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Elementary Proof of Representation of Submodular

Function as Supremum of Measures on σ-Algebra with

Totally Ordered Generating Class

By Tetsuya Hattori

Abstract. We give an alternative proof of a fact that a finite con-
tinuous non-decreasing submodular set function on a measurable space
can be expressed as a supremum of measures dominated by the func-
tion, if there exists a chain (class of sets which is totally ordered with
respect to inclusion) which generates the sigma-algebra of the space.
The proof is elementary in the sense that the measure attaining the
supremum in the claim is constructed by a standard extension theorem
of measures. As a consequence, unique existence of the supremum at-
taining measure follows. A Polish space is an example of a measurable
space which has a chain that generates the Borel sigma-algebra.

1. Introduction

Let (Ω,F) be a measurable space, namely, a σ-algebra F is a class of

subsets of Ω and is closed under complements and countable unions. For a

measurable set A ∈ F denote by F|A, the class of measurable sets restricted

to A, and denote the set of finite measures on the measurable space (A,F|A)

by M(A).

For a set function v : F → R and a measurable set A ∈ F , let C−,v(A)

be a class of measures defined by

C−,v(A) = {µ ∈ M(A) | µ(A) = v(A), µ(B) � v(B), B ∈ F|A}.(1.1)

If

v(B) = sup
µ∈C−,v(A)

µ(B),(1.2)
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holds for all A,B ∈ F satisfying B ⊂ A, then it is easy to see that

v(A) + v(B) � v(A ∪B) + v(A ∩B), A,B ∈ F ,(1.3)

holds (see Proposition 1 in §2). A set function which satisfies (1.3) is called

a submodular function.

The converse that a submodular function satisfies (1.2) is also known

to hold under mild and natural assumptions. In fact, a proof in [5] proves

existence of a measure µ which satisfies v(B) = µ(B), so that the supremum

in (1.2) is attained.

The formula (1.2) has significance in the related fields of study, such as

coherent risk measures in mathematical finance and cores of convex games

in cooperative game theory. In view of wide interest in this formula, it may

be worthwhile to find an alternative elementary proof.

In contrast to a proof in [5] which seeks for wide applicability even be-

yond measurable spaces, we keep ourselves as close as possible to measures,

except for (1.3) which characterizes the submodular property. See the def-

initions in §2 for detail. Our proof in §3 is elementary in the sense that

we prove the existence of µ satisfying v(B) = µ(B) by the extension the-

orem of a measure on a finite algebra to the σ-algebra generated by the

finite algebra, in contrast to the proof in [5] which uses the Hahn–Banach

Theorem. As a consequence, uniqueness of µ does not follow in general in

the latter proof, while we have certain uniqueness result for µ (see Theorem

3 in §2). In this uniqueness result, it is essential that there exists a chain

I ⊂ F (a class of sets which is totally ordered with respect to inclusion)

which generates the σ-algebra F . Examples of measurable spaces (Ω,F)

which have such chains are given in §4. Polish spaces are in the examples,

hence our main result holds for spaces which are extensively used in the

theory of stochastic processes.

We also note that L∞([0, 1)) is not separable, hence Proposition 7 in §4.3

is not applicable. Whether our main result is applicable to a non-separable

metric space such as L∞([0, 1)), is left as an open problem.

Acknowledgement . The author would like to thank the referee for a

careful reading of the manuscript, for providing recent references, and for

encouraging comments.



