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On Origami Embeddings of Flat Tori

By Takashi Tsuboi

Abstract. We give explicit origami embeddings of a 2-dimen-
sional flat torus of any modulus in the 3-dimensional Euclidean space.
The existence of such embeddings was shown by Burago and Zalgaller
in 1995 and our explicit construction gives an alternative proof.

1. Introduction

In this article we study origami embeddings of flat tori in the 3-dimen-

sional Euclidean space. Here, a topological embedding of a flat torus is said

to be an origami embedding if there is a finite geodesic triangulation of the

flat torus such that the embedding is isometric on each triangle.

The existence of origami embeddings of a 2-dimensional flat torus of any

modulus in the 3-dimensional Euclidean space was shown by Yu. D. Burago

and V. A. Zalgaller ([7]). They treated a little more general objects; flat

cone 2-manifolds, which allow finitely many vertices with angle sum different

from 2π. Their construction is an origami version of the Nash-Kuiper C1

isometric embedding theorem ([13], [9]), that is, they showed that any short

embedding can be approximated by such isometric origami embeddings, and

usually the triangulation for the Burago-Zalgaller origami embeddings is

complicated. In the case of flat tori with rectangular fundamental domains,

the bending construction for triangular cylinders by Zalgaller ([20]) gives

simple origami embeddings of them.

We would like to give explicit origami embeddings of a 2-dimensional flat

torus of any modulus which are more tractable, and our construction gives

an alternative proof of the existence of origami embeddings. Though the

existence of such embeddings is already known by [7] and our construction

may have been known to specialists, the author thinks that there are still

several interesting mathematical features in the proof given in this article.
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Theorem 1.1. A 2-dimensional flat torus of any modulus can be ex-

plicitly origami embedded in the 3-dimensional Euclidean space.

When one learns first courses of Riemannian geometry and the definition

of flat tori, one is certain that flat tori do not admit C2 isometric embed-

dings in the 3-dimensional Euclidean space. This can be shown by finding

an orthogonal projection to a line which is a Morse function, and then see-

ing that the points of maxima and minima should have positive Gaussian

curvature. Then after having shocked by learning the famous Nash-Kuiper

theorem ([13], [9]) which asserts any 2-dimensional orientable Riemannian

manifold can be C1 isometrically embedded in the 3-dimensional Euclidean

space, and watching the video ([6]) by V. Borrelli, S. Jabrane, F. Lazarus,

D. Rohmer and B. Thibert (see also [4], [5], [8]), one naturally asks how

about origami embeddings.

Without knowing the nice constructions by Zalgaller ([20]) and Burago-

Zalgaller ([7]), we looked for rather simple origami embeddings of flat tori

which can be realized as usual origami. Then we found them in the book

[16] by Segerman, and on the webpages as [10], [15], [17], [18], etc., which

attracted the author to think about the moduli of origami embedded flat

tori. There are several other papers which studies similar problems: [2], [3],

[14].

After having written up the first draft of the present paper, the author

realized that the construction of the present paper was found by Arnoux,

Lelièvre and Málaga and named “diplotori” by them ([1], [11]). In the

webpage [12], it is commented that the idea was introduced by Ulrich Brehm

in 1978.

We prove Theorem 1.1 in the following way.

In Section 2, we give origami embedded flat annuli whose boundaries

are the boundaries of regular polygons on two parallel planes with the line

joining their centers being orthogonal to the planes. This construction for

an equilateral triangle is given by Zalgaller in the section 6 of [20], though

the author thinks that it should have been known to craftsmen in old days.

Note as in [20] that this origami embedding can be deformed by rotating

one regular polygon with respect to the other around the perpendicular

axis. Then by putting together two such origami embedded annuli whose

boundaries coincide we obtain an origami immersed flat torus.

In Section 3, we see the conditions for the two origami embedded annuli
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to give rise to an origami embedding. These origami embedded flat tori

were explicitly given by Segerman ([15], [16], [17]).

In Section 4, we calculate the moduli of origami embedded flat tori

constructed in this way. The moduli space of flat tori can be obtained from

its fundamental domain which is {z ∈ C
∣∣ |Re z| � 1

2
, |z| � 1}. We find

that the moduli space of such flat tori is related to the space of tangents

of cycloids. There we see that this construction gives origami embeddings

of flat tori except those with pure imaginary moduli, i.e., except those with

rectangular fundamental domains.

