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A Note on Power Generalized Extreme Value

Distribution and Its Properties

By Ali Saeb

Abstract. Similar to the generalized extreme value (GEV) fam-
ily, the generalized extreme value distributions under power normal-
ization are introduced by Roudsari (1999) and Barakat et al. (2013).
In this article, we study the asymptotic behavior of GEV laws under
power normalization and derive expressions for the kth moments, en-
tropy, ordering in dispersion, rare event estimation and application of
real data set. We also show that, under some conditions, the entropy
and variance of GEV families are ordered.

1. Introduction

Let X1, X2, . . . , Xn is a sequence of independent and identically dis-

tributed (iid) random variables (rvs) with distribution function (df) F. If,

for some non-degenerate df G, a df F belongs to the max domain of attrac-

tion of G under linear normalization and it denotes by F ∈ D�(G), then for

some norming constants an > 0 and bn ∈ R

lim
n→∞

Pr

(
n∨

i=1

Xi ≤ anx+ bn

)
= lim

n→∞
Fn (anx+ bn) = G(x).(1.1)

Limit df G satisfying (1.1) are the well known generalized extreme value

(GEV) distribution, namely,

Gξ̃(x; µ̃, σ̃) = exp


−

(
1 +

ξ̃

σ̃
(x− µ̃)

)−1/ξ̃

 ,(1.2)
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where, ξ̃ ∈ R\{0}, µ̃ ∈ R and σ̃ > 0 and {x : 1+ ξ̃
σ̃ (x− µ̃) > 0}. The subset

of the GEV family with ξ̃ = 0 is interpreted as the limit of (1.2) as ξ̃ → 0,

leading to the Gumbel family with df

G(x; µ̃, σ̃) = exp

(
− exp

(
−x− µ̃

σ̃

))
, x ∈ R.

Criteria for F ∈ D�(G) are described, for example, in the books of

Embrechts et al. (1997) and de Haan and Ferreira (2006). Coles (2001) is

good reference to the application of GEV distribution.

Pancheva (1984) studies limit laws of partial maxima of iid rvs under

power normalization. Namely, K is called p-max stable law and F belongs

to the p-max domain of attraction of K under power normalization and

denote it by F ∈ Dp(K), if for some δn > 0, βn > 0

lim
n→∞

Pr

(( |
∨n

i=1 Xi|
δn

)1/βn

sign

(
n∨

i=1

Xi

)
≤ x

)
= K(x).(1.3)

The limit laws K satisfying (1.3) are the six types of p-max stable laws

which we represent them in appendix A. Mohan and Ravi (1993) show that

if a df F ∈ D�(G) then there always exists a p-max stable law K such

that F ∈ Dp(K) and the converse need not be true always. They also

investigate, the p-max stable laws attract more dfs to their max domains

than the �−max stable laws. See also Christoph and Falk (1996) and Falk et

al. (2004) for properties of dfs to belong to the p-max domain of attraction.

Roudsari (1999) demonstrates that the six p-max stable laws can be

represented as two families. We call them log-GEV distribution in positive

support and negative log-GEV distribution in negative support. Suppose a

positive rv X+ is said to have the log-GEV with location, scale and shape

parameters µ ∈ R, σ > 0 and ξ ∈ R\{0} if its df is given by

L1,ξ(x;µ, σ) =




exp

(
−

(
1 + ξ

σ log(e−µx)
)−1/ξ

)
, for, ξ 
= 0;

exp
(
− (xe−µ)

− 1
σ

)
, for, ξ = 0,

(1.4)

where, {x : 1 + ξ
σ log(e−µx) > 0} for ξ 
= 0 and {x : xe−µ > 0} for ξ = 0;

and define a negative rv X− with df of negative log-GEV, if its df is given
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by,

L2,ξ(x;µ, σ) =




exp

(
−

(
1 − ξ

σ log(e−µ |x|)
)−1/ξ

)
, for ξ 
= 0;

exp
(
−(|x| e−µ)

1
σ

)
, for ξ = 0.

(1.5)

defined on {x : 1 − ξ
σ log(e−µ |x|) > 0} for ξ 
= 0 and {x : |x| e−µ > 0} for

ξ = 0.

The summarization these two families as a single one is easier to imple-

ment. In other words, the unification of the log-GEV and negative log-GEV

families into single family and it is called the power generalized extreme

value (PGEV) family. Suppose a rv X is said to have the PGEV distribu-

tion with three parameters µ ∈ R, σ > 0 and ξ ∈ R\{0} if its df is given

by

Lξ(x;µ, σ) = exp

(
−

(
1 +

ξ

σ
log(e−µ |x|)sign(x)

)−1/ξ
)
,(1.6)

defined on the set {x : 1 + ξ
σ log(e−µ |x|)sign(x) > 0}. The limit of (1.6) as

ξ → 0, tending to the GEV distribution with σ̃ = eµ and ξ̃ = σ sign(x).

The df of PGEV for ξ = 0 is well known in (1.2). If |Z| = (e−µ |X|)1/σ be

a standardised rv with df

FZ(z) = Pr(|X| ≤ eµ |z|σ)

= exp
(
− (1 + sign(z)ξ log |z|)−1/ξ

)
= Lξ(z).

It is well known that if Lξ is a p-max stable law, then Lξ satisfies

Ln
ξ (δn|z|βn) = Lξ(z), for z ∈ R and some constants δn > 0, βn > 0. Barakat

et al. (2013) study the statistical inference about the PGEV. In appendix

B, illustrate the density functions and confidence interval for quantile esti-

mator of PGEV family and gives the figures 1 and 2 of standardized density

function of lξ for different values of ξ.

