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Convexity of the Phase Boundary in the BCS Model

with Imaginary Magnetic Field

By Yohei Kashima

Abstract. We study geometric properties of the domain of the
two parameters (inverse temperature, imaginary magnetic field) where
the gap equation of the BCS model with imaginary magnetic field has
a positive solution. If the interaction is weak and the free dispersion
relation is non-vanishing, the domain is a disjoint union of periodic
copies of one representative set in the plane of (inverse temperature,
imaginary magnetic field). In this paper we provide a necessary and
sufficient condition for the representative set to be convex as the main
result. More precisely we prove the following. The representative set
is convex for any weak coupling and non-vanishing free dispersion rela-
tion if and only if the minimum of the magnitude of the free dispersion

relation over the maximum is larger than the critical value
√

9 − 4
√

5.
In the context of dynamical quantum phase transition (DQPT) the
imaginary magnetic field is considered as the real time variable. So
this is an analysis of the phase boundary of a DQPT in the plane of
(inverse temperature, real time). In particular convexity of the rep-
resentative phase boundary is characterized by the critical constant√

9 − 4
√

5. The gap equation rigorously derived in the preceding pa-
per [Y. Kashima, J. Math. Sci. Univ. Tokyo 28 (2021), 399–556] is at
the core of our analysis.

1. Introduction and Main Results

1.1. Introduction

It is an interesting subject to study the Bardeen-Cooper-Schrieffer (BCS)

model, which has been a paradigm of describing phase transitions, in non-

equilibrium setting. In recent years a non-equilibrium phenomenon called

dynamical quantum phase transition (DQPT) has been actively investi-

gated. DQPTs are defined by non-analyticity of a dynamical analogue of
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the free energy density with the real time variable ([9], [7]). It emerged that

the BCS model with imaginary magnetic field introduced in [11], [12], [13]

can naturally fit in the formalism of DQPT at positive temperature. This

connection motivates us to reveal universal properties of this non-Hermitian

system.

Let us explain more about the link between the BCS model with imag-

inary magnetic field and the concept of DQPT. Let H, Sz denote the BCS

model with the reduced BCS interaction, the z-component of the spin op-

erator respectively. These operators will be defined explicitly in Subsection

1.2. We want to know where the following function loses analyticity in

R>0 × R.

(β, t) �→ lim
N→∞

(
− 1

βN
log(Tr e−βH+itSz)

)
.(1.1)

Here β is the inverse temperature and N denotes the system size. We

are calling the complex number it (t ∈ R) imaginary magnetic field for

convenience. The real variable t can be considered as real time in the

context of DQPT as explained below. Since the right-hand side of (1.1) can

formally be seen as the free energy density of the BCS model interacting

with the imaginary magnetic field, we call the loss of analyticity of the

function (1.1) phase transition by analogy with the conventional definition

of phase transition. In this paper as in our previous work [11], [12], [13],

[14] the BCS interaction is assumed to be weak, and thus there is no phase

transition defined by non-analyticity of the free energy density without the

imaginary magnetic field

β �→ lim
N→∞

(
− 1

βN
log(Tr e−βH)

)
.

Therefore the regularity of the function (1.1) is the same as that of

(β, t) �→ lim
N→∞

(
− 1

βN
log

(
Tr e−βH+itSz

Tr e−βH

))
.

Since H commutes with Sz,

e−βH+itSz = e−βHeitSz = e−βHe−itHeit(H+Sz).
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We conclude that the regularity of (1.1) is the same as that of

(β, t) �→ lim
N→∞

(
− 1

βN
log

(
Tr(e−βHeitSz)

Tr e−βH

))
,(1.2)

(β, t) �→ lim
N→∞

(
− 1

βN
log

(
Tr(e−βHe−itHeit(H+Sz))

Tr e−βH

))
(1.3)

in R>0 ×R. The function (1.2) can be considered as the finite-temperature

version of the rate function of the Loschmidt amplitude 〈ψ0, e
itSzψ0〉, where

ψ0 is the ground state of H. The appearance of non-analyticity of the func-

tion (1.2) with the time t defines DQPT. This definition is in line with e.g.

[3], [8], [16]. On the other hand, according to [23], [21], the characteristic

function of the work done in the many-electron system by suddenly changing

the initial Hamiltonian H to H + Sz is given by

Tr(e−βHe−itHeit(H+Sz))

Tr e−βH
.(1.4)

Based on this observation, DQPT is defined by non-analyticity of the func-

tion (1.3) with t. This alternative definition appears in e.g. [1], [17], [20]. As

explained in [21], (1.4) is also considered as the finite-temperature version

of the Loschmidt amplitude 〈ψ0, e
−itHeit(H+Sz)ψ0〉. So the variable t can

be interpreted as real time in this definition as well. We can now see that

studying properties of (1.1) is relevant to the recent physical research of

DQPT, though the papers [3], [8], [16], [1], [17], [20] treat 1D quantum spin

systems and 2D non-interacting Fermion systems as benchmark models. In

this paper we aim at characterizing the phase boundary where the function

(1.1) loses analyticity geometrically. In other words our purpose is to char-

acterize the phase boundary of DQPT in the plane of (inverse temperature,

real time).

For clarity we remark that it is not common at present to draw a phase

boundary with the real time axis as we do in this paper. In the physics

literature on DQPT what is called dynamical phase diagrams are drawn

with other control parameters for which a dynamical analogue of the free

energy density shows non-analytic behavior with time. See e.g. [25], [6],

[16].

In order to explain the main result of this paper in more detail, let us

recall what have been proved in the BCS model with imaginary magnetic
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field so far. It was proved in the preceding papers [11], [12], [13] that tran-

sitions between the normal phase and the superconducting phase occur at

positive temperature. In the plane of (β, t) the superconducting phase is a

domain where the gap equation has a positive solution ∆(β, t), which we

call gap function or order parameter. In [11], [12] where the free Fermi sur-

face is non-empty the possible magnitude of the BCS interaction depends

on the temperature and the imaginary magnetic field. In [13] where the free

Fermi surface is empty or in other words the free dispersion relation is non-

vanishing the interaction must still be small. However, the magnitude can

be independent of the temperature and the imaginary magnetic field. This

enables us to fully draw the phase boundary on the plane of (inverse temper-

ature, imaginary magnetic field) or equivalently (inverse temperature, real

time) for any sufficiently small BCS coupling and study its geometric prop-

erties while justifying the derivation of the gap equation. In [13, Section 2]

we saw that the phase boundary is a disjoint union of periodic copies of one

representative simple curve and the upper half of the representative curve

is the reflection of its lower half across a horizontal line. To understand the

situation with non-vanishing free dispersion relation better, we remark the

following relations. Here p(∈ R>0) denotes a period.

(Phase boundary)

(1.5)

= {(β, t) ∈ R>0 × R | the function (1.1) is not analytic at (β, t)}
= Boundary of

{(β, t) ∈ R>0 × R | the gap equation has a positive solution ∆(β, t)}
∩ R>0 × R

=
⊔
m∈Z

{(β, t+ pm) | (β, t) ∈ (the representative simple curve)},

(the representative simple curve) = (the lower half) ∪ (the upper half),

(the upper half) = (reflection of the lower half across a horizontal line),

{(β, t) ∈ R>0 × R | the gap equation has a positive solution ∆(β, t)}
(1.6)

=
⊔
m∈Z

{(β, t+ pm) | (β, t) ∈ (the representative set)},

Boundary of (the representative set) ∩ R>0 × R
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= (the representative simple curve).

Therefore it is sufficient to focus on the lower half of the representative curve

to analyze the whole phase boundary.

To simplify subsequent explanations, let emin, emax (0 < emin ≤ emax)

denote the minimum, the maximum of the magnitude of a non-vanishing

free dispersion relation respectively. These will be rigorously defined in

Subsection 1.2.

In this paper we continue working on the BCS model whose free dis-

persion relation is non-vanishing under the influence of imaginary mag-

netic field at positive temperature. As explained above, the set {(β, t) ∈
R>0×R | ∆(β, t) > 0} is a disjoint union of periodic copies of one represen-

tative set of (β, t), whose boundary is the representative simple curve. We

prove the following statement as the main result. The representative set is

convex for any non-vanishing free dispersion relation having emin, emax and

any weak coupling constant if and only if emin
emax

is larger than the critical

value
√

9 − 4
√

5.

Since the upper half of the representative simple curve is the reflection

of the lower half, the convexity of the representative set is equivalent to the

convexity of the lower half of the representative curve. The main results of

[13, Section 2], [14] and this paper can be summarized in terms of geometric

properties of the lower half of the representative curve of the phase boundary

as follows.

• In [13, Theorem 2.19] the unique existence of a local minimum point

is characterized by the relation between emin
emax

and the critical constant√
17 − 12

√
2.

• In [14, Theorem 1.7, Theorem 1.8] the (non-)existence of a stationary

point of inflection is characterized by the relation between emin
emax

and

the critical constant
√

17 − 12
√

2.

• In Theorem 1.11 of this paper the convexity is characterized by the

relation between emin
emax

and the critical constant
√

9 − 4
√

5.

A more rigorous version of the summary is given in Remark 1.15. Since the

convexity implies the uniqueness of a local minimum point and
√

9 − 4
√

5(≈
0.236068) >

√
17 − 12

√
2(≈ 0.171573), the stronger property of the phase
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boundary is characterized by the stronger inequality emin
emax

>
√

9 − 4
√

5 in

Theorem 1.11 than in [13, Theorem 2.19]. We are interested in the fact that

various fundamental properties of the phase boundary can be systematically

characterized by the relation between emin
emax

and the critical constants. This

is the mathematical motivation behind this series. We add that existence

of a stationary point of inflection is equivalent to existence of a higher order

phase transition with temperature, and thus [14, Theorem 1.7, Theorem

1.8] characterize the (non-)existence of a higher order phase transition with

temperature as well.

We focus on a class of non-vanishing free dispersion relations mainly

because the derivation of the gap equation from the many-Fermion system

is justified for any temperature and imaginary magnetic field. DQPTs in

insulating Hamiltonians with ground state topology are a central topic in

the research area. Some of the benchmark models can be written with

one-particle Hamiltonian matrices belonging to our class. These are e.g.

the Haldane model ([5], [8]), the Su-Schrieffer-Heeger model ([22], [10]).

Concrete construction of these models with our notations was given in [14,

Remark 1.2]. It is encouraging that our class of non-vanishing free dispersion

relations is relevant to the recent research of DQPT.

There are technically close relations between [13, Section 2] and [14].

The previous work [14] applies some key lemmas established in [13, Section

2]. In this paper we admit the gap equation derived in [13]. We also have

a few simple lemmas in common with [13, Section 2], [14]. However, the

technical construction is essentially different from these preceding papers.

Key lemmas necessary to prove the main results are newly established here.

In this sense this paper is more self-contained than [14].

We do not find a research article on DQPT in the BCS model at positive

temperature, apart from [11], [12], [13], [14] at present. Concerning DQPTs

in the BCS model at zero temperature, we cite the recent paper [19]. Though

only a few articles report on DQPT in the BCS model so far, there are many

papers on non-equilibrium phases characterized by long time behavior of the

dynamical order parameter of the model. See e.g. the references of [19] or

[18], [24]. The paper [19] investigates whether the DQPT can indicate these

non-equilibrium phases defined differently.

This paper is outlined as follows. In the next subsection we set up

notations and state the main results. In Section 2 we prove that if emin
emax

>



Convexity of the Phase Boundary 7

√
9 − 4

√
5, the representative set of the domain where the gap function is

positive is convex for any sufficiently small coupling constant. In Section

3 we prove that if emin
emax

<
√

9 − 4
√

5, the convexity of the representative

set does not necessarily hold. Finally in Section 4 we show that if emin
emax

=√
9 − 4

√
5, the convexity does not necessarily hold, either. This completes

the characterization of the convexity in terms of the relation between emin
emax

and the critical constant
√

9 − 4
√

5.

1.2. Notations and the main results

Here we introduce necessary notations and state the main results. We

are going to analyze the phase boundary, which is governed by the gap

equation. The gap equation was originally derived from a many-electron

system in [13]. Though we do not explain the derivation in detail, it must

be informative to present the corresponding many-electron system explicitly.

Let the number d(∈ N) denote the spatial dimension. Let v1, · · · ,vd be a

basis of R
d and v̂1, · · · , v̂d be its dual basis. Let b, L ∈ N. We consider a

general spatial lattice which has b sites in its unit cell. Such a lattice can

be identified as B × Γ, where B := {1, · · · , b},

Γ :=




d∑
j=1

mjvj

∣∣∣∣∣∣ mj ∈ {0, 1, · · · , L− 1} (j = 1, · · · , d)


 .

The momentum lattice dual to B × Γ is B × Γ∗, where

Γ∗ :=




d∑
j=1

m̂jv̂j

∣∣∣∣∣∣ m̂j ∈
{

0,
2π

L
, · · · , 2π

L
(L− 1)

}
(j = 1, · · · , d)


 .

The free Hamiltonian H0 is defined by

H0 :=
∑

(ρ,x),(η,y)
∈B×Γ

∑
σ∈{↑,↓}

∑
k∈Γ∗

ei〈k,x−y〉E(k)(ρ, η)ψ∗
ρxσψηyσ,(1.7)

where 〈·, ·〉 denotes the standard inner product of R
d and ψ∗

ρxσ, ψρxσ
((ρ,x, σ) ∈ B × Γ × {↑, ↓}) denote the creation, the annihilation opera-

tor on the Fermionic Fock space Ff (L
2(B × Γ × {↑, ↓})) respectively. The

matrix-valued function E : R
d → Mat(b,C) plays an important role in
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this paper. We call it one-particle free Hamiltonian matrix and its eigen-

values parameterized by the momentum variable k free dispersion rela-

tions. With constants emin, emax ∈ R>0 satisfying emin ≤ emax we define

the set E(emin, emax) of one-particle free Hamiltonian matrices as follows.

E ∈ E(emin, emax) if and only if

E ∈ C∞(Rd,Mat(b,C)),(1.8)

E(k) = E(k)∗, ∀k ∈ R
d,

E(k + 2πv̂j) = E(k), ∀k ∈ R
d, j ∈ {1, · · · , d},

E(k) = E(−k), ∀k ∈ R
d,(1.9)

inf
k∈Rd

inf
u∈Cb

with ‖u‖
Cb=1

‖E(k)u‖Cb = emin,(1.10)

sup
k∈Rd

‖E(k)‖b×b = emax.(1.11)

Here ‖ · ‖Cb is the standard norm of C
b induced by the Hermitian inner

product and ‖ · ‖b×b is the operator norm on Mat(b,C). Here we consider

Mat(b,C) as a Banach space with the norm ‖·‖b×b and C∞(Rd,Mat(b,C)) as

the set of the Banach space valued smooth functions. In fact the smoothness

(1.8) can be relaxed and the symmetry (1.9) is not needed at all to prove

the main results of this paper. We assume them only to identify the gap

equation analyzed here as that rigorously derived from the many-electron

system based on these conditions in [13]. Crystalline lattices well studied

in condensed matter physics can be expressed as B×Γ. For example d = 2,

b = 2, v1 = (1, 0)T , v2 = (1
2 ,

√
3

2 )T for the honeycomb lattice, d = 2,

b = 3, v1 = (1, 0)T , v2 = (0, 1)T for the Copper Oxide lattice. By tuning

the onsite energy free Hamiltonians of hopping electron on these lattices

can be formulated in the form (1.7) with some E ∈ E(emin, emax). The

Su-Schrieffer-Heeger (SSH) model ([22], [10]) and the Haldane model ([5],

[8]) are benchmark models showing DQPTs at positive temperature. These

models are originally spinless. Our free Hamiltonian covers their trivial

extensions with spin. See [14, Remark 1.2] for formulating the SSH model

and the Haldane model into the form (1.7).

In the infinite-volume limit L → ∞ the momentum lattice Γ∗ becomes
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the following set.

Γ∗
∞ :=




d∑
j=1

kjv̂j

∣∣∣∣∣∣ kj ∈ [0, 2π] (j = 1, · · · , d)


 (⊂ R

d).

For E ∈ E(emin, emax) we define the function gE : R>0 × R × R → R by

gE(x, t, z) := − 2

|U |

(1.12)

+Dd

∫
Γ∗∞

dkTr

(
sinh(x

√
E(k)2 + z2)

(cos(t/2) + cosh(x
√
E(k)2 + z2))

√
E(k)2 + z2

)
,

where Dd := |det(v̂1, · · · , v̂d)|−1(2π)−d and U ∈ R<0. Originally the pa-

rameter U controls the strength of attractive interaction between Cooper

pairs. For any function f : R\{0} → C and non-singular Hermitian matrix

E ∈ Mat(b,C) we define f(E) ∈ Mat(b,C) by the spectral decomposition.

For (β, t) ∈ R>0 × R we call the equation gE(β, t,∆) = 0 with unknown

∆ ∈ R≥0 gap equation.

The free energy density derived in [13, Theorem 1.3 (ii)] explicitly de-

pends on the gap function ∆. Let us recall the statement. For any proposi-

tion P 1P := 1 if P is true, 1P := 0 otherwise. Let E ∈ E(emin, emax). For

(β, t) ∈ R>0 × R let ∆ ∈ R≥0 be a solution to the gap equation if exists.

As we will see in Lemma 1.1, such ∆ is unique. Set ∆ := 0 if there is no

solution to the gap equation. If

U ∈
(
−2c′

b
min{emin, ed+1

min}, 0
)

(1.13)

with c′ ∈ (0, 1] depending only on d, b, (v̂j)
d
j=1 and the quantity

sup
k∈Rd

sup
mj∈N∪{0}
(j=1,··· ,d)

∥∥∥∥∥∥
d∏
j=1

∂mj

∂k
mj

j

E(k)

∥∥∥∥∥∥
b×b

1∑ d
j=1mj≤d+2,

lim
L→∞
L∈N

(
− 1

βLd
log(Tr e−βH+itSz)

)(1.14)
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=
∆2

|U | −
Dd
β

∫
Γ∗∞

dkTr log

(
2 cos

(
t

2

)
e−βE(k)

+ eβ(
√
E(k)2+∆2−E(k)) + e−β(

√
E(k)2+∆2+E(k))

)
,

where

H := H0 + V,(1.15)

V :=
U

Ld

∑
(ρ,x),(η,y)

∈B×Γ

ψ∗
ρx↑ψ

∗
ρx↓ψηy↓ψηy↑,

Sz :=
1

2

∑
(ρ,x)∈B×Γ

(ψ∗
ρx↑ψρx↑ − ψ∗

ρx↓ψρx↓).