In Section 5, we use half of the origami embedded flat tori in Section

3 and take the double of them to construct origami embeddings of flat

tori with rectangular fundamental domains. This doubling construction is

essentially the same as the bending construction for triangular cylinders

given by Zalgaller [20].

The rough idea of constructions of origami embeddings of flat tori in this

article was explained in Japanese in [19] where we showed typical examples

which are included also in this article.

The author thanks Musashino Center of Mathematical Engineering of

Musashino University and RIKEN Interdisciplinary Theoretical and Math-

ematical Sciences Program for their support. He is grateful to the valuable

discussion with Kazuo Masuda and with Shizuo Kaji during the preparation

of this article. He also thanks the anonymous referee for a careful reading

and valuable suggestions.

2. Construction of Embeddings of Flat Annuli

In this section we construct origami embedded flat annuli.

Let us use the coordinates C × R for the 3-dimensional Euclidean

space. Let n be an integer greater than 2. First, consider the regu-

lar n-gon P0 · · ·Pn−1Pn (Pn = P0) on C × {0} ⊂ C × R with vertices

Pk = (e2π
√
−1k/n, 0) (k = 0, . . . , n). Secondly, for a positive real num-

ber h and an element ρ ∈ R/Z, consider the regular n-gon Qρ
0 · · ·Q

ρ
n−1Q

ρ
n

(Qρ
n = Qρ

0) on C × {h} ⊂ C ×R with vertices Qρ
k = (e2π

√
−1ρ+2π

√
−1k/n, h)

(k = 0, . . . , n).

Consider the triangles �P0P1Q
ρ
1 and �Qρ

0Q
ρ
1P1. Hereafter we take a



108 Takashi Tsuboi

Fig. 1. Aρ
n for h = 1, n = 8 and ρ =

k

2n
(k = −n, −n + 1, . . . , n − 2). The left figure

of the uppermost line shows A
−8/16
8 and the right figure of the lowermost line shows

A
+6/16
8 , and these two are not embedded annuli.

representative ρ ∈ R of ρ ∈ R/Z and we assume that

−1

2
< ρ <

1

2
− 1

n
.
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Fig. 2. The developments of Aρ
8 in Figure 1 (h = 1, n = 8, ρ =

k

2n
; k = −n, −n+1, . . . ,

n − 2). The development for ρ =
−8

16
shown at the left figure of the uppermost line

and that for ρ =
6

16
shown at the right figure of the lowermost line do not correspond

to embeddings.

Note first that the lengths of the edges P0P1 and Qρ
0Q

ρ
1 are equal as the

edges of the congruent regular n-gons. Secondly, the lengths of the edges

P0Q
ρ
0 and P1Q

ρ
1 are equal because they are mapped by the rotation by

2π

n
around the real axis {0} ×R. Since the triangles �P0P1Q

ρ
1 and �Qρ

0Q
ρ
1P1

share the edge P1Q
ρ
1, they are congruent; �P0P1Q

ρ
1
∼= �Qρ

1Q
ρ
0P0. We rotate

these triangles around the real axis {0}×R by
2kπ

n
and obtain 2n triangles

�PkPk+1Q
ρ
k+1, �Qρ

k+1Q
ρ
kPk (k = 0, . . . , n− 1). Let Aρ

n denote the union

of them;

Aρ
n =

⋃
k=0,...,n−1

�PkPk+1Q
ρ
k+1 ∪�Qρ

k+1Q
ρ
kPk.

It is necessary to verify that the interiors of these triangles are disjoint. We

find the infimum and the supremum of ρ such that the interiors of these
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triangles are disjoint, and they are −1

2
and

1

2
− 1

n
, respectively. At ρ = −1

2

the edges PkQ
ρ
k (k = 0, . . . , n−1) pass through the center (0,

h

2
) of Aρ

n, and

at ρ =
1

2
− 1

n
so do the edges PkQ

ρ
k+1 (k = 0, . . . , n−1). Thus the interiors

of these triangles are disjoint by the assumption that −1

2
< ρ <

1

2
− 1

n
.

