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Convergence of SCF Sequences

for the Hartree-Fock Equation

By Sohei Ashida

Abstract. The Hartree-Fock equation is a fundamental equation
in many-electron problems. It is of practical importance in quan-
tum chemistry to find solutions to the Hartree-Fock equation. The
self-consistent field (SCF) method is a standard numerical calculation
method to solve the Hartree-Fock equation. In this paper we prove
that the sequence of the functions obtained in the SCF procedure is
composed of a sequence of pairs of functions that converges after mul-
tiplication by appropriate unitary matrices, which strongly ensures the
validity of the SCF method. A sufficient condition for the limit to be
a solution to the Hartree-Fock equation after multiplication by a uni-
tary matrix is given, and the convergence of the corresponding density
operators is also proved. The method is based mainly on the proof of
approach of the sequence to a critical set of a functional, compactness
of the critical set, and the proof of )Lojasiewicz inequality for another
functional near critical points.

1. Introduction and Statement of the Result

Let us consider a molecule with n nuclei and N electrons, where n,N ∈
N. A fundamental problem in quantum chemistry is the eigenvalue problem

of the Hamiltonian

H := −
N∑
i=1

∆xi −
N∑
i=1

n∑
l=1

Zl
|xi −Rl|

+
∑

1≤i<j≤N

1

|xi − xj |
,

acting on L2(R3N ), where xi ∈ R
3 is the position of the ith electron, and Rl

and Zl are the position and the atomic number of the lth nucleus respec-

tively. By the min-max principle (see e.g. [18]) the eigenvalue problem is

equivalent to the problem to find the critical values and the critical points of
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the quadratic form 〈Ψ, HΨ〉, where Ψ ∈ H2(R3N ), ‖Ψ‖ = 1. The Hartree-

Fock functional is obtained by restriction of the quadratic form to the set

of all Slater determinants

Ψ := (N !)−1/2
∑
σ∈SN

(sgnσ)ϕ1(xσ(1)) · · ·ϕN (xσ(N)),

where ϕi ∈ H2(R3), 1 ≤ i ≤ N and 〈ϕi, ϕj〉 = δij . In other words, the

Hartree-Fock functional is a functional defined by Ê(Φ) := 〈Ψ, HΨ〉 for

Φ ∈ W, where

W :=

{
Φ = t(ϕ1, . . . , ϕN ) ∈

N⊕
i=1

H2(R3) : 〈ϕi, ϕj〉 = δij

}
,

and Ψ is the Slater determinant constructed from Φ = t(ϕ1, . . . , ϕN ). Here⊕N
i=1 H

2(R3) is the Hilbert space equipped with the inner product
∑N
i=1〈ϕi,

(1 −∆)2ϕ̃i〉 for Φ = t(ϕ1, . . . , ϕN ) and Φ̃ = t(ϕ̃1, . . . , ϕ̃N ). The functional

Ê(Φ) can be written explicitly as

Ê(Φ) =
N∑
i=1

〈ϕi, hϕi〉+
1

2

∫ ∫
ρ(x)

1

|x− y|ρ(y)dxdy

− 1

2

∫ ∫
1

|x− y| |ρ(x, y)|
2dxdy,

where h := −∆ + V , V (x) := −
∑n
l=1

Zl
|x−Rl| ,

ρ(x) :=
N∑
i=1

|ϕi(x)|2,

is the density, and

ρ(x, y) :=
N∑
i=1

ϕi(x)ϕ∗
i (y),

is the density matrix. Here and henceforth, u∗ denotes the complex con-

jugate for a function u. In this paper we will consider for simplicity of

notation the spinless functions ϕi, although the results in this paper is triv-

ially adapted to spin-dependent functions with only notational changes.
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The critical values of the Hartree-Fock functional give approximations

to the eigenvalues of H, and the corresponding critical points are used for

further approximations. Let us recall the definition of critical values and

critical points of a functional Ê(Φ) :W → R (see e.g. [22, Definition 43.20]).

Let CΦ be the set of all curves c : (−1, 1)→
⊕N
i=1 H

2(R3) such that c(t) ∈ W
for any t ∈ (−1, 1), c(0) = Φ and c′(0) exists. The point Φ ∈ W is called a

critical point of Ê(Φ), if dÊ(c(t))/dt|t=0 = 0 for any c ∈ CΦ. A real number

Λ ∈ R is called a critical value of Ê(Φ) if there exists a critical point Φ′ of

Ê(Φ) such that Λ = Ê(Φ′). By the method of Lagrange multipliers (see e.g.

[22, Proposition 43.21] and also [1, Section 2]) we can see that Φ is a critical

point of Ê(Φ) if and only if there exists an Hermitian matrix (εij) such that

Φ satisfies the equation

F(Φ)ϕi =

N∑
j=1

εijϕj , 1 ≤ i ≤ N.

Here F(Φ) is an operator called Fock operator and defined by F(Φ) :=

h + RΦ − SΦ, where RΦ is the multiplication operator by

RΦ(x) :=

N∑
i=1

∫
|x− y|−1|ϕi(y)|2dy =

N∑
i=1

QΦ
ii(x),

with

QΦ
ij(x) :=

∫
|x− y|−1ϕ∗

j (y)ϕi(y)dy,

and

SΦ :=
N∑
i=1

SΦ
ii ,

with

(SΦ
ijw)(x) :=

(∫
|x− y|−1ϕ∗

j (y)w(y)dy

)
ϕi(x),

for w ∈ L2(R3). We also define an operator G(Φ) by G(Φ) := RΦ−SΦ. Then

F(Φ) can be written as F(Φ) = h + G(Φ). The matrix (εij) is diagonalized

by an N ×N unitary matrix A as A(εij)A
−1 = diag [ε1, . . . , εN ], and if we

define new functions ΦNew := t(ϕNew
1 , . . . , ϕNew

N ) by ϕNew
i =

∑N
j=1 Aijϕ

Old
j

from the old one ΦOld := t(ϕOld
1 , . . . , ϕOld

N ), ΦNew satisfies the equation

F(Φ)ϕi = εiϕi, 1 ≤ i ≤ N,(1.1)
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where (ε1, . . . , εN ) ∈ R
N and diag [ε1, . . . , εN ] is the diagonal matrix with

the diagonal elements ε1, . . . , εN . The equation (1.1) is called Hartree-Fock

equation. Hence a solution Φ′ to the Hartree-Fock equation is a critical

point of Ê(Φ), and Λ ∈ R is a critical value of Ê(Φ) if and only if there

exists a solution Φ′ to the Hartree-Fock equation such that Λ = Ê(Φ′).
The Hartree-Fock equation was introduced by Fock [5] and Slater [20] in-

dependently, after Hartree [9] introduced the Hartree equation that ignored

the antisymmetry with respect to exchange of variables. Hereafter, let us

call the tuple e := (ε1, . . . , εN ) an orbital energy, if there exists a tuple of

eigenfunctions Φ = t(ϕ1, . . . , ϕN ) ∈ W of F(Φ̃) associated with e for some

Φ̃ ∈ W, i.e. we have

F(Φ̃)ϕi = εiϕi, i = 1 ≤ i ≤ N.

(Since we will consider sequences of the tuple in this paper, it would be more

convenient to call the tuple an orbital energy than each εi.) In particular,

the tuple (ε1, . . . , εN ) of the numbers in the right-hand side of the Hartree-

Fock equation (1.1) is an orbital energy.

The Hartree-Fock equation can not be solved exactly even for small n

and N . A standard numerical calculation method to solve the equation

is the self-consistent field (SCF) method. In the SCF method we set an

initial function Φ0 = t(ϕ0
1, . . . , ϕ

0
N ) and repeat the following iterative pro-

cedure until the sequence {Φk} obtained in the procedure converges. Let

ϕk+1
1 , . . . ϕk+1

N be an orthonormal set of eigenfunctions of F(Φk) associated

with the N smallest eigenvalues (including multiplicity) εk+1
1 , . . . , εk+1

N , i.e.

they satisfy

F(Φk)ϕk+1
i = εk+1

i ϕk+1
i , 1 ≤ i ≤ N.

(Assume here that we can choose such eigenfunctions, which is justified un-

der the uniform well-posedness condition introduced later.) We set the next

function as Φk+1 := t(ϕk+1
1 , . . . , ϕk+1

N ). Note that the choice of the eigen-

functions is not unique, because the multiplication by a complex number

with the absolute value 1 makes another eigenfunction, and if an eigenvalue

is degenerated, multiplication by a unitary matrix to an orthonormal ba-

sis of the corresponding eigenspace generates another orthonormal basis.

However, we suppose that particular eigenfunctions have been chosen in the

SCF procedure. Note that ek := (εk1, . . . , ε
k
N ) is the orbital energy associated

with Φk. Let us call the sequence {Φk} SCF sequence.
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For the analysis of the SCF sequence it is helpful to introduce operators

called density operators. For Φ = t(ϕ1, . . . , ϕN ) ∈ W we define the density

operator DΦ ∈ L(L2(R3)) by

(DΦw)(x) :=
N∑
i=1

(∫
ϕ∗
i (y)w(y)dy

)
ϕi(x),

for w ∈ L2(R3). We denote by P the set of operators

P := {D ∈ T2 : RanD ⊂ H2(R3), D2 = D = D∗, Tr (D) = N},

where D∗ is the adjoint operator of D and T2 is the set of all Hilbert-Schmidt

operators in L2(R3) equipped with the norm ‖D‖2 := (Tr (D∗D))1/2 (see

e.g. [17]). We can easily confirm that DΦ ∈ P for Φ ∈ W. For D ∈ P let

us define an operator G(D) by

(G(D)w)(x) := Tr (|x− y|−1D)w(x)−D(|x− y|−1w(y)),

where |x−y|−1 is a multiplication operator with respect to y with a param-

eter x, and the trace is taken with respect to y. Then we can see that

G(Φ) = G(DΦ).

Moreover, we have

Ê(Φ) = Ê(DΦ),

with

Ê(D) := Tr (hD) +
1

2
Tr (G(D)D).

If Φ = t(ϕ1, . . . , ϕN ) ∈ W and Φ̃ = t(ϕ̃1, . . . , ϕ̃N ) ∈ W satisfy DΦ = DΦ̃,

then Φ and Φ̃ are orthonormal bases of the same space RanDΦ. Hence

there exists an N×N unitary matrix A such that AΦ = Φ̃. Since the Slater

determinant Ψ of Φ is written as a determinant

Ψ =

∣∣∣∣∣∣∣
ϕ1(x1) · · · ϕ1(xN )

...
. . .

...

ϕN (x1) · · · ϕN (xN )

∣∣∣∣∣∣∣ ,

we have Ψ̃ = |A|Ψ, where Ψ̃ is the Slater determinant of Φ̃. Therefore, the

possible difference between Ψ and Ψ̃ is only a multiplication by a complex
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number with the absolute value 1. Since in the approximation of eigen-

functions of H we use Ψ rather than Φ, we can conclude that the multipli-

cation by the unitary matrix A is not important. In addition, since G(Φ)

is determined by DΦ through G(Φ) = G(DΦ), Φk+1 in the SCF sequence

is determined only by DΦk . Consequently, the convergence of the density

operators DΦk is more fundamental than that of Φk in a certain sense.

Convergence of the SCF sequences is rarely studied from a mathemati-

cally rigorous standpoint. An important mathematically rigorous progress

has been made by Cancès and Le Bris [3]. They introduced a functional

E(D, D̃) : P × P → R in [3] defined by

E(D, D̃) := Tr (hD) + Tr (hD̃) + Tr (G(D)D̃),

which is symmetric with respect to D and D̃. Let us also define a functional

E(Φ, Φ̃) :W ×W → R by

E(Φ, Φ̃) :=
N∑
i=1

〈ϕi, hϕi〉+
N∑
i=1

〈ϕ̃i, hϕ̃i〉+
N∑
i=1

〈ϕ̃i,G(Φ)ϕ̃i〉

=
N∑
i=1

〈ϕi, hϕi〉+
N∑
i=1

〈ϕ̃i,F(Φ)ϕ̃i〉

=
N∑
i=1

〈ϕi,F(Φ̃)ϕi〉+
N∑
i=1

〈ϕ̃i, hϕ̃i〉,

which is symmetric with respect to Φ = t(ϕ1, . . . , ϕN ) and Φ̃ =
t(ϕ̃1, . . . , ϕ̃N ). Then we have

E(Φ, Φ̃) = E(DΦ, DΦ̃).

Note also that Φk+1 = t(ϕk+1
1 , . . . , ϕk+1

N ) is the minimizer of E(Φk,Φ) with

respect to Φ ∈ W. The result in [3] is that there exists a convergent sub-

sequence {(D
Φkj , DΦkj+1)} of the sequence {(DΦk , DΦk+1)} of pairs of the

density operators constructed from the SCF sequence. In their analysis

the fact that E(DΦk , DΦk+1) is decreasing with respect to k plays an im-

portant role. Their analysis is also based on the condition called uniform

well-posedness. We say that a SCF sequence {Φk} is uniformly well posed,

if the following condition (UWP) is fulfilled.
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(UWP) F(Φk) has at least N isolated eigenvalues (including multiplicity)

below inf σess(F(Φk)) for any k, and there exists a constant γ > 0

such that the distance between the set of the N smallest eigenval-

ues (including multiplicity) of F(Φk) and the rest of the spectrum

of F(Φk) is larger than or equal to γ for any k, where σess(B) is

the essential spectrum of B.