The operator V is the reduced BCS interaction and Sz is the z-component of

the spin operator. The operator H is called the BCS model or the reduced

BCS model because of the form of interaction. For clarity we remark that

in [13, Theorem 1.3 (ii)] the infinite-volume limit

lim
L→∞
L∈N

(
− 1

βLd
log(Tr e−β(H+iθSz))

)

with θ ∈ R was derived. Since the real parameter θ can be chosen arbitrarily,

the above statement follows. The Fermionic operators appear only in this

subsection.

As summarized in Lemma 1.3 later, the free energy density loses ana-

lyticity on the boundary of the domain of (β, t) where the gap equation has

a positive solution. To describe this precisely, we need to know properties

of the gap equation. The following lemma is essentially the same as [13,

Lemma 1.2]. However, as it is important for the present paper, let us give

the proof here. The claim (iv) provides the rigorous version of (1.6). Let

tanh−1 : (−1, 1) → R be the inverse function of tanh : R → (−1, 1).

Lemma 1.1. Assume that U ∈ (−2emin
b , 0). Then there uniquely exists

βc ∈
(

0,
2

emin
tanh−1

(
b|U |
2emin

)]

such that the following statements hold.
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(i) If β > βc, gE(β, t, z) �= 0 for any (t, z) ∈ R × R≥0.

(ii) gE(βc, t,∆) = 0 with (t,∆) ∈ R × R≥0 if and only if t = 2π (mod 4π)

and ∆ = 0.

(iii) If 0 < β < βc, there exists (t,∆) ∈ R × R>0 such that gE(β, t,∆) = 0.

Such ∆ is unique. Moreover there uniquely exists τ(β) ∈ (π, 2π) such

that gE(β, δτ(β) + 4mπ, 0) = 0 for any δ ∈ {−1, 1}, m ∈ Z.

(iv) Let the function β �→ τ(β) : (0, βc) → (π, 2π) be defined by the claim

(iii).

{(β, t) ∈ R>0 × R|there uniquely exists ∆ ∈ R>0 such that gE(β, t,∆) = 0}

(1.16)

= {(β, t) ∈ R>0 × R | gE(β, t, 0) > 0}
=

⊔
m∈Z

{(β, t) ∈ R>0 × R

| β ∈ (0, βc), t ∈ (τ(β) + 4mπ,−τ(β) + 4(m+ 1)π)}.

Proof. Observe that

gE(β, 2π, 0) = − 2

|U | +Dd

∫
Γ∗∞

dkTr

(
1

tanh(β2E(k))E(k)

)
.

It follows that β �→ gE(β, 2π, 0) is strictly monotone decreasing and

lim
β↘0

gE(β, 2π, 0) = +∞, lim
β↗∞

gE(β, 2π, 0) ≤ − 2

|U | +
b

emin
< 0.

Thus there uniquely exists βc ∈ R>0 such that gE(βc, 2π, 0) = 0. Moreover

0 ≤ − 2

|U | +
b

tanh(βc2 emin)emin

or

βc ≤
2

emin
tanh−1

(
b|U |
2emin

)
.



12 Yohei Kashima

The following property is useful.

For any (β, t) ∈ R>0 × R, z �→ gE(β, t, z) : R≥0 → R is strictly monotone

(1.17)

decreasing. Moreover, lim
z→∞

gE(β, t, z) = − 2

|U | < 0.

The claimed decreasing property can be confirmed by showing that

d

dX

(
1

a+ cosh(X)

)
· sinh(X)

X
+

1

a+ cosh(X)

d

dX

(
sinh(X)

X

)
< 0,

∀a ∈ [−1, 1], X ∈ R>0.

By (1.17)

gE(β, t, z) ≤ gE(β, t, 0) ≤ gE(β, 2π, 0) < gE(βc, 2π, 0) = 0,

∀(β, t, z) ∈ (βc,∞) × R × R≥0.

Thus the claim (i) holds.

If t �= 2π (mod 4π), ∆ ∈ R≥0 and gE(βc, t,∆) = 0,

0 = gE(βc, t,∆) < gE(βc, 2π,∆) ≤ gE(βc, 2π, 0) = 0,

which is a contradiction. If t ∈ R, ∆ > 0 and gE(βc, t,∆) = 0,

0 = gE(βc, t,∆) < gE(βc, t, 0) ≤ gE(βc, 2π, 0) = 0,

which is again a contradiction. Thus, if gE(βc, t,∆) = 0 with (t,∆) ∈
R×R≥0, t = 2π (mod 4π) and ∆ = 0. The converse is clear. The claim (ii)

holds.

If β ∈ (0, βc),

gE(β, 2π, 0) > gE(βc, 2π, 0) = 0, lim
z→∞

gE(β, 2π, z) = − 2

|U | < 0.

These imply that there exists (t,∆) ∈ R × R>0 such that gE(β, t,∆) = 0.

By (1.17) such ∆ is unique. By assumption gE(β, π, 0) ≤ − 2
|U | + b

emin
<

0. Since gE(β, 2π, 0) > 0, there uniquely exists τ(β) ∈ (π, 2π) such that

gE(β, δτ(β) + 4mπ, 0) = 0 for any δ ∈ {−1, 1}, m ∈ Z. This ensures the

claim (iii).
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One can deduce the first equality of (1.16) from the property (1.17). For

any β ∈ (0, βc), m ∈ Z, t ∈ (τ(β) + 4mπ,−τ(β) + 4(m+ 1)π) gE(β, t, 0) >

gE(β, τ(β), 0) = 0. Conversely let us assume that (β, t) ∈ R>0 × R and

gE(β, t, 0) > 0. By (1.17) there exists ∆ ∈ R>0 such that gE(β, t,∆) = 0.

By (i), (ii) β < βc. If t /∈ (τ(β) + 4mπ,−τ(β) + 4(m+ 1)π) for any m ∈ Z,

gE(β, t, 0) ≤ gE(β, τ(β), 0) = 0. Contradiction. Thus there exists m ∈ Z

such that t ∈ (τ(β) + 4mπ,−τ(β) + 4(m + 1)π). The second equality of

(1.16) is also proved. �

In order to ensure the existence of the critical inverse temperature βc,

we always deal with U ∈ R<0 satisfying |U | < 2emin
b in this paper. The

negative parameter U controls the strength of attractive interaction. See

(1.15). The sign of U matters in the derivation of the gap equation from the

many-electron system. In this paper, however, the sign plays no essential

role.

Concerning the function τ : (0, βc) → (π, 2π), more detailed properties

are known.

Lemma 1.2 ([13, Lemma 2.2]).

(i) τ is real analytic in (0, βc).

(ii)

lim
β↗βc

τ(β) = lim
β↘0

τ(β) = 2π.

(iii)

lim
β↗βc

dτ

dβ
(β) = +∞, lim

β↘0

dτ

dβ
(β) = −∞.

To state the rigorous version of the relation (1.5), we define the function

∆ : R>0 × R → R≥0 as follows. For (β, t) ∈ R>0 × R, if gE(β, t, 0) >

0, ∆(β, t)(∈ R>0) is the unique solution to the gap equation. Otherwise

∆(β, t) := 0. By (1.16) the function ∆ is well-defined. Then we define the

function (β, t) �→ FE(β, t) : R>0 × R → R by the right-hand side of (1.14)

with ∆ = ∆(β, t). In fact we do not use the following lemma to prove the
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main results of this paper. We state it only to understand the meaning of

the sets analyzed as the main objects in this paper.

Lemma 1.3. Assume that U ∈ (−2emin
b , 0). Then the following equali-

ties hold.

{(β, t) ∈ R>0 × R | the function FE is not analytic at (β, t)}
= {(β, t0) ∈ R>0 × R | the function t �→ FE(β, t) is not analytic at t = t0}
∪ {(βc, 2π + 4πm) | m ∈ Z}

=
⊔
m∈Z

{(β, τ(β) + 4mπ), (β,−τ(β) + 4(m+ 1)π) | β ∈ (0, βc)}

∪ {(βc, 2π + 4πm)}
= ∂{(β, t) ∈ R>0 × R | ∆(β, t) > 0} ∩ R>0 × R.

For any subset S of R
2 ∂S denotes its boundary in R

2.

Proof. The 1st and the 2nd equality follows from [13, (2.3), Proposi-

tion 2.5]. The 3rd equality follows from (1.16) and Lemma 1.2. �

Remark 1.4. Since ∆(βc, t) = 0 for any t ∈ R, t �→ FE(βc, t) is ana-

lytic in R. This together with Lemma 1.3 implies that

{(β, t0) ∈ R>0 × R | the function t �→ FE(β, t) is not analytic at t = t0}
=

⊔
m∈Z

{(β, τ(β) + 4mπ), (β,−τ(β) + 4(m+ 1)π) | β ∈ (0, βc)}.

Since DQPT is defined by non-analyticity of FE(β, t) with the real time

variable t, the above equality characterizes the phase boundary of DQPT

in the BCS model.

The above lemma suggests that the phase boundary is the disjoint union

of periodic copies of the representative simple curve

C0 = {(β, τ(β)), (β,−τ(β) + 4π) | β ∈ (0, βc)} ∪ {(βc, 2π)}.

To analyze the whole phase boundary, it suffices to focus on the function

τ : (0, βc) → (π, 2π). Moreover, Lemma 1.1 (iv) suggests that the domain
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of (β, t) where the gap equation has a positive solution consists of periodic

copies of the representative set S0 defined by

S0 := {(β, t) ∈ R>0 × R | β ∈ (0, βc), t ∈ (τ(β),−τ(β) + 4π)}.

Observe that C0 = ∂S0 ∩ R>0 × R. The set S0 is pictured in Figure 1.

Fig. 1. The representative set S0 and its boundary.

Remark 1.5. In [13, Proposition 2.4] we proved that C0 ∪ {(0, 2π)} is

a 1-dimensional real analytic submanifold of R
2.

The main results of this paper concern convexity of the function τ(·)
and the set S0. Specifically Proposition 1.6, Proposition 1.7, Proposition

1.8 and Theorem 1.11 are the main results.

Proposition 1.6. Assume that emin
emax

>
√

9 − 4
√

5. Then there exists

U0 ∈ (0, emin
sinh(2)b ] such that for any U ∈ [−U0, 0), E ∈ E(emin, emax) and

β ∈ (0, βc)
d2τ
dβ2 (β) > 0. Moreover

lim
β↗βc

d2τ

dβ2
(β) = +∞, lim

β↘0

d2τ

dβ2
(β) = +∞.
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The convexity of τ(·) does not always hold when emin
emax

≤
√

9 − 4
√

5.

Proposition 1.7. Assume that emin
emax

<
√

9 − 4
√

5. Then there exist

U0 ∈ (0, 2emin
b ), E ∈ E(emin, emax) such that the following statement holds.

For any U ∈ [−U0, 0) there exists β ∈ (0, βc) such that d2τ
dβ2 (β) < 0.

When emin
emax

=
√

9 − 4
√

5, a slightly weaker conclusion holds. More

precisely, the choice of E depends on U .

Proposition 1.8. Assume that emin
emax

=
√

9 − 4
√

5. Then there ex-

ists U0 ∈ (0, 2emin
b ) such that the following statement holds. For any U ∈

[−U0, 0) there exist E ∈ E(emin, emax), β ∈ (0, βc) such that d2τ
dβ2 (β) < 0.

Remark 1.9. We should remark at this stage that the proof of Propo-

sition 1.8 relies on exact calculations of low order terms of power series

expansion of an analytic function, which is the most complicated part in

this paper. On the other hand, Proposition 1.6, Proposition 1.7 can be

proven more systematically.

We combine these propositions to characterize the convexity of the set

S0 as the main theorem. Let us confirm basic relations between the 2nd

order derivative of τ(·) and the convexity of S0. Remind us that for any

set S ⊂ R
n S is called convex if sx1 + (1 − s)x2 ∈ S for any x1,x2 ∈ S,

s ∈ [0, 1].

Lemma 1.10.

(i) If d2τ
dβ2 (β) > 0 for any β ∈ (0, βc), S0 is convex.

(ii) If there exists β ∈ (0, βc) such that d2τ
dβ2 (β) < 0, S0 is not convex.

Proof. (i): Take any (β1, t1), (β2, t2) ∈ S0 and s ∈ [0, 1]. By the

assumption

τ(sβ1 + (1 − s)β2) ≤ sτ(β1) + (1 − s)τ(β2) < st1 + (1 − s)t2,

4π − τ(sβ1 + (1 − s)β2) ≥ s(4π − τ(β1)) + (1 − s)(4π − τ(β2))

> st1 + (1 − s)t2.
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Thus s(β1, t1) + (1 − s)(β2, t2) ∈ S0. Therefore S0 is convex.

(ii): By the assumption there exist β1, β2 ∈ (0, βc), s ∈ (0, 1) such that

τ(sβ1 + (1 − s)β2) > sτ(β1) + (1 − s)τ(β2). We can choose small ε > 0 so

that

τ(βj) + ε < 2π (j = 1, 2),

τ(sβ1 + (1 − s)β2) > s(τ(β1) + ε) + (1 − s)(τ(β2) + ε).

Thus (βj , τ(βj) + ε) ∈ S0 (j = 1, 2) and

s(β1, τ(β1) + ε) + (1 − s)(β2, τ(β2) + ε) /∈ S0.

Therefore S0 is not convex. �

By combining Proposition 1.6, Proposition 1.7, Proposition 1.8 and

Lemma 1.10 we can deduce the following theorem.

Theorem 1.11. For any d, b ∈ N, basis (v̂j)
d
j=1 of R

d and emin, emax ∈
R>0 satisfying emin ≤ emax the following statements are equivalent to each

other.

(i) There exists U0 ∈ (0, 2emin
b ) such that for any U ∈ [−U0, 0), E ∈

E(emin, emax) and β ∈ (0, βc)
d2τ
dβ2 (β) > 0.

(ii) There exists U0 ∈ (0, 2emin
b ) such that for any U ∈ [−U0, 0) and E ∈

E(emin, emax) S0 is convex.

(iii) emin
emax

>
√

9 − 4
√

5.

Proof. The equivalence between (i) and (iii) follows from Proposition

1.6, Proposition 1.7 and Proposition 1.8. By Lemma 1.10 (i) the claim (i)

implies the claim (ii). If (iii) does not hold, by Proposition 1.7 and Proposi-

tion 1.8 for any U0 ∈ (0, 2emin
b ) there exist U ∈ [−U0, 0), E ∈ E(emin, emax)

and β ∈ (0, βc) such that d2τ
dβ2 (β) < 0. Thus by Lemma 1.10 (ii) S0 is not

convex, which means that (ii) does not hold. Therefore (ii) implies (iii).

The claims (i), (ii), (iii) are equivalent to each other. �

Remark 1.12. The behavior of d2τ
dβ2 (·) claimed in Proposition 1.6,

Proposition 1.7 and Proposition 1.8 implies a physical property of the phase
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transition, which is so-called reentrant phenomenon along a line drawn in

the phase diagram. Mathematically we define the reentry into the exterior

from the interior as follows. Take x1,x2 ∈ R>0 × R satisfying x1 �= x2.

There exists ε ∈ R>0 such that(EIE)(x1,x2)

∆(sx1 + (1 − s)x2) > 0, ∀s ∈ (0, 1),

∆(sx1 + (1 − s)x2) = 0, ∀s ∈ [−ε, 0] ∪ [1, 1 + ε].

Similarly we define the reentry into the interior from the exterior as below.

There exists ε ∈ R>0 such that(IEI)(x1,x2)

∆(sx1 + (1 − s)x2) = 0, ∀s ∈ [0, 1],

∆(sx1 + (1 − s)x2) > 0, ∀s ∈ [−ε, 0) ∪ (1, 1 + ε].

Recalling the definition of the simple curve C0, we can confirm the following.

• If d2τ
dβ2 (β) > 0 for any β ∈ (0, βc), then for any x1,x2 ∈ C0 with

x1 �= x2 (EIE)(x1,x2) holds.

• If d2τ
dβ2 (β) < 0 for some β ∈ (0, βc), then for any δ ∈ R>0 there exist

x1,x2 ∈ C0 such that 0 < ‖x1 − x2‖R2 < δ and (IEI)(x1,x2) holds.

Accordingly we can replace the conclusion “for any β ∈ (0, βc)
d2τ
dβ2 (β) >

0” by “for any x1,x2 ∈ C0 with x1 �= x2 (EIE)(x1,x2) holds.” in the

statement of Proposition 1.6. Also we can replace the conclusion “there

exists β ∈ (0, βc) such that d2τ
dβ2 (β) < 0” by “for any δ ∈ R>0 there exists

x1,x2 ∈ C0 such that 0 < ‖x1 − x2‖R2 < δ and (IEI)(x1,x2) holds.” in the

statements of Proposition 1.7, Proposition 1.8.

Remark 1.13. We are analyzing the phase boundary where the func-

tion FE loses analyticity. However, it is not obvious if we can prove the

derivation of FE from the many-electron system as stated in (1.14) together

with the main results of this paper. By considering the fact that c′ ∈ (0, 1]

depends on the derivatives of E we can deduce the following from Proposi-

tion 1.6 and Proposition 1.7.

• If emin
emax

>
√

9 − 4
√

5, for any E ∈ E(emin, emax) there exists U0 ∈
(0, emin

sinh(2)b ] such that for any U ∈ [−U0, 0), β ∈ (0, βc)
d2τ
dβ2 (β) > 0 and

the equality (1.14) is justified.
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• If emin
emax

<
√

9 − 4
√

5, there exist U0 ∈ (0, 2emin
b ), E ∈ E(emin, emax)

such that for any U ∈ [−U0, 0) d2τ
dβ2 (β) < 0 for some β ∈ (0, βc) and

the equality (1.14) is justified.

As we will see in Section 4, we have to choose E ∈ E(emin, emax) after

fixing U ∈ [−U0, 0) in the proof of Proposition 1.8. It is not clear if the

condition (1.13) is satisfied in this situation. Therefore we cannot prove

non-convexity of the phase boundary in case that emin
emax

=
√

9 − 4
√

5 as

claimed in Proposition 1.8 while justifying the equality (1.14).