In this article, we obtain some mathematical properties of PGEV family

and discuss maximum likelihood estimation of parameters and estimate the

rare event by using the Bayesian method. We also, show that the PGEV has

big variance and entropy in the class of extreme value distributions. The

article is outlined as follows. In section 2, we first study the asymptotic be-

havior of generalized extreme value distributions under power normalization
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and we also, derive expressions of kth moments, the entropy and ordering

in dispersion of GEV families. Maximum likelihood estimation, Bayesian

modeling and illustrates the importance of the PGEV through the analysis

of real data set are addressed in section 3. We provide the some calculating,

plots and tables in appendices.

Throughout the manuscript γ = −
∫∞
0 log x e−xdx denotes the Euler

constant with value 0.577 . . . and Γ(k)(·) is kth derivative of gamma function.

The inverse function of J (·) denoted by J←(·) and ∇xJ (x) is derivative of

J with respect to x. Also, we employ the notation, Φα(x) = e−x
−α
, x > 0

is the distribution of Fréchet and Ψα(x) = e−|x|
α

, x < 0 is the distribution

of Weibull with parameter α. For right extremity of F, we shall denote by

r(F ) = sup{x : F (x) < 1} ≤ ∞, and survival function is F̄ (·) = 1 − F (·).

2. Distribution Properties

2.1. Limiting distributions

Throughout we consider measurable real valued function U : R
+ → R

+

is regularly varying function with index ρ if

lim
t→∞

U(tx)

U(t)
= xρ, for x > 0.

We write U ∈ RVρ and we call ρ the exponent of variation. If ρ = 0 we

call U slowly varying. Slowly varying function are generally denoted by

L. If U ∈ RVρ then U(x)/xρ ∈ RV0 and setting L(x) = U(x)/xρ we see

it is always possible to represent a ρ−varying function as x−ρL(x). The

regular varying function plays an important role in the asymptotic analysis

of various problems. It is well known, following de Haan and Ferreira (2006)

that a necessary and sufficient condition for the existence of constants an =

a(n) and bn = 1
F̄ (n)

such that (1.1) is equivalent

lim
t→r(F )

1 − F (t+ u(t)x)

1 − F (t)
= (1 + ξx)

−1/ξ
+ ,

where, u(t) = a(1/F̄ (t)). In this section, we establish the regular variation

of the dfs belongs to the p-max domain of attraction of the log-GEV and

negative log-GEV laws. The following result reveals that the upper tail be-

havior of F might determine whether F ∈ Dp(Li,ξ), i = 1, 2. We first state
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and prove a lemma of independent interest which will be used subsequently.

Lemma 2.1. If L is slowly varying as represented (C.1), then

L(ey) = c(ey) exp
{∫ ey

ex0

u∗(t)

t log t
dt
}
,(2.1)

where, c(et) → c and u∗(t) = log t u(t) → 0 as t → r(F ).

Proof. From (C.1), taking x = ey, we have

L(ey) = c(ey) exp
{∫ y

x0

u(et
′
)dt′

}
, ( where, t = et

′
).

Setting, u∗(et
′
) = t′ u(et

′
) → 0, for large t′, then

L(ey) = c(ey) exp
{∫ y

x0

u∗(et
′
)

t′
dt′

}
,

= c(ey) exp
{∫ ey

ex0

u∗(t)

t log t
dt
}
,

where, t′ = log t. �

Now we obtain necessary and sufficient conditions for a df F belongs

to the p-max domain of attraction of log-GEV and negative log-GEV sta-

ble laws. The next theorems examines the properties of regularly varying

function for standardized these families.

Theorem 2.1. A df F ∈ Dp(L1,ξ),

(i) r(F ) = ∞, and ξ > 0 if and only if

lim
t→∞

1 − F (xtξet)

1 − F (et)
= (log(xξe))

− 1
ξ ,(2.2)

(ii) 0 < r(F ) < ∞, and ξ < 0 if and only if

lim
t→0+

1 − F (r(F )e−t/ log(xξe))

1 − F (r(F )e−t)
= (log(xξe))

− 1
ξ .(2.3)
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Proof. (i) For ξ > 0 and r(F ) = ∞, we have L1,ξ(x) = K1,α(x
1
α e) for

α = 1
ξ . By Theorem C.2-(a), is then equivalent to F̄ (exp(.)) ∈ RV−α. Taking

z = log(x
1
α e) and from Theorem C.6-(1), setting u(t)

t log t = f(t)
1−F (t) −

α
t log t → 0,

for large t and from Lemma 2.1,

L(etz)

L(et)
� c(etz)(1 − F (et))

c(et)(1 − F (etz))
z−α,

Taking limit both side as t → ∞ which is (2.2). If (2.2) holds, choose

dn = logF←(1− 1/n), then 1/F̄ (edn) = n (see, Mohan and Ravi 1993) and

then,

lim
n→∞

1 − F (x
dn
α edn)

1 − F (edn)
= lim

n→∞
nF̄ (x

dn
α edn) = (log(x

1
α e))−α,

whence, from (1.3), F ∈ D(L1,ξ), for ξ = α−1.

