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The Extension of Holomorphic Functions

on a Non-Pluriharmonic Locus

By Yusaku Tiba

Abstract. Let n ≥ 4 and let Ω be a bounded hyperconvex do-
main in C

n. Let ϕ be a negative exhaustive smooth plurisubharmonic
function on Ω. We show that any holomorphic function defined on
a connected open neighborhood of the support of (i∂∂ϕ)n−3 can be
extended to a holomorphic function on Ω.

1. Introduction

Hartogs’s extension theorem is stated as follows:

Let Ω be an open subset in C
n (n ≥ 2) and let K ⊂ Ω be a compact

subset such that Ω \ K is connected. Then any holomorphic function on

Ω \K can be extended to a holomorphic function on Ω.

This is one of the major difference between the theory of one and several

complex variables since any open subset is a domain of holomorphy in the

case of one variable. In this paper, we give a new example of a subdomain

such that any holomorphic function on the subdomain can be extended

holomorphically to the entire domain.

Let T be a smooth form or a current in a domain in C
n. We denote by

suppT the support of T . Our main theorem is the following:

Theorem 1. Let n ≥ 4 and Ω be a bounded hyperconvex domain in

C
n. Let ϕ be a negative smooth plurisubharmonic function on Ω such that

ϕ(z) → 0 when z → ∂Ω. Let V ⊂ Ω be a connected open neighborhood of

supp (i∂∂ϕ)n−3. Then any holomorphic function on V can be extended to a

holomorphic function on Ω.

If a holomorphic function is defined on a non-pluriharmonic locus, we

can remove the assumption of the regularity of ϕ.
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Theorem 2. Let n ≥ 4 and Ω be a bounded hyperconvex domain in

C
n. Let ϕ be a negative continuous plurisubharmonic function on Ω such

that ϕ(z) → 0 when z → ∂Ω. Let V ⊂ Ω be a connected open neighborhood

of supp i∂∂ϕ. Then any holomorphic function on V can be extended to a

holomorphic function on Ω.

We explain a motivation of Theorem 1. Let E be a compact subset of C
n.

We define the Shilov boundary of E by the smallest closed subset ∂SE of E

such that, for each function f which is holomorphic on a neighborhood of E

the equality maxE |f | = max∂SE |f | holds. Let Bϕ(r) = {z ∈ Ω |ϕ(z) < r}
and let x ∈ Bϕ(r). It is known that there exists a probability measure

µx supported on ∂SBϕ(r) such that f(x) =
∫
fdµx for any holomorphic

functions on an open neighborhood of Bϕ(r) (see [7]). This measure is

called Jensen measure. Hence we may consider that Shilov boundaries of

Bϕ(r) (r < 0) are important for the existence of holomorphic functions

on Ω. On the other hand, [1] shows that there exists a complex foliation

on Ω \ supp (i∂∂ϕ)j (1 ≤ j ≤ n) by complex submanifolds such that the

restriction of ϕ on any leaf of the foliation is pluriharmonic. It follows

that, for any z ∈ Ω \ supp (i∂∂ϕ)n−1, there exists a complex curve through

z contained in a level set of ϕ. Then z is not contained in the Shilov

boundaries of level sets of ϕ. In this context, it might be interesting to ask

whether one can extend holomorphic functions defined on supp (i∂∂ϕ)n−1 to

the holomorphic functions on Ω. In our theorem, we show that this question

is true if supp (i∂∂ϕ)n−1 is replaced by supp (i∂∂ϕ)n−3.

The proof consists in solving ∂ equation in the L2-space defined by

the degenerate Monge-Ampère measure. In Section 3, we prove Donnelly-

Fefferman and Berndtsson type L2-estimate ([6], [3]) . In Lemma 1 and

Lemma 3, we use the argument in Theorem 2.3 of [4] to prove our L2-

estimate from (2) below. We solve ∂ equations in the L2-spaces defined

by the complete Kähler metrics which converge to −i∂∂(log(−ϕ)), which is

no longer a Kähler metric in general. To guarantee the weak convergence

of solutions constructed in Section 3, we show an interior estimate of the

solutions. Section 4 can be read independently of other sections.

After this work appeared in arXiv, Lee and Nagata [10] generalizes the

main result of this paper. Their proof, which uses L2 Serre duality, is simpler

than ours. However, the estimates in Section 4 are not contained in [10] and

we think it has some meaning to publish this paper.
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2. Preliminaries

First we introduce the set up and some notations. For details, we refer

to [5]. Let Ω be a domain in C
n and let ω be a Kähler metric on Ω. Let ψ

be a smooth function on Ω. By L2
p,q(Ω, e

ψ, ω) we denote the Hilbert space

of (p, q)-forms α which satisfy

‖α‖2
ψ,ω :=

∫
Ω
|α|2ωeψdVω.

Here dVω = (n!)−1ωn. For simplicity we put L2(Ω, eψ, ω) = L2
0,0(Ω, e

ψ, ω).

Let A2(Ω, eψ, ω) be the space of all holomorphic functions in L2(Ω, eψ, ω).

Let ∂
∗
ψ be the Hilbert space adjoint of linear, closed, densely defined operator

∂ : L2
p,q(Ω, e

ψ, ω) → L2
p.q+1(Ω, e

ψ, ω).