Remark 1.14. In the preceding papers [13], [14] we had numerical

examples showing non-convexity of the function τ : (0, βc) → R. The picture

[13, Figure 2, (b)] shows the graph of τ(·) having 2 local mininum points

when emin
emax

= 1
7(<

√
9 − 4

√
5). The pictures in [14, Figure 4] show that

dτ
dβ (·) can be decreasing when emin

emax
= 1

8.342 , 1
6.643(<

√
9 − 4

√
5).

Remark 1.15. Here we can summarize the main results of [13, Section

2], [14] and this paper concerning the behavior of τ(·) more rigorously than

in Subsection 1.1. Let P be a proposition and cr be a positive constant. We

have been proving the following statement.

For any d, b ∈ N, basis (v̂j)
d
j=1 of R

d and emin, emax ∈ R>0 satisfying

emin ≤ emax (i), (ii) are equivalent to each other.

(i) There exists U0 ∈ (0, 2emin
b ) such that for any U ∈ [−U0, 0), E ∈

E(emin, emax) P holds.

(ii) emin
emax

> cr.

The proposition P and the constant cr are given as below.

• In [13, Theorem 2.19]

P : τ(·) has only one local minimum point in (0, βc).

cr =

√
17 − 12

√
2.

• In [14, Theorem 1.8]

P : τ(·) has no stationary point of inflection in (0, βc).

cr =

√
17 − 12

√
2.
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• In Theorem 1.11 of this paper

P :
d2τ

dβ2
(β) > 0 for any β ∈ (0, βc). cr =

√
9 − 4

√
5.

Remark 1.16. In [13, Proposition 2.8] we proved that if emin
emax

≥ e0 for

some e0 ∈ (0, 1), d2τ
dβ2 (β) > 0 for any U ∈ [− emin

sinh(2)b , 0), E ∈ E(emin, emax)

and β ∈ (0, βc). Since the proof was based on non-optimal estimations, we

were unable to find the optimal value of such e0 there. Theorem 1.11 here

presents an optimal value
√

9 − 4
√

5.

Remark 1.17. Some may be more accustomed to a graph with tem-

perature than inverse temperature. Here let us remark what we know on

the behavior of the function T �→ τ( 1
T ) : ( 1

βc
,∞) → (π, 2π). Based on

the equality d
dT (τ( 1

T )) = − 1
T 2

dτ
dβ ( 1

T ) and [13, Theorem 2.19], [14, Theorem

1.8], we can characterize uniqueness of a local minimum point and non-

existence of a stationary point of inflection by the constant
√

17 − 12
√

2 in

the same way as in Remark 1.15. Regardless of the value of emin
emax

, the func-

tion T �→ τ( 1
T ) is not convex, i.e. d2

dT 2 (τ( 1
T )) < 0 for some T ∈ ( 1

βc
,∞). This

can be deduced from the properties that τ( 1
T ) < 2π for any T ∈ ( 1

βc
,∞)

and limT→∞ τ( 1
T ) = 2π.

Remark 1.18. One basic assumption in this paper is the weak cou-

pling condition |U | < 2emin
b . There are two reasons why we always assume

this. Firstly, the condition (1.13) under which the free energy density to-

gether with the gap equation is rigorously derived in [13, Theorem 1.3]

implies this inequality, and thus we can interpret the main results Proposi-

tion 1.6, Proposition 1.7 as rigorous properties of the infinite-volume limit

of the microscopic model by assuming (1.13) from the beginning. This is

explained in Remark 1.13 in more detail. Secondly, under this condition

the phase boundary has universal properties as described in Lemma 1.1,

Lemma 1.2 and Lemma 1.3. We have decided to focus on the analysis

of these properties. It is possible to define the gap equation alone under

the strong coupling condition |U | ≥ 2emin
b , though the derivation from the

microscopic model cannot be proved by the multi-scale analysis we have

developed in this series. Under the condition |U | ≥ 2emin
b the phase bound-

ary can radically change its geometric properties, depending on the choice
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of E ∈ E(emin, emax). Here let us summarize some of the basic provable

properties by putting the issue of derivation aside.

For E ∈ E(emin, emax), set

g∞E := − 2

|U | +Dd

∫
Γ∗∞

dkTr

(
1

|E(k)|

)
.

Observe that g∞E = limβ↗∞ gE(β, t, 0) for any t ∈ R. While g∞E < 0 for any

E ∈ E(emin, emax) if |U | < 2emin
b , g∞E can change its sign, depending on the

choice of E ∈ E(emin, emax), if |U | ≥ 2emin
b . There are three cases.

g∞E < 0.(Case 1)

g∞E = 0.(Case 2)

g∞E > 0.(Case 3)

For example if |U | = 2emin
b , 0 < b′ < b, 0 < emin < emax and

E =

(
eminIb′ 0

0 emaxIb−b′

)
,

(Case 1) holds. If |U | = 2emin
b , emin = emax and E = eminIb, (Case 2) holds.

If |U | > 2emin
b , emin = emax and E = eminIb, (Case 3) holds. Here let us

characterize the set

D> = {(β, t) ∈ R>0 × R | there uniquely exists ∆ ∈ R>0

such that gE(β, t,∆) = 0}

in a manner similar to Lemma 1.1 (iv).

• In (Case 1) there exists βc ∈ R>0 and τ : (0, βc) → (π, 2π) such that

limβ↘0 τ(β) = 2π, limβ↗βc τ(β) = 2π,

D> =
⊔
m∈Z

{(β, t) ∈ R>0 × R

| β ∈ (0, βc), t ∈ (τ(β) + 4mπ,−τ(β) + 4(m+ 1)π)}.

• In (Case 2) there exists τ : R>0 → (π, 2π) such that limβ↘0 τ(β) = 2π,

D> =
⊔
m∈Z

{(β, t) ∈ R>0 × R | t ∈ (τ(β) + 4mπ,−τ(β) + 4(m+ 1)π)}.
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• In (Case 3) there exists βc ∈ R>0 and τ : (0, βc) → (0, 2π) such that

limβ↘0 τ(β) = 2π, limβ↗βc τ(β) = 0,

D> =
⊔
m∈Z

{(β, t) ∈ R>0 × R

| β ∈ (0, βc), t ∈ (τ(β) + 4mπ,−τ(β) + 4(m+ 1)π)}
� {βc} × R\4πZ � (βc,∞) × R.

In (Case 1) the situation is close to that under the condition |U | < 2emin
b .

However in (Case 2) the phase boundary exists for all β ∈ R>0. Also in

(Case 3) the gap function ∆ is positive for any (β, t) ∈ (βc,∞)× R. So the

phase diagram is globally different in these cases. Detailed analysis of them

is open at present.

Remark 1.19. As we have already mentioned in Subsection 1.1, the

characteristic function of the work done in our many-body system by chang-

ing the Hamiltonian H to H+Sz is equal to (1.4). See [23] for the derivation.

The work distribution function is its Fourier transform. We note that

Tr(e−βHe−itHeit(H+Sz))

Tr e−βH
=

bLd∑
n=−bLd

eit
n
2
Trn e

−βH

Tr e−βH
,

where Trn e
−βH denotes the trace of e−βH over the subspace{

ψ ∈ Ff (L
2(B × Γ × {↑, ↓}))

∣∣ Szψ =
n

2
ψ
}
.

This implies that the possible values of the work are n
2 (n = −bLd,−bLd +

1, · · · , bLd) and the work distribution function PL(·) is given by

PL(w) =
1

4π

∫ 2π

−2π
dte−itw

Tr(e−βHe−itHeit(H+Sz))

Tr e−βH
,

w ∈
{n

2

∣∣ n = −bLd,−bLd + 1, · · · , bLd
}
.

Observe that

PL

(n
2

)
=

Trn e
−βH

Tr e−βH
≥ 0, ∀n ∈ {−bLd,−bLd + 1, · · · , bLd},(1.18)
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bLd∑
n=−bLd

PL

(n
2

)
= 1.

Properties of work statistics after quantum quench have been studied in

physics literature (e.g. [21], [9], [1]). For example the letter [21] demon-

strates via analysis of Loschmidt echo that the work distribution function

can diverge to infinity in case of a local quench in a quantum Ising chain.

Here let us derive one property of our work distribution function from our

previous results. Set

P(β, L) :=
bLd∑

n=−bLd

(
1n is evenPL

(n
2

)
− 1n is oddPL

(n
2

))

so that

P(β, L) =
Tr e−βH+i2πSz

Tr e−βH
.

It follows from [13, Theorem 1.3, Proposition 2.5 (ii)] that if U satisfies the

condition (1.13), P(β, L) > 0 for sufficiently large L ∈ N, limL→∞,L∈N
1
Ld log

P(β, L) exists, β �→ limL→∞,L∈N
1
Ld logP(β, L) is C1-class in R>0,

lim
β↗βc

∂2

∂β2
lim
L→∞
L∈N

1

Ld
logP(β, L), lim

β↘βc

∂2

∂β2
lim
L→∞
L∈N

1

Ld
logP(β, L)

exist and

lim
β↗βc

∂2

∂β2
lim
L→∞
L∈N

1

Ld
logP(β, L) �= lim

β↘βc

∂2

∂β2
lim
L→∞
L∈N

1

Ld
logP(β, L).

Though the physical interpretation might not be straightforward, this

is a phenomenon caused by the interaction. In fact if U = 0, β �→
limL→∞,L∈N

1
Ld log P(β, L) is real analytic in R>0. More generally we can

deduce a jump discontinuity of

∂2

∂β2
lim
L→∞
L∈N

1

Ld
log


 bLd∑
n=−bLd

eit
n
2 PL

(n
2

)
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with β for any t ∈ R close to 2π from our previous results.

In [1], [9] the Gärtner-Ellis theorem on large deviation principle was

applied to study the rate functions of work distribution functions. So we

should report what we can obtain by directly applying the Gärtner-Ellis

theorem to our model under the weak coupling condition (1.13). Let B(R)

denote the Borel algebra of R. For L ∈ N we define a function µL : B(R) →
R by

µL(B) :=

bLd∑
n=−bLd

1 n

2bLd ∈BPL
(n

2

)
.

We see that µL is a probability measure on R. Moreover by (1.18) for any

t ∈ R

∫
R

ebL
dtxdµL(x) =

bLd∑
n=−bLd

et
n
2 PL

(n
2

)

=
bLd∑

n=−bLd

Trn e
−βH+tSz

Tr e−βH
=

Tr e−βH+tSz

Tr e−βH
.

One can follow the early derivation of the free energy density of the BCS

model [2, Chapter 3] to derive that

lim
L→∞
L∈N

1

Ld
log Tr e−βH+tSz

(1.19)

= Dd

∫
Γ∗∞

dk

(
Tr log

(
cosh

(
t

2

)
+ cosh(βE(k))

)
+ Tr log(2e−βE(k))

)
.

We should remark that since we assume (1.13), the corresponding gap equa-

tion

− 2

|U | +Dd

∫
Γ∗∞

dkTr

(
sinh(β

√
E(k)2 + ∆2)

(cosh( t2) + cosh(β
√
E(k)2 + ∆2))

√
E(k)2 + ∆2

)(1.20)

= 0
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does not have a positive solution. Indeed

(the R.H.S of (1.20)) ≤ − 2

|U | +Dd

∫
Γ∗∞

dkTr

(
1√

E(k)2 + ∆2

)

≤ − 2

|U | +
b

emin
< 0

for any ∆ ∈ R≥0. This is why the free energy density (1.19) is the same as

that of the non-interacting model. Therefore

lim
L→∞
L∈N

1

bLd
log

(∫
R

ebL
dtxdµL(x)

)
(1.21)

=
Dd
b

∫
Γ∗∞

dkTr log

(
cosh( t2) + cosh(βE(k))

1 + cosh(βE(k))

)
,

which is real analytic with t in R. Let us define the function Λβ : R → R

by the right-hand side of (1.21). It follows from the Gärtner-Ellis theorem

(see, e.g., [4]) that for any u, v ∈ [−1
2 ,

1
2 ] with u < v

lim
L→∞
L∈N

1

bLd
log


 bLd∑
n=−bLd

1 n

2bLd ∈[u,v]PL

(n
2

) = lim
L→∞
L∈N

1

bLd
logµL([u, v])(1.22)

= − min
x∈[u,v]

r(x, β),

where the function r : R × R>0 → R ∪ {+∞} is the Legendre transform of

Λβ, i.e.

r(x, β) := sup
t∈R

(xt− Λβ(t)).

In fact we can characterize the function r(·) as follows. For any β ∈ R>0

r(x, β) = r(−x, β), ∀x ∈ R,

r(x, β) = +∞, ∀x ∈
(

1

2
,∞

)
,

r

(
1

2
, β

)
=
Dd
b

∫
Γ∗∞

dkTr log(2(1 + cosh(βE(k)))), r(0, β) = 0,
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∂2r

∂x2
(x, β) > 0, ∀x ∈

(
−1

2
,
1

2

)
,

∂r

∂x
(x, β) < 0, ∀x ∈

(
−1

2
, 0

)
,
∂r

∂x
(0, β) = 0,

∂r

∂x
(x, β) > 0, ∀x ∈

(
0,

1

2

)
.

Moreover, (x, β) �→ r(x, β) is real analytic in (−1
2 ,

1
2) × R>0, which means

that the rate function r(·, ·) does not exhibit any singular behavior with

the temperature. Despite that DQPTs are triggered by the weak BCS

interaction, the interaction plays no role in the rate function. Thus the

simple application of the Gärtner-Ellis theorem is unlikely to provide an

interpretation of DQPT in terms of the work distribution function.

2. Convexity of the Phase Boundary

In this section we prove Proposition 1.6. Let us begin by transforming
d2τ
dβ2 (β) into a form without derivatives of τ(·). Take any E ∈ E(emin, emax).

Define the function F : R>0 × (−1, 0) → R by

F (x, y) := Dd

∫
Γ∗∞

dkTr

(
sinh(xE(k))

(y + cosh(xE(k)))E(k)

)
.(2.1)

Our proof is based on the following equality.

Lemma 2.1. Let U ∈ [−2emin
b , 0).

d2τ

dβ2
(β) = − 2y(β)

(1 − y(β)2)
3
2

(
Fx(β, y(β))

Fy(β, y(β))

)2

(2.2)

+
2

(1 − y(β)2)
1
2Fy(β, y(β))3

·
(
Fxx(β, y(β))Fy(β, y(β))2 − 2Fx(β, y(β))Fy(β, y(β))Fxy(β, y(β))

+ Fyy(β, y(β))Fx(β, y(β))2
)

for any β ∈ (0, βc), where y(β) := cos( τ(β)
2 ), Fx(x, y) := ∂F

∂x (x, y) and other

partial derivatives of F are abbreviated similarly.
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Proof. We can derive from the equality − 2
|U | + F (β, y(β)) = 0 that

dy

dβ
(β) = −Fx(β, y(β))

Fy(β, y(β))
.(2.3)

Because y �→ F (x, y) : (−1, 0) → R is monotonic, Fy(β, y(β)) �= 0 for any

β ∈ (0, βc). By substituting (2.3)

dτ

dβ
(β) = −

2 dydβ (β)

(1 − y(β)2)
1
2

=
2

(1 − y(β)2)
1
2

· Fx(β, y(β))

Fy(β, y(β))
.

By differentiating both sides with β and substituting (2.3) again we can

obtain the claimed equality. �

In the rest of this paper we often let y(β) denote cos( τ(β)
2 ) without

any remark. The next lemma means that for any emin, emax satisfying

0 < emin ≤ emax, β ∈ (0, βc) sufficiently close to βc
d2τ
dβ2 (β) > 0.

Lemma 2.2. There exists M(emin, emax) ∈ R>0 depending only on

emin, emax such that for any U ∈ [− emin
sinh(2)b , 0), E ∈ E(emin, emax), β ∈

(0, βc) satisfying β ≥M(emin, emax)
√

1 + y(β)

d2τ

dβ2
(β) ≥ β2

4(1 + y(β))
3
2

(
emaxemin

sinh(2emax/emin)

)2

.

Since limβ↗βc y(β) = −1 by Lemma 1.2, we can deduce the following

statement from the above lemma.

Corollary 2.3. For any U ∈ [− emin
sinh(2)b , 0), E ∈ E(emin, emax)

lim
β↗βc

d2τ

dβ2
(β) = +∞.

From time to time we will need explicit forms of the partial derivatives

of F . Let us list them here.

Fx(x, y) = Dd

∫
Γ∗∞

dkTr

(
1 + y cosh(xE(k))

(y + cosh(xE(k)))2

)
,

(2.4)
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Fy(x, y) = −Dd
∫

Γ∗∞

dkTr

(
sinh(xE(k))

(y + cosh(xE(k)))2E(k)

)
,

(2.5)

Fxx(x, y) = Dd

∫
Γ∗∞

dkTr

(
E(k) sinh(xE(k))(y2 − y cosh(xE(k)) − 2)

(y + cosh(xE(k)))3

)
,

(2.6)

Fxy(x, y) = Dd

∫
Γ∗∞

dkTr

(
cosh2(xE(k)) − y cosh(xE(k)) − 2

(y + cosh(xE(k)))3

)
,

(2.7)

Fyy(x, y) = 2Dd

∫
Γ∗∞

dkTr

(
sinh(xE(k))

(y + cosh(xE(k)))3E(k)

)
.

(2.8)

We will use the following properties in the proof of Lemma 2.2. In fact

these were derived in the proof of [13, Proposition 2.8]. We show them again

for readers’ convenience.

Lemma 2.4. Let U ∈ [− emin
sinh(2)b , 0). Then the following inequalities

hold.

βc ≤
2

emin
. y(β) + 1 ≤ b sinh(2)|U |

2emin
, ∀β ∈ (0, βc).

− y(β) ≥ 1

2
, ∀β ∈ (0, βc).

Proof. By Lemma 1.1

βc ≤
2

emin
tanh−1

(
b|U |
2emin

)
≤ 2

emin
tanh−1

(
1

2 sinh(2)

)

≤ 2

emin
tanh−1(tanh(1)) =

2

emin
.

