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The Extension of Holomorphic Functions

on a Non-Plurtharmonic Locus

By Yusaku TiBA

Abstract. Let n > 4 and let Q2 be a bounded hyperconvex do-
main in C". Let ¢ be a negative exhaustive smooth plurisubharmonic
function on Q. We show that any holomorphic function defined on
a connected open neighborhood of the support of (i90¢)" 3 can be
extended to a holomorphic function on €.

1. Introduction

Hartogs’s extension theorem is stated as follows:

Let Q be an open subset in C™ (n > 2) and let K C Q be a compact
subset such that Q \ K is connected. Then any holomorphic function on
Q\ K can be extended to a holomorphic function on Q.

This is one of the major difference between the theory of one and several
complex variables since any open subset is a domain of holomorphy in the
case of one variable. In this paper, we give a new example of a subdomain
such that any holomorphic function on the subdomain can be extended
holomorphically to the entire domain.

Let T be a smooth form or a current in a domain in C”. We denote by
supp T' the support of T. Our main theorem is the following:

THEOREM 1. Let n > 4 and Q be a bounded hyperconvex domain in
C™. Let ¢ be a negative smooth plurisubharmonic function on Q such that
©(z) — 0 when z — 0. Let V C Q be a connected open neighborhood of
supp (i00¢)" 3. Then any holomorphic function on'V can be extended to a
holomorphic function on 2.

If a holomorphic function is defined on a non-pluriharmonic locus, we
can remove the assumption of the regularity of (.
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THEOREM 2. Letn > 4 and Q be a bounded hyperconvex domain in
C™. Let v be a negative continuous plurisubharmonic function on € such
that p(z) — 0 when z — 0. Let V. C Q be a connected open neighborhood
of suppidd¢. Then any holomorphic function on V can be extended to a
holomorphic function on 2.

We explain a motivation of Theorem 1. Let E be a compact subset of C"™.
We define the Shilov boundary of E by the smallest closed subset OgF of E
such that, for each function f which is holomorphic on a neighborhood of
the equality maxg |f| = maxg g |f| holds. Let By(r) = {z € Q| ¢(z) < r}
and let € By(r). It is known that there exists a probability measure

o supported on dsB,(r) such that f(z) = [ fdu, for any holomorphic
functions on an open neighborhood of B,(r) (see [7]). This measure is
called Jensen measure. Hence we may consider that Shilov boundaries of
By(r) (r < 0) are important for the existence of holomorphic functions
on 2. On the other hand, [1] shows that there exists a complex foliation
on Q\ supp (i09¢)? (1 < j < n) by complex submanifolds such that the
restriction of ¢ on any leaf of the foliation is pluriharmonic. It follows
that, for any z € 2\ supp (i09p)" !, there exists a complex curve through
z contained in a level set of ¢. Then z is not contained in the Shilov
boundaries of level sets of ¢. In this context, it might be interesting to ask
whether one can extend holomorphic functions defined on supp (i09¢)" ! to
the holomorphic functions on 2. In our theorem, we show that this question
is true if supp (i00p)" ! is replaced by supp (109p)" 3.

The proof consists in solving 0 equation in the L2-space defined by
the degenerate Monge-Ampeére measure. In Section 3, we prove Donnelly-
Fefferman and Berndtsson type L2-estimate ([6], [3]) . In Lemma 1 and
Lemma 3, we use the argument in Theorem 2.3 of [4] to prove our L2-
estimate from (2) below. We solve 0 equations in the L?-spaces defined
by the complete Kihler metrics which converge to —idd(log(—¢)), which is
no longer a Kahler metric in general. To guarantee the weak convergence
of solutions constructed in Section 3, we show an interior estimate of the
solutions. Section 4 can be read independently of other sections.

After this work appeared in arXiv, Lee and Nagata [10] generalizes the
main result of this paper. Their proof, which uses L? Serre duality, is simpler
than ours. However, the estimates in Section 4 are not contained in [10] and
we think it has some meaning to publish this paper.
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2. Preliminaries

First we introduce the set up and some notations. For details, we refer
to [5]. Let ©Q be a domain in C"™ and let w be a Kéhler metric on . Let
be a smooth function on ). By Liq(Q, e?, w) we denote the Hilbert space
of (p, q)-forms o which satisfy

lall?,, = /Q a2e¥dv,.