Let Λω be the adjoint of multiplication by ω. If q ≥ 1 and ω is a complete

Kähler metric, the Bochner-Kodaira-Nakano inequality shows that

‖∂α‖2
ψ,ω + ‖∂∗ψα‖2

ψ,ω ≥
∫

Ω
〈[−i∂∂ψ,Λω]α, α〉ωeψdVω

for any α ∈ L2
p,q(Ω, e

ψ, ω) which is contained in the both domains of ∂ and

∂
∗
ψ. At each point x ∈ Ω, we may choose an orthonormal basis σ1, . . . , σn

for the holomorphic cotangent bundle with respect to ω such that i∂∂ψ =

λ1iσ1 ∧ σ1 + · · · + λniσn ∧ σn. Let α be a (0, q)-form. We write α =∑
|J |=q αJσJ where J = (j1, . . . , jq) is a multi-index with j1 < · · · < jq and

σJ = σj1 ∧ · · · ∧ σjq . Then

[−i∂∂ψ,Λω]α =
∑
|J |=q


 ∑

1≤j≤n,j �∈J

λj


αJσJ .(1)

Assume that the operator Aω,ψ = [−i∂∂ψ,Λω] is positive definite on

L2
p,q(Ω, e

ψ, ω), and that ω is a complete Kähler metric. Then, for any closed
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form α ∈ L2
p,q(Ω, e

ψ, ω) which satisfies
∫
Ω〈A

−1
ω,ψα, α〉ωeψdVω < +∞, there

exists u ∈ L2
p,q−1(Ω, e

ψ, ω) such that ∂u = α and

‖u‖2
ψ,ω ≤

∫
Ω
〈A−1

ω,ψα, α〉ωeψdVω.(2)

3. Weighted L2-Estimate

The purpose of this section is Proposition 1 below. Let n ≥ 4. Let

Ω ⊂ C
n be a bounded hyperconvex domain and let ϕ be a negative smooth

plurisubharmonic function on Ω such that ϕ(z) → 0 when z → ∂Ω. Let φ =

−(log(−ϕ)). Then φ is an exhaustive smooth plurisubharmonic function

such that i∂∂φ ≥ i∂φ ∧ ∂φ. Let ψ be a smooth strongly plurisubharmonic

function on a neighborhood of Ω. To prove our main theorem, we may

assume that ψ = |z|2. Let ε > 0 be a small positive number and let ωε =

i∂∂(εψ+φ). Then ωε is a complete Kähler metric on Ω since φ is exhaustive

and |∂φ|ωε < 1. Let c > 0 and let Aε,c = Aωε,ψ+cφ = [−i∂∂(ψ + cφ),Λωε ].

We start by showing the following lemma:

Lemma 1. Let δ, δ′ > 0. Let α be a ∂-closed (0, 1)-form such that

α ∈ L2
0,1(Ω, e

ψ+δ′φ, ωε). Assume that n > 1 + δ and that ε ≤ δ−1. Then

there exists a function u ∈ L2(Ω, eψ+δ′φ, ωε) such that ∂u = α and

∫
Ω
|u|2eψ−(δ−δ′)φdVωε ≤ Cn,δ

∫
Ω
〈A−1

ε,δ+δ′α, α〉ωεe
ψ−(δ−δ′)φdVωε .

Here Cn,δ is a positive constant which depends only on n and δ.

Proof. Since Cωε ≤ i∂∂(ψ + δ′φ) for some C > 0, we have that

A−1
ε,δ′ ≤ C−1. By (2), there exists the solution u ∈ L2(Ω, eψ+δ′φ, ωε) to

∂u = α which is minimal in the L2(Ω, eψ+δ′φ, ωε) norm. This means that

u ∈ A2(Ω, eψ+δ′φ, ωε)
⊥. Since φ(z) → +∞ when z → ∂Ω, we have that

ue−δφ ∈ L2(Ω, eψ+(δ+δ′)φ, ωε) and A2(Ω, eψ+(δ+δ′)φ, ωε) ⊂ A2(Ω, eψ+δ′φ, ωε).

Hence ue−δφ ∈ L2(Ω, eψ+(δ+δ′)φ, ωε) ∩ A2(Ω, eψ+(δ+δ′)φ, ωε)
⊥. It follows

that ∂(ue−δφ) = (α − δu∂φ)e−δφ ∈ L2
0,1(Ω, e

ψ+(δ+δ′)φ, ωε) since |∂φ|ωε < 1

and u ∈ L2(Ω, eψ+δ′φ, ωε). Then ue−δφ is the minimal solution in the

L2(Ω, eψ+(δ+δ′)φ, ωε) norm to ∂(ue−δφ). We note that A−1
ε,δ+δ′ is bounded
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from above in Ω. By (2), we have that
∫

Ω
|u|2eψ−(δ−δ′)φdVωε =

∫
Ω
|ue−δφ|2eψ+(δ+δ′)φdVωε

≤
∫

Ω
〈A−1

ε,δ+δ′(α− δu∂φ), α− δu∂φ〉ωεe
ψ−(δ−δ′)φdVωε

≤
(

1 +
1

t

)∫
Ω
〈A−1

ε,δ+δ′α, α〉ωεe
ψ−(δ−δ′)φdVωε

+ (1 + t)δ2

∫
Ω
〈A−1

ε,δ+δ′∂φ, ∂φ〉ωε |u|2eψ−(δ−δ′)φdVωε

for every t > 0. Since ε < δ−1, we have that δωε = δi∂∂(εψ + φ) ≤
i∂∂(ψ + (δ + δ′)φ). By (1), it follows that 〈Aε,δ+δ′β, β〉ωε ≥ (n − 1)δ|β|2ωε

for any (0, 1)-form β. Hence 〈A−1
ε,δ+δ′∂φ, ∂φ〉ωε ≤ 1

(n−1)δ |∂φ|2ωε
< 1

(n−1)δ . By

choosing t so small, there exists a constant C1 which depends only on n and

δ such that (1 + t) δ
n−1 < C1 < 1 since n > 1 + δ. Then we have

(1 − C1)

∫
Ω
|u|2eψ−(δ−δ′)φdVωε ≤ C2

∫
Ω
〈A−1

ε,δ+δ′α, α〉ωεe
ψ−(δ−δ′)φdVωε .