It follows from the above inequality, the equality − 2
|U | +F (β, y(β)) = 0 and

the property (1.17) that

2

|U | ≤
b sinh(βemin)

(y(β) + cosh(βemin))emin
≤ b sinh(2)

(y(β) + cosh(βemin))emin
,
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or by the assumption

y(β) + 1 ≤ y(β) + cosh(βemin) ≤
b sinh(2)|U |

2emin
≤ 1

2
.

This implies the second and the third inequality. �

Proof of Lemma 2.2. Let us establish necessary inequalities by as-

suming that β ≥M
√

1 + y(β) with M ∈ R>0. We will tune M afterwards.

It follows that

−y(β) ≥ 1 − β2

M2
.(2.9)

By (2.4) and (2.9)

− Fx(β, y(β))

≥ Dd

∫
Γ∗∞

dkTr

(
(1 − β2/M2) cosh(βE(k)) − 1

(y(β) + cosh(βE(k)))2

)

≥
(
β2

2
e2min −

β2

M2
cosh(βemax)

)
Dd

∫
Γ∗∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)

≥ β2

(
1

2
e2min −

1

M2
cosh(βcemax)

)

·Dd
∫

Γ∗∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
.

By (2.5)

0 < −Fy(β, y(β))

≤ sinh(βemax)

emax
Dd

∫
Γ∗∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
.

Thus by assuming that

1

2
e2min −

1

M2
cosh(βcemax) > 0(2.10)

(
Fx(β, y(β))

Fy(β, y(β))

)2

≥ β2

(
βemax

sinh(βemax)

(
1

2
e2min −

1

M2
cosh(βcemax)

))2

(2.11)
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≥ β2

(
βcemax

sinh(βcemax)

(
1

2
e2min −

1

M2
cosh(βcemax)

))2

.

To bound |Fxx(β, y(β))|, observe that since y(β) ∈ (−1, 0),

|y(β)2 − y(β) cosh(βα) − 2|
= |(y(β) − 2)(y(β) + 1) + y(β)(1 − cosh(βα))|
≤ 3(y(β) + 1) + cosh(βα) − 1 ≤ 3(y(β) + cosh(βα))

for any α ∈ R. Therefore

|Fxx(β, y(β))| ≤ 3Dd

∫
Γ∗∞

dkTr

(
E(k) sinh(βE(k))

(y(β) + cosh(βE(k)))2

)
≤ 3e2max|Fy(β, y(β))|,

or ∣∣∣∣Fxx(β, y(β))

Fy(β, y(β))

∣∣∣∣ ≤ 3e2max.(2.12)

Moreover, since

|1 + y(β) cosh(βα)| = |1 + y(β) + y(β)(cosh(βα) − 1)|(2.13)

≤ 1 + y(β) + cosh(βα) − 1 = y(β) + cosh(βα)

for any α ∈ R,

|Fx(β, y(β))|(2.14)

≤ (y(β) + cosh(βemax))Dd

∫
Γ∗∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
.

Also,

|Fy(β, y(β))| ≥ βDd

∫
Γ∗∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
.(2.15)

To bound |Fxy(β, y(β))|, we remark that for any α ∈ R

| cosh2(βα) − y(β) cosh(βα) − 2|
= |(cosh(βα) − 1)2 + 2(cosh(βα) − 1) − 1 − y(β) cosh(βα)|
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≤ |(cosh(βα) − 1)2 + 2(cosh(βα) − 1)| + y(β) + cosh(βα)

≤ (cosh(βα) + y(β))(cosh(βα) + 2).

In the 1st inequality we used (2.13). Thus

|Fxy(β, y(β))|(2.16)

≤ (cosh(βcemax) + 2)Dd

∫
Γ∗∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
.

By combining (2.14), (2.15), (2.16) with (2.9)

∣∣∣∣Fx(β, y(β))Fxy(β, y(β))

Fy(β, y(β))2

∣∣∣∣ ≤ β−2(y(β) + cosh(βemax))(cosh(βcemax) + 2)

(2.17)

≤ β−2

(
β2

M2
+ cosh(βemax) − 1

)
(cosh(βcemax) + 2)

≤
(

1

M2
+

cosh(βcemax) − 1

β2
c

)
(cosh(βcemax) + 2).

One can deduce that

|Fyy(β, y(β))| ≤ 2

y(β) + cosh(βemin)
|Fy(β, y(β))|.(2.18)

It follows from (2.14), (2.15), (2.18) and (2.9) that

∣∣∣∣Fyy(β, y(β))Fx(β, y(β))2

Fy(β, y(β))3

∣∣∣∣ ≤ 2

y(β) + cosh(βemin)

(
Fx(β, y(β))

Fy(β, y(β))

)2

(2.19)

≤ 2(y(β) + cosh(βemax))
2

β2(y(β) + cosh(βemin))
≤

2( β
2

M2 + cosh(βemax) − 1)2

β2(cosh(βemin) − 1)

≤ 4

e2min

(
1

M2
+

cosh(βcemax) − 1

β2
c

)2

.

By substituting (2.11), (2.12), (2.17), (2.19) into the right-hand side of

(2.2) we have that

(1 + y(β))
3
2
d2τ

dβ2
(β)
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≥ − 2y(β)

(1 − y(β))
3
2

β2

(
βcemax

sinh(βcemax)

(
e2min

2
− 1

M2
cosh(βcemax)

))2

− 2β2√
1 − y(β)M2

(

3e2max + 2

(
1

M2
+

cosh(βcemax) − 1

β2
c

)
(cosh(βcemax) + 2)

+
4

e2min

(
1

M2
+

cosh(βcemax) − 1

β2
c

)2
)
.

Here we also used that

2(1 + y(β))√
1 − y(β)

≤ 2β2√
1 − y(β)M2

.

Then by assuming

e2min
2

− 1

M2
cosh

(
2emax
emin

)
> 0(2.20)

and substituting the inequalities claimed in Lemma 2.4

(1 + y(β))
3
2
d2τ

dβ2
(β)

(2.21)

≥ β2

2
√

2

(
2emax

emin sinh(2emax/emin)

(
e2min

2
− 1

M2
cosh

(
2emax
emin

)))2

− 2β2

M2

(

3e2max + 2

(
1

M2
+
e2min

4

(
cosh

(
2emax
emin

)
− 1

))(
cosh

(
2emax
emin

)
+ 2

)

+
4

e2min

(
1

M2
+
e2min

4

(
cosh

(
2emax
emin

)
− 1

))2
)
.

Note that (2.20) holds for sufficiently large M and implies (2.10). Moreover,
1
β2 (R.H.S of (2.21)) is independent of β and

lim
M→∞

1

β2
(R.H.S of (2.21)) =

1

2
√

2

(
emaxemin

sinh(2emax/emin)

)2

.
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Thus we can choose M(emin, emax) ∈ R>0 depending only on emin, emax so

that the claim of the lemma holds. �

The inequality β ≥M(emin, emax)
√

1 + y(β) does not hold for small β.

Lemma 2.5. For any E ∈ E(emin, emax), U ∈ (−2emin
b , 0)

lim
β↘0

β√
1 + y(β)

= 0.

Proof. By (1.17)

β2

y(β) + cosh(βemax)
≤ βDd

∫
Γ∗∞

dkTr

(
sinh(βE(k))

(y(β) + cosh(βE(k)))E(k)

)

=
2β

|U | .

Thus

lim
β↘0

β2

y(β) + cosh(βemax)
= 0,

which implies the claim. �

Remark 2.6. In the proof of [13, Lemma 2.2] we proved more precisely

that

lim
β↘0

y(β) + 1

β
=
b|U |
2

by a longer argument.

Therefore Lemma 2.2 does not prove the positivity of d2τ
dβ2 (β) for small

β. We must prove the positivity in case that β < M(emin, emax)
√

1 + y(β).

In the rest of this section we achieve this as follows. We show by scaling

that the right-hand side of (2.2) is close to a function independent of y(β),

which proves to be positive if emin
emax

>
√

9 − 4
√

5.
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Let us construct the proof step by step. For x ∈ R>0, y ∈ (−1, 0),

E ∈ E(emin, emax) we set

WE(x, y) :=
2

(1 − y)
3
2

(
(y + 1)

3
2Fy(

√
y + 1x, y)/x

)3

((2.22)

− y
(
(y + 1)Fx(

√
y + 1x, y)

)2 (y + 1)
3
2

x
Fy(

√
y + 1x, y)

+ (1 − y)

(
2

(
x(y + 1)

3
2

2
Fxx(

√
y + 1x, y)

)(
(y + 1)

3
2

x
Fy(

√
y + 1x, y)

)2

− 2
(
(y + 1)Fx(

√
y + 1x, y)

)((y + 1)
3
2

x
Fy(

√
y + 1x, y)

)

·
(
(y + 1)2Fxy(

√
y + 1x, y)

)
+

(
(y + 1)

5
2

x
Fyy(

√
y + 1x, y)

)(
(y + 1)Fx(

√
y + 1x, y)

)2

))
.

We can see from (2.2) that

β2√
1 + y(β)

d2τ

dβ2
(β) = WE

(
β√

1 + y(β)
, y(β)

)
, ∀β ∈ (0, βc).(2.23)

Since limx↘0 Fy(
√
y + 1x, y)/x converges to a non-zero value and

limx↘0 Fyy(
√
y + 1x, y)/x converges in particular, limx↘0WE(x, y) con-

verges for any y ∈ (−1, 0). Thus in the following we consider WE(·, ·) as a

continuous function on R≥0 × (−1, 0). For y ∈ (−1, 0) close to −1 WE(x, y)

can be approximated by W̃E(x) defined by

W̃E(x) :=

Dd
∫
Γ∗∞

dkTr
(

1

1+x2

2
E(k)2

)
√

2
(
Dd

∫
Γ∗∞

dkTr
(

1

(1+x2

2
E(k)2)2

))3

((2.24)

4

(
Dd

∫
Γ∗∞

dkTr

(
1

(1 + x2

2 E(k)2)2

))2
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+Dd

∫
Γ∗∞

dkTr

(
1

1 + x2

2 E(k)2

)
Dd

∫
Γ∗∞

dkTr

(
1

(1 + x2

2 E(k)2)2

)

− 4Dd

∫
Γ∗∞

dkTr

(
1

1 + x2

2 E(k)2

)
Dd

∫
Γ∗∞

dkTr

(
1

(1 + x2

2 E(k)2)3

))
.

We can consider W̃E(·) as a continuous function on R≥0.

Lemma 2.7. For any r ∈ R>0

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

|WE(x, y) − W̃E(x)| = 0.

Proof. For E ∈ E(emin, emax) we define the functions F̃ (x), F̃ (y),

F̃ (xx), F̃ (xy), F̃ (yy)(∈ C(R≥0)) by

F̃ (x)(x) := Dd

∫
Γ∗∞

dkTr

(
1 − x2

2 E(k)2

(1 + x2

2 E(k)2)2

)
,

F̃ (y)(x) := −Dd
∫

Γ∗∞

dkTr

(
1

(1 + x2

2 E(k)2)2

)
,

F̃ (xx)(x) := Dd

∫
Γ∗∞

dkTr

(
x2

2 E(k)2(−3 + x2

2 E(k)2)

(1 + x2

2 E(k)2)3

)
,

F̃ (xy)(x) := Dd

∫
Γ∗∞

dkTr

(
3
2x

2E(k)2 − 1

(1 + x2

2 E(k)2)3

)
,

F̃ (yy)(x) := Dd

∫
Γ∗∞

dkTr

(
2

(1 + x2

2 E(k)2)3

)
.

By using (1.10), (1.11) we can prove that for any r ∈ R>0

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

|(y + 1)Fx(
√
y + 1x, y) − F̃ (x)(x)| = 0,

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

∣∣∣∣∣(y + 1)
3
2

x
Fy(

√
y + 1x, y) − F̃ (y)(x)

∣∣∣∣∣ = 0,
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lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

∣∣∣∣∣x(y + 1)
3
2

2
Fxx(

√
y + 1x, y) − F̃ (xx)(x)

∣∣∣∣∣ = 0,

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

|(y + 1)2Fxy(
√
y + 1x, y) − F̃ (xy)(x)| = 0,

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

∣∣∣∣∣(y + 1)
5
2

x
Fyy(

√
y + 1x, y) − F̃ (yy)(x)

∣∣∣∣∣ = 0.

Since

|F̃ (y)(x)| ≥ b

(1 + x2

2 e
2
max)

2

for any x ∈ R≥0 and E ∈ E(emin, emax), we can justify that for any r ∈ R>0

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

|WE(x, y) − ŴE(x)| = 0,

where

ŴE(x) :=
1√

2(F̃ (y)(x))3

(
(F̃ (x)(x))2F̃ (y)(x)(2.25)

+ 2
(
2F̃ (xx)(x)(F̃ (y)(x))2 − 2F̃ (x)(x)F̃ (y)(x)F̃ (xy)(x)

+ F̃ (yy)(x)(F̃ (x)(x))2
))
.

By setting

F̃n := Dd

∫
Γ∗∞

dkTr

(
1

(1 + x2

2 E(k)2)n

)
(n ∈ N)

we have that

F̃ (x)(x) = 2F̃2 − F̃1, F̃
(y)(x) = −F̃2, F̃

(xx)(x) = F̃1 − 5F̃2 + 4F̃3,

F̃ (xy)(x) = 3F̃2 − 4F̃3, F̃
(yy)(x) = 2F̃3.

By substituting these into the right-hand side of (2.25) we can derive that

ŴE(x) = W̃E(x) for x ∈ R≥0, which completes the proof. �
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Based on (2.23) and Lemma 2.7, we can partially achieve the goal.

Lemma 2.8. Let M(emin, emax) be the (emin, emax)-dependent constant

introduced in Lemma 2.2. Assume that

inf
x∈[0,M(emin,emax)]
E∈E(emin,emax)

W̃E(x) > 0.(2.26)

Then there exists U0 ∈ (0, emin
sinh(2)b ] such that for any U ∈ [−U0, 0), E ∈

E(emin, emax), β ∈ (0, βc) satisfying β ≤M(emin, emax)
√

1 + y(β)

d2τ

dβ2
(β) ≥

√
1 + y(β)

2β2
W̃E

(
β√

1 + y(β)

)
.

Proof. By Lemma 2.7 and the assumption there exists y0 ∈ (−1, 0)

such that for any x ∈ [0,M(emin, emax)], y ∈ (−1, y0], E ∈ E(emin, emax)

WE(x, y) ≥ 1

2
W̃E(x).(2.27)

By the 2nd inequality of Lemma 2.4 there exists U0 ∈ (0, emin
sinh(2)b ] such

that for any U ∈ [−U0, 0), E ∈ E(emin, emax), β ∈ (0, βc) y(β) ∈ (−1, y0].

Combination of this property with (2.23), (2.27) ensures the claim. �

It remains to prove (2.26). Observe that for E ∈ E(emin, emax), n ∈ N

Dd

∫
Γ∗∞

dkTr

(
1 +

x2

2
E(k)2

)−n

= (2π)−d
∫

[0,2π]d
dk̂Tr


1 +

x2

2
E


 d∑
j=1

k̂jv̂j




2


−n

= lim
N→∞

N−d
d∏
j=1


N−1∑
nj=0


Tr


1 +

x2

2
E


2π

N

d∑
j=1

njv̂j




2


−n

.

Moreover for any N ∈ N there exist M ∈ N, (sj)
M
j=1 ∈ R

M
>0 satisfying∑M

j=1 sj = 1, (ej)
M
j=1 ∈ R

M
>0 satisfying emin ≤ e1 < · · · < eM ≤ emax such
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that

N−d
d∏
j=1


N−1∑
nj=0


Tr


1 +

x2

2
E


2π

N

d∑
j=1

njv̂j




2


−n

= b

M∑
j=1

sj

(
1 +

x2

2
e2j

)−n
.

For conciseness let us set

X :=
x2

2
, S(M) :=


(sj)

M
j=1 ∈ R

M
>0

∣∣∣∣∣∣
M∑
j=1

sj = 1


 ,

A(M) := {(Aj)Mj=1 ∈ R
M
>0 | e2min ≤ A1 < · · · < AM ≤ e2max}

for M ∈ N and

Cn :=

M∑
j=1

sj(1 +XAj)
−n

for n ∈ N, (sj)
M
j=1 ∈ S(M), (Aj)

M
j=1 ∈ A(M). We do not indicate the

dependency of Cn onX, M , (sj)
M
j=1, (Aj)

M
j=1 for simplicity. By the definition

(2.24)

W̃E(x) ≥ inf
M∈N

inf
(sj)Mj=1∈S(M)

inf
(Aj)Mj=1∈A(M)

inf
X∈R≥0

C1√
2C3

2

(4C2
2 + C1C2 − 4C1C3)

(2.28)

for any x ∈ R≥0, E ∈ E(emin, emax). Thus it suffices to prove that the

right-hand side of (2.28) is positive. In fact we can prove the following.

Lemma 2.9. Assume that emin
emax

≥
√

9 − 4
√

5. Then there exists a pos-

itive constant c independent of any parameter such that

inf
M∈N

inf
(sj)Mj=1∈S(M)

inf
(Aj)Mj=1∈A(M)

inf
X∈R≥0

C1

C3
2

(4C2
2 + C1C2 − 4C1C3)

≥ c

((
emin
emax

)2

− 9 + 4
√

5

)2

.
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We need to construct tools to prove Lemma 2.9. To shorten subsequent

formulas, let us set

Bi :=
1

1 +AiX
,(2.29)

Di,j :=
1

2
(8B2

iB
2
j +BiB

2
j +B2

iBj − 4BiB
3
j − 4B3

iBj)(2.30)

for Ai, Aj ∈ R>0 and X ∈ R≥0. The following transformation of Di,j will

be useful. For any γ ∈ R

Di,j =
1

2
BiBj(2γ − (γ −Bi) − (γ −Bj) − 4(γ −Bi)

2 − 4(γ −Bj)
2(2.31)

+ 8(γ −Bi)(γ −Bj)).

Lemma 2.10. For any M ∈ N, (sj)
M
j=1 ∈ S(M), (Aj)

M
j=1 ∈ A(M),

X ∈ R≥0

4C2
2 + C1C2 − 4C1C3 = 〈(sj)Mj=1, (Di,j)1≤i,j≤M (sj)

M
j=1〉RM ,(2.32)

where 〈·, ·〉RM is the canonical inner product of R
M .