Here dV,, = (n!)~'w™. For simplicity we put L*(Q,e¥,w) = L%70(Q,ew,w).
Let A%(Q,e¥,w) be the space of all holomorphic functions in L?(Q, e¥,w).
Let 82 be the Hilbert space adjoint of linear, closed, densely defined operator

0: Liq(Q, eV, w) — Lglqﬂ(ﬂ, eV, w).

Let A, be the adjoint of multiplication by w. If ¢ > 1 and w is a complete
Kahler metric, the Bochner-Kodaira-Nakano inequality shows that

[Bal?,, + [T,al2., > /Q ([=i0, Au]a, abueldV,

for any o € L2 (€, e¥,w) which is contained in the both domains of & and
5;. At each point z € ), we may choose an orthonormal basis o1,... ,0,
for the holomorphic cotangent bundle with respect to w such that i00) =
A1ioy A @1 + -+ + A\piop, A T,. Let a be a (0,q)-form. We write a =
ZlJ\:q ajoy where J = (j1,...,Jq) is a multi-index with j; <--- < j, and
57 =05, A+ ATj,. Then

(1) (00, Ay =) PDREPYE KT
[J|=q \1<j<n,j¢J

Assume that the operator A, , = [—i00y,A,] is positive definite on
Liq(Q, e, w), and that w is a complete Kéhler metric. Then, for any closed
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form a € L2 (€, e¥,w) which satisfies fdA;ba,a)we‘”de < 400, there

exists u € L]%,q_l(Q, e¥,w) such that du = o and

2 u 2w§/ AL o a),e?dV,.
@) o < | (A2he0)

3. Weighted L?-Estimate

The purpose of this section is Proposition 1 below. Let n > 4. Let
2 C C" be a bounded hyperconvex domain and let ¢ be a negative smooth
plurisubharmonic function on €2 such that ¢(z) — 0 when z — 9. Let ¢ =
—(log(—¢)). Then ¢ is an exhaustive smooth plurisubharmonic function
such that i00¢ > i0¢p A O¢p. Let 1) be a smooth strongly plurisubharmonic
function on a neighborhood of Q. To prove our main theorem, we may
assume that ¢ = |z|2. Let £ > 0 be a small positive number and let w, =
i00(¢)+¢). Then w, is a complete Kihler metric on Q since ¢ is exhaustive
and [0¢l,. < 1. Let ¢ > 0 and let A. . = Ay, yicp = [—100(¢) + ), Aw,].
We start by showing the following lemma:

LEMMA 1. Let 6,8’ > 0. Let o be a O-closed (0,1)-form such that
a € Lal(Q,ew*é"ﬁ,ws). Assume that n > 1+ 6 and that e < 671, Then

there exists a function u € L*(Q,e?'? w.) such that du = o and
/ u2et == qy < Cn,(g/<A6_é+§,a,a>wse¢—(6—5f)¢deg.
Q Q ’
Here Cy, 5 is a positive constant which depends only on n and 6.

PROOF. Since Cw. < i00(¢ + §'¢) for some C > 0, we have that
A;;, < C~'. By (2), there exists the solution u € L2(£,e¥T9? w.) to
Ou = a which is minimal in the L?(Q,e¥+¥? w.) norm. This means that
u € A%(Q,e? 99 w)t. Since ¢(z) — 400 when z — 9Q, we have that
ue% € L2(Q,e¥ (64099 o ) and A2(Q, eV T+ o) ¢ A2(Q, eV w,).
Hence ue % e L2(Q,e¥tE+80¢ o, ) N A2(Q, e¥ (64609 )L Tt follows
that O(ue™%?) = (a — éudp)e%¢ ¢ L371(Q,e¢+(‘5+5/)¢,w5) since |0¢|,. < 1
and u € L*(Q,e¥t¥? w.). Then ue % is the minimal solution in the
L2(Q, e¥ 0489 ) norm to d(ue™®®). We note that A;§+5, is bounded
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from above in . By (2), we have that
/ luf2e¥=@=qy, = / lue=092e¥+(6+80qy,
< /Q<AE §+5,( — 6udP), o — SudP),. P~ qy,
(1 + %) / (A ;+6'0‘7 )y, e E=eqy,