Note that σess(F(Φk)) = [0,∞) (cf. the proof of Lemma 8).

Although the result in [3] was the first mathematically rigorous impor-

tant step in the study of the convergence of the SCF method, existence of

a convergent subsequence is essentially rather different from convergence

of the sequence itself. Another important mathematically rigorous progress

has been achieved by Levitt [11] under the Galerkin discretization, i.e. finite-

dimensional approximation. It is proved in [11] that {(DΦk , DΦk+1)} itself

converges under the finite-dimensional approximation. In [11], in addition

to the uniform well-posedness an inequality called )Lojasiewicz inequality

plays a crucial role. The )Lojasiewicz inequality is the result as follows. Let

m ∈ N and f(x) : R
m → R be an analytic function. Then for each x0 ∈ R

m

there exists a neighborhood U of x0 and two constants κ > 0 and θ ∈ (0, 1/2]

such that when x ∈ U ,

|f(x)− f(x0)|1−θ ≤ κ‖∇f(x)‖.
In this paper we consider convergence without the discretization. The fol-

lowings are the main results.

Theorem 1. Let {Φk} be a uniformly well posed SCF sequence such

that the initial function Φ0 = t(ϕ0
1, . . . , ϕ

0
n) satisfies

‖〈x〉ϕ0
i (x)‖ ≤ C0, 1 ≤ i ≤ N,

for some C0 > 0. Then there exist Ξ∞, Ξ̃∞ ∈ W such that

lim
k→∞

‖DΦ2k −DΞ∞‖2 = 0,

lim
k→∞

‖DΦ2k+1 −DΞ̃∞‖2 = 0.

Moreover, there exists a sequence {Ak} of N×N unitary matrices such that

lim
k→∞

‖A2kΦ
2k − Ξ∞‖⊕ N

i=1H
2(R3) = 0,

lim
k→∞

‖A2k+1Φ
2k+1 − Ξ̃∞‖⊕ N

i=1H
2(R3) = 0.



248 Sohei Ashida

Remark 2. In practical calculations for usual molecules, a function

fulfilling the decay condition is always chosen as the initial function Φ0.

Thus only the uniform well-posedness is a substantial assumption.

Since the goal of the SCF method is to find a solution to the Hartree-Fock

equation, and Φk+1 is a tuple of eigenfunctions of F(Φk), we are interested

in whether a tuple Φ̂∞ = t(ϕ̂∞
1 , . . . , ϕ̂∞

N ) of eigenfunctions of F(Ξ∞) cor-

responding to the N smallest eigenvalues is a solution to the Hartree-Fock

equation. (Although the choice of Φ̂∞ is not unique, assume that a partic-

ular one has been chosen.) The following theorem is concerned with this

problem.

Theorem 3. Suppose the same assumption as in Theorem 1, and let

Ξ∞ and Ξ̃∞ be as in Theorem 1. Let γ > 0 be the gap in the uniform

well-posedness. Then:

(1) The distance between the set of the N smallest eigenvalues of F(Ξ∞)

(resp., F(Ξ̃∞)) and the rest of the spectrum of F(Ξ∞) (resp., F(Ξ̃∞)) is

larger than or equal to γ. Thus Φ̂∞ as above is well defined.

(2) There exists an N ×N unitary matrix A∞ such that Ξ̃∞ = A∞Φ̂∞.

Moreover, if we denote by (ε̂∞1 , . . . , ε̂∞N ) the eigenvalues of F(Ξ∞) associated

with Φ̂∞ = t(ϕ̂∞
1 , . . . , ϕ̂∞

N ), we have ε̂∞i = limk→∞ ε2k+1
i , 1 ≤ i ≤ N .

(3) If there exists an N × N unitary matrix Θ such that Ξ∞ = ΘΞ̃∞,

then Φ̂∞ is a solution to the Hartree-Fock equation associated with the orbital

energy (ε̂∞1 , . . . , ε̂∞N ).

(4) If Φ̂∞ forms an orthonormal basis of the direct sum of the eigenspaces

of the N smallest eigenvalues of F(Φ̂∞), then there exists an N×N unitary

matrix Θ such that Ξ∞ = ΘΞ̃∞.

(5) If DΦ̂∞ = DΞ∞, then there exists an N ×N unitary matrix Θ such

that Ξ∞ = ΘΞ̃∞.

Remark 4.

(a) The condition DΦ = DΦ̃ is equivalent to that there exists a unitary

matrix Â such that Φ = ÂΦ̃ (cf. proof of Theorem 3 (5)). In partic-

ular, if DΞ∞ = DΞ̃∞ , then by Theorem 3 (3) we can see that Φ̂∞ is a

solution to the Hartree-Fock equation.

(b) There exists a case in which the SCF sequence actually fails to con-

verge and it oscillates between two states. In [3, Example 9] such
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a case is given within the Restricted Hartree-Fock (RHF) method in

which the functions are spin-dependent and we impose the restriction

on the tuple of functions that it consists of the same spatial functions

with spin up and spin down.

In the proof of Theorem 1 the uniform well-posedness is used in order to

obtain a bound of the difference between DΦk and DΦk+2 by the difference

between E(Φk,Φk+1) and E(Φk+1,Φk+2) (cf. Lemma 6). It also yields an

upper bound of the orbital energies (cf. Lemma 8) which is needed for a

uniform decay estimate of ϕki (cf. Lemma 12). The uniform decay is in turn

used to prove that the SCF sequence approaches a critical set of Ê(Φ, Φ̃).

In [11] due to the discretization, the known result of the )Lojasiewicz in-

equality for finite-dimensional cases was applicable. However, in the present

result detailed infinite-dimensional analysis of functionals is needed for the

proof of the )Lojasiewicz inequality. For example, we need to prove that the

sequence {(Φk,Φk+1)} approaches to a critical set of E(Φ, Φ̃), that the crit-

ical set is a compact set, and that the Fréchet second derivatives of another

auxiliary functional are Fredholm operators at points corresponding to the

critical points of E(Φ, Φ̃). For such analysis the viewpoint of the function

Φ is more suitable than that of density operators, particularly because the

Fréchet second derivative of the functional of density operators is a mapping

from an operator to another and difficult to analyze. Therefore, we have

to relate the analysis with respect to the function Φ to that with respect

to density operators. Since for any density operator there exists a corre-

sponding class of the function Φ in which any two functions are related by

a unitary matrix, we need to choose appropriate elements from the classes

to obtain a relation between estimates of density operators and those of the

functions. This is achieved by Lemma 7.

The )Lojasiewicz inequality was proved by )Lojasiewicz [15] for analytic

functions in finite-dimensional cases. In [8, Proposition 1.1] the )Lojasiewicz

inequality was proved for a functional whose Fréchet second derivative is

an isomorphism. However, the functional in the present result does not

satisfy that condition. Instead its Fréchet second derivative at a critical

point is decomposed into a sum of an isomorphism and a compact operator

(Actually, the first differentiation is performed using a bilinear form as in

[6, 1, 2] to reduce the complexity due to the complex conjugate). This form

of condition was first introduced in Fuč́ik-Nečas-Souček-Souček [6] for some
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functionals to prove that the corresponding critical values are isolated points

in the set of all critical values. This condition for an auxiliary functional

related to the Hartree-Fock functional was proved by Ashida [1] and used

to show that the number of critical values less than a constant smaller than

the first energy threshold is finite. It was also a main ingredient of the proof

of the fact that the set of all critical points of the Hartree-Fock functional

corresponding to a critical value less than the threshold is a union of a finite

number of compact connected real-analytic spaces by Ashida [2]. The way

to use the )Lojasiewicz inequality in this paper is following that in [11] which

was introduced by Salomon [19] for the study of convergence of a scheme

for time-discretized quantum control.

Finally let us mention the existence of solutions to the Hartree-Fock

equation and the distribution of the critical values. Existence of a solution

to the Hartree-Fock equation that minimizes the Hartree-Fock functional

was proved by Lieb and Simon [13] under the assumption N <
∑n
l=1 Zl+1.

It was shown by Lions [14] that if N ≤
∑n
l=1 Zl, there exists a sequence of

solutions to the Hartree-Fock equation such that the corresponding critical

values converge to 0. Lewin [12] proved that under the same assumption

there exists a sequence of solutions to the Hartree-Fock equation associated

with critical values converging to the first energy threshold J(N − 1) which

is the infimum of the Hartree-Fock functional of N − 1 electrons. For any

N , Ashida [1] showed that the set of all critical values of the Hartree-Fock

functional less than J(N − 1)− ε is finite for any ε > 0.

This paper is organized as follows. In Section 2 we prove that the SCF

sequences approach subsets of all critical points of E(Φ, Φ̃). The compact-

ness of the critical sets is shown in Section 3. In Section 4 an auxiliary

functional is introduced and we prove that the Fréchet second derivative of

the functional is decomposed into a sum of an isomorphism and a compact

operator, if the orbital energies are tuples of negative numbers. In Section

5 we show the )Lojasiewicz inequality for functionals near points at which

such a decomposition is given. Finally the main theorems are proved in

Section 6.
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2. Closeness of SCF Sequences to Critical Sets

Let {Φk} be a uniformly well posed SCF sequence. Since Φk+1 minimizes

the functional Φ �→ E(Φk,Φ) and E(Φ, Φ̃) is symmetric, we have

E(Φk,Φk+1) ≤ E(Φk,Φk−1) = E(Φk−1,Φk),

so that E(Φk,Φk+1) is decreasing (cf. [3]). Here we note that G(Φ) =

RΦ − SΦ is a positive operator for any Φ = t(ϕ1, . . . , ϕN ) ∈
⊕N
i=1 H

2(R3),

which follows from

〈w, (QΦ
ii − SΦ

ii )w〉 =

∫
|x− y|−1|Ψ̂i|2dxdy ≥ 0,

where Ψ̂i := 2−1/2(w(x)ϕi(y)− ϕi(x)w(y)). Hence, we have E(Φk,Φk+1) ≥
2 inf σ(h). Therefore, the limit µ := limk→∞ E(Φk,Φk+1) ≥ 2 inf σ(h) exists.

Let Γγ,µ be the set of all solutions (Φ, Φ̃) ∈ W ×W of

F(Φ̃)ϕi = εiϕi

F(Φ)ϕ̃i = ε̃iϕ̃i
1 ≤ i ≤ N,

fulfilling E(Φ, Φ̃) = µ and associated with orbital energies e = (ε1, . . . , εN ) ∈
R
N and ẽ = (ε̃1, . . . , ε̃N ) ∈ R

N satisfying εi, ε̃i ≤ −γ, 1 ≤ i ≤ N , where

γ is the gap in the uniform well-posedness, and Φ = t(ϕ1, . . . , ϕN ) and

Φ̃ = t(ϕ̃1, . . . , ϕ̃N ). The set Γγ,µ is a subset of the set of all critical points

of E(Φ, Φ̃) :W ×W → R. Let us call such a set critical set. Let

d((Φk,Φk+1),Γγ,µ)

:= inf
(Φ,Φ̃)∈Γγ,µ

(
‖Φk − Φ‖⊕ N

i=1H
2(R3) + ‖Φk+1 − Φ̃‖⊕ N

i=1H
2(R3)

)
,

be the distance between (Φk,Φk+1) and Γγ,µ in (
⊕N
i=1 H

2(R3))
⊕

(
⊕N
i=1 H

2

(R3)). In this section our goal is to prove the following lemma.

Proposition 5. Let {Φk} be a uniformly well posed SCF sequence

such that the initial function Φ0 = t(ϕ0
1, . . . , ϕ

0
n) satisfies

‖〈x〉ϕ0
i (x)‖ ≤ C0, 1 ≤ i ≤ N,

for some C0 > 0. Then we have limk→∞ d((Φk,Φk+1),Γγ,µ) = 0, where

µ := limk→∞ E(Φk,Φk+1) and γ is the gap in the uniform well-posedness.
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For the proof of Proposition 5 we prepare several lemmas. First, under

the uniform well-posedness we have the following estimate (cf. [3]).

Lemma 6. Assume that {Φk} is a uniformly well posed SCF sequence

with the gap γ > 0. Then we have

E(Φk,Φk+1)− E(Φk+1,Φk+2) ≥ 2−1γ‖DΦk+2 −DΦk‖22,
for any k ≥ 0.

