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Category-Theoretic Reconstruction of Log Schemes

from Categories of Reduced fs Log Schemes

By Tomoki Yuu1

Abstract. Let S°¢ be a locally Noetherian fs log scheme and
#/5°¢ a set of properties of fs log schemes over S'°. In the present
paper, we shall mainly be concerned with the properties “reduced”,
“quasi-compact over S1°8”  “quasi-separated over S'°8”  “separated

over S'°8” and “of finite type over S°8”. We shall write Schl’o}c’fs10g

for the full subcategory of the category of fs log schemes over S'°8
determined by the fs log schemes over S'°8 that satisfy every prop-
erty contained in 4/5°2. In the present paper, we discuss a purely
category-theoretic reconstruction of the log scheme S'°¢ from the in-
trinsic structure of the abstract category Schice #/5los"
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Throughout the present paper, we fix a Grothendieck universe U. Let
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182 Tomoki YUJI

be a (U-small) fs log scheme. Write S for the underlying scheme of S'°8.
Let

¢

be a set of properties of morphisms of (U-small) schemes (where we identify
properties of morphisms of schemes with certain full subcategories of the
category of morphisms of schemes, cf. Notations and Conventions — Prop-
erties of Schemes and Log Schemes). We shall write Sch,g for the category
of (U-small) S-schemes, Schy, g C Sch/g for the full subcategory of objects
of Schy /g that satisfy every property contained in 4/ (cf. Notations and

h'°¢  for the

Conventions — Properties of Schemes and Log Schemes), Sc /Slos

category of (U-small) fs log schemes over S'°8, and

schlgfslog c Schl/oglog
for the full subcategory determined by the fs log schemes over S°% whose
underlying S-scheme is contained in Schy/g. In the present paper, we shall
mainly be concerned with the situation where 4/5°8 (cf. Notations and
Conventions — Properties of Schemes and Log Schemes) is contained in the
following set of properties of log schemes over S'°8:

“redﬂ , “qcpt” , ((qsepn , “Sep” , ((ft” ,

i.e., (the source scheme is) “reduced”, “quasi-compact over Slog” - “quasi-
separated over S1°8” | “separated over S'°¢” and “of finite type over S8

In the present paper, we consider the problem of reconstructing the log
scheme S'°¢ from the intrinsic structure of the abstract category Schl:fslog.
The problem of reconstructing the scheme S from the intrinsic structure
of the abstract category Schy,g in the case where the elements of ¢/S
amount essentially to the property of being “finite étale over S” is closely
related to Grothendieck’s anabelian conjectures and has been investigated
by many mathematicians. By contrast, the case where the elements of ¢/5
differ substantially from the property of being “finite étale over S” has only
been investigated to a limited degree. In this case, there are some known
results, mainly as follows: In [Mzk04, Section 1], Mochizuki gave a solution
to this reconstruction problem in the case where S is locally Noetherian,

and 4 = {ft}. In [vDdB19], van Dobben de Bruyn gave a solution to this
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reconstruction problem in the case where S is an arbitrary scheme, and
¢ = @. The arguments in [Mzk04, Section 1] and [vDdB19] make essential
use of the existence of non-reduced schemes. On the other hand, in [YJ],
the author gave a solution to this reconstruction problem in the case where
S is a locally Noetherian normal scheme, and one allows an arbitrary subset
¢ C {red, qcpt, gsep, sep}.

There are even fewer known results concerning the problem of recon-
structing a log scheme S'°8 from the intrinsic structure of the abstract cat-

egory Schl’ofslog. In [Mzk15] (and [Mzk04, Section 2]), S. Mochizuki proved

that if 4 = {ft}, then a locally Noetherian fs log scheme S'°¢ may be recon-
structed category-theoretically from the intrinsic structure of the abstract

category Schlgfslog. In [HoNal, Y. Hoshi and C. Nakayama gave a category-

theoretic characterization of strict morphisms in the case where S'°% is lo-
cally Noetherian, and 4 = {ft}. As discussed in [HoNa, Introduction],
the arguments of [Mzk15] can be applied in more general situations where
4 = {ft}. For instance, the condition assumed in [Mzk15] that 4 = {ft} may
be replaced by the assumption that ¢ = {ft,sep} (for a detailed discussion,
cf. [HoNa, Introduction]). On the other hand, the proof given in [Mzk15] is
based on somewhat complicated combinatorial properties of monoids. By
contrast, while the arguments in [HoNa| are somewhat more straightforward
than the arguments of [Mzk15], the result of Hoshi and Nakayama depends

essentially on the existence of non-separated log schemes in Schl{(;f} /g0 (for

a detailed discussion, cf. [HoNa, Introduction]). In particular, the argu-
ments in [HoNa] cannot be applied in the situation, for instance, where
¢ = {ft,sep}. Here we note that the arguments in [Mzk15] also make essen-
tial use of the existence of non-reduced schemes to give a characterization of
“SLEM” morphisms (cf. [Mzk15, Definition 2.1, Proposition 2.2]). Hence,
the arguments in [Mzk15] cannot be applied in the case, for instance, where
¢ = {ft,sep,red}.

In the present paper, we give a relatively simple solution to this prob-
lem of reconstructing log structures in a situation that generalizes the
situations discussed in [Mzk04], [Mzkl15], and [HoNa] to include the log
scheme version of the situation discussed in [YJ]. Our main result is the
following:

THEOREM A (cf. Theorem 5.10). Let S8 T'°8 be locally Noetherian
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fs log schemes,

4.0 C {red, qcpt, gsep, sep, ft }

[possibly empty] subsets, and F : Schlffslog = Schlg%og

categories. Assume that one of the following conditions (A), (B) holds:

an equivalence of

(A) 4,0 C {red,qcpt,qsep,sep}, and the underlying schemes of S'°8 and
T8 gre normal.

(B) & =0 ={ft}.
Then the following assertions hold:

(i) Let X'°8 ¢ Sch'%_  be an object. Then there exists an isomorphism of

’/Slog
log schemes X'°8 =5 F(X1°8) that is functorial with respect to X8 €
1
Sch;’%mg.

(i) Assume that 4 = . Then there exists a unique isomorphism of log
schemes S1°¢8 =5 T'98 such that F is isomorphic to the equivalence

of categories Schl’o%log = SChl:/ngog induced by composing with this

isomorphism of log schemes S'°8 = T8,

By combining the theory of [YJ] with the above Theorem A (ii), we
conclude the following corollary (cf. Corollary 5.11):

COROLLARY B (cf. Corollary 5.11). Let S°8, T be locally Noethe-
rian normal fs log schemes and

¢, O C {red, qcpt, gsep, sep}

subsets such that {qsep,sep} ¢ &, and {qsep,sep} ¢ . If the categories
Schl‘ofslog and Schlnglog are equivalent, then ¢ = O, and S8 = T8,

Our proof of Theorem A proceeds by giving category-theoretic character-
izations of various properties of log schemes and morphisms of log schemes
as follows:
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e In Section 1, we introduce some notions related to monoids and dis-
cuss various generalities that will play an important role in the theory
of the present paper. In particular, we construct certain non-quasi-
integral push-out monoids (Corollary 1.8). Here, we recall that the
notion of quasi-integral monoids was introduced by C. Nakayama (cf.
[Nak, Definition 2.2.4]) to study the surjectivity of base-changes of
morphisms of log schemes whose underlying morphism of sets is sur-
jective.

e In Section 2, we introduce some notions related to log schemes and dis-
cuss various properties of push-outs in the category of fs log schemes.
In particular, we prove that certain push-outs exist in Schloe (cf.

‘/Slog
Corollary 2.11).

e In Section 3, we give a category-theoretic characterization of the ob-
jects of Schl‘o%log whose underlying log scheme is an fs log point (cf.
Proposition 3.3). This characterization also yields a category-theoretic
characterization of the morphisms of Schl’o}gslog
phism of log schemes is isomorphic to a log residue field (cf. Definition
2.7), i.e., the natural strict morphism that arises from the spectrum
of the residue field at a point of the target log scheme (cf. Corollary

3.5).

whose underlying mor-

e In Section 4, we give a category-theoretic characterization of the mor-
log

‘/Slog
(cf. Corollary 4.6). We then use this characterization and apply [YJ],

Corollary 4.11] to obtain the first equality of Corollary B (cf. Corollary
4.7).

phisms in Sch whose underlying morphism of log schemes is strict

e In Section 5, we give a category-theoretic characterization of the mor-

phisms of monoid objects in SChl;)%bg that represent the functor

Schl‘o%log — Mor(Mon)
X5 [ax (X) : T(X, My) — T(X, Ox)],

which arises from the log structures of the objects of Schlf%log (cf.

Proposition 5.7). We then use this characterization to prove the main

theorem of the present paper (cf. Theorem 5.10).
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Notations and Conventions

We shall use the notation N to denote the additive monoid of non-
negative rational integers n > 0. We shall use the notation Z to denote the
ring of rational integers. We shall use the notation QQ to denote the field
of fractions of Z. Throughout the present paper, we fix a Grothendieck
universe U.

Categories. Let C be a category. We shall write C°P for the opposite
category associated to C. By a slight abuse of notation, we shall use the
notation X € C to denote that X is an object of C. We shall write Mor(C) for
the category of morphisms of C, i.e., the category consisting of the following
data:

e An object of Mor(C) is a morphism in C.

e A morphism [f : X — Y] — [¢g : X’ — Y] in Mor(C) is a pair
(hx : X — X'Jhy : Y — Y’) of morphisms in C such that the
following diagram commutes:

X M, x

fl lg

y My

e The composite of morphisms is given on each component by composing
morphisms in C.

Let X € C be an object. We shall write C,x for the slice category of
objects and morphisms equipped with a structure morphism to X. We
shall write Cx, for the over category of objects and morphisms equipped
with a structure morphism from X.

Let D C C be a full subcategory. We shall say that D is a strictly full
subcategory of C if D is closed under isomorphism, i.e., for any object
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X € D and any isomorphism f: X — Y in C, Y (hence also f) is contained
in D.

Rings and Schemes. We shall use the notation Sch to denote the cate-
gory of (U-small) schemes.

Let f : Y — X be a morphism of schemes. We shall write Ox for the
structure sheaf of X. We shall write | X | for the underlying topological space
of X. We shall write f# : Ox — f.Oy for the morphism of sheaves of rings
on |X| which defines the morphism of schemes f : Y — X. If |F| C | X] is
a closed subset, then we shall write Fioq for the reduced closed subscheme
of X determined by |F| C |X|. We shall write fieq : Xrea — Yied for the
morphism induced by f. Let A and B be (commutative) rings (with unity).
If Y = Spec(B), and X = Spec(A), then we shall write f# : A — B for
the ring homomorphism induced by f. By a slight abuse of notation, if
f#: A — B is a ring homomorphism, then we shall use the notation f to
denote the corresponding morphism of schemes Spec(B) — Spec(A). For
any point x € X, we shall write k(x) for the residue field at x € X.