(ii) Now, we have L1,ξ(x) = K2,α(x
1
α e−1), for α = −1

ξ , ξ < 0 and

0 < r(F ) < ∞. By Theorem C.3-(a), F̄ (r(F ) exp(−1/(.))) is regularly vary-

ing with exponent (−α). From Theorem C.6-(2), we choose u(t)
t log(r(F )/t) =

f(t)
1−F (t) −

α
t log(r(F )/t) → 0, for t → r(F ) and from Lemma 2.1,

L(r(F )e−t/z))

L(r(F )e−t)
� c(r(F )e−t/z)(1 − F (r(F )e−t))

c(r(F )e−t)(1 − F (r(F )e−t/z))
zα.

where, z = log(x−
1
α e). Taking limit both side as t → r(F ) which is

(2.3). Conversely, if (2.3) holds, setting dn = − log r(F )
F←(1−1/n) , then

1/F̄ (r(F )e−dn) = n, (see, Mohan and Ravi 1993) and then,

lim
n→∞

1 − F (r(F )e−dn/x)

1 − F (r(F )e−dn)
= lim

n→∞
nF̄ (r(F )e−dn/x) =

(
log(x−

1
α e)

)α
,

so that

lim
n→∞

Fn(r(F )e−dn/x) = exp
(
− (1 + ξ log(x))−1/ξ

)

so, F ∈ D(L1,ξ). �
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Theorem 2.2. A df F ∈ Dp(L2,ξ),

(i) r(F ) = 0, and ξ > 0 if and only if

lim
t↑0

1 − F (−(−x)ξte−t))

1 − F (−e−t) = (− log((−x)ξe))
− 1

ξ .(2.4)

(ii) r(F ) < 0, and ξ < 0 if and only if

lim
t↑0

1 − F (r(F )et/ log((−x)ξe))

1 − F (r(F )et)
= (− log((−x)ξe))

− 1
ξ ;(2.5)

Proof. (i) We have L2,ξ(x) = K4,α(−(−x)
1
α e−1) for α = 1

ξ . Suppose,

ξ > 0 and r(F ) = 0, by Theorem C.2-(b), F̄ (− exp(−(.))) ∈ RV−α. Putting

z = log((−x)−
1
α e) and from Theorem C.6-(4), u(t)

t log(−t) = f(t)
1−F (t) −

α
t log(−t) →

0, for t ↑ 0. From Lemma 2.1,

L(−e−tz)
L(−e−t) � c(−e−tz)(1 − F (−e−t))

c(−e−t)(1 − F (−e−tz))z
−α,

Taking limit both side as t ↑ 0 and hence (2.4). Now, if (2.4) holds, define

dn = − log(−F←(1 − 1/n)), then 1/F̄ (−e−dn) = n (see, Mohan and Ravi

1993) and,

lim
n→∞

1 − F (−(−x)
dn
α edn)

1 − F (−e−dn)
= lim

n→∞
nF̄ ((−x)−

dn
α e−dn) = (log((−x)−

1
α e))−α.

From (1.3), this implies that F ∈ D(L2,ξ), for ξ = α−1.

(ii) Suppose, ξ < 0 and r(F ) < 0, we have Lξ(x) = K5,α(−(−x)
1
α e) for

α = −1
ξ . By Theorem C.3-(b), is then equivalent to F̄ (r(F ) exp(1/(·))) ∈

RV−α. From Theorem C.6-(5), we choose u(t)
t log(r(F )/t) = f(t)

1−F (t)−
α

t log(r(F )/t) →
0, for t ↑ r(F ) and from Lemma 2.1,

L(r(F )et/z))

L(r(F )et)
� c(r(F )et/z)(1 − F (r(F )et))

c(r(F )et)(1 − F (r(F )et/z))
zα.

where, z = log((−x)−
1
α e). Taking limit both side as t ↑ 0 which is (2.2). If

(2.2) holds, setting dn = log r(F )
F←(1−1/n) , then 1/F̄ (r(F )edn) = n (see, Mohan

and Ravi 1993) and then,

lim
n→∞

1 − F (r(F )edn/x)

1 − F (r(F )edn)
= lim

n→∞
nF̄ (r(F )edn/x) =

(
log((−x)

1
α e)

)α
.
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whence, from (1.3), F ∈ D(L2,ξ), for ξ = −α−1. �

Remark 2.1. In case of ξ = 0 (eq. 1.2) for Lξ̃(x) = Φ1(x) is proved in

Theorem C.4 and for Lξ̃(x) = Ψ1(x) presented Theorem C.5.

2.2. Moments

Some of the most important features and characteristics of a distribu-

tion can be studied through moments. The kth moments of PGEV are

derived in the following theorems. In our proofs of kth moments of PGEV,

the moment generating function (MGF) of Weibull with positive support

plays and important role. Note that the MGF corresponding to a standard

Weibull rv of Y with positive support specified as

MY (t;α) = α

∫ ∞
0

xα−1 exp (−tx− xα) dx.(2.6)

Cheng et al. (2004) derived the moment generating function (MGF) of Y,

when the parameter α takes integer values. Nadarajah and Kotz (2007)

show that a closed form expression for MGF of Y, for all rational values of

shape parameter. Since, we assume α = p/q, where p ≥ 1 and q ≥ 1, are

coprime integers, the integral in (2.6) can be provided that

MY (t;α) =




α
q−1∑
j=0

(−1)j

j!tα+αj Γ(α+ αj)

× [p+1Fq(1,∆(p, jα+ j); ∆(q, 1 + j); (−1)qz)] ,

if 0 < α < 1;

p−1∑
j=0

(−t)j
j! Γ

(
1 + j

α

)
×

[
q+1Fp

(
1,∆

(
q, 1 + α

j

)
; ∆(p, 1 + j); (−1)p

z

)]
,

if α > 1,

(2.7)

where, z = pp/(tpqq) and ∆(c, d) = {d/c, (d + 1)/c, · · · , (c + d − 1)/c} and

pFq is the generalized hyper geometric function defined by

pFq(a1, · · · , ap; b1, · · · , bq;x) =

∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!
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where, (υ)k = υ(υ + 1) · · · (υ + k − 1). In particular value α = 1 simple

integration of (2.6) gives,

MY (t; 1) =
1

1 + t
.(2.8)

In the case α = 2 the MGF becomes

MY (t; 2) = 1 − t
√
π

2
exp

(
t2

4

)
erf

(
t

2

)
,(2.9)

where, the complementary error function defined by erf(x) = 1 −
2√
π

∫ x
0 exp(−t2)dt. The generalized hypergeometric function is widely avail-

able in many scientific software packages, such as R and Matlab.

