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1. Introduction

The derived category of a smooth projective variety behaves nicely, but

that of a singular projective variety X does not. For example, RHom(A,B)

may be unbounded for objects A,B of a bounded derived category of co-

herent sheaves Db(X) = Db(coh(X)). In order to study the latter case, we

can use a resolution of singularities f : X̃ → X, and study Db(X) using

Db(X̃). In this paper, we try another way and consider a smoothing of X,

a deformation to a smooth variety Y .

A coherent sheaf F on a normal complete variety X is said to be pretilt-

ing if all higher self-extensions vanish: Extp(F, F ) ∼= 0 for p > 0. If F

comes from a non-commutative (NC) deformation of a simple sheaf, then F

weakly generates a subcategory in Db(X) (in the sense explained in §2.1)

which is equivalent to a bounded derived category Db(R) = Db(mod(R))

of finitely generated right R-modules over a finite dimensional associative

algebra R = End(F ), the parameter algebra of the NC deformation, and

Db(X) has a corresponding semi-orthogonal decomposition (cf. [15]). We

are interested in the behavior of F,R and Db(X) when X is deformed to a

smooth projective variety Y .

A pretilting object is a generalization of an exceptional object, where

R ∼= k is the base field. A certain important smooth projective variety

such as a projective space has a full exceptional collection, i.e., the de-

rived category Db(X) is generated by a sequence of exceptional objects

(e1, . . . , em) which are semi-orthogonal: RHom(ei, ej) ∼= 0 for i > j. But

it seems that the derived category of a singular variety has never such a

collection. Instead they are sometimes semi-orthogonally decomposed into

subcategories weakly generated by pretilting objects. The endomorphism

ring R = End(F ) of a pretilting object is an associative algebra which is

not necessarily commutative.

We consider the case of a normal surface X which has a Q-Gorenstein

smoothing. It is a special type of deformation which we encounter in the min-

imal model program ([20]). We consider in this paper the behavior of derived

categories under such deformations. The derived category of a certain sin-

gular surface has a pretilting sheaf which arises as a versal non-commutative

deformation of a divisorial sheaf, a reflexive sheaf of rank 1. We investigate

the behavior of such a pretilting sheaf under the Q-Gorenstein smoothing,

and prove that it deforms to a direct sum of exceptional sheaves which are
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mutually totally orthogonal.

The main theorem of this paper is the following:

Theorem 1.1 (Theorems 5.4, 5.5). Let X be a normal projective sur-

face (variety of dimension 2) such that Hp(X,OX) = 0 for p > 0. Assume

the following conditions:

(a) There is a quotient singularity P ∈ X of type 1
r2s

(1, ars − 1) for

positive integers a, r, s such that 0 < a < r and (r, a) = 1. Let DP,1 and

DP.2 be coordinate divisors in an analytic neighborhood of P corresponding

to the weights 1 and ars− 1.

(b) There exists a divisorial sheaf A = OX(−D) on X for a Weil divisor

D such that A ∼= O(−DP,1) in an analytic neighborhood of P . Moreover,

either D or D−KX is a Cartier divisor at each point other than P , where

the choice of D or D −KX depends on the point.

(c) There is a projective flat deformation f : X → ∆ over a disk ∆ such

that X ∼= f−1(0), f−1(t) is smooth for t �= 0, and that X is Q-Gorenstein

at P , i.e., f is a Q-Gorenstein smoothing at P .

Then, after replacing ∆ by a smaller disk around 0 and after a finite

base change by taking roots of the coordinate t, there exist on X maximally

Cohen-Macaulay sheaves E1, . . . Es of rank r as well as a coherent sheaf F
of rank r2s which is locally free at P and locally free or dual free at other

points (i.e., F is locally isomorphic to either O⊕r2s
X or ω⊕r2s

X at each point

depending on the point), which satisfy the following conditions:

(1) Ei ⊗OX
∼= A⊕r for all i.

(2) Ei := Ei ⊗OY are exceptional vector bundles on Y = f−1(t) for t �= 0,

which are mutually orthogonal, i.e.,

RHomY (Ei, Ej) :=

2⊕
p=0

Extp(Ei, Ej)[−p] ∼= 0

for i �= j.

(3) F := F ⊗ OX is constructed as a versal non-commutative deformation

(see §3.1 or [14] for the definition of versal NC deformations) of the

sheaf A on X, and is a pretilting sheaf.

(4) F ⊗OY
∼=

⊕s
i=1 E

⊕r
i . In particular End(F ⊗OY ) ∼= Mat(k, r)×s.
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We note that the singularity of type 1
r2s

(1, ars− 1) appeared naturally

when we applied the minimal model theory of 3-folds to the degeneration

of surfaces ([20]).

Db(X) and Db(Y ) have semi-orthogonal components 〈F 〉 ∼= Db(R) with

R = End(F ) and 〈Ei〉 ∼= Db(k) for 1 ≤ i ≤ s, respectively, which are related

by the deformation (see §2.1 for the notation). We note that the associative

algebra R is calculated by [10] using [9] and is called a Kalck-Karmazyn

algebra (Theorem 3.1).

The assertions (1) and (2) are generalizations of a result of Hacking [6]

where the case s = 1 (Wahl singularity) is treated. The sheaf E1 here is

the dual of a reflexive sheaf E in [6] Theorem 1.1 which satisfies that the

double dual of the restriction (E ⊗OX)∗∗ is isomorphic to the dual of A⊕r.

We note that our theorem does not need to take a double dual on X. It

also gives a natural explanation of Hacking’s exceptional vector bundles in

terms of a semi-universal non-commutative deformation which is unique up

to isomorphisms. It is also remarkable that the reflexive sheaves Ei are

mutually orthogonal on the generic fiber but reduced to the same sheaf on

the special fiber.

We explain the plan of this paper. We start with the background ma-

terial in §2 on Q-Gorenstein smoothing, exceptional vector bundles, semi-

orthogonal decompositions, pretilting objects, and a motivating example of

a weighted projective plane P(1, 1, 4). In §3, we recall the theory of non-

commutative deformations of divisorial sheaves on a surface with quotient

singularities, and explain a semi-orthogonal decomposition of the derived

category for a weighted projective plane by Karmazyn-Kuznetsov-Shinder

[11]. We prove the main theorem in §4 (s = 1 case) and in §5 (general case).

The mutual orthogonality of the Ei is proved by using flops between dif-

ferent crepant simultaneous partial resolutions; the semi-orthogonality and

flops imply the full orthogonality. Then in §6, we consider weighted projec-

tive planes as an example.

After the first version of this paper is submitted to arXiv, the author

was informed that a generalization of Hacking’s results to higher Milnor

numbers was already considered in [3], and the same results as (1) and (2)

of the above theorem were already obtained there except that taking the

double dual was still needed in (1). The proofs of the orthogonality in (2)

are different in the sense that our argument uses flops of 3-folds and more



Semi-Orthogonal Decomposition 131

geometric. The author would like to thank Professor Yonghwa Cho for this

information.

The author would also like to thank the referee for numerous and helpful

suggestions for improving this paper. The proof of the fullness in Theorem

6.1 is due to him. He would also like to thank NCTS of National Taiwan

University where the work was partly done while the author visited there.

This work is partly supported by JSPS Kakenhi 16H02141 and 21H00970.

We work over the base field k = C.

2. Background

2.1. Notation

Let X be a normal variety defined over k = C. X is said to be Q-

Gorenstein if its canonical divisor KX is a Q-Cartier divisor. For a Weil

divisor D on a normal variety X, a reflexive sheaf OX(D) of rank 1 is

defined, and is also called a divisorial sheaf.

A coherent sheaf F on a Cohen-Macaulay variety X is said to be locally

free or dual free if it is isomorphic locally at each point to either O⊕r
X or

ω⊕r
X for an integer r, where ωX = OX(KX) is the canonical sheaf. We allow

a locally free or dual free sheaf to be locally free at some points and locally

dual free at other points. A divisorial sheaf OX(D) is called invertible or

dual invertible it is locally free or dual free. It is equivalent to saying that

D or KX −D is a Cartier divisor at each point. Here “dual” means Serre-

Grothendieck dual.

A quotient singularity of type 1
r (a1, . . . , an) is a singularity which is an-

alytically isomorphic to the one at 0 of the quotient space Cn/Zr by the

action

(x1, . . . , xn) �→ (ζa1x1, . . . , ζ
anxn),

where ζ is a primitive r-th root of 1.

2.2. Derived categories

Let X be an algebraic variety over k and let R be an associative k-

algebra. We denote by Db(X) = Db(coh X) (resp. D(X) = D(Qcoh X))

the bounded derived category of coherent sheaves (resp. unbounded derived

category of quasi-coherent sheaves) on X. We also denote by Db(R) =

Db(mod R) (resp. D(R) = D(Mod R)) the bounded derived category of
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finitely generated right R-modules (resp. unbounded derived category of

right R-modules).

Let T be a k-linear triangulated category, and let S be a set consisting

of some objects of T . We denote by ⊥S and S⊥ the left and right orthogonal

complements defined by

⊥S = {t ∈ T | Hom(t, s[p]) = 0,∀s ∈ S,∀p ∈ Z},
S⊥ = {t ∈ T | Hom(s[p], t) = 0,∀s ∈ S,∀p ∈ Z}.

They are triangulated full subcategories of T . We denote by 〈S〉 the smallest

triangulated full subcategory of T containing S. In this case, 〈S〉 is said

to be classically generated by S. We have ⊥S = ⊥〈S〉 and S⊥ = 〈S〉⊥.

Furthermore, we define

〈S〉 = ⊥(S⊥).

In particular, we have T = 〈S〉 if and only if S⊥ ∼= 0, i.e., Hom(s, t[p]) = 0

for all s ∈ S and all p ∈ Z implies that t ∼= 0. In this case, we say that T
is weakly generated by S in this paper. We write 〈S〉T for 〈S〉 if we need to

specify where the closure is taken.

Lemma 2.1. 〈S〉 is weakly generated by S in the above sense.