Properties of Schemes and Log Schemes. Let S'° be a (U-small) fs
log scheme. We shall write S for the underlying scheme of S°2. We shall
use the notation

Schl°g

to denote the category of (U-small) fs log schemes. We shall write Sch /S
log

/Slos for the category of

for the category of (U-small) S-schemes and Sch

(U-small) fs log schemes over S'°8.
We shall refer to a strictly full subcategory (cf. Notations and Con-
ventions — Categories) of Sch, Mor(Sch), Sch!®, Mor(Sch'°®), Sch/g, and

Schl/osglog

schemes, (U-small) fs log schemes, morphisms of (U-small) fs log schemes,
(U-small) S-schemes, and (U-small) fs log schemes over S'°8, respectively.
Let

as a property of (U-small) schemes, morphisms of (U-small)

¢

be a (not necessarily U-small) set of properties of morphisms of (U-small)
schemes. For any property P € 4, write P/S C Sch/g for the full sub-
category consisting of S-schemes whose structure morphism is contained
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in the full subcategory P C Mor(Sch) and P/S™& C Schl/osglog for the full

subcategory consisting of fs log schemes over S°¢ whose underlying S-
scheme is contained in P/S. By a slight abuse of notation, we shall write
¢/S 4o {P/S | Pc ¢} and /S 4 {p/S"e | P € ¢}. In the present

paper, we shall mainly be concerned with the situation where
¢ C {red, qcpt, gsep, sep, ft },
and

e “red” denotes the strictly full subcategory of Mor(Sch) consisting of
morphisms whose source scheme is reduced,

e “qcpt” denotes the strictly full subcategory of Mor(Sch) consisting of
quasi-compact morphisms,

e “gsep” denotes the strictly full subcategory of Mor(Sch) consisting of
quasi-separated morphisms,

e “sep” denotes the strictly full subcategory of Mor(Sch) consisting of
separated morphisms, and

e “ft” denotes the strictly full subcategory of Mor(Sch) consisting of
morphisms of finite type.

Let f : X — Y be a morphism of schemes. Then we shall say that f
satisfies every property contained in ¢ if for any P € ¢, f € P C Mor(Sch).
Hence, in particular, if ¢ = &, then every morphism of schemes satisfies
every property contained in 4. If ¢ = {P}, and f satisfies every property
contained in ¢, then we shall say that f satisfies the property P.

We shall write Schy,g C Sch/g for the full subcategory consisting of
S-schemes whose structure morphisms satisfy every property contained in
¢ and

Schi’%log C Schl/osglog
for the full subcategory consisting of fs log schemes over S1°¢ whose underly-
ing structure morphism of schemes is contained in Schg /s Thus, if ¢=0,

then schlffslog — Schl/oglog.
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We shall write lim’, colim‘, x® L* for the (inverse) limit, colimit, fiber

product, and push-out in Schl’(’%log (if these exist in Schl’o}gslog). We shall

write lim, colim, x, Ll for the (inverse) limit, colimit, fiber product, and push-

out in Schl/OSglog (if these exist in Schl/osglog

shall use the notation @ to denote the empty log scheme.
Let

). By a slight abuse of notation, we

e S be a (U-small) locally Noetherian fs log scheme,

o & C {red,qcpt, gsep, sep, ft} a subset,

e P a property of (U-small) fs log schemes over S'°8,

e Q a property of morphisms of (U-small) fs log schemes over S'°8.
Then we shall say that

log

the property that an object X'°¢ ¢ Sch satisfies P

./Slog
may be characterized category-theoretically from the data
1
(SCh‘Ofslogy Xlog)

if for any object Yo8 ¢ SChlf%log» any (U-small) locally Noetherian fs log

scheme T'°% any subset ¢ C {red, qcpt, gsep, sep, ft}, and any equivalence

F: schffslog -, schlnglog, it holds that

Y198 satisfies P <= F(Y°8) satisfies P.
We shall say that

the property that a morphism f°¢ in SchI:g satisfies Q

/Slog
may be characterized category-theoretically from the data

(SChl’O?S'log7 flog)

log
’/Slog?
scheme T'°2, any subset ¢ C {red, qcpt, gsep, sep, ft}, and any equivalence

F: Schl:/gslog = Schlg%og, it holds that

if for any morphism ¢'°% in Sch any (U-small) locally Noetherian fs log

g'°8 satisfies @ <= F(g'°®) satisfies Q.
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Quasi-integral Monoids

In this section, we discuss various generalities concerning monoids that
will play an important role in the theory of the present paper. Our main
result (Corollary 1.8) concerns the construction of an extension of sharp fs
monoids that satisfies a certain non-quasi-integrality property.

DEFINITION 1.1. Let M be a (commutative) monoid.

(i) We shall write Mon for the category of (U-small) monoids and Ab for

the category of (U-small) abelian groups.

(ii) We shall write M®P for the groupification of M.

(iv

(v

(vi)
(vii)

(viii)

(ix)

)
(ii)
)
)

We shall write M* for the unit group of M.
We shall write M™ for the image of the natural morphism M — MEP,

We shall write
psat 2 {me M® | 3a € N\ {0},am € M™Y.
We shall say that M is sharp if M* = 0.

We shall say that M is integral if the natural morphism M — M#8P
is injective. If M is an integral monoid, then we regard M as a sub-
monoid of M®P via the natural injection M <— M®&P. We shall write
Mon'™ ¢ Mon for the full subcategory of Mon consisting of integral
monoids.

We shall say that M is saturated if M is integral, and, moreover, for
any element m € M®P, if there exists a positive integer a € N\ {0}
such that am € M, then m € M. We shall write Mon®* C Mon for
the full subcategory of Mon consisting of saturated monoids.

We shall say that M is finitely generated if there exist an integer
a € N and a surjection N¥@ — M of monoids.

Let S C M be a subset, k € N\ {0} an integer, and mq,...,my € M
elements. We shall write (S) C M for the submonoid of M generated
by S, i.e., the smallest submonoid of M that contains S. We shall

write (S,mq, -+, myg) def (SU{mq, - ,mg}).
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(xi) We shall say that M is fine if M is integral and finitely generated.

(xii) We shall say that M is fs if M is saturated and finitely generated.

REMARK 1.2.

(i) The functor (—)™ : Mon — Mon™" is a left adjoint functor to the nat-
ural inclusion Mon™ C Mon. In particular, the limit of any diagram
of integral monoids in Mon is integral.

(ii) The functor (—)%** : Mon — Mon®* is a left adjoint functor to the nat-
S8t © Mon. In particular, the limit of any diagram
of saturated monoids in Mon is saturated.

ural inclusion Mon

(iii) Let M be a fine monoid and K a field. Then observe that the natural
inclusion of K-subalgebras K[M] — K[M®%] of K[M?®P] is integral
and induces an isomorphism on quotient fields, hence, by a well-known
result in commutative algebra, is finite. This finiteness of K[M®'] as
a K[M]-module implies that M is a finitely generated monoid.

DEFINITION 1.3. Let f: M — N be a morphism of monoids.

(i) We shall write f&P : M8 — N#P for the morphism induced on groupi-
fications by f.

(ii) We shall say that f is local if f~1(N*) = M*.

LEMMA 1.4. Let M be a sharp saturated monoid and n € M®&P \ M.
Then (M, —n)** is sharp.

PROOF. Write N %' (M, —n)**. Let #i € N* be an element. Then
f,—n € N* ¢ N = (M, —n)*". Hence, by Definition 1.1 (v), there exist
positive integers aq,as > 1 such that a;n, —asn € (M, —n). Moreover, by
Definition 1.1 (x), there exist non-negative integers by, by € N, and elements
mq, mg € M such that

ain =m1 —bin, and — asn = m9 — ban.
Thus it holds that ag(mi —bin) + aj(mg —baen) = asa1n — ajazn = 0, hence

(a2b1 + a1b2)n = agmy + aymg € M.
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Since n € M®P\ M, and M is saturated, it holds that agb; +a1by = 0. Since
ai,as > 1, and by, by € N, it holds that by = by = 0. Thus a1n = m; € M,
and —agn = mg € M. Since ay,as > 1, and M is saturated, it holds that
n,—n € M. Since M is sharp, 7 = 0. This completes the proof of Lemma
1.4.0

COROLLARY 1.5. Let M be a monoid, N a sharp fs monoid, and i1,is :
N — M morphisms of monoids. Assume that neither i1 nor is is injective.
Then there exist elements n1,ng € N8\ N such that i5° (n1) = 5" (ng) = 0,
and (N, —ny, —n)™" is a sharp fs monoid.

PROOF. Since i1 is not injective, it holds that ker(if") # 0. Since N

is sharp, it holds that ker(i{’) ¢ N. Let ny € ker(if’) \ N be an element.

Then, by Remark 1.2 (iii) and Lemma 1.4, L, 4 (N, —n1)®" is a sharp fs

monoid. Since n; € ker(if?), it (n1) = 0.

Since iz is not injective, ker(i5”) # 0. Since L; is sharp, ker(i5") ¢
Ly. Let ny € ker(i5”) \ L1 be an element. Then, by Remark 1.2 (iii) and
Lemma 1.4, (L1, —n2)™" = (N, —nj, —n)*" is a sharp fs monoid. Since
ny € ker(i3"), i§¥ (n2) = 0. This completes the proof of Corollary 1.5. OJ

DEFINITION 1.6. We shall say that a monoid M is quasi-integral if
for any m,n € M, the equality m + n = m implies that n = 0, or, equiva-
lently, any element of M that becomes trivial in M#®P is trivial in M.

In Appendix A, we prove an extension of the following lemma to the case
where M, L are quasi-integral, and N is an arbitrary monoid (cf. Corollary
AL5).

LeEMMA 1.7 (cf. [Nak, Lemma 2.2.6 (i)], Corollary A.5). Let L, M,N
be sharp fs monoids and f : N — M, g : N — L local morphisms of monoids.

Write P2 M Uy L. Then the following assertions are equivalent:
(i) P is quasi-integral.

(ii) For any element n € N8P, if feP(n) € M, and —g®P(n) € L, then
f&P(n) =0, and g8P(n) = 0.



Categories of Reduced Log Schemes 193

PrROOF. Lemma 1.7 follows immediately from [Nak, Lemma 2.2.6 (i)].
U

COROLLARY 1.8. Let M, N be sharp fs monoids and i1,i0 : N — M
local morphisms of monoids. Assume that neither iy mor iy is injective.
Then there exists a sharp fs monoid L such that N C L C N8P, and neither
M U;, N L nor M U;, n L is quasi-integral.

PROOF. Since neither i1 nor iy is injective, it follows from Corollary
1.5 that there exist elements ny,ny € N8\ N such that (N, —nq, —ng>sat is
a sharp fs monoid, and i$"(n1) = i§"(n2) = 0. Write

L (N, —ny, —ng)*™
Then, for each k € {1,2}, since M, N, L are sharp fs monoids, iy, : N — M
is local, the inclusion morphism N — L is local, i%p(nk) =0e M, —n; €L,
and ny # 0, it follows from Lemma 1.7 that M L;, n L is not quasi-integral.
This completes the proof of Corollary 1.8. [J

2. Some Remarks on Log Schemes

In this section, we introduce some notions related to log schemes and
give proofs of several elementary results on log schemes. In particular, we

prove that certain push-outs exist in SChI:%mg (cf. Corollary 2.11).

DEFINITION 2.1. Let X'°8 V18 bhe log schemes and fl°% : Xlog _, ylog
a morphism of log schemes (cf. [KK, Section 1]).

(i) We shall write X for the underlying scheme of the log scheme X'°8.
We shall write f for the underlying morphism of schemes f: X — Y
of the morphism of log schemes fl°¢.

(ii) We shall write axy : Mx — Ox for the morphism of sheaves of
monoids on the étale site of X which defines the log structure of X'°8,

We shall write My 2 Mx/(ax O%).