The following results show that, the proofs of the kth moments of PGEV

involve the application of MGF of standard Weibull distribution function.

Theorem 2.3. Let Y is a rv with standard Weibull df and X is a rv

with PGEV in (1.6). For k > 0,

(i) X+ is positive support and ξ < 0

E(X+)k = e
k
(
µ−σ

ξ

)
MY

(
kσ

|ξ| ,
1

|ξ|

)
.

where, MY (·) defined in (2.7).

(ii) X− is negative support and ξ > 0

E
∣∣X−∣∣k = e

k
(
µ+σ

ξ

)
MY −1

(
kσ

ξ
,
1

ξ

)
.

Proof. Suppose |Z| = (|X| e−µ)
1
σ is a standardizing rv with df in

(1.6) for A = {z : 1 + sign(z)ξ log |z| > 0}. We write

E |Z|k =

∫
A
|z|k−1 (1 + sign(Z)ξ log |z|)−1−1/ξ(2.10)

× e−(1+sign(Z)ξ log|z|)−1/ξ
dz,
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We have

E |Z|k =
1

ξ

∫
A
e

k
ξ
(y−1)sign(Z)−y−

1
ξ

y
−1− 1

ξ dy,(2.11)

where, y = 1 + ξ sign(Z) log |z| .
(i) Let Z+ is a rv with positive support. From (2.11), the kth moment does

not exist for ξ > 0. For ξ < 0, we have

E(Z+)k = −1

ξ

∫ ∞
0

e
k
ξ
(y−1)−y−

1
ξ

y
−1− 1

ξ dy

= e
− k

ξMY

(
k

|ξ| ,
1

|ξ|

)
.

where, Y is a positive rv with standard Weibull distribution and MY (·)
defined in (2.7). The kth moment of X+ can be obtained as

E(X+)k = e
k
(
µ−σ

ξ

)
MY

(
kσ

|ξ| ,
1

|ξ|

)
.

(ii) Similarly, let Z− is a rv with neagitve support. From (2.11), the kth

moment does not exist, for ξ < 0. For ξ > 0 we get

E
∣∣Z−∣∣k =

1

ξ

∫ ∞
0

e
k
ξ
(1−y)−y−

1
ξ

y
−1− 1

ξ dy

= e
k
ξMY −1

(
k

ξ
,
1

ξ

)
,

where the density and df of Y is well known and that of Y −1 and its MGF

is easy to calculate. Now, the kth moment of X− can be obtained as

E
∣∣X−∣∣k = e

k
(
µ+σ

ξ

)
MY −1

(
kσ

ξ
,
1

ξ

)
. �

Remark 2.2. The kth moment of rvs X+ with PGEV for ξ > 0 and

the kth moment of rvs X− with PGEV ξ < 0 do not exist.

The kth central moments of X are easily obtained from the ordinary

moments by

E(X − E(X))k =
k∑

j=0

(
k

j

)
(−1)j(E(X))jE(Xk−j).(2.12)

From (2.12) and k = 2, the variances of PGEV listed in Appendix D.
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2.3. Entropy

An entropy of rv X is a measure of variation of the uncertainty. The

differential entropy h(X) of a continuous random variable X with density

f(x) is defined as

h(X) = −
∫
A

log f(x)f(x)dx,(2.13)

where, A = {x : f(x) > 0} is the support set of the random variable. For

further information on differential entropy features, see Cover and Thomas

(2006). In this study, differential entropy is referred to as entropy.

Here, the entropy of GEV family is well known as

h(X) = log σ̃ + (ξ̃ + 1)γ + 1.(2.14)

The entropy of six type of p-max stable laws are evaluated by Ravi and

Saeb (2012).

Now, we illustrate the entropy of PGEV family.

Theorem 2.4. If X is a rv with df PGEV for ξ < 0, then the entropy

of X is given by

h(X) = µ+ log σ + (1 + ξ)γ +
σ

ξ
E(sign(X)) [Γ(1 − ξ) − 1] + 1.(2.15)

Proof. Let Z is a standardized rv with df PGEV (ξ < 0) in (B.1),

the entropy is given by

h(Z) = E(log |Z|) + E
(
log(1 + sign(Z)ξ log |Z|)1+1/ξ(2.16)

+(1 + sign(Z)ξ log |Z|)−1/ξ
)
,

= E1 + E2.

Putting Y = (1 + sign(Z)ξ log |Z|)−1/ξ, and Y has standard exponential

distribution.

E1 = ξ−1E(sign(Z))E(Y −ξ − 1)) =
1

ξ
E(sign(Z)) [Γ(1 − ξ) − 1] .(2.17)
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Next,

E2 = −(1 + ξ)EY (log(Y )) + EY (Y ) = (1 + ξ)γ + 1,(2.18)

where γ is Euler constant. From (2.17), (2.18) we get

h(Z) = (1 + ξ)γ +
1

ξ
E(sign(Z)) [Γ(1 − ξ) − 1] + 1.(2.19)

From lemma 1.3, Ravi and Saeb (2012), If X = |Z|σ eµ then

h(X) = µ+ log σ + (σ − 1)E log |Z| + h(Z),

= µ+ log σ + (1 + ξ)γ +
σ

ξ
E(sign(X)) [Γ(1 − ξ) − 1] + 1. �

Remark 2.3. Note that, the entropy of the PGEV distribution for

ξ > 0 does not exist.

