ily, ) x &,
= Out'“(IIy,) x &,
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[ef. [CbGT], Corollary BJ.

PROOF. Write
p1,..n—1: Uy, = Iy, _,
for the surjection induced by the projection U,, — U,_; obtained by for-
getting the n-th factor. Let Z be a hyperbolic curve over k of genus 0 that
arises as a fiber of the projection U,_1 — U,_o obtained by forgetting the
(n — 1)-th factor. Write Z, for the second configuration space associated to
Z;pz 7z, — Ilz for the surjection induced by the first projection Zo — Z.
Then, for suitable choices of basepoints, we obtain a commutative diagram
of homomorphisms of profinite groups

1 ——  Ker(pz) — Iy, Pz, — 1
| | |
P1,...,n—1

1 —— Ker(p17__,7n_1) HU HUn I — 1.

Thus, by replacing U by Z and applying [CbTpl], Theorem A, (ii), we may
assume without loss of generality that n = 2.

Let 3 € Out"(Ily,). Write 3; € Out(Ily) for the outer automorphism
induced by g [cf. [CbTpl], Theorem A, (i)]. Observe that, by replacing
by the composite of § with a suitable element € Out¥ (I, ) [cf. [CmbCsp],
Lemma 2.4], we may also assume without loss of generality that 5 induces
the identity automorphism on the set of conjugacy classes of cuspidal inertia
subgroups of I .

In the remainder of the proof, we use the notation in the proof of Claim

2.1.A in the proof of Theorem 2.1 in the case where (g,7x) = (0,3) and

ot . Observe that it follows from Claim 2.1.A that o € Out¥™¢(Il,)

[cf. [CbTpll], Definition 2.1, (ii)].

Suppose that y, z € Cusp(U), where y # z, arise from cusps of X. Then
it suffices to prove that the outer automorphism a, € Out(Ilg,) [which
preserves and fixes the conjugacy classes of verticial subgroups of Ilg, ] pre-
serves and fixes the conjugacy class of cuspidal inertia subgroups of Ilg,
associated to x, i.e., the cusp associated to the diagonal divisor of Yzlog. Let
Mypew C Tlg, be a verticial subgroup associated to vy®™; a;*" € Aut(Ilg,) a
lifting of v, such that ay®™ (Iynew) = Iynew. Write

ay € Aut™C(IIy,)
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for the automorphism induced by & € Aut™"“(Ily;,) and the natural surjec-
tion ¢ : Iy, — Ilx, [cf. Theorem 2.1]. Write ' O X, for the tripod over
k obtained by eliminating the cusp z of X,. Then it follows immediately
from the various definitions involved that the composite

H,U’yylew g Hgy <: HV cd ]:[X’E — ]___[T

— where IIyy — Ilx, (respectively, IIx, — Il7) denotes the natural outer
surjection induced by the natural open immersion V' <— X, (respectively,
X; < T) — determines an outer isomorphism vaew 5 I that induces
a bijection between the respective sets of cuspidal inertia subgroups and
is compatible with the outer automorphisms [of Ilynew, Iz, respectively]
induced by &3 and the restriction axlmy, of ax to Ily, [cf. Claim
2.1.A]. On the other hand, since ax € Aut™VC(Ily,) = Aut™(Ily,) [cf.
[CbTpll], Theorem A, (ii)], it follows that &x preserves and fixes the con-
jugacy classes of the cuspidal inertia subgroups of IIy, [cf. condition (c);
[CmbCsp], Proposition 1.2, (iii); [CbTplII], Lemma 3.2, (iv)], hence of IIp.

Thus, we conclude that a; "

preserves and fixes the conjugacy classes of cus-
pidal inertia subgroups of Hypew, hence that o, € Out(Ilg,) preserves and
fixes the conjugacy class of cuspidal inertia subgroups of Ilg, associated to

x. This completes the proof of Corollary 2.2. [

REMARK 2.2.1. One verifies immediately that Theorem 2.1 and Corol-
lary 2.2, as well as their proofs, go through without change when the vari-
ous “II’s” are replaced by their respective maximal pro-l quotients, for some
prime number [. We leave the routine details to the reader. On the other
hand, in the present paper, we shall not need these pro-l versions of Theorem
2.1 and Corollary 2.2.

3. Various Properties of Closed Subgroups of the Grothendieck-
Teichmiiller Group

In this section, we apply the technique developed in [Tsjm], §1, i.e.,
combinatorial Belyi cuspidalization, to give a purely combinatorial/group-
theoretic definition of certain classes of closed subgroups of GT [cf. Defini-
tion 3.3]. Moreover, we prove a certain relationship between two of these
classes [cf. Corollary 3.7] by applying Theorem 2.1.
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Write X P}Q\{O, 1,00}; X, for the n-th configuration space asso-
ciated to X, where n > 2 denotes a positive integer; GT C Out(Ilx)
for the Grothendieck-Teichmiiller group [cf. [CmbCsp], Definition 1.11, (i);
[CmbCsp], Remark 1.11.1]. Then recall from the first display of [CbGT],
Corollary C, that we have a natural inclusion GT — Out(Ilx,). We shall
write GT,, C Out(Ilx, ) for the image of this inclusion.

COROLLARY 3.1 (Purely combinatorial/group-theoretic reconstruction
of the symmetric group). For each positive integer m, write S,, for the
symmetric group on m letters; U, (C S,,) for the alternating group on
m letters. Let us regard Ap4+3 C Spt3 as subgroups of Out(Ilx, ) via the
natural injection &, 43 — Out(Ilx, ) induced by the natural action of Sp43
on X, [c¢f. [COGT], Remark 2.1.1]. Let

Yy Out(Ilx,) — Gpis

be a representative of the outer surjection &, induced by the natural action of
Out(ITyx, ) on the set of generalized fiber subgroups of length 1 [cf. [COGT],
Theorem A, (i), (i1)]. Then the following hold:

(1) Write
F C1ly,
for the generalized fiber subgroup of co-length 1 associated to the subset
{5,...,n+3} C{1,...,n+3} of labels of cardinality n—1 [cf. [COGT],
Theorem A, (i), (ii); [CbGT], Definition 2.1, (ii)]. Let

a € Out(Ily,)

be an outer automorphism of lx, such that ¥, (a) = (1 2)(3 4), and
a induces the identity outer automorphism of Ilx, /F (= Ilx) via the
natural surjection lx, — Ilx, /F. Then

a = (1 2)(3 4) S an+3 - 6n+3 - Out(HXn)

[ef. [CmbCsp], Corollary 4.2, (ii); the first display of [CbGT], Corol-
lary C; [CbGT], Definition 2.7], and the subgroup 2, +3 C Out(Ilx,)
may be reconstructed, in a purely combinatorial/group-theoretic way,
from Ilx, as the subgroup of Out(Ilx, ) generated by the Out(Ilx, )-
conjugacy class of a [which depends only on the outer surjection &,].
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(i1) Suppose that n > 3. Write
F Cllx,

for the generalized fiber subgroup of length 2 associated to the subset
{1,2} C{1,...,n+ 3} of labels of cardinality 2 [cf. [CbGT], Theorem
A, (i), (i1); [CbGT], Definition 2.1, (ii)]. Let

[ RS Out(HXn)

be an outer automorphism of Ilx, such that in(a) = (12), and o
induces the identity outer automorphism of lx, /F (= Iy, ,) via
the natural surjection x, — lx, /F. Then

a=(12) € 6,43 C Out(lly,)

[ef. [CmbCsp], Corollary 4.2, (ii); the first display of [CbGT], Corol-
lary C; [CbGTY], Definition 2.7], and the subgroup &,43 C Out(Ilx,)
may be reconstructed, in a purely combinatorial/group-theoretic way,
from Ilx, as the subgroup of Out(Ilx,) generated by the Out(Ilx,,)-
conjugacy class of a [which depends only on the outer surjection &,J.

Proor. Write 20 C Out(Ilx, ) (respectively, & C Out(Ilx,)) for the
subgroup constructed by the algorithm of assertion (i) (respectively, as-
sertion (ii)). Then it follows immediately from the well-known structure
of &,,43 [where we recall that n + 3 > 5] that 2,43 C 2 (respectively,
Snts € 6). [Here, we recall that the kernel of the unique outer surjection
64 — 63 [through which the natural outer action of &4 on IIx factors] is
normally generated by (1 2)(3 4).] On the other hand, by applying the first
display of [CbGT], Corollary C, we conclude that 2,3 = 2 (respectively,
Sp+3 = 6). This completes the proof of Corollary 3.1. OJ

REMARK 3.1.1. In the second display of [CbGT], Corollary C, the
subgroup &,43 C Out(Ily,) is reconstructed by forming the local center
Z°¢(Out(Ilx,)) of Out(Ily,). This local center is calculated by applying
the Grothendieck Conjecture for hyperbolic curves over number fields [cf.
[LocAn], Theorem A; [Tama|, Theorem 0.4]. On the other hand, if n > 3,
then, by applying the algorithm given in Corollary 3.1, (ii), the subgroup



Combinatorial Absolute Galois Groups 33

Sp+3 € Out(Ily, ) may be reconstructed, in a purely combinatorial /group-
theoretic way, from Ilx, without applying the Grothendieck Conjecture for
hyperbolic curves over number fields. In fact, moreover, by regarding Ilx,
[cf. Corollary 3.1, (ii); [CbGT], Theorem A, (i), (ii); the first display of
[CbGT], Corollary C] as an object reconstructed from Ilx, in a purely
combinatorial /group-theoretic way, one concludes that this assumption that
n > 3 is unnecessary [cf. the discussion of Remark 4.5.1, (i), below]. Fi-
nally, we recall from the theory of [CbGT] that [unlike the second display of
[CbGT], Corollary Cl!] the first display of [CbGT], Corollary C, is proved in
[CbGT] without applying the Grothendieck Conjecture for hyperbolic curves
over number fields.

DEFINITION 3.2. Let n be an integer such that n > 2; k£ an alge-
braically closed field of characteristic 0; U a hyperbolic curve over k. Write
U, for the n-th configuration space associated to U. Recall the subgroup

OutgF(HUn) Q Out(HUn)
[cf. [CbGT], Definition 2.1, (iv)]. Then we shall write
Outs (I, )°P C Outs (IIy, )

for the subgroup of elements that induce outer automorphisms of Iy that
preserve and fix the conjugacy classes of cuspidal inertia subgroups of Il
[cf. [CbTpl], Theorem A, (i), (ii)].

DEeFINITION 3.3. Let J C GT be a closed subgroup of GT; N (respec-
tively, N T) a normal open subgroup of J;

out out

Iy x N —— IIx x N

|

out

HX>4N

(respectively,
out out

Oyt @ Nt ——— TIx x Nt

out

IMx x NT)
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an arithmetic Belyi diagram [cf. [Tsjm], Definition 1.4, where we take “M”
to be N (respectively, NT), and we note that the “N” of loc. cit. does
not necessarily coincide with the N of the present discussion; Remark 3.3.2
below], which we denote by B* (respectively, TB>). Here, we recall that the
notion of an arithmetic Belyi diagram may be understood as an abstract
group-theoretic/combinatorial version of the notion of a scheme-theoretic
diagram consisting of an open immersion [i.e., the horizontal arrow] of a
finite étale covering of X [i.e., the vertical arrow] into X itself [where we
think of the base field Q as a direct limit of finite extensions of Q.

(i) Write Us (respectively, U2T ) for the second configuration space associ-
ated to U (respectively, U'); p : Iy, — Iy (respectively, p' : O —
II;+) for the outer surjection induced by the first projection. 1\210te
that it follows from Remark 3.3.4 below that there exists a(n) [unique
— cf. the final portion of Remark 3.3.4] outer action N — Out8" (IIy,)
(respectively, NT — OutgF(HU;)) which induces the given outer ac-

tion of N (respectively, NT) on Iy; (respectively, II;;+) via the outer
surjection p (respectively, p’). Then we shall say that B> dominates
B™ if there exist a normal open subgroup

M C NN NT

of J and a Ily-outer surjection

out

out
¢yt x M -1y x M

such that the following purely combinatorial/group-theoretic [cf.
Corollary 2.2; the first display of [CbGT], Corollary C] conditions
(a), (b) hold:

(a) There exists a [necessarily unique — cf. Proposition 3.4 below;
the argument given in the proof of Claims 3.7.A, 3.7.B, 3.7.C in
the proof of Corollary 3.7 below; [MT], Theorem 1.5, applied to
the images via ¢ of fiber subgroups of length 1; [MT], Proposi-
tion 2.4, (v), and its proof [applied in the case of HUZT]; [CmbCsp],
Proposition 1.7, (d) [applied in the case of IIy,]; [CmbCsp],
Propositions 1.2, (iii), and 1.3, (v) [applied in the case of I,
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IT;+]; [CmbCsp]|, Theorem A, (i) [applied in the case of IIy,]|
2
ITy,-outer surjection

out out
¢2:HUT X M—»HU2 x M

2
such that

e the diagram of II_)-outer homomorphisms

out ¢2 out
HU; X M —— HU2 x M
pf o;]tidM l pogdtidM
out 1) out
Oy ¥ M —— Iy x M
commutes;

e ¢ maps the fiber subgroups of HUQT to the fiber subgroups of
Uy,

e the kernel of ¢ is topologically generated by [certain of the]
cuspidal inertia subgroups of fiber subgroups of HUg of length
1 [which implies, in particular, that the kernel of ¢ is topolog-
ically generated by [certain of the] cuspidal inertia subgroups
of HUT};

e the image via ¢o of any cuspidal inertia subgroup of a fiber
subgroup of HU;f of length 1 is either trivial or a cuspidal
inertia subgroup of a fiber subgroup of Iy, of length 1 [which
implies, in particular, that the image via ¢ of any cuspidal
inertia subgroup of Il is either trivial or a cuspidal inertia
subgroup of Iy].

t
(b) The composite of ¢ with the restriction to Il %4 M of the IIx-

outer surjection
out out

HU x N — 11 x X N
[i.e., the horizontal arrow in B”] coincides with the restriction to

out
II;;+ x M of the IIx-outer surjection

out out

Myt x NT—TIy x NT

[i.e., the horizontal arrow in TB>].
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In this situation, we shall refer to ¢ : I+ O;t M — Iy O;t M as an
arithmetic domination [of B> by TB>] and to the II-outer surjection
¢m : I+ — Il obtained by restricting ¢ to I+ [a restriction whose
image lies in IIj;, by either condition (a) or (b)] as a geometric dom-
ination [of BX by B>]. [Here, we observe in passing that it follows

t

immediately from the definition of Ve that [up to possibly replac-
ing M by an open subgroup of M that is normal in J] ¢ is uniquely
determined by ¢r1, TB*, and B*]

We shall say that the pair (B>, TB>) satisfies the COF-property [i.e.,
“cofiltered property”] if the pair (B>, TB*) satisfies the following con-
dition:

e there exist a normal open subgroup N¥ of J and an arithmetic
Belyi diagram B>

out out

Oy x NP ——— TIx x Nt

|

out

Iy x N*
such that fB>X dominates B* and TB*.

We shall say that the pair (B>, B*) satisfies the RGC-property [i.e.,
“Relative Grothendieck Conjecture property”] if the pair (B>, TB>)
satisfies the following condition:

e the cardinality of the set of geometric dominations [cf. (i)] of B™
by B> is < 1.

Write Cusp(Ilyy) (respectively, Cusp(Ilx)) for the set of cusps of Iy
(respectively, IIx) [cf. [Tsjm], Theorem 1.3, (i)]. Note that the hori-
zontal arrow in B induces a natural injection Cusp(Ily) =
{0,1,00} < Cusp(Ily); we shall regard Cusp(Ilx) as a subset of
Cusp(Ilyy) via this injection. Let T' C Cusp(Ilyy) \ Cusp(Ilx). Write
I(IT;) for the set of cuspidal inertia subgroups of II; [cf. [Tsjm], The-
orem 1.3, (i)]. Thus, Cusp(Ilyy) may be identified with I(Ily)/I.
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Write II; — Il7 for the quotient by the normal closed subgroup topo-
logically generated by the cuspidal inertia subgroups of II;; associated

t t

to the cusps € T'; HUO; N — HTO; N for the natural quotient induced

by the quotient II;y — IIp. For I. € I(Ily), write D, def NH outN(Ic);
u X

Dr . for the image of D, via the quotient II; O;t N — IIp O;t N. Then
we shall say that the arithmetic Belyi diagram B” satisfies the CS-
property [i.e.,“cuspidal separatedness property”] if, for any T as above,
B> satisfies the following condition:

o for I., I, € I(Ilyy), D, is commensurable to D7 if and only if

there exists o € Ker(Il;y — II7) such that (I.)? &t ol.o™! =1..

out
One verifies immediately that this condition implies that D7 . C II7 %
N is commensurably terminal, hence normally terminal.

We shall say that J satisfies the COF-property (respectively, the RGC-
property) if every pair of arithmetic Belyi diagrams satisfies the COF-
property (respectively, the RGC-property). We shall say that J sat-
isfies the CS-property if every arithmetic Belyi diagram satisfies the
CS-property. We shall say that J satisfies the BC-property [i.e., “Be-
lyi compatibility property”] if J satisfies the COF- and the RGC-
properties. By a slight abuse of notation, we shall use the notation
BGT to denote a closed subgroup of GT that satisfies the BC-property.
[We refer to Remark 4.4.1 below for some concrete examples.]

We shall refer to a field K of characteristic 0 as a conducting field for J
if the image of [any representative of] the natural outer homomorphism
Gk — G in G, where we think of G as a subgroup of GT via the
natural inclusion

Go ¥ Gal(@/Q) — GT C Out(Ily)

[cf. the discussion at the beginning of [Tsjm]|, Introduction], is con-
tained in some GT-conjugate of J. We shall say that a field K of
characteristic 0 satisfies the ISC-property if, for any two distinct points
y1,y2 € Y(L) of a hyperbolic curve Y over a finite field extension
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L of K, the Ily-conjugacy classes of the corresponding decomposi-
tion groups Dy, ,D,, C lly are distinct. We shall say that a field K
of characteristic 0 satisfies the ZISC-property if, for any two distinct
points y1,y2 € Y (L) of a hyperbolic curve Y of genus 0 over a finite
field extension L of K, the IIy-conjugacy classes of the corresponding
decomposition groups Dy, , Dy, C Ily are distinct.

REMARK 3.3.1. Note that it follows immediately from the various def-
initions involved that:

(a) each notion defined in Definition 3.3, (i), (ii), (iii) (respectively, Defi-
nition 3.3, (iv)), concerning B>, B> (respectively, concerning B*) is
equivalent to the corresponding notion concerning the restrictions of
B>, B> (respectively, the restriction of B>) to arbitrary open sub-
groups of N, NT (respectively, N) that are normal in J;

(b) each notion defined in Definition 3.3, (v), concerning J is equivalent
to the corresponding notion concerning an arbitrary open subgroup of

J.

REMARK 3.3.2. Let us recall that there are precisely two situations
in [Tsjm] in which the Grothendieck Conjecture for hyperbolic curves over
number fields [cf. [LocAn], Theorem A; [Tama], Theorem 0.4] is applied,
namely:

(a) Claim 1.3.A in the proof of [Tsjm], Theorem 1.3, (ii) [which is applied
in [Tsjm]|, Definition 1.4, to define the notion of an arithmetic Belyi
diagram|;

(b) the proof of [Tsjm], Theorem 1.3, (iii) [which must be applied in or-
der to give a purely combinatorial/group-theoretic construction of the
outer isomorphism that is used to identify the two copies of Ilx that
appear in a Belyi diagram).

On the other hand, in Remark 3.3.3 below,

we shall give a purely combinatorial/group-theoretic algorithm
for constructing, via the algorithm of Corollary 3.1, (ii), the
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identifying outer isomorphism between the two copies of Ilx
that appear in a Belyi diagram.

In particular, in the context of the theory of the present paper, instead of
applying [Tsjm], Theorem 1.3, (iii), one may apply the purely combinatorial/
group-theoretic algorithm of Remark 3.3.3, which does not require any use
of the Grothendieck Conjecture for hyperbolic curves over number fields [cf.
Remark 3.1.1]. In addition, [Tsjm], Theorem 1.3, (ii) [i.e., the compatibility
of the identifying outer isomorphism between the two copies of Ilx with
the respective outer actions on the two copies| follows immediately from the
functoriality of the purely combinatorial/group-theoretic algorithm given in
Remark 3.3.3 below. Thus, in summary, in the theory of the present paper,

one may in fact avoid any use of the Grothendieck Conjecture
for hyperbolic curves over number fields when applying the the-
ory/results of [Tsjm] in the present paper.

REMARK 3.3.3. In the following discussion, we use the notation that
appears in the statement and proof of [Tsjm], Theorem 1.3.