(iii) We shall write " fAMy — Mx for the morphism of sheaves of
monoids on the étale site of X which defines the morphism of log
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schemes f1o8 : X8 —, ylog  We shall write f* : f~*My — My for
the morphism of sheaves of monoids on the étale site of X induced by

My — My,

(iv) We shall write f*ay : f*My — Ox for the log structure on X deter-
mined by the pull-back of the log structure ay : My — Oy on Y via

fl

(v) Let |Z] C |X]| be a closed subspace. Then we shall write Zigfl for the
log scheme whose underlying scheme is Zoq, and whose log structure
is induced from X'°8 via the natural closed immersion Zyoq — X. We

shall write (X°8),.q def xlog

red*

DEFINITION 2.2. Let X!°% Y198 be log schemes, fl°8 : Xlog — ylog 5
morphism of log schemes, P a property of schemes [such as “quasi-compact”,
“separated”, “quasi-separated”, “reduced”, “connected”], and Q a property
of morphisms of schemes [such as “quasi-compact”, “separated”, “quasi-
separated”, “of finite type”, “étale”].

(i) We shall say that X'°& satisfies P if the underlying scheme X satisfies
P.

(ii) We shall say that f1°8 satisfies Q if the underlying morphism of schemes
f satisfies Q.

(iii) We shall say that f°8 is strict (or, in the terminology of [Mzk04],
scheme-like), if the morphism of sheaves of monoids f*My — My
on the étale site of X induced by f? is an isomorphism.

(iv) We shall say that f°8 is a strict closed immersion if f°8 is strict
and a closed immersion.

(v) We shall say that f°8 is a strict open immersion if f1°¢ is strict
and an open immersion.

(vi) Let Z — X be a geometric point. We shall say that a morphism of
log schemes '8 : U°8 — X198 is a strict étale neighborhood of
if i : U — X is an étale neighborhood of Z, and i'°% is strict.

DEFINITION 2.3. Let X8 be a log scheme.
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(i) We shall say that the log structure of X'°¢ is integral if for any
geometric point ¥ — X, the stalk Mxz of Mx at ¥ — X is an
integral monoid.

(ii) We shall say that the log structure of X'°8 is saturated if for any
geometric point £ — X, the stalk Mxz of Mx at  — X is a
saturated monoid.

(iii) We shall say that X'°¢ has a global chart if there exist a monoid
M and a morphism of monoids M — T'(X,Ox) such that the log
structure of X'°¢ is isomorphic to the log structure associated to the
adjoint morphism of sheaves of monoids M — Ox (cf. [KK, (1.1),
(1.3)]), where M is the constant sheaf on the étale site of X associated
to M. In this situation, we shall refer to the morphism of monoids
M — T'(X,Ox), or, equivalently, the morphism of sheaves of monoids

M — Ox on X, as a global chart of X"°&.

(iv) Let Z — X be a geometric point. Then we shall say that X'°% has a
chart at z if there exists a strict étale neighborhood (cf. Definition
2.2 (vi)) U8 — X198 of 7 such that the log scheme U'°8 has a global
chart M — T'(U,Op). In this situation, we shall say that (U8 —
X'¢ M — T'(U,Op)) is a chart at 7.

(v) Assume that the log structure of X'°® is integral. Then we shall say
that X'°8 is a fine log scheme if for any geometric point z — X, X8
has a chart (U'%¢ — X'°¢ M — T'(U, Oy)) at Z such that M is finitely
generated.

(vi) Assume that the log structure of X'°¢ is saturated. Then we shall say
that X'°% is an fs log scheme if for any geometric point z — X, X8
has a chart (U'%¢ — X'°¢ M — T'(U, Oy)) at Z such that M is finitely
generated.

REMARK 2.4. If flo8 . ylog _, Xlo8 ig 4 strict morphism of log schemes
and ¢'°8
immediately that the natural morphism Y18 x i, 2198 — Z°8 is strict.

. 7% — X2 is a morphism of log schemes, then one verifies

REMARK 2.5. Assume that the log structure of a log scheme X8 is
integral. Then one verifies immediately that the log structure of X8 is
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saturated if and only if for any geometric point # — X, Mx z is a saturated
monoid.

DEFINITION 2.6. Let X'°8 be an fs log scheme.

(i) We shall say that X'°¢ is an fs log point if the underlying scheme X
of X°¢ is isomorphic to the spectrum of a field.

(i) Assume that X'°% is an fs log point. We shall say that X'°8 is a split
log point if Mx is a constant sheaf on the étale site of X.

DEFINITION 2.7. Let fl°8 : Ylog . X8 he a morphism of fs log
schemes. Assume that Y1°8 is an fs log point. Write y € Y for the unique
point of Y. Then we shall say that f'°¢ is a log residue field of X'°¢ if
fl°8 is strict, and f : Y — X is isomorphic as an X-scheme to the natural

morphism Spec(k(f(y))) — X that arises from the spectrum of the residue
field at f(y) € X.

LEMMA 2.8. Let X'°% be an fs log point and T — X a geometric point.

Write M -2 MX@. Let o : M — N be a local morphism between sharp fs
monoids. Then there exists a morphism between fs log points fl°8 : Z1°8 —
X8 such that the following conditions hold:

(i) f#* : T'(X,0x) — I(Z,0%) is a finite separable field extension in
k(Z).

(ii) Z'°% is a split log point.

(iii) For any geometric point Z — Z, there exists an isomorphism 1y : N =»
MZ,Z such that the following diagram commutes:

M —*, N

[
2

M — MZ,Z-

PROOF. Write k -2 I'(X,0x), ks C k(z) for the subfield consisting of
the elements which are separable algebraic over k, G for the automorphism
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group of the k-algebra kg, and
Jig {a eG ’ o acts trivially on M} .

Then, since M is finitely generated, the subgroup H C G is of finite index.
Write K C ks for the fixed field of H and f : Z — X for the morphism of
schemes determined by the field extension K/k. Then, since H C G is of
finite index, f# : I'(X, Ox) — ['(Z,0y) satisfies condition (i).

Write

e vy : My — Ny for the morphism between constant étale sheaves of
monoids on the étale site of Z determined by the morphism of monoids
w: M — N;

e I'(Z, f"'Mx)y for the constant étale sheaf of monoids on the étale
site of Z determined by the monoid I'(Z, f ~! M x) (which is naturally
isomorphic to M);

e 7'°% for the split log point such that Z = Spec(K), and the log struc-
ture of Z'°¢ is the morphism of sheaves of monoids

def
az My =

O; x N 7 — O VA

on the étale site of Z determined by the natural inclusion O} — Oy
and the unique local morphism of monoids N — K, where we regard
K as a commutative monoid by the multiplication operation, and we
recall that N is assumed to be sharp.

Then, since the log structure of Z'°% arises from the unique local morphism
of monoids N — K, Z!°¢ satisfies condition (ii).

Since H acts trivially on M, the natural morphisms f~'My «—
I'(Z, f~*Mx)z = My of sheaves of monoids on the étale site of Z are iso-
morphisms. Hence there exists an isomorphism f _1(’);( x My = f~'Mx.
Since ¢ : M — N is local, the morphism of sheaves of monoids f :
fIMx — My determined by f71O% x Mz = f~IMx and f#* x py :
fLO% x My — O} x Ny satisfies az o f* = f# o f~(ax). Thus the pair
(f, f?) is a morphism of log schemes f°8 : Z1°8 — X108 Then f1°2 satisfies
condition (iii). This completes the proof of Lemma 2.8. [J
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Next, we discuss some basic properties of push-outs in the category of
fs log schemes.

LEMMA 2.9. Leti:Y — X be a closed immersion of schemes, § — Y
a geometric point of Y, and g : V — Y an étale neighborhood of § — Y.
Then there exist an étale neighborhood f : U — X of the geometric point
y—Y — X of X and a morphism h : U xx Y — V of Y-schemes such
that the following diagram commutes and indeed is cartesian:

UxyY —syv 2 sy

| |

U > X.

ProOOF. Write Z — X for the compositey — Y — X and 7 def ker (i
Ox — i+Oy). Then, by [Stacks, Tag 05WS], the morphism Ox z/Z; —
Oy y induced by i* is an isomorphism. Thus Lemma 2.9 follows immediately
from [Stacks, Tag 04GW]. O

lo. lo
LEMMA 2.10. Let X108 25 glog ™, ylog p, morphisms of fs log

schemes. Assume that the following conditions hold:
e s and t are closed immersions.
o Either s'°8 or t1°% is strict.

Write W ;528 XUzY for the push-out of schemes (where we observe that the
existence of W follows from [Stacks, Tag 0E25]), p: X — W andq:Y — W
for the natural morphisms, r :d:efpo s=qot, My def DM x X My @My

(an étale sheaf of monoids on W), and aw : Mw — p.Ox X,.0, ¢:Oy =
Ow (cf. [Stacks, Tag 0E25]):

Z = X
jt\lp
Y 1 W.

Then the following assertions hold:


https://stacks.math.columbia.edu/tag/05WS
https://stacks.math.columbia.edu/tag/04GW
https://stacks.math.columbia.edu/tag/0E25
https://stacks.math.columbia.edu/tag/0E25
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def

(i) The triple W8 := (W, My, aw) is an fs log scheme.

Slog tlog
(i1) W8 represents the push-out of the diagram X'°& <— 7108 —— y'log
in the category of fs log schemes.

PRrOOF. It follows immediately from the definition of W°8 that asser-
tion (ii) follows from assertion (i). In the remainder of the proof of Lemma
2.10, we prove assertion (i). Since the functor (—)* : Mon — Ab preserves
limits, it follows immediately that W% is a log scheme. Moreover, it follows
immediately from Remark 1.2 (ii) and the definition of the notion of a sat-
urated log structure that the log structure of W18 is saturated. Hence, to
prove Lemma 2.10, it suffices to prove that for any geometric point w — W,
W18 has a chart (U(l)Og — W' My — TI'(Up, Oy, )) at w such that My is an
fs monoid. Let w — W be a geometric point.

Write U'°¢ for the fs log scheme determined by the open subset |X| \
Im(s), V'°8 for the fs log scheme determined by the open subset |Y|\ Im(t),
and f°8 : (U LU V)8 — W8 for the natural morphism of log schemes
determined by p'°® and ¢°2. Then f°8 is a strict open immersion, and
Im(f) = (Im(p) \ Im(q)) U (Im(g) \ Im(p)). Hence if Im(w — W) C (Im(p) \
Im(q)) U (Im(q) \ Im(p)), then W' has a chart at @ of the desired type.

Assume that Im(w — W) C Im(r). Then the geometric point w — W
arises from a geometric point w — Z. Since s°% and t'°¢ are morphisms of
fs log schemes, it follows from Lemma 2.9 and [KK, Definition 2.9 (2) and
Lemma 2.10] that there exist a chart (Ué?g — X8 My — I'(Ux,Opy))
at w — X, a chart (Uilfg — Y8 My — I'(Uy,Op,)) at w — Y, a chart
(U;g — 7% M, — T'(Uz,0y,)) at w — Z, a morphism of monoids &’ :
Myx — My, and a morphism of monoids #* : My — My such that Mx, My,
My are fs monoids, and, moreover, for each u € {s,t}, if u'® is strict, then
@’ is an isomorphism. By Lemma 2.9, there exists an étale neighborhood
Uw — W of w — W such that for each (x,7) € {(X,p), (Y,q),(Z,7)}, there
exists a morphism of x-schemes Uy Xy * — U, such that the following
diagram commutes and indeed is cartesian:

ét
Uw Xw * y U, —— *

{ [’f

Uy & s W.
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Write My, def Mx X1, My . Since either F: My — Myort’: My — My,
is an isomorphism, My is an fs monoid. Thus Uy — W and the natural
morphism My — I'(Uw, Oy, ) determine a chart of W8 at @ of the desired
type. This completes the proof of Lemma 2.10. [J

COROLLARY 2.11. Let 5°8 be an fs log scheme,

¢ C {red, qcpt, gsep, sep, ft }

log tlog

S
a subset, and X'°8 <— 7198 —— Y18 strict closed immersions in Schl‘ofslog.