Proof. First by the uniform well-posedness we have

E(Φk,Φk+1)− E(Φk+1,Φk+2)

=
N∑
i=1

(〈ϕki ,F(Φk+1)ϕki 〉 − 〈ϕk+2
i ,F(Φk+1)ϕk+2

i 〉)

≥
N∑
i=1

{
(εk+2
N + γ)‖(1− Ek+1(ε

k+2
N + γ/2))ϕki ‖2

+ 〈ϕki ,F(Φk+1)Ek+1(ε
k+2
N + γ/2)ϕki 〉 − εk+2

i

}
,

(2.1)

where Ek+1(λ) is the resolution of identity of F(Φk+1), and we used that

ϕk+2
i is an eigenfunction of F(Φk+1) associated with ith eigenvalue εk+2

i in

ascending order. Noting that the orthogonal projection of w ∈ L2(R3) onto

the eigenspace corresponding to the jth eigenvalue of F(Φk+1) is given by

〈ϕk+2
j , w〉ϕk+2

j and ‖ϕki ‖ = 1, we can calculate as

‖(1− Ek+1(ε
k+2
N + γ/2))ϕki ‖2 = 1−

N∑
j=1

|〈ϕk+2
j , ϕki 〉|2,

and

〈ϕki ,F(Φk+1)Ek+1(ε
k+2
N + γ/2)ϕki 〉 =

N∑
j=1

εk+2
j |〈ϕk+2

j , ϕki 〉|2.

Thus the right-hand side of (2.1) is bounded from below by

(εk+2
N + γ)

N∑
i=1

{(1−
N∑
j=1

|〈ϕk+2
j , ϕki 〉|2)} −

N∑
i=1

{εk+2
i (1−

N∑
j=1

|〈ϕk+2
i , ϕkj 〉|2)}

≥ γ(N −
N∑
i,j=1

|〈ϕk+2
j , ϕki 〉|2),
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where we used εk+2
N ≥ εk+2

i , 1 ≤ i ≤ N . Therefore, we have

E(Φk,Φk+1)− E(Φk+1,Φk+2) ≥ γ(N −
N∑
i,j=1

|〈ϕk+2
j , ϕki 〉|2).

Hence by a direct calculation we obtain

‖DΦk+2 −DΦk‖22
= Tr (D∗

Φk+2DΦk+2)− Tr (D∗
Φk+2DΦk)− Tr (D∗

ΦkDΦk+2) + Tr (D∗
ΦkDΦk)

= 2N − 2

N∑
i,j=1

|〈ϕk+2
j , ϕki 〉|2

≤ 2γ−1(E(Φk,Φk+1)− E(Φk+1,Φk+2)),

which completes the proof. �

A bound for the function Φ is obtained when Lemma 6 is combined

with the following lemma. Let
⊕N
i=1 L

2(R3) be the Hilbert space equipped

with the inner product
∑N
i=1〈ϕi, ϕ̃i〉 for Φ = t(ϕ1, . . . , ϕN ) and Φ̃ = t(ϕ̃1,

. . . , ϕ̃N ).

Lemma 7. For any Φ = t(ϕ1, . . . , ϕN ) ∈ W and Φ̃ = t(ϕ̃1, . . . , ϕ̃N ) ∈
W there exist N ×N unitary matrices A and Ã such that

‖DΦ −DΦ̃‖2 ≥ ‖AΦ− ÃΦ̃‖⊕ N
i=1 L

2(R3).

Proof. Let B̂ be the matrix whose components are given by

B̂ij = 〈ϕi, ϕ̃j〉.

By the singular value decomposition (see e.g. [4, Theorem 1.6.3]) there exist

N × N unitary matrices A and Ã such that ĀB̂(tÃ) = diag [λ1, · · ·λN ],

where Ā is the complex conjugate of A and λ1, . . . , λN are nonnegative

real numbers that are singular values of B̂. Besides, since it is easily seen

that supc∈CN ,|c|=1 |B̂c| ≤ 1, we have λ1, . . . , λN ≤ 1. Thus setting Ξ =
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t(ξ1, . . . , ξN ) := AΦ and Ξ̃ = t(ξ̃1, . . . , ξ̃N ) := ÃΦ̃ we obtain 〈ξi, ξ̃j〉 = δijλi.

Moreover, we can easily see that DAΦ = DΦ. Hence we have

‖DΦ −DΦ̃‖22 = ‖DAΦ −DÃΦ̃‖22 = 2(N −
N∑
i,j=1

|〈ξi, ξ̃j〉|2)

= 2(N −
N∑
i=1

λ2
i ) ≥ 2(N −

N∑
i=1

λi)

= 2(N −
N∑
i=1

〈ξi, ξ̃i〉) = ‖Ξ− Ξ̃‖2⊕ N
i=1 L

2(R3)

= ‖AΦ− ÃΦ̃‖2⊕ N
i=1 L

2(R3)
,

which completes the proof. �

For the proof of the approach of the SCF sequence to Γγ,µ we need a

uniform decay estimate for the functions in the sequence. The following

bound on the orbital energies is necessary for the decay estimate.

Lemma 8. Let {Φk} be a uniformly well posed SCF sequence with the

gap γ > 0. Then εki ≤ −γ, 1 ≤ i ≤ N for any k ≥ 1.

Proof. Since εkN = max{εk1, . . . , εkN}, we have only to prove εkN ≤ −γ.

If we prove σess(F(Φk−1)) = [0,∞), by the uniform well-posedness we ob-

viously have εkN ≤ inf σess(F(Φk−1))− γ = −γ, and the proof is completed.

By σess(h) = [0,∞) and the Weyl’s essential spectrum theorem (see e.g.

[17]) we only need to prove that G(Φk−1) is h-compact. Since RΦk−1
(x) is

a bounded function decaying as |x| → ∞, RΦk−1
is ∆-compact, and thus

h-compact. Because SΦk−1
is an integral operator of the Hilbert-Schmidt

type, it is a compact operator. Consequently, G(Φk−1) is h-compact, which

completes the proof. �

Let us define 〈x〉 :=
√

1 + |x|2. We denote the L2(R3) norm of w ∈
L2(R3) by ‖w‖. Recall that since ϕk+1

i is an eigenfunction of F(Φk) associ-

ated with the eigenvalue εk+1
i , we have

F(Φk)ϕk+1
i = εk+1

i ϕk+1
i .(2.2)
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The following lemma gives a uniform H1 bound for the sequence.

Lemma 9. For any ν > 0 there exists a constant C̃ν such that any

solution Φ = t(ϕ1, . . . , ϕN ) ∈ W of

F(Φ̃)ϕi = εiϕi, 1 ≤ i ≤ N,(2.3)

for some Φ̃ ∈
⊕N
i=1 H

2(R3) and (ε1, . . . , εN ) ∈ R
N with |εi| ≤ ν, 1 ≤ i ≤ N

satisfies ‖∇ϕi‖ < C̃ν , 1 ≤ i ≤ N .

Remark 10. Assume that Φ̃ ∈ W and that Φ is a solution of (2.3)

with the orbital energy e = (ε1, . . . , εN ) satisfying εi ≤ 0, 1 ≤ i ≤ N . Then

by G(Φ̃) ≥ 0 we have

εi = 〈ϕi,F(Φ̃)ϕi〉 ≥ 〈ϕi, hϕi〉 ≥ inf σ(h),

so that Lemma 9 yields ‖∇ϕi‖ < C̃b, where b := | inf σ(h)|.

Proof. By the Hardy inequality we can estimate the Coulomb poten-

tial as∫
1

|x| |w(x)|2dx ≤
∥∥∥∥ 1

|x|w(x)

∥∥∥∥ ‖w‖ ≤ 2‖∇w‖‖w‖ ≤ δ‖∇w‖2 + δ−1‖w‖,

for any w ∈ H1(R3) and δ > 0. Since the center of the Coulomb potential

is irrelevant to the Hardy inequality, the potential V in h is estimated as

|〈w, V w〉| ≤
∑
l

Zl(δ‖∇w‖2 + δ−1‖w‖2).

Thus we obtain

‖∇w‖2 = 〈w, (−∆ + V )w〉 − 〈w, V w〉
≤ 〈w, hw〉+

∑
l

Zl(δ‖∇w‖2 + δ−1‖w‖2).

If we choose δ small enough so that δ
∑
l Zl < 1 will hold, we have

‖∇w‖2 ≤ C〈w, hw〉+ Cδ−1
∑
l

Zl‖w‖2,
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where C := (1− δ
∑
l Zl)

−1. Since F(Φ̃) = h + G(Φ̃) and G(Φ̃) ≥ 0, we can

see that

‖∇w‖2 ≤ C〈w,F(Φ̃)w〉+ Cδ−1
∑
l

Zl‖w‖2.(2.4)

Substituting w = ϕi into (2.4) and using F(Φ̃)ϕi = εiϕi, ‖ϕi‖ = 1 and the

assumption |εi| < ν, we obtain

‖∇ϕi‖2 ≤ C̃2
ν , 1 ≤ i ≤ N,

where C̃ν := (Cν + Cδ−1
∑
l Zl)

1/2. This completes the proof. �

The bound in Lemma 9 is fequently used in combination with the fol-

lowing lemma.

Lemma 11. Let a > 0 be a constant. Assume that Φ = t(ϕ1, . . . , ϕN ),

Φ̃t(ϕ̃1, . . . , ϕ̃N ) ∈
⊕N
i=1 L

2(R3) and ψ, ψ̃ ∈ L2(R3) satisfy ‖ϕi‖H1(R3),

‖ϕ̃i‖H1(R3), ‖ψ‖H1(R3), ‖ψ̃‖H1(R3) ≤ a. Then there exists a constant Ca > 0

such that

‖G(Φ)ψ − G(Φ̃)ψ̃‖ ≤ Ca

(
‖Φ− Φ̃‖⊕ N

i=1 L
2(R3) + ‖ψ − ψ̃‖

)
.

Proof. We shall estimate SΦ
iiψ − SΦ̃

ii ψ̃. We have

SΦ
iiψ − SΦ̃

ii ψ̃ =

(∫
|x− y|−1(ϕi(y)− ϕ̃i(y))ψ(y)dy

)
ϕi(x)

+

(∫
|x− y|−1ϕ̃i(y)(ψ(y)− ψ̃(y))dy

)
ϕi(x)

+

(∫
|x− y|−1ϕ̃i(y)ψ̃(y)dy

)
(ϕi(x)− ϕ̃i(x))

Thus the Cauchy-Schwartz inequality and the Hardy inequality give

‖SΦ
iiψ − SΦ̃

ii ψ̃‖ ≤ 4a2‖ϕi − ϕ̃i‖+ 2a2‖ψ − ψ̃‖.

We have a similar estimate also for QΦ
ii(x)ψ(x)−QΦ̃

ii(x)ψ̃(x). Since G(Φ) =∑
i(Q

Φ
ii − SΦ

ii ), we obtain the result. �
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In the proof of Proposition 5 we need the following uniform decay esti-

mate.

Lemma 12. Let {Φk} be a uniformly well posed SCF sequence. Assume

that there exists a constant C0 > 0 such that

‖〈x〉ϕ0
i (x)‖ ≤ C0, 1 ≤ i ≤ N.

Then there exists a constant C > 0 such that

‖〈x〉ϕki (x)‖ ≤ C, 1 ≤ i ≤ N,(2.5)

for any k ≥ 0.

Proof. Let k be fixed and let us assume that there exists Ck such

that

‖〈x〉ϕki (x)‖2 ≤ Ck, 1 ≤ i ≤ N.(2.6)

We shall seek Ck+1 so that (2.6) will hold with k replaced by k + 1. Let

η(r) ∈ C∞
0 (R) be a function such that η(r) = r for −1 < r < 1 and

|η′(r)| ≤ 1. For any m ∈ N we set ρm(x) := mη(〈x〉/m). By a direct

calculation we have

Re 〈(−∆ϕk+1
i ), ρ2

mϕ
k+1
i 〉 = ‖∇(ρmϕ

k+1
i )‖2 − ‖(∇ρm)ϕk+1

i ‖2.

Thus by (2.2) we obtain

0 = Re
〈
(−∆ + V (x) + RΦk

(x)− εk+1
i )ϕk+1

i − SΦk
ϕk+1
i , ρ2

mϕ
k+1
i

〉
= ‖∇(ρmϕ

k+1
i )‖2 − ‖(∇ρm)ϕk+1

i ‖2

+ 〈(V (x) + RΦk
(x)− εk+1

i )ϕk+1
i , ρ2

mϕ
k+1
i 〉

− Re 〈SΦk
ϕk+1
i , ρ2

mϕ
k+1
i 〉

≥ −‖(∇ρm)ϕk+1
i ‖2 + 〈(V (x) + RΦk

(x)− εk+1
i )ϕk+1

i , ρ2
mϕ

k+1
i 〉

− Re 〈SΦk
ϕk+1
i , ρ2

mϕ
k+1
i 〉

≥ −1 + 〈(V (x) + RΦk
(x)− εk+1

i )ϕk+1
i , ρ2

mϕ
k+1
i 〉 − Re 〈SΦk

ϕk+1
i , ρ2

mϕ
k+1
i 〉,

(2.7)
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where we used ‖ϕk+1
i ‖ = 1 and that |∇ρm(z)| ≤ 1 for any z ∈ R

3.

Here we note that

|ρm(x)− ρm(y)| =
∣∣∣∣
∫ 1

0
(x− y) · ∇ρm(t(x− y) + y)dt

∣∣∣∣ ≤ |x− y|.