+(1+t)62/( =L, 50, 0)., Juf2eb~0=)0qV,

IN

for every t > 0. Since ¢ < 67!, we have that éw. = §idd(cy) + ¢) <
i00(¢ + (6 + &')¢). By (1), it follows that (Ac 5163, B)w. > (n — 1)(5|ﬁ|2
for any (0, 1)-form . Hence (A;;+6,5¢,5¢>w5 < ﬁ@(ﬁ]i S 1) By
choosing ¢ so small, there exists a constant C7 which depends only on n and
6 such that (1 + t) °5 < Cp < 1since n > 1+ 6. Then we have

(1-Cy) /Q uf2et=(E-800qy < ¢ /Q (AZL, o) =00V,

Here Cy = (1 + %) depends only on n and §. This completes the proof. [J

If there exists a sequence of d-closed (0, 1)-forms in L(%,1(Q, S )
which approximates «, we can remove the assumption that a €
L%,l(Q, 6¢+6/¢,w5) from Lemma 1.

LEMMA 2. Let 6,8 > 0. and let o be a O-closed (0,1)-form such that
fQ<A€_;+6,O[,O[>w€€¢_(6_6l)¢des < +o0o. Assume that there exist d-closed

(0,1)-forms o € L*(Q,e¥+? w.) (j =1,2,...) such that
llm <A€ ;J’,é/( _ O{])7 o — aj>w5€¢7(676/)¢des e O

Jj—0 Jq

Assume that n > 1+ 6 and that ¢ < &6 1. Then there exists u €
L2(Q,e¥ == ) such that Ou = o and

/g]‘u‘Qew_(é_él)¢dVW5 < Cn’ﬁ/Q<A;é+§,a,a>wse¢_(5—6’)¢des_

Here C, s > 0 depends only on n and 6.
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PrROOF. By Lemma 1, there exist uj (j = 1,2,...) such that Ju; = «;
and

| et 60V, < Cup [ (42 00000,
< 2Cns </ <As_<%+5'av X, 6¢,(5,5/)¢de5
Q b

/ <A€ ;Jrﬁ’( - aj)? o — O‘j>wse¢(66/)¢dea> .

Therefore we may choose a subsequence of {u;};eN converging weakly in
L2(Q,e¥= =99 ) to u. Since aj — a (j — 00) in the distribution sense,
we have that du = o and

/Q‘u‘Qew—((S_(S’)fﬁdeE < 20"75/Q<As,;+6'0‘a0‘>waew_(§_5/)¢de5- 0

Next, we construct a sequence which approximates a.

LEMMA 3. Let6,8' > 0. Leta € L% 1(Q,e¥=06=8% ) such that da =

Assume that n > 2+ 6 and that ¢ < 6~1. Then there exist 9-closed
(0 1)-forms aj € L3 (Q,e¥19? w.) (j =1,2,...) such that fQ<A;§+6,(o¢
), — o), et (0 5’)¢>de6 — 0 when j — oo.

PROOF. First, note that [ AE 550 a>wae¢_(5_5l)¢dee < 400 since
( ;;M,Oz,a)ws < (7%1)5]04|w€ by the proof of Lemma 1. Let x € C®(R)

such that x(¢t) = 1 for t < 0, x(t) = 0 for ¢t > 2 and [x/| < 1. Let h; =
x(¢ —j) € C§°(2). Let Ny, resp. Na, be the kernel space of linear, closed,
densely defined operator 0 : Lal(Q, e¢+‘5,¢,w5) — L(2)72(Q, ew”,‘f’,ws), resp.
0: L (9, eV t(0+80¢ () — L§o(Q, eVt @+ (). We have that d(hja) €
L372(9,6¢+6/¢,w5). By a reasoning analogous to that of the proof of
Lemma 1, there exists 3; € L%’l(ﬂ,ew”/d’,wa) N Nf- such that gﬁj =
d(hja), Bje % € L%vl(Q,ew‘F(‘S““s/)"ﬁ,wE) N Ni and 0(Bje %) ¢
Ljo(Q, e¥ 6+ ). By (2), we have that

/ww ~6-8)0qy,, /Iﬁe 89[2 (Y HEHIB Y,

/ (AZ§,5/(08; — 606 N B;),08; — 606 A B))u. v=@=Neqy,
Q
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1
= <1+¥> /< 66+6’a/8J7aﬁJ>W eV~ (0=0qy,,

