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Decision Tree-Based Estimation of the Overlap of

Two Probability Distributions

By Hisashi Johno and Kazunori Nakamoto

Abstract. A new nonparametric approach, based on a decision
tree algorithm, is proposed to calculate the overlap between two prob-
ability distributions. The devised framework is described analytically
and numerically. The convergence of the estimated overlap to the true
value is proved along with some experimental results.

1. Introduction

In various scientific fields, it is important to assess the similarity between

data sets or distributions. The overlap coefficient (OVL) is an interpretable

measure of such similarity, defined as the common area under two probabil-

ity density functions (PDFs). While a variety of parametric techniques to

estimate OVL have been developed, existing nonparametric ones are wholly

based on kernel density estimation (KDE) [3, 4, 6]. Although KDE is a use-

ful and widely practiced method to estimate probability density functions,

the optimal setting of its parameters (kernel function and bandwidth) is a

challenging task.

Here we propose a new nonparametric method to calculate OVL based

on a decision tree algorithm. We start with notation and preliminaries in

Section 2. The devised framework is described analytically in Section 3 and

numerically in Section 4. Experimental results are shown in Section 5, and

the conclusion follows in Section 6.
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2. Preliminaries

Let f1 and f2 be two continuous PDFs on the real line R. The OVL

between f1 and f2 is defined as

ρ(f1, f2) =

∫ ∞

−∞
min {f1(x), f2(x)} dx.

Definition 2.1. Suppose g1 and g2 are real continuous functions on R.

Then we call x ∈ R a crossover point between g1 and g2 if there exist points

a, b in any neighborhood of x such that [g1(a) − g2(a)][g1(b) − g2(b)] < 0.

We also call x ∈ R a coincidence point between g1 and g2 if g1(x) = g2(x).

The set of crossover points and that of coincidence points are denoted by

C(g1, g2) and C ′(g1, g2), respectively. Note that C(g1, g2) ⊂ C ′(g1, g2).

Under the assumption that C ′(f1, f2) is finite and the cardinality of

C(f1, f2) is known in advance, we present a decision tree-based method to

estimate ρ(f1, f2). The rest of this section provides further notations and

terminologies.

Definition 2.2. Let (Ω,F ,P) be a probability space and (X,Y ) :

Ω → R × {1, 2} a random variable with distribution P , defined as P (A) =

P((X,Y )−1(A)) for all Borel sets A ⊂ R×{1, 2}. From the viewpoint of bi-

nary classification, the measurable functions X : Ω → R and Y : Ω → {1, 2}
can be regarded as explanatory and response variables, respectively. Given

a Borel set B ⊂ R, we may simply write P (X ∈ B) for P (B × {1, 2}),
πj for P (R × {j}), Fj(x) for P ((−∞, x] × {j})/πj , P (X ∈ B, Y = j) for

P (B × {j}), and P (Y = j | X ∈ B) for P (X ∈ B, Y = j)/P (X ∈ B),

provided πj �= 0 and P (X ∈ B) �= 0 as necessary.

We shall consider the random variable (X,Y ) with

Fj(x) =

∫ x

−∞
fj(t) dt (x ∈ R; j = 1, 2),

so that each Fj is the cumulative distribution function (CDF) corresponding

to the continuous PDF fj . We also define Fj(−∞) = 0 and Fj(∞) = 1

(j = 1, 2).
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Definition 2.3. Let ∆1 be the standard 1-simplex, which consists of

all points (a, b) ∈ R2 such that a + b = 1, a ≥ 0, and b ≥ 0. An impurity

function on ∆1 is a function ι with the following properties:

1. ι attains its maximum only at (1/2, 1/2),

2. ι attains its minimum only at (1, 0) and (0, 1),

3. ι is a symmetric function, i.e., ι(a, b) = ι(b, a).

Definition 2.4. For a positive integer m, let Rm
≤ be the set of all

v = (v1, . . . , vm) ∈ Rm with v1 ≤ · · · ≤ vm. By the (m + 1)-ary split on

R at a point v ∈ Rm
≤ , we mean the collection Sv = {Sv,1, . . . , Sv,m+1} with

Sv,1 = {x ∈ R | x ≤ v1}, Sv,m+1 = {x ∈ R | x > vm}, and Sv,k = {x ∈ R |
vk−1 < x ≤ vk} for k = 2, . . . ,m. Note that each Sv,k is a Borel set in R,

Sv,k ∩ Sv,l = ∅ if k �= l, and Sv,1 ∪ · · · ∪ Sv,m+1 = R.