Write Wloe 3¢ xlog Uy Y8 (cf. Lemma 2.10). Then the following
assertions hold.

(i) If & C {red, qcpt, qsep, sep}, then W°8 belongs to the full subcategory

Schlf%log C Schl/oglog, i.e., the push-out of s'°8,t°8 exists in Schl‘o/gslog.

(ii) If S'°8 is locally Noetherian, then W8 belongs to the full subcategory

Schl‘o}gslog C Schl/oglog, i.e., the push-out of s'°8,t°8 exists in Schl‘o}gslog.

PRrROOF. First, we note that by Lemma 2.10 (i) (ii), it holds that W =

X Uz Y. Hence assertion (i) follows immediately from [Stacks, Tag 0E26],

[Stacks, Tag 04ZD], and the fact that the fiber product of reduced rings is

reduced. Assertion (ii) follows immediately from assertion (i) and [Stacks,
Tag 0E27]. This completes the proof of Corollary 2.11. O

3. Fs Log Points
In this section, we assume that

¢ C {red, qcpt, gsep, sep, ft }.

In the present Section 3, we give a category-theoretic characterization

of the objects of Schl‘ofslog whose underlying log scheme is an fs log point

for locally Notherian fs log schemes S'% (cf. Proposition 3.3).
First, we note the following lemma:

LEMMA 3.1. Let S5°% be an fs log scheme and X'°8 € Schl’ofslog an

object. Then the following assertions hold:


https://stacks.math.columbia.edu/tag/0E26
https://stacks.math.columbia.edu/tag/04ZD
https://stacks.math.columbia.edu/tag/0E27
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(i) X # @ if and only if X'°% is not an initial object of Schl‘ofslog. In
particular, the property that X # @ may be characterized category-
theoretically from the data (Schl’o%log’Xlog),

(i) |X| is connected if and only if X # @, and, moreover, X'°% does
not admit a representation as a coproduct of two non-initial objects

of Schlf/gslog. In particular, the property that | X| is connected may be

characterized category-theoretically from the data (Schl:%log, Xog).

PROOF. Assertions (i) and (ii) follow immediately from elementary log
scheme theory. [J

Next, we give a category-theoretic characterization of fs log points (cf.
Proposition 3.3).
LEMMA 3.2. Let §'°8 be a locally Noetherian fs log scheme; illog,ilzog :

XlOg — YlOg mOT’phZSTnS m SCh‘O%Slog; plog . YlOg — XlOg a morphzsm m

Schl:fslog. Assume that the following conditions hold:
(i) X'°% is an fs log point.
(ZZ) plog (@] leog == plOg (¢] Zl20g == iXmog.

(i4i) The morphism i'°8 : X108 1] X198 — Y18 determined by illog and z'lzog is
lo
h'cg

an epimorphism in Sc INEE

(iv) |Y| is connected.

Then i1, ia, p are isomorphisms, and i1 =iy = p~'.

PROOF. Write 2108 ;% Miﬁ (cf. Definition 2.1 (v)), where we note
that Z'°% belongs to the full subcategory Schlf%log C Schl/og"log. By condition
(i), X U X is reduced. Hence, by [Stacks, Tag 056B], the scheme-theoretic
image of i is equal to Z (cf. [Stacks, Tag 01R7], [Stacks, Tag 01R6]).
Hence the morphism 48 : X8 || Xlog _, Y18 factors uniquely through
the strict closed immersion Z'°8 < Y'°8. By condition (iii), Z!°8 < Y°8

. . . 1
is an epimorphism in Sch®

/508" Hence the two natural inclusions Y198 —


https://stacks.math.columbia.edu/tag/056B
https://stacks.math.columbia.edu/tag/01R7
https://stacks.math.columbia.edu/tag/01R6
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Y18 | 106 Y18 coincide (where we note that by Corollary 2.11 (ii), the push-

out Y'°8 |1, Y18 belongs to the full subcategory Schl‘o%log C Schl/oglog).

Thus, by the construction of Y18 <« Y108 (], Y18 (cf. Lemma 2.10 (i)
and the proof of [Stacks, Tag 0E25]) and Corollary 2.11 (ii), the strict
closed immersion Z'°¢ < Y198 is an isomorphism. In particular, it holds
that Y108 = Tm(i). 5.

Write z € X for the unique point (cf. condition (i)). By condition (ii),
the morphisms of fields k(z) — k(i1(x)) and k(x) — k(iz(z)) induced by
p:Y — X are isomorphisms. Hence, by [Stacks, Tag 01TE], i;(x) and i2(x)
are closed points of Y. Thus it holds that

Y[ =TIm(i) = {i1(x), i2(x)} = {ia ()} U {ia(2)} = {ir(2),42()}.
By condition (iv), [V is of cardinality 1. Moreover, since Y = Tm(i) 4 is
reduced, Y is isomorphic to the spectrum of a field. Thus, since p o iy =
pois = idx, the morphisms i;, i9, p are isomorphisms, and i; = is = p~ L.
This completes the proof of Lemma 3.2. [J

PROPOSITION 3.3. Let S'°8 be a locally Noetherian fs log scheme and

X8 an object of Schlf‘/gslog. Assume that | X| is connected. Then X'°% is
not an fs log point if and only if there exist an object Y18 € Schl‘o%log,

log .log
(D)

morphisms iy ®, log

. xlog _, ylog ;, Schl’o}t”slog, and a morphism p

ylog _, xlog SchI;’/gslog

: 1 1 :
(i) p'°8 0i® = pl°8 00y = id yios.

such that the following conditions hold:

(i) The morphism i1 : X108 || X108 — Y18 determined by illog and @'IQOg is
log
h./slog.

an epimorphism in Sc
(iii) |Y| is connected.
: : 1 log - . ,
(iv) Neither i1® nor is® is an isomorphism.

(v) For any morphism f1°8 : 78 — ylog jp Schl:%log such that Z # @,

there exists a commutative diagram

Wlog y Zlog

| s

Xlog | | xlog ilos ylog


https://stacks.math.columbia.edu/tag/0E25
https://stacks.math.columbia.edu/tag/01TE
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in Schl%8

¢/ 5lox such that W # &.

In particular, the property that X8 is an fs log point may be char-
acterized category-theoretically (cf. Lemma 3.1 (i) (ii)) from the data

(Schli’%log,Xlog)_

PROOF. First, we prove necessity. Assume that X'°% is not an fs log
point. Then X is not isomorphic to the spectrum of a field. Hence there ex-
ists a closed immersion j : X7 — X such that X7 is reduced, X1 # &, and j
is not an isomorphism. The pull-back of the log structure of X'°¢ to X de-
termines a log structure on X1, together with a strict closed immersion j1°8 :

X}Og Xog in Schl‘o}gslog Write Y1og .20 ylog xlos X8 (cf. Corollary 2.11

(ii)); @ 'log 'log : X'°8 — Y18 for the natural 1nclus1ons pls Yo . X108 for

the unique morphism such that p'°8 o zlog = pl°8 o zlog = idx1g. Then, by

Corollary 2.11 (ii), Y8 ¢ Schl’o%10g7 and (Y'o8, leog zIQOg ,p'°8) satisfies condi-
tions (i) and (ii). Since |X| is connected, X; # @, and j : X; — X is not an

isomorphism, it follows from the construction of X8 xlos X8 (cf. Lemma

2.10 (i) and the proof of [Stacks, Tag 0E25]) that (Y8, illog zéog,plog) satisfies
conditions (iii) and (iv). Since 58 : X °8 , X8 is a strict closed immer-
sion, it follows from the construction of the log structure of X8 U 10 X log

(cf. Lemma 2.10 (i)) that the morphism i'°8 : X8 || Xlog Ylog deter-

mined by zlog and zlog is strict. Thus, since 7 is surjective, (Y18, leog’ ig’g, plo8)
satisfies condition ( ). This completes the proof of necessity.
Next, we prove sufficiency. Assume that X'°2 is an fs log point. Let

1 : log .1 . .
ylog ¢ Sch N be an object; i1%,iy® : Xlog _, ylog morphisms in

/Slog
Schlog plog : ylog — Xlog o morphism in Schlos such that (Y'°8, z'llog ,

¢/ Slog ? ¢/Slos
2'120g p'°8) satisfies conditions (i) (i) (iii) (iv). To prove sufficiency, it suf-
fices to prove that (Y108 %8 il°8 plog) does not satisfy condition (v). Since
(Ylos jl8 jlog plog) gatisfies conditions (i) (ii) (iii), it follows from Lemma
3.2 that 41, i9, p are isomorphisms, and i; = i = p~'. Hence, to prove that
(Ylos, z'llog, iIQOg ,p'°8) does not satisfy condition (v), we may assume without
loss of generality that X =Y, and i1 = io = p = idx.
Let z — X be a geometric point. Write M : Vi X% et My z,

— d f — —
T z?:p, zg = zgi, and p’ := pm Then M, N are sharp fs monoids, and 7},


https://stacks.math.columbia.edu/tag/0E25
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Eg, 7 are local morphisms of monoids. Moreover, since (Ylog,illog, i12°g, plog)
satisfies condition (i), it holds that 7} o 5 = i3 0 §* = idyy:

id M

MG N —Su

P i
Since (Y8, illog, 1.120g7 p'°8) satisfies condition (iv), neither i} nor 5 is injective.
Hence, by Corollary 1.8, there exists a sharp fs monoid N C L C N®&P such
that neither M I_IE? L nor M I_I;g ~ L is quasi-integral. Since N — L is local,

it follows from Lemma 2.8 that there exists a morphism f°8 : zl°s — y'log

in schﬁfsbg

fz’ : (f_lﬂy)g — Mz,z is isomorphic as an object of MonN/ to N C L.
Since neither M I_lg? y L nor M I_Igg ~ L is quasi-integral, it follows from [Nak,

Lemma 2.2.5] that for each k € {1,2}, X8 7% = @. Thus

such that Z'°¢ # @, and for any geometric point z — Z,

Xig’g,Ylog,flog
(Y'los, illog , ,L-120g ,p'°8) does not satisfy condition (v). This completes the proof
of Proposition 3.3. [J

Next, we prove the following property concerning fiber products in

I
Sch:%bg.

LEMMA 3.4. Let S'% be a locally Noetherian fs log scheme, fl°8 :

. . 1 1 .
Xlog — ylog 4 morphism in Sch:%bg, and ¢'°8 - Yoog — Y8 ¢ quasi-

compact morphism in Schl’ofslog. Then the fiber product X'°8 X}‘nog Yolog

1 .
N Moreover, the natural morphism

exrists in Sch‘/slog.