Suppose Y is a rv with df FY and X = J (Y ) with df FX where the

function J is restricted to strictly monotone in order to take inverse. The

entropy ordering h(Y ) < h(X), will be denoted as FY
E
< FX or Y

E
< X. In

general case, the following lemma finds a direct relationship for entropy.

Lemma 2.2. If EX (log |∇XJ←(X)|) < 0 then Y
E
< X.

Proof. We write,

FX(x) = Pr(J (Y ) ≤ x) = Pr(Y ≤ J←(x)) = FY (J←(x)),

with respective density function

fX(x) = fY (J←(x)) |∇x(J←(x))| .

From definition of entropy we have

h(X) = −
∫
R

fY (J←(x)) log (fY (J←(x)) d(J←(x))(2.20)

−
∫
R

fX(x) log |∇xJ←(x)| dx,

= h(Y ) − EX(log |∇X(J←(X))|).
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Noting that, if EX (log |∇XJ←(X)|) < 0 then Y
E
< X. �

The following theorem investigates the entropy ordering in GEV families

with ξ < 0.

Theorem 2.5. Suppose Y has GEV family. If X = sign(Y) exp(|Y |)
is a rv with PGEV (ξ < 0) then Y

E
< X.

Proof. Suppose first that X+ is a positive rv. From Lemma 2.2 it

is enough to show that, EX(log(∇XJ←(X))) = −EX(log(X)) < 0 where

J (x) = exp(x). Since, entropy of PGEV for ξ < 0 exists. After doing some

calculation (similar eq. 2.17), we get

EX(log(X)) = EY (Y ) = µ− σ

|ξ|(Γ(1 + |ξ|) − 1).

Finally, if Γ(1 + |ξ|) > 1 for all ξ < 0, then EX(log(X)) > 0 then Y
E
< X+

holds.

With similar argument, if X− is a negative rv then J (x) = − exp(−x).

We need to show that

EX (log |∇XJ←(X)|) = E(log(|X|)) < 0.

Now, we have −EX (log |X|) = EY (Y ) = µ + σ
|ξ|(Γ(1 + |ξ|) − 1) > 0 for all

ξ < 0 and Γ(1 + |ξ|) > 1 then Y
E
< X−. From the results of X+ and X−

rvs, hence the proof. �

2.4. Dispersion ordering

Lewis and Thompson (1981) have defined the concept of “ordering in

dispersion”. Two distribution functions FX and FY are said to be ordered

in dispersion, denoted by FY

disp
< FX if and only if

F←Y (u) − F←Y (v) ≤ F←X (u) − F←X (v), for all 0 < v < u < 1.

It is easily seen by putting u = FY (y) and v = FY (x) where y ≤ x that

FY

disp
< FX if and only if

F←X (FY (x)) − x is nondecreasing in x,(2.21)
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then, FY is said to be tail-ordered with respect to FX (FY
tail
< FX). Thus we

see that dispersive ordering is the same as tail-ordering. Oja (1981) shows

that the dispersion ordering implies both variance ordering and entropy

ordering (
EV
< ). In other word, FY

disp
< FX is a sufficient condition for Y

EV
< X

(variance and entropy order similarly). Entropy ordering of distributions

within many parametric families are studied in Ebrahimi et al. (1999).

Let L(xp) = 1 − p, where, L(·) is the distribution (1.6) so that

xp = sign(X) exp

(
σ

ξ
sign(X)

(
y−ξp − 1

)
+ µ

)
;(2.22)

It is well known the quantile for ξ = 0 in (1.2) we get

xp =
σ̃

ξ̃
(y−ξ̃p − 1) + µ̃,(2.23)

where yp = − log(1− p). The following corollary investigates the dispersion

ordering in the GEV families.

Corollary 2.1. Suppose X and Y are rvs to correspond PGEV and

GEV families. Let X+ is a positive support, from (2.21) and (2.22) we have

L←(G(x)) − x = exp(x) − x,

is a nondecreasing function for all x in support of PGEV, then, Y
disp
< X+.

On the other hand, the result from Oja (1981) and Theorem 2.5, the entropy

of GEV and PGEV families are ordered for ξ < 0, we conclude that the

variances are also ordered in ξ, so, Y
EV
< X+ for ξ < 0. Similarly, if X−

is a rv with negative support, from Theorem 2.5, Y
EV
< X− for ξ < 0 and

hence the proof.

3. Methods of Estimations

3.1. Maximum likelihood estimation

The method of maximum likelihood estimation (MLE) use Newton-

Raphson iteration to maximize the likelihood function of GEV, as recom-

mended by Prescott and Walden (1980). The log-likelihood function for
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(µ, σ, ξ) based on PGEV family, given by

�(x;µ, σ, ξ) = −k log σ −
k∑

i=1

log |xi|(3.1)

−
(

1 +
1

ξ

) k∑
i=1

log

(
1 + ξ sign(x)

(
log |xi| − µ

σ

))

−
k∑

i=1

(
1 + ξ sign(x)

(
log |xi| − µ

σ

))−1/ξ

;

For determining the MLEs of the parameters µ, σ and ξ, we can use the

same procedure as for the GEV law. Since, there is no analytical solution,

but for any given dataset the maximization is straightforward using standard

numerical optimization algorithms. Jenkinson (1969), Prescott and Walden

(1980) show that the elements of the Fisher information matrix for GEV

distribution(ξ 
= 0). Since the log |x| is free from of parameters, the Fisher

information matrix for PGEV is similar the Fisher information matrix for

GEV law. Since, the entropy is equivalent to the negative log-likelihood

function and from remark 2.3 the MLEs exists for ξ < 0. Smith (1985) has

investigated the classical regularity conditions for the asymptotic properties

of MLEs are not satisfied but he shows that, when ξ > −0.5 the MLEs have

usual asymptotic properties. For ξ = −0.5 the MLEs are asymptotically

efficient and normally distributed, but with a different rate of convergence.