(i) In the remainder of the present Remark 3.3.3, we shall reconstruct
the identifying outer isomorphism between the copies of Ilx that ap-
pear in a given Belyi diagram B [cf. Remark 3.3.2] — by means of a
purely combinatorial/group-theoretic algorithm — from [the underly-
ing purely combinatorial/group-theoretic structure of]| the collection
of data

(a) the profinite group Ix,;

(b) the outer surjections pr;; : IIx, — Ilx,, where (4,j) € {(1,2),
(1,3),(2,3)}, determined by the natural projection X3 — X5 to
the i-th and j-th factors, i.e., to be precise, the normal closed
subgroups Ker(pr; j) C Ilx,, together with the composite outer
isomorphisms

IIx, /Ker(pr; ;) < Ix, = IlLx, /Ker(pry jr),

where (i, 7), (', j') € {(1,2),(1,3),(2,3)};
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(c) the outer surjections p; : IIx, — IIx (i € {1,2}) determined
by the natural projection Xo — X to the i-th factor, i.e., to
be precise, the normal closed subgroups Ker(py), Ker(p2) C Ilx,,
together with the composite outer isomorphism Ilx, /Ker(p1) <
Iy — ILx,/Ker(p2);

(d) the profinite groups IIx, and Iy, i.e., to be precise, the quotients
of ITy, discussed in (b) and (c);

(e) surjections
pri: lx, — Iy, pro:lx, —» x, prg:lx, - lx,

that represent the respective outer surjections pjopry 3, p1opra 3,
b2 0 Ppra3s.
(f) the open subgroup Iy C Ix;

(g) the subset of labeled elements {0,1,00} C Cusp(Ily) [cf, [Tsjm],
Theorem 1.3, (i)];

(h) the subset of labeled elements {0,1,00} C Cusp(Ilx) [cf, [Tsjm],
Theorem 1.3, (i)]

— l.e., without applying the Grothendieck Conjecture for hyperbolic
curves over number fields. Here, the data (f), (g), (h) correspond to
the given Belyi diagram B [cf. the data “C(Ilx)” of [Tsjm], Theorem
1.3, (iii)]. Also, we note that any two collections of choices of surjec-
tions as in (e) are related to one another by composition with a single
inner automorphism of ITy,. Moreover, by applying Corollary 3.1, (ii);
[CbGT], Theorem A, (ii), one may regard the data of (b), (c), (d), (e)
as data reconstructed [i.e., by using the action of the symmetric group
S6 € Out(Ilx,)], up to unique isomorphism, from the data of (a).

Next, observe that the identifying outer isomorphism between the
copies of Ilx in B coincides with the composite

My & P4 5 g =5 Pt 5 1y,

where the first and the final arrows denote the outer isomorphisms
arising from the [scheme-theoretic/] isomorphisms of tripods deter-
mined by the data of (i), (e), (h) [which may be used to rigidify
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the correspondences between cusps]; the second and the third ar-
rows denote the natural isomorphisms induced, respectively, by the
natural outer surjections Ily, — Ily, and IIy, — Ilx,. Recall that
the open subgroup Ily; C Ilx, is defined to be the inverse image of
the open subgroup Hé?’ C H)X(?’ [determined by the open subgroup
Iy C IIx] via the surjection 11y, — H)X(?’ determined by the surjec-
tion pr; : IIx, — Ilx, where ¢ = 1,2, 3. Thus, to reconstruct the above
composite in a purely combinatorial /group-theoretic way, it suffices to
reconstruct the following data:

(a) the 3-central tripods C Ilx, [i.e., such as IT¢*P4];

(b) the kernel of the natural outer surjection Iy, — Iy, [which al-
lows us to characterize TI°®®® [cf. Claim 1.3.C in the proof of

[Tsjm], Theorem 1.3, (ii)] and reconstruct H;?]tpd];

(c) the outer isomorphism Ilx < II°%d;

(d) the kernel of the natural outer surjection Iy, — Ilx, [which

allows us to reconstruct IT5P4;

(e) the outer isomorphism Hggpd = My, where we regard both
“Hggpd” and “IIx” as subquotients of

def ~
Hg = HUS/Ker(HUS - HXg) (—> HX3).

The data of (ii), (a), may be reconstructed by applying the algorithm
implicit in the proof of [CbTplI], Theorem 3.16, (v) [cf. also [CbGT],
Corollary B], where we allow the central tripod “T” of [CbTpllI], The-
orem 3.16, (v), to vary among all 3-central tripods. [Indeed, the proof
of Claim 3.16.B in the proof of [CbTpll], Theorem 3.16, (v), con-
sists precisely of a reconstruction algorithm for the 3-central tripods.]
Once the data of (ii), (b) (respectively, (d)), has been reconstructed,
the data of (ii), (c) (respectively, (e)), may be reconstructed by us-
ing the action of the symmetric group &g C Out(Ilx,) (respectively,
S6 C Out(II3)) [cf. Corollary 3.1, (ii); the construction of the geomet-
ric outer isomorphism “ILyew = II,” in the proof of [CbTpll], Lemma
3.13, (iii)]. Thus, it suffices to reconstruct the data of (ii), (b), (d) [cf.
(v), (vi), below].
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(iv) Recall the set Iy, of inertia subgroups C IIx, of the discussion im-

mediately following Claim 1.3.B in the proof of [Tsjm|, Theorem 1.3,
(ii). Write
I§(3 g ‘[XS

for the subset consisting of inertia subgroups C Ker(pr; ;) for some
(i) € {(1,2),(1,3), (2,3)}. Let (i,) € {(1,2),(1,3),(2,3)}. Recall
from [CbGT], Theorem A, (ii); the first display of [CbGT], Corollary
C, that

(a) the image GT3 C Out(Ily,)

of the natural inclusion GT — Out(Ilx,) may be reconstructed from
the data of (i), (a). Next, observe that the natural outer action of
GT3 = OutgF(HX3) on IIx, stabilizes Ker(pr; ;) C Ilx,, as well as the
set of cuspidal inertia subgroups of Ker(pr; ;) [cf. [CbTplI], Theorem
A, (ii)], hence determines

out
(b) an outer representation IIy, x GT3 — OutC(Ker(pri,j)) [cf.
[CbTpl], Definition 6.1],

which is I-cyclotomically full [cf. [CmbGC], Definition 2.3, (ii), where
we regard Ker(pr; ;) as the étale fundamental group of a geometric
fiber of pr; ;, i.e., a smooth affine curve over an algebraically closed
field of characteristic 0, which implies formally, from the definitions
of the notation involved, that “Out®(Ker(pr;;))” in the present dis-
cussion corresponds precisely to the notation “Aut(G)” in [CmbGC],
Definition 2.3] for any prime number [ [where we apply the fact that
Gg C GT]. In particular, by applying the algorithm implicit in the
proof of [CmbGC], Corollary 2.7, (i), we conclude that the cuspidal in-
ertia subgroups of Ker(pr; ;) may be reconstructed group-theoretically
from the data of (b). Thus, by varying (i,7) € {(1,2),(1,3),(2,3)},
we conclude that

(c) the inertia subgroups € I)F(3

may be reconstructed group-theoretically from the data of (i), (a), (b),

(¢), (d).
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(v) Next, we reconstruct the data of (ii), (b). Let I € I)F(3 be such that,
for each h = 1,2,3, prp(I) = {1}. Then there exists a unique pair
(i,7) € {(1,2),(1,3),(2,3)} such that pr; ;(I) # {1}. Write

o IIyy C IlIx for the maximal normal open subgroup such that
My C Ily;

def .
° HZ3 = HX3 X (Ix xIx xITx) (HW x Iy X Hw) - HX3, i.e., the

inverse image via the surjection IIx, — IIx x IIx x IIx induced
by p1, p2, and ps of the open subgroup Iy x Iy x Iy C Ilx X
IIx x IIx [determined by the inclusion Iy C IIx];

Note that I C IIz, C Iy, C IIx,. Then it follows from a similar argu-
ment to the argument applied in the proof of [CmbCsp], Proposition
1.2, (iii), that pr; and pr; induce natural isomorphisms

gi1 : Ny, (1)/1 - (Ker(pryj) N Niy, (1)) = T,

gj,1: NHZ3 (I)/I ) (Ker(prm) N NH23 (I)) = My,

and that the outer automorphism of Ily, determined by g, o gz_l1
coincides with the outer automorphism determined by a(n) [uniqu,e]
element g € IIx/IIy. [That is to say, at a more conceptual level,
one may think of the various groups that appear in the above dis-
play as decomposition groups of various Galois fi.e., Ilx /Tly -] con-
jJugates of the (i, j)-diagonal of W x W x W.] Next, for each (i,5) €
{(1,2),(1,3),(2,3)} and g € IIx /Iy, we shall write

lLijig © I)F(s
for the subset consisting of the elements I € I)F(3 such that

e for each h =1,2,3, prp(I) = {1};

o pri;(l) #{1}; _ ,
® gj10g9;; coincides with the outer automorphism of Iy, deter-

mined by g € I x /Ty .

Then we may reconstruct the kernel of the natural surjection Iy, —»
II;7, as the normal closed subgroup of Ily; topologically normally gen-
erated by the elements of the subset

F
U Ii,j;g < IXS’
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(vi) Finally, we reconstruct the data of (ii), (d). Write

def
o If, = {I N Iy, (CIx,) | I €I, };

. 153 for the set of images of elements of 1‘1;3 via the natural sur-
jection Ily, — Iy, [cf. (v)].

On the other hand, for each i = 1,2, 3, pr; naturally induces an outer
surjection ¢; : Iy, — IIy. Thus, we may reconstruct the kernel of
the natural outer surjection Ily, — Ily, as the normal closed sub-
group topologically generated by the elements I € I, 53 satisfying the
following condition:

there exists i € {1,2,3} such that ¢;(I) C IIyy is a cuspidal
inertia subgroup that is not associated to 0, 1, co [cf. (i),

(8)]-

REMARK 3.3.4. We maintain the notation of Remark 3.3.3. Let J C
GT be a closed subgroup; N a normal open subgroup of J;

out out

HUNN—>H)(>4N

l

out
II x X N

an arithmetic Belyi diagram, which we denote by B” [i.e., whose underlying
Belyi diagram is the Belyi diagram B of Remark 3.3.3, (i)]. Recall the
notation Uy (respectively, X»2) for the second configuration space associated
to U (respectively, X); write py : Iy, — Il (respectively, px : IIx, — Ilx)
for the outer surjection induced by the first projection. Let us recall from
[Tsjm], Lemma 1.2, (b) [cf. also [Tsjm], Theorem 1.3, (ii); [Tsjm], Definition
1.4], that the outer action of N on IIyy extends uniquely [cf. the slimness of
IIx] to a Iy -outer action on Ilx that is compatible, relative to the vertical
arrow of the Belyi diagram B, with the outer action of J (2 N) on IIx. Then
observe that this Il -outer action of N on Ilx allows one to construct

e a natural outer action of N on Ily, that determines an injection N —
Out" (IIx),
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together with
e a compatible natural Ily;-outer action of NV on Iy, that stabilizes IIy;

[cf. the discussion preceding Claim 1.3.B in the proof of [Tsjm], Theorem
1.3, (ii)]. Next, recall from Remark 3.3.3, (ii), (b), (d) [cf. also Remark
3.3.3, (v), (vi)], that the resulting outer action of N on Ily, determines
injections

N — Out¥(Iy,), N — OutFC(ILy,)

compatible with the outer surjections Iy, — Ily, — Ilx,. The F-admis-
sibility of these outer actions implies that these natural outer actions of N
on Iy, and Iy, determine injections

N < Out?F (II, )P C Out™C(IIyy,),

N — Outs (Iy, )P C Out¥™®(IIy,)

[cf. Corollary 2.2; Definition 3.2; [CbTplII], Theorem A, (ii)] and a commu-

tative diagram
out out

HU2 X N —— HX2 x N
out out
pU Nile DX Nile

out out
[y x N —— IIx x N s
where the lower horizontal arrow is the horizontal arrow of B*. Note that
the outer action of N on Iy, (respectively, IIx,) just constructed is uniquely
determined by the following two conditions [cf. Corollary 2.2; [CbTpll],
Theorem A, (ii); [CmbCsp], Theorem A, (i)]:

e the outer action of N on Ily;, (respectively, IIx,) determines an injec-
tion

N < Out®¥(IIy, )P (respectively, N < Out®" (ILy, )"P);

e the outer action of N on Ily, (respectively, IIx,) induces the given
outer action of N on Iy (respectively, IIx) via the outer surjection

pu (respectively, px).
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PROPOSITION 3.4 (Functorial behavior of cuspidal inertia subgroups
with respect to geometric dominations). In the situation of Definition 3.3,
(i), every conjugacy class of cuspidal inertia subgroups of Iy arises as the
image via ¢ of a unique conjugacy class of cuspidal inertia subgroups of
I+ .

PROOF. We regard U,U" as open subschemes of X via the respective
natural open immersions U < X, UT < X. Write Cusp(UT) for the set of
cusps of UT; S C Cusp(UT) for the subset of cusps s € Cusp(UT) such that
some [or equivalently, every| cuspidal inertia subgroup of II;;+ associated to
s is contained in Ker(¢); UT C U ; (C X) for the partial compactification
of Ut such that UT = U; \ S. Thus, the natural outer surjection II;;+ —
HU; induces a bijection between the set of conjugacy classes of cuspidal

inertia subgroups of II;;+ associated to cusps € Cusp(UT)\ S and the set of
conjugacy classes of cuspidal inertia subgroups of I, ;+. Next, observe that

S
it follows immediately from Definition 3.3, (i), (a), (b), that ¢ induces an
outer isomorphism

. H = H
¢s 1L — Iy
SUCh that

(i) ¢s maps every cuspidal inertia subgroup of II ;i to a cuspidal inertia
S
subgroup of Il;

(ii) ¢s maps every cuspidal inertia subgroup of HU; associated to 0, 1, co
to a cuspidal inertia subgroup of Iy associated to 0, 1, oo, respectively.

Thus, to complete the proof of Proposition 3.4, it suffices to verify that ¢g
induces [cf. (i)] a bijection between the set of conjugacy classes of cuspidal
inertia subgroups of HU; and the set of conjugacy classes of cuspidal inertia
subgroups of II;;. To this end, let us first observe that injectivity follows
immediately from the fact that ¢g is an outer isomorphism. On the other
hand, since ¢g is an outer isomorphism, surjectivity follows immediately, in
light of (ii), from the fact that [since the hyperbolic curves UT and U are of
genus 0] HUg and II;; are topologically freely generated by their respective
collections of cuspidal inertia subgroups associated to cusps # oo. This
completes the proof of Proposition 3.4. [J
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ProprosITION 3.5 (Natural action of GT on the set of geometric domi-
nations). In the notation of Definition 3.3, (i), one may construct a nat-
ural action of Car(J) (C Out(Ilx)) on the set of geometric dominations
between arbitrary arithmetic Belyi diagrams.

PROOF. Let us consider the data of Remark 3.3.3, (i), (a), (b), (c),
(d), (e), (f), (g), (h), associated to B* and TB>. Then the data of

out out .
o “IIy, x M”, “HUQT x M”, together with

e the respective fiber subgroups of length 1 and cuspidal inertia sub-
groups of such fiber subgroups

[cf. Definition 3.3, (i)] may be reconstructed from the data of Remark
3.3.3, (i), (a), (b); Remark 3.3.3, (ii), (b); Remark 3.3.3, (vi) [i.e., “If;,”].
Thus, Proposition 3.5 follows immediately, in light of the various definitions
involved, from the functoriality of the purely combinatorial/group-theoretic
algorithm given in Remark 3.3.3. U

THEOREM 3.6 (Faithfulness via the CS-property for certain outer ac-
tions on configuration space groups induced by open immersions). Let
J C GT be a closed subgroup; N a normal open subgroup of J;

out out

HUNN—>H)(>4N

|

out

HX>4N

an arithmetic Belyi diagram, which we denote by B™. Write Us (respec-
tiely, Xo) for the second configuration space associated to U (respectively,
X); pu : Uy, — Uy (respectively, px : llx, — lx ) for the outer surjection
induced by the first projection. Thus, we have a commutative diagram

out out

HU2 X N —— HX2 x N
out, out,
pu Xidy px Xidy
out out

HUNN—>H)(><]N
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as in Remark 3.3.4. We regard U as an open subscheme of X via the natural
open immersion U — X. For each sequence

UCVCWCX

of open subschemes of X, write Vo, Wa for the second configuration spaces
associated to the hyperbolic curves V', W, respectively;

hyw + Outs® (ITy, )P — Outs® (T, )P

for the homomorphism induced by the upper horizontal arrow of the above
commutative diagram [cf. Theorem 2.1; [CbGT], Corollary B; the well-
known elementary structure of the natural inclusion &3 — &s5/; Ny, C
Outs (I, )™P for the image via the composite

h
N — Out®¥ (I, )P "5 Out®F (I, )P
[cf. Remark 3.3.4]. Suppose that B* satisfies the CS-property [cf. Defi-
nition 3.3, (w)]. Then, for any V,W as above, the composite

h
ZOutgF (I, )eusp (NVQ ) - OU.tgF (HV2 )CuSp vw OU.tgF (HWQ )Cusp

18 1njective.
PROOF. Write h & hv,w; Cusp(V'), Cusp(W) for the set of cusps of
V., W, respectively. First, let us note that we may assume without loss of

generality [i.e., by forming the composite of the hy s for suitable V, W]
that the cardinality of the set Cusp(V') \ Cusp(W) is 1. Let

B € Zouer (11, yeww (N12) (S Out" (ITy, )°P)
be such that h(3) = 1. Then it suffices to verify that
g =1
Note that the natural composites
N = Ny, C Outt(ITy,)™P, N 5 Ny, C Out®" (Ilyy, )P

determine natural outer actions of N on Ily,, Iy, , hence also on ITy, Iy [by
applying the natural outer surjections Ily, — IIy, Iy, — Il determined
by the respective first projections].

Next, let us write
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y for the unique element € Cusp(V') \ Cusp(W);

e 7; : Outs™ (Ily,) — Outs (ITy,) for the natural homomorphism induced
by the j-th projection, where j € {1,2} [where we note that in fact,
m = na — cf. Corollary 2.2; [CmbCsp]|, Proposition 1.2, (iii)];

e Y2 for the [uniquely determined, up to unique isomorphism| smooth
log curve over Spec Q such that Uy = V;

. Y21°g for the second log configuration space associated to Y'°8;

o ylog def y Xy Y198 [where the fiber product is determined by the natural
map Y'°8 — Y obtained by forgetting the log structure];

. Yylog e Yzlog Xy1oz Y'°8 [where the fiber product is determined by the
first projection Y;Og — Y8 and the natural map y'°8 — Ylog];

e G, for the semi-graph of anabelioids of pro-Primes PSC-type deter-
mined by the stable log curve Yylog [cf. [CmbGC], Definition 1.1, (i)];

® ¢y, ca for the cusps of G, that arise from y, the diagonal divisor of
Y;Og, respectively;

e v, for the vertex of G, associated to the irreducible component that
does not contain ca;

e IlIg, for the PSC-fundamental group of G, [cf. [CmbGC], Definition
1.1, (ii)].

Then we have a commutative diagram of profinite groups

out out
1 Hgy HV2 XN —— HV XN —— 1
] | |
out out
1 HV HW2 X N —— HW X N —— 1,

where the middle and right-hand vertical arrows denote surjections that rep-

resent the outer surjection induced by the natural open immersion V' — W;
out out out out X .

ITy, x N — Iy x N, Iy, x N — Il x N denote surjections that represent

the outer surjections induced by the respective first projections; ¢, denotes
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the induced surjection. [Note that Ker(g,) coincides with the normal closed
subgroup topologically generated by the cuspidal inertia subgroups of Ilg,
associated to c¢;.]

Since § € ZoutgF(HVZ)cusp(NVQ) (C Outs¥ (ITy, )<uP), and Ily, is center-
free [cf. [MT], Proposition 2.2, (ii)], # determines a Ily,-outer automorphism

t
vy of Iy, % N that lies over the identity automorphism of N. Let I, be
t
a cuspidal inertia subgroup of Iy associated to y; vy € Aut(Ily, NN ) a
t

lifting of vy,. Write (Jy )1 for the automorphism of Iy % N induced by v

out out
via the surjection Iy, x N — IIyy x NN in the above commutative diagram.
Then since § € OutsF (IIy; )P, by replacing J, by a suitable composite

out
with an inner automorphism of Ily, x N [determined by an element of Ily; ]
if necessary, we may assume without loss of generality that

(A'YJV)l(Iy) = Iy-

Let II,, C Ilg, be a verticial subgroup associated to v,. Note that since
V C W, vy is not of type (0,3). Thus, it follows immediately from [CbTplI],
Theorem 1.9, (ii), that the restriction Yy |ng, of v to Ilg, preserves and
fixes the conjugacy class of II,,. Moreover, by replacing Jy by a suitable

out
composite with an inner automorphism of IIy, x N [determined by an
element of Ilg, | if necessary, we may assume without loss of generality that

%/V‘Hgy (Hvy) - Hvy-

out
Write 4y € Aut(Ilyy, x N) for the automorphism [that lies over N] induced

t t
by Jv [cf. Theorem 2.1] via the surjection IIy, NN - Iy, % N in the
above commutative diagram.
Next, we verify the following assertion:

Claim 3.6.A: The outer automorphism v € Out(Ily ) determined
out

by the restriction Yy |1, of Y to Iy (— Iy, x N) coincides

with n2(8) € Out(Ily ).

Recall that ’ivlngy preserves the cuspidal inertia subgroups of Ilg, [cf.
Corollary 2.2]. Write ga : IIg, — IIy for the natural outer surjection
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induced by the second projection Vo — V. Note that Ker(ga) coincides
with the normal closed subgroup topologically generated by the cuspidal
inertia subgroups of Ilg, associated to ca. On the other hand, it follows
immediately from the various definitions involved that

e ~ (respectively, 72(/3)) coincides with the outer automorphism induced
by :Y/V|Hgy via the surjection g, (respectively, ga);

e gy and ga determine the same outer isomorphism (Ilg, 2) II,, = Iy

Thus, since v |mg, (II,,) = II,,, we obtain the desired conclusion. This
completes the proof of Claim 3.6.A.
Next, observe that since h(3) = 1, we have

. out out
Yw € IHD(HW2 X N) - Aut(HW2 X N),

where the inner automorphism 7y is determined by an element € Ilyy,.
Write

t

e (w)1 for the inner automorphism of Iy % N [determined by an
t t

element € Iy | induced by 7y via the surjection Iy, 0; N —» HWOQ N

in the above commutative diagram;

e D, (5 N) [cf. [CmbGC], Proposition 1.2, (ii)] for the image of
t t
NH outN(Iy) via the surjection Ily 0; N — Iy O; N in the above
v A

commutative diagram.