Proof. Observe that

4C2
2 + C1C2 − 4C1C3

=
M∑
i=1

M∑
j=1

sisj(4B
2
iB

2
j +BiB

2
j − 4BiB

3
j )

=
M∑
i=1

s2iB
3
i +

M∑
i=1

M∑
j=1

(1i<j + 1i>j)sisj(4B
2
iB

2
j +BiB

2
j − 4BiB

3
j )

=
M∑
i=1

s2iB
3
i +

M∑
i=1

M∑
j=1

1i<jsisj2Di,j =
M∑
i=1

s2iDi,i +
M∑
i=1

M∑
j=1

1i�=jsisjDi,j

= 〈(sj)Mj=1, (Di,j)1≤i,j≤M (sj)
M
j=1〉RM . �
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Let us prepare lemmas to find a lower bound on the right-hand side of

(2.32). We set for A1, A2 ∈ R>0

α(A1, A2) :=
A

1
3
1 +A

1
3
2

A
2
3
1A

2
3
2

.(2.33)

We begin with the next lemma from which the critical constant 9 − 4
√

5

originates.

Lemma 2.11. Assume that 0 < A1 < A2.

(i) The function X �→ B
1
2
1 − B

1
2
2 : R≥0 → R attains its maximum only at

X = α(A1, A2). Moreover,

(B
1
2
1 −B

1
2
2 )|X=α(A1,A2) =

1 − (A1/A2)
1
3√

1 + (A1/A2)
1
3 + (A1/A2)

2
3

.

(ii) The maximum value maxX∈R≥0
(B

1
2
1 − B

1
2
2 ) is strictly decreasing with

A1
A2

.

(iii) maxX∈R≥0
(B

1
2
1 −B

1
2
2 ) = 1

2 if and only if A1
A2

= 9 − 4
√

5.

Proof. (i): One can derive that

d

dX
(B

1
2
1 −B

1
2
2 )

= (A
1
3
2 −A

1
3
1 )

· A
2
3
2 (1 +A1X) +A

1
3
1A

1
3
2 (1 +A1X)

1
2 (1 +A2X)

1
2 +A

2
3
1 (1 +A2X)

2(1 +A1X)
3
2 (1 +A2X)

3
2 (A

1
3
2 (1 +A1X)

1
2 +A

1
3
1 (1 +A2X)

1
2 )

· (A
1
3
1 +A

1
3
2 −A

2
3
1A

2
3
2X).

The claim follows from the above equality. The maximum value can be

derived directly.

(ii): One can deduce the claim from (i).
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(iii): We can check that

1 − (A1/A2)
1
3√

1 + (A1/A2)
1
3 + (A1/A2)

2
3

=
1

2

if and only if A1
A2

= 9 − 4
√

5. Thus by (i) the claim holds true. �

We need to prove properties of Bi, Di,j more.

Lemma 2.12.

(i) For any A1, A2 ∈ R>0 satisfying A1 ≤ A2, X ∈ R≥0

D1,1 −D1,2 =
1

2
B1(B1 −B2)(2B1 +B2 + 4B2(B1 −B2)).

(ii) For any A1, A2 ∈ R>0 satisfying A1 ≤ A2, X ∈ R≥0

D1,1D2,2 −D2
1,2 =4B2

1B
2
2(B1 −B2)

2

(
B

1
2
1 +B

1
2
2 +

1

2

)(
B

1
2
1 −B

1
2
2 +

1

2

)

·
(

1

2
−B

1
2
1 +B

1
2
2

)(
B

1
2
1 +B

1
2
2 − 1

2

)
.

(iii) For any A1, A2, A3, A4 ∈ R>0 satisfying A1 < A2 ≤ A3 ≤ A4, X ∈
R>0

D1,1D2,3 −D1,2D1,3 ≥ B2B3(B1 −B2)(B1 −B3)

B2
4(B1 −B4)2

(D1,1D4,4 −D2
1,4).

(iv) Assume that 0 < A1 ≤ A2 and X ∈ R≥0.

D1,2 ≥ D2,2 if and only if B1 −B2 ≤ 3B1

2(2B1 + 1)
.

(v) Assume that 0 < A1 < A2 and X ∈ R>0.

D1,2 ≤ D2,2 if and only if B1 −B2 ≥ 3B1

2(2B1 + 1)
.
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(vi) Let A1, A2, · · · , AM ∈ R>0 satisfy A1 ≤ A2 ≤ · · · ≤ AM and X ∈
R≥0. If D1,M ≥ DM,M , then D1,m ≥ Dm,m ≥ DM,M for any m ∈
{1, 2, · · · ,M}.

(vii) Let A1, A2 ∈ R>0 satisfy A1 ≤ A2,
A1
A2

≥ 9 − 4
√

5 and X ∈ R≥0. If

D2,2 ≥ D1,2, there exists c ∈ R>0 independent of any parameter such

that

D1,1D2,2 −D2
1,2 ≥ cB2

1B
2
2(B1 −B2)

2

(
A1

A2
− 9 + 4

√
5

)2

.

Proof. (i), (ii): These can be derived from the definitions. The equal-

ity (2.31) with γ = B1 helps the derivations.

(iii): Observe that by using (2.31) with γ = B1 and the inequalities

B1 > B2 ≥ B3 ≥ B4

D1,1D2,3 −D1,2D1,3

=
1

4
B2

1B2B3(B1 −B2)(B1 −B3)

· (−1 + 16B1 − 4(B1 −B2) − 4(B1 −B3) − 16(B1 −B2)(B1 −B3))

≥ 1

4
B2

1B2B3(B1 −B2)(B1 −B3)

· (−1 + 16B1 − 8(B1 −B4) − 16(B1 −B4)
2)

=
B2B3(B1 −B2)(B1 −B3)

B2
4(B1 −B4)2

(D1,1D4,4 −D2
1,4).

(iv): When A1 = A2 or X = 0, the claim is obvious. Assume that

A1 < A2 and X > 0. Using (2.31) with γ = B1, we can see that D1,2 ≥ D2,2

if and only if (B1 +2B2)(B1−B2)−4B1(B1−B2)
2 ≥ 0. Since B1−B2 > 0,

this is equivalent to B1 + 2B2 − 4B1(B1 −B2) ≥ 0, or B1 −B2 ≤ 3B1
2(2B1+1) .

(v): The proof is parallel to the proof of (iv).

(vi): By the assumption and (iv) B1 − BM ≤ 3B1
2(2B1+1) , which implies

that B1 −Bm ≤ 3B1
2(2B1+1) for any m ∈ {1, 2, · · · ,M}. Again by (iv) D1,m ≥

Dm,m ≥ DM,M for any m ∈ {1, 2, · · · ,M}.
(vii): The claim is trivial when A1 = A2 or X = 0. Let us assume that

A1 < A2 and X > 0. By Lemma 2.11 (i)

1

2
− (B

1
2
1 −B

1
2
2 ) ≥ 1

2
− (B

1
2
1 −B

1
2
2 )|X=α(A1,A2)(2.34)
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=
3

2

√
1 + (A1/A2)

1
3 + (A1/A2)

2
3

· ((3 +
√

5)/2 − (A1/A2)
1
3 )((A1/A2)

1
3 − (3 −

√
5)/2)√

1 + (A1/A2)
1
3 + (A1/A2)

2
3 + 2(1 − (A1/A2)

1
3 )

≥ c

((
A1

A2

) 1
3

− 3 −
√

5

2

)

= c
A1/A2 − ((3 −

√
5)/2)3

(A1/A2)
2
3 + ((3 −

√
5)/2)(A1/A2)

1
3 + ((3 −

√
5)/2)2

≥ c

(
A1

A2
− 9 + 4

√
5

)
.

On the other hand, by (v) 2(2B1 + 1)(B1 −B2) ≥ 3B1, which implies that

4B2
1 ≥ 4B2

1 − 4B1B2 − 2B2 ≥ B1. Thus B1 ≥ 1
4 . Since the function

x �→ x
2x+1 : R≥0 → R is increasing,

B1 −B2 ≥ 3B1

2(2B1 + 1)
≥ 3x

2(2x+ 1)

∣∣∣∣
x= 1

4

=
1

4
.

By combining this inequality with Lemma 2.11 (i)

1

4
≤ (B

1
2
1 −B

1
2
2 )(B

1
2
1 +B

1
2
2 ) ≤ 1 − (A1/A2)

1
3√

1 + (A1/A2)
1
3 + (A1/A2)

2
3

(B
1
2
1 +B

1
2
2 ).

Therefore

B
1
2
1 +B

1
2
2 − 1

2

(2.35)

≥

√
1 + (A1/A2)

1
3 + (A1/A2)

2
3

4(1 − (A1/A2)
1
3 )

− 1

2

=
3((3 +

√
5)/2 − (A1/A2)

1
3 )((A1/A2)

1
3 − (3 −

√
5)/2)

4(1 − (A1/A2)
1
3 )
(√

1 + (A1/A2)
1
3 + (A1/A2)

2
3 + 2(1 − (A1/A2)

1
3 )
)
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≥ c

((
A1

A2

) 1
3

− 3 −
√

5

2

)
≥ c

(
A1

A2
− 9 + 4

√
5

)
.

By combining (2.34), (2.35) with the equality derived in (ii) we obtain the

claimed inequality. �

We also need the following basic lemma.

Lemma 2.13. Let M ∈ N≥2, a = (aj)
M
j=1, b = (bj)

M
j=1 ∈ R

M , a1 �= 0,

b1 = 0, bj > 0 (j = 2, · · · ,M). Then for any x = (xj)
M
j=1 ∈ R

M
≥0 satisfying∑M

j=1 xj = 1

〈a,x〉2RM + 〈b,x〉2RM ≥ min
j∈{2,3,··· ,M}

a2
1b

2
j

(aj − a1)2 + b2j
.

Proof. Let us define the function f : R
M−1
≥0 → R by

f(x2, · · · , xM ) :=


a1 +

M∑
j=2

(aj − a1)xj




2

+


 M∑
j=2

bjxj




2

.

The function f attains its global minimum. Indeed f(0) = a2
1, f(x) ≥ a2

1

for any x = (xj)
M
j=2 ∈ R

M−1
≥0 satisfying

∑M
j=2 bjxj ≥ |a1|. Thus a global

minimum point of f(·) exists in the compact set
(xj)

M
j=2 ∈ R

M−1
≥0

∣∣∣∣∣∣
M∑
j=2

bjxj ≤ |a1|


 .

Observe that for any x = (xj)
M
j=1 ∈ R

M
≥0 satisfying

∑M
j=1 xj = 1

〈a,x〉2RM + 〈b,x〉2RM = f(x2, · · · , xM ).

Thus it suffices to prove that for any M ∈ N≥2

min
x∈RM−1

≥0

f(x) ≥ min
j∈{2,3,··· ,M}

a2
1b

2
j

(aj − a1)2 + b2j
,(Ineq(M))
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∀a = (aj)
M
j=1, b = (bj)

M
j=1 ∈ R

M

satisfying a1 �= 0, b1 = 0, bj > 0 (j = 2, · · · ,M).

Let us prove (Ineq(M)) by induction with M . If M = 2,

f(x2) = ((a2 − a1)
2 + b22)

(
x2 +

a1(a2 − a1)

(a2 − a1)2 + b22

)2

+
a2

1b
2
2

(a2 − a1)2 + b22

≥ a2
1b

2
2

(a2 − a1)2 + b22

for any x2 ∈ R≥0. Thus (Ineq(2)) holds. Assume thatM ≥ 3 and (Ineq(M−
1)) holds. Let us consider the case that

aj − a1

bj
=
aM − a1

bM
, ∀j ∈ {2, 3, · · · ,M − 1}.

It follows that

f((xj)
M
j=2) =


a1 +

aM − a1

bM

M∑
j=2

bjxj




2

+


 M∑
j=2

bjxj




2

≥ min
x∈R≥0

((a1 + (aM − a1)x)
2 + (bMx)

2) ≥ a2
1b

2
M

(aM − a1)2 + b2M
.

In the last inequality we used (Ineq(2)). Thus the claimed inequality holds

in this case. Next we consider the case that there exists l ∈ {2, 3, · · · ,M −
1} such that al−a1

bl
�= aM−a1

bM
. Suppose that f(·) attains its minimum at

(x̂j)
M
j=2 ∈ R

M−1
>0 . Then for m ∈ {l,M}

1

bm

∂f

∂xm
((x̂j)

M
j=2) = 2

am − a1

bm


a1 +

M∑
j=2

(aj − a1)x̂j


 + 2

M∑
j=2

bj x̂j = 0.

Since al−a1
bl

�= aM−a1
bM

,
∑M
j=2 bj x̂j = 0, which is impossible. Thus f(·) attains

its global minimum in R
M−1
≥0 \RM−1

>0 . Using the induction hypothesis,

min
(xj)Mj=2∈R

M−1
≥0

f((xj)
M
j=2) = min

(xj)Mj=2∈R
M−1
≥0 \RM−1

>0

f((xj)
M
j=2)

= min
j∈{2,··· ,M}

min
(x2,··· ,xj−1,xj+1,··· ,xM )∈RM−2

≥0

f(x2, · · · , xj−1, 0, xj+1, · · · , xM )
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≥ min
j∈{2,··· ,M}

min
k∈{2,3,··· ,M}\{j}

a2
1b

2
k

(ak − a1)2 + b2k
= min
j∈{2,··· ,M}

a2
1b

2
j

(aj − a1)2 + b2j
.

Thus the claimed inequality holds in this case, too. Thus (Ineq(M)) holds.

By induction (Ineq(M)) holds for any M ∈ N≥2, which completes the

proof. �

With these tools we can find a lower bound on the right-hand side of

(2.32).

Lemma 2.14. Assume that emin
emax

≥
√

9 − 4
√

5. Then there exists c ∈
R>0 independent of any parameter such that

〈(sj)Mj=1, (Di,j)1≤i,j≤M (sj)
M
j=1〉RM ≥ cB3

M

(
A1

AM
− 9 + 4

√
5

)2

for any M ∈ N, (sj)
M
j=1 ∈ S(M), (Aj)

M
j=1 ∈ A(M) and X ∈ R≥0.

Proof. For M ∈ N, c ∈ R>0 we set the proposition

〈(sj)Mj=1, (Di,j)1≤i,j≤M (sj)
M
j=1〉RM ≥ cB3

M

(
A1

AM
− 9 + 4

√
5

)2

,

(Prop(M, c))

∀(sj)
M
j=1 ∈ S(M), (Aj)

M
j=1 ∈ A(M), X ∈ R≥0.

When M = 1,

〈(sj)Mj=1, (Di,j)1≤i,j≤M (sj)
M
j=1〉RM = D1,1 = B3

1 ≥ B3
M

(
A1

AM
− 9 + 4

√
5

)2

.

Thus (Prop(1, c)) holds for any c ∈ (0, 1]. Assume that M ≥ 2, c0 ∈ (0, 1]

and (Prop(M − 1, c0)) holds. We temporarily assume that A1
AM

> 9 − 4
√

5

and X > 0. First let us consider the case that D1,M ≥ DM,M . Lemma 2.12

(vi) ensures that D1,m ≥ DM,M for any m ∈ {1, · · · ,M}. By using this

inequality and the induction hypothesis

〈(sj)Mj=1, (Di,j)1≤i,j≤M (sj)
M
j=1〉RM

≥ 〈(sj)Mj=1,




DM,M · · · DM,M
... (Di,j)2≤i,j≤M

DM,M


 (sj)

M
j=1〉RM



Convexity of the Phase Boundary 47

= DM,M


s21 + 2

M∑
j=2

s1sj


 + 〈(sj)Mj=2, (Di,j)2≤i,j≤M (sj)

M
j=2〉RM−1

= DM,M


1 −


 M∑
j=2

sj




2


+


 M∑
j=2

sj




2

〈 1∑M
j=2 sj

(sj)
M
j=2, (Di,j)2≤i,j≤M

1∑M
j=2 sj

(sj)
M
j=2〉RM−1

≥ B3
M


1 −


 M∑
j=2

sj




2
 + c0B

3
M

(
A2

AM
− 9 + 4

√
5

)2

 M∑
j=2

sj




2

≥ c0B
3
M

(
A1

AM
− 9 + 4

√
5

)2

.

Next let us consider the case thatD1,M < DM,M . In the following c1 denotes

a generic positive constant independent of any parameter. By using Lemma

2.12 (iii), (vii), Lemma 2.13 and Lemma 2.12 (i) in this order

〈(sj)Mj=1, (Di,j)1≤i,j≤M (sj)
M
j=1〉RM

= D1,1s
2
1 + 2

M∑
j=2

D1,jsjs1 + 〈(sj)Mj=2, (Di,j)2≤i,j≤M (sj)
M
j=2〉RM−1

= D1,1s
2
1 + 2

M∑
j=2

D1,jsjs1 +
M∑
j=2

Dj,js
2
j + 2

M∑
l=2

M∑
m=2

1l<mDl,mslsm

=
1

D1,1

(
 M∑
j=1

D1,jsj




2

+

M∑
j=2

(D1,1Dj,j −D2
1,j)s

2
j

+ 2

M∑
l=2

M∑
m=2

1l<m(D1,1Dl,m −D1,lD1,m)slsm

)

≥ 1

D1,1

(
 M∑
j=1

D1,jsj




2

+
M∑
j=2

B2
j (B1 −Bj)

2

B2
M (B1 −BM )2

(D1,1DM,M −D2
1,M )s2j
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+ 2

M∑
l=2

M∑
m=2

1l<m
BlBm(B1 −Bl)(B1 −Bm)

B2
M (B1 −BM )2

(D1,1DM,M −D2
1,M )slsm

)

≥ c1
D1,1

(
 M∑
j=1

D1,jsj




2

+
M∑
j=2

B2
1B

2
j (B1 −Bj)

2

(
A1

AM
− 9 + 4

√
5

)2

s2j

+ 2
M∑
l=2

M∑
m=2

1l<mB
2
1BlBm(B1 −Bl)(B1 −Bm)

(
A1

AM
− 9 + 4

√
5

)2

slsm

)

=
c1
D1,1

(
〈(D1,j)

M
j=1, (sj)

M
j=1〉2RM

+ 〈
(
B1Bj(B1 −Bj)

(
A1

AM
− 9 + 4

√
5

))M
j=2

, (sj)
M
j=2〉2RM−1

)

≥ c1
D1,1

min
j∈{2,··· ,M}

D2
1,1B

2
1B

2
j (B1 −Bj)

2(A1/AM − 9 + 4
√

5)2

(D1,1 −D1,j)2 +B2
1B

2
j (B1 −Bj)2(A1/AM − 9 + 4

√
5)2

≥ c1 min
j∈{2,··· ,M}

D1,1B
2
1B

2
j (B1 −Bj)

2(A1/AM − 9 + 4
√

5)2

B4
1(B1 −Bj)2 +B2

1B
2
j (B1 −Bj)2(A1/AM − 9 + 4

√
5)2

≥ c1B
3
M

(
A1

AM
− 9 + 4

√
5

)2

.