Proof. Let t ∈ 〈S〉 be an object such that t ∈ S⊥. Then Hom(t, t) ∼=
0, hence t ∼= 0. �

Let T be a k-linear triangulated category. T is said to have a semi-

orthogonal decomposition to triangulated full subcategories A and B, de-

noted as T = 〈A,B〉, if the following hold ([2]):

(1) HomT (b, a) = 0 for all a ∈ A and b ∈ B.

(2) T coincides with the smallest triangulated subcategory containing

A and B.

We write

RHomT (A,B) :=
⊕
p

HomT (A,B[p])[−p]

for A,B ∈ T . An object A ∈ T is said to be an exceptional object if

RHomT (A,A) ∼= k. A sequence of exceptional objects (A1, . . . , Am) is
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called an exceptional collection if the semi-orthogonality condition

RHom(Ai, Aj) ∼= 0 holds for i > j. It is said to be full if the Ai classi-

cally generate T .

We do not require an exceptional object in Db(X) to be a perfect com-

plex. Therefore we do not have necessarily a semi-orthogonal decomposition

of the bounded derived category arising from an exceptional object A. In-

deed we do not have finite dimensionality of RHom(A, •) or RHom(•, A)

in general.

2.3. Q-Gorenstein smoothing

Terminal singularities and Q-Gorenstein smoothings appear naturally

in the minimal model program. Morrison-Stevens [21] classified all 3-

dimensional terminal quotient singularities. They are singularities of types
1
r (1,−1, a) for integers r, a such that 0 < a < r and (r, a) = 1.

Let V be a quotient singularity of type 1
r (1,−1, a), and let X =

{(x, y, z) ∈ V ;xy = zsr} be a Cartier divisor, where x, y, z are semi-invariant

coordinates on V and s is a positive integer. Then X ∼= 1
sr2

(1, asr − 1) is

again a quotient singularity with semi-invariant coordinates u, v by the rule

x = usr, y = vsr, z = uv.

As an application of the theory of minimal models, Kollár-Shepherd-

Barron [20] considered Q-Gorenstein smoothing, a flat deformation of a

singularity such that the canonical divisor of the total space is a Q-Cartier

divisor. The above X has a Q-Gorenstein smoothing defined by

Xt = {xy = zsr + t} ⊂ 1

r
(1,−1, a)

(cf. [20], Proposition 3.10). Wahl [23] already earlier considered this kind of

deformation in the case s = 1, because the Milnor fiber of the deformation

is a rational homology ball in this case. In general the Milnor number of

this deformation is equal to s− 1.

The semi-universal Q-Gorenstein deformation of X is described as

Xt0,...,ts−1 = {xy = zsr +

s−1∑
i=0

tiz
ir} ⊂ 1

r
(1,−1, a)

if r > 1, because it is lifted to a deformation of the canonical cover (cf.

[18]), which is a hypersurface singularity.
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2.4. Exceptional vector bundles on P2 and Del Pezzo surfaces

[4] classified all exceptional sheaves on P2, which are automatically lo-

cally free. [5] and [22] classified all full exceptional collections of vector

bundles on P2:

Theorem 2.2 ([22] Theorem 3.2). Let (A,B,C) be a full exceptional

collection of vector bundles on P2. Then (a, b, c) = rank (A,B,C) satisfies

a Markov equation

a2 + b2 + c2 = 3abc.

Moreover any triple (A,B,C) is obtained from the initial triple (O(−2),

O(−1),O) by left and right mutations (A,B,C) �→ (A,C ′, B), (B,A′, C)

defined below

0 → C ′ → Hom(B,C)⊗B → C → 0,

0 → A→ Hom(A,B)∗ ⊗B → A′ → 0.

up to cyclic permutations (A,B,C) �→ (C(−3), A,B), twisting by line bun-

dles (A(m), B(m), C(m)), and taking duals (C∗, B∗, A∗).

We note that these exceptional collections are automatically strong in

the sense that there are no higher Hom’s between them. The same holds

for the Del Pezzo surfaces explained below.

For example, we have

0 → O(−2)→ O(−1)⊕3 → Ω1(1)→ 0.

All solutions of the Markov equation a2 + b2 + c2 = 3abc are obtained from

the initial solution (1, 1, 1) by left and right mutations up to permutations:

(a, b, c) �→
{

(a, c′, b), c′ = 3ab− c,

(b, a′, c), a′ = 3bc− a.

They form a trivalent tree:

(1, 1, 1)→ (1, 2, 1)→ (1, 5, 2)→ (1, 13, 5), (5, 29, 2)→ . . . .

[12] generalized the above to full exceptional collections of vector bundles

on smooth Del Pezzo surface X. A 3-block exceptional collection is an ex-

ceptional collection of vector bundles (A1, . . . , Aα;B1, . . . , Bβ;C1, . . . , Cγ)
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where members of the same block are mutually orthogonal and have the

same rank:

RHom(Ai, Ai′) ∼= RHom(Bj , Bj′) ∼= RHom(Ck, Ck′) ∼= 0

and rank(Ai, Bj , Ck) = (a, b, c) for any i, j, k. The triple (a, b, c) satisfies a

Markov equation

αa2 + βb2 + γc2 = λabc, λ =
√

K2
Xαβγ

where α, β, γ, λ are positive integers depending on X (see the table in [12]

3.5).

The left and right mutations of blocks

(A1, . . . , Aα;B1, . . . , Bβ;C1, . . . , Cγ)

�→ (A1, . . . , Aα;C ′
1, . . . , C

′
γ ;B1, . . . , Bβ),

(A1, . . . , Aα;B1, . . . , Bβ;C1, . . . , Cγ)

�→ (B1, . . . , Bβ;A′
1, . . . , A

′
α;C1, . . . , Cγ)

are defined as follows:

0 → C ′
k →

⊕
j

Hom(Bj , Ck)⊗Bj → Ck → 0,

0 → Ai →
⊕
j

Hom(Ai, Bj)
∗ ⊗Bj → A′

i → 0.

The ranks of the mutated bundles are given by

c′ =
λ

γ
ab− c, a′ =

λ

α
bc− a.

2.5. Q-Gorenstein smoothing and exceptional vector bundles

Hacking [6] proved that an exceptional vector bundle appears on a Q-

Gorenstein smoothing when s = 1:

Theorem 2.3 ([6] Theorem 1.1). Let X be a normal projective surface

with a unique quotient singularity P ∈ X of Wahl type 1
r2

(1, ar − 1). Let

f : X → ∆ be a one parameter flat deformation of X = f−1(0) such that

the fibers Y = f−1(t) for t �= 0 are smooth and the canonical divisor KX
of the total space is a Q-Cartier divisor. Assume that H1(Y,Z) is finite of
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order coprime to r, and that H2(Y,OY ) = 0. Then, after a base change

∆′ → ∆ of degree a and a shrinking of ∆′ to a smaller disk, there exists a

reflexive sheaf E on X ′ := X ×T T ′ such that

(a) EY := E ⊗ OY is an exceptional vector bundle of rank r on Y , and

is slope stable.

(b) EX := E ⊗OX is a torsion-free sheaf on X such that its reflexive hull

E∗∗
X is isomorphic to the direct sum of r copies of a reflexive rank 1 sheaf

A, and the quotient E∗∗
X /EX is a torsion sheaf supported at P ∈ X.

Hacking-Prokhorov [7] and [6] classified surfaces which have smoothings

to P2:

Theorem 2.4 ([7] Corollary 1.2, [6] Proposition 6.2). Let X be a nor-

mal projective surface with only quotient singularities. Assume that X has

a smoothing to P2. Then X is isomorphic to a weighted projective plane

P(a2, b2, c2) or its Q-Gorenstein partial smoothing, where a, b, c are positive

mutually coprime integers satisfying the Markov equation

a2 + b2 + c2 = 3abc.

Moreover, X is uniquely determined by its singularities up to isomorphism.

They also classified all del Pezzo surfaces with only quotient singularities

such that ρ(X) = 1 and admit Q-Gorenstein smoothings ([7] Theorem 1.1).

2.6. Pretilting objects

Let X be a projective variety over k. An object T ∈ Db(X) is said to

be pretilting if

HomX(T, T [p]) ∼= 0

for all p �= 0. Let RT = End(T ) be the endomorphism ring. It is a finite

dimensional associative algebra over k. T is said to be tilting when it is

a perfect complex and weakly generates the whole category Db(X) (in the

sense that 〈T 〉 = Db(X)). We do not require that a pretilting object T ∈
Db(X) is a perfect complex. This is because we consider free or dual free

sheaves in this paper which are not necessarily perfect. For example, ωX

is not necessarily a perfect complex. Thus RHom(T,A) is not necessarily

bounded for A ∈ Db(X) in general.
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Lemma 2.5. Let T be a pretilting object. Define Φ : D(X) → D(RT )

by Φ(•) = RHomX(T, •) and Ψ : D(RT )→ D(X) by Ψ(•) = •⊗L
RT

T . Then

Im(Ψ) = 〈T 〉 and Ψ induces an equivalence D(RT ) ∼= 〈T 〉.

Proof. Ψ is a left adjoint of Φ; HomD(X)(Ψ(A), B) ∼=
HomD(RT )(A,Φ(B)) for A ∈ D(RT ) and B ∈ D(X). Moreover the ad-

junction morphism of functors IdD(RT ) → ΦΨ is an equivalence. Indeed we

have ΦΨ(A) = RHomX(T,A ⊗L
RT

T ) ∼= A for A ∈ D(RT ). We have also

Hom(A,B) ∼= Hom(A,ΦΨ(B)) ∼= Hom(Ψ(A),Ψ(B)). Therefore Ψ induces

an equivalence D(RT ) ∼= Im(Ψ).

Let A ∈ D(RT ) and B ∈ T⊥. Then we have RHomD(X)(Ψ(A), B) ∼=
RHomD(RT )(A,Φ(B)) ∼= 0, hence Im(Ψ) ⊂ 〈T 〉.