Then it follows from our assumption that (Yv)1(,) = I, that (Yw)1(Dy) =
D,. Recall that since B satisfies the CS-property, D, is normally terminal

out
in ITyy % N [cf. the final sentence of Definition 3.3, (iv); [CmbGC], Propo-
sition 1.2, (ii)]. Thus, we conclude that the inner automorphism ()1 €

Inn(IIy WN ) is determined by a(n) [unique] element € Dy, NIl = {1},
hence, in particular, that the inner automorphism 7y is determined by an
element € IIy C Ily,, i.e., that v = 1. Finally, it follows immediately from
the injectivity of 72 [cf. Corollary 2.2; [CmbCsp|, Theorem A, (i)], together
with Claim 3.6.A, that 8 = 1. This completes the proof of Theorem 3.6. []
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COROLLARY 3.7 (The CS-property implies the RGC-property). Let
J C GT be a closed subgroup satisfying the CS-property [cf. Definition
3.3, (v)]. Then J satisfies the RGC-property [cf. Definition 3.3, (v)].

PROOF. In the notation of Definition 3.3, (i), let ¢, ¢’ be arithmetic
dominations of BX by TB>, defined over a normal open subgroup M C J.
Then it suffices to prove that ¢ = ¢'. Since Ker(¢) and Ker(¢') are topo-
logically generated by [certain of the] cuspidal inertia subgroups of ITj+ [cf.
Definition 3.3, (i), (a)], it follows immediately from the CS-property [where
we take the “I” of Definition 3.3, (iv), to be “Cusp(Ilj;+) \ Cusp(Ilx)”,
“Cusp(IIy) \ Cusp(Ilx)”], together with Definition 3.3, (i), (b) [cf. also
Proposition 3.4], that

Ker(¢) = Ker(¢').
Fix Ily,-outer surjections

out

out out out
¢23HU2T>4M_»HU2>4M7 (ﬁ/QZHUQTNM—»HUQNM

[that lie over ¢, ¢'] as in Definition 3.3, (i), (a), respectively.
Next, we make the following observation:

Claim 3.7.A: ¢2 and ¢, map the inertia subgroups of I+ as-
2

sociated to the diagonal divisor of Ug isomorphically onto the
inertia subgroups of Il associated to the diagonal divisor of
Us.

Indeed, Claim 3.7.A follows immediately from the discussion of Definition
3.3, (i), (a). That is to say, it suffices to show that the inertia subgroups
of HUQ associated to the diagonal divisor of Ug do not lie in the kernel of
¢2 or ¢h. On the other hand, the assumption that any such inertia group
lies in the kernel of ¢9 or ¢/, leads immediately to a contradiction [cf. [MT],
Theorem 1.5, applied to the images via ¢ and ¢/ of fiber subgroups of
length 1; [MT], Proposition, 2.4, (v), and its proof [applied in the case of
HUQT]; [CmbCsp], Proposition 1.7, (d) [applied in the case of IIy,]].
Next, we verify the following assertion:

Claim 3.7.B: Ker(¢2) = Ker(¢}).
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Indeed, write

out out out out

QZS*:HUTNM—»HUNM, (ﬁ/*:HUTNM—»HUNM
for the II-outer surjections determined by ¢9, ¢4, respectively, via the outer
surjections HUQT — I+, Iy, — Iy induced by the respective second projec-
tions [cf. the portion of Definition 3.3, (i), (a) concerning fiber subgroups].
Then it follows immediately from Claim 3.7.A, together with a similar ar-
gument to the argument applied in the proof of [CmbCsp], Proposition 1.2,
(iii), that the following assertion holds:

Claim 3.7.C: ¢ = ¢y, ¢' = ¢,. In particular, Ker(¢.) = Ker(¢) =
Ker(¢') = Ker(¢)).

Thus, since Ker(¢s) and Ker(¢}) are topologically generated by [certain
of the| cuspidal inertia subgroups of fiber subgroups of I+ of length 1
2

[cf. Definition 3.3, (i), (a)], we conclude, again from Claim 3.7.A [cf. also
[CbTpll], Lemma 3.6, (i), (ii)], that Ker(¢2) = Ker(¢,). This completes the
proof of Claim 3.7.B.

It follows immediately from Claim 3.7.B that there exists a unique Il;s,-

outer automorphism « : I, O;t M = Ty, O;t M such that ¢2 = a0 ¢h. On
the other hand, it follows from the CS-property, together with Definition
3.3, (i), (b), that we may apply Theorem 3.6 to conclude that « is the
identity, hence that ¢o = ¢, ¢ = ¢’. This completes the proof of Corollary
3.7.0

4. Combinatorial Construction of the Field Qpgp

In §3, we defined a certain class of closed subgroups BGT of GT |[cf.
Definition 3.3, (v)]. In this section, for each such closed subgroup BGT,
we give a purely combinatorial /group-theoretic construction of a set Qpar
associated to BGT equipped with “field-like operations”, together with a
natural action by Cqor(BGT) that is compatible with these operations [cf.
Theorem 4.4, (i)]. In particular, when these operations determine a struc-

ture of field isomorphic to Q, we construct a natural outer homomorphism
Car(BGT) — Go ¥ Gal(Q/Q) [cf. Theorem 4.4, (if), (iif)].

Write X ¢ IF’}@\{O, 1,00}.
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DEeFINITION 4.1. Let BGT C GT be a closed subgroup satisfying the
BC-property [cf. Definition 3.3, (v)]. For any arithmetic Belyi diagram B

out out

HUNN—>H)(>4N

l

out

II x XA N
[where N is a normal open subgroup of BGT], write IIgx def y;
Cusp(B™)

for the set of conjugacy classes of cuspidal inertia subgroups [cf. [Tsjm],
Theorem 1.3, (i)] of IIgx. Write

IpgT

for the set of the arithmetic Belyi diagrams over normal open subgroups of
BGT. We shall regard Ipgr as a preordered set [i.e., a set equipped with a
reflexive and transitive binary relation] by means of the relation determined
by domination, i.e., the existence of an arithmetic domination [cf. Definition
3.3, (i); Proposition 3.4]. It follows immediately from the functorial nature
of the algorithm of Remark 3.3.3 [cf. also Remark 3.3.2; Proposition 3.5;
[Tsjm], Definition 1.4] that there is a natural action of Cqr(BGT) on the
preordered set Iggr. Since BGT satisfies the COF-property [cf. Definition
3.3, (ii)], it follows formally that the preordered set Ipgr is directed, i.e.,
any pair of elements of the set admits a(n) [not necessarily minimal!] upper
bound. Since BGT also satisfies the RG C-property [cf. Definition 3.3, (iii)], if
IBX € Ingr dominates B> e IpgT, then the unique geometric domination

ILigx — Iligx
of TB> by ‘B> determines [cf. Proposition 3.4] a natural injection
kit4 : Cusp(TB™) < Cusp(*B™)

[which we shall often use to regard Cusp('B*) as a subset of Cusp(*B>)].
Thus, we obtain a direct system (Cusp(*B>), ks ;). We shall write

— def ..
Qar = hLRl CUSP(BN) \ {00},
BXelpar
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def = def =

—x —h
Qpar = Qpar \ {0},  Qper = Qper \ {0,1},
where 0, 1,00 € Cusp(B*) denote the elements determined by the ITx-outer
t t
surjection Iy NN - Ix %N [i.e., the horizontal arrow in B™] and the

conjugacy classes of cuspidal inertia subgroups of Iy associated to 0,1, co,
respectively. We shall refer to Qpgr as the BGT-realization of Q.

REMARK 4.1.1. In the notation of Definition 4.1, it follows immedi-
ately from the various definitions involved that the kernel of the unique
geometric domination

Hﬂggx - HTBN

of ' B> by B> is the normal closed subgroup of ITypx topologically generated
by the cuspidal inertia subgroups associated to Cusp(*B*) \ Cusp('B>).

PROPOSITION 4.2 (Countability of Iggr). In the notation of Defini-
tion 4.1, IggT s countable.

PROOF. Let us observe that since Ilx is topologically finitely gener-
ated,

e the set of open subgroups of IIx is countable;
e there exists a countable open basis of BGT C Out(Ilx).

Thus, since Cusp(B*) is finite, it follows from the various definitions in-
volved that Iggr is countable. This completes the proof of Proposition
4.2. 0

PROPOSITION 4.3 (Natural action of Cgr(BGT) on the set Qpar).

There is a natural continuous action of Car(BGT) on the discrete set Qpar
[¢f. Definition 4.1].

PrROOF. In the notation of Definition 4.1, let o € Cor(BGT); = €
Qpar; B* € Ipgr an arithmetic Belyi diagram

out out

Iy x N —— IIx X N

|

out

HxNN
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[where N is a normal open subgroup of BGT] such that N O o N1 C
BGT and z € Cusp(B™). Recall that x is the conjugacy class of some
cuspidal inertia subgroup I, of II.

Next, let us recall the right-hand square in the diagram of the final
display of the proof of [Tsjm|, Corollary 1.6, (i), in the case where we take
“J” to be GT [cf. also Remark 3.3.2]. In the notation of the present
discussion, this right-hand square determines a commutative diagram of

profinite groups
out out

HUNN—>H)(><]N

7| |

out out

IMye x N —— IIx x N°,

where the horizontal arrows are the Ily-outer surjections induced by the
natural open immersions U — X, U? — X of hyperbolic curves; the
left- (respectively, the right-) hand vertical arrow is a IIy--outer (respec-
tively, ITx-outer) isomorphism of profinite groups. Write 27 € Qpgr for
the element determined by o(I,). Thus, to obtain a well-defined action of
Cat(BGT) on Qpgr, it suffices to show that 7 does not depend on the
choice of B*. But this follows formally from the COF-property of BGT,
together with Proposition 3.5 and the construction of x?. To verify that
the resulting action is continuous, it suffices to observe that there exists an
open subgroup H C Cgp(BGT) [which may be obtained, for instance, by
forming the intersection of Cqr(BGT) with the open subgroup “N C GT”
of [Tsjm], Definition 1.4] such that % = x for 0 € H. This completes the
proof of Proposition 4.3. [J

THEOREM 4.4 (Natural “field-like” operations on Qpqgr). The set
Qpar, equipped with its natural action by Car(BGT) [cf. Proposition 4.3],
satisfies the following properties:

(i) The set Qpar is equipped with natural operations
Brar : Qear X Qear — Qeers

Xpct : Qpar X Qar — QAT

as well as natural involutions [i.e., self-bijections which are their own
inverses/

Opér : Qear U {00} — Qpar U {00},
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(1 -DO)ar : Qpar U {0} — Qpar U {0},
all of which are equivariant with respect to the natural action of

Caor(BGT) on QggrU{oc}. These operations and involutions satisfy
the following properties:

def def def
EBGT(OJJ) =Y, IzBGT(Ovy) = 07 gBGT(Ly) =Y,

_ def _ def _ def
DB%}T(O) = 0, DBéT(l) = L, DBéT(OO) = 0,

(1—Dpar(0) €1, (1-D)per() o, (1 —D)per(cc) ¥ .

(i3) If the operations Bpar and Rpar determine, on Qpar, the addition
and multiplication operations of a structure, on Qpgr, of field isomor-
phic to Q, then we shall say that BGT satisfies the ArBC-property
[i.e., “arithmetic Belyi compatibility property”]. If BGT satisfies the
ArBC-property, then there exists a field isomorphism Q = Qpar, as
well as a natural outer homomorphism Cor(BGT) — Go.

(iii) Suppose that BGT admits a conducting field K that satisfies the
ZISC-property [cf. Definition 3.3, (vi)]. Then BGT satisfies the
ArBC-property.

ProoOF. First, we construct natural “field-like” operations on the set
Qpqr, as described in assertion (i). Write 0,1 € Qg for the elements
determined, respectively, by the conjugacy classes of cuspidal inertia sub-
groups of Ilx associated to the cusps “0”, “1” of X. Let

y € Qpar U {0}
(respectively,
y € Qpar U {oo};
_m —
z € Qpars ¥ € Qpar);
B> an arithmetic Belyi diagram

out out

My % N —L o 1y ™ N

|

out

HxNN
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[where N is a normal open subgroup of BGT] such that x,y € Cusp(B*).
Write ¢ : U — X for the open immersion that gives rise to the horizontal

arrow f of BX [cf. [Tsjm], Definition 1.1, (i); [Tsjm], Definition 1.4]; ¢ for

the standard coordinate on X % P}Q\{O, 1,00};

U X
(respectively,

S U X

MU — X)

for the open immersion obtained from ¢ : U — X by composing with the
automorphism ¢ +— ¢! of X [i.e., the automorphism of X that switches
the cusps “0” and “c0”] (respectively, composing with the automorphism
t+— 1—tof X [i.e., the automorphism of X that switches the cusps “0” and
“1”]; compactifying at the cusps other than “0”, “z”, “c0” [i.e., instead of at
the cusps other than “0”, “1”, “c0”] and then dividing by x). Then it follows
immediately from [Tsjm]|, Theorem 1.3, (ii) [cf. Remark 3.3.2], that the
open immersion ¢/ : U — X (respectively, .17t : U < X; /% : U — X)
determines a Il x-outer surjection

out

t_l out
ff oy x N —=1Ilx x N

(respectively,
out

1—¢ out
Iy x N —1Ilx x N;

out

P Ty % N — Tk % N).

Thus, by considering y relative to f¢ (respectively, f17t; f1/%) [cf. Def-
inition 4.1], we obtain a new element y' € Qpgr U {00} (respectively,
y'=t € Qpar U {oo}; ¥¥/* € Qpgr). In particular, by applying the COF-
property of BGT, one verifies immediately that we obtain natural bijections

o {t71}: Qpgr U{oc} = Qpar U {oo};
e {1—1t}:QpgrU{oc} = Qpgr U {oo};

o {t/z}: Qpgr — Qpar
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such that {t~1}(y) =y ', {1 —t}(y) = y* %, and {t/x}(y) = y"/*. Here,
we observe that {t~'} and {1 —t} are involutions, while {t/z} and {t/z~'},

where we write 7~ & {t/x}(1) € Qpgr, are inverse to one another. Write

_ def _ def
Opar = {71}, (1—DO)per = {1 -t}

Then it follows immediately from the various definitions involved that

Opir(0) € oo, Opdp(1) €1, Opliploo) € o,

(1-D)per(0) €1, (1-Dser(1) €0, (1 -D)per(co) E .

For each (z,y) € @QGT x Qpar, write

Rpar(z,y) = {t/{t"}(2)}(y),

def def
Mpar(0,y) = 0, Mpar(l,y) = y.

Thus, we obtain a multiplication map
Mpar : Qpar X Qear — Qpar-
Write
B,
for the arithmetic Belyi diagram [over a suitable normal open subgroup of
BGT — cf. the subgroup “M” of [Tsjm]|, Definition 1.4] determined by the
unique [up to isomorphism] connected finite étale covering of X of degree 2

ramified over 0 and oo;
—1Ipat € Qpar

for the element of Qpgr determined by the unique element of Cusp(B”)) \
{0,1,00}. Then we obtain an addition map

Brar : Qpar X Qear — Qpar
by taking
def _
Brer(z,y) = Bpar(z, {1 — t}(®per(—1set, Kpar({t 1 (=), v)))),

)<

EHBGT(Ov Yy Y,



60 Yuichiro HosHi, Shinichi MOCHIZUKI and Shota TSUJIMURA

. _
where (z,y) € Qpar X QpaT- B
Next, we verify that the natural action of Cor(BGT) on the set Qpgr
[cf. Proposition 4.3] is compatible with the “field-like” operations con-
structed above. Let ¢ € Cgr(BGT). Recall that the maps Mg and
Bpcr are completely determined by Oggp = {71}, (1 — O)par = {1 —t},

{t/z} (for z € @EGT), and —1pgr. Thus, since 02 = 0 and 17 = 1, it
suffices to verify the following assertion:

Claim 4.4.A: Let = € @EGT, Y€ @EGT. Then
{1 7) = {1} ),

{1-13(y7) = {1 - 1}(v))7,

{t/27}(y7) = ({t/x}(y)),

(—1BaT)? = —1BaT-

First, it follows from the uniqueness of the connected finite étale covering
of X of degree 2 ramified over 0 and oo that ¢ induces an automorphism of
B*,. Then since 0° = 0 and 19 = 1, the equality (—1pgT)° = —1pgT follows
immediately from the definition of —1ggT. Next, let BX be an arithmetic

Belyi diagram
out f out

HUNN—>H)(>4N

|

out
HX x N
[where N is a normal open subgroup of BGT] such that N¢ © oNo! -
BGT, and z,y € Cusp(B*). Then, by considering the [right-hand square in
the final display of the] proof of [Tsjm]|, Corollary 1.6, (i) [cf. also Remark
3.3.2; the functorial algorithm of Remark 3.3.3], in the case where J = GT,
we obtain a commutative diagram

out out

HU XN — HX x N
f
O'll all
out out

Mye x N — Tlx % N©,
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where the horizontal arrows are the Ilx-outer surjections induced by the
natural open immersions U — X, U? — X of hyperbolic curves; the left-
(respectively, the right-) hand vertical arrow is a Ily--outer (respectively,
IIx-outer) isomorphism of profinite groups.

Note that {t71}(y?) (respectively, {1 —t}(y?); {t/x°}(y?)) is completely
determined by y° and the Il x-outer surjection

=1 out out
(fO)F :ye x N7 —1Ilx x N°

(respectively,

oN1—t out out
(f7) " ":Mye x N = 1IIx x N9

o t/:r" out o out o
(f) Iye x N —)HXNN),

which sends (00, 1,0) (respectively, (1,0,00); (0,27, 00)) to (0,1, 00).

On the other hand, ({t~!}(y))? (respectively, ({1—t}(y)); ({t/z}(y))?)
is completely determined by y° and the Il x-outer surjection

+—1 -1 out o out o
cof' oo ":Illype x N7 —=1IIx x N
(respectively,
1—t 1 out o out o
cof T Poo i Ilye x N° - 1Tlx x N7

t/z _1 out . out o
oo f/P oo™ :llye x N7 —IIx x N?),

which sends (00, 1,0) (respectively, (1,0, 00); (0,27,00)) to (0,1, 00).

Note that the ITx-outer surjections of the displays of the last two para-
graphs exhibit analogous behavior on the cusps [i.e., more precisely, on the
conjugacy classes of cuspidal inertia subgroups]. Thus, we conclude from the
above commutative diagram [cf. also Remark 3.3.2; the functorial algorithm
of Remark 3.3.3] that

o (f)  =oof oo
o (f)t=0gofl oo,

° (fcr)t/:c" —go ft/ac oo~ L
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This completes the proof of Claim 4.4.A, hence of assertion (i). Assertion
(ii) follows immediately from the various definitions involved.
Next, we verify assertion (iii). In the following discussion, we shall

identify X (Q) with @rh' We begin by observing that, for any pair consisting
of
e an arithmetic Belyi diagram B”

out out

IIy *x N —— IIx X N

|

out

II)( x N

[where N is a normal open subgroup of BGT] and

e a finite subset F' C @m,
there exist

e an open immersion Ut < U (— X) over Q such that

— — —  —h
FCX@\U'@QcSXx@=0Q

[where we regard UT(Q) as a subset of X (Q) by means of the composite
of the open immersion U < U with the open immersion U — X
that gives rise to the horizontal arrow of the given arithmetic Belyi
diagram],

e a normal open subgroup M1 C N of BGT, and

e an arithmetic Belyi diagram TB>

out out

My 3 M —— TIx x Mt

|

out
Iy x M1
[where the restriction II;;; — IIx of the horizontal arrow to I+ is
the IIx-outer surjection that arises from the above open immersion
Ut — U (— X) over Q]
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such that the outer action of M' on IT;+ is compatible, relative to the
outer surjection II;;+ — Iy [induced by the open immersion UT < U],
with the restriction to MT C N of the outer action of N on ITy;. Indeed,
write g : U — X for the connected finite étale covering that gives rise to
the vertical arrow of the given arithmetic Belyi diagram. Let *B”™ be an
arithmetic Belyi diagram

out out

HU*NM*—>H)(>4M*

|

out

11 x X M*
[where M* is a normal open subgroup of BGT] such that

U@ < X@)\gU@NF)CX@) =qQ"

[cf., e.g., [NCBel], Corollary 1.1], where we regard U*(Q) as a subset of

X(Q) by means of the open immersion U* — X that gives rise to the

horizontal arrow of *BX. Write U % g~ 1(U*). Thus, we conclude that
there exist a normal open subgroup M1 C M* C N of BGT and a diagram

out out out
HUTMMT —’HUNN’MT—>HX>4N|MT

| |

out out
HU* X M*’MT E— HX X ]\”]\4]L

|

out
HX X M*|MT

— where the upper right-hand portion of the diagram is the diagram ob-
tained by restricting B> to M: the lower left-hand portion of the diagram is
the diagram obtained by restricting *B> to M the upper left-hand square
of the diagram is cartesian — such that the composite of the upper hori-
zontal arrows and the composite of the left-hand vertical arrows determine
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an arithmetic Belyi diagram B>

out out

My x M ——— TIx x Mt

|

out
Iy x MT
satisfying the desired property. This completes the proof of the above 0b-
servation.

Next, let us fix an element B* € Iggr. Then by applying the above
observation in a recursive fashion [i.e., by applying the observation to B*
and some finite subset F to obtain B>, then applying the observation to
B> and some other finite subset TF to obtain B>, etc.], we conclude [cf.
the definition of Qpgy] that one may construct a family of injections

{¢B>4,F tFU{0,1} — @BGT}{FC@ﬁ}

[indexed by the finite subsets F' C @rh] such that the following conditions
are satisfied:

e Cusp(B*)\ {oo} € U Im(¢pxp).
FcqQ

—h
o If Iy C F» CQ , then (¢BX7F2)|F1 = ¢BM7F1.