If ρ ∈ [− 1

n
, 0], Aρ

n is the union of side faces of the convex hull of the

union of the two regular n-gons P0 · · ·Pn−1Pn and Qρ
0 · · ·Q

ρ
n−1Q

ρ
n. If ρ is

− 1

n
or 0, Aρ

n is the union of the side faces of the regular n angular prism and

if ρ = − 1

2n
, Aρ

n is the union of side faces of the uniform n-gonal antiprism.

See Figure 1.

If we develop Aρ
n, we obtain a parallelogram. For, since �P0P1Q

ρ
1
∼=

�Qρ
1Q

ρ
0P0, �P0P1Q

ρ
1∪�Qρ

1Q
ρ
0P1 is a parallelogram. As a union of n copies

of this parallelogram, Aρ
n is developed to a parallelogram with the edge of

length 2n sin
π

n
and height equals to the height of the triangle �P0P1Q

ρ
1

with respect to the base edge P0P1. Thus Aρ
n is an origami embedded flat

annulus. See Figure 2.

Since the length of edges of �P0P1Q
ρ
1 are computed as P0P1 = 2 sin

π

n
,

P1Q
ρ
1 =

√
4
(
sin(πρ)

)2
+ h2 and P0Q

ρ
1 =

√
4
(
sin(πρ +

π

n
)
)2

+ h2, the point

Xρ
1 on the line P0P1 which is Qρ

1 projected to the line P0P1 satisfies that

P0X
ρ
1 =

(P0P1)
2 + (P0Q

ρ
1)

2 − (P1Q
ρ
1)

2

2P0P1

= 2 cos(πρ) sin(πρ +
π

n
) = sin(2πρ +

π

n
) + sin

π

n
.

Then the height of the triangle �P0P1Q
ρ
1 with respect to the base edge

P0P1 is equal to

Xρ
1Q

ρ
1 =

√
(P0Q

ρ
1)

2 − (P0X
ρ
1 )2

=

√
h2 + 4

(
sin(πρ)

)2(
sin(πρ +

π

n
)
)2

=

√
h2 +

(
cos(2πρ +

π

n
) − cos

π

n

)2
.
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Fig. 3. For Aρ
n and Aσ

n with σ = ρ+
�

n
, the condition that Aρ

n is closer to {0} ×R than

Aσ
n is in the interior of the black segments of slope 1 in the ρσ-coordinates. n = 24

and the blue (gray) square is [−1

2
,
1

2
] × [−1

2
,
1

2
].

3. Construction of Embeddings of Flat Tori

In this section, we paste two suitable origami embedded annuli along

boundaries and we construct origami embedded flat tori. Now we assume

n � 5. This construction is just a variant of that of Segerman ([15], [16],

[17]).

For two real numbers ρ, σ ∈ (
1

2
,
1

2
− 1

n
), if origami embedded annuli

Aρ
n and Aσ

n defined in Section 2 have the same boundaries and have dis-

joint interiors, then we can paste Aρ
n and Aσ

n along the boundary and we

obtain a surface which is an origami embedded flat torus. The fact that the

obtained surface is a flat torus is easily verified because the development

of the obtained surface is the union of two parallelograms which are the
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Fig. 4. The boundaries of Aρ
n (n = 8, ρ =

k

16
(k = −8, . . . , 6)) in Figure 1 coincide

alternately. The conditions on the boundary (σ = ρ +
�

n
), on the disjointness and

on the position to the axis {0} × R is satisfied by these 12 points indicated on the

ρσ-coordinates. The blue (gray) square is [−1

2
,
1

2
] × [−1

2
,
1

2
].

developments of Aρ
n and Aσ

n pasted along the upper or lower edge. The

identification of the edges of the development can be seen by the origami

embedding and this determines the modulus of the origami embedded flat

torus.

If the difference of ρ and σ ∈ (−1

2
,
1

2
− 1

n
) is a multiple of

1

n
, the

boundaries of Aρ
n coincide with those of Aσ

n. We would like to take Aρ
n

inside of Aσ
n.