Conversely, let C ∈ 〈T 〉. There is a distinguished triangle

ΨΦ(C)→ C → C ′ → ΨΦ(C)[1]

for some C ′ ∈ D(X). Since ΨΦ(C) ∈ 〈T 〉, we have C ′ ∈ 〈T 〉. Since

ΦΨΦ(C) ∼= Φ(C), we have Φ(C ′) ∼= 0, i.e., C ′ ∈ T⊥. Then we have

HomD(X)(C
′, C ′) ∼= 0, hence C ′ ∼= 0. Therefore 〈T 〉 ⊂ Im(Ψ). �

We consider a special case where a pretilting object T is a versal NC

deformation of a simple coherent sheaf S on X in this paper (cf. [15]):

Lemma 2.6. Assume that a pretilting object T is a versal NC defor-

mation of a simple coherent sheaf S on X. Then Ψ induces induces an

equivalence Ψb : Db(RT ) ∼= 〈S〉 ⊂ Db(X). Moreover 〈S〉 = 〈T 〉 ∩ Db(X),

where the closure is taken in D(X).

Proof. T is flat over RT and k⊗RT
T ∼= S by the definition of an NC

deformation and [15] Lemmas 4.4 and 4.5 with Corollary 4.6. It follows that

the functor Ψb : mod RT → Coh X defined by Ψb(•) = • ⊗RT
T is exact,

and induces a triangulated functor

Ψb : Db(RT )→ Db(X).

Since RT is finite dimensional, Db(RT ) is classically generated by k;

Db(RT ) = 〈k〉. We have Φ(k) ∼= S, hence Im(Ψb) = 〈S〉. The equivalence

Φ : D(RT ) ∼= 〈T 〉D(X)
induces an equivalence Φb : Db(RT ) ∼= 〈S〉.
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Let us take a A ∈ 〈T 〉∩Db(X). We have a distinguished triangle arising

from a natural morphism

ΨΦ(A)→ A→ B → ΨΦ(A)[1].

Since ΦΨΦ(A) ∼= Φ(A), we have Φ(B) ∼= 0, i.e., B ∈ T⊥. On the other

hand, ΨΦ(A) and A belong to 〈T 〉, hence so does B. Therefore B ∼= 0,

hence A ∼= ΨΦ(A). We note that, if Φ(A) is not bounded, then so is ΨΦ(A),

a contradiction. �

2.7. Miscellaneous

Lemma 2.7. Let F and G be coherent sheaves on a Cohen-Macaulay

variety X. Assume that either one of the following holds at each point: (1)

F is locally free, or (2) F is maximally Cohen-Macaulay and G is locally

dual free. Then all higher local extensions vanish: Exti(F,G) = 0 for i > 0.

Proof. The case (1) is clear. For the case (2), we may assume that

G = ωX . By the local duality theorem ([8] Theorem V.6.2), we have

Hom(Exti(F,G), I) ∼= Hn−i
x (F ) ∼= 0

for i > 0, where n = dimX, x ∈ X is a closed point and I is the injective

hull of k(x). Hence Exti(F,G) ∼= 0. �

We will need the following proposition:

Proposition 2.8. Let f : X → ∆ be a flat projective morphism from

a Cohen-Macaulay variety to a disk, and let F be a locally free or dual free

sheaf on X = f−1(0). Assume that F is pretilting. Then, after shrink-

ing ∆ if necessary, there exists a coherent sheaf F on X uniquely up to

isomorphisms which satisfies the following:

(1) F is locally free or dual free.

(2) F ⊗OX
∼= F .

(3) F ⊗OY is pretilting for Y = f−1(t) with t �= 0.

(3) dimEnd(F ) = dimEnd(F ⊗OY ).

Proof. We take an open covering X =
⋃

Ui such that F |Ui is isomor-

phic to either O⊕r
Ui

or ω⊕r
Ui

. Let Xm be the m-th infinitesimal neighborhood
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of X in X defined by tm+1 = 0, where t is the parameter on ∆. We have

X0 = X.

We extend F to a locally free or dual free sheaf Fm on Xm by induction

on m. Suppose that we have already Fm. Then we can extend Fm|Ui

to a locally free or dual free sheaf Fm+1,Ui on Xm+1|Ui . The difference

of Fm+1,Ui and Fm+1,Uj on the overlap Xm+1|Ui∩Uj gives a 1-cocycle in

End(F )|Ui∩Uj . Here we note that Exti(F, F ) = 0 for i > 0 by Lemma 2.7.

Since H1(X, End(F )) ∼= Ext1(F, F ) ∼= 0, we can rearrange the gluing of the

Fm+1,Ui so that they are glued to yield Fm+1 uniquely up to isomorphisms.

Thus we have a formal deformation of F on X relatively over the disk

∆. Since there exists a moduli space of F on X/∆ (the Quot scheme), the

deformation extends to X to yield F if we shrink ∆. Since H i(X, End(F )) ∼=
Exti(F, F ) ∼= 0 for i > 0, it follows that H i(Y, End(F) ⊗ OY ) ∼= 0 for

Y = f−1(t) and i > 0 by the upper-semi-continuity theorem. Therefore

dim End(F⊗Of−1(t)) is constant and Exti(F⊗OY ,F⊗OY ) = 0 for i > 0. �

2.8. Motivating example P(1, 1, 4)

We consider X = P(1, 1, d), the cone over a normal rational curve of

degree d ([15] Example 5.7). We will calculate this example as a particular

case of Theorem 6.1.

Let l be a generator of the cone, and let OX(1) = OX(l) be the corre-

sponding divisorial sheaf. We have OX(KX) ∼= OX(−d− 2).

We construct a sheaf F (denoted by G in [15]) by a universal extension

0 → OX(−1)⊕d−1 → F → OX(−1)→ 0.

Then F is a locally free sheaf of rank d. F is pretilting, and we have

RF = End(F ) ∼= k[[x1, . . . , xd−1]]/(x1, . . . , xd−1)
2.

F is a versal non-commutative deformation of OX(−1) over RF .

We have semi-orthogonal decompositions:

Db(X) = 〈OX(−2),OX(−1),OX〉 = 〈OX(−1),OX ,OX(d)〉.

We note that OX(−2) is dual invertible at the vertex of the cone, and is

not a perfect complex if d > 2. We can also write

Db(X) = 〈OX(−2), F ,OX〉 = 〈F ,OX ,OX(d)〉



140 Yujiro Kawamata

where we abbreviate F = 〈F 〉 ∩Db(X).

Here we would like to correct an error in [15] Example 5.7. We claimed

that there is a semi-orthogonal decomposition Db(X) = 〈OX(−d), F,OX〉,
but it is false. Indeed we have RHom(F,OX(−d)) �∼= 0 by the following

calculation. We have an exact sequence

0 → F → O⊕d
X → OC(d− 1)→ 0

where C ∈ |OX(d)| is a curve at infinity. Since RH(X,OX(−d)) ∼= 0, we

have

RHom(F,OX(−d)) ∼= RHom(OC(d− 1),OX(−d))[1]
∼= RHom(OX(−d),OC(−3))∗[−1] ∼= RΓ(C,OC(d− 3))∗[−1] �∼= 0

for d > 2.

In the case d = 4, X has a Q-Gorenstein smoothing to P2. Let V =

P(1, 1, 1, 2) be the projective cone over a Veronese surface, and let x, y, z, t

be the semi-invariant coordinates. It has a terminal quotient singularity at

the vertex. We can embed X in V by an equation xy = z2, then a smoothing

is given by a linear system

X = {xy = z2 + st} ⊂ V ×P1

where s is an inhomogeneous coordinate on P1. s = ∞ corresponds to

the plane at infinity. Fibers except X are isomorphic to P2, and 2KX is

invertible.

The fibers of the Q-Gorenstein smoothing have the following semi-

orthogonal decompositions:

Db(X) = 〈OX(−2),OX(−1),OX〉
Db(P2) = 〈OP2(−1),Ω1

P2(1),OP2〉.

We have the following correspondence. The dual invertible sheaf OX(−2)

deforms to OP2(−1), because KX = OX(−6) deforms to KP2 = OP2(−3).

The versal NC deformation F of OX(−1) deforms to Ω1
P2(1)⊕2, and the

endomorphism ring RF
∼= k[[x1, x2, x3]]/(x1, x2, x3)

2 deforms to Mat(2, k).

Indeed there are exact sequences

0 → F → O⊕4
X → OC(3)→ 0,

0 → Ω1
P2(1)⊕2 → O⊕4

P2 → OC(3)→ 0,

where C = X ∩P2 is the curve at infinity.
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3. Non-Commutative Deformation on a Surface with a Cyclic

Quotient Singularity

3.1. Generalities

We recall the theory of multi-pointed non-commutative (NC) deforma-

tions. Let km be a direct product ring for a positive integer m. We denote

by Artm the category of associative augmented km-algebras R, i.e., there

are ring homomorphisms km → R→ km whose composition is the identity,

such that R is finite dimensional as a k-vector space and that the two-sided

ideal m = Ker(R→ km) is nilpotent.

Let F be an object in a k-linear abelian category such as the category of

coherent sheaves Coh(X). F has a left km-module structure if and only if

it has a form of a direct sum F = ⊕m
i=1Fi. An m-pointed non-commutative

(NC) deformation F̃ of F over R ∈ Artm is a flat left R-module object in

the abelian category together with a fixed isomorphism

F → km ⊗R F̃ .

The infinitesimal deformation theory in the non-commutative setting is very

similar to the commutative one, where the base ring R is assumed to be com-

mutative. In particular, there exists a semi-universal or versal deformation

over a pro-object R̂ ∈ Art̂m which is uniquely determined up to an iso-

morphism, where Art̂m is the category of augmented km-algebras R with

m = Ker(R→ km) such that R/mn ∈ Artm for all n > 0.

By taking the functor ⊗F̃ to an extension of algebras

0→ ki → R′ → R→ 0

there is an extension of deformations

0→ Fi → F̃ ′ → F̃ → 0

where ki is an ideal which is isomorphic to k and is annihilated by all

components of km except the i-th component. Therefore the deformations

of F are obtained by extensions of the Fi.