Here C2 =
(
1 + 1

t

)
depends only on n and δ. This completes the proof. �

If there exists a sequence of ∂-closed (0, 1)-forms in L2
0,1(Ω, e

ψ+δ′φ, ωε)

which approximates α, we can remove the assumption that α ∈
L2

0,1(Ω, e
ψ+δ′φ, ωε) from Lemma 1.

Lemma 2. Let δ, δ′ > 0. and let α be a ∂-closed (0, 1)-form such that∫
Ω〈A

−1
ε,δ+δ′α, α〉ωεe

ψ−(δ−δ′)φdVωε < +∞. Assume that there exist ∂-closed

(0, 1)-forms αj ∈ L2(Ω, eψ+δ′φ, ωε) (j = 1, 2, . . . ) such that

lim
j→∞

∫
Ω
〈A−1

ε,δ+δ′(α− αj), α− αj〉ωεe
ψ−(δ−δ′)φdVωε = 0.

Assume that n > 1 + δ and that ε ≤ δ−1. Then there exists u ∈
L2(Ω, eψ−(δ−δ′)φ, ωε) such that ∂u = α and

∫
Ω
|u|2eψ−(δ−δ′)φdVωε ≤ Cn,δ

∫
Ω
〈A−1

ε,δ+δ′α, α〉ωεe
ψ−(δ−δ′)φdVωε .

Here Cn,δ > 0 depends only on n and δ.
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Proof. By Lemma 1, there exist uj (j = 1, 2, . . . ) such that ∂uj = αj

and ∫
Ω
|uj |2eψ−(δ−δ′)φdVωε ≤ Cn,δ

∫
Ω
〈A−1

ε,δ+δ′αj , αj〉ωεe
ψ−(δ−δ′)φdVωε

≤ 2Cn,δ

(∫
Ω
〈A−1

ε,δ+δ′α, α〉ωεe
ψ−(δ−δ′)φdVωε

+

∫
Ω
〈A−1

ε,δ+δ′(α− αj), α− αj〉ωεe
ψ−(δ−δ′)φdVωε

)
.

Therefore we may choose a subsequence of {uj}j∈N converging weakly in

L2(Ω, eψ−(δ−δ′)φ, ωε) to u. Since αj → α (j → ∞) in the distribution sense,

we have that ∂u = α and∫
Ω
|u|2eψ−(δ−δ′)φdVωε ≤ 2Cn,δ

∫
Ω
〈A−1

ε,δ+δ′α, α〉ωεe
ψ−(δ−δ′)φdVωε . �

Next, we construct a sequence which approximates α.

Lemma 3. Let δ, δ′ > 0. Let α ∈ L2
0,1(Ω, e

ψ−(δ−δ′)φ, ωε) such that ∂α =

0. Assume that n > 2 + δ and that ε ≤ δ−1. Then there exist ∂-closed

(0, 1)-forms αj ∈ L2
0,1(Ω, e

ψ+δ′φ, ωε) (j = 1, 2, . . . ) such that
∫
Ω〈A

−1
ε,δ+δ′(α−

αj), α− αj〉ωεe
ψ−(δ−δ′)φdVωε → 0 when j → ∞.

Proof. First, note that
∫
Ω〈A

−1
ε,δ+δ′α, α〉ωεe

ψ−(δ−δ′)φdVωε < +∞ since

〈A−1
ε,δ+δ′α, α〉ωε ≤ 1

(n−1)δ |α|2ωε
by the proof of Lemma 1. Let χ ∈ C∞(R)

such that χ(t) = 1 for t < 0, χ(t) = 0 for t > 2 and |χ′| ≤ 1. Let hj =

χ(φ − j) ∈ C∞
0 (Ω). Let N1, resp. N2, be the kernel space of linear, closed,

densely defined operator ∂ : L2
0,1(Ω, e

ψ+δ′φ, ωε) → L2
0,2(Ω, e

ψ+δ′φ, ωε), resp.

∂ : L2
0,1(Ω, e

ψ+(δ+δ′)φ, ωε) → L2
0,2(Ω, e

ψ+(δ+δ′)φ, ωε). We have that ∂(hjα) ∈
L2

0,2(Ω, e
ψ+δ′φ, ωε). By a reasoning analogous to that of the proof of

Lemma 1, there exists βj ∈ L2
0,1(Ω, e

ψ+δ′φ, ωε) ∩ N⊥
1 such that ∂βj =

∂(hjα), βje
−δφ ∈ L2

0,1(Ω, e
ψ+(δ+δ′)φ, ωε) ∩ N⊥

2 and ∂(βje
−δφ) ∈

L2
0,2(Ω, e

ψ+(δ+δ′)φ, ωε). By (2), we have that∫
Ω
|βj |2ωε

eψ−(δ−δ′)φdVωε =

∫
Ω
|βje

−δφ|2ωε
eψ+(δ+δ′)φdVωε

≤
∫

Ω
〈A−1

ε,δ+δ′(∂βj − δ∂φ ∧ βj), ∂βj − δ∂φ ∧ βj〉ωεe
ψ−(δ−δ′)φdVωε
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≤
(