For ρ ∈ (−1

2
,− 1

2n
], Aρ

n is placed closer to the real axis {0} × R than

the one-sheet hyperboloid obtained by rotating the edge P0Q
ρ
1 around the

real axis {0} × R except the edges PkQ
ρ
k+1 (k = 0, . . . , n − 1), and for

ρ ∈ [− 1

2n
,
1

2
− 1

n
), Aρ

n is placed closer to the real axis {0} × R than the

one-sheet hyperboloid obtained by rotating the edge P0Q
ρ
0 around the real

axis {0} ×R except the edges PkQ
ρ
k (k = 0, . . . , n− 1).
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(
5

16
,− 3

16
) (

4

16
,− 2

16
) (

5

16
,− 1

16
)

(
3

16
,− 1

16
) (

4

16
, 0) (

5

16
,

1

16
)

(− 7

16
,− 3

16
) (− 6

16
,− 2

16
) (− 5

16
,− 1

16
)

(− 7

16
,− 1

16
) (− 6

16
, 0) (− 7

16
,

1

16
)

Fig. 5. Origami embeddings of flat tori Aρ
8 ∪ Aσ

8 and the coordinates (ρ, σ) for n = 8,
h = 1.
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− 3

16
− 5

16
= −4

8
− 2

16
− 4

16
= −3

8
− 1

16
− 5

16
= −3

8

− 1

16
− 3

16
= −2

8
0 − 4

16
= −2

8

1

16
− 5

16
= −2

8

− 3

16
− (− 7

16
) =

2

8
− 2

16
− (− 6

16
) =

2

8
− 1

16
− (− 5

16
) =

2

8

− 1

16
− (− 7

16
) =

3

8
0 − (− 6

16
) =

3

8

1

18
− (− 7

16
) =

4

8

Fig. 6. Developments of flat tori Aρ
n ∪ Aσ

n and σ − ρ =
�

n
. Developments are seen

from the side of the solid tori bounded by the flat tori. The upper parallelogram
corresponds to the inner annulus Aρ

n and the lower parallelogram corresponds to the
outer annulus Aσ

n. The common edges correspond to P0P1 · · ·P7P8 and the upper

edges and the lower edges correspond to Qσ
0Q

σ
1 · · ·Qσ

7Q
σ
8 . Since σ = ρ +

�

n
, the red

(gray) parallelogram show the fundamental domains of the flat tori.

In order to ensure the disjointness, it is enough that the edges of Aσ
n

which are closest to the real axis {0} × R is outside of this one-sheet hy-

perboloid. Since the edge P0Q
σ
0 is closer for σ ∈ (−1

2
,− 1

2n
] and the edge

P0Q
σ
1 is closer for σ ∈ [− 1

2n
,
1

2
− 1

n
), we have the following conditions on ρ

and σ, which can be seen from the positions of the projections of edges on

C × {0}.
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• For ρ ∈ (−1

2
,

1

2n
] and σ ∈ (−1

2
,

1

2n
], |σ| < |ρ +

1

n
|.

• For ρ ∈ (−1

2
,

1

2n
] and σ ∈ [− 1

2n
,
1

2
− 1

n
), σ +

1

n
< |ρ +

1

n
|.

• For ρ ∈ [− 1

2n
,
1

2
− 1

n
) and σ ∈ (−1

2
,

1

2n
], |σ| < |ρ|.

• For ρ ∈ [− 1

2n
,
1

2
− 1

n
) and σ ∈ [− 1

2n
,
1

2
− 1

n
), σ +

1

n
< |ρ|.

With the condition that σ = ρ +
�

n
(� ∈ Z), the conditions are summed up

as follows:

• σ = ρ +
�

n
(−1

2
< ρ < − �

2n
− 1

n
; � = 2, . . . , n− 3).

• σ = ρ− �

n
(
�

2n
< ρ <

1

2
− 1

n
; � = 2, . . . , n− 3).

See Figure 3.

As concrete examples we construct origami embeddings Aρ
n ∪Aσ

n of flat

tori by using a pair of the annuli shown in Figure 1. We have 12 pairs shown

in Figure 4 which satisfy the above conditions. The origami embeddings

Aρ
n∪Aσ

n are shown in Figure 5. The developments of the origami embeddings

Aρ
n ∪Aσ

n are shown in Figure 6.

4. Moduli of Embeddings of Flat Tori

In this section, by looking at the development of the surface Aρ
n ∪ Aσ

n,

we compute the moduli of the flat tori and show the following theorem.