+<1+t>52/< 15 (0D N By), 06 A B eV 08000V,

for every t > 0. Here we regard A, s+ as an endomorphism of the space
of (0,2)-forms. Since ¢ < §~!, we have that sw. = 6i00(e1) + ¢) < 10 (1 +
(6 +0")¢). By (1), it follows that (Acsi57,7)w. = (0 — 2)5l'y|3)5 for any
(0:2torm . Henee (471,06 1 ). 99 1 5. < k00 1\ B, <
ﬁmqﬂ 16512, < = L 6|ﬂ]\w5 By choosing ¢ so small, there exists a

constant C; which depends only on n and 6 such that (1 + t) 5 <O <1
since n > 2 4 6. Then we have that

[ ee0an, < oo [ Ak, ,05.08).e0 0 v,

where Cy = (1 —C1) ™! (1+ %) which depends only on n and 6. It follows
that

/ (A P50V, < L [ e,
= (n—2 /|3h /\oz|2 —(6=4") ¢deE

S - « 2 ((5 & )¢dv
(n — 2)5 /{j§¢3j+2} e

Because a € L(QM(Q, V=080 we), Lebesgue’s dominated convergence the-
orem shows that the last term of the above inequality tends to 0 when j
tends to +o0o. By the proof of Lemma 1, we have that (A_ 6+6'/6j7ﬁj>w5 <

5(n—1)_|/6]|w5- Finally, we have that

th;o (A 55+5/5g,ﬁ]) —(6= 6)¢dV
< i 2 ¥=00=80%qy, = 0.
_Jggoén_l /Iﬁ;l

Let aj = hja — ;. Then o € Lal(Q,e‘”‘s 9 w.), Oaj = 0, and

lim (A;(%Jré,(oz — o), — aj>wsew7(6f‘sl)¢des

j—oo Jq
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< lim 2 /Q (1= r)X(AZL g 0), + (ATh By, By ) 2~ C=00aV,

by Lebesgue’s dominated convergence theorem. []

LEMMA 4. Let 6,6’ > 0. Let k < n—1. Let a be a smooth (0,1)-
form on Q such that suppa C Q \ supp (i00p)*. Then (AZ} 510 ), <

N €,0+
(n—k—-1)" |a]aaw

PrROOF. We have that A~ ; o < A;;. Hence it is enough to prove

(A;éoz,oz)we <(n—k—-1"1a? Because i00¢ = 902 im, we

100y —p @2
have that suppa C Q\ supp (100¢)*+1. Let € Q \ supp (i09¢)**1. At ,
we choose an orthonormal basis 61, ... ,60, for the holomorphic cotangent

bundle with respect to i09v such that i00¢ = iA10y A Oy + - - + i\ A Oy
where \; > 0 for 1 < j < k. Then w, = i09(cy)+¢) = 2?21 i(e+7j)0;7\0;+
Sy €00 A G and i00(p+6¢) = Y5 i(1+06X)0; A0+ Y1y 1y 0 NG,
Let 0 = /e + \j0; for 1 < j < k and let oy = \/ef); for k+1 <1 < n. Then
we = Y i i0jAGj and i00(p+6¢) = ZJ 11 1;6;‘ OjNT + 3 L0 AT
By (1), it follows that

o 14+6Am n—k\ ' €
<A5§a—]705>w :<< Z + ) O'j,0'5>ws Sméjs

A
1§m§k€+m 15

m#j
for j <k, 1<s<mn,and
146X n—k—1 €
[ m
<A575<71705>w5 = << Z + > 01, 05)w. < méls

e €+ Am €

forl > k+1,1<s5< n Here 0j5, 0;5 are the Kronecker delta. Write
- k
a = Z?:l ol = Zj 1 \/54-—/\ i+ > ka1 \/—al We have that

|2 2
Al < |a]| |Oél| €
(Ao s a) _Za—I—)\ n—~k +Z e n—k—1
j=1 1=k+1
<(n—-k-1)"Yal2, .0
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LEMMA 5. Assume that ¢ € C®(Q) and that dp # 0 on 0. Let
p € 0N and let 1 < k < n be an integer. Assume that (i00¢)F = 0 in a
neighborhood of p. If 6 > k, then e¢_5¢deE 1s integrable around p in €.