1 +
1

t

)∫
Ω
〈A−1

ε,δ+δ′∂βj , ∂βj〉ωεe
ψ−(δ−δ′)φdVωε

+ (1 + t)δ2

∫
Ω
〈A−1

ε,δ+δ′(∂φ ∧ βj), ∂φ ∧ βj〉ωεe
ψ−(δ−δ′)φdVωε

for every t > 0. Here we regard Aε,δ+δ′ as an endomorphism of the space

of (0, 2)-forms. Since ε < δ−1, we have that δωε = δi∂∂(εψ + φ) ≤ i∂∂(ψ +

(δ + δ′)φ). By (1), it follows that 〈Aε,δ+δ′γ, γ〉ωε ≥ (n − 2)δ|γ|2ωε
for any

(0, 2)-form γ. Hence 〈A−1
ε,δ+δ′(∂φ ∧ βj), ∂φ ∧ βj〉ωε ≤ 1

(n−2)δ |∂φ ∧ βj |2ωε
≤

1
(n−2)δ |∂φ|2ωε

|βj |2ωε
< 1

(n−2)δ |βj |2ωε
. By choosing t so small, there exists a

constant C1 which depends only on n and δ such that (1 + t) δ
n−2 < C1 < 1

since n > 2 + δ. Then we have that∫
Ω
|βj |2ωε

eψ−(δ−δ′)φdVωε ≤ C2

∫
Ω
〈A−1

ε,δ+δ′∂βj , ∂βj〉ωεe
ψ−(δ−δ′)φdVωε

where C2 = (1 − C1)
−1

(
1 + 1

t

)
which depends only on n and δ. It follows

that∫
Ω
〈A−1

ε,δ+δ′∂βj , ∂βj〉ωεe
ψ−(δ−δ′)φdVωε ≤

1

(n− 2)δ

∫
Ω
|∂βj |2ωε

eψ−(δ−δ′)φdVωε

=
1

(n− 2)δ

∫
Ω
|∂hj ∧ α|2ωε

eψ−(δ−δ′)φdVωε

≤ 1

(n− 2)δ

∫
{j≤φ≤j+2}

|α|2ωε
eψ−(δ−δ′)φdVωε .

Because α ∈ L2
0,1(Ω, e

ψ−(δ−δ′)φ, ωε), Lebesgue’s dominated convergence the-

orem shows that the last term of the above inequality tends to 0 when j

tends to +∞. By the proof of Lemma 1, we have that 〈A−1
ε,δ+δ′βj , βj〉ωε ≤

1
δ(n−1) |βj |2ωε

. Finally, we have that

lim
j→∞

∫
Ω
〈A−1

ε,δ+δ′βj , βj〉ωεe
ψ−(δ−δ′)φdVωε

≤ lim
j→∞

1

δ(n− 1)

∫
Ω
|βj |2ωε

eψ−(δ−δ′)φdVωε = 0.

Let αj = hjα− βj . Then αj ∈ L2
0,1(Ω, e

ψ+δ′φ, ωε), ∂αj = 0, and

lim
j→∞

∫
Ω
〈A−1

ε,δ+δ′(α− αj), α− αj〉ωεe
ψ−(δ−δ′)φdVωε
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≤ lim
j→∞

2

∫
Ω

(
(1 − hj)

2〈A−1
ε,δ+δ′α, α〉ωε + 〈A−1

ε,δ+δ′βj , βj〉ωε

)
eψ−(δ−δ′)φdVωε

=0

by Lebesgue’s dominated convergence theorem. �

Lemma 4. Let δ, δ′ > 0. Let k < n − 1. Let α be a smooth (0, 1)-

form on Ω such that suppα ⊂ Ω \ supp (i∂∂ϕ)k. Then 〈A−1
ε,δ+δ′α, α〉ωε ≤

(n− k − 1)−1|α|2
i∂∂ψ

.

Proof. We have that A−1
ε,δ+δ′ ≤ A−1

ε,δ . Hence it is enough to prove

〈A−1
ε,δα, α〉ωε ≤ (n − k − 1)−1|α|2

i∂∂ψ
. Because i∂∂φ = i∂∂ϕ−ϕ + i∂ϕ∧∂ϕ

ϕ2 , we

have that suppα ⊂ Ω \ supp (i∂∂φ)k+1. Let x ∈ Ω \ supp (i∂∂φ)k+1. At x,

we choose an orthonormal basis θ1, . . . , θn for the holomorphic cotangent

bundle with respect to i∂∂ψ such that i∂∂φ = iλ1θ1 ∧ θ1 + · · ·+ iλkθk ∧ θk
where λj ≥ 0 for 1 ≤ j ≤ k. Then ωε = i∂∂(εψ+φ) =

∑k
j=1 i(ε+λj)θj∧θj+∑n

l=k+1 iεθl ∧ θl and i∂∂(ψ+ δφ) =
∑k

j=1 i(1+ δλj)θj ∧ θj +
∑n

l=k+1 iθl ∧ θl.
Let σj =

√
ε+ λjθj for 1 ≤ j ≤ k and let σl =

√
εθl for k+1 ≤ l ≤ n. Then

ωε =
∑n

j=1 iσj∧σj and i∂∂(ψ+δφ) =
∑k

j=1 i
1+δλj

ε+λj
σj∧σj+

∑n
l=k+1 i

1
εσl∧σl.