Theorem 4.1. The construction of the origami embedding Aρ
n∪Aσ

n for

n � 5, h > 0 and either σ = ρ+
�

n
(−1

2
< ρ < − �

2n
− 1

n
; � = 2, . . . , n− 3)

or σ = ρ − �

n
(
�

2n
< ρ <

1

2
− 1

n
; � = 2, . . . , n − 3) gives an origami

embedding of a flat torus of any modulus except those represented by pure

imaginary numbers.

We describe the development of Aρ
n ∪Aσ

n more concretely. We put in C

the vertex P̂0 at the origin which corresponds to P0. Set the C-coordinates
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of P̂k (k = 0, . . . , n) by

P̂k = 2k sin
π

n
.

By using the computation on the point Xρ
1 at the end of Section 2, set the

C-coordinates of Qρ
k (k = 0, . . . , n) by

Qρ
k = sin(2πρ+

π

n
) + (2k− 1) sin

π

n
+
√
−1

√
h2 +

(
cos(2πρ +

π

n
) − cos

π

n

)2
.

Set the C-coordinates of Qσ
k (k = 0, . . . , n) by

Qσ
k = sin(2πσ+

π

n
)+(2k−1) sin

π

n
−
√
−1

√
h2 +

(
cos(2πσ +

π

n
) − cos

π

n

)2
.

Then the development of Aρ
n ∪ Aσ

n is the union of the parallelograms

P̂0P̂nQ
ρ
nQ

ρ
0 and P̂0P̂nQ

σ
nQ

σ
0 . The union of line segments Qρ

0P̂0Q
σ
0 is identi-

fied with Qρ
nP̂nQ

σ
n. Since σ = ρ± �

n
, Qσ

k Q
σ
k+1 is identified with Qρ

k±	Q
ρ
k+1±	

(k = 0, . . . , n−1 mod n). Hence the modulus mod(n,±�, ρ, h) =
Qρ

±	 −Qσ
0

P̂n

of Aρ
n ∪Aσ

n (σ = ρ± �

n
) is computed as follows:

mod(n,±�, ρ, h)

=
Qρ

±	 −Qσ
0

P̂n

=
1

2n sin
π

n

{
sin(2πρ +

π

n
) − sin(2πρ± 2�π

n
+

π

n
) ± 2� sin

π

n

+
√
−1

(√
h2 +

(
cos(2πρ +

π

n
) − cos

π

n

)2

+

√
h2 +

(
cos(2πρ± 2�π

n
+

π

n
) − cos

π

n

)2
)}

We observe in this formula that the real part of the modulus does not

depend on the height h.

Proposition 4.2. The real part of the modulus of the origami embed-

ded flat torus Aρ
n ∪Aσ

n does not depend on the height h.
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This proposition can also be shown geometrically. For, when we deform

the height h, the triangles P0P1Q
ρ
1 and P0Q

ρ
0Q

ρ
1 change the height without

changing the projected point Xρ
1 on the line P0P1 of Qρ

1 and the projected

point on the line Qρ
0Q

ρ
1 of P0, respectively.

Taking account of Proposition 4.2, in order to determine the moduli of

flat tori embeddable as Aρ
n∪Aσ

n, it is enough to look at the limit case where

h = 0. For, for a complex number on the curve with h = 0, the complex

numbers with bigger imaginary part belong to the moduli.

The curve with h = 0 is given by

1

2n sin
π

n

{
sin(2πρ +

π

n
) − sin(2πρ± 2�π

n
+

π

n
) ± 2� sin

π

n

+
√
−1

(∣∣ cos(2πρ +
π

n
) − cos

π

n

∣∣ +
∣∣ cos(2πρ± 2�π

n
+

π

n
) − cos

π

n

∣∣)}.

The cases where σ = ρ +
�

n
and σ = ρ − �

n
in Theorem 4.1 correspond to

the cases where the real parts are positive and negative, respectively. They

are the mirror images which have modulus symmetric with respect to the

pure imaginary axis. Hence to determine the moduli space for Aρ
n ∪Aσ

n, we

look at only the cases where σ − ρ =
�

n
(� = 2, . . . , n− 3) and ρ varies in

(−1

2
,− �

2n
− 1

n
). Then the curve is

1

2n sin
π

n

{
sin(2πρ +

π

n
) − sin(2πρ +

2�π

n
+

π

n
) + 2� sin

π

n

+
√
−1

(∣∣ cos(2πρ +
π

n
) − cos

π

n

∣∣ +
∣∣ cos(2πρ +

2�π

n
+

π

n
) − cos

π

n

∣∣)}.