Using an impurity function ι on ∆1, we define the impurity of a Borel

set B ⊂ R for the binary classification by

I(B) =

{
ι (P (Y = 1 | X ∈ B), P (Y = 2 | X ∈ B)) if P (X ∈ B) > 0,

0 if P (X ∈ B) = 0,

and the goodness of Sv (v ∈ Rm
≤ ) by

∆I(Sv) = I(R) −
m+1∑
k=1

P (X ∈ Sv,k)I(Sv,k),(1)

according to the conventional decision tree algorithm [1]. If there exists

v′ ∈ Rm
≤ such that ∆I(Sv′) = sup∆I(Sv), where the supremum is over all

v ∈ Rm
≤ , then we call Sv′ a best (m + 1)-ary split on R.

3. Analytical Framework

In this section, we present the theoretical foundation of our method

to calculate C(π1f1, π2f2) and ρ(π1f1, π2f2) under the assumptions that

C ′(π1f1, π2f2) is finite, the cardinality n of C(π1f1, π2f2) is known in ad-

vance, π1 > 0, and π2 > 0. We can obtain C(f1, f2) = C(π1f1, π2f2) and
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Fig. 1. A schematic example of C(π1f1, π2f2) and ρ(π1f1, π2f2).

ρ(f1, f2) = 2ρ(π1f1, π2f2) if π1 = π2 = 1/2, which may be realized with

sampling techniques, e.g., drawing the same number of samples from both

the distributions corresponding to f1 and f2. Here we use the setting of the

previous section and, in addition, adopt the misclassification-based impurity

function [1], i.e.,

ι(a, b) = 1 − max {a, b} ((a, b) ∈ ∆1).(2)

Suppose C(π1f1, π2f2) = ∅, or n = 0. Then either π1f1 ≤ π2f2 or

π1f1 ≥ π2f2 holds. (Recall that C ′(π1f1, π2f2) is finite.) In the former case,

we have ρ(π1f1, π2f2) = π1, and in the latter, ρ(π1f1, π2f2) = π2. Of note,

π1 = π2 = 1/2 cannot occur here.

In the following, we assume C(π1f1, π2f2) �= ∅, so that n is a posi-

tive integer. Put C(π1f1, π2f2) = {c1, . . . , cn} with c1 < · · · < cn, c =

(c1, . . . , cn), c0 = −∞, and cn+1 = ∞. The (n + 1)-ary split on R at c

is defined by Sc = {Sc,1, . . . , Sc,n+1} (see Definition 2.4). Figure 1 is a

schematic example to illustrate C(π1f1, π2f2) and ρ(π1f1, π2f2).

Proposition 3.1. For v = (v1, . . . , vm) ∈ Rm
≤ with m a positive inte-
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ger, we have

∆I(Sv) =
m+1∑
k=1

max
j

{πj [Fj(vk) − Fj(vk−1)]} − max
j

{πj}

=

m+1∑
k=1

max
j

{∫ vk

vk−1

πjfj(x) dx

}
− max

j
{πj} ,

where v0 = −∞ and vm+1 = ∞.

Proof. From (1) and (2), we have

∆I(Sv) =
∑
k

P (X ∈ Sv,k) max
j

{P (Y = j | X ∈ Sv,k)}(3)

− max
j

{P (Y = j | X ∈ R)} ,

where the sum is over all k with P (X ∈ Sv,k) > 0. Since P (Y = j |
X ∈ Sv,k) = P (Sv,k × {j})/P (X ∈ Sv,k) and P (Sv,k × {j}) = πj [Fj(vk) −
Fj(vk−1)], we obtain

P (X ∈ Sv,k) max
j

{P (Y = j | X ∈ Sv,k)} = max
j

{πj [Fj(vk) − Fj(vk−1)]} .

As for the last term of (3), we have P (Y = j | X ∈ R) = πj by definition. �

The following corollary is immediate from Proposition 3.1.