Submodular Function as Supremum of Measures 169

2. Definition and Main Result

Throughout this paper, we assume that a set function v : F → R

satisfies the following conditions (2.1), (2.2) and (2.3):

v(A) � v(B), A ⊂ B, A,B ∈ F ,(2.1)

lim
n→∞

v(An) = v(
⋃
n∈N

An), A1 ⊂ A2 ⊂ · · · , An ∈ F , n = 1, 2, 3, . . . ,

(2.2)

lim
n→∞

v(An) = v(
⋂
n∈N

An) A1 ⊃ A2 ⊃ · · · , An ∈ F , n = 1, 2, 3, . . . .(2.3)

In measure theory, a finite measure is defined to be a non-negative real

valued σ-additive set function defined on a σ-algebra F . Equivalently, we

can say that a real valued set function µ : F → R is a finite measure if µ

satisfies µ(∅) = 0 and (2.1), (2.2), (2.3), and

µ(A) + µ(B) = µ(A ∪B) + µ(A ∩B), A,B ∈ F .(2.4)

In analogy to the terminology of measure theory, in this paper we call a set

function v non-decreasing if it satisfies (2.1), and continuous if it satisfies

both (2.2) and (2.3).

Submodular and supermodular functions are defined by replacing the

equality (2.4) with inequalities. In this paper, we say that a set function

v : F → R is submodular, if v is non-decreasing, continuous, v(∅) = 0,

and satisfies (1.3), and v : F → R is supermodular, if v is non-decreasing,

continuous, v(∅) = 0, and satisfies

v(A) + v(B) � v(A ∪B) + v(A ∩B), A,B ∈ F .(2.5)

(Incidentally, while µ(∅) = 0 is crucial for a measure µ to be additive, sub-

modular and supermodular functions generally lack this property. Imposing

v(∅) = 0 is thus only for notational simplicity, and the formula in this pa-

per can easily be generalized to the case v(∅) �= 0 by the replacements

v(A) �→ v(A) − v(∅).)
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To keep the definitions close to that of measures, we assume the non-

decreasing property (2.1) and continuity (2.2) and (2.3) in the definitions

of submodular and supermodular functions. We remark that the set of

conditions (2.2) and (2.3) is strong. It is known that with this continuity

condition, the core only consists of sigma-additive measures and is weakly

compact [8, 2], and for submodular functions satisfying (2.2) and not nec-

essarily the stronger (2.3) sigma-additive measures are dense in the core

consisting of finitely additive measures [7, 3]. See [4, Chapter 7] for details

and more results.

We now move on to the relation between (1.2) and submodularity.

Proposition 1. Let (Ω,F) be a measurable space, and v : F → R a

set function. If (1.2) holds for all A,B ∈ F satisfying B ⊂ A, then v is a

submodular function.

Proof. Assume (1.2). Since a measure µ is non-decreasing and con-

tinuous, v(B) = sup
µ∈C−,v(Ω)

µ(B) obtained by A = Ω in (1.2) implies that v is

also non-decreasing and continuous.

To prove (1.3), let A,B ∈ F and substitute A in (1.2) by A ∪ B to

obtain v(B) = sup
µ∈C−,v(A∪B)

µ(B) and v(A) = sup
µ∈C−,v(A∪B)

µ(A), which further

imply v(B) � µ(B) and v(A) � µ(A) for all µ ∈ C−,v(A ∪ B). Also (1.1)

implies v(A ∪ B) = µ(A ∪ B) for all µ ∈ C−,v(A ∪ B). Finally, v(A ∩ B) =

sup
µ∈C−,v(A∪B)

µ(A∩B) implies that for any ε > 0 there exists µ ∈ C−,v(A∪B)

such that v(A ∩B) � µ(A ∩B) + ε. These equality and inequalities imply,

with (2.4),

v(A ∪B) + v(A ∩B) − v(A) − v(B)

� µ(A ∪B) + µ(A ∩B) + ε− µ(A) − µ(B) = ε.

ε can be any positive constant, hence (1.3) follows. �

Concerning the converse of Proposition 1, note first that the definition

(1.1) of C−,v(A) implies v(B) � sup
µ∈C−,v(A)

µ(B) for any A,B ∈ F satisfying

B ⊂ A. Hence if there exists µ ∈ C−,v(A) such that µ(B) = v(B) then

(1.2) holds for this pair (A,B). The main result of this paper is on the
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construction of such µ. To state the main theorem, we consider the following

set of conditions on a class of measurable sets I ⊂ F ;




∅ ∈ I, Ω ∈ I,
I is a chain, i.e., for all I1, I2 ∈ I either I1 ⊂ I2 or I2 ⊂ I1 ,

σ[I] = F , where σ[I] denotes the smallest

σ-algebra containing I.