(Xlog x ¢

log ~ 1 log
ylog Y(j )red - (X 8 Xylog }/0 )red

1 1
Piog Y()Og — Xlog X ylog YOOg
is an isomorphism of log schemes. In particular, if '8 is strict, then the

natural projection X'°8 ><3‘/1og Y,"® — Y, is also strict.

induced by the morphism of log schemes X1°8 x$

PROOF. Write ¢ ‘% ¢ \ {red}. By Remark 1.2 (iii), the underlying
scheme of X8 xy10 Yolog is finite over X xy Y. Since ¢'°8 : YOIOg —
Ylog ig quasi-compact, the natural projection X xy Yy — X is also quasi-

compact. Thus X8 x 1, Yolog belongs to the full subcategory Schlgfslog C
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Schl/osglog- If, moreover, {red} C #, then (X'°8 xyio; Yj°®)sea belongs to the

full subcategory Schl’o%log C Schl/(gglog and indeed may be interpreted as the

fiber product X108 x}‘ﬂ()g yolog in SchI:%IOg. In particular, for arbitrary ¢, the
natural morphism

(Xlog X‘

log ~ lo log
ylog )/0 )red - (X & Xylog YV() )red

is an isomorphism. The final assertion follows immediately from Remark
2.4. This completes the proof of Lemma 3.4. [J

Finally, we give a category-theoretic characterization of log residue fields

in Schlffslog (cf. Definition 2.7).
COROLLARY 3.5. Let S'°8 be a locally Noetherian fs log scheme and
flog . ylog _, X8 ¢ morphism in Schl’o%log. Assume that Y'°% is an fs log

point. Then f1°8 is a log residue field of X'°8 if and only if f'°% satisfies the
following condition:

(t) For any morphism ¢'°¢ : 7% — X8 ip Schl:%log such that Z'°8
)’(bg Ylog £ & then the natural projec-

ylos = 7198 s an isomorphism (where we note that

is an fs log point, if Z1°8 x

tion Z'°% x g(log

since Y1°8 is an fs log point, the fiber product Z'°% x® Y18 egists in

Xlog
Schlg%log, cf. Lemma 8.4):
7/log Xg(log Y log 7é o s Ylog
21 5
7log g s Xlog

In particular, the property that f1°8 : Y198 — X198 s g log residue field of
X% may be characterized category-theoretically (cf. Lemma 3.1 (i), Propo-
sition 8.3) from the data (Schlffslog7 flog),

PRrROOF. Necessity follows immediately from Lemma 3.4. In the re-
mainder of the proof of Corollary 3.5, we prove sufficiency. Assume that
flog . ylog —, Xlog gatisfies condition (). Write 2 € Im(f) for the unique
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point contained in Im(f) C X and ¢'°¢ : Z'°¢8 — X198 for the log residue
field determined by x € X. Then, by the necessity portion of Corollary
3.5, the natural projection Z'°8 x}l
Hence, by condition (1), the natural projection Z'°8 x}log ylog =, Zlog i an
isomorphism. Thus f°8 : Yl — X2 is jsomorphic as a log scheme over
X8 to the log residue field ¢'°8 : 798 — X198 This completes the proof of

Corollary 3.5. [J

op Y108 =5 Y18 £ & is an isomorphism.

4. Strict Morphisms

In this section, we assume that
¢ C {red, qcpt, gsep, sep, ft }.

In the present section, we give a category-theoretic characterization of

hlffslog (cf. Corollary 4.6).

First, we prove the following property of the strict locus of a morphism
of fs log schemes.

strict morphisms in Sc

LEMMA 4.1. Let f'°8 : X8 — Y198 pe o morphism of fs log schemes.
Write

the composite of f1°8 : X108 — Ylog yth
Str(f1o8) Al rex | the log residue field Spec(k(x))\*8 — X108
determined by x € X is strict

Then the following assertions hold:

(i) Str(f'°8) C |X| is an open subset. Thus, Str(f'°8) C X may be re-
garded as an open subscheme.

(ii) Let
1
Xlos P, xps
strict
1
flogl J/ OOg
log
log q log
Y 0

strict

be a commutative diagram of fs log schemes such that plog and qlog are
strict. Then it holds that Str(f°8) = p~1(Str( (1]082))'
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(iii) The open immersion Str(f°8) — X (cf. (i)) is quasi-compact.

PrOOF. First, we prove assertion (i). Let Zp — X be a geometric point
such that Im(Zo — X) C Str(f°¢). Then f2 : (f "My )z, — Mxz, is an
isomorphism. Hence, there exists an étale neighborhood ig : Uy — X of Zg
such that io_lf_1My = io_lﬂx is an isomorphism. Thus Im(zyg — X) C
[Tm(ig)| C Str(f°8). Since ig is étale, |Im(ig)| C | X| is an open subset. This
implies that Str(f!°8) C |X| is an open subset. This completes the proof of
assertion (i).

Next, we prove assertion (ii). Let k%8 : Z1°6 — X198 be a strict morphism
of fs log schemes. Since p'°% is strict, p'°% o hl°8 is also strict. Since ¢'°8 o
flog o plos — féog o pl°8 o hl°8  and ¢!°¢ is strict, it holds that

18 o Blo8 is strict if and only if fi°® o plo8 o hlo8 is strict.

This implies that Str(f'°8) = p~!(Str( éog)). This completes the proof of
assertion (ii).

Next, we prove assertion (iii). By [Stacks, Tag 02KQ] and [Stacks, Tag
022C], to prove assertion (iii), it suffices to prove that there exists an étale
covering { f; : Uy — X }iey of X such that for any ¢ € I, the open immersion
£ H(Str(f°8)) < U; is a quasi-compact morphism. Hence, by assertion (ii)
and [KK, Definition 2.9 (2), Lemma 2.10], to prove assertion (iii), we may
assume without loss of generality that there exist a morphism of fs monoids
¥ : N — M and a commutative diagram of fs log schemes

1o,
xlos P, Qpec(Z[M])#

strict

flogl J{wlog

vis — L5 Spec(z[N])
— where we write Spec(Z[—])'¢ for the log scheme determined by the
monoid ring Z[—] and the morphism of monoids (—) — Z[—], and we write
Y8 : Spec(Z[M])'*¢ — Spec(Z[N])'°¢ for the morphism of log schemes
determined by ¥ : N — M — such that p'°® and ¢'°% are strict. Then,
by assertion (ii), it holds that Str(f'°8) = p~!(Str(1)!°8)). Moreover, since
Spec(Z[M]) is Noetherian, the open immersion Str(:/'8) < Spec(Z[M]) is
a quasi-compact morphism (cf. [Stacks, Tag 010X]). Thus Str(f°8) «— X


https://stacks.math.columbia.edu/tag/02KQ
https://stacks.math.columbia.edu/tag/022C
https://stacks.math.columbia.edu/tag/01OX
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is also a quasi-compact morphism (cf. [Stacks, Tag 01K5]). This completes
the proof of Lemma 4.1. [J

Next, we give a category-theoretic characterization of strict morphisms
(cf. Corollary 4.6).

LEMMA 4.2. Let S°8 be a locally Noetherian fs log scheme and f'°8 :
Xlog —, ylog o morphism between fs log points in Sch'os Assume that the

diagonal morphism X8 — X108 X’ , X1% in SCh‘/Slog

1 1 1 ¢
note that since X'°¢ and Y% are fs log points, the fiber product X™°¢ X J,,,

Xog egists in Sch’%log, by Lemma 3.4). Then, for any geometric point
T — X, it holds that

‘/Slog

is strict (where we

coker (22 : (f~ My)® — MY;) ©2Q = 0.

Proor. Let £ — X be a geometric point. Write
d f = i
M = Mx z U 2~ My)a, 2 Mx z.

Since the groupification functor (—)8P : Mon — Ab and the functor (—)®zQ
preserve push-outs, it holds that

dimgQ(M® @7z Q) =2 dim@(ﬂ%&—; ®z Q) — dlmQ(Im(f #P) 27.Q).
Hence, to prove Lemma 4.2, it suffices to prove that
dimg(M® ®7 Q) = dimQ(M?j ®7 Q).

By (the proof of) Lemma 3.4, the diagonal morphism Al°& : Xlog

X198 %1 10; X198 in Sch/Slog is strict. Hence the composite of the natural

morphisms

sat sat
<MX@ U (=1 My ) f2 MX@) — (MX Upe =1y, 2 Mx)i

-1
— (A MX]OnglogXlOg> .


https://stacks.math.columbia.edu/tag/01K5

Categories of Reduced Log Schemes 209

induces an isomorphism Z; o MS® /(M) 5 M z. By Lemma 1.7,
Lemma A.1, and Lemma A.2, M is sharp, quasi-integral, and finitely gen-
erated. Hence M™' is sharp and fine. This implies that M is fs (cf.
Remark 1.2 (iii)), and, moreover, (M®*)* is a finite abelian group. Hence

the morphism M®&P ®7Q — ﬂip@ ®7 Q induced by Z; is an isomorphism.
In particular, it holds that dimg(M*5P ®z Q) = dim@(ﬂ%?i ®z Q). This
completes the proof of Lemma 4.2. [J

LEMMA 4.3. Let S'°% be a locally Noetherian fs log scheme and p'°% :

Xlog _, ylog o morphism in Schl’o%log. Assume that the following conditions
hold:

(i) | X| is irreducible, and Y'°% is an fs log point. Write n € X for the
unique generic point.

(i) For any geometric point @ — X such that the log residue field
determined by the image of * — X belongs to the full subcategory
Schl’o}gslog C Sch}oglog, it holds that coker(ﬁ;’gp) ®7Q = 0.

(iii) The composite of p'°8 : X8 — Y8 and the log residue field
Spec(k(n))'°& — X8 determined by n € X is strict.

Then p'°8 is strict.

Proor. Let £ — X be a geometric point such that the log residue
field Spec(k(x))°¢ — X!°¢ determined by # — X belongs to the full sub-

category Schl:;gslog C Schl/osglog

n € Im(7 — X). Then, since Y'°8 is an fs log point, the localization mor-
phism (p~'My)z = (p~'My); is an isomorphism. Moreover, by condition
(iii), 13'7’7 : (p7'My); = Mx 5 is an isomorphism. Since the following dia-

. _boepy . -
gram of monoids commutes, coker(p,") is a direct summand of M%gj:

and 7 — X a geometric point such that
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where MXE — Mxﬁ is the localization morphism. Thus, since ﬂipm i

torsion-free, coker(p28P) is also torsion-free. Hence, by condition (ii), p2%” is

surjective. Since the above diagram commutes, p; 28

is an isomorphism, and,
moreover, Mxz — M X,; is injective. Hence, pm is also an isomorphism.
Since Mx z and (p ~I My )z are fs monoids, this implies that there exists an

open subscheme U C X such that the following conditions hold:
° 25blU : (p~'My)|y — Mx|y is an isomorphism.

e For any geometric morphism z — X, if the log residue field
Spec(k(x ))log — X' determined by Z — X belongs to the full sub-

category Schid8. . C Sch'%, . then Im(z — X) C U.

‘/Slog /Slog I

Since S is locally Noetherian, the second condition implies that U = X.
Thus 7 is an isomorphism. This completes the proof of Lemma 4.3. [

PROPOSITION 4.4. Let S'°% be a locally Noetherian fs log scheme and
plog 1 G'°8 — Y% ¢ group object in Sch./slog over Y198 such that Y18 is an

fs log point. Write €'°8 : Y108 — Gl°8 for the identity section. Assume that
the following conditions hold:

(a) |G| is connected.
(b) The identity section €'°% : Y198 — G s q log residue field.
Then the following assertions hold:

(i) For any geometric point g — G such that the log residue field
determined by the image of § — G belongs to the full subcategory
schf%log c schl/‘)gbg, it holds that coker(p;®) ®z,Q = 0.