If End(F ) ∼= km, then F is said to be a simple collection and the theory

is particularly simple ([15] Lemmas 4.4 and 4.5 with Corollary 4.6). In

particular we have End(F̃ ) ∼= R if F̃ is obtained by a succession of non-

trivial extensions of the Fi, e.g., the versal deformation.
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For example, if F = OX(−1) on X = P(1, 1, 4) with m = 1, then the

versal deformation F̃ is obtained as a universal extension

0 → OX(−1)3 → F̃ → OX(−1)→ 0.

3.2. 2-dimensional cyclic quotient singularity

The versal deformation of a divisorial sheaf on a surface with a cyclic

quotient singularity is determined by Karmazyn-Kuznetsov-Shinder [11]

(Lemma 3.13, Theorem 3.16, Proposition 6.7):

Theorem 3.1. Let X = 1
r (1, a) be a quotient singularity of dimension

2, where 0 < a < r and (r, a) = 1, and let C ⊂ X be the image of the

coordinate divisor corresponding to the weight 1. Let r/(r− a) = [c1, . . . , cl]

be an expansion to continued fractions. Then the versal NC deformation F̃

of a divisorial sheaf F = OX(−1) = OX(−C) is a locally free sheaf of rank

r on X, and the parameter algebra of the deformation is isomorphic to a

Kalck-Karmazyn algebra R = k〈z1, . . . , zl〉/I, where I is a two-sided ideal

in a non-commutative polynomial algebra generated by

z
cj
j , ∀j,

zjzk, j < k,

z
cj−1
j z

cj−1−2
j−1 . . . z

ck+1−2
k+1 zck−1

k , k < j.

We note that there is another expansion r/a = [d1, . . . , dm] to continued

fractions corresponding to the Hirzebruch-Jung string of exceptional divisors

on the minimal resolution of X.

We note also that we consider a divisorial sheaf F = OX(−1) corre-

sponding to a divisor with negative coefficient instead of the positive one

OX(a) as in [11] in order to simplify the notation.

F is a simple collection with one element on a suitable compactification

of X. In the following, we construct the versal NC deformation F̃ of F =

OX(−1) using an argument from [11], and deduce its local freeness by more

direct elementary method.

Let X ⊂ X ′ be a compactification to a normal projective surface which

has only one singularity and vanishing cohomologies H i(X ′,OX′) ∼= 0 for i >

0 e.g., a rational surface, let C ′ be the closure of C, and let F ′ = OX′(−C ′)
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be the corresponding divisorial sheaf. Then we have End(F ′) ∼= OX′ , and

the extension sheaves Exti(F ′, F ′) for i > 0 are skyscraper sheaves supported

at the singular point. Then we have ExtiX′(F ′, F ′) ∼= H0(X ′, Exti(F, F )).

Therefore we can consider the deformations of F and F ′ to be the same,

and the process to obtain the versal NC deformation is the same on X and

X ′.
More generally, even if X ′ has other isolated singularities, we have the

same argument if F ′ is locally free or dual free at these points, because

End(F ′) ∼= OX′ and Exti(F ′, F ′) ∼= 0 for i > 0 there by Lemma 2.7.

Let f : Y → X = 1
r (1, a) be the minimal resolution, let E1, . . . , Em be

the exceptional curves, which are isomorphic to P1’s, and let C ′ = f−1
∗ C

be the strict transform, so that (C ′, Em, . . . , E1) is a chain of curves in

this order.
∑m

j=1 Ej is the fundamental cycle of the singularity, and we

have mxOY = OY (−
∑m

j=1 Ej), where x ∈ X is the singular point. Let

Lm = OY (−C ′), and define Lj−1 = Lm(−Em − · · · − Ej) for 1 ≤ j ≤ m.

Thus we have f∗Lj = F for all 0 ≤ j ≤ m.

First we consider m + 1 pointed NC deformations of L = ⊕m
j=0Lj on Y ,

and let L̃ = ⊕m
j=0L̃j be the versal NC deformation. We note that L is not a

simple collection, but the NC deformation theory is not complicated in this

case, because the Li are exceptional objects which are semi-orthogonal, i.e.,

the vanishing

RHom(Lj , Lj′) ∼= RΓ(Y,OY (−Ej − · · · −Ej′+1) ∼= 0

holds for j > j′, and therefore non-trivial extensions of the Lj occur only in

one direction. We note also that all sheaves appearing in the process below

are locally free.

The direct summand L̃0 is constructed in the following way. It is the

largest one among the L̃i. It is obtained by iterated universal extensions

Gj starting from G0 = L0 and defined inductively by

0 → Ext1(Gj , Lj+1)
∗ ⊗ Lj+1 → Gj+1 → Gj → 0.(3.1)

We note that any extension of Gj by Lj+1 is obtained by a pull-back from

Gj+1. We also note that Ext1(Gj , Li) = 0 for all i ≤ j. Therefore we have

Gm = L̃0.

Another summand L̃i for i > 0 is similarly constructed from Li by

successively taking universal extensions by Li+1, . . . , Lm, but we do not

need it.
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Lemma 3.2. Let F̃ = f∗L̃0. Then F̃ is a locally free sheaf of rank r at

the singular point.

It is proved in [11] Proposition 6.7. We give an alternative elementary di-

rect proof. The construction here is “reversed” using divisors with negative

coefficients. It is also a good example of the multi-pointed NC deformation

theory.

Proof. It is sufficient to prove that the restriction of L̃0 to the fun-

damental cycle is trivial:

L̃0 ⊗O∑ m
j=1 Ej

∼= O⊕r∑ m
j=1 Ej

.

Indeed the generating sections of the right hand side can be extended to

sections of L̃0 since R1f∗OY (−n
∑m

j=1 Ej) = 0 for all n > 0.

Let r/a = [d1, . . . , dm] be an expansion to continued fractions. Then by

[11] Lemma 3.3, we have

r = det




d1 1 0 0 . . . 0

1 d2 1 0 . . . 0

0 1 d3 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . dm


 ,

a = det




d2 1 0 0 . . . 0

1 d3 1 0 . . . 0

0 1 d4 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . dm


 .

The self intersection numbers are given by di = −E2
i ≥ 2, and

degEj (Li) = (aij)

=




d1 − 1 d2 − 2 d3 − 2 . . . dm−2 − 2 dm−1 − 2 dm − 2

−1 d2 − 1 d3 − 2 . . . dm−2 − 2 dm−1 − 2 dm − 2

0 −1 d3 − 1 . . . dm−2 − 2 dm−1 − 2 dm − 2

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 dm−1 − 1 dm − 2

0 0 0 . . . 0 −1 dm − 1

0 0 0 . . . 0 0 −1
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for 0 ≤ i ≤ m and 1 ≤ j ≤ m.

We shall prove by induction on i (1 ≤ i ≤ m) that

Gi ⊗OEj
∼= O⊕ri

Ej

for j ≤ i, where ri = rank(Gi) is given by

ri = det




d1 1 0 0 . . . 0

1 d2 1 0 . . . 0

0 1 d3 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . di




and that Gi⊗OEj for j > i are trivial extensions of the Lk⊗OEj for k ≤ i.

We note that Lk ⊗ OEj
∼= OP1(dj − 1) if j = k + 1, and ∼= OP1(dj − 2) if

j > k + 1.

Let Y ′ be the compactification of Y which coincides with X ′ outside the

quotient singularity. For i = 1, the restriction map

Ext1Y ′(L0, L1)→ Ext1E1
(L0 ⊗OE1 , L1 ⊗OE1)

is bijective, because so is

H1(Y ′, L1 ⊗ L∗
0)→ H1(E1, L1 ⊗ L∗

0 ⊗OE1)
∼= H1(P1,OP1(−d1)) ∼= kd1−1

since Hk(Y ′,OY ′) = 0 for k = 1, 2. The corresponding extension on P1 is

given by

0 → OP1(−1)d1−1 → Od1

P1 → OP1(d1 − 1)→ 0

hence our assertion holds with r1 = d1. The extensions on Ej for j ≥ 2 are

trivial, because L1 ⊗ L∗
0 ⊗ OE2

∼= OP1(−1) and L1 ⊗ L∗
0 ⊗ OEj

∼= OP1 for

j > 2.

We assume that our assertion holds for Gi and prove it for Gi+1. Since

Li+1⊗OEj
∼= OEj for j ≤ i, we have Gi+1⊗OEj

∼= O⊕ri+1

Ej
for these j. Since

Li+1⊗OEj
∼= OEj (dj−1) or OEj (dj−2) for j > i+1, our assertion holds for

these j too. Therefore we have only to prove that Gi+1 ⊗OEi+1
∼= O⊕ri+1

Ei+1
.
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We note that

Gi ⊗OEi+1
∼= OP1(di+1 − 2)ri ⊕OP1(di+1 − 1)ri−ri−1

by the induction hypothesis. We also note that Ext1(Gi, Li) ∼= 0, since the

extension (3.1) is universal and Li is exceptional. The restriction map

Ext1Y ′(Gi, Li+1)→ Ext1Ei+1
(Gi ⊗OEi+1 , Li+1 ⊗OEi+1)

is bijective again, because so is

H1(Y ′, Li+1 ⊗G∗
i )→ H1(Ei+1, Li+1 ⊗G∗

i ⊗OEi+1)

since

H1(Y ′, Li+1(−Ei+1)⊗G∗
i )
∼= Ext1Y ′(Gi, Li) ∼= 0

and

H2(Y ′, Li+1(−Ei+1)⊗G∗
i )
∼= H0(Y ′, Gi ⊗ L∗

i ⊗KY ′)∗ ∼= 0.

We have

Ext1Ei+1
(Gi ⊗OEi+1 , Li+1 ⊗OEi+1)

∼= H1(P1,OP1(−di+1 + 1)ri−1 ⊕OP1(−di+1)
ri−ri−1)

and the corresponding extension on P1 is given by

0→ OP1(−1)di+1−2 → Odi+1−1
P1 → OP1(di+1 − 2)→ 0,

0→ OP1(−1)di+1−1 → Odi+1

P1 → OP1(di+1 − 1)→ 0.