PRrROOF. Let Cy,C%,... be sufficiently large positive constants. Since
w. = ieddY + 2'8_8—;0 + ia“fp#&p, we have that dV,, = (n))lw? <

C1 (=) *1(i00|2|>)" and e¥=92dV,,. < Cy(—¢)* *~1(i09|2|>)" around p.
Let U be a small neighborhood of p. There exists a local coordinate system
(1,... ,x9,) on U such that ¢ = z1. It follows that

1
/ ewfﬁd)deg < CS/ x{_k_ldl'l coodao, < 04/ x?_k_ldxl < +00,
QNU QNU 0
since 6 > k. O

PROPOSITION 1. Let Q@ C C" (n > 4) be a bounded hyperconver do-
main and let ¢ be a smooth strongly plurisubharmonic function on a neigh-
borhood of Q. Let o € C®(Q) such that o is negative plurisubharmonic
on Q, p(z) — 0 when z — I, and dp # 0 on 0. Let a be a smooth
(0,1)-form defined on an open neighborhood of Q such that da = 0 in
and suppa C Q \ supp (i00p)" 3 in Q. Let § be a positive constant such
that n —3 < § < n—2. Then there exists u € C™(Q) such that Ou = a and

/ lu2e¥=%%dV,. < Cn,&/ \a]?agwew_wdes < 400
Q Q

for sufficiently small € > 0. Here Cy, 5 is a positive constant which depends
only onn and 9.

PROOF. Since |af?_ < ]a|§2,85¢,

in Q. Then |al?_e¥~%?dV,, is integrable by Lemma 5. Let & > 0 be a
sufficiently small positive number such that 6+6’ < n—2. We put §” = 6+6'.
Then &,6"” depend only on n and §. We have a € L2(, eV~ ©"=8¢ ().
By replacing 6 with §” in Lemma 2, 3 and 4, it follows that there exists
u e L2(Q,e?=0"=89¢ () such that du = o and

_ 6”—6’ _ 6//—6/
/Q‘u‘26¢ ( )¢de€ S Cn75/(2‘0z’?85w€¢ ( )¢deE'

the norm |a|?_ is bounded from above

Then we have the proposition since 6 = §” — ¢’. The smoothness of u is
known (see [5], [8]). O
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4. Interior Estimate of Non-Negative Plurisubharmonic Func-
tions

The purpose of this section is the following theorem:

THEOREM 3. Let Q C C™ be a bounded hyperconvexr domain and let ¢
be a negative continuous plurisubharmonic function on Q such that p(z) — 0
when z — 0Q. Let v > 0 be a plurisubharmonic function on 2. Then

/ i00v A (i00|z|*)" 1 < C’/ vidp A O A (100@)" 1,
{p<r} Q
/ w(i08]22)" < C / (0(i0B)" + vidp A Do A (0Tp)" )
{p<r} Q
forr < 0. Here C = (1+d(Q) + sup || + \7’|71)C", d(Q) is the diameter
of Q, and C, is a positive constant which depends only on n.

In the above theorem, i09v A (i09|z|*)"~1, i0p A Op A (i00p)" 1, and
(i00¢)"™ are defined in the sense of Bedford-Taylor (see [2], [9]).

LEMMA 6. Let k be a non-negative integer. We assume the same hy-

pothesis of Theorem 3, and we assume that v, € C*°(Q2) and that dp # 0
on 0. Then

/ 1990 A (100p)F A (i0]2[2)"
{p<r}

(d(€2)? sup || )" H1

<Chk 3(—h) /Qm'@cp A dp A (i00p)" L.

Here Cy, 1, is a positive constant which depends only on n and k.

PrOOF. By the Stokes theorem, we have that
/ vidp A Dp A (100p)" !
Q

= —/<pi8v/\5g0/\(i85cp)”_1—i—/(—ap)v(i@&o)”
Q )

v

- 1/ i0v A Dp? A (i00p)" ! = 1/ ©%i00v A (100p)" 1,
2 Q 2 Q
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and we have that
(3) / ©%i00v A (100p)" ! < 2/ vidp A Op A (100¢p)"
Q Q

Wlthout loss of generality, we may assume that 0 € 0Q. Let n =
5 Q)2( |z|?2 — 2d(Q2)?). We have that 7 is smooth plurisubharmonic func-
tion such that r < n < 5 in . For sufficiently small ¢ > 0, we put
p = max{y,n} where max, is a regularized max function (see Chapter I,
Section 5 of [5]). Then p is a smooth plurisubharmonic function on € such
that p = g near {z € Q| p(z) = 5} and p=non {z € Q| p(z) < r}. After a
slight perturbation of 7, we may assume that dy # 0 on {z € Q| p(2) = 5}.