(i3) p'°® is strict.

PROOF. First, we prove assertion (i). Let § — G be a geometric point
such that the log residue field determined by the image of § — G belongs

to the full subcategory Sch‘/ C Sch'®8._ . Write

Slog /Slog

o glo8 : Yolog — G'°8 for the log residue field determined by the image of
9—G;
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log ,def 1
o Gl °f log ¢ ¥ o plogoglogyo % Y, 18 £or the group object in Schlos N

obtained by base-changing p'°® by p'°8 o g!°8 (where we note that since
plog o glos YOlog — Y8 is a morphism between fs log points, the fiber

product G'°& X;log Plogoglos Yolog exists in Sch'%8 cf. Lemma 3.4);

’/Slog?

def ) . )
° elog 22 elog x)’/log’plogoglog ldylog : Olog — Gg)g for the identity section
of Glog
. g(l)og : YOlog — Géog for the morphism over Yolog determined by ¢'°%

105 Glog

o plog Glog = Glog for the left translation isomorphism of Glog deter-
Inlned by the morphism géog : YOIOg — G%)Og over Yolog.

log log

Then g = ¢'°% 0 e”®. Moreover, by condition (b) and Lemma 3.4, e
is strict. In particular, géog is strict. Since ¢'°% is strict, it follows from
Lemma 3.4 that the natural projection Y10g x}‘,log YOIOg — Géog (cf. the
commutative diagram below) is also strict. Thus the diagonal morphism
YOIOg — Yolog x$ Yolog is strict:

Ylog
gé)og :strict
log log log log log
Yb - Yb Ylog Y strict GO ’ Yb
l O l O lplogoglog
log log
1 g p
Y, y (Glo8 y Ylos,

log residue field

Hence it follows from Lemma 4.2 that coker(p ’gp) ®zQ = 0. This completes
the proof of assertion (i).

Next, we prove assertion (ii). By condition (b), Str(p'°8) # & (cf.
Lemma 4.1). Let n € Str(p'°®) be a point. Then, by assertion (i) and
Lemma 4.3, the composite

{n}red Glog P Ylog

(cf. Definition 2.1 (v)) is strict (where we note that since Gl°% € Schl’o}gslog,

—1 —1
and {n}r(;i < G is a strict closed immersion, {77};;3 belongs to the full
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subcategory Sch$®.  C Sch'®& ). Hence {5} C Str(p'°¢). In particular,

’/Slog /Slog
we conclude that |Str(p'°8)| C |G| is stable under specialization. Moreover,
by Lemma 4.1 (i) (iii), Str(p°®) — G is a quasi-compact open immer-
sion. Thus, by [Stacks, Tag 05JL], |Str(p'°®)| C |G| is closed. Since |G| is
connected, we conclude that Str(p'°®) = G. This completes the proof of
Proposition 4.4. O

COROLLARY 4.5. Let S'°8 be a locally Noetherian fs log scheme and

flog . xlog _, ylog o morphism in Schl’o%log. Assume that X8 and Y'°8

are fs log points. Then fl°% is strict if and only if there exist a group object
Glog — Ylog j Schlos over Y'°8 and a morphism ¢'°% : X'°8 — G198 oyer

‘/Slog
Yies in Schl‘o%log such that the following conditions hold:

(1) |G| is connected.
(i) The identity section e'°8 : Y1°8 — G198 js q log residue field.
(iii) g'°8 is a log residue field.
In particular, the property that
flo8 is a strict morphism between fs log points

may be characterized category-theoretically (cf. Lemma 3.1 (i), Proposition
3.8, Corollary 3.5) from the data (Schl‘ofslog, flog).

PROOF. First, we prove necessity. Assume that f1°% : X108 — Y108 i 5
strict morphism between fs log points. Write

o k¥ 1(Y,0),
e A for the symmetric k-algebra determined by the underlying k-linear
space of I'(X, Ox),

o ¢ Spec(A) — Y for the affine space over Y determined by the
k-linear space I'(X, Ox) equipped with the natural (additive) group
scheme structure over Y, and

o P98 . G2 _ Y18 for the strict morphism obtained by pulling back
the log structure of Y8 via G — Y.


https://stacks.math.columbia.edu/tag/05JL
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Note that since X'°8 and Y'°¢ are fs log points, if {ft} C @, then the
underlying morphism of schemes f : X — Y is finite. Hence, regardless

of whether or not {ft} C #, it holds that G°& ¢ Schl’ofslog. Since p'°% is

strict, and G is a geometrically integral affine scheme over Y, G x y1,; G1°8
and G'°8 X y1; GI°8 Xy10; G°8 belong to the full subcategory Schl‘o/gslog -

log log
Sch /glos

Hence the evident group object structure of GI°% in Sch /Slos
Y°8 may be regarded as a group object structure of GI°¢ in Sch

over
log
‘/Slog

Yog  Moreover, the group object G in Schlgfslog over Y198 clearly satisfies

over

conditions (i) and (ii).

Write g : X — G for the closed immersion determined by the tauto-
logical surjection of k-algebras A — T'(X,0Ox). Then f = pog. Since
plos : Gl — Yo and flos . Xlog . ylog are strict, the pull-back of the
log structure of G°¢ to X via g is isomorphic to the log structure of X8
Thus we obtain a strict closed immersion ¢'°¢ : X8 — G°8 guch that
flo8 = plog o glog  In particular, ¢'°% satisfies condition (iii). This completes
the proof of necessity.

Next, we prove sufficiency. Assume that there exist a group object

. 1 .
G — Y& in Sch :%log over Y% and a morphism ¢°% : X8 — Glos

over Y1°8 in SChl;)fslog such that G'°8 — Y'°¢ and ¢'°¢ satisfy conditions (i),

(ii), and (iii). Since G!°8 — Y°¢ satisfies conditions (i) and (ii), it follows
from Proposition 4.4 that G°8 — Y98 is strict. Thus, by condition (iii),
flog . Xl°8 _, ylog ig also strict. This completes the proof of Corollary
4.5. 0

COROLLARY 4.6. Let S'°8 be a locally Noetherian fs log scheme and

flog . Xlog _, ylog o morphism in Schl’o%log. Then f°8 is strict if and only
if for any commutative diagram
Zlog i'og Xlog
plogl J/flog
log
Wlog J ylog
in Schl® if i°8 is a log residue field of X'°%, and j'°% is a log residue

‘/Slog7
field of Y98 | then p'°8 is strict. In particular, the property that f'°8 is strict
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may be characterized category-theoretically (cf. Corollary 3.5, Corollary 4.5)
from the data (Schl‘o%log, floe).

ProoF. Corollary 4.6 follows immediately from Corollary 4.5. [
Now we prove the first equality of Corollary B.

COROLLARY 4.7. Let S°8,T'°% be locally Noetherian fs log schemes
and 4,0 C {red,qcpt, gsep,sep} subsets such that {qsep,sep} ¢ @, and

{asep,sep} ¢ O. If the categories Schl‘ofslog and Schlng10g are equivalent,
then ¢ = O.

ProoF. Corollary 4.7 follows immediately from Corollary 4.6, [YJ,
Cor-ollary 4.11], and [Stacks, Tag 010Y], where we apply [YJ, Corollary
4.11] to the categories obtained by considering the full subcategory of

Schl:%log or Schlnglog determined by the objects whose structure morphism
is strict. [

5. Log-like Morphisms

In this section, we assume that
¢ C {red, qcpt, gsep, sep, ft }.

In the present section, we give a category-theoretic characterization of
log

N that represent the functor

the morphisms of monoid objects in Sch

Schl’o%log — Mor(Mon)

Xlog [ax(X):T(X,Mx) — I'(X,Ox)],

which arises from the log structures of objects of SchI;’/gslog (cf. Definition
5.2, Proposition 5.7). We then use this characterization to complete the
proof of the main theorem of the present paper (cf. Theorem 5.9, Theorem
5.10).

First, we introduce some notation used in this section.


https://stacks.math.columbia.edu/tag/01OY
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DEFINITION 5.1.

Let C be a category. Then we shall write Mon(C) for the category of
monoid objects in C.

Let C be a category and A a ring object in C. Then we shall write
(A, x) for the underlying multiplicative monoid object of the ring
object A in C.

We shall write A%Og for the fs log scheme over Z whose underlying
scheme is AJ, = Spec(Z[t]), and whose log structure is the log structure
determined by the morphism of monoids

N — Z[t],

n— t".

We shall write G, 7 C Alz for the unit group scheme of the ring scheme
A}, over Z.

Let X2 be an fs log scheme and Y a scheme. Then we shall write
Xg »7 YV for the fs log scheme whose underlying scheme is X x7Y,
and whose log structure is the log structure obtained by pulling back
the log structure of X'°¢ via the natural projection X xzY — X.

DEFINITION 5.2 (a};ﬁ%gA). Let S8 be a locally Noetherian fs log

scheme and f°8 : Xl& — §log a4 morphism of fs log schemes. Then an
clement m € T'(X, Mx) determines a morphism of monoids §° : N —
I'(X, Mx) and a morphism of rings g% : Z[t] — I'(X,Ox) such that the
following diagram commutes:

g’ :1—m

(X, Mx)

1Htl laX(X)

g#:t’_’O‘X(X)(m) F(X OX)

Hence we obtain a morphism of fs log schemes ¢'°8 : Xlog — AIZ’lOg. Con-

versely, each morphism of fs log schemes ¢'°¢ : Xlog — Alz’log determines
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an element ¢°(1) € T(X, Mx). One verifies easily that these assignments
determine an isomorphism of functors
D(—, M(_)) = Homgus(—, 5™ x7,A7'°%).
In particular, S°8 xz A%Og represents the functor

Schl/oglog

Xlog —s F(X,MX),

— Mon,

log
/Slog )

Moreover, the family of morphisms of monoids

which implies that S8 x 7 AIZflog has a monoid object structure in Sch

log
g gios-

{ax(X) :T'(X,Mx) - T'(X,O0x)

hence also in Sc

}Xlogesch'Og

#/5slog
determines a morphism of monoid objects ag)l%,g7 A Slog x A%log — (Slog %7
1 : log
A7, x) in Sch’/Slog.

The log structure of §°8 x ZAlz’log may be identified with the log structure
obtained by pushing forward the log structure of S8 xz Gz to S xz7 Alz
via the open immersion S x7 Gy, 7 — S szIZ as follows (in the case where
the log structure of S'°¢ is trivial, cf. [KK, Example 1.5 (1) (2)]):

LEMMA 5.3. Let S°8 be an fs log scheme. Then the log structure of
Slog w7 A%’log is isomorphic to the log structure determined by the push-
forward of the log structure of S'°% X7.Gp 7 to S XZ‘,A% via the open immer-
sion S xX7,Gpz — S XzAlz.