Thus we have

|〈SΦk

jj ϕ
k+1
i , ρ2

mϕ
k+1
i 〉 − 〈SΦk

jj ρmϕ
k+1
i , ρmϕ

k+1
i 〉|

=

∣∣∣∣
∫
|x− y|−1ϕkj (y)ϕ

k+1
i (y)ρm(x)(ρm(x)− ρm(y))ϕkj (x)ϕk+1

i (x)dxdy

∣∣∣∣
≤
∫ ∣∣∣ϕkj (y)ϕk+1

i (y)ρm(x)ϕkj (x)ϕk+1
i (x)

∣∣∣ dxdy
≤ ‖|ρm|1/2ϕkj ‖‖|ρm|1/2ϕk+1

i ‖,
where u is the complex conjugate of u. Since the factors in the right-hand

side are estimated as

‖|ρm|1/2ϕk+1
i ‖ =

(∫
|ρm(x)||ϕk+1

i (x)|2dx
)1/2

≤ ‖ρmϕk+1
i ‖1/2‖ϕk+1

i ‖1/2 = ‖ρmϕk+1
i ‖1/2,

we obtain

|〈SΦk

jj ϕ
k+1
i , ρ2

mϕ
k+1
i 〉 − 〈SΦk

jj ρmϕ
k+1
i , ρmϕ

k+1
i 〉|

≤ ‖ρmϕkj ‖1/2‖ρmϕk+1
i ‖1/2

≤ (2γ)−1N + (2N)−1γ‖ρmϕkj ‖‖ρmϕk+1
i ‖

≤ (2γ)−1N + (4N)−1γ‖ρmϕkj ‖2 + (4N)−1γ‖ρmϕk+1
i ‖2

≤ (2γ)−1N + (4N)−1γCk + (4N)−1γ‖ρmϕk+1
i ‖2,

where γ is the gap in the uniform well-posedness. Therefore, we have

|〈SΦk
ϕk+1
i , ρ2

mϕ
k+1
i 〉 − 〈SΦk

ρmϕ
k+1
i , ρmϕ

k+1
i 〉|

≤ (2γ)−1N2 + 4−1γCk + 4−1γ‖ρmϕk+1
i ‖2.

Thus by (2.7) and 〈w, (RΦk − SΦk
)w〉 ≥ 0 with w = ρmϕ

k+1
i we obtain

0 ≥ −1− (2γ)−1N2 − 4−1γCk − 4−1γ‖ρmϕk+1
i ‖2

+ 〈(V (x)− εk+1
i )ϕk+1

i , ρ2
mϕ

k+1
i 〉

≥ −1− (2γ)−1N2 − 4−1γCk + 〈(V (x) + (3/4)γ)ϕk+1
i , ρ2

mϕ
k+1
i 〉,

(2.8)
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where we used εk+1
i ≤ −γ of Lemma 8 in the second inequality.

Now let r0 > 0 be a constant such that |V (x)| < γ
4 for |x| > r0. Then

decomposing the integral in (2.8) into those on |x| ≤ r0 and |x| > r0 we

have

2−1γ

∫
|x|>r0

ρ2
m(x)|ϕk+1

i (x)|2dx

≤ 1 + (2γ)−1N2 + 4−1γCk +

∫
|x|≤r0

|V (x) + (3/4)γ| ρ2
m(x)|ϕk+1

i (x)|2dx

≤ 1 + (2γ)−1N2 + 4−1γCk + (1 + r2
0)

(
2
∑
l

Zl‖∇ϕk+1
i ‖+ (3/4)γ

)

≤ 1 + (2γ)−1N2 + 4−1γCk + (1 + r2
0)

(
2
∑
l

ZlC̃b + (3/4)γ

)
,

where we used |ρm(x)| ≤ 〈x〉 and the Hardy inequality in the second in-

equality, and C̃b is the constant in Remark 10. Hence Fatou’s lemma yields∫
|x|>r0

〈x〉2|ϕk+1
i (x)|2dx = lim inf

m→∞

∫
|x|>r0

ρ2
m(x)|ϕk+1

i (x)|2dx

≤ 2−1Ck + Ĉ,

where Ĉ := 2γ−1{1+(2γ)−1N2+(1+r2
0)(2

∑
l ZlC̃b+(3/4)γ)} is independent

of k. Therefore, noting that∫
|x|≤r0

〈x〉2|ϕk+1
i (x)|2dx ≤ 1 + r2

0,

we obtain

‖〈x〉ϕk+1
i ‖2 =

∫
〈x〉2|ϕk+1

i (x)|2dx ≤ 2−1Ck + Ĉ + 1 + r2
0.

Thus setting Č := Ĉ + 1 + r2
0 we can choose Ck+1 = 2−1Ck + Č in (2.6)

with k replaced by k + 1. Then we can easily see that

Ck = 2−kC0 + Č
k−1∑
j=0

2−j ≤ C0 + 2Č,
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for any k ≥ 1. Therefore, we can choose C := (C0 + 2Č)1/2 as the constant

in (2.5), which completes the proof. �

Proof of Proposition 5. We have only to prove that any sub-

sequence of {(Φk,Φk+1)} contains a subsequence converging to a point

in Γγ,µ. Proposition 5 follows from this assertion as follows. Suppose

d((Φk,Φk+1),Γγ,µ) does not converge to 0 against the result of Proposition

5. Then we can choose a constant δ > 0 and a subsequence {(Φkj ,Φkj+1)}
such that d((Φkj ,Φkj+1),Γγ,µ) ≥ δ for any j, which contradicts the assertion

above.

Step 1. First we shall prove that any subsequence {Φkj} of {Φk} con-

tains a convergent subsequence in
⊕N
i=1 L

2(R3). A bounded subset B of

L2(Rm), m ∈ N is relatively compact if and only if
∫
|x|>R |f(x)|2dx → 0

and
∫
|ξ|>R | f(ξ)|2dξ → 0 as R → ∞ both uniformly for f ∈ B, where

f(ξ) is the Fourier transform of f(x) (cf. [16, Theorem 3]). By Lemma

12 there exists a constant C such that ‖〈x〉ϕkji (x)‖ ≤ C, 1 ≤ i ≤ N for any

kj . It follows from Remark 10 also that ‖|ξ| ϕ
kj
i (ξ)‖ ≤ C̃b, 1 ≤ i ≤ N

for any kj . Hence {Φkj} is relatively compact and contains a convergent

subsequence.

By the same argument as above we can see that there exists a Cauchy

subsequence of {Φkj−1} in
⊕N
i=1 L

2(R3). Hence we can extract a Cauchy

subsequence of {(Φkj−1,Φkj )} in (
⊕N
i=1 L

2(R3)) ⊕ (
⊕N
i=1 L

2(R3)), still de-

noted by {(Φkj−1,Φkj )}. Since by Lemma 8 and Remark 10 we have

ek ∈ [inf σ(h),−γ]N , we can further extract a subsequence so that ekj will

be a Cauchy sequence. Then using the equation F(Φkj−1)ϕ
kj
i = ε

kj
i , we can

see that

‖h(ϕ
kj1
i − ϕ

kj2
i )‖

≤ ‖(εkj1i −RΦ
kj1

−1

+ SΦ
kj1

−1

)ϕ
kj1
i − (ε

kj2
i −RΦ

kj2
−1

+ SΦ
kj2

−1

)ϕ
kj2
i ‖.

(2.9)

Noting that by the Hardy inequality we have estimates as∣∣∣∣
∫
|x− y|−1(ϕ

kj1−1

i − ϕ
kj2−1

i )∗(y)ϕ
kj1
i (y)dy

∣∣∣∣ ≤ 2‖ϕkj1−1

i − ϕ
kj2−1

i ‖‖∇ϕkj1i ‖

≤ 2C̃b‖ϕ
kj1−1

i − ϕ
kj2−1

i ‖,
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with the constant C̃b in Remark 10, it follows from (2.9) that there exists a

constant Ĉ1 > 0 such that

‖h(ϕ
kj1
i − ϕ

kj2
i )‖

≤ Ĉ1(‖Φkj1 − Φkj2‖⊕ N
i=1 L

2(R3) + ‖Φkj1−1 − Φkj2−1‖⊕ N
i=1 L

2(R3)

+ |ekj1 − ekj2 |).

Because V is ∆-bounded with a relative bound smaller than 1, ∆ is h-

bounded, and therefore, we can conclude that {Φkj} is a Cauchy sequence

in
⊕N
i=1 H

2(R3).

Step 2. In the same way as above we can see that there exists a con-

vergent subsequence of {Φkj+1} in
⊕N
i=1 H

2(R3). Besides there exists a

convergent subsequence of {(ekj , ekj+1)}. Hence we can extract a Cauchy

subsequence of {(Φkj ,Φkj+1)} in (
⊕N
i=1 H

2(R3))
⊕

(
⊕N
i=1 H

2(R3)), still de-

noted by {(Φkj ,Φkj+1)}, such that {(ekj , ekj+1)} also converges. Set

(Φ∞, Φ̃∞) := lim
j→∞

{(Φkj ,Φkj+1)},

where Φ∞ = t(ϕ∞
1 , . . . , ϕ∞

N ), Φ̃∞ = t(ϕ̃∞
1 , . . . , ϕ̃∞

N ) and

(e∞, ẽ∞) := lim
j→∞

{(ekj , ekj+1)},

where e∞ = (ε∞1 , . . . , ε∞N ), ẽ∞ = (ε̃∞1 , . . . , ε̃∞N ). Taking the limits in L2(R3)

of the both sides of

F(Φkj )ϕ
kj+1
i = ε

kj+1
i ϕ

kj+1
i ,

we obtain

F(Φ∞)ϕ̃∞
i = ε̃∞i ϕ̃∞

i .(2.10)

In order to consider the convergence of the other equation

F(Φkj−1)ϕ
kj
i = ε

kj
i ϕ

kj
i ,(2.11)

we shall prove limj→∞‖F(Φkj+1)ϕ
kj
i − F(Φkj−1)ϕ

kj
i ‖ = limj→∞

‖G(Φkj+1)ϕ
kj
i − G(Φkj−1)ϕ

kj
i ‖ = 0. Recall that E(Φk,Φk+1) converges to
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µ. Hence by Lemmas 6 and 7 for any δ > 0 there exists j0 such that for any

j ≥ j0 with appropriate N ×N unitary matrices Ǎ−
kj−1, Ǎ

+
kj+1 we have

‖Ǎ+
kj+1Φ

kj+1 − Ǎ−
kj−1Φ

kj−1‖2⊕ N
i=1 L

2(R3)

≤ ‖D
Φkj+1 −D

Φkj−1‖22
≤ 2γ−1(E(Φkj−1,Φkj )− E(Φkj ,Φkj+1)) ≤ δ.

Note also that by Remark 10 there exists a constant Ĉ2 > 0 independent of

j such that

‖Ǎ+
kj+1Φ

kj+1‖⊕ N
i=1H

1(R3) = ‖Φkj+1‖⊕ N
i=1H

1(R3) ≤ Ĉ2,

‖Ǎ−
kj−1Φ

kj−1‖⊕ N
i=1H

1(R3) = ‖Φkj−1‖⊕ N
i=1H

1(R3) ≤ Ĉ2.

Thus it follows from Lemma 11 that there exists a constant Ĉ3 > 0 such

that for j ≥ j0

‖G(Φkj+1)ϕ
kj
i − G(Φkj−1)ϕ

kj
i ‖

= ‖G(Ǎ+
kj+1Φ

kj+1)ϕ
kj
i − G(Ǎ−

kj−1Φ
kj−1)ϕ

kj
i ‖

≤ Ĉ3‖Ǎ+
kj+1Φ

kj+1 − Ǎ−
kj−1Φ

kj−1‖⊕ N
i=1 L

2(R3) ≤ Ĉ3δ
1/2.

Since we can choose arbitrarily small δ, This implies

lim
j→∞

‖G(Φkj+1)ϕ
kj
i − G(Φkj−1)ϕ

kj
i ‖ = 0.

Thus we have limj→∞F(Φkj−1)ϕ
kj
i = limj→∞F(Φkj+1)ϕ

kj
i = F(Φ̃∞)ϕ∞

i in

L2(R3). Hence taking the limits in the both sides of (2.11) we obtain

F(Φ̃∞)ϕ∞
i = ε∞i ϕ∞

i .(2.12)

The conditions E(Φ∞, Φ̃∞) = µ and ε∞i , ε̃∞i ≤ −γ follow from the definition

µ = limk→∞ E(Φk,Φk+1) and Lemma 8, and therefore, by (2.10) and (2.12)

we have (Φ∞, Φ̃∞) ∈ Γγ,µ, which completes the proof. �

3. Compactness of Critical Sets

Let Γγ,µ be the set defined at the beginning of Section 2.
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Proposition 13. For any γ > 0 and µ ∈ R, the set Γγ,µ is a compact

subset of (
⊕N
i=1 H

2(R3))
⊕

(
⊕N
i=1 H

2(R3)).

The proof of this lemma is similar to that of Proposition 5. Therefore,

we prepare the corresponding decay estimate.

Lemma 14. Let γ > 0 and µ ∈ R. Then there exists a constant C ′
γ

such that for any (Φ, Φ̃) ∈ Γγ,µ we have

‖〈x〉Φ‖⊕ N
i=1 L

2(R3), ‖〈x〉Φ̃‖⊕ N
i=1 L

2(R3) ≤ C ′
γ .