By the Stokes theorem, we have that

/ 1090 A (108p)F A (i93]2[2)n 1
{p<r}

2
_ 248 / 10 A (10Dp)F N idDp A (10D|z|*)" k2

2d(Q)* 3 r - . e
= 2lr| 2 ) i00v A\ (i00)" N idOp N (100]z[7)"

T3] s,y (5 ) 000 1 (100 (i09)2]?)

3d(€)? r . oE Nk . oo r e
< T2 9 —_——
SENE /{¢<r/3} (3 go) i98v A (109)* A 10D (p 3) A (i09)2[2)

3d(Q))?

_ " _ N:95 TN Iy i SO oA 12\n—k—2
= /{<p<r/3} (3 p) 100V A (100¢)" N 100 (cp 3) A (100|z|*)

[
< 3d(9)?sup |p|

EE Cerss) i00v A (i000) L A (100 2)?)" k2.
e<r

By repeating the same process, we have that

/ i00v A (100)F A (i08]2]2)m k1
{e<r}

n—k—1
5 ) / id0v A (i00p)" !
|T” {p<r/3n—k-1}

n—k—1 n—
< g(n—k-1)? <d(9)2 SUP\90|> <3 i 1)

7]

x/ ©%i00v A (i0Dp)" 1
{o<r/3n=h=1}
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d(Q 2 n—k—1 - o
< q(n—k—1)(n—k+1)o (A(2) ;;I()n‘ﬁ)) /Qm‘&m Do A (i090)" .

The last inequality follows from (3). This completes the proof. O

REMARK 1. To prove Theorem 1, the rest of this section is not neces-
sary. Indeed, Lemma 6 shows that

/ |VF|?(i00)|2|*)" < C/ |F|2i0p A Do A (i00p)"
{p<r} Q

for holomorphic function F'. Here C' does not depend on F'. This implies
that the solutions constructed in Section 3 are bounded locally and we can
prove Theorem 4 below.

LEMMA 7. Let k be a non-negative integer. Under the same assump-
tion of Lemma 6, we have that

/ w(i03p)k A (i08)]2]2)"*
{e<r}

<C (/ v(i09p)" + vidp A Dp A (205@)”_1> ;
Q

where C = (1 + d(Q) + sup|p| + ]7"]*1)0""“, and Cy, i, is a positive constant
which depends only on n and k.

PrROOF. We prove the lemma by induction on [ = n — k. It is clear for
[ = 0. Under the notation of the proof of Lemma 6, we have that

7]

S L B vi@ggok/\ i00|z|2)"F
ST /{} (100)* A (1002 %)
< / v(i0D)* A i0dp A (100] 2|21
{p<r/3}
_ / vidp A (i00p)* A (i00]2|2)"F1
fo=r/3)
_ / 100 A Dp A (100p)F A (i08]2|2)" 1
{p<r/3}

_ / vidp A (i00p)* A (i0]2)2)"+1
{o=r/3}

_ / iv A Dp A (i099)F A (i00]z?)" k1
{p<r/3}
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_ / 190 A (g — p) A (i09)F A (i08]z|2)"F
fo<r/3)
n / v(i03p)F L A (i0D]2[2)n 1.
fo<r/3)

The last term of the above inequality is bounded from above by the hypoth-
esis of the induction. By Lemma 6, the second to last term of the above
inequality is bounded from above by

d(Q)2(=k=1) qup ||k . = AT e
(@) SR ¥l /Qm&p/\&p/\(z@ago) L

Cn,k

since
‘/ (p — ©)iddv A (i00p)* A (100|z|*)"F 1
{ep<r/3}
< sup |¢| / i00v A (i00p)" A (i00]z|2)"F1.
{p<r/3}