Therefore our assertion holds with

rank(Gi+1) = ri−1(di+1 − 1) + (ri − ri−1)di+1 = di+1ri − ri−1 = ri+1.

In particular, the vector bundle L̃0 has rank r and is restricted to a trivial

bundle on each Ej . This was to be proved. �

The following is an alternative proof of a result proved in [11] Proposition

6.7 (iv):
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Lemma 3.3. F̃ = f∗L̃0 is the versal 1-pointed NC deformation of F =

OX(−1).

Proof. We use [15] Corollary 4.11. We consider on a compactification

X ′ of X which has only one singularity and such that H i(X ′,OX′) = 0 for

i > 0. We denote by F ′ and F̃ ′ respectively the extensions of F and F̃ to

X ′ defined by the closure of the curve C. Since F̃ ′ is locally free, it has no

more extension by F ′. Indeed we have

Ext1(F̃ ′, F ′) ∼= H0(X ′, Ext1(F̃ ′, F ′)) ∼= 0.

We note here that H1(X ′,Hom(F̃ ′, F ′)) ∼= 0, because Hom(F̃ ′, F ′) is an

extension of Hom(F ′, F ′) ∼= OX′ . Therefore the versality follows if

HomX′(F̃ , F ) ∼= k, which says that there is no trivial extension in the pro-

cess to obtain F̃ (cf. [15]).

Since F̃ is locally free, we have f∗F̃ ∼= L̃0, hence

HomX′(F̃ , F ) ∼= HomY ′(L̃0, L0)

where Y ′ is the corresponding compactification of Y . Since

HomY ′(Lj , L0) = 0 for j > 0, HomY ′(Gj , L0) → HomY ′(Gj+1, L0) are bi-

jective for all j, hence HomY ′(L̃0, L0) ∼= k. �

3.3. NC deformation on weighted projective plane

Let X = P(a, b, c) be a weighted projective plane, where (a, b, c) =

(a1, a2, a3) are pairwise coprime positive integers. There are at most 3

singular points P1
∼= 1

a(b, c), P2
∼= 1

b (a, c) and P3
∼= 1

c (a, b). We take a

positive integer m such that a|m and m ≡ 1 mod c.

We define divisorial sheaves L3 = OX(−mC13), L2 = OX(−mC13−C32)

and L1 = OX(−mC13 − C32 − C21), where Cjj′ is the line joining Pj , Pj′ .

Then L3 is invertible except at P3, L2 is invertible except at P3, P2 and dual

invertible at P3, and L1 is invertible except at P3, P2, P1 and dual invertible

at P3, P2.

Let Fi be the versal NC deformation of Li for i = 1, 2, 3, and let Ri =

End(Fi) be the parameter algebra of the deformation. We apply the results

of the previous subsection on F and F̃ to Li and Fi, respectively. Since Li is

locally free or dual free except at Pi, we have Extj(Li, Li) ∼= Extj(Li, Li)Pi ,

and Fi is locally free or dual free everywhere (Lemmas 2.7, 3.2 and 3.3).
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We have a semi-orthogonal decomposition due to Karmazyn-Kuznetsov-

Shinder [11]:

Theorem 3.4 ([11] Example 6.11).

Db(X) = 〈L1, L2, L3〉 = 〈F 1, F 2, F 3〉 ∼= 〈Db(R1), D
b(R2), D

b(R3)〉

where the F i are the abbreviations of the 〈Fi〉 ∩Db(X).

We give a sketch of the proof. We note here again that there is a

slight difference from [11] in the construction of the Fi; we use anti-effective

divisors instead of effective divisors to simplify the notation.

Let f : Y → X be the minimal resolution, and let Ei,j (i = 1, 2, 3,

j = 1, . . . ,mi) be the exceptional curves above Pi such that the curves

C ′
13, E3,m3 , . . . , E3,1, C

′
32, E2,m2 , . . . , E2,1, C

′
21, E1,m1 , . . . , E1,1

form a cycle of P1’s on Y in this order, where ′ means the strict transform

by f . The sum of these curves belongs to the anti-canonical linear system

| −KY |.
We define L3,m3 = O(−mC ′

13), L2,m2 = L3,0(−C ′
32), L1,m1 =

L2,0(−C ′
21), and Li,j−1 = Li,mi(−Ei,mi − · · · − Ei,j). Then the Li,j are

exceptional objects on Y and

RHom(Li,j , Li′,j′) = 0, if i > i′, or i = i′ and j > j′.

Let L̃i (i = 1, 2, 3) be the versal mi+1-pointed NC deformation of ⊕mi
j=0Li,j .

Since they are also kmi+1-modules, we can write L̃i = ⊕mi
j=0L̃i,j .

Then the versal NC deformation Fi of Li is given as Fi = f∗L̃i,0. As

shown above, all Fi are locally free or dual free. More precisely, F3 is

locally free, F2 is locally dual free at P3, and F1 is locally dual free at P3

and P2. The semi-orthogonal decomposition of Db(X) is a consequence a

semi-orthogonal decomposition on Y ([11]):

Db(Y ) = 〈L1,0, . . . , L1,m1 , L2,0, . . . , L2,m2 , L3,0, . . . , L3,m3〉.



Semi-Orthogonal Decomposition 149

4. Main Theorem: Wahl Singularity Case

The following is a modification of [6] Theorem 1.1. We note here again

that the sign change from positive to negative makes the result simpler.

Theorem 4.1. Let X be a normal projective variety of dimension 2

such that Hp(X,OX) = 0 for p > 0. Assume the following conditions:

(a) There is a quotient singularity P ∈ X of type 1
r2

(1, ar−1) for positive

integers a, r such that 0 < a < r and (r, a) = 1.

(b) There exists a divisorial sheaf A = OX(−D) on X for a Weil divi-

sor D such that D is equivalent to a toroidal coordinate axis in an analytic

neighborhood of P , and that A is invertible or dual invertible at other sin-

gularities of X.

(c) There is a projective flat deformation f : X → ∆ over a disk ∆ with

a coordinate t such that X = f−1(0), f−1(t) is smooth for t �= 0, and that

X is Q-Gorenstein at P .

Then, after replacing ∆ by a smaller disk around 0 and after a finite base

change by taking roots of the coordinate t, there exists a maximally Cohen-

Macaulay sheaf E of rank r on X which satisfies the following conditions:

(1) E ⊗ OX
∼= A⊕r.

(2) E := E ⊗OY is an exceptional vector bundle on Y = f−1(t) for t �= 0.

Proof. Let X ! → X be an index 1 cover (or canonical cover) of an

analytic neighborhood of P . Then it is a hypersurface singularity defined

by

X ! = {xy = zr} ⊂ C3

with an action of G = Z/(r) given by (x, y, z) �→ (ζx, ζ−1y, ζaz), where ζ is

a primitive r-th root of unity.

In general, if X → S is a Q-Gorenstein deformation of a Q-Gorenstein

singularity X, then KX/S is also a Q-Cartier divisor. An index 1 cover

X ! → X gives a deformation X ! → S of X ! with the Galois group action of

G = Gal(X !/X) = Gal(X !/X ).
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A versal deformation of X ! is given by

xy = zr +
r−2∑
i=0

tiz
i

for the parameters ti, and the action of G extends only if ti = 0 for i > 0.

Therefore a versal Q-Gorenstein deformation of X is given

{xy = zr + t} ⊂ 1

r
(1,−1, a, 0).

After replacing ∆ by a finite base change, our deformation becomes a

pull-back of a deformation

X = {xy = zr + ta} ⊂ 1

r
(1, ar − 1, a, 0) =

1

r
(1, ar − 1, a, r)

which we denote by the same letter and treat in the following.

Following [6] §3, let µ : X ′ → X be a weighted blow up at P with

weights 1
r (1, ar − 1, a, r), and let W be the exceptional divisor. Thus W ∼=

{xy = zr + ta} ⊂ P(1, ar − 1, a, r). Let X ′ be the strict transform of

X = f−1(0). Then the induced morphism µ|X′ : X ′ → X is a weighted

blow-up with weights 1
r2

(1, ar − 1), where we have (x, y, z) = (ur, vr, uv)

for semi-invariant coordinates (u, v) with weights 1
r2

(1, ar − 1). We have

µ−1f−1(0) = X ′ ∪W . We denote C = X ′ ∩W . It is a smooth rational

curve.

By [6] Proposition 5.1, there exists an exceptional vector bundle G of

rank r on W such that G⊗OC
∼= OC(−1)⊕r. Here we note that we take a

dual bundle F ∗
2 in [6] as G.

Let A′ be the strict transform of A on X ′. Then it is invertible or

dual invertible, and invertible near C such that A′ ⊗OC
∼= OC(−1). Then

by gluing G with (A′)⊕r, we obtain a locally free or dual free sheaf G′ on

X ′ ∪W .

By [6] Proposition 5.1, we have H i(W,G) ∼= 0 for all i. Here we note

that such vanishings do not hold for G∗. We have an exact sequence on

X ′ ∪W :

0→ G′ → G⊕ (A′)⊕r → OC(−1)⊕r → 0.

Since Rµ∗G ∼= Rµ∗OC(−1) ∼= 0, we have Rµ∗G′ ∼= Rµ∗(A′)⊕r.
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We claim that R(µ|X′)∗A′ ∼= A. Since it is a local assertion near C ∼=
P1, we may assume that A′ = OX′(−l′) for a smooth curve l′ in a small

neighborhood of C which intersects C transversally. Then l = µ|X′(l′) is

again a smooth curve and R(µ|X′)∗Ol′
∼= Ol, hence R(µ|X′)∗A′ ∼= OX(−l) ∼=

A. It follows that we have Rµ∗G′ ∼= Rµ∗(A′)⊕r ∼= R(µ|X′)∗(A′)⊕r ∼= A⊕r.

We calculate the endomorphism sheaf End(G′). Since A′ is a divisorial

sheaf on X ′, we have End(A′) ∼= OX′ . Since G is a locally free sheaf on W ,

we obtain End(G′) by gluing End(G) on W and End((A′)⊕r) ∼= O⊕r2

X′ on X ′.
Thus we have an exact sequence

0 → End(G′)→ End(G)⊕O⊕r2

X′ → O⊕r2

C → 0.