By (1), it follows that

〈A−1
ε,δσj , σs〉ωε = 〈

( ∑
1≤m≤k
m�=j

1 + δλm

ε+ λm
+
n− k

ε

)−1

σj , σs〉ωε ≤
ε

n− k
δjs

for j ≤ k, 1 ≤ s ≤ n, and

〈A−1
ε,δσl, σs〉ωε = 〈

( ∑
1≤m≤k

1 + δλm

ε+ λm
+
n− k − 1

ε

)−1

σl, σs〉ωε ≤
ε

n− k − 1
δls

for l ≥ k + 1, 1 ≤ s ≤ n. Here δjs, δls are the Kronecker delta. Write

α =
∑n

j=1 αjθj =
∑k

j=1
αj√
ε+λj

σj +
∑n

l=k+1
αl√
ε
σl. We have that

〈A−1
ε,δα, α〉ωε ≤

k∑
j=1

|αj |2
ε+ λj

ε

n− k
+

n∑
l=k+1

|αl|2
ε

ε

n− k − 1

≤ (n− k − 1)−1|α|2
i∂∂ψ

. �
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Lemma 5. Assume that ϕ ∈ C∞(Ω) and that dϕ �= 0 on ∂Ω. Let

p ∈ ∂Ω and let 1 ≤ k ≤ n be an integer. Assume that (i∂∂ϕ)k = 0 in a

neighborhood of p. If δ > k, then eψ−δφdVωε is integrable around p in Ω.

Proof. Let C1, C2, . . . be sufficiently large positive constants. Since

ωε = iε∂∂ψ + i∂∂ϕ−ϕ + i∂ϕ∧∂ϕ
ϕ2 , we have that dVωε = (n!)−1ωn

ε ≤
C1(−ϕ)−k−1(i∂∂|z|2)n and eψ−δφdVωε ≤ C2(−ϕ)δ−k−1(i∂∂|z|2)n around p.

Let U be a small neighborhood of p. There exists a local coordinate system

(x1, . . . , x2n) on U such that ϕ = x1. It follows that∫
Ω∩U

eψ−δφdVωε ≤ C3

∫
Ω∩U

xδ−k−1
1 dx1 · · · dx2n ≤ C4

∫ 1

0
xδ−k−1

1 dx1 < +∞,

since δ > k. �

Proposition 1. Let Ω ⊂ C
n (n ≥ 4) be a bounded hyperconvex do-

main and let ψ be a smooth strongly plurisubharmonic function on a neigh-

borhood of Ω. Let ϕ ∈ C∞(Ω) such that ϕ is negative plurisubharmonic

on Ω, ϕ(z) → 0 when z → ∂Ω, and dϕ �= 0 on ∂Ω. Let α be a smooth

(0, 1)-form defined on an open neighborhood of Ω such that ∂α = 0 in Ω

and suppα ⊂ Ω \ supp (i∂∂ϕ)n−3 in Ω. Let δ be a positive constant such

that n− 3 < δ < n− 2. Then there exists u ∈ C∞(Ω) such that ∂u = α and∫
Ω
|u|2eψ−δφdVωε ≤ Cn,δ

∫
Ω
|α|2

i∂∂ψ
eψ−δφdVωε < +∞

for sufficiently small ε > 0. Here Cn,δ is a positive constant which depends

only on n and δ.

Proof. Since |α|2ωε
≤ |α|2

εi∂∂ψ
, the norm |α|2ωε

is bounded from above

in Ω. Then |α|2ωε
eψ−δφdVωε is integrable by Lemma 5. Let δ′ > 0 be a

sufficiently small positive number such that δ+δ′ < n−2. We put δ′′ = δ+δ′.
Then δ′, δ′′ depend only on n and δ. We have α ∈ L2(Ω, eψ−(δ′′−δ′)φ, ωε).

By replacing δ with δ′′ in Lemma 2, 3 and 4, it follows that there exists

u ∈ L2(Ω, eψ−(δ′′−δ′)φ, ωε) such that ∂u = α and∫
Ω
|u|2eψ−(δ′′−δ′)φdVωε ≤ Cn,δ

∫
Ω
|α|2

i∂∂ψ
eψ−(δ′′−δ′)φdVωε .

Then we have the proposition since δ = δ′′ − δ′. The smoothness of u is

known (see [5], [8]). �
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4. Interior Estimate of Non-Negative Plurisubharmonic Func-

tions

The purpose of this section is the following theorem:

Theorem 3. Let Ω ⊂ C
n be a bounded hyperconvex domain and let ϕ

be a negative continuous plurisubharmonic function on Ω such that ϕ(z) → 0

when z → ∂Ω. Let v ≥ 0 be a plurisubharmonic function on Ω. Then
∫
{ϕ<r}

i∂∂v ∧ (i∂∂|z|2)n−1 ≤ C

∫
Ω
vi∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1,

∫
{ϕ<r}

v(i∂∂|z|2)n ≤ C

∫
Ω

(
v(i∂∂ϕ)n + vi∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1

)

for r < 0. Here C =
(
1 + d(Ω) + sup |ϕ| + |r|−1

)Cn, d(Ω) is the diameter

of Ω, and Cn is a positive constant which depends only on n.

In the above theorem, i∂∂v ∧ (i∂∂|z|2)n−1, i∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1, and

(i∂∂ϕ)n are defined in the sense of Bedford-Taylor (see [2], [9]).

Lemma 6. Let k be a non-negative integer. We assume the same hy-

pothesis of Theorem 3, and we assume that v, ϕ ∈ C∞(Ω) and that dϕ �= 0

on ∂Ω. Then∫
{ϕ<r}

i∂∂v ∧ (i∂∂ϕ)k ∧ (i∂∂|z|2)n−k−1

≤ Cn,k
(d(Ω)2 sup |ϕ|)n−k−1

r2(n−k)

∫
Ω
vi∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1.

Here Cn,k is a positive constant which depends only on n and k.