Thus, the various injections ¢gx r, indexed by the finite subsets F' C @m,
determine an injection

¢Bx : Q — Qpar
associated to B™ € Ipgr such that Cusp(B™) \ {oo} C Im(¢px).

Next, let K be a conducting field for BGT that satisfies the ZISC-
property. Then one verifies immediately that, to verify assertion (iii), by
replacing K and BGT, respectively, by K N Q [where we think of K as
being embedded in some algebraic closure K of K that contains Q] and a
suitable GT-conjugate of BGT, we may assume without loss of generality
that

Gk C BGT (C GT).

Then, to verify assertion (iii), it suffices to verify the following assertion:
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Claim 4.4.B: The injection ¢px is, in fact, a bijection. Moreover,
the “field-like” operations HpgT and KpgT on Qpgr induce the
usual operations of addition and multiplication on Q via ¢px.

Indeed, let 2 € Qpar; 'B* an arithmetic Belyi diagram

out out

Oyt @ Nt ——— TIx x Nt

|

out
Ilx x NT
[where N is a normal open subgroup of BGT] such that z € Cusp('B>).
Then observe that, by restricting B> to NT N Gk, we obtain an element
1y € Q associated to x € Cusp('B*) that, in light of the ZISC-property
of K and the COF-property of BGT, is independent of the choice of TB*.
Therefore, it follows immediately from the definition of ¢gx, together with
the ZISC-property of K and the COF-property of BGT, that gbe(x@) =x.

In particular, we conclude that ¢px is bijective. Next, we recall that {t~1},

{1 —t}, and {t/z} (for z € @QGT) are defined by using the scheme-
theoretic morphisms Lt_l, At and (/*. In particular, by restricting via
Gg C BGT [cf. the functorial algorithm of Remark 3.3.3] and applying the
ZISC-property of K, we conclude that the operations {t~'}, {1 — t}, and

{t/x} (for z € @EGT) induce, via ¢px, the usual involutions and operation
of multiplication by z=! on Q. In a similar vein, it follows immediately
from the definition of —1pgT, together with the ZISC-property of K, that
¢px(—1) = —1pgr. Thus, it follows immediately from the various defini-
tions involved [cf. also the bijectivity of ¢px] that the “field-like” operations
Mpcr and Mgt on Qper induce the usual operations of addition and mul-
tiplication on Q via ¢gx. This completes the proof of Claim 4.4.B, hence of
assertion (iii) [and indeed of Theorem 4.4]. O

REMARK 4.4.1. Let p be a prime number, F' a field which is a finite
extension of the field of rational numbers QQ or the field of p-adic numbers
Qp. Thus, we have a natural inclusion Q C F'. Let F be an algebraic closure
of F. By abuse of notation, we shall identify Q with the algebraic closure

of Q in F. Write Gp & Gal(F/F). Thus, we obtain natural injections
Gr — Gg — GT C Out(Ilx)
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[cf. the discussion at the beginning of [Tsjm], Introduction], which we use
to identify G with its image in GT. Then it follows immediately from the
fact that F' is Kummer-faithful [cf. [AbsToplIl], Definition 1.5; [AbsToplIII],
Remark 1.5.4, (i)], together with a similar argument to the argument applied
in the proof of [Tsjm]|, Corollary 3.2, that F' satisfies the ISC-property, and
that G satisfies the CS-property. Thus, we conclude from Corollary 3.7
that G satisfies the RGC-property. Since, in this situation, the COF-
property is immediate, we thus conclude [cf. Theorem 4.4, (iii)] that Gp
satisfies the ArBC-property, i.e., that we may take “BGT” to be G, and,
moreover, that the additional condition of Theorem 4.4, (ii), holds. Finally,
we observe that the evident scheme-theoretic interpretation of the various
arithmetic Belyi diagrams that appear determines a natural isomorphism
of fields @GF 5 Q that is compatible, relative to the natural injection
GFr — G, with the respective natural actions, i.e., we obtain a diagram as

follows:
G F — GQ
~ ~
Q, — Q

REMARK 4.4.2. It is not clear to the authors at the time of writing
whether or not GT satisfies the BC-property, i.e., whether or not “GT =
BGT”.

COROLLARY 4.5 (Group-theoretic nature of BGT). Let n be an inte-

ger such that n > 2. Write X,, for the n-th configuration space of X =

P%@\WJ,OO}; GT, ¥ Outs¥(Mx,) € Out(Ily,). Recall that we have a

natural isomorphism GT,, = GT [cf. the first display of [CbGT], Corollary
C|. Then one may reconstruct from Ilx, , in a purely combinatorial/group-

theoretic way, i.e., in a way that only involves the structure of llx, as a
topological group [cf. also Remark 4.5.1 below],

e the subgroups GT,, C Out(Ilx, ), GT C Out(Ilx), where we regard I1x
as the quotient of lx,, by a generalized fiber subgroup, and we recall [cf.
the first display of [CbGT], Corollary C] that Out(Ilx, ) normalizes

GT, and acts, by conjugation, on GT, wvia inner automorphisms of
GTy;

e the natural isomorphism GT,, = GT;
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e the collection of closed subgroups J C GT,, such that J satisfies [i.e.,
the image of J, via the natural isomorphism, in GT satisfies] the BC-
property [cf. Definition 3.3, (v)];

e the collection of closed subgroups J C GT,, such that J satisfies [i.e.,
the image of J, via the natural isomorphism, in GT satisfies| the
ArBC-property [cf. Theorem 4.4, (ii)].

If, moreover, a closed subgroup J = BGT C GT C Out(Ilx) satisfies the
BC-property, then the construction from llx, [cf. also Remark 4.5.1 below]

of

e the preordered set of arithmetic Belyi diagrams Iggr [cf. Definition

4.1],

e the natural action of Cor(BGT) on the preordered set Ingt [cf. Def-
inition 4.1],

o the set Cusp(—) associated to any element of IngT [cf. Definition

4.1],
e the direct limit Qpgy [cf. Definition 4.1],

e the natural continuous action of Car(BGT) on Qg [cf. Proposition
4.3/, and

o the field structure on Qpgr, whenever J satisfies the ArBC-property
[¢f. Theorem 4.4, (ii)],

may be phrased in purely combinatorial/group-theoretic terms, i.e., in terms
that only involve the structure of llx, as a topological group.

PROOF. The various assertions of Corollary 4.5 follow immediately
from Definitions 3.3, 4.1; Remarks 3.3.2, 3.3.3 [cf. also Remark 4.5.1 be-
low]; Proposition 4.3 [and its proof]|; Theorem 4.4 [and its proof]; [CbGT],
Theorem A, (ii); the first display of [CbGT], Corollary C; [Tsjm], Theorem
1.3, (i); [Tsjm], Definition 1.4. OJ
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REMARK 4.5.1.

(i)

(iii)

5.

Here, in the context of Remark 3.3.3, (i), we observe that the natural
isomorphism GT,, = GT [cf. the first display of [CbGT], Corollary C],
together with the algorithm of Corollary 3.1, (ii), implies that there
is in fact no substantive difference between

e constructions starting from Ilx, [where we recall that n > 2] and

e constructions starting from Ilx,.

In the situation discussed in (i) [cf. also Remark 3.3.3, (i)], sup-
pose that we apply the constructions discussed in Corollary 4.5 to
IIx,, regarded as an abstract topological group. Then the algorithm of
Corollary 3.1, (ii), determines a subgroup

S3 C Out(Ily)

[i.e., where, by a slight abuse of notation, we use the notation “S3” to
denote this subgroup which is isomorphic to the symmetric group on 3
letters| of the group of outer automorphisms Out(Ilx) of the quotient
IIx of the given abstract topological group Ilx, discussed in Remark
3.3.3, (i), (d).

We maintain the notation of (ii). Then observe that since the quotient
IIx of the given abstract topological group Ilx, is not equipped with
a natural bijection between its set of cusps and the set of symbols
{0,1, 00}, it follows that this quotient IIx is only related to any of
the “IIx’s” that appear in the arithmetic Belyi diagrams discussed in
the statement of Corollary 4.5 [not by a single outer isomorphism, but
rather] by an &s-torsor of outer isomorphisms.

Combinatorial Construction of the Conjugacy Class of Sub-
groups of GT Determined by Gg

Write X & IP}@\{O, 1,00}; X, for the n-th configuration space associ-

ated

to X, where n > 2. In this section, we reconstruct from the topological

group Ilx, , in a purely combinatorial/group-theoretic way, the conjugacy
class of subgroups of the Grothendieck-Teichmiiller group GT C Out(Ilx)
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determined by the absolute Galois group of QQ as the set of maximal closed
subgroups BGT of GT satisfying a certain purely combinatorial/group-
theoretic condition that we refer to as the AA-property [cf. Definition
5.12; Theorem 5.17, (ii)].

Write IIx,  for the quotient of IIx by the normal closed subgroup topo-
logically generated by the cuspidal inertia subgroups associated to the cusp
“1” [so Ilx,,, is isomorphic to Z as an abstract topological group]. Let J
be a closed subgroup of GT C Out(Ilx). Then we shall write [by a slight

abuse of notation)]
out

11 x XA J —» HXOOO X J
for the quotient by the normal closed subgroup topologically generated by
the cuspidal inertia subgroups associated to the cusp “1”.

DEFINITION 5.1. In the notation of Definition 4.1:

(i) Write
I lim g,

BXelpar

where the transition morphisms are the unique geometric dominations
HIIBN e HTBX]-

Here, we observe that even though these transition morphisms are,
strictly speaking, outer [surjective] homomorphisms, it follows imme-
diately from Proposition 4.2 that one may choose a coherent system
of homomorphism representatives of the given system of outer homo-
morphisms; in particular, II is well-defined as a profinite group, up to
inner automorphisms. It follows immediately from Proposition 3.5,
together with the various definitions involved, that the natural action
of Car(BGT) on Ipgr [cf. Definition 4.1] induces a natural outer
action of Cgr(BGT) on the group II.

(ii) In the context of the inverse limit of Definition 5.1, (i), we shall refer
to an inverse limit of cuspidal inertia subgroups of some cofinal collec-
tion of IIgx’s [where the induced transition morphisms are necessarily
isomorphisms]| as a cuspidal inertia subgroup of II. For each open sub-
group II* of II, we shall refer to the intersection of II* with a cuspidal
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inertia subgroup of II as a cuspidal inertia subgroup of II* and write
Cusp(IT¥)

for the set of II*-conjugacy classes of cuspidal inertia subgroups of
IT*. Thus, it follows immediately from the definitions that we obtain
a natural surjection

Cusp(IT*) — Cusp(IT)
with finite fibers. For each finite subset E* C Cusp(II*), write
I — Mg

for the topologically finitely generated [cf. Remark 5.1.1 below] quo-
tient profinite group of II* obtained by forming the quotient of II* by
the normal closed subgroup topologically generated by the cuspidal
inertia subgroups associated to Cusp(II*) \ E*. Observe that the nat-
ural outer action of Cgr(BGT) on II [cf. Definition 5.1, (i)] induces
a natural action of Cqr(BGT) on Cusp(Il). Finally, we observe that
it follows immediately from the various definitions involved [cf., espe-
cially, Definition 4.1] that we have a natural Cor(BGT)-equivariant
bijection
Cusp(I) = Qpar U {oo}.

Write
Car

for the set of finite subsets of Cusp(II) that contain {0, 1,00}. Observe
that the natural action of Cgr(BGT) on Cusp(II) [cf. Definition 5.1,
(ii)] induces a natural action of Cor(BGT) on Cpgr. We shall write

t
Ciar € Crar

for the subset of Cqr(BGT)-stable elements, i.e., elements fixed by the
action of Cqr(BGT). Finally, we observe that the assignment Iggt 3
B> +— Cusp(B™) € Cggr induces a natural Cor(BGT)-equivariant
map

Igar — Cgar.
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REMARK 5.1.1. In the notation of Definition 5.1, it follows immedi-
ately from Remark 4.1.1 that the kernel of the natural outer surjection

II — Ilgx

is the normal closed subgroup of II topologically generated by the cuspidal
inertia subgroups associated to Cusp(IT) \ Cusp(B*). In particular, the
quotient II — Ilgx may be naturally identified with the quotient

I — HCusp(BX])

of the third display of Definition 5.1, (ii) [i.e., where we take “II*” to be II
and “E*” to be Cusp(B™)].

REMARK 5.1.2. Let E € Cf,p [cf. Definition 5.1, (iii)]. Then it follows
immediately from the various definitions involved that the natural outer
action of Car(BGT) on II [cf. Definition 5.1, (i)] induces, via the natural
outer surjection II — Ilg, a natural continuous outer action of Cgp(BGT)
on the topologically finitely generated profinite group Ilg [cf. the discussion
entitled “Topological groups” in Notations and Conventions; Definition 5.1,
(ii); [Tsjm], Lemma 1.2, (b); [Tsjm], Theorem 1.3, (ii); [Tsjm], Definition
1.4].

REMARK 5.1.3. Observe that it follows immediately from the conti-
nuity [cf. Proposition 4.3] of the natural action of Cqr(BGT) on Qg U
{oo} (& Cusp(Il)) [cf. Definition 5.1, (ii)], together with the COF-property
of BGT, that

for any E € Cpgr, there exists an element E** € Cfiyp (re-
spectively, B® € Iggr) such that E C E5 (respectively, E C
Cusp(B™)).

In particular, we conclude [cf. Remarks 5.1.1, 5.1.2; Proposition 5.2, (ii),
below] that we may write

I = lim II E = lim II Est,
< e
EeCpcr EsteCyor

out out
II x BGT= lim IIgs x BGT
—

Es*eClor
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— where, in the inverse limits, we regard CaT and C’%GT as directed pre-
ordered sets by means of the relation of inclusion of subsets of Cusp(II).

PROPOSITION 5.2 (Basic properties of II). In the notation of Defini-
tion 5.1, the following hold:

(i) For each E € Cpgr of cardinality r, there exists an isomorphism of
profinite groups between llg, on the one hand, and the étale funda-
mental group of an open subscheme of X obtained by removing r — 3
distinct points from X, on the other, that induces a bijection between
the respective sets of cuspidal inertia subgroups.

(ii) For each E € Cpgr, llg is slim. In particular, 11 is slim.

t
(iii) The group 11 % BGT admits a natural structure of profinite group.

(iv) Let II* be a normal open subgroup of II. Then, for any sufficiently
small normal open subgroup M C BGT, there exist an outer action of

t t
M on II* and an open injection IT* % M < T % BGT such that

(a) the outer action of M on II* preserves the set of cuspidal inertia
subgroups of II*;

(b) the outer action of M on II* extends uniquely [cf. the slimness
of 1] to a II*-outer action on II that is compatible with the outer

t t
action of BGT (2 M) on I1; the injection IT* % M < II % BGT
s the injection determined by the inclusions II* C II and M C
BGT, together with the II*-outer actions of M on II* and II.
t
(v) In the notation of (iv), the homomorphism II* M — Aut(IT*) de-
termined by comjugation is injective.

PROOF. Assertion (i) follows immediately from the various definitions
involved. Assertion (ii) follows immediately from [MT], Proposition 1.4.
Assertion (iii) follows immediately, in light of the second line of the final
display of Remark 5.1.3, from Remark 5.1.2. Next, since, in the notation of
Definition 5.1, (i), IT* arises as the inverse image in II of some normal open
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subgroup of some IIgx, assertion (iv) follows immediately from a similar

argument to the argument applied in the proof of [Tsjm]|, Lemma 1.2.
Finally, we verify assertion (v). First, we note that since II, hence also

IT*, is slim [cf. Proposition 5.2, (ii)], the restriction of the homomorphism

% M - Aut(IT*) to II* is injective. Note also that since the natural
surjection II — ITx is compatible with the respective outer actions of M, and
M C GT C Out(Ily), the natural homomorphism M — Out(II) is injective.
In particular, since II is slim, it follows immediately from condition (b) of
Proposition 5.2, (iv), that the natural homomorphism M — Out(IT*) is

t
injective. Thus, we conclude that the homomorphism IT* M - Aut(IT%)

is injective. This completes the proof of assertion (v), hence of Proposition
5.2. 0

DEFINITION 5.3. In the following, we consider the analogues of [Tsjm],
Definition 1.5, (i), (ii); [Tsjm], Corollary 1.6, (ii), obtained by replacing
“IIx” by IIx,. . Let J be a closed subgroup of GT C Out(ILx).

(i) Fix an arithmetic Belyi diagram B>

out out

HUNM—>Hx>4M

|

out

HX x M
[cf. [Tsjm], Definition 1.4]. Write

Dooo(B™, M, J)

for the set consisting of the images via the natural composite Iy, -
t t t
outer homomorphism II; M —» IIx M — IIx X J = Ilx, =xJ

out
of the normalizers in II;; x M of the cuspidal inertia subgroups of Iy
that are not associated to 0 and oo;

Dooo (B, J)

for the quotient set (Lystc ;Dooo(B™|51, M1, J))/ ~, where M ranges
over the normal open subgroups of J contained in M, and we write
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Dooo (BX|pst, MT,J) 3 Gt ~ Gupr € Dooo(BX 1, ME,J) if Gyt N
Gt is open in both G+ and G:. Finally, we observe that Iy,
acts naturally on Do (B>, M, J) and Do (B™, J).

Write
Dooo (J)

for the quotient set ( Ligx Dooo (B, J))/ ~, where B” ranges over
all arithmetic Belyi diagrams, and we write Dooo (TB>,J) 3 Gigx ~
Gipx € Dooo (1B, J) if Gyt NGyt is open in both G+ and G+ for
some representative G+ (respectively, G ;1) of Gigx (respectively,
Gigx). Observe that Iy, acts naturally on Do (J).

Write
Doso(J)

for the quotient set Dooo(J) /I x,.. -

REMARK 5.3.1. In the following, we consider certain slightly gener-
alized analogues of [Tsjm]|, Corollary 1.6, (ii), (iii), obtained by replacing
“IlIx” by Ilx,.. Let J be a closed subgroup of GT C Out(Ily). Then it
follows immediately from a similar argument [cf. also Remarks 3.3.2, 3.3.3]
to the argument applied in the proof of [Tsjm], Corollary 1.6, together with
the various definitions involved, that:

Dooo(J) admits a natural action by Cgr(J), hence, in particular, by
J.

Let J; and Jy be closed subgroups of GT. If J; C Jo C GT, then the
inclusion J; C Js induces, by considering the intersection of subgroups
of IIx,  x Jo with IIx,  x Ji, a natural surjection

Dooo(J2) = Dooo(J1)

that is equivariant with respect to the natural actions of J; (C J2) on
the domain and codomain.
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LEMMA 5.4 (Kummer classes of group-theoretic constant functions).
We maintain the notation of Definitions 4.1, 5.3. Then the following hold:

(i) There exists a natural injection

et : Doso(BGT) —  lim  H'(M,IIx,..),
MCBGT

where M ranges over the normal open subgroups of BGT.

(ii) There ezists a natural surjection
’L/}BGT . @EGT — DOOO(BGT)

(iii) The above maps g and Ypgr are compatible with the respective
natural actions of Cqr(BGT) [cf. Proposition 4.3, Remark 5.3.1].

(iv) The composite

tgaT o Ypet : Qpar —  lim  H'(M,IIx, )

18 compatible with the operations ‘Wpar” and “DgéT ” on the domain
[cf. Theorem 4.4, (i)] and the corresponding operations arising from
the natural group structure on the codomain. In particular, the image
of this composite is a subgroup of the codomain.

PROOF. First, we verify assertion (i). Let I; be a cuspidal inertia sub-
group of ITx associated to the cusp “1”. Then the image of the normalizer

out
out (Il) g HX X BGT

IIx XBGT

t
via the natural surjection IIx % BGT — II Xoo, X BGT determines a section
s1 [cf. [CmbGC], Proposition 1.2, (ii)] of the second to last arrow of the
natural exact sequence

1 — Iy, — Ix,. xBGT — BGT — 1.

On the other hand, note that an element x € Dy (B, M, BGT), where B*
denotes an arithmetic Belyi diagram as in Definition 5.3, (i) [i.e., where we
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take “J” to be BGT], determines a section s, [cf. [CmbGC], Proposition
1.2, (ii)] of the restriction to M of the second to last arrow of the above
exact sequence. Thus, by forming the difference k, between s, and the
restriction to M of s1, one verifies immediately that the assignment s, — kK,
determines, by allowing B” € Iggt [hence also “M”] to vary, a natural map

1T : Doso(BGT) —  lim  H'(M,Ilx,,),
MCBGT

where M ranges over the normal open subgroups of BGT. Finally, the in-
jectivity of tpgr follows immediately from the definitions of Dy (—) and
H'(—,—). This completes the proof of assertion (i). Assertion (ii) follows
immediately from the definitions of Qpgy and Doso(BGT). Assertion (iii)
follows immediately from the definitions of the natural actions of CqT(BGT)
[cf., especially, the proof of Proposition 4.3]. Assertion (iv) follows imme-
diately from the construction of the multiplication operation on the field
Qpar [i-e., the construction of “Mpgr” in the proof of Theorem 4.4, (i)]
by means of the well-known natural group structure on ]P’}Q\{O,oo}, ie.,
“(Gm)g”- This completes the proof of Lemma 5.4. [J

In the remainder of the present paper, we shall identify Dy (BGT) with
Im(tggT) via the natural injection tpgr.

PROPOSITION 5.5 (Synchronizations of cuspidal inertia subgroups).
We maintain the notation of Definition 5.1. Then the following hold:

(i) For each cuspidal inertia subgroup I, of Il associated to x € Cusp(Il),
the natural scheme-theoretic isomorphism

I, >y,

may be reconstructed, in a purely combinatorial/group-theoretic way,
from the collection of data

(IL; Cusp(II); {0, 00} C Cusp(I))
consisting of

e a profinite group 11;
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e a set Cusp(Il) of conjugacy classes of subgroups of I1;

o a subset {0,00} C Cusp(Il) of cardinality 2 [equipped with labels
07, “c0”] of the set Cusp(II).