Since G is an exceptional vector bundle on W , we have RΓ(W, End(G)) ∼=
RHomW (G,G) ∼= k. Since A′ is invertible or dual invertible, we have

Exti(A′, A′) ∼= 0 for i > 0. We deduce that

RHomX′∪W (G′, G′) ∼= RΓ(X ′ ∪W, End(G′)) ∼= k.

It follows that G′ deforms to yield a locally free or dual free sheaf E ′ on X ′

by Proposition 2.8.

We set E = µ∗E ′. It is a torsion free sheaf on X which is locally free or

dual free except at the point µ(W ). Since Rµ∗G′ ∼= A⊕r, we have Riµ∗E ′ =

0 for i > 0 by the upper semi-continuity theorem. Indeed, if we take a

sufficiently ample sheaf H on X , then we have H i(X ′ ∪W,G′ ⊗ µ∗H) ∼= 0

for i > 0. It follows that H0(X , Riµ∗E ′ ⊗ H) ∼= H i(X ′, E ′ ⊗ µ∗H) ∼= 0 for

i > 0, and Riµ∗E ′ = 0 for i > 0.

It also follows that a natural homomorphism µ∗E ′ → µ∗G′ is surjective.

Hence we have E⊗OX
∼= A⊕r, and E is a maximally Cohen-Macaulay sheaf,

since so is A.

Since E⊗OY
∼= E ′⊗OY on a general fiber Y , we have REndY (E⊗OY ) ∼= k

by the upper semi-continuity theorem. We note here that End(E) is flat over

∆ because Homi(E , E) ∼= 0 for i > 0 and E is flat. �

Remark 4.2. In the above theorem, a global topological condition on

X in [6] is replaced by the assumption on the existence of A. A divisorial

sheaf, say AH , considered in [6] is locally isomorphic to O(1) instead of

O(−1), and the reflexive sheaf, say EH , on X satisfies that (EH ⊗OX)∗∗ ∼=
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(AH)⊕r, i.e., we need to take a double dual. This is avoided by using

negative degree sheaf A. Our E is equal to the dual E∗H .

We allowed that X has singularities other than P unlike in [6], but the

same proof works for the construction of E and the proof of its stability. We

assumed that X has a smoothing which is Q-Gorenstein at P , and that A is

invertible or dual invertible except at P so that there is no local deformation

of A.

We prove that a pretilting bundle coming from a NC deformation on a

special fiber deforms to a direct sum of Hacking’s bundle on a generic fiber

under a Q-Gorenstein smoothing:

Theorem 4.3. Assume the conditions of Theorem 4.1 and use the no-

tation there. Let F be a versal NC deformation of A on X. Then the

following hold.

(0) F is a locally free or dual free sheaf of rank r2 and is locally free at

P .

(1) RHomX(F,A) ∼= k. In particular, F is pretilting.

(2) ExtiX(F, F ) ∼= 0 for i > 0, and F extends to a locally free or dual

free sheaf F on X , if ∆ is replaced by a smaller disk (it is not necessary to

replace ∆ by its covering).

(3) F ⊗ OY
∼= (E ⊗ OY )⊕r on Y . In particular End(F ) deforms to

Mat(k, r).

Proof. (0) is already proved by Lemmas 3.2 and 3.3.

(1) Since F is the versal NC deformation of A, we have HomX(F,A) ∼= k

and Ext1X(F,A) = 0 by the construction ([15]).

Since F is locally free at P and locally free or dual free elsewhere, the

higher extension sheaves vanish: Exti(F,A) = 0 for i > 0. Therefore we

have

Ext2X(F,A) ∼= H2(X,Hom(F,A)) ∼= H0(X, (A∗ ⊗ F ⊗KX)∗∗)∗

by the Serre duality. Since F is a successive extension of A and

H0(X,KX) = 0, we deduce that Ext2(F,A) = 0. Thus RHomX(F,A) = k.

(2) It follows from (1) that ExtiX(F, F ) = 0 for i > 0. By Proposition

2.8, F deforms flatly to a locally free or dual free sheaf F on X , if we shrink

∆ if necessary.
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(3) By (1) and the upper semi-continuity theorem, we obtain

RHomY (F ⊗OY , E ⊗ OY ) ∼= k⊕r.

We prove that a natural homomorphism

F ⊗OY → Hom(F ⊗OY , E ⊗ OY )∗ ⊗ E ⊗OY
∼= (E ⊗ OY )⊕r

is an isomorphism of sheaves.

By [6] Theorem 1.1 and Proposition 4.4, E ⊗ OY is slope stable with

respect to any ample line bundle. Since F is a successive extension of a

divisorial sheaf A, it is slope semistable. Indeed, suppose that there is a

subsheaf B ⊂ F which attains the maximal slope µ(B) > µ(F ). Since

F is a successive extension of A, there is a non-zero homomorphism h :

B → A. Since µ(B) > µ(F ) = µ(A), it follows that µ(Ker(h)) > µ(B), a

contradiction to the maximality of B. Therefore F ⊗OY is also semistable

because semistability is an open condition.

Let f1, . . . , fr ∈ Hom(F ⊗ OY , E ⊗ OY ) be a basis. We introduce a

decreasing filtration Kp =
⋂p

i=1 Ker(fi) of F ⊗OY for 0 ≤ p ≤ r, where we

set K0 = F ⊗OY . We will prove that fp+1|Kp : Kp → E ⊗OY is surjective

in codimension 1, rank(Kp+1) = r(r− p− 1), and that µ(Kp+1) = µ(A) by

induction on p.

Assume that our assertion is already proved for p < p0 for some integer

p0 ≥ 0. First assume that fp0+1|Kp0 �= 0. Since F ⊗ OY is semistable and

E ⊗OY is stable with the same slope, it follows that Kp0 is also semistable

with µ(Kp0) = µ(E ⊗OY ) = µ(A). It follows that fp0+1|Kp0 is surjective in

codimension 1 by the stability of E ⊗OY . Then rank(Kp0+1) = r(r−p0−1)

and µ(Kp0+1) = µ(A).

Now we will prove that fp0+1|Kp0 �= 0. Assuming that fp0+1|Kp0 = 0,

we claim that there exist ci ∈ k for 1 ≤ i ≤ p0 such that fp0+1 =
∑p0

i=1 cifi,

a contradiction with the linear independence. We will prove this claim by

descending induction on i. Assume that the ci for p1 < i ≤ p0 are already de-

termined for an integer p1 with p1 ≤ p0 so that (fp0+1−
∑p0

i=p1+1 cifi)|Kp1 =

0. We consider homomorphisms (fp0+1−
∑p0

i=p1+1 cifi)|Kp1−1 and fp1 |Kp1−1

from Kp1−1 to E ⊗ OY . Since End(E ⊗ OY ) ∼= k, there exists cp1 ∈ k such

that (fp0+1 −
∑p0

i=p1
cifi)|Kp1−1 = 0. Thus the existence of the ci is proved

and hence the property of the filtration is proved.
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It follows that GrK(F ⊗ OY ) =
⊕r

i=1 K
i−1/Ki is a subsheaf of (E ⊗

OY )⊕r. Since both sheaves have the same rank and same slope, the support

of their quotients has dimension 0. We have χ(F⊗OY ) = χ(F ) = r2χ(A) =

rχ(E ⊗ OY ), hence GrK(F ⊗ OY ) ∼= (E ⊗ OY )⊕r. Since Ext1(E ⊗ OY , E ⊗
OY ) = 0, we obtain our assertion. �

5. Main Theorem: Higher Milnor Number Case

In order to generalize our main results to higher Milnor number case (i.e.,

s > 1), we use crepant simultaneous partial resolutions and flops between

them which are explained below. We prove that semi-orthogonality plus

flops implies full orthogonality.

We construct a crepant simultaneous partial resolution of a Q-Gorenstein

smoothing f : X → ∆ of a quotient singularity of type 1
r2s

(1, ars − 1) (cf.

[13]):

Lemma 5.1. Let X be a quotient singularity of type 1
r2s

(1, ars − 1).

Let f : X → ∆ be a Q-Gorenstein smoothing of X. Then, after a suitable

shrinking and finite base change of ∆, there exists a birational morphism

µ : X ′ → X which satisfies the following conditions:

(1) µ−1f−1(t) → f−1(t) is an isomorphism for t �= 0, where t is a

coordinate on ∆.

(2) X ′ = µ−1f−1(0) is a normal surface having s quotient singular points

P1, . . . , Ps of type 1
r2

(1, ar− 1), and f ′ := f ◦µ : X ′ → ∆ is a Q-Gorenstein

smoothing of X ′.
(3) µ : X ′ → X is crepant, i.e., KX′ = µ∗KX as Q-Cartier divisors.

(4) The exceptional curves C1, . . . , Cs−1 ⊂ X ′ of µ form a chain of P1’s

connecting s singular points such that Pi, Pi+1 ∈ Ci for all i.

Proof. We embed X as X = {xy = zrs} ⊂ 1
r (1,−1, a) by x = urs,

y = vrs, z = uv. An index 1 cover X !, or a canonical cover, of X is given

by an equation

{xy = zrs} ⊂ C3

with an action of G = Z/(r) given by (x, y, z) �→ (ζx, ζ−1y, ζaz). The

versal deformation of X ! is given by xy = zrs +
∑rs−2

i=0 tiz
i, where the ti are
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parameters. Hence the equation of a versal Q-Gorenstein deformation of X

is given by

xy = zrs +
s−1∑
i=0

tiz
ir

since it should be invariant under the Galois group action.

Any one parameter deformation of X is given by an equation xy =

zrs+
∑s−1

i=0 gi(t)z
ir, where t is the parameter on ∆ and the gi are holomorphic

functions such that gi(0) = 0. After a suitable base change t �→ tm and

shrinking of ∆, we obtain factorization of the equation of X :

f : X = {xy =

s∏
i=1

(zr − hi(t))} ⊂ V =
1

r
(1,−1, a, 0)→ ∆

where the hi are holomorphic functions such that hi(0) = 0.