Here we remark that we used the assumptions A1
AM

> 9 − 4
√

5 and X > 0

to apply Lemma 2.12 (iii), Lemma 2.13. Thus

〈(sj)Mj=1, (Di,j)1≤i,j≤M (sj)
M
j=1〉RM ≥ min{c0, c1}B3

M

(
A1

AM
− 9 + 4

√
5

)2

for any (sj)
M
j=1 ∈ S(M), (Aj)

M
j=1 ∈ A(M) satisfying A1

AM
> 9 − 4

√
5 and

X ∈ R>0. Since the both sides of the above inequality are continuous with

A1, AM , X, (Prop(M, min{c0, c1})) holds by taking the limit. It follows

that if (Prop(M − 1,min{1, c1})) holds, then (Prop(M,min{1, c1})) holds.

By induction with M (Prop(M,min{1, c1})) holds for any M ∈ N. The

proof is complete. �

We are ready to prove Lemma 2.9.



Convexity of the Phase Boundary 49

Proof of Lemma 2.9. By Lemma 2.10 and Lemma 2.14

C1

C3
2

(4C2
2 + C1C2 − 4C1C3) ≥ c

C1

C3
2

B3
M

(
A1

AM
− 9 + 4

√
5

)2

≥ c
B4
M

B6
1

((
emin
emax

)2

− 9 + 4
√

5

)2

≥ c inf
X∈R≥0

(
1 +A1X

1 +AMX

)6
((

emin
emax

)2

− 9 + 4
√

5

)2

= c

(
A1

AM

)6
((

emin
emax

)2

− 9 + 4
√

5

)2

≥ c(9 − 4
√

5)6

((
emin
emax

)2

− 9 + 4
√

5

)2

. �

Here we can prove the positivity of d
2τ
dβ2 (β) for small β as follows.

Lemma 2.15. Assume that emin
emax

>
√

9 − 4
√

5. Let M(emin, emax) ∈
R>0 be that introduced in Lemma 2.2. Then there exist c ∈ R>0 independent

of any parameter and U0 ∈ (0, emin
sinh(2)b ] such that for any U ∈ [−U0, 0),

E ∈ E(emin, emax), β ∈ (0, βc) satisfying β ≤M(emin, emax)
√

1 + y(β)

d2τ

dβ2
(β) ≥ c

√
1 + y(β)

β2

((
emin
emax

)2

− 9 + 4
√

5

)2

.

Proof. Combination of Lemma 2.8, (2.28) and Lemma 2.9 yields the

result. Here we remark that the condition emin
emax

>
√

9 − 4
√

5 is necessary

to ensure that (2.26) holds. �

Lemma 2.5 and Lemma 2.15 imply the following.

Corollary 2.16. Assume that emin
emax

>
√

9 − 4
√

5. Then there exists

U0 ∈ (0, emin
sinh(2)b ] such that for any U ∈ [−U0, 0) and E ∈ E(emin, emax)

lim
β↘0

d2τ

dβ2
(β) = +∞.
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Finally we achieve the goal of this section.

Proof of Proposition 1.6. The claim follows from Lemma 2.2,

Corollary 2.3, Lemma 2.15 and Corollary 2.16. �

3. Non-Convexity of the Phase Boundary: Non-Critical Case

In this section we prove Proposition 1.7. Our proof is based on the

relation (2.23) and Lemma 2.7. It is essential to find E ∈ E(emin, emax) such

that the function W̃E(·) takes a negative value. We begin by constructing

basic properties which we need to analyze the function W̃E(·). Let us recall

the notations (2.29), (2.30), (2.33). Here we add more properties of Di,j .

Lemma 3.1. Let A1, A2 ∈ R>0 satisfy A1 ≤ A2.

(i) Assume that A1
A2

≤ 9 − 4
√

5. Then D1,2|X=α(A1,A2) < 0.

(ii) Assume that A1
A2

< 9 − 4
√

5. Then

(D1,1D2,2 −D2
1,2)|X=α(A1,A2) < 0.

(iii) Assume that A1
A2

< 9 − 4
√

5. Set

s1 :=
|D1,2|

D1,1 + |D1,2|

∣∣∣∣
X=α(A1,A2)

, s2 :=
D1,1

D1,1 + |D1,2|

∣∣∣∣
X=α(A1,A2)

.

Then s1, s2 ∈ (0, 1), s1 + s2 = 1 and

〈(sj)2j=1, (Di,j)1≤i,j≤2|X=α(A1,A2)(sj)
2
j=1〉R2 < 0.

Proof. (i): By the assumption Lemma 2.11 implies that

(B
1
2
1 −B

1
2
2 )|X=α(A1,A2) = max

X∈R≥0

(B
1
2
1 −B

1
2
2 ) ≥ 1

2
.

We can deduce from (2.31) for D1,2, γ = B2 that D1,2 < 0 if and only if

B1 > B2 + 1
8(1 +

√
1 + 32B2). If B

1
2
1 −B

1
2
2 ≥ 1

2 ,

B1 ≥ B2 +B
1
2
2 +

1

4
> B2 +

1

8
(1 +

√
1 + 32B2),
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and thus the claim holds.

(ii): By the assumption and Lemma 2.11 1
2 − (B

1
2
1 −B

1
2
2 )|X=α(A1,A2) < 0,

and thus B
1
2
1 |X=α(A1,A2) >

1
2 . By combining these inequalities with Lemma

2.12 (ii) we can derive the claimed inequality.

(iii): By (i) s1, s2 ∈ (0, 1) and s1 + s2 = 1. Observe that

〈(sj)2j=1, (Di,j)1≤i,j≤2|X=α(A1,A2)(sj)
2
j=1〉R2

(3.1)

=
1

D1,1
(D1,1s1 +D1,2s2)

2

∣∣∣∣
X=α(A1,A2)

+
s22
D1,1

(D1,1D2,2 −D2
1,2)

∣∣∣∣
X=α(A1,A2)

.

By (i) and the definition of s1, s2 the 1st term of the right-hand side of (3.1)

vanishes. By (ii) the 2nd term of the right-hand side of (3.1) is negative,

which concludes the proof. �

We will use the next lemma in the proof of Proposition 1.7.

Lemma 3.2. Set

x0 :=

√√√√√2
e

2
3
min + e

2
3
max

e
4
3
mine

4
3
max

.(3.2)

For any E ∈ E(emin, emax) there exists U0 ∈ (0, 2emin
b ) such that the follow-

ing statement holds. For any U ∈ [−U0, 0) there exists Y ∈ (−1, 0) such

that
√

1 + Y x0 ∈ (0, βc) and y(
√

1 + Y x0) = Y , where y(β) := cos( τ(β)
2 ) for

β ∈ (0, βc).

Proof. According to Lemma 1.1,

βc ≤
2

emin
tanh−1

(
b|U |
2emin

)
, ∀U ∈

(
−2emin

b
, 0

)
.

Thus there exists U0 ∈ (0, 2emin
b ) such that βc < x0 for any U ∈ [−U0, 0).

Fix U ∈ [−U0, 0). Since limβ↗βc
√

1 + y(β)/β = 0 by Lemma 1.2 (ii), there

exists η ∈ R>0 such that
√

1 + y(β) ≤ β
x0

for any β ∈ [βc − η, βc). Since
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βc < x0, there exists Ỹ ∈ (−1, 0) such that
√

1 + Ỹ x0 ∈ [βc − η, βc). It

follows that

√
1 + y

(√
1 + Ỹ x0

)
≤

√
1 + Ỹ x0

x0
=

√
1 + Ỹ ,

or

y
(√

1 + Ỹ x0

)
≤ Ỹ .(3.3)

On the other hand, by Lemma 2.5 limβ↘0 β
2/(1 + y(β)) = 0. Thus

limY↘−1(1+Y )/(1+y(
√

1 + Y x0)) = 0. Therefore there exists Ŷ ∈ (−1, Ỹ )

such that 1 + Ŷ < 1 + y(
√

1 + Ŷ x0) or

Ŷ < y
(√

1 + Ŷ x0

)
.(3.4)

By (3.3), (3.4) and the continuity of y(·) there exists Y ∈ (Ŷ , Ỹ ] such that√
1 + Y x0 ∈ (0, βc) and Y = y(

√
1 + Y x0). �

We need to construct E ∈ E(emin, emax) for which τ(·) is non-convex. As

mentioned at the beginning of the section, we must show that W̃E(·) takes

a negative value. We achieve this as follows. First we find a matrix-valued

discontinuous function E∞ : Γ∗
∞ → Mat(b,C) such that W̃E∞(·) takes a

negative value. Then we approximate E∞ by some E ∈ E(emin, emax) so

that W̃E(·) has the desired property.

Remark 3.3. One question we expect here is why we do not try to es-

tablish the same theorem without assuming the smoothness of one-particle

Hamiltonian matrix E if such an example is found in a non-smooth class.

This is because we cannot justify the derivation of our gap equation if we

allow one-particle Hamiltonian matrix to be discontinuous. Polynomial de-

cay property of the free propagator with the spatial variables, which is

guaranteed by smoothness of one-particle Hamiltonian matrix with the mo-

mentum variables, is essential in the derivation of the infinite-volume limit

[13, Theorem 1.3] via multi-scale analysis. However, it is possible to reduce

the smoothness condition to some continuous differentiability condition to

derive the infinite-volume limit as claimed in [13, Theorem 1.3]. We assume

the smoothness condition throughout for simplicity.
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In the following until the proof of Proposition 1.7 we assume that emin
emax

≤√
9 − 4

√
5. Similarly to the definition in Lemma 3.1 (iii), we set

s1 :=
|D1,2|

D1,1 + |D1,2|

∣∣∣∣A1=e2
min

,A2=e2max,

X=α(A1,A2)

, s2 := 1 − s1.(3.5)

By Lemma 3.1 (i) s1, s2 ∈ (0, 1). Let us define the function Φ∞ : R
d → R

by

Φ∞(x1, · · · , xd) :=

{
emax if |xj − π| < πs

1
d
2 for all j ∈ {1, · · · , d},

emin otherwise.

Then we define E∞ : Γ∗
∞ → Mat(b,C) by E∞(k) := Φ∞((v̂1, · · · , v̂d)−1k)Ib.

Observe that for any continuous function f : R\{0} → C

Dd

∫
Γ∗∞

dkTr f(E∞(k)) = b(s1f(emin) + s2f(emax)).(3.6)

In the following we construct {Ep}p∈R>0 ⊂ E(emin, emax) such that Ep ap-

proximates E∞ as p → ∞. Define the function φp ∈ C∞(R) (p ∈ R>0)

by

φp(x) :=


 exp

(
1

(πs
1/d
2 )−2p((x−π)2)p−1

+ 1

)
if |x− π| < πs

1
d
2 ,

0 otherwise.

Then we define Φp ∈ C∞(Rd) (p ∈ R>0) by

Φp(x1, · · · , xd) := (emax − emin)

d∏
j=1

φp(xj) + emin.

Then we define Êp : Γ∗
∞ → Mat(b,C) by Êp(k) := Φp((v̂1, · · · , v̂d)−1k)Ib.

Finally we define Ep : R
d → Mat(b,C) (p ∈ R>0) by Ep(k) := Êp(k̂), where

k̂ ∈ {(v̂1, · · · , v̂d)k̃ | k̃ ∈ [0, 2π)d} and k = k̂ +
∑d
j=1 2πmjv̂j for some

(mj)
d
j=1 ∈ Z

d.

Lemma 3.4. The following statements hold true.

(i) {Ep}p∈R>0 ⊂ E(emin, emax).
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(ii) For any continuous function f : R\{0} → C

lim
p→∞

Dd

∫
Γ∗∞

dkTr f(Ep(k)) = Dd

∫
Γ∗∞

dkTr f(E∞(k)).

Remark 3.5. We have already proved similar lemmas [13, Lemma

A.1], [14, Lemma 2.9]. Though the previously constructed families of

E(emin, emax) are different from {Ep}p∈R>0 , these lemmas are essentially ap-

plicable to prove Proposition 1.7 and Proposition 1.8. We present Lemma

3.4 in the belief that the construction of {Ep}p∈R>0 is simpler and more

suited for our present purposes. Also, containing all the necessary lemmas

must be convenient for the readers.

Proof of Lemma 3.4. (i): We only check the property (1.9), as the

other properties apparently hold. Take any k ∈ R
d. There exist (k̃j)

d
j=1 ∈

[0, 2π)d, (mj)
d
j=1 ∈ Z

d such that k =
∑d
j=1 k̃jv̂j +

∑d
j=1 2πmjv̂j . Observe

that

Ep(−k) = Ep


 d∑
j=1

(2π − k̃j)v̂j


 = Φp(2π − k̃1, · · · , 2π − k̃d)Ib

= Φp(k̃1, · · · , k̃d)Ib = Ep(k).

Here we used that φp(2π − k) = φp(k) for any k ∈ R. Therefore (1.9) is

satisfied.

(ii): Let f : R\{0} → C be a continuous function. For any k ∈ Γ∗
∞

there exists (k̃j)
d
j=1 ∈ [0, 2π]d such that k =

∑d
j=1 k̃jv̂j . Since

limp→∞ Φp(k̃1, · · · , k̃d) = Φ∞(k̃1, · · · , k̃d),

lim
p→∞

Tr f(Ep(k)) = b lim
p→∞

f(Φp(k̃1, · · · , k̃d)) = bf(Φ∞(k̃1, · · · , k̃d))(3.7)

= Tr f(E∞(k)).

Also

|Tr f(Ep(k))| ≤ b sup
x∈[emin,emax]

|f(x)|(3.8)

for any p ∈ R>0. By (3.7), (3.8) one can apply the dominated convergence

theorem in L1(Γ∗
∞) to ensure the claimed convergence. �
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Here we can prove Proposition 1.7.

Proof of Proposition 1.7. Assume that emin
emax

<
√

9 − 4
√

5. We

define {Ep}p∈R>0 ⊂ E(emin, emax), E∞ : Γ∗
∞ → Mat(b,C) as we did in

front of Lemma 3.4. Though we originally defined the function W̃E(·) for

E ∈ E(emin, emax), we can define W̃E∞(·) by replacing E by E∞ in (2.24).

Recalling the notational rule given in front of Lemma 2.9 and (3.6), we see

that with A1 := e2min, A2 := e2max, M = 2

W̃E∞(x) =
C1√
2C3

2

(4C2
2 + C1C2 − 4C1C3).

Moreover by Lemma 2.10

W̃E∞(x) =
C1√
2C3

2

〈(sj)2j=1, (Di,j)1≤i,j≤2(sj)
2
j=1〉R2 .

We define x0 by (3.2). Since X =
x2
0
2 = α(A1, A2) and A1

A2
< 9 − 4

√
5,

Lemma 3.1 (iii) guarantees that

W̃E∞(x0) < 0.(3.9)

We can apply Lemma 3.4 (ii) to deduce from (3.9) that there exists p ∈ R>0

such that W̃Ep(x0) < 0. Moreover, by Lemma 2.7 there exists y0 ∈ (−1, 0)

such that

WEp(x0, y) < 0, ∀y ∈ (−1, y0].(3.10)

By the 2nd inequality of Lemma 2.4 for Ep there exists U0 ∈ (0, 2emin
b ) such

that y(β) ∈ (−1, y0] for all U ∈ [−U0, 0), β ∈ (0, βc). Lemma 3.2 ensures

that by taking U0 smaller if necessary for any U ∈ [−U0, 0) there exists

Y ∈ (−1, 0) such that
√

1 + Y x0 ∈ (0, βc) and y(
√

1 + Y x0) = Y ∈ (−1, y0].

Set β′ :=
√

1 + Y x0. It follows that y(β′) ∈ (−1, y0] and

WEp(x0, Y ) = WEp

(
β′

√
1 + Y

, Y

)
= WEp

(
β′√

1 + y(β′)
, y(β′)

)
.

Thus by (3.10)

WEp

(
β′√

1 + y(β′)
, y(β′)

)
< 0,

which combined with (2.23) implies that d2τ
dβ2 (β′) < 0. This concludes the

proof. �
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4. Non-Convexity of the Phase Boundary: Critical Case

In this section we prove Proposition 1.8. We assume that emin
emax

=√
9 − 4

√
5 throughout this section. We want to show non-convexity of τ(·),

which is the same goal as in Section 3. However, there is an essential dif-

ference from the previous construction. In the present case by (2.28) and

Lemma 2.9 W̃E(x) is non-negative for any x ∈ R≥0, E ∈ E(emin, emax). This

means that the same argument as in Section 3 does not lead to the claimed

result. Interestingly it will turn out that WE∞(x0, y) < 0 for y ∈ (−1, 0)

sufficiently close to −1. Based on this property and (2.23), we can choose

E ∈ E(emin, emax) so that τ(·) is non-convex. The proof of the negativity

of WE∞(x0, y) is the most technical part in this paper. It requires exact

computation of the limit

lim
y↘−1

∂jWE∞

∂yj
(x0, y)

for j = 0, 1, 2. We will perform the computation separately in Subsec-

tion 4.2.

4.1. Proof of the proposition

Let the family {Ep}p∈R>0 ⊂ E(emin, emax) and E∞ : Γ∗
∞ → Mat(b,C) be

those constructed in front of Lemma 3.4. We have to prove in advance that

various objects depending on Ep converge as p→ ∞. Let the functions F p,

F∞ : R>0 × (−1, 0) → R be defined by (2.1) with E = Ep, E∞ respectively.

The equality (3.6) ensures the well-definedness of F∞. We define WE∞ :

R>0 × (−1, 0) → R by (2.22) with E = E∞. It is well-defined despite that

E∞ /∈ E(emin, emax). First we prove that WEp converges to WE∞ .