Proof. By the Stokes theorem, we have that
∫

Ω
vi∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1

= −
∫

Ω
ϕi∂v ∧ ∂ϕ ∧ (i∂∂ϕ)n−1 +

∫
Ω
(−ϕ)v(i∂∂ϕ)n

≥ − 1

2

∫
Ω
i∂v ∧ ∂ϕ2 ∧ (i∂∂ϕ)n−1 =

1

2

∫
Ω
ϕ2i∂∂v ∧ (i∂∂ϕ)n−1,
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and we have that∫
Ω
ϕ2i∂∂v ∧ (i∂∂ϕ)n−1 ≤ 2

∫
Ω
vi∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1.(3)

Without loss of generality, we may assume that 0 ∈ ∂Ω. Let η =
|r|

2d(Ω)2
(|z|2 − 2d(Ω)2). We have that η is smooth plurisubharmonic func-

tion such that r < η < r
2 in Ω. For sufficiently small ε > 0, we put

ρ = maxε{ϕ, η} where maxε is a regularized max function (see Chapter I,

Section 5 of [5]). Then ρ is a smooth plurisubharmonic function on Ω such

that ρ = ϕ near {z ∈ Ω |ϕ(z) = r
3} and ρ = η on {z ∈ Ω |ϕ(z) < r}. After a

slight perturbation of r, we may assume that dϕ �= 0 on {z ∈ Ω |ϕ(z) = r
3}.

By the Stokes theorem, we have that∫
{ϕ<r}

i∂∂v ∧ (i∂∂ϕ)k ∧ (i∂∂|z|2)n−k−1

=
2d(Ω)2

|r|

∫
{ϕ<r}

i∂∂v ∧ (i∂∂ϕ)k ∧ i∂∂ρ ∧ (i∂∂|z|2)n−k−2

≤ 2d(Ω)2

|r|
3

2|r|

∫
{ϕ<r}

(r
3
− ϕ

)
i∂∂v ∧ (i∂∂ϕ)k ∧ i∂∂ρ ∧ (i∂∂|z|2)n−k−2

≤ 3d(Ω)2

|r|2
∫
{ϕ<r/3}

(r
3
− ϕ

)
i∂∂v ∧ (i∂∂ϕ)k ∧ i∂∂

(
ρ− r

3

)
∧ (i∂∂|z|2)n−k−2

=
3d(Ω)2

|r|2
∫
{ϕ<r/3}

(r
3
− ρ

)
i∂∂v ∧ (i∂∂ϕ)k ∧ i∂∂

(
ϕ− r

3

)
∧ (i∂∂|z|2)n−k−2

≤ 3d(Ω)2 sup |ϕ|
|r|2

∫
{ϕ<r/3}

i∂∂v ∧ (i∂∂ϕ)k+1 ∧ (i∂∂|z|2)n−k−2.

By repeating the same process, we have that∫
{ϕ<r}

i∂∂v ∧ (i∂∂ϕ)k ∧ (i∂∂|z|2)n−k−1

≤ 3(n−k−1)2
(
d(Ω)2 sup |ϕ|

|r|2
)n−k−1 ∫

{ϕ<r/3n−k−1}
i∂∂v ∧ (i∂∂ϕ)n−1

≤ 3(n−k−1)2
(
d(Ω)2 sup |ϕ|

|r|2
)n−k−1 (

3n−k−1

|r|

)2

×
∫
{ϕ<r/3n−k−1}

ϕ2i∂∂v ∧ (i∂∂ϕ)n−1
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≤ 3(n−k−1)(n−k+1)2
(d(Ω)2 sup |ϕ|)n−k−1

|r|2(n−k)

∫
Ω
vi∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1.

The last inequality follows from (3). This completes the proof. �

Remark 1. To prove Theorem 1, the rest of this section is not neces-

sary. Indeed, Lemma 6 shows that∫
{ϕ<r}

|∇F |2(i∂∂|z|2)n ≤ C

∫
Ω
|F |2i∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1

for holomorphic function F . Here C does not depend on F . This implies

that the solutions constructed in Section 3 are bounded locally and we can

prove Theorem 4 below.

Lemma 7. Let k be a non-negative integer. Under the same assump-

tion of Lemma 6, we have that∫
{ϕ<r}

v(i∂∂ϕ)k ∧ (i∂∂|z|2)n−k

≤ C

(∫
Ω
v(i∂∂ϕ)n + vi∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1

)
,

where C =
(
1 + d(Ω) + sup |ϕ| + |r|−1

)Cn,k , and Cn,k is a positive constant

which depends only on n and k.

Proof. We prove the lemma by induction on l = n− k. It is clear for

l = 0. Under the notation of the proof of Lemma 6, we have that

|r|
2d(Ω)2

∫
{ϕ<r}

v(i∂∂ϕ)k ∧ (i∂∂|z|2)n−k

≤
∫
{ϕ<r/3}

v(i∂∂ϕ)k ∧ i∂∂ρ ∧ (i∂∂|z|2)n−k−1

=

∫
{ϕ=r/3}

vi∂ρ ∧ (i∂∂ϕ)k ∧ (i∂∂|z|2)n−k−1

−
∫
{ϕ<r/3}

i∂v ∧ ∂ρ ∧ (i∂∂ϕ)k ∧ (i∂∂|z|2)n−k−1

=

∫
{ϕ=r/3}

vi∂ϕ ∧ (i∂∂ϕ)k ∧ (i∂∂|z|2)n−k−1

−
∫
{ϕ<r/3}

i∂v ∧ ∂ρ ∧ (i∂∂ϕ)k ∧ (i∂∂|z|2)n−k−1
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=

∫
{ϕ<r/3}

i∂v ∧ ∂(ϕ− ρ) ∧ (i∂∂ϕ)k ∧ (i∂∂|z|2)n−k−1

+

∫
{ϕ<r/3}

v(i∂∂ϕ)k+1 ∧ (i∂∂|z|2)n−k−1.