Proof. By exactly the same way as (2.8) we obtain

0 ≥− 1− (2γ)−1N2 − (4N)−1γ

N∑
j=1

‖ρmϕ̃j‖2 − 4−1γ‖ρmϕi‖2

+ 〈(V (x)− εi)ϕi, ρ
2
mϕi〉, 1 ≤ i ≤ N,

and

0 ≥− 1− (2γ)−1N2 − (4N)−1γ
N∑
j=1

‖ρmϕi‖2 − 4−1γ‖ρmϕ̃i‖2

+ 〈(V (x)− ε̃i)ϕ̃i, ρ
2
mϕ̃i〉, 1 ≤ i ≤ N.

Adding the both sides of the inequalities for 1 ≤ i ≤ N and noting that

εi, ε̃i ≤ −γ we have

0 ≥ −2N−γ−1N3+

N∑
i=1

〈(V (x)+γ/2)ϕi, ρ
2
mϕi〉+

N∑
i=1

〈(V (x)+γ/2)ϕi, ρ
2
mϕi〉.

Let r1 > 0 be a constant such that |V (x)| ≤ γ/4 for |x| > r1. Decomposing

the integral into those on |x| ≤ r1 and |x| > r1 we have

4−1γ
N∑
i=1

∫
|x|>r1

ρ2
m(x)(|ϕi(x)|2 + |ϕ̃i(x)|2)dx

≤ 2N + γ−1N3 +

N∑
i=1

∫
|x|≤r1

ρ2
m(x)(|V (x)|+ γ/2)(|ϕi(x)|2 + |ϕ̃i(x)|2)dx

≤ 2N + γ−1N3 + N(1 + r2
1)

(
4
∑
l

ZlC̃b + γ

)
,
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where C̃b is the constant in Remark 10. Fatou’s lemma yields

4−1γ

N∑
i=1

∫
|x|>r1

〈x〉2(|ϕi(x)|2 + |ϕ̃i(x)|2)dx

≤ 2N + γ−1N3 + N(1 + r2
1)

(
4
∑
l

ZlC̃b + γ

)
.

Noting that ∫
|x|≤r1

〈x〉2(|ϕi(x)|2 + |ϕ̃i(x)|2)dx ≤ 2(1 + r2
1),

we obtain

N∑
i=1

(‖〈x〉ϕi‖2 + ‖〈x〉ϕ̃i‖2)

≤ 4γ−1

(
2N + γ−1N3 + N(1 + r2

1)

(
4
∑
l

ZlC̃b + γ

))
+ 2N(1 + r2

1).

Thus if we set

C ′
γ :=

{
4γ−1

(
2N + γ−1N3 + N(1 + r2

1)

(
4
∑
l

ZlC̃b + γ

))

+ 2N(1 + r2
1)

}1/2

,

the result follows. �

Proof of Proposition 13. Let {(Φk, Φ̃k)} ⊂ Γγ,µ be an arbitrary

sequence in Γγ,µ. Using Lemma 14 in the same way as in the proof of Propo-

sition 5 we can see that there exists a subsequence {(Φkj , Φ̃kj )} of {(Φk, Φ̃k)}
converging to a point (Φ∞, Φ̃∞) in (

⊕N
i=1 H

2(R3))
⊕

(
⊕N
i=1 H

2(R3)),

and the associated orbital energies ekj and ẽkj converge to some e∞ =

(ε∞1 , . . . , ε∞N ) and ẽ∞ = (ε̃∞1 , . . . , ε̃∞N ) respectively. Taking the limits in the

both sides of

F(Φ̃kj )ϕ
kj
i = ε

kj
i ϕ

kj
i

F(Φkj )ϕ̃
kj
i = ε̃

kj
i ϕ̃

kj
i

1 ≤ i ≤ N,
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we obtain

F(Φ̃∞)ϕ∞
i = ε∞i ϕ∞

i

F(Φ∞)ϕ̃∞
i = ε̃∞i ϕ̃∞

i

1 ≤ i ≤ N.

Since E(Φ∞, Φ̃∞) = µ and ε∞i , ε̃∞i ≤ −γ, 1 ≤ i ≤ N obviously hold, we can

see that (Φ∞, Φ̃∞) ∈ Γγ,µ, which completes the proof. �

4. Fredholm Property of Fréchet Derivatives

In this section we prove that the Fréchet second derivatives of an auxil-

iary functional are decomposed into sums of an isomorphism and a compact

operator. Denote by

X := (

N⊕
i=1

H2(R3))
⊕

(

N⊕
i=1

H2(R3))
⊕

R
N
⊕

R
N ,

and

Z := (
N⊕
i=1

L2(R3))
⊕

(

N⊕
i=1

L2(R3))
⊕

R
N
⊕

R
N ,

the direct sums of Banach spaces regarding
⊕N
i=1 H

2(R3) and
⊕N
i=1 L

2(R3)

as real Banach spaces with respect to multiplication by real numbers. Let

us introduce an auxiliary functional. We define a functional f : X → R by

f(Φ, Φ̃, e, ẽ) := E(Φ, Φ̃)−
N∑
i=1

εi(‖ϕi‖2 − 1)−
N∑
i=1

ε̃i(‖ϕ̃i‖2 − 1).(4.1)

We also define a bilinear form 〈〈·, ·〉〉 on X and Z by

〈〈[Φ1, Φ̃1, e1, ẽ1], [Φ2, Φ̃2, e2, ẽ2]〉〉 :=2

N∑
i=1

Re 〈ϕ1
i , ϕ

2
i 〉+ 2

N∑
i=1

Re 〈ϕ̃1
i , ϕ̃

2
i 〉

+
N∑
i=1

ε1i ε
2
i +

N∑
i=1

ε̃1i ε̃
2
i ,

for [Φ1, Φ̃1, e1, ẽ1] ∈ X and [Φ2, Φ̃2, e2, ẽ2] ∈ Z. Then the Fréchet derivative

of f is given by

df([Φ0, Φ̃0, e0, ẽ0], [Φ1, Φ̃1, e1, ẽ1]) = 〈〈[Φ1, Φ̃1, e1, ẽ1], F (Φ0, Φ̃0, e0, ẽ0)〉〉,
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where F : X → Z is defined by

F (Φ, Φ̃, e, ẽ)

=
[
t(F1(Φ, Φ̃, e), . . . , FN (Φ, Φ̃, e)), t(F1(Φ̃,Φ, ẽ), . . . , FN (Φ̃,Φ, ẽ)),

(1− ‖ϕ1‖2, . . . , 1− ‖ϕN‖2), (1− ‖ϕ̃1‖2, . . . , 1− ‖ϕ̃N‖2)
]
.

Here Fi : (
⊕N
i=1 H

2(R3))
⊕

(
⊕N
i=1 H

2(R3))
⊕

R
N → L2(R3) is given by

Fi(Φ, Φ̃, e) := F(Φ̃)ϕi − εiϕi.

Lemma 15. For any [Φ′, Φ̃′, e′, ẽ′] ∈ X satisfying ε′i, ε̃
′
i < 0, 1 ≤ i ≤

N , the Fréchet derivative F ′(Φ′, Φ̃′, e′, ẽ′) of F (Φ, Φ̃, e, ẽ) at [Φ′, Φ̃′, e′, ẽ′] is

written as

F ′(Φ′, Φ̃′, e′, ẽ′) = L + M,

where e′ = (ε′1 . . . , ε
′
N ), ẽ′ = (ε̃′1 . . . , ε̃

′
N ), L is an isomorphism of X onto Z

and M is a compact operator.

Proof. By the assumption clearly there exists a constant ε > 0 such

that ε′i, ε̃
′
i ≤ −ε, 1 ≤ i ≤ N . For a mapping G(Φ, Φ̃) : (

⊕N
i=1 H

2(R3))
⊕

(
⊕N
i=1 H

2(R3)) → L2(R3) we denote by G′
ϕi

= G′
ϕi

(Φ′, Φ̃′) : H2(R3) →
L2(R3) the partial derivative

G′
ϕi

(Φ′, Φ̃′)h

:= lim
t→0

[G(ϕ′
1 . . . , ϕ

′
i + th, . . . , ϕ′

N , Φ̃
′)−G(ϕ′

1 . . . , ϕ
′
i, . . . , ϕ

′
N , Φ̃

′)]/t,

with respect to ϕi at (Φ′, Φ̃′), where Φ′ = t(ϕ′
1, . . . , ϕ

′
N ), Φ̃′ = t(ϕ̃′

1, . . . , ϕ̃
′
N ).

The partial derivative G′
ϕ̃i

= G′
ϕ̃i

(Φ′, Φ̃′) : H2(R3)→ L2(R3) with respect to

ϕ̃i at (Φ′, Φ̃′) is defined in the same way. For fixed e′ and ẽ′ we shall consider

the Fréchet derivative of the mapping F̌ (Φ, Φ̃) : (
⊕N
i=1 H

2(R3))
⊕

(
⊕N
i=1 H

2

(R3))→ (
⊕N
i=1 L

2(R3))
⊕

(
⊕N
i=1 L

2(R3)) given by

F̌ (Φ, Φ̃)

:= [t(F1(Φ, Φ̃, e
′), . . . , FN (Φ, Φ̃, e′)), t(F1(Φ̃,Φ, ẽ

′), . . . , FN (Φ̃,Φ, ẽ′))].
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The Fréchet derivative

F̌ ′(Φ′, Φ̃′) : (
N⊕
i=1

H2(R3))
⊕

(
N⊕
i=1

H2(R3))→ (
N⊕
i=1

L2(R3))
⊕

(
N⊕
i=1

L2(R3)),

of F̌ at (Φ′, Φ̃′) can be expressed as a 2N × 2N matrix of operators from

H2(R3) to L2(R3) as

F̌ ′(Φ′, Φ̃′) =

(
K(Φ̃′, e′) TΦ′,Φ̃′

T Φ̃′,Φ′
K(Φ′, ẽ′)

)
,(4.2)

where K(Φ̃′, e′) is a diagonal matrix defined by

K(Φ̃′, e′) := diag [F(Φ̃′)− ε′1, . . . ,F(Φ̃′)− ε′N ],

and the N ×N matrix TΦ′,Φ̃′
of operators is given by

TΦ′,Φ̃′

ij = [Fi(Φ, Φ̃, e
′)]′ϕ̃j

= ŜΦ′,Φ̃′

ij + ŠΦ′,Φ̃′

ij −QΦ′,Φ̃′

ij − ŠΦ̃′,Φ′

ji .

Here

(ŜΦ′,Φ̃′

ij w)(x) :=

(∫
|x− y|−1ϕ̃′

j(y)w(y)dy

)
ϕ′
i(x),

(ŠΦ′,Φ̃′

ij w)(x) :=

(∫
|x− y|−1w(y)ϕ̃′

j(y)dy

)
ϕ′
i(x),

(QΦ′,Φ̃′

ij w)(x) :=

(∫
|x− y|−1ϕ̃′

j(y)ϕ
′
i(y)dy

)
w(x).

Let us define the matrices ŜΦ′,Φ̃′
, ŠΦ′,Φ̃′

and QΦ′,Φ̃′
by the matrix elements

ŜΦ′,Φ̃′

ij , ŠΦ′,Φ̃′

ij and QΦ′,Φ̃′

ij respectively. We can rewrite (4.2) as

F̌ ′(Φ′, Φ̃′) = K + T ,

with

K :=

(
K(Φ̃′, e′) 0

0 K(Φ′, ẽ′)

)
, T :=

(
0 TΦ′,Φ̃′

T Φ̃′,Φ′
0

)
.
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The matrices Ŝ, Š and Q are defined replacing TΦ′,Φ̃′
in T by ŜΦ′,Φ̃′

, ŠΦ′,Φ̃′

and QΦ′,Φ̃′
respectively. Then we have

T = Ŝ + Š − Q − tŠ.

On the other hand K is decomposed as

K = H+R− S,

where

H := diag [h− ε′1, . . . , h− ε′N , h− ε̃′1, . . . , h− ε̃′N ],

R := diag [RΦ̃′
, . . . , RΦ̃′

, RΦ′
, . . . , RΦ′

],

S := diag [SΦ̃′
, . . . , SΦ̃′

, SΦ′
, . . . , SΦ′

].

Since SΦ̃′
ii , SΦ′

ii , ŜΦ′,Φ̃′

ij and ŠΦ′,Φ̃′

ij are integral operators of the Hilbert-

Schmidt type, they are compact. Thus S, Ŝ, Š and tŠ are compact op-

erators.

We shall show that R − Q is a positive definite operator as an op-

erator on the Hilbert space (
⊕N
i=1 L

2(R3))
⊕

(
⊕N
i=1 L

2(R3)). Set W :=
t(w1, . . . , wN , w̃1, . . . , w̃N ) ∈ (

⊕N
i=1 L

2(R3))
⊕

(
⊕N
i=1 L

2(R3)). Then we

have

〈W, (R−Q)W 〉 =
N∑
i=1

〈wi, RΦ̃′
wi〉+

N∑
i=1

〈w̃i, RΦ′
w̃i〉

−
N∑
i,j=1

〈wi, QΦ′,Φ̃′

ij w̃j〉 −
N∑
i,j=1

〈w̃i, QΦ̃′,Φ′

ij wj〉

=
N∑
i,j=1

{〈wi, QΦ̃′
jjwi〉+ 〈w̃j , QΦ′

ii w̃j〉

− 〈wi, QΦ′,Φ̃′

ij w̃j〉 − 〈w̃j , QΦ̃′,Φ′

ji wi〉}.