(2.6)

For a class I ⊂ F|A denote by σA[I] the smallest σ-algebra in the

measurable space (A,F|A) containing I. With this notation we have σ[I] =

σΩ[I] for I ⊂ F . The following elementary property will be crucial in the

proof of the main result to come. For a class of measurable sets I ⊂ F and

a pair of measurable sets A,B ∈ F satisfying B ⊂ A, denote the restriction

of I on A by I|A := {I ∩A | I ∈ I} and the insertion of B into I|A by

I|A,B = {B ∩ I | I ∈ I|A} ∪ {B ∪ I | I ∈ I|A}(2.7)

In particular, I|A,A = I|A if Ω ∈ I.

Lemma 2. Let (Ω,F) be a measurable space and assume that a class

of measurable sets I ⊂ F satisfies (2.6). Then for any pair of measurable

sets A and B satisfying B ⊂ A, I|A,B of (2.7) satisfies (2.6) with the total

space (Ω,F) replaced by (A,F|A).

Proof. Since I satisfies (2.6), it suffices to prove σA[I|A,B] ⊃ F|A , all

the other properties in (2.6) with the substitution (Ω,F) = (A,F|A) being

direct consequences of the assumptions.

Put G = {F ∈ F | F∩A ∈ σA[I|A,B]}. Then as in a standard elementary

argument in measure theory. σA[I|A,B] ⊃ F|A is equivalent to G ⊃ F . Since

by assumption F = σ[I], it suffices to prove G ⊃ I and that it is a σ-algebra

in Ω. The latter is a straightforward consequence of the definition of G and

that σA[I|A,B] is a σ-algebra in A.

Finally, to prove G ⊃ I, let I ∈ I. Then B = B ∩ A ∈ I|A,B and

B ∩ I = B ∩ (I ∩A) ∈ I|A,B imply B ∩ Ic = B ∩ (A∩ (B ∩ I)c) ∈ σA[I|A,B],

hence, with B ∪ (I ∩A) ∈ I|A,B, it follows that

A ∩ I = (B ∪ (I ∩A)) ∩ (A ∩ (B ∩ Ic)c) ∈ σA[I|A,B],

which implies I ∈ G. �
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We are ready to state the main theorem. Note that as stated at the

beginning of §2, we assume that v is non-decreasing, continuous, and v(∅) =

0, when we say that v is a submodular function.

Theorem 3. Let (Ω,F) be a measurable space, and assume that there

exists I ⊂ F satisfying (2.6). Then for any submodular function v : F → R

and for any A,B ∈ F satisfying B ⊂ A, there exists unique µ ∈ C−,v(A)

such that

v(I) = µ(I), I ∈ I|A,B ,(2.8)

where C−,v(A) is as in (1.1). In particular, v(B) = µ(B) holds.

Consequently, (1.2) holds for all A,B ∈ F satisfying B ⊂ A.

We will prove Theorem 3 in §3.

The corresponding results in this paper for supermodular functions hold

through a well-known correspondence

ṽ(A) = v(Ω) − v(Ac) + v(∅), A ∈ F ,(2.9)

which gives a non-decreasing continuous supermodular (resp., submodular)

function ṽ from a non-decreasing continuous submodular (resp., supermod-

ular) function v satisfying ṽ(Ω) = v(Ω and ṽ(∅) = v(∅). In analogy to

C−,v(A) in (1.1), let

F|A = {B ∈ F | B ⊂ A} = {B ∩A | B ∈ F}(2.10)

and let C+,v(A) be a class of measures defined by

C+,v(A) = {µ ∈ M(A) | µ(A) = v(A), µ(B) � v(B), B ∈ F|A},(2.11)

and consider as an analog of (1.2)

v(B) = inf
µ∈C+,v(A)

µ(B).(2.12)

Corollary 4. Let (Ω,F) be a measurable space and v : F → R a set

function.