This curve is continuous on ρ ∈ (−1

2
,− �

2n
− 1

n
) for each n and � (� = 2,

. . . , n− 3).

We fix the ratio θ =
�

n
and let � and n tend to the infinity and we see

the curve converges to a rather comprehensible curve. That is, by putting

�m = m�, nm = mn and by letting tend m to the infinity, the curve converges
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to

cθ(ρ) =
1

2π

(
sin(2πρ) − sin(2π(ρ + θ)) + 2πθ

+
√
−1

(
2 − cos(2πρ) − cos(2π(ρ + θ))

))
.

which is defined on ρ ∈ (−1

2
,−θ

2
) for rational θ ∈ (0, 1).

Proposition 4.3. The closure of the union for all θ ∈ (0, 1) of the

images of curves cθ(ρ) (ρ ∈ (−1

2
,−θ

2
)) is the union of the following two

domains:

the domain bounded by the line segment joining 0 and

√
−1

π
and the two

cycloids {cθ(−θ)}θ∈[0, 1
2
] and {cθ(−

1

2
)}θ∈[0, 1

2
];

the domain bounded by the three cycloids {c−2ρ(ρ)}ρ∈[− 1
2
,0], {cθ(−θ)}θ∈[0, 1

2
]

and {cθ(−
1

2
)}θ∈[ 1

2
,1].

Proof. We look at the complex valued function γ(ρ, θ) = cθ(ρ) de-

fined on the interior of the triangle ∆ with vertices (ρ, θ) = (−1

2
, 0), (0, 0),

(−1

2
, 1). The partial derivatives are as follows:

∂γ

∂ρ
= cos(2πρ) − cos(2π(ρ + θ)) +

√
−1

(
sin(2πρ) + sin(2π(ρ + θ))

)
∂γ

∂θ
= 1 − cos(2π(ρ + θ)) +

√
−1 sin(2π(ρ + θ))

The Jacobian of γ : ∆ −→ C is calculated as follows:

{cos(2πρ) − cos(2π(ρ + θ))} sin(2π(ρ + θ)

−{sin(2πρ) + sin(2π(ρ + θ))}{1 − cos(2π(ρ + θ))}
= cos(2πρ) sin(2π(ρ + θ)) + sin(2πρ) cos(2π(ρ + θ))

−{sin(2πρ) + sin(2π(ρ + θ))}
= sin(2π(2ρ + θ)) − sin(2πρ) − sin(2π(ρ + θ))

= 4 sin(πρ) sin(π(ρ + θ)) sin(π(2ρ + θ))

Thus in the interior of the triangle ∆, the map is singular along the line

ρ+θ = 0. In fact, along the line ρ+θ = 0,
∂γ

∂ρ
= cos(2πρ)−1+

√
−1 sin(2πρ)
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(the real part and the imaginary part are both negative for ρ ∈ (−1

2
, 0))

and
∂γ

∂θ
= 0. This line corresponds to the place where the limit of σ = ρ+ θ

is zero and the image of this line is given by the following curve cθ(−θ):

cθ(−θ) =
2πθ − sin(2πθ) +

√
−1(1 − cos(2πθ)))

2π
(θ ∈ (0,

1

2
)),

which is a cycloid joining 0 and
1

2
+

√
−1

2π
∈ C.

The images of the edges of ∆ is as follows:

• The edge joining (0, 0) and (−1

2
, 1) where θ = −2ρ is mapped to the

following curve c−2ρ(ρ) (ρ ∈ (−1

2
, 0)):

c−2ρ(ρ) =
2 sin(2πρ) − 4πρ +

√
−1(2 − 2 cos(2πρ))

2π

which is again a cycloid joins 0 and 1 +
2

π

√
−1.

• The edge joining (−1

2
, 1) and (−1

2
, 0) where ρ = −1

2
is mapped to the

following curve cθ(−
1

2
) (θ ∈ (0, 1)):

cθ(−
1

2
) =

sin(2πθ) + 2πθ +
√
−1(3 + cos(2πθ))

2π
.