We remark that results of Smith applies also to the three parameters. The

MLEs may nonregular for ξ < −0.5 and ξ ≥ 1, but Bayesian techniques

offer an alternative that is often preferable.

3.2. Bayesian estimation

Let θ is a vector of the model parameters in a space Θ and π(θ) denote

the density of the prior distribution for θ. The posterior density of θ is given

by

π(θ|x) =
π(θ) exp(�(x;θ))∫

Θ π(θ) exp(�(x;θ))dθ
∝ π(θ) exp(�(x;θ)).

where, �(·) is log-likelihood function. However, computing posterior in-

ference directly is difficult. To bypass this problem we can use simulation
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bases techniques such as Markov Chain Monte Carlo (MCMC). The Markov

Chain is generated using standard Metropolis (Hastings, 1970) within Gibbs

(Geman and Geman, 1984) methods. Setting θ = (µ, η, ξ) where, η = log σ

is easier to work. We might choose a prior density function

π(θ) = πµ(µ)πη(η)πξ(ξ),

where the marginal priors, πµ(·), πη(·) and πξ(·), are normal density func-

tion with mean zero and variances, vµ, vη and vξ respectively. These are

independent normal priors with large variances. The variances are chosen

large enough to make the distributions almost flat and therefore should cor-

respond to prior ignorance. The choice of normal densities is arbitrary. The

proposed value θ∗ at point i is θ∗ = θ(i) + ε. The ε = (εµ, εη, εξ) are nor-

mally distributed variables, with zero means and variances wµ, wη and wξ

respectively.

Now we specify an arbitrary probability rule q(θi+1|θi) for iterative sim-

ulation of successive values. The distribution q is called the proposal distri-

bution. Possibilities include (θi+1|θi) is Normal density with mean θi and

variance one. Then q(θi|θ∗) = f̃(θ∗−θi), where f̃(·) is the density function

of ε. Since the distribution of ε is symmetric about zero q(θi|θ∗) = q(θ∗|θi).

The acceptance probability

Ωi = min

{
1,

exp(�(x;θ∗))π(θ∗)

exp(�(x;θi))π(θi)

}
,(3.2)

was suggested by Hastings (1970). Here we accepted the proposed value

θ∗ with probability Ωi. We note that, the variance of ε affects the accep-

tance probability, if the variance is too low most proposals will be accepted,

resulting in very slow convergence, and if it is too high very few will be

accepted and the moves in the chain will often be large. Appendix E.1 gives

the details of the required algorithm.

Here we find few papers linking the Bayesian method and extreme value

analysis. Smith and Naylor (1987) who compare Bayesian and maximum

likelihood estimators for the Weibull distribution. Coles and Powell (1996)

and Coles and Tawn (1996) for a detailed review of Bayesian methods in

extreme value modelling. Stephenson and Tawn (2004) perform inference

using reversible jump MCMC techniques for extremal types.
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3.3. Prediction

We are interested in the outcome y of the future experiment. Within

the Bayesian framework, the predictive distribution function is argued by

Aitchison and Dunsmore (1975). In particular, since the objective of an

extreme value analysis is usually an estimate of the probability of future

events reaching extreme levels, expression through predictive distributions

is natural. Let Y is a rv with annual maximum distribution over a future

period of years and x represents historical observations. The predictive

distribution function is defined as

Pr(Y < y|x) =

∫
Θ

Pr(Y < y|θ)π(θ|x)dθ,

� 1

n

n∑
i=1

Pr(Y < y|θi),

where θi is the output from the ith iteration of a sample of size n from the

Gibbs sampler of posterior distribution of θ. Estimates of extreme quan-

tiles of the annual maximum distribution are then obtained by solving the

equation

1

n

n∑
i=1

Pr(Y < xp|θi) = 1 − p,(3.3)

for xp with various values of m where, m = 1/p is defined as return period.

3.4. Real data analysis

In this section we shall use the PGEV model to a real data set. This

analysis is based on the annual maximum yearly rainfall data of station

Eudunda, Australia (Latitude 34.18S; Longitude 139.08E and Elevation 415

m) which collected during 1881-2015. Annual maxima, corresponding to the

year from 1881, were found from the 135 years worth of data and are plotted

in Fig 3. We assume that the pattern of variation has stayed constant over

the observation period, so we model the data as independent observations

from the GEV families.

Here, maximization of GEV and PGEV log-likelihood functions using

the ”Nelder-Mead” algorithms. All the computations were done using R

programming language.
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In what follows we shall apply formal goodness of fit tests in order to

verify which distribution fits better to these data. We apply the Cramér-von

Mises (C) and Anderson-Darling (A) test statistics. The test statistics C

and A are described in detail in Chen and Balakrishnan (1995). In general,

the smaller values of statistics C and A, the better fit to data. Addi-

tionally, from the critical values of statistics C and A given in Chen and

Balakrishnan (1995), it is possible to calculate the p-values corresponding

to each test statistics. The null hypothesis is H0 : {X1, . . . , Xn} comes from

GEV/PGEV families. To test H0, we can proceed as appendix E.2. The

values of statistics C and A (p-values between parentheses) for all models

are given in Table 2. From this table we conclude that does not evidence to

reject the null hypothesis for GEV/PGEV distributions. Table 3 lists the

MLE method of the parameters estimation and standard errors in paren-

theses. Since the values of standard errors in PGEV model are lower than

other laws, we suggesting that the PGEV model is best fit model for these

data. Within the Bayesian model with non-informative prior distributions,

the algorithm in E.1 was applied to annual maxima dataset. Initializing the

MCMC algorithm with maximum likelihood estimates as our initial vector,

θ0 = (4.3614, 02853,−02386) should produce a chain with small burn-in pe-

riod. After some pilot runs, a Markov chain of 1000 iterations was then

generated with good mixing properties (Figure 4). The burn-in period was

taken to be the first 400 iterations which the stochastic variations in the

chain seem reasonably homogeneous. If we accept this, after deleting the

first 600 simulations, the remaining 400 simulated values can be treated as

dependent realizations whose marginal distribution is the target posterior.