If (2.12) holds for all A,B ∈ F satisfying B ⊂ A, then v is a supermod-

ular function.
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Conversely, assume further that there exists I ⊂ F satisfying (2.6).

Then for any supermodular function v : F → R and for any A,B ∈ F sat-

isfying B ⊂ A, there exists unique µ ∈ C+,v(A) such that (2.8) holds, where

C+,v(A) is as in (2.11). In particular, v(B) = µ(B) holds. Consequently,

(2.12) holds for all A,B ∈ F satisfying B ⊂ A.

Theorem 3 and Corollary 4 imply corresponding results on Choquet

integrable functions. For a non-decreasing, continuous, and finite (real-

valued) set function v : F → R on a measurable space (Ω,F) and a

measurable function f : Ω → R, we define

v(f) = lim
y→−∞

(
y v(Ω) +

∫ ∞

y
v({ω ∈ Ω | f(ω) > z}) dz

)
(2.13)

whenever the right-hand side is a real value and we say that f is v-integrable.

If either the Lebesgue integration or the limit diverges in the right-hand side

of (2.13) we do not define v(f). If v(f) of (2.13) is defined it is equal to the

Choquet integration, or the asymmetric integral in terms of [5, Chap. 5]. If

in addition v is submodular, it is known [5, Prop. 10.3] that

v(f) = sup
µ∈C−,v(Ω)

∫
Ω
f dµ(2.14)

holds. (In the reference, the statements are for finitely additive measures

and algebras, but the corresponding results hold for (σ-additive) measures

when working on measurable space with σ-algebra as we do here.) The

functional ρ defined by ρ(f) = v(−f) is called the coherent risk measure in

mathematical finance and (2.14) is known to be a basic formula [1, 3, 6].

The definition of C−,v(Ω) and monotonicity of Choquet integration is

known to imply v(f) � sup
µ∈C−,v(Ω)

∫
Ω
f dµ. Hence, in a similar spirit as in

Theorem 3, to prove (2.14) it is sufficient to prove the existence of a mea-

sure µ ∈ C−,v(Ω) such that v(f) =

∫
Ω
f dµ holds. A proof in [5] for the

existence of such µ starts with considering a maximal set of commono-

tonic v-integrable functions X . With aid of the Hahn–Banach Theorem,

the domain of the functional v is then extended to to the linear space V
generated by X , as a linear non-negative functional ṽ. Then a set function

µ defined by µ(A) = ṽ(1A), where 1A denotes the indicator function of
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the set A, is proved to be a measure. Since the indicator functions of the

level sets If,z = {ω ∈ Ω | f(ω) > z}, z ∈ R, are commonotonic with f ,

µ(If,z) = v(If.z) holds, so that the definition of Choquet integration im-

plies v(f) =

∫
Ω
f dµ. This µ gives equality v(B) = µ(B) in Theorem 3, by

choosing f = 1A.

We note that since the above-outlined proof in the reference uses the

Hahn–Banach Theorem, uniqueness of measure µ which attains the equality

in (1.2) does not follow in general. The unique existence claims in Theorem

3 and Corollary 4 are consequences of our proof in the next section which

uses the extension theorem of measures from measures on finitely additive

algebra.

As a simple and direct application of Theorem 3, we can state a following

result for the Choquet integration v(f) in (2.14). Denote the class of level

sets by If = {If,z | z ∈ R}. Then Theorem 3 implies the following.

Corollary 5. Let (Ω,F) be a measurable space, v : F → R be a

submodular function, and f : Ω → R be a v-integrable function. If the class

of level sets If satisfies (2.6) then there exists a unique µ ∈ C−,v(Ω) such

that v(If,z) = µ(If,z), z ∈ R. Moreover, v(f) =

∫
Ω
f dµ holds for this µ,

hence (2.14) also holds.

3. Proof of Main Theorem

Proof of Theorem 3. Assume A,B ∈ F satisfy B ⊂ A. We fix A

and B throughout the proof.