Lemma 4.1. For any closed bounded intervals J ⊂ R>0, K ⊂ (−1, 0)

lim
p→∞

sup
x∈J
y∈K

|WEp(x, y) −WE∞(x, y)| = 0.

Proof. Let F pa , F∞
a (a = x, y, xx, xy, yy) denote partial derivatives of

the functions F p, F∞. Recalling the explicit forms (2.4), (2.5), (2.6), (2.7),
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(2.8), we can apply the dominated convergence theorem in L1(Γ∗
∞) to prove

that

lim
p→∞

sup
x∈J
y∈K

|F pa (
√
y + 1x, y) − F∞

a (
√
y + 1x, y)| = 0

for a = x, y, xx, xy, yy, which implies the claimed convergence property. �

We can define the function gE∞ : R>0 × R × R → R by (1.12) with

E = E∞. For Ep ∈ E(emin, emax) (p ∈ R>0) we write βc(p), τ(β, p) in place

of βc, τ(β) in order to indicate the dependency on the parameter p. The

following lemma shows convergent properties of βc(p), τ(β, p) as p→ ∞.

Lemma 4.2. Assume that U ∈ (−2emin
b , 0). Then the following state-

ments hold.

(i) There uniquely exists

βc,∞ ∈
(

0,
2

emin
tanh−1

(
b|U |
2emin

)]

such that gE∞(βc,∞, 2π, 0) = 0. Moreover limp→∞ βc(p) = βc,∞.

(ii) For any β ∈ (0, βc,∞) there uniquely exists τ∞(β) ∈ (π, 2π) such that

gE∞ (β, τ∞(β), 0) = 0. Moreover the function β �→ τ∞(β) : (0, βc,∞) →
R is real analytic and

lim
p→∞

τ(β, p) = τ∞(β), ∀β ∈ (0, βc,∞),(4.1)

lim
β↘0

β√
1 + cos(τ∞(β)/2)

= 0,(4.2)

lim
β↗βc,∞

τ∞(β) = 2π.(4.3)

Remark 4.3. By (i) for any β ∈ (0, βc,∞) there exists p0 ∈ R>0 such

that β ∈ (0, βc(p)) for any p ≥ p0. In (ii) we consider limp→∞ τ(β, p) as

limp→∞,p≥p0 τ(β, p).

Proof of Lemma 4.2. (i): The unique existence of βc,∞ satisfying the

claimed properties except for the convergent property is proved by the same
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argument as the proof of Lemma 1.1. To prove the convergent property,

suppose that limsupp→∞ βc(p) > βc,∞. There exists ε ∈ R>0 such that for

any p1 ∈ R>0 supp≥p1 βc(p) ≥ βc,∞ + ε. Take any p1 ∈ R>0. There exists

q ∈ [p1,∞) such that βc(q) ≥ βc,∞ + ε
2 . It follows that

0 = gEq(βc(q), 2π, 0) = − 2

|U | +Dd

∫
Γ∗∞

dkTr

(
1

tanh(βc(q)2 Eq(k))Eq(k)

)

≤ − 2

|U | +Dd

∫
Γ∗∞

dkTr

(
1

tanh(
βc,∞+ε/2

2 Eq(k))Eq(k)

)

≤ − 2

|U | + sup
p≥p1

Dd

∫
Γ∗∞

dkTr

(
1

tanh(
βc,∞+ε/2

2 Ep(k))Ep(k)

)
.

By Lemma 3.4 (ii)

0 ≤ − 2

|U | + limsup
p→∞

Dd

∫
Γ∗∞

dkTr

(
1

tanh(
βc,∞+ε/2

2 Ep(k))Ep(k)

)

= − 2

|U | +Dd

∫
Γ∗∞

dkTr

(
1

tanh(
βc,∞+ε/2

2 E∞(k))E∞(k)

)

< − 2

|U | +Dd

∫
Γ∗∞

dkTr

(
1

tanh(
βc,∞

2 E∞(k))E∞(k)

)

= gE∞(βc,∞, 2π, 0) = 0,

which is a contradiction. Thus limsupp→∞ βc(p) ≤ βc,∞. Suppose that

liminfp→∞ βc(p) < βc,∞. There exists ε′ ∈ R>0 such that for any p2 ∈ R>0

infp≥p2 βc(p) ≤ βc,∞−ε′. Take any p2 ∈ R>0. There exists q′ ∈ [p2,∞) such

that βc(q
′) ≤ βc,∞ − ε′

2 . Observe that

0 = gEq′ (βc(q
′), 2π, 0) ≥ gEq′

(
βc,∞ − ε′

2
, 2π, 0

)

≥ inf
p≥p2

gEp

(
βc,∞ − ε′

2
, 2π, 0

)
.

Lemma 3.4 (ii) ensures that

0 ≥ liminf
p→∞

gEp

(
βc,∞ − ε′

2
, 2π, 0

)
= gE∞

(
βc,∞ − ε′

2
, 2π, 0

)
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> gE∞(βc,∞, 2π, 0) = 0,

which is again a contradiction. Therefore liminfp→∞ βc(p) ≥ βc,∞. Sum-

ming up, we obtain that limsupp→∞ βc(p) ≤ βc,∞ ≤ liminfp→∞ βc(p), which

implies the claimed convergence.

(ii): The same argument as the proof of Lemma 1.1 (iii) shows the unique

existence of τ∞(β) ∈ (π, 2π). Since (β, t) �→ gE∞(β, t, 0) : R>0 × R →
R is real analytic and

∂gE∞
∂t (β, τ∞(β), 0) �= 0 for all β ∈ (0, βc,∞), the

real analytic implicit function theorem (e.g. [15, Theorem 2.3.5]) ensures

that τ∞(·) is real analytic in (0, βc,∞). Take any β ∈ (0, βc,∞). Since

limp→∞ βc(p) = βc,∞, there exists p3 ∈ R>0 such that β ∈ (0, βc(p)) for any

p ≥ p3. Let us set

y(β, p) := cos

(
τ(β, p)

2

)
(p ≥ p3), y∞(β) := cos

(
τ∞(β)

2

)

for simplicity. Suppose that limsupp→∞ y(β, p) > y∞(β). There exists ε̂ ∈
R>0 such that supp≥p4 y(β, p) ≥ y∞(β) + ε̂ for any p4 ∈ [p3,∞). Take any

p4 ∈ [p3,∞). There exists q̂ ∈ [p4,∞) such that y(β, q̂) ≥ y∞(β) + ε̂
2 . It

follows that

0 = gEq̂
(β, τ(β, q̂), 0) ≤ − 2

|U | + F q̂
(
β, y∞(β) +

ε̂

2

)

≤ − 2

|U | + sup
p≥p4

F p
(
β, y∞(β) +

ε̂

2

)
.

By arbitrariness of p4 and Lemma 3.4 (ii)

0 ≤ − 2

|U | + limsup
p→∞

F p
(
β, y∞(β) +

ε̂

2

)
= − 2

|U | + F∞
(
β, y∞(β) +

ε̂

2

)
< gE∞(β, τ∞(β), 0) = 0,

which is a contradiction. Thus limsupp→∞ y(β, p) ≤ y∞(β). Suppose

that liminfp→∞ y(β, p) < y∞(β). There exists ε̃ ∈ R>0 such that infp≥p5
y(β, p) ≤ y∞(β) − ε̃ for any p5 ∈ [p3,∞). Take any p5 ∈ [p3,∞). There

exists q̃ ∈ [p5,∞) such that y(β, q̃) ≤ y∞(β) − ε̃
2 . Observe that

0 = gEq̃(β, τ(β, q̃), 0) ≥ − 2

|U | + F q̃
(
β, y∞(β) − ε̃

2

)



60 Yohei Kashima

≥ − 2

|U | + inf
p≥p5

F p
(
β, y∞(β) − ε̃

2

)
.

Since p5 is arbitrary, Lemma 3.4 (ii) ensures that

0 ≥ − 2

|U | + liminf
p→∞

F p
(
β, y∞(β) − ε̃

2

)
= − 2

|U | + F∞
(
β, y∞(β) − ε̃

2

)
> gE∞(β, τ∞(β), 0) = 0,

which is again a contradiction. Thus liminfp→∞ y(β, p) ≥ y∞(β). We ob-

tained that

limsup
p→∞

y(β, p) ≤ y∞(β) ≤ liminf
p→∞

y(β, p),

which implies that limp→∞ y(β, p) = y∞(β). Thus (4.1) holds.

The property (4.2) can be proved by exactly the same argument as

the proof of Lemma 2.5. The property (4.3) can be shown in the same

way as [13, Lemma 2.2 (ii)]. However, we provide the proof of (4.3) for

completeness. Suppose that liminfβ↗βc,∞ τ∞(β) < 2π. Then there exists

ε0 ∈ R>0 such that for any β̃ ∈ (0, βc,∞) infβ∈[β̃,βc,∞) τ∞(β) ≤ 2π−ε0. Take

any β̃ ∈ (0, βc,∞). There exists β′ ∈ [β̃, βc,∞) such that τ∞(β′) ≤ 2π − ε0
2 ,

which implies that

0 = gE∞(β′, τ∞(β′), 0) ≤ gE∞

(
β′, 2π − ε0

2
, 0

)
≤ sup
β∈[β̃,βc,∞)

gE∞

(
β, 2π − ε0

2
, 0

)
.

Since β̃ is arbitrary,

0 ≤ limsup
β↗βc,∞

gE∞

(
β, 2π − ε0

2
, 0

)
= gE∞

(
βc,∞, 2π − ε0

2
, 0

)
< gE∞(βc,∞, 2π, 0) = 0,

which is a contradiction. Therefore liminfβ↗βc,∞ τ∞(β) ≥ 2π. Since

limsupβ↗βc,∞ τ∞(β) ≤ 2π, (4.3) holds. �

In the following let x0 be that defined in (3.2), βc,∞ be that introduced

in Lemma 4.2 (i) and y∞(β) := cos( τ∞(β)
2 ) (β ∈ (0, βc,∞)) with τ∞(·) intro-

duced in Lemma 4.2 (ii). We need to prepare an analogue of Lemma 3.2

with E∞.
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Lemma 4.4. There exists U0 ∈ (0, 2emin
b ) such that the following state-

ment holds. For any U ∈ [−U0, 0) there exists Y ∈ (−1, 0) such that√
1 + Y x0 ∈ (0, βc,∞) and y∞(

√
1 + Y x0) = Y .

Proof. By using (4.2), (4.3) in place of Lemma 2.5, Lemma 1.2 (ii)

respectively we can repeat an argument parallel to the proof of Lemma 3.2

to prove the statement. �

Proving the next lemma is the most complicated in this paper.

Lemma 4.5. Assume that emin
emax

=
√

9 − 4
√

5. Then there exists y0 ∈
(−1, 0) such that WE∞(x0, y) < 0 for any y ∈ (−1, y0].

Let us postpone the proof of the above lemma and show Proposition 1.8

here.

Proof of Proposition 1.8. Let y0 ∈ (−1, 0) be that introduced in

Lemma 4.5. For any U ∈ [− emin
sinh(2)b , 0), β ∈ (0, βc,∞) the same inequality

as the 2nd inequality of Lemma 2.4 holds with y∞(β) in place of y(β). It

follows that there exists U0 ∈ (0, 2emin
b ) such that y∞(β) ∈ (−1, y0] for any

U ∈ [−U0, 0), β ∈ (0, βc,∞). By choosing U0 smaller if necessary we can

apply Lemma 4.4 to ensure that for any U ∈ [−U0, 0) there exists Y ∈
(−1, 0) such that

√
1 + Y x0 ∈ (0, βc,∞) and y∞(

√
1 + Y x0) = Y ∈ (−1, y0].

Let us fix U ∈ [−U0, 0). Set β′ :=
√

1 + Y x0. Recalling the conclusion of

Lemma 4.5,

0 > WE∞(x0, Y ) = WE∞

(
β′

√
1 + Y

, Y

)
= WE∞

(
β′√

1 + y∞(β′)
, y∞(β′)

)
.

(4.4)

By Lemma 4.2 (i) β′ ∈ (0, βc(p)) for any sufficiently large p ∈ R>0. Moreover

by Lemma 4.2 (ii)

lim
p→∞

y(β′, p) = y∞(β′),(4.5)

where y(β, p) := cos( τ(β,p)2 ) for β ∈ (0, βc(p)). We can deduce from Lemma

4.1 and (4.5) that

lim
p→∞

WEp

(
β′√

1 + y(β′, p)
, y(β′, p)

)
= WE∞

(
β′√

1 + y∞(β′)
, y∞(β′)

)
.
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This coupled with (4.4) implies that there exists p ∈ R>0 such that β′ ∈
(0, βc(p)) and

0 > WEp

(
β′√

1 + y(β′, p)
, y(β′, p)

)
.

Finally the above inequality and (2.23) ensure that d2τ
dβ2 (β′) < 0 for E = Ep.

This concludes the proof. �

4.2. Negativity of the core function

It remains to prove Lemma 4.5. More strongly we will prove the next

lemma, which implies Lemma 4.5.

Lemma 4.6. Assume that emin
emax

=
√

9 − 4
√

5. The function

WE∞(x0, ·) : (−1, 0) → R can be continued into a neighborhood of y = −1

in R as a real analytic function. If we let WE∞(x0, ·) denote the continued

function as well,

WE∞(x0,−1) = 0,
∂WE∞

∂y
(x0,−1) = 0,

1

2
· ∂

2WE∞

∂y2
(x0,−1) = −

√
2 · 53

22 · 32
.

Remark 4.7. At present deducing from Lemma 4.6 is the only way

to prove Lemma 4.5. We show Lemma 4.6 by long calculations, though we

organize the process as much as possible. Since these derivatives eventually

take simple values, there may be a nice mathematical structure leading to

a substantially simpler proof. However, we are unable to reveal it. In the

following we should keep in mind that any single miscalculation ruins the

proof of Lemma 4.6. We add that based on (3.6), (4.6), it is straightforward

to write a code to compute the low order terms of WE∞(x0, ·) numerically

in PC.

Recall that the partial derivatives of the function F∞ : R>0 × (−1, 0) →
R can be characterized as in (2.4), (2.5), (2.6), (2.7), (2.8). Moreover,

WE∞ can be written with the partial derivatives of F∞ as in (2.22). To

shorten subsequent formulas, we define the functions Gx, Gy, Gxx, Gxy,

Gyy : (−1, 0) → R by

Gx(y) := (y + 1)F∞
x (

√
y + 1x0, y), Gy(y) :=

(y + 1)
3
2

x0
F∞
y (

√
y + 1x0, y),
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Gxx(y) :=
x0

2
(y + 1)

3
2F∞

xx(
√
y + 1x0, y),

Gxy(y) := (y + 1)2F∞
xy (

√
y + 1x0, y),

Gyy(y) :=
(y + 1)

5
2

x0
F∞
yy (

√
y + 1x0, y).

We can see from (2.22) that

WE∞(x0, y) =
2

(1 − y)
3
2Gy(y)3

(
− yGx(y)

2Gy(y)

(4.6)

+ (1 − y)(2Gxx(y)Gy(y)
2 − 2Gx(y)Gy(y)Gxy(y) +Gyy(y)Gx(y)

2)
)
.

Moreover we set for m,n ∈ N ∪ {0}

Cm,n := Dd

∫
Γ∗∞

dkTr

(
(
x2
0
2 E∞(k)2)m

(1 +
x2
0
2 E∞(k)2)n

)
.

By (3.6)

Cm,n = b

(
s1

(
x2
0
2 e

2
min)

m

(1 +
x2
0
2 e

2
min)

n
+ s2

(
x2
0
2 e

2
max)

m

(1 +
x2
0
2 e

2
max)

n

)
.

We are going to compute W∞(x0, y) up to the 2nd order term of y+ 1. Let

us proceed step by step.

Lemma 4.8. The functions Gx, Gy, Gxx, Gxy, Gyy can be expanded

into convergent power series of y+1 in a neighborhood of y = −1. Moreover,

as y ↘ −1

Gx(y) = −C0,1 + 2C0,2 +

(
C2,2

2 · 3 − 2

3
C2,3 + C0,1 − C0,2

)
(y + 1)

+O((y + 1)2),

Gy(y) = −C0,2 +

(
−C1,2

3
+
C2,3

3

)
(y + 1)

+

(
− C2,2

2 · 3 · 5 +
2

3 · 5C3,3 −
C4,4

22 · 3

)
(y + 1)2 +O((y + 1)3),
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Gxx(y) = C1,2 − 22C1,3

+

(
C2,2

3
− C3,3

3
− 22

3
C2,3 + 2C3,4 − C1,2 + 2C1,3

)
(y + 1)

+

(
C3,2

2 · 3 · 5 − 2

3 · 5C4,3 +
C5,4

22 · 3 +
C3,3

5
+

22

5
C4,4 −

2

3
C5,5 −

C2,2

3

+
2

3
C2,3 − C3,4

)
(y + 1)2 +O((y + 1)3),

Gxy(y) = 3C0,2 − 22C0,3 + (−C2,3 + 2C2,4 + C0,1 − 3C0,2 + 2C0,3)(y + 1)

+

(
−C3,3

3 · 5 +
C4,4

22
+

2

3 · 5C3,4 −
2

3
C4,5 −

C2,2

2 · 3 + C2,3 − C2,4

)
(y + 1)2

+O((y + 1)3),

Gyy(y) = 2C0,3 +

(
2

3
C1,3 − C2,4

)
(y + 1)

+

(
C2,3

3 · 5 − 2

5
C3,4 +

C4,5

3

)
(y + 1)2 +O((y + 1)3).

Remark 4.9. We will find that the 2nd order term of Gx(y) is unnec-

essary to prove Lemma 4.6. So we do not characterize it here for conciseness.