(ii) Let II* C II be an open subgroup; x € Cusp(II*); I} a cuspidal inertia
subgroup of II* associated to x. Then one may construct a natural
isomorphism

I S x,.,

as follows: Write I, * Ny (I¥). Note that I, = Ni(I,) = Cr(Iy) =

Cnu(I}) is the unique cuspidal inertia subgroup of II containing I [cf.
Proposition 5.2, (i); [CmbGC], Proposition 1.2, (i), (ii)], and that the
subgroup I} C I, is of finite index m. Then since cuspidal inertia sub-
groups are abstractly isomorphic to Z. [ef. [CmbGC], Remark 1.1.3],
division by m determines an isomorphism I} = I,. Thus, by com-
posing with the isomorphism of (i), we obtain a natural isomorphism
I Sy, -

ProoOF. First, we verify assertion (i). Let [y be a cuspidal inertia
subgroup of II associated to the cusp “0 € Cusp(II)”. Write

H - H{va}

for the quotient profinite group of II obtained by forming the quotient of
II by the normal closed subgroup topologically generated by the cuspidal
inertia subgroups associated to Cusp(II) \ {0, z}. Then the surjection II —
0,2} induces isomorphisms

ag: Iy = Hioz), 0o:ly = 0,2}

Write o : I, = Iy for the composite of o 1o a, with the inversion map
Iy = Iy. Thus, by composing o with the restriction to Iy of the natural
surjection II — Ilx, _, we obtain an isomorphism I, — IIx,._. The desired
functoriality follows immediately from the construction. This completes the
proof of assertion (i).

Assertion (ii) follows immediately from the various definitions involved.
This completes the proof of Proposition 5.5. [

DEFINITION 5.6. In the notation of Definition 5.1, let II* C II be an
open subgroup. Fix
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e a normal open subgroup M C BGT,

e an outer action of M on II*, and

o . out out
e an open injection far : 1I* x M — II x BGT
such that

(a) the outer action of M on II* preserves the set of cuspidal inertia
subgroups of IT*;

(b) the outer action of M on IT* extends uniquely [cf. the slimness of II]
to a II*-outer action on II that is compatible with the outer action of
t t
BGT (2 M) on II; the injection IT* % M < II % BGT is the injection
determined by the inclusions II* C II and M C BGT, together with
the II*-outer actions of M on II* and II

[cf. Proposition 5.2, (iv)]. Write
I(IT*, I0)

for the set of open injections fr« : II* — II satisfying the following proper-
ties:

(1) For each cuspidal inertia subgroup I* of II*, the commensurator
Cr(fo-(I*)) of fr=(I*) in IT is a cuspidal inertia subgroup of II [which
implies, by Proposition 5.5, (ii), that Cr(fi-(I*)) = Nu(fu-(I7))]

(2) For each cuspidal inertia subgroup I of II, the inverse image fﬁ*l (I) C

IT* is a cuspidal inertia subgroup of II*.

(3) Let I* be a cuspidal inertia subgroup of IT*; I a cuspidal inertia sub-
group of II such that I* = fﬁ*l (I). Then the composite

Hx,., < I"— 151y,
— where the first and final arrows are the isomorphisms of Proposi-

tion 5.5, (i), (ii) — coincides with the homomorphism determined by
multiplication by some positive integer.
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(4) For any sufficiently small normal open subgroup N* C M of BGT,
there exists a(n) [necessarily unique — cf. Remark 5.6.1 below| open
injection

out out
IT" x N* < 1II x N*
that is compatible with the open injection between respective sub-
groups fr= : II* < II and the surjections to N* (C BGT).

t t
REMARK 5.6.1. Note that any open injection IT* % N* < T1% N* as
t t
in Definition 5.6, (4), is unique. Indeed, let f : IT* » N* < I x N* be
an open injection as in Definition 5.6, (4); II** C II an open subgroup such
t
that IT** C fpp« (IT*), and IT** C I % N* is a normal closed subgroup. Write

Autpp+ (IT) € Aut(II) for the subgroup of automorphisms that preserve the
normal open subgroup II** C II. Then we have a commutative diagram

out f out

I « N* —— II x N*

| |

Aut(IT**) «—— Autyp (1),

where the vertical arrows denote the injections determined by the respective
actions by conjugation; the lower horizontal arrow denotes the natural in-
jection [cf. Proposition 5.2, (ii)]. Thus, we conclude that the open injection

out out
f:II* x N* — II x N* is uniquely determined by the open injection fr
and the respective outer actions of N* on II* and II, hence that any open
injection as in Definition 5.6, (4), is unique.

REMARK 5.6.2. In the notation of Definition 5.6, let II** C II be an
open subgroup contained in IT*. Then the inclusion IT** C IT* determines a
natural map [(IT*,II) — I(IT**,II) [cf. Propositions 5.2, (iv); 5.5, (ii)].

PROPOSITION 5.7 (Kummer classes of group-theoretic nonconstant
functions). In the notation of Definition 5.6, let fr~ € I(IT*,II). Then
f+ naturally determines an element of

. 1 *out "
hi>n H (I x N¥,IIx,.. ),
N*CBGT
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where N* ranges over the normal open subgroups of BGT. In particular,
we obtain a natural map

t
pre s IATTD) = lim HY(IT % N*,Tox,).
N*CBGT

out out
PROOF. Let IT* x N* < II x N* be an open injection as in Definition
5.6, (4). Write

*out ” out * »
Sgp T X NT = II 3 N™ — Ilx, X N

out out
for the composite of this open injection II* x N* — II x N* with the natural

out
IIx,. -outer surjection II x N* — IIx, x N*. Let I; be a cuspidal inertia
subgroup of IIx associated to the cusp “1”. Then I; determines a section
s1|n+ of the surjection IIx, X N* — N* [cf. the proof of Lemma 5.4, (i)]. In

out
particular, by composing s1|n+ with the natural surjection IT* x N* — N*,
we obtain a homomorphism

out
* * *
. “ N ad ” N,
Slyn*oilqtN* a Xose X

Thus, by forming the difference between sy, ., and sl\n out > We obtain an
* >q *
out
element € H'(IT* M N*,1Ix,.. ), hence an element
. 1 " out "
fiir € lim  H(IT" x N¥, Tx,,)-
N*CBGT

Finally, it follows immediately from the various definitions involved that
ffi« is independent of the choice of I; [within its ITx-conjugacy class]. This
completes the proof of Proposition 5.7. [J

DEFINITION 5.8. We maintain the notation of Definition 5.6.
Let fr« € I(IT*,II); x € Cusp(IT*); I, a cuspidal inertia subgroup of IT*
associated to z. Then we define the value

Jr+ () € Qpgr U {00}
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of fri+ at = to be the image of the element € Cusp(II) determined by the
cuspidal inertia subgroup Ny (fr+(I;)) C II via the natural Cqr(BGT)-
equivariant bijection Cusp(Il) = Qpar U {oo} [cf. Definition 5.1, (ii)]. It
follows immediately from the various definitions involved that fr«(z) €
Qpar U {oo} does not depend on the choice of I, within its II*-conjugacy

class.

DEFINITION 5.9. We maintain the notation of Definition 5.8.

(i) Write

(i)

Fyp s I(IT, 1T) — Fn(Cusp(IT*), Qpar U {oc})

(respectively,

Br+ : Qpar — Fn(Cusp(IT*), Qpgr U {oo}))

for the natural map determined by considering the value (respectively,
the constant value) at each of the elements € Cusp(II*). Then we shall
write

Ly P Fip+ U Im By« C Fn(Cusp(IT*), Qg U {o0})).

For each finite subset S C Cusp(II*), we shall write
I

for the quotient of II* by the normal closed subgroup topologically
generated by the cuspidal inertia subgroups associated to Cusp(II*)\S
[cf. Definition 5.1, (ii)]. Suppose that the open subgroup N C BGT
[cf. Definition 4.1] is contained in the open subgroup M C BGT [cf.
Definition 5.6], and, moreover, that

N C BGT induces the identity automorphism on S.

Then we shall write

«  def ., out " def
wy = 1" X N, Tlgyn =

out
ITg x N.
[cf. Proposition 5.2, (ii)]. Write

IS<H*a H)
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for the inverse image of

Fu(Cusp(I') \ S, Qger) (S Fu(Cusp(I1%) \ S, Qpar U {oc}))

by the composite of Fi+ with the restriction map
Fn(Cusp(IT), Qpar U {o0}) = Fn(Cusp(IT*) \ S, Qpar U {o0});

Fr» g« Ig(IT*, 1) — Fn(Cusp(IT*) \ S, @]_?,GT)

for the natural map induced by Fipx;

kre,s : Lg(IT, 1) — lim  H' (I, Hx,.,)
N*CN

— where N* ranges over the normal open subgroups of BGT contained
in N — for the restriction of ki« to Ig(II*,II) [cf. Proposition 5.7].
Here, we note that it follows immediately from the various definitions
involved [cf. the proof of Proposition 5.7] that s+ g factors as the
composite of a natural map

kary : Ls(IT, 1) — ]VanN HY (T s Ty )
*C

with the injection given by the inflation map

: 1 * . 1 *
h_r,n H (HSNN*7HXOOO) - h_r,n H ( NN*’HXOOO)'
N*CN N*CN

In the notation of (ii), let € Cusp(II*) \ S; N; a normal open sub-
group of BGT contained in N that stabilizes x; I, C II* a cuspidal
inertia subgroup associated to z. Then the image of Nz, N, (I) via the
natural surjection I3y — II5,\  determines a section Ny — IIg
of the natural surjection I, — Ny [cf. the proof of Lemma 5.4,
(i)]. Thus, in particular, by allowing “N,” to vary, we obtain a natural
map

DHg: h_H} HI(H*SXIN*?HXOOO) - Fn(Cusp(H*)\S’, I}II(N7HX00<>))7
N*CN

where H'(N, Iy, ) = lim H'(N* Ilx,.).
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REMARK 5.9.1. In the remainder of the present paper, we shall use
the injection given by the inflation map in the final display of Definition
5.9, (ii), to regard the group lim HY(IT o+ Ilx,..) as a subgroup of

N*CN

REMARK 5.9.2. We maintain the notation of Definition 5.9. Note that,
for each element fr« € I(IT*,II), the set of II*-conjugacy classes of cusp-
idal inertia subgroups I* of II* such that fi«(I*) is contained in a fized
II-conjugacy class of cuspidal inertia subgroups of II is finite. Indeed, this
follows immediately from the fact that fi« is an open injection that induces
a bijection between the cuspidal inertia subgroups of IT* and II — cf. Defini-
tion 5.6, (1), (2). Thus, it follows immediately from the various definitions
involved that

mm=J I,
SCCusp(I*)

where S ranges over the finite subsets of Cusp(IT*).

DEFINITION 5.10. We maintain the notation of Definition 5.9, (ii).
Suppose that S # (), and that, for each normal open subgroup N* of BGT
contained in N,

H(IT5, Tx,, )Y = {0}

Then we shall construct a subgroup

. 1
Kﬁg - hi>n H (HZ‘NN*aHXODO)
N*CN

as follows: First, we observe that the natural exact sequence
1 — I — Mgy« — N*— 1
determines an exact sequence

0— Hl(N*’HXOOO) - HI(H*SNN*7HX000) — Hl(H§7HXOOO)N*'
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Thus, by allowing the normal open subgroup N* to vary, we obtain an exact
sequence

0— lim H'(N"Ily,,) — lim H'(§y. )
N*CN N*CN

— lim HI(H*S> HXooo)N*'
N*CN

Here, we observe that
Hl(Hz’v HXOOO)N* = Hl((Hz’)abv HXOOO)N*‘

Next, for each = € S, let I, be a cuspidal inertia subgroup of II* associated
to x. Then we have an exact sequence of N*-modules

P . — 15 — (15)* — o,
z€eS

which determines an exact sequence of modules
0 — H((IH)™ x,,, )" — H'((I5)™, x,, )"

— P H'(IL,1x,,.).
€S

Thus, by applying our assumption that Hl((Ha)ab,HXOOO)N* = {0}, we
obtain a natural injection

i Hl((Hg)abanXooo)N* — @ Hl(IxanXooo)'
€S

Write
1, € H' (I, Tx,.. ) = Hom(I,,x,_)

for the isomorphism I, = Ix,  of Proposition 5.5, (ii);
Z:L“ - Hl(Ixa HXOOO)
for the subgroup generated by 1,;

Qg t N™ = Tl
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for the section of the natural surjection IIj . — N* determined by the
image of Nyz . (I;) via the natural surjection IIg . — IIj . [cf. the
proof of Lemma 5.4, (i)]. Next, we fix zg € S. Write

D, € H'(N*, (II;)*")
for the element obtained by forming the difference between i,, and i,;
Ps C @ L (g @ HI(I$7HXOO<>))
zeS TES
for the subgroup consisting of (n;).cs € @,cg Z, such that
> ne =0, > ne-Dp = 0(c H'(N*, (Ij)™))
zes €S

[where we note that one verifies immediately that these conditions on
(nz)zes are independent of the choice of z¢ € SJ;

Ps

for the image of (i o r)~!(Pg) via the natural homomorphism H!(IT% -,

IIxy,.) — lim HY(IT% s+ M x,. ), where M* ranges over the normal open
M*CN
subgroups of BGT contained in N. Then we define

K. re N Dyt (Fn(Cusp(IT*) \ S, Dyo(BGT)))

; 1
C lim H (g, xos)
M*CN

[cf. Lemma 5.4, (i); Definition 5.9, (iii)] and

def . 1
Kip <\ Ky © lim B (I, T, ).
T M*CN

where T ranges over the finite subsets of Cusp(II*).

REMARK 5.10.1. In the notation of Definition 5.10, suppose that
BGT = Gq [cf. Remark 4.4.1]. Then the above construction of Kfj. may be
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understood as a sort of reconstruction of the set of Kummer classes of ratio-
nal functions associated to II*, i.e., in the spirit of [AbsTopllII], Proposition
1.8.

LEMMA 5.11 (Kummer classes of abstract functions). We maintain

the notation of Definitions 5.9, 5.10. Suppose that the restriction Dy, KE,

S

of Dy, to K”g [cf. Definition 5.9, (iii); Definition 5.10] is injective for

arbitrary choices of “S” and “N7” as in Definition 5.10. Then there exists
a unique map

Im(FH*75) — Im(lﬁ!ng)

[¢f.  Definition 5.9, (ii)] whose composite with the natural surjection
Ig(IT*,II) — Im(Fi=,5) determined by F« s coincides with the natural sur-
jection Is(II*, 1) — Im(kry) determined by ki, and whose image lies in
Kﬁg Moreover, by allowing S to vary, one obtains a natural map

: 1 *
L=\ {0} — lim H (I, x.. )
N*CN
[ef. Remarks 5.9.1, 5.9.2] whose image lies in K. .
Proor. First, we observe that it follows from the various definitions
involved that there exists a commutative diagram

Frx s

Ig(IT*, 1) RLLEN Fn(Cusp(IT*) \ S, Qper)

| !

lim  H' (I, lx,,,) —— Fn(Cusp(I*)\ S, lim H'(N*Ilx,.)),
N*CN Dy, N*CN

where the right-hand vertical arrow is the natural map induced by the ho-
momorphism

—x . 1
taT © ¥BGT | Qper — lim H (N¥,Ix,,,)
N*CN

[cf. Lemma 5.4, (iv)].
Next, we observe that KT, factors as the composite of a map

I(IT, 1) — Kfi.
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with the inclusion Kﬁg C lim H'(ITg -, x,,) [cf. Definition 5.10].
N*CN
Indeed, since (ITy)* = {0} [hence, in particular, H'(N*, (TII5)2P) = {0}], it
follows immediately from the various definitions involved that kp (0,00} TADS
id € I{p 00} (IL II) [cf. Proposition 5.5, (ii)] to an element of Kﬁ{Om}. Thus,
since any element fr= € Is(IT*,II) may be thought of as the pull-back “via
fr=7 of id € Igg ooy (IL IT), by applying the functoriality of the constructions
involved [cf. also Definition 5.6, (3)], we obtain the desired conclusion.
Next, we apply our assumption that Dy

Kﬁg is ingjective. Thus, since
the above diagram is commutative, there exists a unique map Im(Fp+ g) —
Im(nng) that is compatible with the maps Fi« g and kry in the desired
sense. In particular, since all of the constructions involved are functorially
compatible with enlargement of the finite subset S C Cusp(IT*), by allowing
S C Cusp(IT*) to vary, we obtain a natural map

Im(Fpp+) — lim  H' (I, Mg, )

N*CN
[cf. Remarks 5.9.1, 5.9.2]. On the other hand, by considering the composite
of tgaT © YpaT With the inflation map

li_n>1 Hl(N*7HXOOO);> lim Hl(H;N*7HXOOO)7

we obtain a natural map

Im(Bp-) \ {0} — lim H' (I, xg.,)-
N*CN

Thus, since L+ = Im Fp-UIm By« [where we note that Im Fri«NIm By = ()
— cf. Remark 5.9.2], we obtain the desired conclusion. This completes the
proof of Lemma 5.11. [J

DEFINITION 5.12. Let BGT C GT be a closed subgroup that satisfies
the ArBC-property [cf. Theorem 4.4, (ii)]. In the following discussion, we
apply the notation of Definitions 4.1, 5.1, 5.6, 5.8, 5.9. Write ¢ € Ly for the
element determined by id € I(II, II) [cf. Proposition 5.5, (ii)]. Then, if BGT
satisfies the following purely combinatorial/group-theoretic [cf. Corollary
4.5, together with the various definitions involved] conditions (i), (ii), (iii)
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(respectively, (i), (ii), (iii), (iv)), then we shall say that BGT satisfies the
QAA-property [i.e., “quasi-algebraically ample property”| (respectively, AA-
property [i.e., “algebraically ample property”]):

(i) Write (Qgar)aiv € Qpgr for the subfield generated over Q by

Ker(tgar o ¥Bar) [cf. Lemma 5.4, (iv)]. Then (Qpar)aiv € Qpar
is an infinite extension of fields.

(ii) For
e cach normal open subgroup IIf C II,

e cach nonempty finite subset S C Cusp(TI'), and
e any sufficiently small normal open subgroup Nt of BGT,

it holds that H'(ITj, Iy, )" = {0} [cf. Definition 5.10], and the
restriction Dyt [k~ of Dy to KT, [cf. Definition 5.9, (iii); Definition
s i HS HS

S
5.10] is injective [cf. Lemma 5.11].

(iii) Assume that condition (ii) holds. There exists a family of subsets

{Kt € Lyt bt

— where II' ranges over the normal open subgroups of II — satisfying
the following conditions:

(a) Let II* C If be normal open subgroups of II. Then the natu-
ral injection Lyt < Lyt [determined by the natural surjection
Cusp(IT*) — Cusp(IIf) — cf. Proposition 5.5, (ii); Remarks
5.6.2, 5.9.2] induces an injection

KHT — Kni.

In the remainder of the present paper, we regard Ky as a subset
of Kypi via this injection.

(b) For each normal open subgroup I C II, and each finite subset
R C Cusp(TI"), the restriction to K+ of the natural restriction
map

Fn(Cusp(II"), Qpgr U {o0}) - Fn(Cusp(Il') \ R, Qpgr U {oo})

is ingective.
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(d)
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For each normal open subgroup IIt C TI, K+ admits a [neces-
sarily unique — cf. (b)] field structure compatible with the ring
structure of Fn(Cusp(IIf), Qggr) in the following sense: Let
frg9 € Ky, T C Cusp(ITT) a finite subset such that f(z), g(z) €
Qper for any 2 € Cusp(IIf) \ T. [For given elements f,g € Ky,
the existence of such a finite set T follows immediately from Re-
mark 5.9.2.] Then the images of f + g and fg via the restriction
map

Fn(Cusp(Il'), Qpgr U{o0}) — Fn(Cusp(I1") \ T, Qpgr U {oo})

coincide, respectively, with the functions
Cusp(IIN\ T 3 & — f(x) + g() € Qpar,

Cusp(ITN\ T 3 z — f(z)g(z) € Qpgr-
Moreover, relative to these unique field structures, K C Kyt is

a finite Galois extension.

@BGT = Im By C Ky, and t € K. Moreover, if we write
Qpar(t) € K for the subfield generated by Qpar and t, then

K = Qpgr(t).
For each normal open subgroup IIT C II, the natural action of II

on Ly [cf. Proposition 5.2, (iv)] preserves Kp+. Moreover, the
natural homomorphism

I1/11" — Gal(Kyt /Kn)

is an isomorphism.

For each normal open subgroup II' C II, the restriction to K. ST (C
Lyt) of the natural map

L \ {0} — Ky (g lim Hl(ﬂ;m,ﬂxoog)
NtCBGT

[cf. condition (ii); Definition 5.10; Lemma 5.11] is surjective.
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(iv) Assume that conditions (ii), (iii) hold. In the notation of condi-

tion (i), write Qgarlt, %, ﬁ] C Ly for the Qpgp-subalgebra gen-

erated by t, %, and ﬁ; X@BGT def Spec Qparlt, %, %] [Thus, it
follows immediately from Lemma 5.13, (i), (ii), below that the natu-
ral outer surjection II — Ilx determines a natural outer isomorphism
IIx 51 x-] Then the natural outer isomorphism ITy:. Sy
Qsar UsaT

is induced by a(n) [uniquely determined, up to composition with an
element of G5 C Out(Ilx,) that fixes the element 5 € {1,2,3,4,5} —
cf. Corollary 3.1, (ii); Remark 4.5.1; [CbTpllI], Theorem A, (i); the
first display of [CbGT], Corollary C| outer isomorphism

Iy, = H(XQBGT)2

via the natural outer surjections IIx, — IIx and H(X )2 = IIx
T Qe

determined by the respective first projections [cf. Remark 5.12.2 be-
low].