The sample means (and standard error) of each marginal component of the

chain are

µ̂ = 4.3615 (0.0265) σ̂ = 0.2848 (0.0144) ξ̂ = −0.2411 (0.0340).

Finally, using eq. 3.3, a plot of the predictive distribution of a future annual

maximum is shown in Fig. 5 on the usual return period scale. Table.4

shows the predictive return levels xp for m years where, m = 1
p is return

period. For example, the corresponding estimate for the 4 years return level

is x0.75 = 106.59.
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APPENDIX A

The p-max stable laws, namely,

the log-Fréchet law: K1,α(x) =

{
0, x < 1,
exp(−(log x)−α), 1 ≤ x;

the log-Weibull law: K2,α(x) =




0, x < 0,
exp(−(− log x)α), 0 ≤ x < 1,
1, 1 ≤ x;

the standard Fréchet law: K3(x) = Φ1(x), x ∈ R;

the negative log-Fréchet law: K4,α(x) =




0, x < −1,
exp(−(− log(−x))−α), −1 ≤ x < 0,
1, 0 ≤ x;

the negative log-Weibull law: K5,α(x) =

{
exp(−(log(−x))α) x < −1,
1, −1 ≤ x;

the standard Weibull law: K6(x) = Ψ1(x), x ∈ R;

where, α > 0 being a parameter.

APPENDIX B

The density function of (1.6), respectively, given by

lξ(x;µ, σ) =
1

σ |x| exp

(
−

(
1 +

ξ

σ
sign(x) (log |x| − µ)

)−1/ξ

+

)
(B.1)

(
1 +

ξ

σ
sign(x)(log |x| − µ)

)−1−1/ξ

+

;

And from (1.2), density function of PGEV distribution with ξ = 0 is well

known as

lξ̃(x; σ̃) =
1

σ̃
exp


−

(
1 +

ξ̃(x− µ̃)

σ̃

)−1/ξ̃

(

1 +
ξ̃(x− µ̃)

σ̃

)−1−1/ξ̃

.(B.2)

A quantile estimator and variance of xp are defined by substituting es-

timators µ, σ and ξ for the parameters in (2.22) and (2.23). Note that xp
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is a function of µ, σ and ξ and it is a rv. The variance of xp is given by the

delta method,

V ar(xp) = ∇θθθx
T
p Σ∇θθθxp,(B.3)

where, Σ is variance covariance matrix and ∇θx
T
p for θ = [µ, σ, ξ] is calcu-

lating by

∇θθθx
T
p = |xp|

[
1, ξ−1(yp)

−ξ − 1),
σ

ξ2

[
(yp)

−ξ log(yp)
−ξ −

(
(yp)

−ξ − 1
)]]

.

Fig. 1. graph of density function with positive support for ξ = −2 (dash), ξ = 2 (dots)
and standard Fréchet (line).

Fig. 2. graph of density function with positive support for ξ = −0.5 (dash), ξ = 0.5
(dots) and standard Fréchet (line).
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where, ξ 
= 0. For ξ = 0 (2.23) is still valid for θ̃ = [µ̃, σ̃, ξ̃] with

∇
θ̃θθ
xTp =

[
1,−ξ̃−1(1 − (yp)

−ξ̃), σ̃ξ̃−2(1 − (yp)
−ξ̃) − σ̃

ξ̃
(yp)

−ξ̃ log(yp)

]
.

where yp = − log(1− p). Approximate confidence intervals (CI) can also be

obtained by the delta method. The delta method enable the approximate

normality of x̂p to be used to obtain CI for xp. It follows that an approximate

(1 − α) CI for xp is x̂p ± zα/2
√
V ar(x̂p).

In following, illustrate figures 1 and 2 of standardized density function

lξ for different values of ξ.

APPENDIX C

Theorem C.1 (Resnick 1987, The Karamata representation). L is

slowly varying iff L can be represented as

L(x) = c(x) exp
{∫ x

z

u(t)

t
dt
}
, z < x < r(F ),(C.1)

where, c(t) → c > 0 and u(t) → 0 as t → r(F ) locally uniformly.

Theorem C.2 (Mohan and Ravi 1993). (a) F ∈ Dp(K1,α) iff r(F ) =

∞ and F̄ (exp(.)) is regularly varying at ∞ with exponent (−α). (b) F ∈
Dp(K4,α) iff r(F ) = 0 and F̄ (− exp(−(.))) is regularly varying at ∞ with

exponent (−α).

Theorem C.3 (Mohan and Ravi 1993). (a) F ∈ Dp(K2,α) iff 0 <

r(F ) < ∞ and F̄ (r(F ) exp(−1/(.))) is regularly varying at ∞ with exponent

(−α). (b) F ∈ Dp(K5,α) iff r(F ) < 0 and F̄ (r(F ) exp(1/(.))) is regularly

varying at ∞ with exponent (−α).