(4.3)

On the other hand we have∫
|x− y|−1|wi(x)ϕ̃′

j(y)− w̃j(x)ϕ′
i(y)|2dxdy

= 〈wi, QΦ̃′
jjwi〉+ 〈w̃j , QΦ′

ii w̃j〉 − 〈wi, QΦ′,Φ̃′

ij w̃j〉 − 〈w̃j , QΦ̃′,Φ′

ji wi〉.
(4.4)
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Since the left-hand side is positive, the right-hand side is also positive.

Therefore, comparing (4.3) with (4.4) we can see that R −Q is a positive

definite operator.

Next we shall consider H. We denote the resolution of identity of h by

E(λ). Then we can decompose h as

h = hE(−ε/2) + h(1− E(−ε/2)).

Thus H is decomposed as H = H1 +H2, where

H1 :=diag [h(1− E(−ε/2))− ε′1, . . . , h(1− E(−ε/2))− ε′N ,

h(1− E(−ε/2))− ε̃′1, . . . , h(1− E(−ε/2))− ε̃′N ],

and

H2 := diag [hE(−ε/2), . . . , hE(−ε/2), hE(−ε/2), . . . , hE(−ε/2)].

Since ε′i, ε̃
′
i ≤ −ε, 1 ≤ i ≤ N we have h(1 − E(−ε/2)) − ε′i ≥ ε/2, and

h(1 − E(−ε/2)) − ε̃′i ≥ ε/2, so that H1 ≥ ε/2. As for H2, inf σess(h) =

0 implies that hE(−ε/2) is a compact operator. Thus H2 is a compact

operator.

The Fréchet derivative F̌ ′(Φ′, Φ̃′) is written as

F̌ ′(Φ′, Φ̃′) = H1 +H2 +R− S + Ŝ + Š − Q − tŠ = L+M,

where L := H1 +R−Q andM := H2−S+ Ŝ+ Š − tŠ. Since H1 ≥ ε/2 and

R−Q ≥ 0, we have L ≥ ε/2, and thus L is invertible. Since L can be re-

garded as a self-adjoint operator in (
⊕N
i=1 L

2(R3))
⊕

(
⊕N
i=1 L

2(R3)), we can

see that RanL = (
⊕N
i=1 L

2(R3))
⊕

(
⊕N
i=1 L

2(R3)) and it is an isomorphism

of (
⊕N
i=1 H

2(R3))
⊕

(
⊕N
i=1 H

2(R3)) onto (
⊕N
i=1 L

2(R3))
⊕

(
⊕N
i=1 L

2(R3)).

Moreover, since each term inM is a compact operator,M is also a compact

operator.

For fixed Φ′, Φ̃′ we set

F̂ (e, ẽ) := t(F1(Φ
′, Φ̃′, e), . . . , FN (Φ′, Φ̃′, e), F1(Φ̃

′,Φ′, ẽ), . . . , FN (Φ̃′,Φ′, ẽ)).
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Then we obtain

F ′(Φ′, Φ̃′, e′, ẽ′)[Φ, Φ̃, e, ẽ]

= [F̌ ′(Φ′, Φ̃′)[Φ, Φ̃] + F̂ ′(e′, ẽ′)[e, ẽ],

− 2Re 〈ϕ1, ϕ
′
1〉, . . . ,−2Re 〈ϕN , ϕ′

N 〉,
− 2Re 〈ϕ̃1, ϕ̃

′
1〉, . . . ,−2Re 〈ϕ̃N , ϕ̃′

N 〉]
= L[Φ, Φ̃, e, ẽ] + M [Φ, Φ̃, e, ẽ],

where

L[Φ, Φ̃, e, ẽ] := [L[Φ, Φ̃], e, ẽ],

M [Φ, Φ̃, e, ẽ]

:= [M[Φ, Φ̃]− [eΦ′, ẽΦ̃′],−2Re 〈ϕ1, ϕ
′
1〉 − ε1, . . . ,−2Re 〈ϕN , ϕ′

N 〉 − εN ,

− 2Re 〈ϕ̃1, ϕ̃
′
1〉 − ε̃1, . . . ,−2Re 〈ϕ̃N , ϕ̃′

N 〉 − ε̃N ].

Here eΦ′ := t(ε1ϕ
′
1, . . . , εNϕ

′
N ). We can easily see that L is an isomorphism

and M is a compact operator, which completes the proof. �

5. %Lojasiewicz Inequality

The )Lojasiewicz inequality for functionals that satisfy a certain condition

is crucial for the proof of the convergence of SCF sequences. Let us denote

by ‖·‖X the norm in a Banach space X.

Definition 16. Let X and Y be real Banach spaces and O be an open

subset of X. The mapping F : O → Y is said to be real-analytic on O if

the following conditions are fulfilled:

(i) For each x ∈ O there exist Fréchet derivatives of arbitrary orders

dmF (x, . . . ).

(ii) For each x ∈ O there exists δ > 0 such that for any h ∈ X satisfying

‖h‖X < δ one has

F (x + h) =
∞∑
m=0

1

m!
dmF (x, hm),

(the convergence being locally uniform and absolute), where hm :=

[h, . . . , h] (m-times).
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Lemma 17. Let Z be a real Hilbert space equipped with an inner product

〈〈·, ·〉〉 and a norm ‖·‖Z := 〈〈·, ·〉〉1/2. Let X be a dense subspace of Z and

assume that X is a real Banach space with respect to another norm ‖·‖X
such that ‖x‖Z ≤ ‖x‖X for any x ∈ X. Moreover, let f(x) be a real-analytic

functional in X and xc a critical point of f(x). Suppose that there exists a

real-analytic mapping F (x) : X → Z such that

(f1) df(x, y) = 〈〈y, F (x)〉〉,

(f2) F ′(xc) = L + M , where L is an isomorphism of X onto Z and M is

a compact operator.

(f3) F ′(xc) is a selfadjoint operator with the domain X, when it is regarded

as an operator in Z.

Then there exist constants κ > 0, θ ∈ (0, 1/2] and a neighborhood U(xc) of

xc such that

|f(x)− f(xc)|1−θ ≤ κ‖F (x)‖Z ,(5.1)

for any x ∈ U(xc).

For the proof of Lemma 17 we need the following real-analytic version

of the implicit function theorem.

Lemma 18 ([6, Proposition 2.1] see also [7, Lemma 3R]). Let X,Y, Z

be real Banach spaces, O ⊂ X × Y an open set and [x0, y0] ∈ O. Let

F : O → Z be a real-analytic mapping such that [F ′
y(x0, y0)]

−1 exists and

F (x0, y0) = 0. Then there exist a neighborhood U(x0) in X of the point x0

and a neighborhood U(y0) in Y of the point y0 such that U(x0)×U(y0) ⊂ O

and there exists one and only one mapping y : U(x0) → U(y0) for which

F (x, y(x)) = 0 on U(x0). Moreover, y is a real-analytic mapping on U(x0).

Proof of Lemma 17. Due to the decomposition F ′(xc) = L + M ,

F ′(xc) is a Fredholm operator (see e.g. [2, Proof of Theorem 2.1]). Thus

X1 := Ker (F ′(xc)) is finite-dimensional. Set X2 := X⊥
1 ∩X, where X⊥

1 is the

orthogonal subspace of X1 in Z. Then we have X = X1
⊕

X2. In addition,

F ′(xc) is an isomorphism of X2 onto a closed subspace Z̃ := F ′(xc)(X2)

of Z. We write x = [x1, x2], xi ∈ Xi (i = 1, 2) correspondingly to the



272 Sohei Ashida

decomposition X = X1
⊕

X2. Let us denote the norm ‖·‖X restricted to

X2 by ‖·‖X2 and the norm ‖·‖Z restricted to Z̃ by ‖·‖Z̃ with which X2 and

Z̃ are regarded as Banach spaces.

If X1 = {0}, then by the open mapping theorem F ′(xc)−1 : Z̃ → X is

continuous, and therefore, there exists a constant Č1 > 0 such that

‖x̃‖X = ‖F ′(xc)−1F ′(xc)x̃‖X ≤ Č1‖F ′(xc)x̃‖Z̃ = Č1‖F ′(xc)x̃‖Z ,(5.2)

for any x̃ ∈ X. Since by the definition of the Fréchet derivative and F (xc) =

0 we have F (x) = F (xc)+F ′(xc)(x−xc)+o(‖x−xc‖X) = F ′(xc)(x−xc)+

o(‖x−xc‖X), using (5.2) we can see that there exists a neighborhood Û(xc)

of xc and constants 0 < τ < Č−1
1 , Č2 > 0 such that

‖F (x)‖Z ≥ Č−1
1 ‖x− xc‖X − τ‖x− xc‖X ≥ Č2‖x− xc‖X ,(5.3)

for any x ∈ Û(xc). On the other hand since xc is a critical point of f(x),

by the Taylor formula (see e.g. [21, Theorem 4.A]) we have

f(x) = f(xc) +

∫ 1

0
(1− t)d2f(xc + t(x− xc), (x− xc)2)dt.

Hence we can see that there exists a constant Č3 > 0 such that

|f(x)− f(xc)| ≤ Č3‖x− xc‖2X ,(5.4)

for any x ∈ Û(xc). From (5.4) and (5.3) it is seen that (5.1) holds with

U(xc) = Û(xc), κ = Č−1
2 Č

1/2
3 and θ = 1/2 if X1 = {0}.

If X1 $= {0}, applying Lemma 18 to PZ̃ ◦ F with X = X1, Y = X2 and

Z = Z̃ it follows that there exists neighborhoods Û(xc1) of xc1, Û(xc2) of xc2
and a real-analytic mapping ω : Û(xc1) → Û(xc2) such that x = [x1, x2] ∈
Û(xc1) × Û(xc2) satisfies PZ̃ ◦ F (x) = 0 if and only if x2 = ω(x1), where

PZ̃ is the orthogonal projection from Z onto Z̃. Moreover, since F ′(xc) is

selfadjoint, we have X1 = Ker (F ′(xc)) = Ker (F ′(xc)∗) = Z̃⊥. Let ν :=

dimX1 and {v1, . . . , vν} be a basis of X1. Set v := (v1, . . . , vν). We write

t·v :=
∑ν
j=1 tjvj for t = (t1, . . . , tν) ∈ R

ν . Then any x1 ∈ Û(xc1) is expressed

as x1 = xc1 + t · v, and f(xc1 + t · v, ω(xc1 + t · v)) is a real-analytic function

of t ∈ R
ν since f and ω are real-analytic. Thus applying the )Lojasiewicz

inequality in finite-dimensional space we can see that there exist constants
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κ1, κ2 > 0, θ ∈ (0, 1/2] and a neighborhood Ǔ(xc1) of xc1 such that for any

x1 ∈ U(xc1)

|f(x1, ω(x1))− f(xc1, x
c
2)|1−θ

= |f(x1, ω(x1))− f(xc1, ω(xc1))|1−θ

= |f(xc1 + t · v, ω(xc1 + t · v))− f(xc1, ω(xc1))|1−θ

= κ1

ν∑
j=1

∣∣∣{〈〈vj , F (xc1 + t · v, ω(xc1 + t · v))〉〉

+ 〈〈ω′(xc1 + t · v)[vj ], F (xc1 + t · v, ω(xc1 + t · v))〉〉}
∣∣∣

≤ κ2‖F (xc1 + t · v, ω(xc1 + t · v))‖Z
= κ2‖F (x1, ω(x1))‖Z ,

(5.5)

where we used that ‖ω′(xc1 + t · v)[vj ]‖Z ≤ ‖ω′(xc1 + t · v)[vj ]‖X ≤ C for a

constant C > 0 independent of t such that xc1 + t · v ∈ Ǔ(xc1).