The last term of the above inequality is bounded from above by the hypoth-

esis of the induction. By Lemma 6, the second to last term of the above

inequality is bounded from above by

Cn,k
d(Ω)2(n−k−1) sup |ϕ|n−k

r2(n−k)

∫
Ω
vi∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1,

since ∣∣∣∣∣
∫
{ϕ<r/3}

(ρ− ϕ)i∂∂v ∧ (i∂∂ϕ)k ∧ (i∂∂|z|2)n−k−1

∣∣∣∣∣
≤ sup |ϕ|

∫
{ϕ<r/3}

i∂∂v ∧ (i∂∂ϕ)k ∧ (i∂∂|z|2)n−k−1.

This completes the proof by the induction. �

Proof of Theorem 3. We prove the first inequality. Let ε > 0 be

a small positive number. It is enough to prove the theorem with ϕ and Ω

replaced by ϕ+ ε and {z ∈ Ω |ϕ(z) + ε < 0}. Hence we may assume that ϕ

and v are plurisubharmonic functions defined on an open neighborhood of

Ω. Let vj be a decreasing sequence of smooth plurisubharmonic functions

on an open neighborhood of Ω which converge to v. Since
∫
{ϕ<r} i∂∂v ∧

(i∂∂|z|2)n−1 ≤ lim infj→∞
∫
{ϕ<r} i∂∂vj ∧ (i∂∂|z|2)n−1, it is enough to prove

the theorem for v ∈ C∞(Ω). Since ϕ is continuous, there exists a decreasing

sequence ϕj of smooth plurisubharmonic functions on an open neighborhood

of Ω which converge to ϕ uniformly. Let Ωj = {z ∈ Ω |ϕj(z) < 0}. We may

assume that dϕj �= 0 on ∂Ωj by Sard’s theorem. By Lemma 6, we have

∫
{ϕj<r}

i∂∂v ∧ (i∂∂|z|2)n−1

≤ Cn
(d(Ωj)

2 sup |ϕj |)n−1

r2n

∫
Ωj

vi∂ϕj ∧ ∂ϕj ∧ (i∂∂ϕj)
n−1.
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Since

lim sup
j→∞

∫
Ω
vi∂ϕj ∧ ∂ϕj ∧ (i∂∂ϕj)

n−1 ≤
∫

Ω
vi∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1,

we have that ∫
{ϕ<r}

i∂∂v ∧ (i∂∂|z|2)n−1

≤ Cn
(d(Ω)2 sup |ϕ|)n−1

r2n

∫
Ω
vi∂ϕ ∧ ∂ϕ ∧ (i∂∂ϕ)n−1.

Then the first inequality of Theorem 3 follows by the continuity of C in the

theorem with respect to d(Ω), sup |ϕ|, and |r|. The second inequality can

be proved by the same way. �

5. Proof of the Main Theorem

Theorem 4. Let Ω ⊂ C
n (n ≥ 4) be a bounded hyperconvex domain.

Let ϕ ∈ C∞(Ω) such that ϕ is negative plurisubharmonic on Ω, ϕ(z) → 0

when z → ∂Ω, and dϕ �= 0 on ∂Ω. Let α be a smooth (0, 1)-form defined

on an open neighborhood of Ω such that ∂α = 0 in Ω and suppα ⊂ Ω \
supp (i∂∂ϕ)n−3 in Ω. Then there exists a smooth function u on Ω such that

∂u = α and
∫
Ω |u|2(i∂∂φ)n = 0.

Proof. We use the same notation as Proposition 1. Let εj be a

decreasing sequence of positive numbers which converge to 0. We put

dVj = (n!)−1ωn
εj . Then dVj decreases to dVi∂∂φ = (n!)−1(i∂∂φ)n. By Propo-

sition 1, there exists a sequence uj of smooth functions such that ∂uj = α

and ∫
Ω
|uj |2eψ−δφdVj ≤ Cn,δ

∫
Ω
|α|2

i∂∂ψ
eψ−δφdVj .

We have that suppα ⊂ Ω \ supp (i∂∂ϕ)n−3 ⊂ Ω \ supp (i∂∂φ)n. Hence the

right hand side of the above inequality goes to 0 when j → ∞ because of

Lebesgue’s dominated convergence theorem. Let Ω(r) = {z ∈ Ω |ϕ(z) < r}.
Then

∫
Ω(r) |uj |2dVi∂∂φ goes to 0 when j → ∞ for r < 0. We take h ∈

C∞(Ω) such that ∂h = α (see [5], [8]). Define Fj = h − uj . Then Fj is a
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holomorphic function and
∫
Ω(r) |Fj |2dVi∂∂φ are bounded from above for all

j. Since there exists a positive constant C such that i∂ϕ∧∂ϕ∧ (i∂∂ϕ)n−1 +

(i∂∂ϕ)n ≤ C(i∂∂φ)n on Ω(r), Theorem 3 shows that
∫
Ω(r′) |Fj |2(i∂∂|z|2)n

and
∫
Ω(r′) |uj |2(i∂∂|z|2)n are bounded from above for all j when r′ < r. We

can thus find a weakly convergent subsequence ujν in L2(Ω(r′)). Let u be

the weak limit u. It follows that ∂u = α on Ω(r′) and
∫
Ω(r′) |u|2(i∂∂φ)n = 0.