Let F|A be the restriction (2.10) to A of F , and I|A,B be the insertion

(2.7) of B to I|A . Lemma 2 then implies that ∅, B,A ∈ I|A,B and that

I|A,B is totally ordered with respect to inclusion with σ[I|A,B] = F|A .

Denote by J |A,B the finitely additive class generated by I|A,B . Namely,

J |A,B is an algebra of sets satisfying I|A,B ⊂ J |A,B ⊂ F|A , is closed

under complement and union, and is the smallest class with these properties.

Since I|A,B is totally ordered with respect to inclusion, we have an explicit
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representation

J |A,B = {
n⋃

i=1

(Ci ∩Dc
i ) | C1 ⊃ D1 ⊃ C2 ⊃ · · · ⊃ Dn ,

Ci, Di ∈ I|A,B , i = 1, 2, . . . , n, n = 1, 2, 3, . . . }.
(3.1)

Using the notation in the right-hand side of (3.1), define a set function

µA,B : J |A,B → R by

µA,B(
n⋃

i=1

(Ci ∩Dc
i )) =

n∑
i=1

(v(Ci) − v(Di)).(3.2)

The definition implies that µA,B is finitely additive. Note that µA,B is well-

defined as a set function on J |A,B because the right-hand side of (3.2) has

the same value for different expressions of a set J ∈ J |A,B . The reason

is just as in the case of the Lebesgue measure on a line. For example, let

n = 2 and D1 = C2 in (3.1). Then we see that J = (C1 ∩Dc
1) ∪ (C2 ∩Dc

2)

has another expression J = C1 ∩Dc
2, but since D1 = C2, we have

v(C1) − v(D1) + v(C2) − v(D2) = v(C1) − v(D2),

and the right-hand sides of (3.2) for the two expressions of this J ∈ J |A,B

give the same value. In general, if J ∈ J |A,B has 2 different expressions of

the form (3.1), say J =

n⋃
i=1

(Ci∩Dc
i ) =

n′⋃
i=1

(C ′
i∩D′c

i ), one finds Di = Ci+1 or

D′
i = C ′

i+1 for some i, hence by induction in max{n, n′}, we can conclude

that
n∑

i=1

(v(Ci) − v(Di)) =
n′∑
i=1

(v(C ′
i) − v(D′c

i )). Therefore (3.2) defines

µA,B : J |A,B → R.

Lemma 6. The finitely additive measure µA,B : J |A,B → R defined on

the finitely additive class J |A,B satisfies µA,B(J) � v(J), J ∈ J |A,B , and,

in particular, µA,B(I) = v(I), I ∈ I|A,B ,

Proof. If I ∈ I|A,B we can put n = 1, C1 = I, D1 = ∅ in (3.2) to

obtain µA,B(I) = v(I).
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Let J ∈ J |A,B . We can use the expression (3.1) and write

J =
n⋃

i=1

(Ci ∩ (Di)
c); C1 ⊃ D1 ⊃ C2 ⊃ · · · ⊃ Dn ,

Ci, Di ∈ I|A,B , i = 1, 2, . . . , n,

(3.3)

where Ci, Di ∈ I|A,B implies

µA,B(Ci) = v(Ci), µA,B(Di) = v(Di), i = 1, 2, . . . .n.(3.4)

Therefore,

µA,B(J) =
n∑

i=1

µA,B(Ci ∩ (Di)
c)

=
n∑

i=1

(µA,B(Ci) − µA,B(Di))

=

n∑
i=1

(v(Ci) − v(Di))

(3.5)

Put

Ai =
n⋃

j=i

(Cj ∩ (Dj)
c), i = 1, 2, . . . , n,(3.6)

and An+1 = ∅. Then (3.3) and (3.6) imply A1 = J , and

Ai ∪Di = Ci , Ai ∩Di = Ai+1 , i = 1, 2, . . . , n,

Since v is submodular, we can apply (1.3) with A = Ai and B = Di to find

v(Ci) + v(Ai+1) � v(Ai) + v(Di), i = 1, 2, . . . , n.