We construct µ by induction on s. If s = 1, then µ is the identity.

Assume that s > 1 in the following.

Let µ1 : X1 → X be a blow up along the ideal (x, zr − h1(t)), and let

C1 be the exceptional curve. Then µ1 is crepant because it is small. X1 is

covered by two open subsets U1 and U2. U1 has an equation

U1 = {x′y =
s∏

i=2

(zr − hi(t))} ⊂
1

r
(1,−1, a, 0)

with coordinates (x′ = x/(zr − h1(t)), y, z, t), thus we obtain the same sit-

uation with s decreasing by 1. U2 has an equation

U2 = {y =

s∏
i=1

(zr − hi(t))/x, xt
′ = zr − h1(t)} ⊂

1

r
(1,−1, a, 0,−1)

with coordinates (x, y, z, t, t′). In other words,

U2 = {xt′ = zr − h1(t)} ⊂
1

r
(1,−1, a, 0)

with coordinates (x, t′, z, t), and we obtain a situation with s = 1.

Therefore µ−1
1 f−1(0) has two singular points of types 1

r2
(1, ar − 1) and

1
r2(s−1)

(1, ar(s− 1)− 1). By repeating the above small blow ups, we obtain

our µ. �
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We note that µ : X ′ → X does not factor the minimal resolution of

X. For example, if r = s = 2, then the exceptional locus of the minimal

resolution ν : X ′′ → X of the quotient singularity of type 1
8(1, 3) consists

of two (−3)-curves E1, E2. X ′ is obtained from X ′′ by blowing up E1 ∩ E2

then contracting the strict transforms E′
1, E

′
2 which are (−4)-curves.

Since µ : X ′ → X is crepant, we can flop curves Ci on X ′ for 1 ≤ i ≤ s−1

([13]). Let µi : X ′
i → X be the flopped morphism. Though X ′ and X ′

i are

isomorphic, the natural birational map X ′ ��� X ′
i is not a morphism. It

induces a birational map X ′ ��� X ′
i which is extendable to an isomorphism

by the dimension reason.

A flop acts on the set of divisors on X ′ because the natural birational

map X ′ ��� X ′
i is an isomorphism in codimension 1. Because the Milnor

fiber of the Wahl singularity is a Q-homology ball ([23], [14]), the coho-

mology groups of the fibers with coefficients in Q are constant. Hence this

action induces an action on the numerical classes of divisors on X ′ by the

restriction of Q-Cartier divisors.

We calculate this action using the following lemma:

Lemma 5.2. Let µ : V → W be a projective birational morphism of

3-dimensional varieties with only terminal singularities whose exceptional

locus is an irreducible curve C such that (KV , C) = 0, and let µ′ : V ′ →W

be its flop with the exceptional curve C ′. Let D be a Q-Cartier divisor on

V and let D′ be its strict transform on V ′. Then (D′, C ′) = −(D,C).

Proof. We use the construction of flops in [19]. Since µ is crepant,

W has only terminal singularities too. We can replace W by its analytic

germ around µ(C), because the intersections occur above this germ. We

can also replace W by its index 1 cover and replace V and V ′ by their pull-

backs, because the equality of intersection numbers is preserved by a finite

covering. Then W becomes a hypersurface singularity of multiplicity 2, a

double cover of a smooth germ. There is a Galois involution σ : W → W

which underlies the flop (µ′)−1µ : V ��� V ′. More precisely, we have V ′ =

V ×W W σ, where the symbol W σ means that the map W σ → W is given

by σ. E := µ∗D +σ∗µ∗D is a pull-back of a Q-divisor on the smooth germ,

hence is a Q-Cartier divisor.

The isomorphism σ induces an isomorphism σ′ : V → V ′. We have

µ∗(σ′)∗D′ = σ∗µ∗D, hence D + (σ′)∗D′ = µ∗E. Since C is contracted by
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µ and σ′(C) = C ′, we have 0 = (D,C) + ((σ′)∗D′, C) = (D,C) + (D′, C ′),
hence the result. �

We continue to use the notation of Lemma 5.1.

Lemma 5.3. Let C0, Cs be strict transforms on X ′ of the curves corre-

sponding to the two coordinate axes on X such that C0, C1, . . . , Cs−1, Cs ⊂
X ′ form a chain of curves in this order, so that Ci ∩ Cj = ∅ if |i − j| ≥ 2.

Then the following hold.

(1) (Ci−1, Ci) = 1/r2 for 1 ≤ i ≤ s, and (C2
i ) = −2/r2 for 1 ≤ i ≤ s−1.

(2) The flop of the curve Ci interchanges C0+· · ·+Ci−1 and C0+· · ·+Ci

for 1 ≤ i ≤ s− 1.

Proof. (1) The first equality follows since the order of the quotient

singularity is 1/r2. We have (KX′ , Ci) = 0 for 1 ≤ i ≤ s − 1, and KX′ +

C0 + C1 + . . . Cs−1 + Cs ∼ 0. Then
∑s

k=0(Ck, Ci) = 0, hence the second

equality.

(2) For 1 ≤ i, j ≤ s− 1, we have

((C0 + · · ·+ Cj), Ci) =




1/r2, j = i− 1,

−1/r2, j = i,

0, j �= i− 1, i.

Hence the assertion follows from Lemma 5.2. �

Theorem 5.4. Let X be a normal projective variety of dimension 2

such that Hp(X,OX) = 0 for p > 0. Assume the following conditions:

(a) There is a quotient singularity P ∈ X of type 1
r2s

(1, ars − 1) for

positive integers a, r, s such that 0 < a < r and (r, a) = 1.

(b) There exists a divisorial sheaf A = OX(−D) on X for a Weil divisor

D such that D is equivalent to the first coordinate axis with respect to the

toroidal coordinate (µ(C0) in the above discussion) in an analytic neigh-

borhood of P , and that A is locally invertible or dual invertible at other

singularities of X.

(c) There is a projective flat deformation f : X → ∆ over a disk ∆ with

a coordinate t such that X = f−1(0), f−1(t) is smooth for t �= 0, and that

X is Q-Gorenstein at P .
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Then, after replacing ∆ by a smaller disk around 0 and after a finite

base change by taking roots of the coordinate t, there exist maximally Cohen-

Macaulay sheaves E1, . . . Es of rank r on X which satisfy the following con-

ditions:

(1) Ei ⊗OX
∼= A⊕r for all i.

(2) Ei := Ei⊗OY are exceptional vector bundles on Y = f−1(t) for t �= 0,

which are mutually orthogonal, i.e.,

RHomY (Ei, Ej) :=

2⊕
p=0

Extp(Ei, Ej)[−p] ∼= 0

for i �= j.

Proof. Let µ : X ′ → X be the crepant simultaneous partial resolution

constructed in Lemma 5.1 The central fiber X ′ has s singularities Pi of type
1
r2

(1, ar−1), and X ′ is a Q-Gorenstein smoothing of X ′ whose general fiber

is the same as that of the smoothing X . The exceptional curves Ci connect

the singular points of X ′ as described in the lemma.

Let A′ be a divisorial sheaf on X ′ corresponding to the strict transform

of the divisor D in the following way: µ∗A′ ∼= A and that A′ is locally

isomorphic to OX′(−C0) near µ−1(P ). Let A′
i = A′(−C1 − · · · − Ci−1) for

1 ≤ i ≤ s. Then A′
i is a divisorial sheaf on X ′ which is locally isomorphic

to OX′(−Ci−1) near Pi, locally dual invertible at Pj for j < i, and locally

invertible elsewhere.

By Theorem 4.1, there is a maximally Cohen-Macaulay sheaf E ′i on X ′

for every 1 ≤ i ≤ s such that E ′i⊗OX′ ∼= (A′
i)
⊕r and E ′i⊗OY is an exceptional

vector bundle.

We consider A′
i and A′

j such that i < j. Then A′
i (resp. A′

j) is locally

dual invertible at the points P1, . . . , Pi−1 (resp. P1, . . . , Pj−1) and locally

invertible elsewhere except at Pi (resp Pj). It follows that Extk(A′
i, A

′
j)
∼= 0

for k > 0 by Lemma 2.7. We calculate

RHomX′(A′
i, A

′
j)
∼= RΓ(X ′,Hom(A′

i, A
′
j))

∼= RΓ(X ′,OX′(−(Ci + · · ·+ Cj−1)) ∼= 0
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because RΓ(X ′,OX′) ∼= RΓ(X ′,OCi+···+Cj−1)
∼= k. By the upper semi-

continuity, we obtain

RHomY (E ′i ⊗OY , E ′j ⊗OY ) ∼= 0

for i < j.

If we flop a curve Ci on X ′, the divisorial sheaves A′
i and A′

i+1 on X ′

are interchanged. More precisely, let α : X ′ ��� X ′
1 be the flop of a curve

Ci. Then there is an isomorphism of special fibers β : X ′ → X ′
1 which is

induced by the flop as a birational map, but not the restriction of the flop. α

induces an isomorphism α∗ of the spaces of divisors from X ′ to X ′
1, and the

latter induces by restriction an isomorphism of the space of divisors on the

special fibers. By pulling back by β, we obtain the above correspondence of

divisors on X ′.
But since the generic fiber is unchanged under the flop, we obtain

RHomY (E ′i ⊗OY , E ′j ⊗OY ) ∼= 0

for i > j. Therefore we have

RHomY (E ′i ⊗OY , E ′j ⊗OY ) ∼= 0

whenever i �= j.

We claim that Rµ∗A′
i
∼= A, i.e., Rjµ∗A′

i
∼= 0 for j > 0 and all i. Indeed,

since it is a local assertion, we may assume that X = 1
r2s

(1, ars− 1), A′ =

OX′(−C0) and A = OX(−µ(C0)). Then we have Rµ∗OC0+C1+···+Ci−1
∼=

Oµ(C0). Since Rµ∗OX′ ∼= OX , we obtain our claim.