REMARK 5.12.1. In the notation of Remark 4.4.1, it follows imme-

diately from Remark 4.4.1, together with the various definitions involved
and the fact that F' is Kummer-faithful [cf. [AbsToplll], Definition 1.5;
[AbsTopllII], Remark 1.5.4, (i)], that G satisfies the AA-property [cf. The-

orem 6.8, (i) [and its proof, as well as Remark 6.6.2], below, for more details].

REMARK 5.12.2. In condition (iv), we regard IIx, as an abstract topo-
logical group and Ilx as a quotient of Iy, , i.e., as in Corollary 4.5 [cf. also
Remark 4.5.1].

LEMMA 5.13 (Geometric interpretation of the set of cuspidal inertia
subgroups of IT).  Suppose that BGT satisfies conditions (ii), (iii) of Defi-

nition 5.12. Let

{Kmt € Lyt brrren

be a family of subsets as in Definition 5.12, (iii). Write

=~ def ;.
Kﬂé h_I)l'l KHT;

It CII
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where II' ranges over the normal open subgroups of II. Then the following
hold:

(i) Let I C II be a normal open subgroup. Write Y+ — P@BGT for
the finite ramified Galois covering of smooth, proper, connected curves
over Qpar corresponding to the extension of function fields Qpar(t) =
Ku C Kyt [ef. Definition 5.12, (i), (a), (c), (d), (e)]; Yt (Qpar)

or the set of Qpgr-valued points of Y. Then the natural map
the set of Qpq lued 12 Y. Then th tural

evyr : Cusp(IT') — Vi1 (Qpar)

induced by evaluating elements of Kyt at elements of Cusp(IIt) is
bijective.

(ii) Kr is an algebraic closure of Qpar(t) = Ki1. Moreover, the natural
action of Il on K11 determines an isomorphism

~ def AN
I — G@BGT(t) = Gal(Kn/Qpar(t))
that induces a bijection between the respective sets of cuspidal inertia
subgroups of I1 and G@BGT@).

PrRoOOF. Let Kﬁlg be an algebraic closure of K. First, we verify
assertion (i). Note that it follows immediately from the various defini-
tions involved [cf. especially, Definitions 5.1, (ii); 5.12, (iii), (d)] that evy
is bijective. Note, moreover, that the natural map evy; : Cusp(ITf) —
Y1+ (Qpar) is compatible with the isomorphism IT/TIT = Gal( Ky /Kp) [cf.
Definition 5.12, (iii), (e)] and the respective natural actions of IT/TIT and
Gal(Kyi /Kmr). Thus, it follows immediately from the transitivity of the
natural action of Gal(Kiy+/Ktr) on the fibers of the finite ramified Galois
covering Y — IF’%QB that evyyt is surjective.

Write o

-~ def . A def . =
Cusp(Il) = lim Cusp(I'), Y (Qpgr) = lim Y (Qper).
micH micH

where IT¥ ranges over the normal open subgroups of E.\/Observe;chat the
natural maps {evyy iy induce a natural map év : Cusp(Il) — Y (Qpgr)
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that, for each normal open subgroup ITt of II, fits into a commutative dia-
gram
&

Cusp(ll) —¥— Y (@par)

| |

Cusp(IT) —" ¥y @par).
One verifies easily that this commutative diagram is compatible with the
natural isomorphism I = Gal(Kp/Qpar(t)) [cf. Definition 5.12, (iii), (¢)]
and the respective natural actions of II and Gal(Kr/Qpar(t)).

Suppose that evyi(c1) = evyyr(ca), where ¢, co € Cusp(ITf). Let I; C
IIf, I, C I, J C Gal(Ky/Kyp) be cuspidal inertia subgroups associated
to ¢, c¢9, evm(cl) respectlvely Thus, since ev is compatible with the
isomorphism IIT & Gal(Kp/Kpi) and the respective natural actions, one
verifies immediately that by choosing suitable conjugates of Iy, I, and J,
we may assume without loss of generality that the natural isomorphism
= Gal(IN(H/KHT) induces inclusions ¢1 : Iy — J, 19 : Is — J. Next,
observe that any cuspidal inertia subgroup of Gal(K /Kit) is a quotient
of some cuspidal inertia subgroup of Gal(Kj; K28 /Kpt) via the natural sur-
jection Gal(Kalg/Km) — Gal(IN(H/Km) and that every cuspidal inertia
subgroup of Gal(K; K™ /K1) is isomorphic to Z. Thus, we conclude that J
is abelian, and hence, by applying the inclusions ¢1, to, that I1 C Nyt (12),
Iy C Ny (I1), which [cf. Proposition 5.5, (ii)] implies that I; = I, as
desired. This completes the proof of the injectivity of evyi and hence of
assertion (i).

Next, we verify assertion (ii). For each E € Cpgr [cf. Definition 5.1,
(iii)], write

Gal(K{{®/Qper(t) — Gal(K{{® /Qpar(t) s

Gal(K11 /Qpar(t) — Gal(Kn/Qpar () s

for the respective quotients determined by the field extensions of Qpar(t)
that are unramified outside of E. Recall from Proposition 5.2, (i), that there
exists an isomorphism {p : g = Gal(K] K8/ QBGT( ))E of profinite groups.
In particular, since the natural 1somorphlsm I = Gal(Ki/Qpar(t)) [cf.
Definition 5.12, (iii), (e)] induces a bijection between the respective sets
of cuspidal inertia subgroups of II and Gal(K1/Qpar(t)) [cf. Lemma 5.13,
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(i)], hence, in particular, a natural isomorphism I = Gal(Kr/Qpar(t))
it follows that the composite morphism

Gal(K3® /Qpar(t) s — Gal(Kn/Qpar(t)s
< g 5—2 Gal(Kﬁlg/@BGT(t))E

is a surjective endomorphism of a topologically finitely generated profinite
group [i.e., which, as is well-known, satisfies the “Hopfian property’], hence
is an isomorphism. Thus, by allowing E € Cggr to vary, we conclude that
Kﬁlg — Kp. This completes the proof of assertion (ii), hence of Lemma
5.13. O

THEOREM 5.14 (Uniqueness of function fields). Suppose that BGT
satisfies the QAA-property [cf. Definition 3.3, (v); Theorem 4.4, (ii); Defi-
nition 5.12]. Then any family

{Knt € Lyt bten

of subsets as in Definition 5.12, (iii), is unique.

ProoF. Let {Kiyt € Lyttmien {*Kiqt € Lt bpienp be families of
subsets as in Definition 5.12, (iii). Recall that, if ITf C IIT are normal open
subgroups of II, then Ky C Kz and *Kp+ C *Kppp [cf. Definition 5.12,
(i), (a)]. Write

=~ def ;. o> def .. °
KH = hi>n KHT) KH = hi>n KHT>
It CII It CII

where IIT ranges over the normal open subgroups of II. Then since K and
*Ky are algebraic closures of Ky [cf. Lemma 5.13, (ii)], there exists an
abstract field isomorphism ( : [N(H = 'I?H over Ky, which determines an
isomorphism of profinite groups « : Gal('[N(H/KH) 5 Gal(f(H/KH). Fix a
normal open subgroup IIT C II.

Write

def ,_ et
o “Kpt = B 1(.KHT) C Ki;
oY — PL (respectively, *Y — PL °Y — PL ) for the finite
_ Qegr . Qsar aT
ramified Galois covering of smooth, proper, connected curves over
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Qpar corresponding to the extension of function fields Qpgy(t) =
K C Kyt (respectively, Qpar(t) = K C * Ky, Qpar(t) = Kn €
°Kypi) [cf. Definition 5.12, (iii), (a), (c), (d), (e)];

. P}QBGT(@BGT% Y (Qgar); *Y(Qgar), °Y(Qpar) for the respective
sets of Qpgp-valued points of PL | Y, *Y, °Y.

GT
Observe that there exist natural bijections
Cusp(IT) = Pﬂl@s (@par),  Cusp(Il') = Y (Qper),
evr GT vt
Cusp(I") | = *Y (Qpar)
Vit

[cf. Lemma 5.13, (i)] that fit into a commutative diagram

Gal(Kn/Kn) & Il % Gal(*Ku/Kn) > Gal(Kn/Kn)
! | l |
Gal(Ky+/Km) & II/11f = Gal(*Kyt/Kn) % Gal(° Kyt /K1)
e ~ o o
Y (Qgar) e“]:T CUSP(HT) ,e%’ . *Y(Qsar) = °Y (Qgar)
L N ! . L L
P}@BGT (QBar) e‘v—n Cusp(II) ‘;1’_[ I%BGT (Qger) = H%BGT (QBar)

where the vertical arrows denote the natural surjections; the horizontal
arrows Gal(®* K+ /K1) — Gal(°Kypi/Kp1) and *Y (Qpar) %» °Y (Qpqgr) de-
o

note the bijections induced, respectively, by a and j.
Note that it follows immediately from the above commutative diagram

that the sets C PéBG (Qggr) of branch points of the finite ramified Galois
T

coverings Y — PL  and °Y — ]P’}QB coincide. Write T' C Cusp(II) for
GT GT

the image of the set of branch points of the finite ramified Galois covering

Y — PL via the bijection evﬁl. Then, by replacing the normal open

Qsar
subgroup IIT C II by the pull-back of a suitable characteristic open subgroup

of Il [cf. Definition 5.1, (ii)] via the natural surjection II — Iy, we may
assume without loss of generality that Kyt = °Kppt, Y = °Y.
Write

o:Y(@Qpar) = °Y (Qpar) = Y (Qpar)
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for the composite of the horizontal arrows in the third row of the above
commutative diagram. Recall that the images of K;,*K[}; (C Lyt) via the
natural map
L\ {0} = lim AT, T,
NtCBGT
coincide with K73 [cf. Definition 5.12, (iii), (f)]. In particular, for each
f € K{j;, there exist

¢r € Fn(Y (@par): (Qsar)dy) (€ Fu(Y (Qper), QparU{oc})), g5 € K

such that f7 def foo = ¢5- gy [cf. Definitions 5.9; 5.10; 5.12, (i)]. Note
that it follows immediately from the above commutative diagram that o lies
over the identity automorphism of P(%@BGT (Qgar). Thus, we conclude from
Corollary 1.3 [cf. also Definition 5.12, (i)] that, relative to the notational
conventions of loc. cit., o € Gal(Kyi/Kn) and hence that K+ = *Kppi.
This completes the proof of Theorem 5.14. [

THEOREM 5.15 (Injectivity of Cqr(BGT) — Aut(Qpar)). Suppose
that BGT satisfies the QA A-property [cf. Definition 3.3, (v); Theorem 4.4,
(ii); Definition 5.12]. Write

{Knt € Lyt bten

for the unique family of subsets as in Definition 5.12, (iii) [cf. Theorem
5.14);

=~ def .
Kn = lim Ky,
It CII
where I ranges over the normal open subgroups of I1;

Gpent = Gal(Kn/Kn) (= Gal(Kn/Qpar(t)))

[¢f. Definition 5.12, (iii), (d)];

p: Car(BGT) = Goper = Aut(@par)

for the homomorphism induced by the natural action of Cor(BGT) on the
field Qpar [cf. Theorem 4.4, (ii)]. Then the following hold:
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t -
I Car(BGT) acts naturally on the algebraically closed field K
[ef. Lemma 5.183, (ii)]. Moreover, this action induces a commutative
diagram

Cer(BGT) —r, GQuar

l l

where the left-hand vertical arrow denotes the homomorphism induced
by the natural outer action of Cor(BGT) onIl [cf. Definition 5.1, (i)];
the right-hand vertical arrow denotes the natural outer representation;
the lower horizontal arrow denotes the isomorphism induced by the
isomorphism II = GOuar(t) [ef. Lemma 5.13, (ii)].

The commutative diagram of (i) induces a commutative diagram

Cqr(BGT) —2— GOper

l l

Out(Ily) —— Out(Ilxy; ),

where the left-hand vertical arrow denotes the homomorphism induced
by the natural faithful outer action of Cqr(BGT) C GT on Ilx; the
right-hand vertical arrow denotes the natural outer representation; the
lower horizontal arrow denotes the isomorphism induced by the iso-

morphism M x — HX@BGT [ef. Lemma 5.13, (i), (ii)].

The homomorphism p s injective. In particular, the restriction
pleaT of p to BGT is injective.

Suppose, moreover, that BGT satisfies the AA-property.  Write
GTgar C Out(H(XQB ),) for the Grothendieck-Teichmiiller group
GT
associated [cf. Corollary 4.5] to T x )z -
[0i¥eT

diagram of (i) induces a commutative diagram

Then the commutative

Car(BAT) —— Ggyer

! l

GT — GTgar,
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where the vertical arrows denote the natural injections; the lower hor-
1zontal arrow denotes the isomorphism induced by an outer isomor-

phism Ty, = H(XQB ). @s in Definition 5.12, (iv).

GT

PRrOOF. First, we verify assertion (i). Note that it follows immediately

from the various definitions involved that II O;t Cet(BGT) acts naturally
on the family of sets {Ly+ }ipicr, where IIf ranges over the normal open
subgroups of II [cf. Deﬁnition_5.8]. Thus, we conclude from the unique-
ness of the family of subsets {Kp+ C Lyt }yrcp [cf. Theorem 5.14] that

II 0>13t Ce1(BGT) acts naturally on the algebraically closed field K. More-
over, it follows immediately from the various definitions involved that this
natural action induces the desired commutative diagram. This completes
the proof of assertion (i). Next, since the natural surjection I — IIx is
compatible with the respective outer actions of Cgr(BGT) [cf. Definition
5.1, (i)], assertion (ii) follows immediately from Theorem 5.15, (i). Asser-
tion (iii) follows immediately from Theorem 5.15, (ii). Assertion (iv) follows
immediately from the various definitions involved. This completes the proof
of Theorem 5.15. [

LEMMA 5.16 (Elementary property of profinite groups). Let G be a
profinite group, H C G a closed subgroup, g € G an element such that
HCHIY:=qg-H-g'. Then H= HY.

PrOOF. By considering quotients of G by normal open subgroups,
one reduces immediately to the case where G is finite. Then the equal-
ity H = HY follows immediately from the fact that H and HY have the
same cardinality. This completes the proof of Lemma 5.16. [J

THEOREM 5.17 (Combinatorial construction of G).

(i) Write Out!®l(Ilx) C Out(Ilx) for the closed subgroup of outer auto-
morphisms that induce the identity automorphism on the set of conju-
gacy classes of cuspidal inertia subgroups of llx. Then the conjugacy
class of subgroups of Out'cl(HX) determined by the absolute Galois
group of Q may be constructed from the abstract topological group
IIx, [¢f. Corollary 4.5, Remark 4.5.1], in a purely combinatorial/
group-theoretic way, as the set of maximal elements [relative to the
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relation of inclusion] in the set of closed subgroups of Out'c‘(HX) that
arise as Out'c‘(HX)—conjugates of closed subgroups of GT that sat-
isfy the QA A-property [cf. Definition 3.3, (v); Theorem 4.4, (ii);
Definition 5.12].

(ii) The conjugacy class of subgroups of GT determined by the ab-
solute Galois group of Q may be constructed from the abstract
topological group Ilx, [cf. Corollary 4.5, Remark 4.5.1], in a purely
combinatorial /group-theoretic way, as the set of maximal elements
[relative to the relation of inclusion] in the set of closed subgroups
of GT that arise as closed subgroups of GT that satisfy the AA-
property [cf. Definition 3.3, (v); Theorem 4.4, (ii); Definition 5.12].

PROOF. Recall from Remark 5.12.1 that Gg = Gal(Q/Q) may be re-
garded as a closed subgroup of GT that satisfies the AA-property, hence
may itself be taken to be “BGT”. Thus, it follows formally from Theorem
5.15, (ii) [cf. also Lemma 5.13, (ii)] (respectively, Theorem 5.15, (iv)), that
any Out/®! (ITx)-conjugate (respectively, GT-conjugate) of a closed subgroup
of GT that satisfies the QAA-property (respectively, AA-property) is con-
tained in — hence equal to, whenever it is mazimal with respect to the
relation of inclusion among such conjugates of closed subgroups — some
Out‘c|(HX)—conjugate (respectively, GT-conjugate) of Gg. In particular,
the maximality of any Out/®/(ITx)-conjugate (respectively, GT-conjugate)
of G follows formally from Lemma 5.16. This completes the proof of The-
orem 5.17. [

6. Application to Semi-Absolute Anabelian Geometry over
TKND-AVKF-Fields

In this section, we introduce the notion of a TKND-AVKF-field [cf.
Definition 6.6, (iii)] and show that the absolute Galois group of a TKND-
AVKEF subfield of Q satisfies the A A-property [cf. Theorem 6.8, (i)]. We then
apply the theory developed in the present paper to prove a semi-absolute
version of the Grothendieck Conjecture for higher dimensional configuration
spaces [of dimension > 2] associated to hyperbolic curves of genus 0 over
TKND-AVKF-fields [cf. Theorem 6.10, (ii)].

Write Q*P (C Q) for the maximal abelian extension of Q.
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DEFINITION 6.1. Let p € Primes; 2 C Primes a nonempty subset.

(i) Let M be an abelian group. Then we shall say that M is p>-tor-finite
if the subgroup of p-power torsion elements of M is finite. We shall
say that M is 3X°°-tor-finite if, for each [ € X, M is [°°-tor-finite.

(ii) Let G be a profinite group. Then we shall say that G is p-subfree if
there exists a closed subgroup of G isomorphic to Z,. We shall say
that G is X-subfree if, for each [ € X, G is [-subfree. We shall say that
G is p-sparse if the maximal pro-p quotient of every open subgroup
of GG is finite. We shall say that G is X-sparse if, for each | € 3, G is
[-sparse.

(iii) Let K be a field. If K satisfies the following condition, then we shall
say that K is an AVKF-field [i.e., “abelian variety Kummer-faithful
field”]:

Let A be an abelian variety over a finite extension L of K.
Write A(L)> for the group of divisible elements € A(L).
Then A(L)> = {1}.

If K is an AVKF-field, then we shall also say that K is AVKF.
(iv) Let K be a field. If K satisfies the following condition, then we shall
say that K is p-AV-tor-indivisible (respectively, p>°-AV-tor-finite):

Let A be an abelian variety over a finite extension L of K.
Write

e A(L)y~ for the group of p-power torsion elements &
A(L
Then A(L)P™ C A(L)s (vespectively, A(L)y is finite).

We shall say that K is X-AV-tor-indivisible (respectively, %*°-AV-
tor-finite) if, for each [ € ¥, K is [*°-AV-tor-indivisible (respectively,
[°°-AV-tor-finite).
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(v) Let K be a field. Then we shall say that K is stably 3-x u-indivisible
(respectively, stably pse-finite) if, for each | € 3, K is stably I-x -
indivisible (respectively, stably e -finite) [cf. the final portion of Re-
mark 6.1.2; [Tsjm], Definition 3.3, (v), (vii)].

REMARK 6.1.1. If a profinite group G is X-subfree (respectively, X-
sparse), then so is any open subgroup of G.

REMARK 6.1.2. Let [J be one of the following properties:

e AVKF,

e YX-AV-tor-indivisible,

o X°-AV-tor-finite,

o stably X-X u-indivisible,
o stably s -finite.

Then one verifies immediately that if L is an extension field of a field K,
then the following implication holds:

Lis0O = K is[O.

Also, we observe that the second and third properties are the respective
analogues for abelian varieties of the fourth and fifth properties, which may
be regarded as properties concerning rational points of the “torus” Gy,.

REMARK 6.1.3. In the notation of Definition 6.1, (iii), suppose further
that K is of characteristic 0. Then it follows immediately from [AbsToplIl],
Definition 1.5, that the following implication concerning K holds:

< torally Kummer-faithful and AVKF > < Kummer-faithful.

LEMMA 6.2 (Stably p-xp-indivisible and p-AV-tor-indivisible fields).
Let p € Primes, K a field of characteristic # p. Then:

(i) Let L be a [not necessarily finite!] Galois extension of K such that
Gal(L/K) is p-sparse. Let O be one of the following properties:

e stably p-xpu-indivisible,
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e stably pip--finite,
e p-AV-tor-indivisible,
e p>*-AV-tor-finite.

Then if K s 1, then so is L.
(ii) Let L be a [not necessarily finite!] Galois extension of K.

(17*) Suppose that L is stably pp<-finite. Then if K is stably p-
x p~-indivisible, then so is L.
(iiV ) Suppose that L is p>-AV-tor-finite. Then if K is p-AV-tor-
indivisible, then so is L.

(iii) The following properties hold:

(i3> ) Suppose that K is stably p-xu-indivisible, stably pispimes>-
finite, and of characteristic 0. Then K is torally Kummer-
faithful. If, moreover, K is AVKF, then K is Kummer-
faithful /cf. Remark 6.1.5].

(i1Y" ) Suppose that K is p- AV-tor-indivisible and Primes>-AV-tor-
finite. Then K is AVKF.

(iv) The following properties hold:

(iv*) If K is torally Kummer-faithful, then K is stably pisprimes>-
finite.

(i) If K is AVKF, then K is Primes™-AV-tor-finite.

(v) Suppose that K is a sub-p-adic field [cf. [LocAn], Definition 15.4,
(i)]. Then K is

stably p-xu-indivisible,
stably pprimes~-finite,
p-AV-tor-indivisible,
Primes*- AV-tor-finite.