Summing this up with i and using (3.5) leads to µA,B(J) � v(J). �

We assume non-decreasing property and continuity in the definitions

of submodular functions. Therefore µA,B is non-negative valued and σ-

additive on the finitely additive class J |A,B . Here, to prove that µA,B is

σ-additive on J |A,B , it suffices to prove lim
n→∞

µA,B(En) = 0 for any sequence
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En ∈ J |A,B , n ∈ N, satisfying E1 ⊃ E2 ⊃ · · · and
⋂
n∈N

En = ∅. Since we

assume v(∅) = 0 and continuity (2.3) for v, we have lim
n→∞

v(En) = 0 for

En ∈ J |A,B , n ∈ N, satysfing the conditions. This and Lemma 6 and

non-negativity imply lim
n→∞

µA,B(En) = 0.

The extension theorem of measures now implies that µA,B is uniquely

extended to a measure on σ[J |A,B] = σ[I|A,B] = F|A. We denote this

measure by the same symbol so that µA,B ∈ M(A). We complete a proof

of the theorem by proving that µA,B ∈ C−,v(A) and v(B) = µA,B(B). Since

A,B ∈ I|A,B , Lemma 6 implies µA,B(A) = v(A) and µA,B(B) = v(B),

hence it remains to prove µA,B(E) � v(E) for E ∈ F|A.

Let ε be an arbitrary positive real. Since E ∈ F|A implies A∩Ec ∈ F|A ,

the extension theorem of measures implies that there exists a countable

union of sets in J |A,B , which we denote by K ∈ F|A such that

A ∩ Ec ⊂ K ⊂ A and µA,B(A ∩ Ec) + ε � µA,B(K).(3.7)

We can use the expression in (3.1) for sets in J |A,B to express K as

K =
⋃
i∈N

(Ci ∩Dc
i ), Ci, Di ∈ I|A,B ; Ci ⊃ Di , i = 1, 2, . . . .(3.8)

For each n ∈ N put Kn =
n⋃

i=1

(Ci ∩Dc
i ). Then

Kn ∈ J |A,B , n ∈ N, K1 ⊂ K2 ⊂ · · · ,
⋃
n∈N

Kn = K.(3.9)

µA,B(A ∩ Ec) + ε � µA,B(K) in (3.7) and (3.9) then imply

µA,B(E) − ε � µA,B(A ∩Kc
n), n ∈ N,(3.10)

while A ∩ Ec ⊂ K ⊂ A in (3.7) and (3.9) and monotonicity and continuity

of v imply that there exists n0 ∈ N such that

v(E) + ε � v(A ∩Kc
n), n = n0, n0 + 1. . . . .(3.11)

Since Kn ∈ J |A,B and J |A,B is a finite algebra, A ∩Kc
n ∈ J |A,B . Lemma

6 therefore impiles µA,B(A∩Kc
n) � v(A∩Kc

n). This with (3.10) and (3.11)

implies µA,B(E) − ε � v(E) + ε. Since ε is an arbitrary positive real this

implies µA,B(E) � v(E), which completes the proof. �
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4. Example

In this section we give examples of measure spaces (Ω,F) and I satis-

fying (2.6) so that Theorem 3 is applicable.

4.1. Countable set

Consider the case (Ω,F) = (N, 2N), and put I = {{1, 2, . . . , i} | i ∈
N} ∪ {∅,N}. Then I satisfies (2.6), hence Theorem 3 is applicable.

For example, assume further that m,n ∈ N satisfy m < n, and bi ∈ N,

i = 1, 2, . . . ,m, and cj ∈ N, j = 1, 2, . . . , n−m, satisfy

b1 < b2 < · · · < bm , c1 < c2 < · · · < cn−m , and

cj �= bi , i = 1, . . . ,m, j = 1, . . . , n−m.