This completes the proof by the induction. [J

PROOF OF THEOREM 3. We prove the first inequality. Let ¢ > 0 be
a small positive number. It is enough to prove the theorem with ¢ and €2
replaced by ¢+ ¢ and {z € Q| ¢(z) +¢ < 0}. Hence we may assume that ¢
and v are plurisubharmonic functions defined on an open neighborhood of
Q. Let v; be a decreasing sequence of smooth plurisubharmonic functions
on an open neighborhood of © which converge to v. Since J {p<r} i00v A

(i00|2*)"1 < liminf; oo f{w@} i00v; A (i00|z|*)" 1, it is enough to prove
the theorem for v € C*°(2). Since ¢ is continuous, there exists a decreasing
sequence ¢; of smooth plurisubharmonic functions on an open neighborhood
of  which converge to ¢ uniformly. Let Q; = {z € Q| p;(2) < 0}. We may

assume that dy; # 0 on 0€); by Sard’s theorem. By Lemma 6, we have

/ i00v A (109]2[2)"
{pj<r}

)2 -1 = 3
(d(2)) S:;lzl%l) / vidp; N Dp; A (i00p;)" L.

J

<Cy
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Since

lim sup /_vi@goj A Op; A (100p;)" 1t < /_m’&p A dp A (i00p)" 1L,
Q

j—oo JQ
we have that
/ i00v A (109]22)"
{p<r}

(d(©)?sup ||
r2n

n—1
<Cp, ) /_vi@gp A D A (100p)" L.
Q
Then the first inequality of Theorem 3 follows by the continuity of C' in the
theorem with respect to d(€2),sup ||, and |r|. The second inequality can
be proved by the same way. [

5. Proof of the Main Theorem

THEOREM 4. Let Q@ C C" (n > 4) be a bounded hyperconver domain.
Let ¢ € C™(Q) such that ¢ is negative plurisubharmonic on €, p(z) — 0
when z — 0, and dp # 0 on 0Q. Let a be a smooth (0,1)-form defined
on an open neighborhood of Q such that 0o = 0 in Q and suppa C Q'
supp (i09¢)" =3 in Q. Then there exists a smooth function u on S such that

ou=a and [ |[u*(i09¢)" = 0.

Proor. We use the same notation as Proposition 1. Let ¢; be a
decreasing sequence of positive numbers which converge to 0. We put
dv; = (n!)_lng. Then dV; decreases to dV, 5, = (n))~L(i00¢)™. By_Propo—
sition 1, there exists a sequence u; of smooth functions such that du; = «
and

/Q‘ujpeiﬁ—ﬁqﬁdvj < C""S/Q’O"?aawelb_wdv}-

We have that supp a C 2\ supp (i09p)" 3 C Q \ supp (i09¢)". Hence the
right hand side of the above inequality goes to 0 when j — oo because of
Lebesgue’s dominated convergence theorem. Let Q(r) = {z € Q| p(z) < r}.
Then fQ(T) \uj|2d‘/;85¢ goes to 0 when j — oo for r < 0. We take h €

C*>(9) such that Oh = « (see [5], [8]). Define F; = h —u;. Then F} is a



Holomorphic Functions on a Non-Pluriharmonic Locus 121

holomorphic function and fQ(T) |E5[2dV. 55 » are bounded from above for all
. Since there exists a positive constant C' such that idp A dp A (1090)" ! +
(i100p)™ < C(i00¢)™ on Q(r), Theorem 3 shows that fQ(T,) || (00| z|*)™
and fQ(r,) luj|?>(i00|2|*)" are bounded from above for all j when 7’/ < r. We

can thus find a weakly convergent subsequence wu;, in L?(2(r")). Let u be
the weak limit u. It follows that Ju = a on Q(r') and fQ(T,) [u|?(100¢)™ = 0.
Then, by using a diagonal argument, we have the solution we are looking
for. O