PRrROOF. First, we consider assertion (i). We begin by observing that
any finite extension field LT of L arises as a Galois extension of some finite
extension field K1 of K such that Gal(LT/K1) is p-sparse. Next, we observe
that the Galois group Gal(M/K) of any [not necessarily finite!] Galois
extension M of K that arises by
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e adjoining compatible systems of p-power roots of elements of K or by

e adjoining infinitely many p-power roots of unity,

admits an open subgroup which is a pro-p group. Assertion (i) in the case
where [ is taken to be one of the first two properties then follows imme-
diately from the above observations, together with our assumption that
Gal(L/K) is p-sparse. Assertion (i) in the case where [0 is taken to be
one of the latter two properties follows by a similar argument [cf. the final
portion of Remark 6.1.2]. This completes the proof of assertion (i).
Assertion (ii*) follows immediately from [Tsjm], Lemma D, (v). Next,
we verify assertion (ii?V). Let L' be a finite extension field of L; A an
abelian variety over L. To verify assertion (ii"), it suffices to prove that
AT(LNYP™ C AT(LN) . Let x € AT(LT)P™. By replacing K by a finite
extension field of K, we may assume without loss of generality that

o L' =1,
o AT = A xy L, where A is an abelian variety over K;
o rc A(K).

Thus, since K is p-AV-tor-indivisible, it suffices to verify the following as-
sertion:

Claim 6.2.A: z € A(K)P™.

Indeed, let n be a positive integer. Since L is p*™°-AV-tor-finite, A(L)pe is
finite. Write p™ for the cardinality of A(L)y~. Then since z € A(L)P™,

there exists an element x,,, € A(L) such that p™*" . x,,,,, = z. Write

Tn def P Zpn. Thus, since p™-x,, = x, it suffices to prove that z,, € A(K).

Let 0 € Gal(L/K). Observe that

pm+n : ((xm—kn)a - Zm—f—n) =27 —x = 0,

hence, in particular, that (Zm4n)” — Tmyn € A(L)po. Thus, we conclude
that

Ty — T =p" - (Zman)” = Tman) =0,

hence that x,, € A(K). This completes the proof of Claim 6.2.A, hence of
assertion (ii1").
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Assertions (iii*), (iii4") follow immediately from the fact that, for any
[ € Primes, the divisible group Q;/Z; has no nontrivial finite quotient.

Next, we verify assertion (iv). Recall that, for any [ € PBrimes, the group
of [-torsion points of an abelian variety over an algebraically closed field is
finite [cf. e.g., [Mumf], p. 64]. Thus, assertion (iv) follows immediately
from the fact that, for any [ € Primes, every infinite subgroup of Q;/Z; is
divistble.

Finally, we consider assertion (v). One verifies immediately that we may
assume without loss of generality that K is a finitely generated field exten-
sion of Q,. Moreover, by applying the “relative Mordell-Weil Theorem” [cf.
[Lang], Chapter 6, Theorem 2], together with well-known elementary facts
concerning the multiplicative group of a function field, one concludes that
we may assume without loss of generality that K is a finite field extension
of @,. Then assertion (v) follows immediately from a similar argument to
the argument applied in [AbsToplIl], Remark 1.5.4, (i). This completes the
proof of Lemma 6.2. [J

REMARK 6.2.1. The argument applied in the proof of Claim 6.2.A [in
the proof of Lemma 6.2, (ii")] is similar to the argument applied in the
proof of [Moon|, Proposition 7.

PROPOSITION 6.3 (Examples of AVKF-fields). Let F C Q be a number
field.

(i) Let L be a [not necessarily finite!] Galois extension of F - Q* C Q
such that Gal(L/F - Q) is Primes-sparse. Then L is

e stably Primes- x y-indivisible,
e ‘Primes-AV-tor-indivisible,
o Primes™-AV-tor-finite.

In particular, L is a stably x u-indivisible AVKF-field [cf. Lemma
6.2, (iii'V ); [Tsjm], Lemma D, (i)].

(ii) Let {vi,va,...} be an infinite set of non-archimedean primes of F'.
[Here, we assume, for simplicity, that the indices of the “v;” are cho-
sen in such a way that v; # vy for j # j'.] Let {¥; C Primes};>1 be
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a family of subsets such that, for any positive integer j,

U >; = Primes,

2]

where i ranges over the positive integers > j: M C Q a [not necessarily
finite!] Galois extension of F'; L a [not necessarily finite!] Galois
extension of M C Q such that Gal(L/M) is Brimes-sparse. Suppose
that for each positive integer j, the absolute Galois group of the residue
field of the ring of integers of M at [every prime that divides] v; is
Y ;-subfree. Then L is

e stably Primes-x u-indivisible,
o stably pgrimeso-finite,

o ‘Primes-AV-tor-indivisible,

o Primes™-AV-tor-finite.

In particular, L is a Kummer-faithful field [cf. Lemma 6.2, (i),
(i1 )].

PrROOF. First, we verify assertion (i). Note that it follows immediately
from Lemma 6.2, (i), that we may assume without loss of generality that
L = F-Q?. Then since L is an abelian extension of a number field, it follows
immediately from [Tsjm|, Lemma D, (iii), (iv), that L is stably Primes-
x p-indivisible.  On the other hand, it follows immediately from [KLR],
Appendix, Theorem 1, that L is PBrimes™-AV-tor-finite. Next, observe that
F is Primes-AV-tor-indivisible [cf. Lemma 6.2, (v)]. Thus, since L is a
Primes™-AV-tor-finite Galois extension of F, we conclude from Lemma
6.2, (iiY), that L is Primes-AV-tor-indivisible. This completes the proof
of assertion (i).

Next, we verify assertion (ii). Note that it follows immediately from
Lemma 6.2, (i), that we may assume without loss of generality that L = M.
For each positive integer j, write p; for the residue characteristic of v;. Then
it follows immediately from our assumption on various unions of the subsets
> € Primes that, for any positive integer j,

U (25 \ {pi}) = Primes,

i>]
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where i ranges over the positive integers > j. Let p € Primes; L a finite
extension of L; AT an abelian variety over LT: j a positive integer such that
p € ¥;\{p,}, and AT has good reduction at some prime ¥, of L' that divides
vj [cf. the above display!]. Write

. (’)gj C L' for the ring of integers at 0j;
° k}; for the residue field of 011:_;
J i

° .A; for the abelian scheme over Ojjj whose generic fiber is AT;

Todef 4t T

Then since the morphism A;r- — A} given by multiplication by a power of p
is finite étale, it follows immediately that there exists a natural injection

Tort A
Thus, it follows immediately from

e our assumption [cf. Remark 6.1.1] that the absolute Galois group of
k;j is Xj-subfree,

e the well-known fact that the absolute Galois group of a finite field is
isomorphic to Z, and

e the well-known fact that, for any positive integer n, GL,(Z,) contains
an open subgroup which is a pro-p-group

that Af (LT)poo is finite. Thus, by allowing p to vary, we conclude that L
is Primes™-AV-tor-finite. A similar argument applied to the multiplicative
group Gy, implies that L is stably psprimes> -finite. Next, observe that L is
a Primes-AV-tor-finite Galois extension of the Primes-AV-tor-indivisible
field F [cf. Lemma 6.2, (v)]. Thus, we conclude from Lemma 6.2, (ii4"),
that L is Primes-AV-tor-indivisible. A similar argument implies that L
is stably Primes-x u-indivisible. This completes the proof of assertion (ii),
hence of Proposition 6.3. [J

REMARK 6.3.1. The following example was suggested to the authors of
the present paper by A. Tamagawa. Let {G;};cr be a family of nonabelian
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finite simple groups [i.e., such as the alternating group on n letters 2,
where n > 5]. Then the direct product group

¢ =] a

il

endowed with the product topology is Brimes-sparse. Indeed, this follows
immediately from the definition of the product topology, together with the
elementary fact that, for each p € Primes, ¢ € I, the maximal pro-p quo-
tient of G; is trivial. If I is countable, and we assume that there exists a
positive integer n > 5 such that G; is isomorphic to A, for all ¢ € I, then
it follows immediately from well-known facts concerning the Hilbertian na-
ture of number fields and the regularity of 2, [cf. [FJ], §6.2; [FJ], Theorem
13.4.2; [FJ], Proposition 16.2.8, (b); [FJ], Proposition 16.7.6] that G may
be realized as the Galois group of a Galois extension F of a number field
F'. Here, we note that such a Galois extension E of F' is necessarily linearly
disjoint from any abelian field extension of F.

REMARK 6.3.2. Later [cf. Remark 6.6.3 below], we shall see that the
fields “L” of Proposition 6.3, (i), (ii), are in fact “TKND-AVKF-fields”.

REMARK 6.3.3. Let ' C Q be a number field such that /—1 € F;
{v1,v2,...} an infinite set of non-archimedean primes of F. [Here, we as-
sume, for simplicity, that the indices of the “v;” are chosen in such a way
that v; # vy for j # j'.] Let {X; C Primes};>1 be a family of finite subsets
such that, for any positive integer 7,

U > = Primes,

i>]
where ¢ ranges over the positive integers > j. For each positive integer j,
write Primes \ X; = {pjm}m>1; Fy; for the completion of F at v;. For

each pair of positive integers ¢, j such that j < ¢, write FJ]. [i] for the finite
unramified [abelian] extension of F),; of degree

1<m<s
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For each positive integer j, let Fvij be an abelian totally wildly ramified
infinite extension of F,,. For each pair of positive integers 4,j such that

j <i,let ng [i] C ng be a finite subextension of F,, such that

FLilCFLli+1], |J FlLlml=F,

Uj Uj
Jj<m

where m ranges over the positive integers > j. [Here, we observe that
the existence of such extensions of F,, follows immediately from [NSW],
Theorem 7.2.11.] Next, let i be a positive integer; M; an abelian extension
of F' such that, for each pair of positive integers ¢, j such that j < ¢, the
local extensions of M;/F' at v; coincide with the extension FJj [i] -ng [i]/ Fy, -
[Here, we observe that, in light of our assumption that /=1 € F, the
existence of such an abelian extension M; of F' follows immediately from
[NSW], Definitions 9.1.5, 9.1.7; [NSW], Theorem 9.2.8.] Write

MCQ

for the field generated by {M;};>1 over F. Then we make the following

observations, each of which follows immediately from the construction of
M:

(a) M is an abelian extension of F'

(b) for each positive integer j, the absolute Galois group of the residue
field of the ring of integers of M at [every prime that divides] v; is
X ;-subfree;

(c) for each positive integer j, the ramification index of the extension
M/F at v; is infinite [so if {vi,v2,...} coincides with the set of all
non-archimedean primes of F', then M is not a generalized sub-p-adic
field for any prime number p — cf. [AnabTop], Definition 4.11];

(d) for each positive integer j, the residue field of the ring of integers of
M at [every prime that divides| v; is infinite.

Thus, in particular, any Galois extension L of M whose Galois group is

. . . def
Primes-sparse — such as, for instance, a composite field L = M - E, where

E is as in Remark 6.3.1 — satisfies the assumptions of Proposition 6.3, (ii),
as well as the properties discussed in (c), (d).
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REMARK 6.3.4. Note that it follows immediately from the various defi-
nitions involved that the field “L” of Proposition 6.3, (i), satisfies properties
analogous to the properties (c), (d) of Remark 6.3.3. That is to say, in the
notation of Proposition 6.3, (i),

e the ramification index of the extension L/F at every non-archimedean
prime of L is infinite [so L is not a generalized sub-p-adic field for any
prime number p — cf. [AnabTop], Definition 4.11];

e the residue field of the ring of integers of L at every non-archimedean
prime of L is algebraically closed, hence infinite.

REMARK 6.3.5. The properties (c), (d) of Remark 6.3.3 [cf. also Re-
mark 6.3.4] are of interest in that they show that

anabelian geometry over fields such as the fields L of Proposition
6.3, (i), (ii) [cf. Theorem 6.10 below] cannot be treated by means
of well-known techniques of anabelian geometry that require the
use of p-adic Hodge theory or Frobenius elements of absolute
Galois groups of finite fields [cf. [Tama], Theorem 0.4; [LocAn],
Theorem A; [AnabTop|, Theorem 4.12].

PrOPOSITION 6.4 (AVKF-fields satisfy the ISC-, CS-properties). Let

K C Q be an AVKF-field [cf. Definition 6.1, (iii)]. Write Gk o

Gal(Q/K) C Gg e Gal(Q/Q). Thus, we obtain natural injections

Gk C Gg — GT C Out(Ily)

[¢f. the discussion at the beginning of [Tsjm/, Introduction], which we use
to identify G with its image in GT. Then K satisfies the ISC-property,
and the closed subgroup G C GT satisfies the CS-property.

Proor. Indeed, it follows immediately from a similar argument to the
argument applied in the proof of [Tsjm], Theorem 3.1, and [Tsjm], Corol-
lary 3.2, that K satisfies the ISC-property. The CS-property for the closed
subgroup Gx C GT then follows formally. This completes the proof of
Proposition 6.4. [J
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COROLLARY 6.5 (AVKF-fields satisfy the ArBC-property). In the no-
tation of Proposition 6.4, the closed subgroup G C GT satisfies the ArBC-
property [cf. Theorem 4.4, (ii), (iii)]. Moreover, if one takes “BGT” to
be Gk [cf. Definition 3.3, (v); Theorem 4.4, (ii)], then the following hold:

(1)

(i)

(iii)

In the notation of Theorem 4.4, (ii), there exists a natural isomor-
phism of fields

Qs — Q

that is compatible, relative to the respective natural actions, with the
inclusion G C GQ. In the remainder of the present §6, we shall use
this natural isomorphism to identify @GK with Q.

In the notation of Definition 5.1, there exists a natural outer iso-
morphism
2% Gy,

between the profinite group I1 and the absolute Galois group G

of the function field Kx of X =y IP}@\{O, 1,00}. This natural outer

isomorphism is compatible with the respective natural outer actions of
BGT =Gk on Il and Gk .

There exists a natural homomorphism
Car(Gk) — Go

[cf. Theorem 4.4, (ii)] whose restriction to Cay(Gk) is the natural
inclusion Cgo(Gk) C G-

Proor. First, we observe that it follows immediately — from the ev-

ident scheme-theoretic interpretation of the various arithmetic Belyi dia-
grams that arise — that the closed subgroup Gx C GT satisfies the COF-
property. Thus, it follows immediately from Corollary 3.7; Theorem 4.4,
(iii); Proposition 6.4, together with the various definitions involved, that
the closed subgroup G C GT satisfies the ArBC-property. Next, we ob-
serve that it follows immediately — from the evident scheme-theoretic in-

terpretation of the various arithmetic Bely: diagrams that arise — that these
arithmetic Belyi diagrams determine
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e a natural isomorphism of fields @GK 5 Q that is compatible with the
inclusion G C G, and

e a natural outer isomorphism II = G Ky that is compatible with the
respective natural outer actions of BGT = Gk on II and Gk,

[cf. the proof of Theorem 4.4, (ii), (iii)]. Thus, we conclude [cf. the proof
of Theorem 4.4, (ii), (iii)] that there exists a natural homomorphism

Car(Gkr) — Go

whose restriction to Cgo(G k) is the natural inclusion Cao(Gx) € G- This
completes the proof of Corollary 6.5. [

DEFINITION 6.6. Let K be a field, K an algebraic closure of K. Write
Kprm € K for the prime field of K.
(i) Write
Kdiv déf U Ly C K?
L/K

where L (C K) ranges over the finite extensions of K, and we write

Lyoo € Kpm(L*®) C L

[cf. the discussion entitled “Fields” in Notations and Conventions].

(i) If Kqiy € K is an infinite field extension, then we shall say that K is
a TKND-field [i.e., “torally Kummer-nondegenerate field”]. If K is a
TKND-field, then we shall say that K is TKND.

(iii) If K C K is both TKND and AVKF, then we shall say that K is a
TKND-AVKF-field. If K is a TKND-AVKF-field, then we shall say
that K is TKND-AVKF.

REMARK 6.6.1. One verifies immediately that if L is an algebraic ex-
tension of a field K [which implies that K and L admit a common algebraic
closure], then the following implication holds:

Lis TKND = K is TKND.
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REMARK 6.6.2. In the notation of Definition 6.6, suppose further that
K is of characteristic 0. Then the following implications concerning K hold
[cf. Definition 6.1, (iii); [AbsToplII], Definition 1.5; [Tsjm], Definition 3.3,
(v); the well-known fact that Q** C Q is an infinite field extension [cf., e.g.,
[Tsjm], Lemma D, (iii), (iv)]]:

torally Kummer-faithful = stably X p-indivisible = TKND;

Kummer-faithful = stably x p-indivisible and AVKF = TKND-AVKF.

REMARK 6.6.3. It follows immediately from Remark 6.6.2 that the
fields “L” of Proposition 6.3, (i), (ii), are TKND-AVKF-fields.

REMARK 6.6.4. Recall that

o the TKND-field “L” of Proposition 6.3, (i) [cf. Remark 6.6.3], contains

the entire subset u(Q), while

e the TKND-field “L” of Proposition 6.3, (ii) [cf. Remark 6.6.3], is stably
HSPBrimes> -finite.

That is to say, the TKND-fields of Proposition 6.3, (i), (ii), may be thought
of as two “extremal cases”, i.e., with regard to the property of containing
roots of unity. On the other hand, a detailed analysis of the various “in-
termediate cases” that, in some sense, lie in between these two “extremal
cases” is beyond the scope of the present paper.

LEMMA 6.7 (Generalities on rational functions). Let K be a field of
characteristic 0; K an algebraic closure of K; Y a smooth curve over K.

For each algebraic extension M (C K) of K, write Gy oo Gal(K/M);
Yur def y- xg M; Y (M) for the set of M-rational points of Y ; O}X,M for the

group of invertible reqular functions on Yy;

. X : X . 1 573
Ky : OY? = lim OYKT — lim H (y,,, py(K))
KCKt KCKt

for the Kummer map, where MZ(F) def Hom(Q/Z, u(K)); Kt (C K)

ranges over the finite extensions of K. Lety € Y (K1), where KT (C K) is a
finite extension of K. Thus, y € Y(K') determines a section Gyt — Iy .
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[i.e., strictly speaking, an outer homomorphism/] of the natural surjection
Iy . — Ggi. In particular, by allowing KT and y € Y(K') to vary, we
obtain a natural homomorphism

Dy: lim H'(y ., uy(K) — Fu(Y(K), lim H'(Ggr,uy(E))).
KCKT KCKT

Then the following hold:

(i) Suppose that K is AVKF, and that'Y is proper over K. Then
H' Ty, j1,(K))“* = {0}.

(11) Suppose that

e KCK=Q, and K is AVKF;

o Y s affine, and the function field of Y@ is equipped with the
structure of a finite Galois extension of Kx [cf. Corollary 6.5,

(ii)].

We apply the notation of Definition 5.9, (ii), where we take “BGT”
to be G [cf. Corollary 6.5], “II* C I1” to be the normal open sub-
group determined by Yo [¢f. Corollary 6.5, (ii)], and “S C Cusp(II*)”
to be the subset corresponding to the set of cusps of the hyperbolic
curve Yg. Then the natural outer isomorphism IIg = Hy@ [which is
compatible with the respective outer actions of N (C BGT = Gg)
— ¢f. Corollary 6.5, (ii)] and the natural scheme-theoretic isomor-
phism Ilx,., = py(K) induce an isomorphism Im(ky) = Kﬁg [cf.
(i); Definition 5.10].

(iii) Suppose that K is TKND-AVKFE. Then the restriction Dy |mm(xy) of
Dy to Im(ky) is injective.

PRrROOF. First, we verify assertion (i). Recall that since Y is a smooth,
proper curve over K, H?,bf is naturally isomorphic to the Tate module of
the Jacobian J of Y. In particular, if (H%%)GK # {1}, then there exists a
nontrivial divisible element of J(K). Thus, since K is AVKF, we conclude
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that (H‘;‘% )&% = {1}. On the other hand, Poincaré duality yields a G-
equivariant isomorphism of topological modules

Hl(HYﬁaﬂz(F)) = Hom(H%}’?,uZ(F)) = H?/b?-

Thus, we conclude that H I(Hy?, 1iy(K))¢% = {0}. This completes the
proof of assertion (i). Assertion (ii) follows immediately from the various
definitions involved [cf. Remark 5.10.1; the argument applied in the proof
of [Tsjm], Theorem 3.1].

Finally, we verify assertion (iii). First, we observe that it follows from
the various definitions involved that there exists a commutative diagram

evy —

0 Rl F(Y (K), K)

o | |

lim H'(Iy, ;. n5(K)) —2= Fa(Y(K), lim H'(Ggr,1g(K))),

where evy denotes the homomorphism induced by evaluating elements of
O}X,? at elements of Y (K); the right-hand vertical arrow denotes the natural
homomorphism induced by the Kummer map

K= lim (KN — liy (G up(K)).
KCKT KCKT

Let f € Ker(Dy o ky). Then the commutativity of the above diagram
implies that Im(evy(f)) € Kj, C K. On the other hand, we note
that, for any monconstant rational function g € OX?, the complement

K™\ Im(evy(g)) is a finite set. In particular, it follows immediately from
our assumption that K is TKND [i.e., the fact that Kg, C K is an infinite
field extension] that f is a constant function such that xky (f) = 0. Thus, we
conclude that Dy|1m(,w) is injective. This completes the proof of assertion
(iii), hence of Lemma 6.7. [J

THEOREM 6.8 (TKND-AVKF-fields satisfy the AA-property). Let
K CQ be a TKND-AVKF-field. Then the following hold:

(i) The closed subgroup Gx C GT satisfies the AA-property [cf. Defi-
nition 5.12].
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(1i) The natural homomorphism
Car(Gk) — Go

[cf. Corollary 6.5, (iii)] is injective and compatible with the respec-
tive natural injections Car(Gr) — GT and Gg — GT into GT [cf.
Corollary 5.15, (v)].