Put B = {b1, . . . , bm} and A = B ∪ {c1, . . . , cn−m}. Then (2.7) implies

I|A,B = {∅} ∪ {{b1, . . . , bi} | i = 1, 2, . . . ,m}
∪ {B ∪ {c1, . . . , cj} | j = 1, 2, . . . , n−m}.

Define a measure µ defined on F|A by

µ({b1}) = v({b1}),
µ({bi}) = v({b1, . . . , bi}) − v({b1, . . . , bi−1}), i = 2, . . . ,m,

µ({c1}) = v(A ∪ {c1}) − v(A),

µ({cj}) = v(A ∪ {c1, . . . , cj}) − v(A ∪ {c1, . . . , cj−1}), j = 2, . . . , n−m.

Then (2.8) holds and Theorem 3 also implies µ ∈ C−,v(A).

This reproduces, with the correspondence (2.9) between submodular

function and supermodular function (convex game), a classical theory of

cores of convex games by Shapley [9].

4.2. 1-dimensional Borel σ-algebra

Consider the case (Ω,F) = ([0, 1),B([0, 1))), where [0, 1) is a unit in-

terval and B([0, 1)) denotes the σ-algebra generated by the open sets in

[0, 1).

Put I = {[0, x) | 0 � x � 1}. Then I satisfies (2.6), hence Theorem 3 is

applicable.
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For A,B ∈ B([0, 1))) satisfying B ⊂ A, we have, from (2.7),

I|A,B = {B ∩ [0, x) | 0 � x � 1} ∪ {B ∪ (A ∩ [0, x)) | 0 � x � 1}.

For each I ∈ I|A,B put µ(I) = v(I). Then Lemma 2 and the proof of The-

orem 3 in §3 imply that µ is uniquely extended to a measure on B([0, 1))|A
and µ ∈ C−,v(A).

4.3. Borel algebra on Polish space

Let Ω be a separable, complete, metric space (a Polish space) and B(Ω)

be the Borel σ-algebra, the σ-algebra generated by the open sets. The

collection J of all the open balls, each with a radius of positive rational and

the center chosen from a fixed dense subset of Ω, generates the class of open

sets, i.e., J is a countable open basis, hence σ[J ] = B(Ω) holds. It turns out

that we can construct a class I which satisfies (2.6) on (Ω,F) = (Ω,B(Ω))

from J , so that Theorem 3 is applicable.

More generally, we have the following.

Proposition 7. Let (Ω,F) be a measurable space and assume that

there exists a countable class of measurable sets J = {J1, J2, . . . } ⊂ F such

that σ[J ] = F .

Define a F/B([0, 1)) measurable function f : Ω → [0, 1) by

f =
∞∑
n=1

3−n 1Jn ,(4.1)

and define a class of sets I ⊂ F by I = {f−1([0, a)) | 0 � a � 1}, where

f−1([0, a)) = {ω ∈ Ω | f(ω) < a}. Then I satisfies (2.6).

Proof. Since f is measurable, σ[I] ⊂ F . Since F = σ[J ], to prove

F ⊂ σ[I] It suffices to prove JN ∈ σ[I] for each N ∈ N. Note that the right-

hand side of (4.1) has a form of ternary expansion, because the indicator

function 1Jn takes values in {0, 1}. In particular, f is an injection. We can
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therefore write, for each N ∈ N,

JN = f−1(
⋃

(a1,... ,aN−1)∈{0,1}N−1

[
N−1∑
n=1

an3−n + 3−N ,
N−1∑
n=1

an3−n + 2 · 3−N ))

=
⋃

(a1,... ,aN−1)∈{0,1}N−1

(
f−1( [0,

N−1∑
n=1

an3−n + 2 · 3−N ) )

∩f−1( [0,

N−1∑
n=1

an3−n + 3−N ) )c
)

∈ σ[I].

This proves σ[I] = F . The remaining properties stated in (2.6) follows

from f−1([0, 1)) = Ω, f−1(∅) = ∅, and 0 � a < a′ � 1 ⇒ f−1([0, a)) ⊂
f−1([0, a′)). �
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