PROOF. Write

o i:Sx7G,z— S Xz Alz for the inclusion morphism,

e p:Sxyg Ai — S for the natural projection,

o a1 : M| — OSXZA% for the log structure of S8 x7, Alzflog, and

° s : My — OSXZAi for the log structure on S x7 Alz obtained by

pushing forward the log structure of Slog Gz to S szlz via the
open immersion ¢ : S x7 Gy, 7z — S X7 AIZ.
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Since the log structure of S'°8 xz G,z is isomorphic to the log structure
i*(My, ), there exists a unique morphism of sheaves of monoids ¢ : M; —
M on the étale site of S XZAIZ such that the following diagram of sheaves
of monoids on S x7 A%‘ commutes:

01 Tx z‘“b

LM v 5 a1 F—1, %
Osrm <2 My " i My =0 i1 M
J/Elltp ’
O , Q2 M 0o < ._IM i*iilﬁg .1 *M
SXZA% < 2 7 1yl 9 < Wl P S,

where, for each k € {1, 2}, ]52 : p* Mg — My, is the morphism of sheaves of
monoids on S X ZA% that arises from the morphism of log schemes ]510 1 (Sxz
AIZ,Mk,ak) — S and 6 : Mj, — i,i ' M, is the natural morphism.
Then it follows immediately from various definitions involved that for each
k € {1,2}, the natural morphism 6 : My, — i,i My is injective. Thus,
to prove that the morphism of sheaves of monoids ¢ : M; — My is an
isomorphism, i.e., to prove that the morphism of sheaves of monoids ¢ :
M1 — Ms is surjective, we may assume without loss of generality that
S is isomorphic to the spectrum of an algebraically closed field. But then
Lemma 5.3 follows immediately. [

DEFINITION 5.4. We shall say that a morphism of log schemes f'°¢ is
log-like if the underlying morphism of schemes is an isomorphism (cf. the
terminology of [Mzk04]).

LEMMA 5.5. Let S°% be a locally Noetherian fs log scheme and f'°8 :

Xlog _, ylog g morphism in Sch'os Then the following assertions hold:

‘/Slog
(i) (cf. [Mzkl5, Proposition 1.11 (i)]). There exists a factorization

Xlog g Zlog hlos Ylog
of f1°8 in Schlos o/ 5lox such that g'°8 is log-like, and h'°% is strict.
lo.
(ii) (cf. [Mzk15, Proposition 1.11 (ii)]). The factorization X'°& LA

lo;
Zlog M, yrlog of (i) may be characterized up to a unique isomor-

phism, via the following universal property: The morphism h°% is
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(iii)
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strict, and moreover, if

log

xlog Yo, gO Zlog ho ylog

log
’/Slog
there exists a unique morphism r'°8 :

such that hlog s strict, then
78 — Z)%% in Schigs

that g% = 1198 o gl°8 | and hi® o rlog = plos:

is a factorization of f'°% in Sch

¢/ 5008 such

hlog

lo glog lo lo
X8 > /08 > Y08
log-like strict
H El!rlogl ’
glog hlog
Xlog 7y 0, ylos
0 strict ’

Let

lo
Xlog f g; Ylog

plogl lqlog

Xlog fO YlOg

be a commutative diagram in Sch’/slog,

Xlog g9"° Zlog hlog Ylog
a factorization of f'°8 such that ¢'°% is log-like, and h'°% is strict;

hlog

log
log Y90 log "o log

Xyo— Zy° —Y,

V8 in Schig h that hy® is strict. Th
is a factorization of fy° in Sc 8/ 510z SUC that s strict. en
there exists a unique morphism r°8 : Z1°8 — Zlog in SChQ/Slog such

log log __ ,.lo lo log log _ ,lo log .

that gy° o p°® = 1r°® 0 g°°%, and hy° or°® = q° o h°8;

log 1

Xlog I zlog M, ylog
log-like strict

plogl E”,r,jogl lqlog
lo log

1 9o 1 ho 1

X y 708 - > Y8,

strict
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PROOF. Assertions (i) and (ii) follow immediately by considering the
pull-back of the log structure of Y1°8 to X via f. Since
(gg)ogoplog’flog) hgog xid
—_—

lo ylog lo
X'los ylos.

log log
ZO X Yolog Y

log
/Slog

of fl°8 and hg)g X idyr1eg is strict, the existence and uniqueness portions of
assertion (iii) follow, respectively, by purely formal considerations, from the

existence and uniqueness portions of assertion (ii) (applied to Schl/oglog). O

(where we note that the fiber product is taken in Sch ) is a factorization

COROLLARY 5.6. Let S'°8 be a locally Noetherian fs log scheme and
flog . Xlog _, ylog o morphism in SChlf%log- Then f°8 is log-like if and
only if the following condition holds:

For any factorization
Xlog g'8 Z(l)Og hloe Ylog

of f°8 in Schl’o/gslog such that hI°8 is strict, there exists a unique mor-

phism 718 ; Y& — Z(l)og in Schi%_  such that g'°® = r°8 o flo8  and

‘/Slog
hl°8 o 1198 — id 1

lo flos lo lo
Xlos I ylew  ylo
’ s |
1
Xlos 97, glog N, ylog
0 strict ’

In particular, the property that f'°8 is log-like may be characterized category-
theoretically (cf. Corollary 4.6) from the data (SChl‘)%log, flog),

ProOOF. Corollary 5.6 follows immediately from Lemma 5.5 (i) (ii). O

Next, we give a characterization of the morphisms of monoid objects in

Schl’c’%log that are isomorphic as objects of Mor(Mon(Schl’O%log)) to al;%gA :

S8 57 AZ'°8 — (8198 x7 AL x) (cf. Definition 5.1, Definition 5.2).
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PROPOSITION 5.7. Let

e S8 be a locally Noetherian fs log scheme,

o A% g ring object of Schloofslog that is isomorphic as a ring object in

Schl’ofs10g to S°8 x 7 AL, and

o a8 : MO8 — (Al°8 X)) @ morphism of monoid objects in Schl’/gslog
Write AX1°8 < Al°8 for the strict open immersion from the group of units of
the ring object A8 € Schlo/slog (where we note that since A8 =2 §198 x 7 A1,
it holds that A*1°8 =~ glog v, Gm,z). Then alos ;o Ml (Al %) s

isomorphic as an object of Mor(Mon(Schlffslog)) to

al%g, 5B Xz A — (S8 xz AL, X)) (¢f. Definition 5.2)

if and only if the following conditions hold:
(i) a8 is log-like.
(i) The natural projection AX18 leog Mg =, Ax108 s an isomorphism
(where we note that by Lemma 3.4, the fiber product

X,log ¢
A X Jlog

). Write z : A8 s Vo8 for the strict open

Mlog
erists in SCh’/slog
immersion over A°% determined by the natural projections A*1°8 <~
A% log X’ Mlog FEN Mlog

(iii) For any log-like morphism f°8 : X8 — Alog jn SCh‘/Slog such that

the natural projection A*1°8 X’ Xlog = AX08 s an isomorphism
(where we note that by Lemma 3 4, the fiber product A*:1°8 ><‘ Xlog

exists in Sch'® ), there exists a unique morphism g8 M log — Xog

’/Slog
in Sch'%8 such that f'°8 o gl°8 = 1o and il)(;g = g8 o zlj&g

’/Slog

.log

X,log 'x log
A — X

log log
Mlog —_ @ 4
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1

where iy° : AXlog o Xog s the strict open immersion over A8

determined by the natural projections A*198 <~ Ax:log leog Xlog sy
Xlog_

PRrROOF. Necessity follows immediately from Lemma 3.4 and Lemma
5.3. In the remainder of the proof of Proposition 5.7, we prove sufficiency.
Assume that conditions (i), (ii), and (iii) hold. Let

log . log log
ag°t My® — (A8, x)
log

‘/Slog

object of Mor(Mon(Schl:%]Og)) to a?g Slog Al log _, (Sl x7 AL, x).

Write z'%)og s AXlog Méog for the strlct open immersion determined by the
Soe My log log By condition (iii),
we obtain a unique morphism ¢'°¢ : M8 — M(l)Og such that O‘o 8oglog = qlog,
and i>® = g'°% 0 i’ On the other hand, by conditions (i) (i) and the
necessity portion of Proposition 5.7, we obtain a unique morphism g(l)og :
Mé(’g — M™% such that o!°% o g(l)Og = aéog, and ZIOg = glog o zg’g. Then it
holds that

be a morphism of monoid objects in Sch that is isomorphic as an

natural projections Axlog = gx;log «*

alog _ alog o glog _ alog o géog o glog

a%]og — o8 o glog — 103 o glog o glog

Zi\ojg . g(l)og 1 g glog o ZIOg

ilog = glog szg — g% 0 gi*8 o %,
lo

By the uniqueness portion of condition (iii), g3® o ¢’ = idjpes. In a
similar vein, by condition (iii) and the necessity portion of Proposition 5.7,

g% o géog = id, os. Thus the underlying morphism of log schemes alos
0

M8 — Al°g ig isomorphic as an object of I\/Ior(Schl’ofslog) to alsoég A . Slog ><Z

AIZflog — S8 x7 AL, Finally, since 11]3[‘% = géog o zg’g, the isomorphism 90
is compatible with the monoid object structures on the objects M'°8 and

Méog of Sch'°®

INEE This completes the proof of Proposition 5.7. [

Next, we summarize the properties of fs log schemes and morphisms of
fs log schemes that were characterized category-theoretically in the present

paper.
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COROLLARY 5.8. Let S§'°8, T'°¢ be locally Noetherian fs log schemes,
¢, O C {red, qcpt, gsep, sep, ft }

[possibly empty] subsets, and F : SChl:’?S]og = Schi?leog an equivalence of
categories. Then the following assertions hold:

(i) Let fl°8 : Y18 — X8 be a morphism in Schl‘ofslog. Then the following

assertions hold:
(i-a) X'°8 is an fs log point if and only if F(X'°8) is an fs log point.
(i-b) f1°8 is strict if and only if F(f'°8) is strict.

(i-c) 198 is log-like if and only if F(f'8) is log-like.
(i) Let A°8 be a ring object in Schl:/gSng and o!°8 : M8 — (A8 x) q

morphism of monoid objects in Sch'%

TS Assume that

o Al is isomorphic as a ring object of Schlf%log to S8 xz AL

and

o F(A!°®) is isomorphic as a ring object of Schlnglog to T8 xzAL.

Then o8 is isomorphic as an object of I\/Ior(l\/lon(Schl:%bg)) to
log . Slog Alylog Slog Al
Qg A+ xz Az " — ( xz Az, X)

(cf. Definition 5.2) if and only if F(a!°®) is isomorphic as an object
of l\/Ior(l\/Ion(Schg;ngog)) to

1 1 1 1 1
ap T xz, Az — (T8 xz Az, x).

PROOF. Assertion (i-a) follows immediately from Proposition 3.3. As-
sertion (i-b) follows immediately from Corollary 4.6. Assertion (i-c) follows
immediately from Corollary 5.6. Assertion (ii) follows immediately from
assertion (i-¢) and Proposition 5.7. OJ

Let us recall that 4/5'°8 is a set of properties of (U-small) schemes over
the underlying scheme of S'°% (cf. Notations and Conventions — Properties
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of Schemes and Log Schemes). For any (U-small) scheme S, we shall write
Sch,g for the category of (U-small) S-schemes and Schg /g C Sch/g for the
full subcategory of the objects of Sch g that satisfy every property contained
in ¢/5S.

Finally, we prove the main result of the present paper.
THEOREM 5.9. Let S'°8 T'°8 be locally Noetherian fs log schemes,
4.0 C {red, qcpt, gsep, sep, ft }
[possibly empty] subsets, F : Schlf/gslog = Schlnglog
gories, and X8 € Schlsfslog an object. Assume that the following condition
holds:

an equivalence of cate-

(t) For any equivalence F : Schy g = Schgy 7 and object X € Schy /g,
there exists an isomorphism of schemes X — F(X) that is functorial
with respect to X € Schy /g (for fized ).