PrOOF. First, we verify assertion (i). Since K is AVKF, it follows
from Corollary 6.5 that the closed subgroup Gx C GT satisfies the ArBC-
property. Next, since K is TKND, it follows immediately from the various
definitions involved that the closed subgroup Gx C GT satisfies condition
(i) of Definition 5.12. Moreover, since K is TKND-AVKF, it follows imme-
diately from Lemma 6.7, (i), (ii), (iii), together with the various definitions
involved, that the closed subgroup Gx C GT satisfies condition (ii) of Def-
inition 5.12. On the other hand, since K is AVKF, it follows immediately
from Lemma 6.7, (ii), together with the various definitions involved, that the

function fields of finite ramified Galois coverings of Pk [i.e., the projective

Q

line over Q] determine a family

{Kmt € Lyt ben

of subsets as in Definition 5.12, (iii). Finally, it follows immediately from
the various definitions involved that condition (iv) of Definition 5.12 holds.
Thus, we conclude that the closed subgroup G C GT satisfies the AA-
property. This completes the proof of assertion (i). Assertion (ii) follows
immediately from assertion (i), together with Theorem 5.15, (iii), (iv). This
completes the proof of Theorem 6.8. [J

REMARK 6.8.1. Theorem 6.8, (i), may be regarded as a generalization
of Remark 5.12.1 [cf. Remark 6.6.2]. In this context, we observe that the
proof of Theorem 6.8, (i), (ii), can be simplified considerably in the case
where K is assumed to be Kummer-faithful, in which case one may combine
the techniques of [AbsToplIII], Theorem 1.11, or [Hshl], Theorem A, with
the combinatorial approach to Belyi cuspidalizations developed in §3 of the
present paper.

COROLLARY 6.9 (Semi-absolute Grothendieck Conjecture-type result
over TKND-AVKF-fields for tripods). Let n be an integer > 2; K,L C Q
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TKND-AVKF-fields. Write X < PL\{0,1,00}; X, % PL\{0,1,00};

(XK )n (respectively, (Xr)n) for the n-th configuration space associated to
Xk (respectively, X1 ); Gx def Gal(Q/K) (respectively, G, & Gal(Q/L));

Out(Il x ), /Gr: L (x,),/GL)

Jor the set of outer isomorphisms Il x ), = (x,), that induce outer iso-
morphisms G — Gr. Then the natural map

ISOIH((XK)n, (XL)n) — Out(H(XK)n/GK,H(XL)"/GL)
is bijective.
def

PrROOF. Write X = IP}Q\{O, 1,00}; X, for the n-th configuration space
associated to X. Let o € Out(Il(x),/Gk, U (x,),/GL);

5' . H(XK)n :> H(XL)n

an isomorphism that lifts 0. Write oy € Out(Ilx, ) for the outer auto-
morphism determined by the restriction of & to Ilx, ; 6ga : Gx — G, for
the isomorphism induced by the isomorphism 6. Thus, it follows immedi-
ately from the various definitions involved that there exists a commutative
diagram

Gg —— Out(Ily,)

5’Ga1l2 L”Qll
G, —— Out(Ily, ),
where the horizontal arrows denote the natural outer representations; the

right-hand vertical arrow denotes the automorphism Log obtained by conju-
gating by oy Next, we verify the following assertion:

Claim 6.9.A: The isomorphism g, arises from an isomorphism
Q = Q that maps K € Q onto L C Q.

Indeed, [cf. the above commutative diagram] since the closed subgroups
Gg C GT and G, C GT satisfy the ArBC-property [cf. Corollary 6.5], the
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functorial constructions of Corollary 4.5, together with the isomorphism of
Corollary 6.5, (i) [applied to Gx and G|, determine a commutative diagram

6'Ga1
Gk = Gxg — G = (G
my m my m
Q < Qp — Qg — Q

where the lower horizontal arrows are isomorphisms of fields. Thus, we
obtain the desired conclusion. This completes the proof of Claim 6.9.A.

Now it follows from Claim 6.9.A that we may assume without loss of
generality that K = L C Q. Next, it follows from Theorem 6.8, (ii), together
with the various definitions involved, that

Nar1(Gk) € Cat(GK) € Go.

In particular, we conclude that No1(Gr)/Gr = NGQ(GK)/GK. Note that
since IIx, is center-free [cf. [MT], Proposition 2.2, (ii)], there exists [cf. the
above commutative diagram involving LJQ] a natural isomorphism

Out(M(x),/Gx) = Nowiy,)(Gk)/Gk,

where Out(IT(x,),/Gk) denotes the set of outer automorphisms of
U x,), that induce outer automorphisms of Gg. In particular, o €
Out(I(x,,/GK) determines an element of

Nou(tiy,)(Gx)/Grx = NaTxs, s (Gr)/Gk
= (Na1(GK)/GK) X Spts

[cf. the first display of [CbGT], Corollary C]. Thus, in light of the natural
isomorphism

Aut(K) = Ngo(Gk)/Gk = Nat(Gk)/Gk,
we conclude that the natural group homomorphism
Aut(Xg)n) — OUt(H(XK)n/GK)

is surjective, and [by considering the various fiber subgroups of Ilx, and
cuspidal inertia subgroups of Ilx| that any element o € Aut((Xg),) in
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the kernel of this group homomorphism is K-linear and compatible with
the identity automorphism of X relative to any of the n + 3 generalized
projection morphisms (Xg)n — Xk [cf. [CbGT], Definition 2.1, (i)]. But
this implies that any such « is equal to the identity automorphism of (X ).
This completes the proof of Corollary 6.9. [

REMARK 6.9.1. Note that Corollary 6.9 [cf. the final portion of the
proof of Corollary 6.9], together with the well-known commensurable termi-
nality of Gq, in Gg [cf., e.g., [AbsAnab], Theorem 1.1.1, (i)] gives a new
proof of the equalities

Cer(Go) = Go.  Car(Gg,) = G,

hence also, by applying the well-known slimness of G [cf., e.g., [AbsAnab],
Theorem 1.1.1, (ii)], the equality

Z°¢(GT) = {1}.

In particular, Corollary 6.9 yields a purely combinatorial/group-theoretic
proof of the portion of [CbGT], Corollary C, concerning “Z'°¢(Out(II,,))”
[in the notation of loc. cit., where we take“¥” to be Primes| that does not
depend on the proofs of the Grothendieck Conjecture for hyperbolic curves
over number fields given in [LocAn], Theorem A; [Tamal], Theorem 0.4 [cf.
the discussion of Remark 3.1.1].

THEOREM 6.10 (Semi-absolute Grothendieck Conjecture-type result
over TKND-AVKF-fields for arbitrary hyperbolic curves). Let (m,n) be
a pair of positive integers; K, L C Q TKND-AVKF-fields; X (respectively,
Y1) a hyperbolic curve over K (respectively, L). Write (9x,rx) (respec-
tively, (gy,ry)) for the type [i.e., genus and degree of the divisor of marked
points] of Xk (respectively, Y1 ); (Xk)m (respectively, (Yr),) for the m-th
(respectively, n-th) configuration space associated to X (respectively, Y1, );

G % Gal@/K) (respectively, G, < Gal(@/L));

Out(H(XK)m/GK, H(YL)n/GL)

or the set of outer isomorphisms I x S Iy, that induce outer iso-
( K) ( L)n

m

morphisms between G and Gp. Then the following hold:
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(1) Suppose that

em>4orn>4ifrx=0o0rry =0;
em>3o0orn>3ifrx #0 orry #0.

Then the outer isomorphism
Gk = Gy,

induced by any outer isomorphism € Out(Il(x,), /Gk,1y,),/GL)
arises from a field isomorphism K = L.
(11) Suppose that
e m>2o0rn>2;
e gx =0 o0rgy =0.

Then the natural map

ISOIn((XK)m, (YL)n) — OUt(H(XK)m/GKan(YL)n/GL)

is bijective.

PROOF. Write

o Zx L PLA{0,1,00}; Z, ¥ P01, 00};

e XY Xpxx QY Y Y5, @ Z2Y Zk xk Q=21 %1 @
For each positive integer i, write

o X; (respectively, Y;, Z;) for the i-th configuration space associated to
X (respectively, Y, 7).

Note that, to verify assertions (i), (ii), it follows immediately from the
various definitions involved that we may assume without loss of generality
that

Out(I(x),,/Gr, My, /GL) # 0.
Thus, we conclude from [CbGT], Theorem A, (i), that
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Let 0 € Out(H(XK)n/GK,H(YL)n/GL);

o Mixp), = My,

an isomorphism that lifts o. Write og + Ux, 5 Tly, for the outer isomor-

phism determined by the restriction of & to Iy, ; 6qal : Gk — G, for the
isomorphism induced by the isomorphism &.

Next, we verify assertion (i). Note that m = n > 3. Let H;pd -
IIx, (respectively, H‘;ﬁpd C Ily,) be a 3-central {1, 2, 3}-tripod of Ilx,
(respectively, Iy, ) [cf. [CbTpll], Definition 3.7, (ii)]. Then since m = n,
gx = gy, and rx = ry, it follows immediately from [CbGT], Corollary
B; [CbTplI], Theorem A, (ii); [CbTplIl], Theorem C, (ii); the discussion of
[CbTpll], Remark 4.14.1, that, after possibly replacing o by the composite
of o with an element € Out(Il(x,,/Gk,Il(x),/GK) that arises from an
element of the symmetric group “G,+” of [CbGT], Corollary B, we may
assume without loss of generality that

* g induces bijections between the respective sets of fiber subgroups
and inertia subgroups;

e the outer isomorphism Ty, — Ily, induced by og determines an outer

. . tpd ~ tpd
isomorphism ogpq : 1570 — TIPS

e there exists a commutative diagram of profinite groups

OutFC(Iy, ) — Out(TT5PY)
X

I I
Out™C(Ily, ) — Out(IT§?),

where the vertical arrows denote the isomorphisms induced by the

outer isomorphisms o) and o¢ipq, and T'x and Ty denote the respec-
tive tripod homomorphisms.

Here, we identify I1; with H;t—pd, Hf;fpd, via outer isomorphisms Iz = H;pd,

n, = Hg,tpd that arise from the respective &3-torsors of scheme-theoretic
isomorphisms of tripods over Q in such a way that
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e the outer automorphism oz : 11, = Hggpd = H;,tpd & TIz obtained by
conjugating ocipq by these identifying outer isomorphisms determines

an element € GT C Out(Ilz)

[cf. [CbTpII], Theorem C, (iv), together with our assumptions on m = n].
Moreover, it follows immediately [again from [CbTplI], Theorem C, (iv),
together with our assumptions on m = n| that

e the images of Tx and Ty are contained in GT C Out(Ily).

In particular, the above commutative diagram, together with the natural
outer representations Gx — Out¥(Ily, ), G — OutFC(Ily, ), determines
a commutative diagram of profinite groups

Gxg —— GT

&Galll Uzll

G, —— GT,

where the right-hand vertical arrow denotes the inner automorphism ob-
tained by conjugating by oz; the horizontal arrows denote the natural
injections. Observe that since IIz, is center-free [cf. [MT], Proposition
2.2, (ii)], this last commutative diagram determines an outer isomorphism
Iz, = I z,), that lies over 6ga between the second configuration spaces
(ZK)2, (Z1)2 associated to Zk, Zr,, respectively. Thus, we conclude from
Corollary 6.9 that the outer isomorphism determined by Gga : Gx — G,
arises from a field isomorphism K — L. This completes the proof of asser-
tion (i).

Next, we verify assertion (ii). First, it follows from a similar argument
to the argument applied in the final portion of the proof of Corollary 6.9
[after possibly passing to suitable finite Galois extensions of K and L and,
if ry = ry >4, applying Corollary 2.2] that the natural map

Isom((XK)n, (YL)n) — OUt(H(XK)n/GKa H(YL)n/GL)

is injective. Thus, it suffices to prove that this map is surjective. We begin
by observing that, by applying the injectivity that has already been verified,
we may pass to suitable finite Galois extensions of K and L and apply Galois
descent. In particular, we may assume without loss of generality that every
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cusp of X (respectively, Y') is K-rational (respectively, L-rational). On
the other hand, since gx = gy = 0, it suffices to consider the case where
rx =ry >4 [cf. Corollary 6.9].

Next, we verify the following assertion:

Claim 6.10.A: There exists an isomorphism of schemes X —
Yr.

Indeed, observe that it follows from Theorem 2.1 [cf. our assumption that
rx = ry > 4] that there exist open immersions Xg — Zg, Y — 7
over K, L, respectively, which, together with &, determine a IIz -outer
isomorphism oz, : Iz, = II(z,), that lies over the isomorphism GGa
and fizes the cusps of Z. Thus, by applying Corollary 6.9 [cf. also the
final portion of the proof of Corollary 6.9], we may assume without loss of
generality that

o K =1;
® GGa is the identity automorphism;
e 0z, is the identity Il -outer automorphism.

In particular, since g induces a bijection between the respective sets of
fiber subgroups and inertia subgroups [cf. Corollary 2.2; the discussion
of [CbTpll], Remark 4.14.1], & determines a Ily-outer isomorphism o; :
Iy, — My, [cf. [CbTpl], Theorem A, (i)] such that

e o7 lies over G;

e 0 induces a bijection between the respective sets of cuspidal inertia
subgroups.

Thus, we conclude from the fact that K satisfies the ISC-property [cf. Propo-
sition 6.4], applied to Z [cf. the proof of Lemma 5.4, (i)], that there exists
an isomorphism Xg — Yx over K. This completes the proof of Claim
6.10.A.

In summary, it follows formally from Claim 6.10.A, together with the
above discussion, that we may assume without loss of generality that

o K=1L, Xg =Yk;
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e ¢ is an automorphism of I x, ) that lies over the identity automor-
phism of G;

e the Iz, -outer automorphism oz, : Il z,, = Uiz [induced by &
and the open immersion X — Zi over K] is the identity 11z, -outer
automorphism,

e the outer automorphism og : Ilx, = Iy, [determined by &] induces
the identity automorphism on the set of fiber subgroups;

e the IIx-outer automorphism o : IIx, = IIx, [determined by &]
induces the identity automorphism on the set of conjugacy classes of
cuspidal inertia subgroups of Ilx [cf. the discussion above of the ISC-
property applied to Zg].

Thus, if we regard Gk as a subgroup of OutgF(HXn)CHSP via the natural
injection G «— Outs (IIx, )"P [cf. [CbTpI], Theorem A, (i), (ii)], then
O'@ (S ZOutgF(HXn)C“SP (GK) Write

pe ZoutgF(Hx2 Jeusp (Gk)

for the element determined by g via the mnatural injection
Outs¥ (I, )°uP — Oute! (ILy, )™ [cf. [CbTplI], Theorem A, (i)];

h s OuteF (ILy, )P — OutsF (11, )ousP

for the natural homomorphism induced by the natural open immersion
X9 — Zy [cf. Theorem 2.1]. Then it follows immediately from our as-
sumption that oz, : l(z,), = (7). is the identity Iz, -outer automor-
phism that h(3) = 1. Thus, we conclude from Theorem 3.6 [where we apply
[NCBel], Corollary 1.1, and we take “V' C W” to be the open immersion
X < Z in the above discussion], together with Proposition 6.4, that § = 1,
hence that oy = 1. Finally, since Iy, is center-free [cf. [MT], Proposition
2.2, (ii)], it holds that & is an inner automorphism, hence that o = 1. Thus,
we obtain the desired surjectivity. This completes the proof of assertion (ii),
hence of Theorem 6.10. [J

REMARK 6.10.1. In the notation of Theorem 6.10, write

OUt(H(XK)m , H(YL)n)
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for the set of outer isomorphisms I x,,. = y;),- Suppose that G and
G, are very elastic [cf. [AbsTopl], Definition 1.1, (ii)]. Then since IIx,, and
Ily, are topologically finitely generated [cf. [MT], Proposition 2.2, (ii)], it
follows formally that

OUt(H(XK)m , H(YL)n) = OUt(H(XK)m/GKa H(YL)n/GL)7

i.e., that the “absolute version” of Theorem 6.10 holds.

REMARK 6.10.2. In the notation of Theorem 6.10, suppose that K
and L arise as fields “L” of the sort discussed in Proposition 6.3, (i), (ii)
[cf. Remark 6.6.3]. Suppose, further, that K and L are abelian extensions
of number fields [cf., e.g., the field “F - Q*»” of Proposition 6.3, (i); the
field “M” of Remark 6.3.3]. Then Gk and Gy, are very elastic [cf. [FJ],
§6.2; [FJ], Theorem 13.4.2; [FJ], Theorem 16.11.3; [Mi], Theorem 2.1]. In
particular, it follows immediately from Remark 6.10.1 that the absolute
version of Theorem 6.10 holds.

References

[Belyi] Belyi, G. V., On Galois extensions of a maximal cyclotomic field, Izv.
Akad. Nauk SSSR Ser. Mat. 43:2 (1979), 269-276; English transl. in
Math. USSR-Izv. 14 (1980), 247-256.

[FJ] Fried, M. and M. Jarden, Field arithmetic (Second Edition), Ergeb-
nisse der Mathematik und ihrer Grenzgebiete 3. Folge, A Series of
Modern Surveys in Mathematics 11, Springer-Verlag (2005).

[Hsh1] Hoshi, Y., On the Grothendieck conjecture for affine hyperbolic
curves over Kummer-faithful fields, Kyushu J. Math. 71 (2017), 1-29.

[Hsh2] Hoshi, Y., The absolute anabelian geometry of quasi-tripods, Kyoto
J. Math. 62 (2022), 179-224.

[CbGT) Hoshi, Y., Minamide, A. and S. Mochizuki, Group-theoreticity of

numerical invariants and distinguished subgroups of configuration
space groups, Kodai Math. J. 45 (2022), 295-348.

[CbTpI] Hoshi, Y. and S. Mochizuki, Topics surrounding the combinatorial
anabelian geometry of hyperbolic curves I: Inertia groups and profi-
nite Dehn twists, Galois-Teichmiiller Theory and Arithmetic Geome-
try, Adv. Stud. Pure Math. 63, Math. Soc. Japan, 2012, pp. 659-811.

[CbTpI]] Hoshi, Y. and S. Mochizuki, Topics surrounding the combinatorial
anabelian geometry of hyperbolic curves II: Tripods and combinato-
rial cuspidalization, Lecture Notes in Mathematics 2299, Springer-
Verlag (2022).



124

[KLR]

[Lang]
[Mi]
[LocAn]
[NCBel]

[AbsAnab]

[AnabTop]

[CmbGC]
[AbsCsp]

[CmbCsp]
[AbsTopl]

[AbsTopll]

[AbsTopllI]

[MT]

[Moon)]

[Mumf)
[NSW]

[Tama]

Yuichiro HosHI, Shinichi MOCHIZUKI and Shota TSUJIMURA

Katz, N. and S. Lang, Finiteness theorems in geometric class field
theory, with an appendix by Kenneth A. Ribet, Enseign. Math. (2)
27 (1981), 285-319.

Lang, S., Fundamentals of Diophantine geometry, Springer-Verlag
(1983).

Minamide, A., Indecomposability of various profinite groups arising
from hyperbolic curves, Okayama Math. J. 60 (2018), 175-208.
Mochizuki, S., The local pro-p anabelian geometry of curves, Invent.
Math. 138 (1999), 319-423.

Mochizuki, S., Noncritical Belyi Maps, Math. J. Okayama Univ. 46
(2004), 105-113.

Mochizuki, S., The absolute anabelian geometry of hyperbolic curves,
Galois Theory and Modular Forms, Kluwer Academic Publishers
(2004), pp. 77-122.

Mochizuki, S., Topics surrounding the anabelian geometry of hyper-
bolic curves, Galois groups and fundamental groups, Math. Sci. Res.
Inst. Publ. 41, Cambridge Univ. Press. (2003), pp. 119-165.
Mochizuki, S.; A combinatorial version of the Grothendieck conjec-
ture, Tohoku Math. J. 59 (2007), 455-479.

Mochizuki, S., Absolute anabelian cuspidalizations of proper hyper-
bolic curves, J. Math. Kyoto Univ. 47 (2007), 451-539.

Mochizuki, S., On the combinatorial cuspidalization of hyperbolic
curves, Osaka J. Math. 47 (2010), 651-715.

Mochizuki, S., Topics in absolute anabelian geometry I: Generalities,
J. Math. Sci. Univ. Tokyo 19 (2012), 139-242.

Mochizuki, S., Topics in absolute anabelian geometry II: Decom-
position groups and endomorphisms, J. Math. Sci. Univ. Tokyo 20
(2013), 171-269.

Mochizuki, S., Topics in absolute anabelian geometry III: Global
reconstruction algorithms, J. Math. Sci. Univ. Tokyo 22 (2015), 939
1156.

Mochizuki, S. and A. Tamagawa, The algebraic and anabelian geom-
etry of configuration spaces, Hokkaido Math. J. 37 (2008), 75-131.
Moon, H., On the Mordell-Weil groups of Jacobians of hyperellip-
tic curves over certain elementary abelian 2-extensions, Kyungpook
Math. J. 49 (2009), 419-424.

Mumford, D., Abelian Varieties, Oxford Univ. Press (1974).
Neukirch, J., Schmidt, A. and K. Wingberg, Cohomology of num-
ber fields, Grundlehren der Mathematischen Wissenschaften 323,
Springer-Verlag (2000).

Tamagawa, A., The Grothendieck conjecture for affine curves, Com-
positio Math. 109 (1997), 135-194.



Combinatorial Absolute Galois Groups 125

[Tsjm] Tsujimura, S., Combinatorial Belyi cuspidalization and arithmetic
subquotients of the Grothendieck-Teichmiiller group, Publ. Res. Inst.
Math. Sci. 56 (2020), 779-829.

(Received December 14, 2020)
(Revised January 17, 2025)

Research Institute for Mathematical Sciences

Kyoto University

Kyoto 606-8502, Japan

E-mail: yuichiro@kurims.kyoto-u.ac.jp
motizuki@kurims.kyoto-u.ac.jp
stsuji@kurims.kyoto-u.ac.jp