By the open mapping theorem [PZ̃F
′
x2(x

c
1, x

c
2)]

−1 : Z̃ → X2 is continu-

ous. Thus there exists a constant Č4 > 0 such that

‖x̃2‖X2 = ‖[PZ̃F ′
x2(x

c
1, x

c
2)]

−1PZ̃F
′
x2(x

c
1, x

c
2)x̃2‖X2

≤ Č4‖PZ̃F ′
x2(x

c
1, x

c
2)x̃2‖Z̃ = Č4‖PZ̃F ′

x2(x
c
1, x

c
2)x̃2‖Z ,

(5.6)

for any x̃2 ∈ X2. Since F (x) is a real-analytic mapping, choosing Û(xc1)

and Û(xc2) small enough and using (5.6) we can see that there exists Č5 > 0

such that

‖PZ̃F ′
x2(x1, ω(x1))x̃2‖Z

≥ ‖PZ̃F ′
x2(x

c
1, x

c
2)x̃2‖Z − ‖(PZ̃F ′

x2(x1, ω(x1))− PZ̃F
′
x2(x

c
1, x

c
2))x̃2‖Z

≥ Č5‖x̃2‖X2 ,

(5.7)

for any x1 ∈ Û(xc1) and x̃2 ∈ X2. Moreover, by the definition of the Fréchet

derivative and PZ̃F (x1, ω(x1)) = 0 we have

PZ̃F (x1, x2)

= PZ̃F (x1, ω(x1)) + PZ̃F
′
x2(x1, ω(x1))(x2 − ω(x1)) + o(‖x2 − ω(x1)‖X2)

= PZ̃F
′
x2(x1, ω(x1))(x2 − ω(x1)) + o(‖x2 − ω(x1)‖X2),

(5.8)
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for any x1 ∈ Û(xc1) and x2 ∈ Û(xc2). It follows from (5.7) and (5.8) that

choosing smaller Û(xc1) and Û(xc2) further there exists Č6 > 0 such that

‖PZ̃F (x1, x2)‖Z ≥ Č6‖x2 − ω(x1)‖X2 ,(5.9)

for any x1 ∈ Û(xc1) and x2 ∈ Û(xc2). Moreover, using (5.9) we can see that

there exists Č7 > 0 such that

‖F (x1, ω(x1))‖Z ≤ ‖F (x1, x2)‖Z + ‖F (x1, x2)− F (x1, ω(x1))‖Z
≤ ‖F (x1, x2)‖Z + Č7‖x2 − ω(x1)‖Z
≤ (1 + Č7Č

−1
6 )‖F (x1, x2)‖Z .

(5.10)

On the other hand, since PZ̃F (x1, ω(x1)) = 0, we have

f(x1, x2)− f(x1, ω(x1))

= 〈〈x2 − ω(x1), PZ̃⊥F (x1, ω(x1))〉〉+ O(‖x2 − ω(x1)‖2X2
),

where PZ̃⊥ is the orthogonal projection onto Z̃⊥. Since Z̃⊥ = X1 and

X1 ⊥ X2 with respect to the inner product 〈〈·, ·〉〉 in Z, the first term in the

right-hand side vanishes. Thus there exists a constant Č8 > 0 such that

|f(x1, x2)− f(x1, ω(x1))| ≤ Č8‖x2 − ω(x1)‖2X2
,(5.11)

for any x1 ∈ Û(xc1) and x2 ∈ Û(xc2). Combining (5.9) and (5.11) we obtain

|f(x1, x2)− f(x1, ω(x1))|1/2 ≤ Č−1
6 Č

1/2
8 ‖F (x1, x2)‖Z .

It follows from (5.5), (5.10) and (5.11) that for x ∈ U(xc) := (Ǔ(xc1) ∩
Û(xc1))× Û(xc2) we have

|f(x1, x2)− f(xc)|1−θ

= |f(x1, x2)− f(x1, ω(x1)) + f(x1, ω(x1))− f(xc)|1−θ

≤ 21−θ(|f(x1, x2)− f(x1, ω(x1))|1−θ + |f(x1, ω(x1))− f(xc)|1−θ)
≤ 21−θ(|f(x1, x2)− f(x1, ω(x1))|1/2 + |f(x1, ω(x1))− f(xc)|1−θ)
≤ 21−θ(Č−1

6 Č
1/2
8 + κ2(1 + Č7Č

−1
6 ))‖F (x1, x2)‖Z ,

where in the third step we assume |f(x1, x2) − f(x1, ω(x1))| < 1, which

holds if we choose sufficiently small U(xc). Thus (5.1) holds with κ =

21−θ(Č−1
6 Č

1/2
8 + κ2(1 + Č7Č

−1
6 )), which completes the proof. �
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6. Proof of the Main Theorems

For the proof of Theorem 1 the following lemma about convergence of

positive term series is needed.

Lemma 19. Let (α1, α2, . . . ) be a sequence of real numbers such that

αk > 0 for any k ≥ 1 and
∑∞
k=1

α2
k+1

αk
converges. Then

∑∞
k=1 αk converges.

Proof. Let k0 ∈ N be a fixed number. Then by the Cauchy-Schwarz

inequality we have

k0∑
k=1

αk+1 =

k0∑
k=1

αk+1

α
1/2
k

α
1/2
k ≤

(
k0∑
k=1

α2
k+1

αk

)1/2( k0∑
k=1

αk

)1/2

.

Hence we have

k0∑
k=1

αk ≤ α1 +

k0∑
k=1

αk+1 ≤ α1 +

(
k0∑
k=1

α2
k+1

αk

)1/2( k0∑
k=1

αk

)1/2

.

Dividing both sides by
(∑k0

k=1 αk

)1/2
we obtain

(
k0∑
k=1

αk

)1/2

≤ α1

(
k0∑
k=1

αk

)−1/2

+

(
k0∑
k=1

α2
k+1

αk

)1/2

≤ α
1/2
1 +

(
k0∑
k=1

α2
k+1

αk

)1/2

.

Since
∑∞
k=1

α2
k+1

αk
converges, the right-hand side is bounded by a constant

C > 0 independent of k0, and therefore, we have

k0∑
k=1

αk ≤ C2.

Since k0 was arbitrary, this implies that
∑∞
k=1 αk is convergent and

∞∑
k=1

αk ≤ C2,

which completes the proof. �
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We also need a bound of the H2 norm of differences of solutions to a

sequence of equations by the L2 norm.

Lemma 20. Let ζ > 0 be a constant and Ξk = t(ξk1 , . . . , ξ
k
N ) ∈ W, k =

0, 1, . . . be a sequence satisfying

F(Ξk−1)ξki =

N∑
j=1

εkijξ
k
j ,

with some constants εkij , 1 ≤ i, j ≤ N such that |εkij | ≤ ζ, 1 ≤ i, j ≤ N for

any k ≥ 1. Then there exists a constant βζ > 0 independent of k such that

‖Ξk+1 − Ξk−1‖⊕ N
i=1H

2(R3)

≤ βζ(‖Ξk − Ξk−2‖⊕ N
i=1 L

2(R3) + ‖Ξk+1 − Ξk−1‖⊕ N
i=1 L

2(R3)),

for any k ≥ 2.

Proof. First note that by the same proof as that of Lemma 9 we can

see that there exists a constant C̃ ′
ζ > 0 such that

‖∇ξki ‖ ≤ C̃ ′
ζ , 1 ≤ i ≤ N,(6.1)

for any k ≥ 0. It follows from the equations

F(Ξk−2)ξk−1
i =

N∑
j=1

εk−1
ij ξk−1

j ,

F(Ξk)ξk+1
i =

N∑
j=1

εk+1
ij ξk+1

j ,

(6.2)

(6.1) and Lemma 11 that there exists a constant β̃ζ > 0 independent of k

such that

‖h(ξk+1
i − ξk−1

i )‖

= ‖G(Ξk)ξk+1
i −

N∑
j=1

εk+1
ij ξk+1

j − G(Ξk−2)ξk−1
i +

N∑
j=1

εk−1
ij ξk−1

j ‖

≤ β̃ζ(‖Ξk − Ξk−2‖⊕ N
i=1 L

2(R3) + ‖Ξk+1 − Ξk−1‖⊕ N
i=1 L

2(R3)

+
N∑
j=1

|εk+1
ij − εk−1

ij |).

(6.3)
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By (6.2) we have

εk−1
ij = 〈ξk−1

j ,F(Ξk−2)ξk−1
i 〉,

εk+1
ij = 〈ξk+1

j ,F(Ξk)ξk+1
i 〉.

Thus by (6.1) and Lemma 11 there exists a constant β̂ζ > 0 independent of

k such that

|εk+1
ij − εk−1

ij | ≤ β̂ζ(‖Ξk − Ξk−2‖⊕ N
i=1 L

2(R3)

+ ‖ξk+1
i − ξk−1

i ‖+ ‖ξk+1
j − ξk−1

j ‖).
(6.4)

Since ∆ is h-bounded, the result immediately follows from (6.3) and

(6.4). �

Proof of the Theorem 1. Step 1. First note that if ‖DΦk+1 −
DΦk−1‖2 = 0 for some k, then F(Φk+1) = F(Φk−1), and thus DΦk+2 = DΦk .

Therefore, by induction we have DΦs = DΦs+2 for any s ≥ k. Then since

Φk+2t, t = 0, 1, . . . (resp., Φk+2t+1, t = 0, 1, . . . ) are tuples of the eigen-

functions corresponding to the same eigenvalues of F(Φk−1) (resp., F(Φk)),

there exist unitary matrices Ak+2t (resp., Ak+2t+1) such that ‖Ak+2tΦ
k+2t−

Φk‖ = 0 (resp., ‖Ak+2t+1Φ
k+2t+1 − Φk+1‖ = 0) for t ≥ 0. Hence the re-

sults in Theorem 1 are obvious in this case. Therefore, hereafter we assume

‖DΦk+1 − DΦk−1‖2 > 0 for any k ≥ 1. As in Section 2, E(Φk,Φk+1) is de-

creasing with respect to k and converges to some µ ∈ R. If E(Φk,Φk+1) = µ

for some k, then we have µ = E(Φk,Φk+1) ≥ E(Φk+1,Φk+2) ≥ µ, and there-

fore, E(Φk,Φk+1) = E(Φk+1,Φk+2). Recalling that by Lemma 6 we have

E(Φk,Φk+1)− E(Φk+1,Φk+2) ≥ 2−1γ‖DΦk+2 −DΦk‖22,(6.5)

we obtain ‖DΦk+2 − DΦk‖2 = 0, which contradicts the assumption above.

Thus we may also assume E(Φk,Φk+1) > µ for any k ≥ 0.

We can easily see that for any constants p ≥ q > 0 and θ̃ ∈ (0, 1/2] we

have

pθ̃ − qθ̃ ≥ θ̃

p1−θ̃
(p− q).

Applying this inequality to p = E(Φk,Φk+1)− µ, q = E(Φk+1,Φk+2)− µ we
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obtain

(E(Φk,Φk+1)− µ)θ̃ − (E(Φk+1,Φk+2)− µ)θ̃

≥ θ̃

(E(Φk,Φk+1)− µ)1−θ̃
(E(Φk,Φk+1)− E(Φk+1,Φk+2)).

(6.6)

The factor (E(Φk,Φk+1)−E(Φk+1,Φk+2)) in the right-hand side is estimated

from below by (6.5).

Step 2. As for the denominator in the right-hand side of (6.6), recalling

‖ϕki ‖, ‖ϕk+1
i ‖ = 1, 1 ≤ i ≤ N we can see that

E(Φk,Φk+1) = f(Φk,Φk+1, ek, ek+1),(6.7)

where f is the functional defined by (4.1). Set

Γ̃γ,µ := {[Φ, Φ̃, e, ẽ] : [Φ, Φ̃] ∈ Γγ,µ, εi := 〈ϕi,F(Φ̃)ϕi〉, ε̃i := 〈ϕ̃i,F(Φ)ϕ̃i〉},

and let d̃ be the distance function in (
⊕N
i=1 H

2(R3))
⊕

(
⊕N
i=1 H

2(R3))⊕
R
N
⊕

R
N . As in the proof of Proposition 5 using Lemmas 6 and 7

we can show

lim
k→∞

|〈ϕki ,F(Φk+1)ϕki 〉 − 〈ϕki ,F(Φk−1)ϕki 〉| = 0.(6.8)

Using Lemma 5, εki = 〈ϕki ,F(Φk−1)ϕki 〉 and (6.8) we can see that

lim
k→∞

d̃([Φk,Φk+1, ek, ek+1], Γ̃γ,µ) = 0.(6.9)

By Lemma 15 for any [Φ′, Φ̃′, e′, ẽ′] ∈ Γ̃γ,µ, F
′(Φ′, Φ̃′, e′, ẽ′) is decom-

posed into a sum of an isomorphism L and a compact operator M . More-

over, extending the domain of 〈〈·, ·〉〉 from X × Z to Z × Z in the ob-

vious way, Z can be regarded as a real Hilbert space equipped with the

inner product 〈〈·, ·〉〉. Since the Fréchet derivative is symmetric [21, Prob-

lem 4.3], we have d2f(z1, [z2, z3]) = d2f(z1, [z3, z2]) = 〈〈z2, F
′(z1)z3〉〉 =

〈〈z3, F
′(z1)z2〉〉 = 〈〈F ′(z1)z2, z3〉〉 for any z1, z2, z3 ∈ X . Thus F ′(z1) is a

symmetric operator with the domain X ⊂ Z. The operator F ′(z1) is a sum

of H̃ := diag [h, . . . , h, 0, . . . , 0] (h appears 2N times) and a bounded oper-

ator, and H̃ is a selfadjoint operator with the domain X in the real Hilbert
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space Z equipped with the inner product 〈〈·, ·〉〉, which follows from that h

is a selfadjoint operator with the domain H2(R3) in L2(R3) equipped with

the usual inner product. Thus F ′(z1) is also a selfadjoint operator with the

domain X . It is also easily seen that f and F are real-analytic. Therefore,

we can apply Lemma 17 to f and see that there exist a neighborhood U of

[Φ′, Φ̃′, e′, ẽ′] and constants κ > 0 and θ ∈ (0, 1/2] such that

|f(Φ, Φ̃, e, ẽ)− µ|1−θ ≤ κ‖F (Φ, Φ̃, e, ẽ)‖Z ,

for any [Φ, Φ̃, e, ẽ] ∈ U . Because by Proposition 13 Γγ,µ and therefore, Γ̃γ,µ
are compact, we can choose a finite cover of Γ̃γ,µ from such neighborhoods.