Then, by using a diagonal argument, we have the solution we are looking

for. �

Proof of Theorem 1. Let r < 0 such that |r| is sufficiently small

and let Ω(r) = {z ∈ Ω |ϕ(z) < r}. We can choose r such that dϕ �= 0 on

∂Ω(r). Let V (r) = Ω(r) ∩ V . There exists δ > 0 such that d(∂V (r) \
∂Ω(r), supp (i∂∂ϕ)n−3 ∩ Ω(r)) > 3δ. Here d(A,B), A,B ⊂ C

n is the

Euclidean distance between A and B. Let Uj = {z ∈ Ω(r) |
d(z, supp (i∂∂ϕ)n−3 ∩ Ω(r)) < jδ} (j = 1, 2). We take a smooth func-

tion χ on Ω(r) such that χ = 1 on U1 and χ = 0 on Ω(r) \ U2. Let f be

a holomorphic function on V . Define α = ∂(χf). We may assume that α

is defined on an open neighborhood of Ω(r) by a small perturbation of r.

Then suppα ⊂ Ω(r) \ supp (i∂∂ϕ)n−3 in Ω(r). By Theorem 4, there exists

u ∈ C∞(Ω(r)) such that ∂u = α and
∫
Ω(r) |u|2(i∂∂(−(log(r − ϕ)))n = 0.

(If Ω(r) is a disjoint union of bounded hyperconvex domain, we apply The-

orem 4 to each component.) Then u = 0 on supp (i∂∂φ)n ∩ Ω(r) since

supp (i∂∂φ)n = supp (i∂∂(− log(r − ϕ)))n. Let Fr = χf − u. Then Fr is

holomorphic on Ω(r) and Fr = f on supp (i∂∂φ)n ∩ Ω(r). We note that

any component of Ω(r) intersects supp (i∂∂φ)n by the comparison theorem

(see [9]). By letting r → 0, we obtain the holomorphic function F on Ω

such that F = f on supp (i∂∂φ)n because of the identity theorem. Since

supp (i∂∂φ)n ⊂ V and V is connected, we have F = f on V . �

Proof of Theorem 2. We use the same notation as the proof of

Theorem 1. Let p ∈ supp (i∂∂φ)n ⊂ V . Let h : C
n → R

+ be a smooth

function of |z| whose support is the unit ball and whose integral is equal to

one. Define hε = (1/ε2n)h(z/ε) for ε > 0. Let ϕε = ϕ ∗ hε be a function on

Ω(r) where r < 0 and 0 < ε << |r|. Let φε = −(log(−ϕε)) and let W be

a connected open neighborhood of p such that W ⊂ V . If ε is sufficiently

small, then supp(i∂∂ϕε) ⊂ V in Ω(r) and supp (i∂∂φε)
n ∩W �= ∅ by the

continuity of the Monge-Ampère measure (see [2], [9]). Let s < 0 such



122 Yusaku Tiba

that W ⊂ Ω(s). By taking |r| and ε are sufficiently small, we may assume

that there exists t < 0 such that Ω(s) ⊂ Ωε(t) := {z ∈ Ω(r) |ϕε(z) < t}
and Ωε(t) ⊂ Ω(r). Then there exists a holomorphic function Ft on Ωε(t)

such that Ft = f on supp (i∂∂φε)
n by the same argument as the proof of

Theorem 1. Then Ft = f on W because supp (i∂∂φε)
n ∩W �= ∅. Let Ω(s)0

be a component of Ω(s) which contains W . It follows that Ft|Ω(s)0 does

not depend on ε, r and t by the identity theorem. By letting s → 0, there

exists the holomoprhic function F on Ω such that F = f on W . Since V is

connected, we have F = f on V . �

Theorem 5. Let n ≥ 4 and Ω be a pseudoconvex domain in C
n. Let

ϕ be an exhaustive smooth plurisubharmonic function on Ω. Let V ⊂ Ω be

a connected open neighborhood of supp (i∂∂ϕ)n−3. Then any holomorphic

function on V can be extended to a holomorphic function on Ω.

Theorem 6. Let n ≥ 4 and Ω be a pseudoconvex domain in C
n. Let

ϕ be an exhaustive continuous plurisubharmonic function on Ω. Let V ⊂ Ω

be a connected open neighborhood of supp i∂∂ϕ. Then any holomorphic

function on V can be extended to a holomorphic function on Ω.

Proof of Theorem 5 and 6. Let r ∈ R. Then Ω(r) = {z ∈
Ω |ϕ(z) < r} is a bounded hyperconvex domain. It follows that

supp (i∂∂ϕ)n−3 ⊂ supp (i∂∂(− log(r−ϕ)))n and supp (i∂∂(− log(r′−ϕ)))n∩
Ω(r) = supp (i∂∂(− log(r−ϕ)))n for r < r′. Then the theorems follow from

the same arguments as the proofs of Theorem 1 and 2. �

Let Ω be a pseudoconvex domain in C
n (n ≥ 4) and let ϕ be an exhaus-

tive continuous plurisubharmonic function on Ω. Let Ω(r) = {z ∈ Ω |ϕ(z) <

r}. Then max{ϕ, r} is an exhaustive continuous plurisubharmonic function

which is pluriharmonic on Ω(r). Hence any holomorphic function on a con-

nected open neighborhood of Ω \ Ω(r) can be extended to the holomorphic

function on Ω. This is a special case of the Hartogs extension theorem.

Finally we note that supp (i∂∂ϕ) can be interpreted as an “ample divisor”

on Ω and our results are associated with the Lefschetz hyperplane theorem

(see [11]).
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