This is a cycloid, and

Im(cθ(−
1

2
)) = Im(c1−θ(−

1

2
)) and

Re(cθ(−
1

2
)) = 1 − Re(c1−θ(−

1

2
)),

i.e., the image is symmetric with respect to the line Re(z) =
1

2
. The

point θ =
1

2
is a critical point whose image is a cusp. The curve

cθ(−
1

2
) (θ ∈ (0, 1)) joins

2

π

√
−1,

1

2
+

√
−1

π
and 1 +

2

π

√
−1.
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• The edge joining (−1

2
, 0) and (0, 0) where θ = 0 is mapped to the

following curve c0(ρ) (ρ ∈ (−1

2
, 0)):

c0(ρ) =
√
−1

1 − cos(2πρ)

π

which is a line segment joining 0 and
2

π

√
−1. See Figure 7.

The above curves give the boundary simple closed curves which are

boundaries of the domains in the proposition. Since the map is regular in

the interior of ∆\{ρ+θ = 0}, the image of each component of ∆\{ρ+θ = 0}
coincides with the interior of one of the two domains in the proposition.

Thus the proposition is shown. �

Remark 4.4. Since

∂γ

∂ρ
= cos(2πρ) − cos(2π(ρ + θ)) +

√
−1

(
sin(2πρ) + sin(2π(ρ + θ))

)
= 2 sinπ(2ρ + θ) sin(πθ) + 2

√
−1 sinπ(2ρ + θ) cos(πθ)

and the ratio Im(
∂γ

∂ρ
)
/
Re(

∂γ

∂ρ
) of the imaginary part and the real part is

cot(πθ) which is independent of ρ, {cθ(ρ)}ρ∈(− 1
2
,− θ

2
) is a line segment joining

the two points cθ(−
1

2
) of the cycloid {cθ(−

1

2
)}θ∈( 1

2
,1) and cθ(−

θ

2
) of the cy-

cloid {c−2ρ(ρ)}ρ∈(− 1
2
,0). For 0 < θ <

1

2
, the line segment {cθ(ρ)}ρ∈(− 1

2
,− θ

2
) is

tangent to the cycloid {cθ(−θ)}θ∈(0, 1
2
), and for

1

2
< θ < 1, the prolongation

of the line segment is tangent to the same cycloid.

Proof of Theorem 4.1. We take any rational number θ in the open

interval (0,
1

2
). If ρ is close to −θ ∈ (−1

2
,−θ

2
), then the point cθ(ρ) is on

the tangent line of the cycloid {cθ(−θ)}θ∈(0, 1
2
) at the point cθ(−θ) and close

to the point cθ(−θ) (See Remark 4.4). Then the modulus mod(n, �, ρ, h)

for θ =
�

n
and small positive h stays near the tangent line cθ(ρ). Then

the points with greater imaginary part than mod(n, �, ρ, h) are moduli of
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Fig. 7. The image in C of cθ(ρ) ((ρ, θ) ∈ ∆). For fixed θ, the curve cθ(ρ) is shown in
black.

flat tori which can be origami embedded in R3, and so do the points with

greater imaginary part than the cycloid θ �−→ cθ(−θ).

Note that the real part Re(cθ(−θ)) =
2πθ − sin(2πθ)

2π
and the imaginary

part Im(cθ(−θ)) =
1 − cos(2πθ)

2π
of cθ(−θ) are both monotone increasing

with respect to θ ∈ (0,
1

2
) and lim

θ→0
cθ(−θ) = 0 ∈ C and lim

θ→ 1
2

cθ(−θ) =

1

2
+

i

2π
∈ C. Since Im(c(θ)) <

1

2π
<

√
3

2
, the curve {c(θ)

∣∣θ ∈ (0,
1

2
)} is

contained in the unit disk in C. This implies that the set of moduli of the

origami embedded flat tori Aρ
n ∪ Aσ

n (n � 5; h > 0, σ = ρ +
�

n
; � = 2, . . . ,

n− 3) contains the set

{x + y
√
−1

∣∣ x ∈ (0,
1

2
), y �

√
1 − x2}

which is almost the half of the fundamental domain of moduli of flat tori.

By looking at the case where σ = ρ− �

n
, we obtain the moduli which are

mirror images of those in the case where σ = ρ +
�

n
, and hence we showed
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Theorem 4.1 except for the moduli with the real part
1

2
.