PrROOF OF THEOREM 1. Let r < 0 such that |r| is sufficiently small
and let Q(r) = {z € Q|¢(z) < r}. We can choose r such that dy # 0 on
0Q(r). Let V(r) = Q(r) N V. There exists 6 > 0 such that d(OV(r) \
0Q(r), supp (i009)" 3 N Q(r)) > 36. Here d(A,B), A,B C C" is the
Euclidean distance between A and B. Let U; = {z € Q(r)|
d(z,supp (i09p)" 3 N Q(r)) < 76} (j = 1,2). We take a smooth func-
tion x on §(r) such that x = 1 on Uy and x = 0 on Q(r) \ Ua. Let f be
a holomorphic function on V. Define a = d(xf). We may assume that o
is defined on an open neighborhood of ©(r) by a small perturbation of r.
Then suppa C Wr) \ supp (i09p)" 3 in m By Theorem 4, there exists
u € C°°(Qr)) such that Ou = «a and fQ(T) |u|?(i00(—(log(r — ¢)))* = 0.
(If Q(r) is a disjoint union of bounded hyperconvex domain, we apply The-
orem 4 to each component.) Then u = 0 on supp (i09¢)" N Q(r) since
supp (i00¢)"™ = supp (i00(— log(r — ¢)))". Let F, = xf —u. Then F, is
holomorphic on (r) and F, = f on supp (i094)" N Q(r). We note that
any component of Q(r) intersects supp (i09¢)" by the comparison theorem
(see [9]). By letting » — 0, we obtain the holomorphic function F' on §2
such that F = f on supp (i09¢)" because of the identity theorem. Since
supp (100¢)™ C V and V is connected, we have F = f on V. [J

Proor oF THEOREM 2. We use the same notation as the proof of
Theorem 1. Let p € supp (i100¢)" C V. Let h : C* — R* be a smooth
function of |z| whose support is the unit ball and whose integral is equal to
one. Define h. = (1/e2")h(z/¢) for € > 0. Let . = ¢ * h. be a function on
Q(r) where r < 0 and 0 < € << |r|. Let ¢. = —(log(—e)) and let W be
a connected open neighborhood of p such that W C V. If ¢ is sufficiently
small, then supp(i0d¢.) C V in Q(r) and supp (i09¢.)" N W # @ by the
continuity of the Monge-Ampere measure (see [2], [9]). Let s < 0 such
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that W C Q(s). By taking |r| and ¢ are sufficiently small, we may assume
that there exists ¢ < 0 such that Q(s) C Q.(t) := {2z € Q(r) | p:(2) < t}
and Q.(t) € Q(r). Then there exists a holomorphic function F; on Q.(t)
such that F; = f on supp (i100¢.)" by the same argument as the proof of
Theorem 1. Then F; = f on W because supp (i00¢.)" N W # (). Let Q(s)o
be a component of )(s) which contains W. It follows that Fi|q(s), does
not depend on ¢,r and ¢t by the identity theorem. By letting s — 0, there
exists the holomoprhic function F' on 2 such that F' = f on W. Since V is

connected, we have F'= f on V. [J

THEOREM 5. Letn >4 and Q) be a pseudoconvexr domain in C™. Let
@ be an exhaustive smooth plurisubharmonic function on Q. Let V' C Q be
a connected open neighborhood of supp (i00p)"~3. Then any holomorphic
function on V' can be extended to a holomorphic function on €.

THEOREM 6. Letn >4 and Q) be a pseudoconvexr domain in C™. Let
© be an exhaustive continuous plurisubharmonic function on Q. Let V C §
be a connected open neighborhood of suppiddyp. Then any holomorphic
function on V' can be extended to a holomorphic function on €.

PROOF OF THEOREM 5 AND 6. Let r € R. Then Q(r) = {z €
Q|p(z) < r} is a bounded hyperconvex domain. It follows that
supp (100p)" 3 C supp (i09(— log(r—¢)))™ and supp (i09(— log(r’ —¢)))"N
Q(r) = supp (i09(—log(r — ¢)))"™ for r < r’. Then the theorems follow from
the same arguments as the proofs of Theorem 1 and 2. [J

Let Q be a pseudoconvex domain in C™ (n > 4) and let ¢ be an exhaus-
tive continuous plurisubharmonic function on . Let Q(r) = {z € Q] p(z) <
r}. Then max{¢,r} is an exhaustive continuous plurisubharmonic function
which is pluriharmonic on (7). Hence any holomorphic function on a con-
nected open neighborhood of Q2 \ Q(r) can be extended to the holomorphic
function on €. This is a special case of the Hartogs extension theorem.
Finally we note that supp (i90¢) can be interpreted as an “ample divisor”
on (2 and our results are associated with the Lefschetz hyperplane theorem
(see [11]).
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