Therefore, by (6.9) there exist κ̃ > 0, θ̃ ∈ (0, 1/2] and k1 ∈ N such that

|f(Φk,Φk+1, ek, ek+1)− µ|1−θ̃ ≤ κ̃‖F (Φk,Φk+1, ek, ek+1)‖Z ,(6.10)

for any k ≥ k1. Since ‖ϕki ‖, ‖ϕk+1
i ‖ = 1, 1 ≤ i ≤ N and F(Φk)ϕk+1

i =

εk+1
i ϕk+1

i , 1 ≤ i ≤ N , we can see that the R
N
⊕

R
N component and the

second
⊕N
i=1 L

2(R3) component of F (Φk,Φk+1, ek, ek+1) vanish. Thus we

have

‖F (Φk,Φk+1, ek, ek+1)‖Z =

(
N∑
i=1

‖F(Φk+1)ϕki − εki ϕ
k
i ‖2L2(R3)

)1/2

.

Using F(Φk−1)ϕki = εki ϕ
k
i we obtain

‖F (Φk,Φk+1, ek, ek+1)‖Z =

(
N∑
i=1

‖F(Φk+1)ϕki −F(Φk−1)ϕki ‖2L2(R3)

)1/2

=

(
N∑
i=1

‖G(Φk+1)− G(Φk−1))ϕki ‖2L2(R3)

)1/2

.

(6.11)

Let us denote by A+
k+1, A

−
k−1 the N × N unitary matrices A and Ã in

Lemma 7 with Φ and Φ̃ replaced by Φk+1 and Φk−1 respectively, namely we

have

‖DΦk+1 −DΦk−1‖2 ≥ ‖A+
k+1Φ

k+1 −A−
k−1Φ

k−1‖⊕ N
i=1 L

2(R3)

= ‖Ξ̃k+1
+ − Ξ̃k−1

− ‖⊕ N
i=1 L

2(R3),
(6.12)
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where Ξ̃k+1
+ := A+

k+1Φ
k+1, Ξ̃k−1

− := A−
k−1Φ

k−1. Then it is easily seen that

G(Φk+1) = G(Ξ̃k+1
+ ), G(Φk−1) = G(Ξ̃k−1

− ). Therefore, using Lemma 11 and

(6.12) we can see that there exists a constant C̆ such that

N∑
i=1

‖(G(Φk+1)− G(Φk−1))ϕki ‖2L2(R3) =
N∑
i=1

‖(G(Ξ̃k+1
+ )− G(Ξ̃k−1

− ))ϕki ‖2L2(R3)

≤ C̆‖Ξ̃k+1
+ − Ξ̃k−1

− ‖2⊕ N
i=1 L

2(R3)

≤ C̆‖DΦk+1 −DΦk−1‖22.

Combining this inequality, (6.10) and (6.11) we obtain

|f(Φk,Φk+1, ek, ek+1)− µ|1−θ̃ ≤ κ̃C̆1/2‖DΦk+1 −DΦk−1‖2,(6.13)

for k ≥ k1.

Step 3. It follows from (6.5)–(6.7) and (6.13) that

(E(Φk,Φk+1)− µ)θ̃ − (E(Φk+1,Φk+2)− µ)θ̃

≥ θ̃

κ̃C̆1/2‖DΦk+1 −DΦk−1‖2
(2−1γ‖DΦk+2 −DΦk‖22),

for k ≥ k1. Since the sum of the left-hand side for k = 1, 2, . . . is finite,

the corresponding sum of the right-hand side is also convergent. Setting

αk := ‖DΦk+1 −DΦk−1‖2 this sum is written as

θ̃γ

2κ̃C̆1/2

∞∑
k=1

α2
k+1

αk
.

Hence by Lemma 19 we can see that

∞∑
k=1

αk =
∞∑
k=1

‖DΦk+1 −DΦk−1‖2,

is convergent.

Let us define unitary matrices Ãk so that

‖Ãk+1Ξ̃
k+1
− − Ãk−1Ξ̃

k−1
− ‖⊕ N

i=1 L
2(R3) = ‖Ξ̃k+1

+ − Ξ̃k−1
− ‖⊕ N

i=1 L
2(R3),
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will hold for any k ≥ 1. We set Ã0 := I, Ã1 := I, where I is the identity

matrix. Assume that Ãk−1 has been defined. Since Ãk−1 is unitary and

Ξk+1
+ = A+

k+1(A
−
k+1)

−1Ξk+1
− , we have

‖Ξ̃k+1
+ − Ξ̃k−1

− ‖⊕ N
i=1 L

2(R3)

= ‖Ãk−1A
+
k+1(A

−
k+1)

−1Ξ̃k+1
− − Ãk−1Ξ̃

k−1
− ‖⊕ N

i=1 L
2(R3).

Thus we should set Ãk+1 := Ãk−1A
+
k+1(A

−
k+1)

−1. Consequently, we obtain

Ã2k = A+
2 (A−

2 )−1 · · ·A+
2(k−1)(A

−
2(k−1))

−1A+
2k(A

−
2k)

−1,

Ã2k+1 = A+
3 (A−

3 )−1 · · ·A+
2(k−1)+1(A

−
2(k−1)+1)

−1A+
2k+1(A

−
2k+1)

−1,

for k ≥ 1. Now set A0 := I, A1 := I and A2k := Ã2kA
−
2k, A2k+1 :=

Ã2k+1A
−
2k+1 for k ≥ 1. Then if we define Ξk := AkΦ

k for k ≥ 0, we have

‖Ξk+1 − Ξk−1‖⊕ N
i=1 L

2(R3) = ‖Ξ̃k+1
+ − Ξ̃k−1

− ‖⊕ N
i=1 L

2(R3),(6.14)

for any k ≥ 1. Since {Φk} satisfies F(Φk)ϕk+1
i = εk+1

i ϕk+1
i , 1 ≤ i ≤ N , we

can see that Ξk satisfies F(Ξk)ξk+1
i =

∑N
j=1 ε

k+1
ij ξk+1

j , 1 ≤ i ≤ N , where εkij
is the (i, j)th entry of the matrix Ak(diag [εk1, . . . , ε

k
N ])A−1

k . Noting that Ak
is a unitary matrix we have

∑N
i,j=1 |εkij |2 =

∑N
i=1 |εki |2 ≤ N | inf σ(h)|2. Thus

we can apply Lemma 20 to {Ξk}, which combined with (6.14) and (6.12)

yields

∞∑
k=1

‖Ξk+1 − Ξk−1‖⊕ N
i=1H

2(R3)

≤ 2βζ

∞∑
k=1

‖Ξk+1 − Ξk−1‖⊕ N
i=1 L

2(R3) + ‖Ξ2 − Ξ0‖⊕ N
i=1H

2(R3)

= 2βζ

∞∑
k=1

‖Ξ̃k+1
+ − Ξ̃k−1

− ‖⊕ N
i=1 L

2(R3) + ‖Ξ2 − Ξ0‖⊕ N
i=1H

2(R3)

≤ 2βζ

∞∑
k=1

αk + ‖Ξ2 − Ξ0‖⊕ N
i=1H

2(R3) <∞,

with ζ := N1/2| inf σ(h)|. Thus there exist limits Ξ∞ := limk→∞ Ξ2k and

Ξ̃∞ := limk→∞ Ξ2k+1 in
⊕N
i=1 H

2(R3). Now noting that DΞk = DΦk , that
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limk→∞DΞ2k = DΞ∞ , limk→∞DΞ2k+1 = DΞ̃∞ with respect to the topology

of L(L2(R3)), that DΦ2k and DΦ2k+1 converge in T2, and that ‖·‖L(L2(R3)) ≤
‖·‖2 (cf. [17, Theorem VI.22 (d)]) the results in Theorem 1 follow, and the

proof is completed. �

Proof of Theorem 3. (1) Since Ξ2k converges to Ξ∞ in⊕N
i=1 H

2(R3), the operator F(Φ2k)− F(Ξ∞) = G(Ξ2k)− G(Ξ∞) converges

to 0 in L(L2(R3)). Thus by the upper semicontinuity of the spectrum (see

e.g. [10, Theorems IV 1.16 and IV 3.18]) and the uniform well-posedness,

for any δ > 0 there exist k′ ∈ N and a constant v ∈ R such that the N

smallest eigenvalues of F(Ξ∞) and F(Φ2k) for k ≥ k′ are smaller than v

and the rest of the spectra of them are larger than v + γ − δ, which proves

(1) for F(Ξ∞). The proof for F(Ξ̃∞) is exactly the same.

(2) By the proof of (1) there exists a closed curve g in C such that the N

smallest eigenvalues of F(Ξ∞) and F(Φ2k) for k ≥ k′ are enclosed by g, and

the distances between g and the spectra of F(Ξ∞) and F(Φ2k) for k ≥ k′ are

larger than γ/3. Thus using the representation PΦ = −(2πi)−1
∮
g(F(Φ) −

z)−1dz of the projections PΦ to the direct sum of the eigenspaces of F(Φ)

we can see that limk→∞ PΦ2k = PΞ∞ in L(L2(R3)). Hence with ξ2k+1
i in the

proof of Theorem 1 we have

ξ̃∞i = lim
k→∞

ξ2k+1
i = lim

k→∞
PΦ2kξ2k+1

i = PΞ∞ ξ̃∞i , 1 ≤ i ≤ N,

where Ξ̃∞ = t(ξ̃∞1 , . . . , ξ̃∞N ). This means that Ξ̃∞ is an orthonormal basis

of HΞ∞ := RanPΞ∞ . In the same way we can also prove that Ξ∞ is an

orthonormal basis of the direct sum HΞ̃∞ := RanPΞ̃∞ .

Let Φ̂∞ = t(ϕ̂1, . . . , ϕ̂N ) be a tuple of the eigenfunctions of F(Ξ∞) cor-

responding to the N smallest eigenvalues ε̂∞1 , . . . , ε̂∞N ∈ R as above Theorem

3. Then Φ̂∞ is an orthonormal basis of HΞ∞ and

F(Ξ∞)ϕ̂∞
i = ε̂∞i ϕ̂∞

i , 1 ≤ i ≤ N.(6.15)

Thus Φ̂∞ and Ξ̃∞ are orthonormal bases of the same space HΞ∞ . Therefore,

there exists a unitary matrix A∞ such that Ξ̃∞ = A∞Φ̂∞. We note here

that F(Ξ̃∞) = F(Φ̂∞) also holds.

Next we shall prove ε̂∞i = limk→∞ ε2k+1
i , 1 ≤ i ≤ N . From the proof of
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Theorem 1 it follows that there exists a Hermitian matrix (ε̃∞ij ) such that

F(Ξ∞)ξ̃∞i =
N∑
j=1

ε̃∞ij ξ̃
∞
j , 1 ≤ i ≤ N.

Thus by (6.15) we can see that diag [ε̂∞1 , . . . , ε̂∞N ] = A−1
∞ (ε̃∞ij )A∞. Since

(ε̃∞ij ) is the limit of the Hermitian matrices (ε2k+1
ij ) whose eigenvalues are

(ε2k+1
1 , . . . , ε2k+1

N ), the perturbation theorem for the eigenvalues of Hermitian

matrices (see e.g. [4, Problem 1.17]) yields ε̂∞i = limk→∞ ε2k+1
i , 1 ≤ i ≤ N .

(3) If Ξ∞ = ΘΞ̃∞, we have F(Ξ∞) = F(Ξ̃∞) and thus

F(Ξ∞) = F(Ξ̃∞) = F(Φ̂∞).

Hence by (6.15) we have

F(Φ̂∞)ϕ̂∞
i = ε̂∞i ϕ̂∞

i , 1 ≤ i ≤ N,

which means that Φ̂∞ is a solution to the Hartree-Fock equation.

(4) Assume that Φ̂∞ forms an orthonormal basis of the direct sum of the

eigenspaces of the N smallest eigenvalues of F(Φ̂∞). Then recalling that

F(Φ̂∞) = F(Ξ̃∞) it follows that Φ̂∞ is an orthonormal basis of HΞ̃∞ . Since

Φ̂∞ is an orthonormal basis also of HΞ∞ , we have HΞ̃∞ = HΞ∞ , which im-

plies that Ξ∞ and Ξ̃∞ are orthonormal bases of the same space. Therefore,

there exists a unitary matrix Θ such that Ξ∞ = ΘΞ̃∞.

(5) This result follows from (2) if we prove that the necessary and sufficient

condition that Φ, Φ̃ ∈ W satisfy DΦ = DΦ̃ is that there exists a unitary

matrix Â such that Φ = ÂΦ̃. The sufficiency is obvious. The necessity

follows from that Φ is an orthonormal basis of RanDΦ, which was also

mentioned in Section 1.�
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