Then the following assertions hold:

(i) There exists an isomorphism of log schemes X'°8 = F(X°8) that is

functorial with respect to X'°% € SChl‘)%bg-

1) Assume that ¢ = ¢. en there exists a unique isomorphism of log

i) A that ¢ = O. Then th st j ) hi l
schemes S1°¢8 =5 T'98 such that F is isomorphic to the equivalence
of categories Schl’o%log = SChl:/ngog induced by composing with this

isomorphism of log schemes S°8 = T8,

PRrROOF. First, we prove assertion (i). For each x/Z € {4/S,0/T},

write SChLO/gzlog|schlk - Schio/gzlog for the full subcategory determined by the
objects of Schio/gzlog|sch1k whose structure morphism to Z'°% is strict. Then,

by Corollary 5.8 (i-b), F' induces an equivalence of categories
~ o F o ~
(SCh./S ——>) SChl’}gS1og|schlk ?} SChl<>§Tlog|schlk <—> SChQ/T) .

Thus, condition (1) implies that if we write F(X'®) for the underlying

scheme of the log scheme F(X°%), then it follows immediately from Lemma
5.5 (i) (iii) that we obtain an isomorphism of schemes

X = P(X"®)
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that is functorial with respect to X8 ¢ Schlffslog. Hence, in particular, for
any ring object A€ € Sch'® it holds that

‘/Slog?

Al°8 is isomorphic as a ring object of Sch'os to S1°8 xz Al if and

’/Slog
only if

F(A'®) is isomorphic as a ring object of Schlnglog to T8 x5 AIZ'
Since the map between sets of (—)-valued points of S°8 XzAlzflog and S'°8 x 7
Al induced by composing with algi : Slog XZAlz’log — (S™&xzAL, x) may be
naturally identified (cf. Definition 5.2) with the morphism between sheaves
of monoids that defines the log structure on “(—)”, it follows from Corollary
5.8 (ii) that assertion (i) holds.

Next, we prove the existence portion of assertion (ii). Write

. ylog ~ log
{@X}og X —>F(X )} o
XlogGSchl‘islog
for the family of functorial isomorphisms of log schemes discussed in asser—
tion (i) and p'°8 : F(S8) = T8 for the structure morphism in Sch'd® NS
Then, it follows immediately from the functoriality of the family

{©x108 } yiogegeplon that F' is isomorphic to the equivalence obtained by
’/Slog

composing with @gig 0 p'°8 : S8 = Tlog,
Finally, we prove the uniqueness portion of assertion (ii). Let

flog’ giog Slog Tlog

be isomorphisms. For any object X°8 ¢ Sch write p Xlog . Xlog _, glog

/Slog 9
for the structure morphism. Let

1 1 1
= {1hhe : X® — X8 }X1°8€Sch1°g

Xlos ’/Slog
be a family of isomorphisms of log schemes such that f1°% o pl;%o . = g% o
pl)‘;%og Q/Jl;lgog, and w log 18 functorial with respect to X log Schl’ofslog. Then
flog = glog o z/;g)ég. By the functoriality of v, for any strict open immersion

plgig U'e < S8 it holds that wg’l%g o plgig = plgig wg’ig. Hence, in
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particular, the underlying morphism of topological spaces of wgﬁg is equal
to idjg (cf. [John, Theorem 7.24]). By the functoriality of ¢, for each

i € {0, 1,00}, it holds that (w};%gxzplz)o(idslog X1) = (idguog xi)oquﬂfg (where

we regard i as the morphism of schemes Spec(Z) — P4 corresponding to
i€ ZU{0}):

1d51Og X1

Slog Slog X7 Pl Slog X7 Al
log log log
wsloglz lwslog X7z ]pl lwslog Xz Al

id log X1
SIOg —>S ¢ SlOg X7 P% — SlOg X7 A%

Hence ngﬁgx = d)goég X idA% . In particular, by the functoriality of 2,

for any object X8 Sch1 N and any element s € T'(X, Ox), if we write

glog . xlog _, Glog ., A}, for the morphism in Sch's ¢/ 510

then 3'°% o wﬁig = (1#?& x idyy) o 58, This implies that wﬁlog (X)(s) =
log

s € I'(X, Ox), and hence that the underlying morphism of schemes of ¢,
is equal to idg. Next, observe that by the functoriality of v, it follows

from Lemma 5.3 that wlog Llog — 1#1;1%g x id ALtes- In particular, by the
N

corresponding to s,

log
‘/Slog
(Y My), if we write ¢°¢ : Y& — glog », Al ¢ for the morphism in

functoriality of 1, for any object Y18 & Sch and any element t €

Sch'o® o/ 5lox corresponding to ¢, then #1°% o wiﬁig = (wg)lfg x id AL log ) © 118, This
implies that wgflog (Y)(t) =t € T'(Y, My), and hence that wlé?l%g = idgog.

Thus f°8 = ¢!°8. This completes the proof of Theorem 5.9. []
THEOREM 5.10. Let
Slog Tlog
be locally Noetherian fs log schemes,

4.0 C {red, qcpt, gsep, sep, ft}

[possibly empty] subsets, and F : Schlofslog — Sch o/Tioe A1 equivalence of

categories. Assume that one of the following conditions (A), (B) holds:
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(A) 4,0 C {red, qcpt, qsep,sep}, and the underlying schemes of S'°% and
T'% are normal.

(B) ¢ =0 = {ft}.
Then the following assertions hold:

(i) Let X'°8 ¢ Sch'% . be an object. Then there exists an isomorphism of

‘/Slog
log schemes X'°8 =5 F(X1°8) that is functorial with respect to X8 €
1
Sch’ofslog.

(i) Assume that ¢ = . Then there exists a unique isomorphism of log
schemes S8 = T8 such that F is isomorphic to the equivalence
of categories Schl‘o%log = Schl’ofTlog induced by composing with this

isomorphism of log schemes S'°8 = T8,

ProoFr. If condition (A) holds, then it follows immediately from The-
orem 5.9 (i) (ii) and [YJ, Corollary 6.24] that assertions (i) and (ii) hold.
If condition (B) holds, then it follows immediately from Theorem 5.9 (i)
(ii) and (the proof of) [Mzk04, Theorem 1.7 (ii)] that assertions (i) and (ii)
hold. This completes the proof of Theorem 5.10. [

COROLLARY 5.11. Let S8 T'¢ be locally Noetherian normal fs log
sch-emes and

4.0 C {red, qcpt, gsep, sep}

subsets such that {qsep,sep} ¢ &, and {qsep,sep} ¢ . If the categories
Schl:fslog and Schlg?;Tlog are equivalent, then ¢ = O, and S'°& =2 T8,

Proor. Corollary 5.11 follows immediately from Corollary 4.7 and
Theorem 5.10 (ii). O

Appendix A. A Lemma of Nakayama
In this appendix, we prove an extension of [Nak, Lemma 2.2.6 (i)] (cf.

Lemma 1.7) to the case where M, L are quasi-integral, and N is an arbitrary
sharp monoid (cf. Corollary A.5).
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LEmMMA A.l. Let f: N — M and g : N — L be morphisms of (arbi-
trary) monoids. Write P :d:ef MUy L; iy : M — P oand iy, : L — P for the
natural inclusions; w: M x L — P for the morphism determined by iyr and
ir,. Then m s surjective.

PROOF. Write P’ ;% Im(7), i : P — P for the inclusion morphism,
and for each x € {M, L}, i’ : * — P’ for the morphism induced by 7. Then,
by the universality of push-outs, there exists a unique morphism of monoids
r : P — P’ such that r oiy = i}, and 7 o iy = 9. This implies that
t1or = idp. Thus 7 is surjective, which implies that 7 is surjective. This
completes the proof of Lemma A.1. [J

LEMMA A.2. Let L,M,N be sharp monoids and f: N — M, g: N —

L local morphisms of monoids. Write P Aef ar Uy L; ipr : M — P and
i, : L — P for the natural inclusions; m : M x L — P for the morphism
determined by tpr and ip,. Then iy, i, and 7 are local, and P is sharp.

Proor. Write (IFy, x) for the underlying multiplicative monoid of the
finite field Fo = Z/2Z (so Fy = {1}). For any monoid *, write ¢, : * —
(Fg, x) for the unique local morphism of monoids. Since f and g are local,
it holds that pps o f = o = @1 0 g. Hence there exists a unique morphism
h: P — (3, x) such that pp; = hoiys, and ¢, = hoiy. Thus gy« = hom.
Since  is surjective (cf. Lemma A.1), h=1(1) = 0. This implies that P is
sharp, that h = ¢pp, and that iy, i7, and 7 are local. This completes the
proof of Lemma A.2. [J

DEFINITION A.3. Let M be a monoid. Then we shall write ny; : M —
M?8P for the natural morphism to the groupification.

LEMMA A.4. Let L, M, N be sharp monoids and f : N — M,g: N —
L local morphisms of monoids. Then the following assertions are equivalent:

(i) M Uy L is quasi-integral.

(ii) For any elements m € M, 1 € L, and n € N®P, if f8(n) = nyr(m),
and —g&P(n) = nr(l), then m =0, and [ = 0.

(i) M, L are quasi-integral, and, moreover, for any element n € N8P, if
f&P(n) € M™, and —g%(n) € L', then feP(n) = 0, and g&(n) = 0.
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PROOF. Write P - M Uy L: gy : M — P and iy, : L — P for the
natural inclusions; 7 : M x L — P for the morphism determined by i3; and
L.

To prove that (i) implies (ii), assume that P is quasi-integral. Let m €
M, 1l € L, and n € N8P be elements such that f&(n) = ny(m), and
—g®P(n) = nr(l). Then

np(m(m, 1)) = 7 (nar (m), nL(l)) = 7 (f (n), —g**(n)) = 0.

Since P is quasi-integral, w(m,[) = 0. Moreover, since 7 is local (cf. Lemma
A.2), we conclude that m = 0, and [ = 0. This completes the proof of the
implication (i) = (ii).

Next, we prove that (ii) implies (i). Assume that assertion (ii) holds.
Let p € P be an element such that np(p) = 0. Since 7 is surjective (cf.
Lemma A.1), there exist elements m € M and [ € L such that p = w(m,1).
Then

w8 (nar (m), (1)) = np(m(m, 1)) = np(p) = 0.

Hence there exists an element n € NP such that ny(m) = f8(n), and
nL(l) = —¢®P(n). Thus, by assertion (ii), it holds that m = 0, and | = 0.
This implies that p = 0, i.e., that P is quasi-integral. This completes the
proof of the implication (i) = (i).

Finally, by the definition of the notion of a quasi-integral monoid, asser-

tion (ii) is equivalent to assertion (iii). This completes the proof of Lemma
A4.0

COROLLARY A.5 (cf. [Nak, Lemma 2.2.6 (i)], Lemma 1.7). Let L, M,
N be sharp monoids and f : N — M,g : N — L local morphisms of
monoids. Assume that M and L are quasi-integral. Then the following
assertions are equivalent:

(i) M Uy L is quasi-integral.
(ii) For any element n € N®P, if f&P(n) € M™ and —g®(n) € L™, then
f&P(n) =0, and g% (n) = 0.

ProOF. Corollary A.5 follows immediately from Lemma A.4 (i) <
(iii). O
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