Proof of Lemma 4.8. For j ∈ N ∪ {0} let us set

Rj := Dd

∫
Γ∗∞

dkTr

(
1 +

cosh(
√
y + 1x0E∞(k)) − 1

y + 1

)−j
,

Sj := Dd

∫
Γ∗∞

dkTr

(
sinh(

√
y + 1x0E∞(k))√

y + 1x0E∞(k)

·
(

1 +
cosh(

√
y + 1x0E∞(k)) − 1

y + 1

)−j )
,

S̃j := Dd

∫
Γ∗∞

dkTr

(
x2

0

2
E∞(k)2

sinh(
√
y + 1x0E∞(k))√

y + 1x0E∞(k)

·
(

1 +
cosh(

√
y + 1x0E∞(k)) − 1

y + 1

)−j )
.
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We can derive from (2.4), (2.5), (2.6), (2.7), (2.8) with E = E∞ that

Gx(y) = −R1 + 2R2 + (R1 −R2)(y + 1),(4.7)

Gy(y) = −S2,(4.8)

Gxx(y) = S̃2 − 4S̃3 + (−S̃2 + 2S̃3)(y + 1),(4.9)

Gxy(y) = 3R2 − 4R3 + (R1 − 3R2 + 2R3)(y + 1),(4.10)

Gyy(y) = 2S3.(4.11)

We can see that Rj , Sj , S̃j (j ∈ N ∪ {0}) can be expanded into convergent

power series of y + 1 in a neighborhood of y = −1 and so can Gx, Gy, Gxx,

Gxy, Gyy.

We want to characterize low order terms of Rj , Sj , S̃j . Let us prepare

formulas for this purpose. Let x ∈ R>0, a ∈ R\{0}, n ∈ N. Set X := x2

2 ,

A := a2. Observe that(
1 +

cosh(
√
y + 1xa) − 1

y + 1

)−n

=

(
1 +XA+

X2A2

2 · 3 (y + 1) +
X3A3

2 · 32 · 5(y + 1)2
)−n

+O((y + 1)3)

= (1 +XA)−n
(

1 − X2A2

2 · 3(1 +XA)
(y + 1)

+

(
− X3A3

2 · 32 · 5(1 +XA)
+

X4A4

22 · 32(1 +XA)2

)
(y + 1)2

)n

+O((y + 1)3),

sinh(
√
y + 1xa)√

y + 1xa
= 1 +

XA

3
(y + 1) +

X2A2

2 · 3 · 5(y + 1)2 +O((y + 1)3).

By using the above equalities we obtain that(
1 +

cosh(
√
y + 1xa) − 1

y + 1

)−1

=
1

1 +XA
− X2A2

2 · 3(1 +XA)2
(y + 1)

+

(
− X3A3

2 · 32 · 5(1 +XA)2
+

X4A4

22 · 32(1 +XA)3

)
(y + 1)2 +O((y + 1)3),
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(
1 +

cosh(
√
y + 1xa) − 1

y + 1

)−2

=
1

(1 +XA)2
− X2A2

3(1 +XA)3
(y + 1)

+

(
− X3A3

32 · 5(1 +XA)3
+

X4A4

22 · 3(1 +XA)4

)
(y + 1)2 +O((y + 1)3),

(
1 +

cosh(
√
y + 1xa) − 1

y + 1

)−3

=
1

(1 +XA)3
− X2A2

2(1 +XA)4
(y + 1)

+

(
− X3A3

2 · 3 · 5(1 +XA)4
+

X4A4

2 · 3(1 +XA)5

)
(y + 1)2 +O((y + 1)3),

sinh(
√
y + 1xa)√

y + 1xa

(
1 +

cosh(
√
y + 1xa) − 1

y + 1

)−2

(4.12)

=
1

(1 +XA)2
+

(
XA

3(1 +XA)2
− X2A2

3(1 +XA)3

)
(y + 1)

+

(
X2A2

2 · 3 · 5(1 +XA)2
− 2X3A3

3 · 5(1 +XA)3
+

X4A4

22 · 3(1 +XA)4

)
(y + 1)2

+O((y + 1)3),

sinh(
√
y + 1xa)√

y + 1xa

(
1 +

cosh(
√
y + 1xa) − 1

y + 1

)−3

(4.13)

=
1

(1 +XA)3
+

(
XA

3(1 +XA)3
− X2A2

2(1 +XA)4

)
(y + 1)

+

(
X2A2

2 · 3 · 5(1 +XA)3
− X3A3

5(1 +XA)4
+

X4A4

2 · 3(1 +XA)5

)
(y + 1)2

+O((y + 1)3).

It follows that

R1 = C0,1 −
C2,2

2 · 3(y + 1) +

(
− C3,2

2 · 32 · 5 +
C4,3

22 · 32

)
(y + 1)2 +O((y + 1)3),



Convexity of the Phase Boundary 67

R2 = C0,2 −
C2,3

3
(y + 1) +

(
− C3,3

32 · 5 +
C4,4

22 · 3

)
(y + 1)2 +O((y + 1)3),

R3 = C0,3 −
C2,4

2
(y + 1) +

(
− C3,4

2 · 3 · 5 +
C4,5

2 · 3

)
(y + 1)2 +O((y + 1)3),

S2 = C0,2 +

(
C1,2

3
− C2,3

3

)
(y + 1)

+

(
C2,2

2 · 3 · 5 − 2

3 · 5C3,3 +
C4,4

22 · 3

)
(y + 1)2 +O((y + 1)3),

S3 = C0,3 +

(
C1,3

3
− C2,4

2

)
(y + 1) +

(
C2,3

2 · 3 · 5 − C3,4

5
+
C4,5

2 · 3

)
(y + 1)2

+O((y + 1)3),

S̃2 = C1,2 +

(
C2,2

3
− C3,3

3

)
(y + 1)

+

(
C3,2

2 · 3 · 5 − 2

3 · 5C4,3 +
C5,4

22 · 3

)
(y + 1)2 +O((y + 1)3),

S̃3 = C1,3 +

(
C2,3

3
− C3,4

2

)
(y + 1) +

(
C3,3

2 · 3 · 5 − C4,4

5
+
C5,5

2 · 3

)
(y + 1)2

+O((y + 1)3).

We can characterize S̃2, S̃3 as above by multiplying both sides of (4.12),

(4.13) by XA. By substituting the above equalities into (4.7), (4.8), (4.9),

(4.10), (4.11) we can derive the claimed equalities. �

Next we compute each low order term of Gx, Gy, Gxx, Gxy, Gyy. To this

end, let us compute Cm,n for all the necessary indices m, n as efficiently as

possible. The following relations help us do so.

Lemma 4.10.

(i) For any m,n ∈ N≥1 Cm,n = Cm−1,n−1 − Cm−1,n.

(ii) For any m,n ∈ N with m ≥ 2, n ≥ 3

Cm,n =
5

26
Cm−2,n−3.

Proof. (i): Use the equality xm = xm−1(x+ 1)− xm−1 in the numer-

ator of the integrand.
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(ii): Since (3−
√

5
2 )3 = 9 − 4

√
5,

(
emin
emax

) 2
3

=
3 −

√
5

2
,

(
emax
emin

) 2
3

=
3 +

√
5

2
.(4.14)

Recalling the definition (3.2) and substituting (4.14), we can derive that

(
1 +

x2
0

2
e2min

)−1

=

(
1 +

(
emin
emax

) 2
3

+

(
emin
emax

) 4
3

)−1

=
3 +

√
5

8
,(4.15)

(
1 +

x2
0

2
e2max

)−1

=

(
1 +

(
emax
emin

) 2
3

+

(
emax
emin

) 4
3

)−1

=
3 −

√
5

8
.

Moreover, these imply that

(
1 +

x2
0

2
e2min

)−2

=
7 + 3

√
5

32
,

(
1 +

x2
0

2
e2max

)−2

=
7 − 3

√
5

32
,(4.16)

(
1 +

x2
0

2
e2min

)−3

=
9 + 4

√
5

64
,

(
1 +

x2
0

2
e2max

)−3

=
9 − 4

√
5

64
.

Therefore

(
x2
0
2 e

2
min)

2

(1 +
x2
0
2 e

2
min)

3

=

(
1 +

x2
0

2
e2min

)−1

− 2

(
1 +

x2
0

2
e2min

)−2

+

(
1 +

x2
0

2
e2min

)−3

=
5

26
,

Similarly

(
x2
0
2 e

2
max)

2

(1 +
x2
0
2 e

2
max)

3
=

5

26
.

These equalities ensure the claimed result. �

We can achieve our purpose by using the values of Cm,n given in the

next lemma.
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Lemma 4.11. Some of Cm,n/b (m,n ∈ N ∪ {0}) are computed as fol-

lows.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

m = 0 1
1

23

1

25

1

26

m = 1 32 7

23

3

25

1

26

m = 2
5 · 13

23

52

25

5

26

5

29

m = 3
5 · 47

25

32 · 5
26

5 · 7
29

m = 4
52 · 17

26

52 · 13

29

53

211

m = 5
3 · 52 · 41

29

52 · 47

211

Remark 4.12. Though it is technically possible to compute Cm,n for

all m,n ∈ {0, 1, · · · , 5}, we present only those necessary for our purpose.

Proof of Lemma 4.11. We can see that once C0,n (n = 0, 1, 2, 3), C1,0

are obtained, the rest can be derived by recursively applying the formulas

proved in Lemma 4.10. Let us explain how to compute C0,n (n = 0, 1, 2, 3),

C1,0. Recalling (2.33), we set A1 := e2min, A2 := e2max, X := α(A1, A2).

It follows that
x2
0
2 = α(A1, A2). First we need to compute s1, s2 defined

in (3.5). The terms Bm1 , Bm2 (m = 1, 2, 3) have already been obtained in

(4.15), (4.16). By using them we have that

D1,1 = B3
1 =

9 + 4
√

5

64
,

D1,2 =
1

2
B1B2(8B1B2 +B1 +B2 − 4B2

1 − 4B2
2) = − 1

64
,
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which yield that

s1 =
5 − 2

√
5

10
, s2 =

5 + 2
√

5

10
.

We can combine these with the equalities 1
bC0,n = s1B

n
1 +s2B

n
2 (n = 0, 1, 2,

3) to obtain the claimed values. Moreover, by (4.15)

x2
0

2
e2min = 5 − 2

√
5,

x2
0

2
e2max = 5 + 2

√
5,

and thus

1

b
C1,0 = s1

x2
0

2
e2min + s2

x2
0

2
e2max = 32. �

By substituting the values presented in Lemma 4.11 into the formulas

listed in Lemma 4.8 we have the following.

Lemma 4.13. As y ↘ −1,

1

b
Gx(y) = − 1

24
+

11

26
(y + 1) +O((y + 1)2),

1

b
Gy(y) = − 1

25
− 1

26 · 3(y + 1) +
7 · 13

211 · 3(y + 1)2 +O((y + 1)3),

1

b
Gxx(y) =

1

25
− 1

28
(y + 1) − 3 · 103

211
(y + 1)2 +O((y + 1)3),

1

b
Gxy(y) =

1

25
+

1

28
(y + 1) +

113

211 · 3(y + 1)2 +O((y + 1)3),

1

b
Gyy(y) =

1

25
+

1

29 · 3(y + 1) − 11

211 · 3(y + 1)2 +O((y + 1)3).

Finally we can prove Lemma 4.6.

Proof of Lemma 4.6. The claim concerning the analytic continua-

tion into a neighborhood of y = −1 is implied by the equality (4.6), the

initial statement of Lemma 4.8 and the fact Gy(−1) �= 0. Let us compute

0th, 1st and 2nd order term in the expansion of WE∞(x0, y) with respect to

y + 1. Set for y ∈ R<0 close to −1

J(y) := −yGx(y)2Gy(y)
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+ (1 − y)
(
2Gxx(y)Gy(y)

2 − 2Gx(y)Gy(y)Gxy(y) +Gyy(y)Gx(y)
2
)
,

so that

WE∞(x0, y) =
2

(1 − y)
3
2Gy(y)3

J(y).(4.17)

We will see that it suffices to compute J(−1), dJ
dy (−1), 1

2!
d2J
dy2

(−1) to

achieve our goal. Set

G̃(y) := 2Gxx(y)Gy(y)
2 − 2Gx(y)Gy(y)Gxy(y) +Gyy(y)Gx(y)

2

for simplicity. Observe that

J(y) = Gx(y)
2Gy(y) + 2G̃(y) + (y + 1)

(
−Gx(y)

2Gy(y) − G̃(y)
)
.(4.18)

In the following for any smooth function f of y and j ∈ N∪{0} f (j) denotes
1
j!
djf
dyj

(−1). By Lemma 4.13

1

b3
G̃(0) =

1

214
,

1

b3
(G2

xGy)
(0) =

1

b3
(G(0)

x )2G(0)
y = − 1

213
.(4.19)

Thus

1

b3
J (0) =

1

b3
(
(G2

xGy)
(0) + 2G̃(0)

)
= 0.

Moreover, by using the 0th order terms and then the 1st order terms given

in Lemma 4.13

1

b3
G̃(1) =

1

b3
(
2G(1)

xx (G(0)
y )2 + 22G(0)

xxG
(0)
y G(1)

y − 2G(1)
x G(0)

y G(0)
xy

(4.20)

− 2G(0)
x G(1)

y G(0)
xy − 2G(0)

x G(0)
y G(1)

xy +G(1)
yy (G(0)

x )2

+ 2G(0)
yy G

(0)
x G(1)

x

)
=

1

b

(
1

29
G(1)
xx − 1

29
G(1)
x − 1

28
G(1)
xy +

1

28
G(1)
yy

)
= − 5 · 7

215 · 3 ,

1

b3
(G2

xGy)
(1) =

1

b3
(
2G(1)

x G(0)
x G(0)

y + (G(0)
x )2G(1)

y

)
=

1

b

(
1

28
G(1)
x +

1

28
G(1)
y

)(4.21)
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=
1

29 · 3 .

Substitution of (4.19), (4.20), (4.21) yields that

1

b3
J (1) =

1

b3
(
(G2

xGy)
(1) + 2G̃(1) − (G2

xGy)
(0) − G̃(0)

)
= 0.

Let us compute J (2). By (4.18)

J (2) =(G2
xGy)

(2) + 2
(
2(GxxG

2
y)

(2) − 2(GxGyGxy)
(2) + (GyyG

2
x)

(2)
)

(4.22)

− (G2
xGy)

(1) − G̃(1).

Let us decompose each term with the superscript “(2)” in the right-hand

side of (4.22) by using the 0th order terms given in Lemma 4.13.

1

b3
(G2

xGy)
(2)(4.23)

=
1

b3
(
2G(2)

x G(0)
x G(0)

y + (G(0)
x )2G(2)

y + (G(1)
x )2G(0)

y + 2G(1)
x G(0)

x G(1)
y

)
=

1

b

(
1

28
G(2)
x +

1

28
G(2)
y

)
+

1

b2

(
− 1

25
(G(1)

x )2 − 1

23
G(1)
x G(1)

y

)
,

1

b3
(GxxG

2
y)

(2)(4.24)

=
1

b3
(
G(2)
xx (G(0)

y )2 + 2G(0)
xxG

(2)
y G(0)

y + 2G(1)
xxG

(1)
y G(0)

y +G(0)
xx (G(1)

y )2
)

=
1

b

(
1

210
G(2)
xx − 1

29
G(2)
y

)
+

1

b2

(
− 1

24
G(1)
xxG

(1)
y +

1

25
(G(1)

y )2
)
,

1

b3
(GxGyGxy)

(2)(4.25)

=
1

b3
(
G(2)
x G(0)

y G(0)
xy +G(0)

x G(2)
y G(0)

xy +G(0)
x G(0)

y G(2)
xy +G(1)

x G(1)
y G(0)

xy

+G(1)
x G(0)

y G(1)
xy +G(0)

x G(1)
y G(1)

xy

)
=

1

b

(
− 1

210
G(2)
x − 1

29
G(2)
y +

1

29
G(2)
xy

)

+
1

b2

(
1

25
G(1)
x G(1)

y − 1

25
G(1)
x G(1)

xy − 1

24
G(1)
y G(1)

xy

)
,

1

b3
(GyyG

2
x)

(2)(4.26)
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=
1

b3
(
G(2)
yy (G(0)

x )2 + 2G(0)
yy G

(2)
x G(0)

x + 2G(1)
yy G

(1)
x G(0)

x +G(0)
yy (G(1)

x )2
)

=
1

b

(
1

28
G(2)
yy − 1

28
G(2)
x

)
+

1

b2

(
− 1

23
G(1)
yy G

(1)
x +

1

25
(G(1)

x )2
)
.

By substituting (4.20), the 2nd equality of (4.21), (4.23), (4.24), (4.25),

(4.26) into (4.22)

1

b3
J (2) =

1

b

(
1

28
G(2)
y +

1

28
G(2)
xx − 1

27
G(2)
xy +

1

27
G(2)
yy

)(4.27)

+
1

b2

( 1

25
(G(1)

x )2 − 1

22
G(1)
x G(1)

y − 1

22
G(1)
xxG

(1)
y +

1

23
(G(1)

y )2

+
1

23
G(1)
x G(1)

xy +
1

22
G(1)
y G(1)

xy − 1

22
G(1)
yy G

(1)
x

)
+

1

b

(
− 1

28
G(1)
x − 1

28
G(1)
y

)
+

5 · 7
215 · 3

=
1

b

(
1

28
G(2)
y +

1

28
G(2)
xx − 1

27
G(2)
xy +

1

27
G(2)
yy

)

+
1

b
G(1)
x

(
1

b

(
1

25
G(1)
x − 1

22
G(1)
y +

1

23
G(1)
xy − 1

22
G(1)
yy

)
− 1

28

)

+
1

b
G(1)
y

(
1

b

(
− 1

22
G(1)
xx +

1

23
G(1)
y +

1

22
G(1)
xy

)
− 1

28

)
+

5 · 7
215 · 3 .

We remark that G
(2)
x is canceled here. By applying Lemma 4.13 again we

have that

(1st term of R.H.S of (4.27)) = − 271

217 · 3 ,

(2nd term of R.H.S of (4.27)) =
11 · 19

217 · 3 ,

(3rd term of R.H.S of (4.27)) =
1

213 · 32
.

Therefore

1

b3
J (2) = − 271

217 · 3 +
11 · 19

217 · 3 +
1

213 · 32
+

5 · 7
215 · 3 =

53

216 · 32
.

By combining the above results with (4.17) and the equality

2

(1 − y)
3
2Gy(y)3

=
1

√
2(G

(0)
y )3

+O((y + 1))
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we see that as y ↘ −1

WE∞(x0, y) =
1

√
2(G

(0)
y )3

J (2)(y + 1)2 +O((y + 1)3)

= −
√

2 · 53

22 · 32
(y + 1)2 +O((y + 1)3).

This implies the results. �
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