By the upper semi-continuity again as in the proof of Theorem 4.1, we

have Rjµ∗E ′i ∼= 0 for j > 0 and all i. We define Ei by Rµ∗E ′i = Ei. We have

an exact sequence

0 → E ′i → E ′i → (A′
i)
⊕r → 0

where the first arrow is the multiplication of t. Then we have

0→ Ei → Ei → A⊕r → 0

i.e., Ei ⊗OX
∼= A⊕r. This completes the proof. �

Theorem 5.5. Assume the conditions of Theorem 5.4. Let F be a

versal NC deformation of A on X. Then the following hold.
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(0) F is a locally free or dual free sheaf of rank r2s and is locally free at

P .

(1) RHomX(F,A) = k.

(2) ExtiX(F, F ) = 0 for i > 0, and F deforms to a locally free or dual

free sheaf F , if ∆ is replaced by a smaller disk.

(3) F ⊗ OY
∼=

⊕s
i=1(Ei ⊗ OY )⊕r on Y . In particular End(F ) deforms

to Mat(k, r)×s.

Proof. (0) is already known. The proofs (1) and (2) are the same as

in Theorem 4.3.

(3) We modify the proof of Theorem 4.3. We have again RHomY (F ⊗
OY , Ei ⊗OY ) ∼= k⊕r. We prove that a natural homomorphism

F ⊗OY →
s⊕

i=1

Hom(F ⊗OY , Ei ⊗OY )∗ ⊗ Ei ⊗OY
∼=

s⊕
i=1

(Ei ⊗OY )⊕r

is an isomorphism.

Since Hom(Ei ⊗ OY , Ej ⊗ OY ) ∼= 0 for i �= j, we have again a filtration

of F ⊗OY such that Gr(F ⊗OY ) is a subsheaf of
⊕s

i=1(Ei ⊗OY )⊕r whose

cokernel is supported at isolated points. We have χ(F ⊗ OY ) = χ(F ) =

r2sχ(A) =
∑s

i=1 rχ(Ei⊗OY ), hence Gr(F⊗OY ) ∼=
⊕s

i=1(Ei⊗OY )⊕r. Since

Ext1(Ei ⊗OY , Ej ⊗OY ) = 0 for all i, j, we obtain our assertion. �

Remark 5.6. The referee remarked that Lemma 5.1 and Theorems

5.2 and 5.3 hold true also in the case where X has Gorenstein singularities
1
s (1, s − 1). This can be considered as the case where r = a = 1, and the

same proofs work. Lemma 5.1 is reduced to the well-known simultaneous

resolution of Du Val singularities. A divisorial sheaf on X extends to its

smoothing as a divisorial sheaf in Theorem 5.2 because we have a global

assumption H2(X,OX) = 0.

6. Example: Q-Gorenstein Smoothings of Weighted Projective

Planes

We consider Q-Gorenstein smoothings of weighted projective planes to

del Pezzo surfaces as examples of the main results. First we consider Q-

Gorenstein smoothings to P2.
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Theorem 6.1. Let a1, a2, a3 be positive integers satisfying a Markov

equation a2
1 + a2

2 + a2
3 = 3a1a2a3. Let X = P(a2

1, a
2
2, a

2
3) be a weighted

projective plane, and let Db(X) = 〈L1, L2, L3〉 = 〈F 1, F 2, F 3〉 be the semi-

orthogonal decomposition explained in §3, where rank(Fi) = a2
i . Then under

a Q-Gorenstein smoothing X → ∆ of X to P2, F1, F2, F3 deform to a di-

rect sum E⊕a1
1 , E⊕a2

2 , E⊕a3
3 for a full exceptional collection of vector bundles

(E1, E2, E3) on P2 such that rank(Ei) = ai.

Proof. We note that the 3 coordinate points of X are automatically

quotient singularities of the type 1
r2

(1, ar− 1) or possibly smooth. By The-

orem 4.3, Fi deforms to E⊕ai
i for an exceptional vector bundle Ei. Since

RHom(Fi, Fj) ∼= 0 for i > j, it follows that RHom(Ei, Ej) ∼= 0 for i > j by

the upper semi-continuity theorem. Note that the same conclusion holds

even if one of the ai are equal to 1.

We will prove that the exceptional collection (E1, E2, E3) is full. The

following proof is due to the suggestion of the referee. The point is that

the fullness is an open property because the supports of coherent sheaves

are closed. Let Fi be the locally free or dual free sheaves on X obtained in

Theorem 4.3 such that Fi ⊗ OX
∼= Fi and Fi ⊗ OY

∼= E⊕ai
i for i = 1, 2, 3.

Let Ri = End(Fi) = f∗End(Fi). It is a free O∆-module. We note that there

are no higher cohomologies because the Fi are pretilting.

Since Fi is flat overRi, there is an exact functor Φi : mod(Ri)→ coh(X )

of O∆-linear abelian categories given by Φi(•) = • ⊗Ri Fi. We denote

its derived functor also by Φi : Db(mod(Ri)) → Db(coh(X )). It has a

right adjoint functor Ψi : Db(coh(X )) → Db(mod(Ri)) defined by Ψi(•) =

RHom(Fi, •). Indeed we have HomX (a⊗L
Ri
Fi, b) ∼= HomRi(a,RHom(Fi, b)).

We have ΨiΦi
∼= IdDb(mod(Ri)), and the functors Φi are fully faithful, because

HomRi(a, b)
∼= HomRi(a,ΨiΦi(b)) ∼= HomX (Φi(a),Φi(b)).

Let C ⊂ Db(coh(X )) be the right orthogonal complement of the Fi, i.e.,

C = {x ∈ Db(coh(X )) | RHom(Fi, x) ∼= 0 ∀i}. For x ∈ Db(coh(X )), we

define the x(i) ∈ Db(coh(X )) for 0 ≤ i ≤ 3 inductively as follows. Let

x(3) = x, and we define x(i−1) from x(i) by a distinguished triangle

ΦiΨi(x
(i))→ x(i) → x(i−1) → ΦiΨi(x

(i))[1].

We claim that Ψj(x
(i)) ∼= 0 for j > i. Indeed, if we apply Ψi to the above

distinguished triangle, then we have Ψi(x
(i−1)) ∼= 0. If we apply Ψj for
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j > i, then we have Ψj(x
(i−1)) ∼= Ψj(x

(i)) ∼= 0 because RHom(Fj ,Fi) ∼= 0.

Therefore we have x(0) ∈ C.
Let t be a coordinate on ∆. We have an exact sequence 0 → OX →

OX → OX → 0, where the first arrow is given by the multiplication of t.

Let us fix c ∈ C. By tensoring with the above exact sequence, we obtain a

distinguished triangle

c→ c→ c0 → c[1]

where c0 = c⊗L
OX
OX ∈ Db(coh(X)). Since c0 ∈ C, we have

0 ∼= RHomX (Fi, c0) ∼= RHomX(Fi, c0)

for all i. Here we used ωX ⊗L
OX

OX
∼= ωX , which is obtained by taking

ωX⊗L
OX

to the above exact sequence, at the points where Fi is dual free.

Hence c0
∼= 0, because the Fi generate Db(coh(X)). It follows that

t : Hj(c) → Hj(c) are bijective for all j. Since the Hj(c) are coherent

sheaves on X , their supports are closed subsets which do not intersect X.

Since c is a bounded complex, we conclude that c ∼= 0 if we replace ∆ by a

smaller disk if necessary.

Let OX (1) be a divisorial sheaf on X such that OX (1) ⊗OX OX
∼=

OX(a1a2a3) and OX (1) ⊗OX OY
∼= OP2(1). We set ck = OX (k)(0) ∈ C

for k = −2,−1, 0. By shrinking ∆ three times, we may assume that ck ∼= 0

for all k.

For any y ∈ Db(coh(Y )), if

0 ∼= RHomX (OX (k), y) ∼= RHomY (OP2(k), y),

then we have y ∼= 0, because the OP2(k) for k = −2,−1, 0 generate

Db(coh(P2)). Since ck ∼= 0 for all k, we deduce that, if RHomX (Fi, y) ∼= 0

for all i, then y ∼= 0. Now assume that RHomY (Ei, y) ∼= 0 for all i. Then

we have

RHomX (Fi, y) ∼= RHomY (E⊕ai
i , y) ∼= 0

hence y ∼= 0. This completes the proof of the fulness of the Ei. �

Hacking-Prokhorov [7] classified all normal projective surfaces X having

only quotient singularities such that −KX is ample, Picard number ρ(X) =
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1, and that X has a Q-Gorenstein smoothing. We consider the case of

weighted projective planes.

Theorem 6.2. Let X = P(s1a
2
1, s2a

2
2, s3a

2
3) be a weighted projective

plane which has a Q-Gorenstein smoothing X → ∆ to a del Pezzo surface

Y as classified in [7] Theorem 4.1, where a1, a2, a3 are Cartier indexes of the

canonical divisor KX at the singular points. Let Db(X) = 〈L1, L2, L3〉 =

〈F 1, F 2, F 3〉 be the semi-orthogonal decomposition explained in §3, where

rank(Fi) = sia
2
i . Then under the Q-Gorenstein smoothing, Fi deforms to

a direct sum
⊕si

j=1 E
⊕ai
i,j for a 3-block full exceptional collection of vector

bundles

(E1,1, . . . , E1,s1 ;E2,1, . . . , E2,s2 ;E3,1, . . . , E3,s3)

on Y such that rank(Ei,j) = ai.

Proof. The proof similar to the previous theorem. We note that the

3 coordinate points of X are automatically quotient singularities of the type
1
r2s

(1, ars− 1) or possibly 1
s (1, s− 1). By the main theorem, Fi deforms to⊕si

j=1 E
⊕ai
i,j for exceptional vector bundles Ei,j which are mutually orthog-

onal. We have again RHom(Ei,j , Ei′,j′) ∼= 0 for i > i′. The proof of the

fullness is similar to that of Theorem 6.1. �

We expect that these in the latter theorem coincide with Karpov-Nogin

blocks ([12]). More generally, toric surfaces in [7] Theorem 4.1 can be treated

similarly, because the construction of pretilting bundles works similarly as

in the case of weighted projective planes.
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