Theorem C.4 (Mohan and Ravi 1993). A df F ∈ Dp(Φ1) if and only

if r(F ) > 0, and

lim
t↑r(F )

F̄ (t exp(yu(t)))

F̄ (t)
= exp(−y)

for some positive valued function u.
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Theorem C.5 (Mohan and Ravi 1993). A df F ∈ Dp(Ψ1) if and only

if r(F ) ≤ 0, and

lim
t↑r(F )

F̄ (t exp(yu(t)))

F̄ (t)
= exp(y),

for some positive valued function u.

Theorem C.6 (Mohan and Subramanya (1998)). Let df F has pdf f >

0 on (l(F ), r(F )), and for some α > 0,

(1) F ∈ Dp(K1,α), if r(F ) = ∞ and limx→∞
xf(x) log x
1−F (x) = α.

(2) F ∈ Dp(K2,α), if 0 < r(F ) < ∞ and limx→r(F )

xf(x) log
(

r(F )
x

)
1−F (x) = α.

(3) F ∈ Dp(K3), if

r(F ) > 0,

∫ r(F )

x

(1 − F (t))

t
dt < ∞ and

lim
x→r(F )

xf(x)

(1 − F (x))2

∫ r(F )

x

(1 − F (t))

t
dt = 1.

(4) F ∈ Dp(K4,α) if r(F ) = 0 and limx↑0
xf(x) log(−x)

1−F (x) = α.

(5) F ∈ Dp(K5,α) if r(F ) < 0 and limx↑r(F )

xf(x) log
(

r(F )
x

)
1−F (x) = α.

(6) F ∈ Dp(K6) if

r(F ) ≤ 0, −
∫ r(F )

−∞

(1 − F (t))

t
dt < ∞ and

lim
x↑r(F )

xf(x)

(1 − F (x))2

∫ r(F )

x

1 − F (t)

t
dt = 1.
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APPENDIX D

Table 1. Variance of PGEV.

Family Variance

X+ ξ < 0 e2(µ−σ/ξ)
∑2

j=0

(
2
j

)
(−1)j

(
MY

(
σ
|ξ| ,

1
|ξ|

))j

MY

(
(2−j)σ

|ξ| , 1
|ξ|

)
X− ξ > 0 e2(µ+σ/ξ)

∑2
j=0

(
2
j

)
(−1)j

(
MY −1

(
σ
ξ ,

1
|ξ|

))j

MY −1

(
(2−j)σ

ξ , 1
|ξ|

)

APPENDIX E

E.1 MCMC algorithm

1. Initialize the values at θ(0) = (µ(0), η(0), ξ(0)) and the counter at j = 1.

2. Simulate θ∗ ∼ N(θ(j−1), ωθθθ), where, ωθθθ are chosen small enough.

3. Accept µ(j) = µ∗ with probability Ω(µ∗, µ(j−1)) where,

Ω(µ∗, µ(j−1)) = min
{

1,
π(µ∗|η(j−1), ξj−1))

π(µ(j−1)|η(j−1), ξj−1))

}
;

And otherwise, µ(j) = µ(j−1).

4. Accept η(j) = η∗ with probability Ω(η∗, η(j−1)) where,

Ω(η∗, η(j−1)) = min
{

1,
π(η∗|µ(j), ξ(j−1))

π(η(j−1)|µ(j), ξj−1))

}
;

And η(j) = η(j−1) otherwise.

Table 2. Goodness of fit tests.

Laws C A
GEV 0.0163 (p-value > 0.5) 0.4576 (p-value > 0.25)
Gumbel 0.0286 (p-value > 0.5) 0.7544 (p-value > 0.01)
PGEV 0.0327 (p-value > 0.5) 0.9174 (p-value > 0.01)
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Fig. 3. Annual maximum rainfall recorded at Eudunda, Australia since 1881.

Fig. 4. MCMC calculations of parameters in a Bayesian analysis of the Eudunda,
Australia annual maximum rainfall.
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Table 3. The values parameters of EV families estimated.

µ σ ξ MLE
GEV 79.2669 21.9150 −0.0468 −625.1091

(2.0814) (1.4697) (0.0503)

Gumbel 78.7020 21.6541 − −625.4845
(1.9672) (1.4248)

PGEV 4.3614 0.2853 −0.2386 −626.3673
(0.0265) (0.0179) (0.0372)

Table 4. Return level values for.

Return Period 4 10 15 20 30 35 50
Return level(mm) 107 129 138 144 152 156 162

5. Accept ξ(j) = ξ∗ with probability Ω(ξ∗, ξ(j−1)) where,

Ω(ξ∗, ξ(j−1)) = min
{

1,
π(ξ∗|µ(j), η(j))

π(ξ(j−1)|µ(j), ηj))

}
;

And η(j) = η(j−1) otherwise.

6. Increasing j and return to step 2.

E.2 Goodness of fit algorithm

To test H0 : X1, . . . , Xn ∼ F (x; θ), we can proceed as follows.

1. Compute vi = F (xi; θ̂), where the xi’s are in ascending order.

2. Compute yi = η←(vi), where η(·) is the standard normal df and η←(·)
its inverse;

3. Compute ui = η((yi − ȳ)/sy), where ȳ =
∑n

i=1 yi/n and s2y =∑n
i=1(yi − ȳ)2/(n− 1);
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Fig. 5. Predictive return levels xp against p = 1/m.

4. Calculate

W 2 =

n∑
i=1

(
ui −

(2i− 1)

2n

)2

+
1

12n
,

and

A2 = −n− 1

n

n∑
i=1

((2i− 1) log(ui) + (2n+ 1 − 2i) log(1 − ui));

5. Modify W 2 into C = W 2(1+0.5/n) and A = A2(1+0.75/n+2.25/n2).

Reject H0 at the significance level α if the modified statistics exceed

the upper tail significance points given in Table 1 of Chen and Bal-

akrishnan (1995).
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