To treat the case of the real part
1

2
, we look at the line segment

{cθ(ρ)}ρ∈(− 1
2
,− θ

2
) for 1 > θ >

1

2
(See Remark 4.4). As we remarked, cθ(ρ)

connects the point cθ(−
1

2
) of the cycloid {cθ(−

1

2
)}θ∈( 1

2
,1) and the point

cθ(−
θ

2
) of the cycloid {c−2ρ(ρ)}ρ∈(− 1

2
,− 1

4
). Thus the curve cθ(ρ) for θ >

1

2

close to
1

2
crosses the line where the real part is

1

2
near the point

1

2
+

√
−1

π
.

Hence by the argument as before, the line
1

2
+ y

√
−1 (y >

√
3

2
) is moduli

of origami embedded flat tori. �

Remark 4.5. In order to represent moduli near the imaginary axis,

we need to use Aρ
n ∪Aσ

n (σ = ρ± �

n
) with large n.

5. Origami Embeddings of Flat Tori of Pure Imaginary Moduli

In order to treat the flat tori with pure imaginary moduli, we use the

following simple observation.

Proposition 5.1. For the embedded annulus Aρ
n ⊂ C × R of height

h defined in Section 2 and 0 < a < h, consider the parts Aρ
n|z∈[0,a] and

Aρ
n|z∈[a,h] of Aρ

n where the R coordinate z belong to [0, a] and to [a, h], re-

spectively. Then the developments of Aρ
n|z∈[0,a] and Aρ

n|z∈[a,h] are parallelo-

grams obtained as the parts lower and upper than the horizontal line dividing

the development of Aρ
n in the ratio a : h− a.

Proof. It follows from the fact that the intersection of triangles

�P0P1Q
ρ
1, �Qρ

1Q
ρ
0P0 and the plane {z = a} are the line segments parallel

to P0P1, Q
ρ
1Q

ρ
0. �

The following proposition completes the proof of Theorem 1.1.

Proposition 5.2. The flat tori with rectangular fundamental domains

can be origami embedded in the 3-dimensional Euclidean space.
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Fig. 8. Aρ
n|z∈[0,h

2
] ∪Aσ

n|z∈[0,h
2
] for n = 8, h = 1, (ρ, σ) = (

4π

8
,−2π

8
), (

4π

8
, 0), the doubles

of them and the development of the doubles.

Proof. We take an origami embedding Aρ
n ∪ Aσ

n of a flat torus con-

structed in Section 3. We cut Aρ
n∪Aσ

n along the plane {z = a} for 0 < a < h

and we take the double of Aρ
n|z∈[0,a]∪Aσ

n|z∈[0,a] or Aρ
n|z∈[a,h]∪Aσ

n|z∈[a,h]. Then

the double has a rectangular fundamental domain. The modulus is small if

the height of the double is small, and hence any point of the imaginary axis

can be realized as an origami embedded flat torus. �
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We give explicit examples of origami embedded flat tori with rectangular

fundamental domain in Figure 8.

Remark 5.3. Proposition 5.1 can be generalized so that for 0 < a <

b < h, the development of Aρ
n|z∈[a,b] is a parallelogram and one can try to

use it to construct some other origami embeddings of flat tori. However we

think it is necessary to contain a regular n-gon in our constructions until

now. A possible reason is as follows: The intersection Aρ
n ∩ {z = a} is a

2n-gon and from the shape of this intersection we find n, ρ and
a

h
except

the case where the intersection is regular 2n-gon. That is, if the intersection

is not a regular 2n-gon, n is obtained as the half of the number of vertices,

the sum of the lengths of edges is equal to that of the regular n-gon in the

construction, the ratio of the lengths of adjacent edges gives
a

h− a
, and the

angle of the edges of the intersection gives ρ because they are parallel to

edges of the top or bottom regular n-gon. Thus if there are no cross sections

which are regular n-gons, we can only use Aρ
n|z∈[a,b] with fixed ρ, and only

give rise to annuli.

Remark 5.4. The doubling construction of this section is essentially

the same as the bending construction for triangular cylinders given by Zal-

galler [20]. In view of Proposition 4.2, our Proposition 5.2 follows from the

construction by Zalgaller [20].
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