Corollary 3.2. For v = (v1, . . . , vm) ∈ Rm
≤ with m a positive integer,

let

gv(x) = πjkfjk(x) (x ∈ Sv,k; k = 1, . . . ,m + 1)

where jk ∈ arg maxj {πj [Fj(vk) − Fj(vk−1)]}. Let g = max {π1f1, π2f2}.
Then

∆I(Sv) =

∫ ∞

−∞
gv(x) dx− max

j
{πj} , ∆I(Sc) =

∫ ∞

−∞
g(x) dx− max

j
{πj} .

Furthermore, gv ≤ g and ∆I(Sv) ≤ ∆I(Sc).
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Lemma 3.3. Suppose m is a positive integer, v = (v1, . . . , vm) ∈ Rm
≤ ,

v0 = −∞, and vm+1 = ∞. If vk−1 < cp < vk for some k ∈ {1, . . . ,m + 1}
and p ∈ {1, . . . , n}, then ∆I(Sv) < ∆I(Sc).

Proof. Since C ′(π1f1, π2f2) is finite, there exists a neighborhood U of

cp such that U ⊂ (vk−1, vk) and U ∩C ′(π1f1, π2f2) = {cp}. Then, [π1f1(a)−
π2f2(a)][π1f1(b) − π2f2(b)] < 0 for all a, b ∈ U with a < cp < b. Without

loss of generality, we assume that π1f1(a) < π2f2(a) and π2f2(b) < π1f1(b).

If gv = π1f1 on Sv,k, then gv < g on the open interval (a, cp), so that

∆I(Sc) −∆I(Sv) ≥
∫ cp

a
[g(x) − gv(x)] dx > 0.

The proof for the case gv = π2f2 on Sv,k is similar. �

Proposition 3.4. The supremum of ∆I(Sv) over v ∈ Rn
≤ is uniquely

attained at v = c.

In other words, Sc is the unique best (n + 1)-ary split on R.

Proof. If v �= c, then cp /∈ {v1, . . . , vn} for some p. Hence vk−1 <

cp < vk for some k as in the assumption of Lemma 3.3, so that ∆I(Sv) <

∆I(Sc). �

Proposition 3.5. Suppose m is a positive integer with m < n. Then

for every v ∈ Rm
≤ , ∆I(Sv) < ∆I(Sc).

Proof. Since m < n, cp /∈ {v1, . . . , vm} for some p. The proof is

similar as above. �

Now we see that C(π1f1, π2f2) can be obtained by finding v ∈ Rn
≤ that

yields the maximum of ∆I(Sv). Given C(π1f1, π2f2), we have

ρ(π1f1, π2f2) =

n+1∑
k=1

∫ ck

ck−1

min
j

{πjfj(x)} dx(4)

=
n+1∑
k=1

min
j

{P (X ∈ Sc,k, Y = j)} .
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4. Numerical Framework

Here we show how to estimate C(π1f1, π2f2) and ρ(π1f1, π2f2), given in-

dependent and identically distributed (i.i.d.) random variables (X1, Y1), . . . ,

(XN , YN ) with the distribution P on R × {1, 2}. Let us keep the setting of

the previous section.

Definition 4.1. For a Borel set B ⊂ R and j ∈ {1, 2}, put

NX(B) = #{i | Xi ∈ B}, NY (j) = #{i | Yi = j}
NXY (B, j) = #{i | Xi ∈ B, Yi = j}, π̂j,N = NY (j)/N

P̂N (X ∈ B) = NX(B)/N, P̂N (X ∈ B, Y = j) = NXY (B, j)/N,

P̂N (Y = j | X ∈ B) = NXY (B, j)/NX(B) if P̂N (X ∈ B) > 0,

where # denotes the cardinality of a set. Define

ÎN (B) =


ι
(
P̂N (Y = 1 | X ∈ B), P̂N (Y = 2 | X ∈ B)

)
if P̂N (X ∈ B) > 0,

0 if P̂N (X ∈ B) = 0

and

(5) ∆ÎN (Sv) = ÎN (R) −
m+1∑
k=1

P̂N (X ∈ Sv,k)ÎN (Sv,k)

(v ∈ Rm
≤ ; m = 1, 2, . . . )

as the estimators of I(B) and ∆I(Sv), respectively.

Definition 4.2. Let XN :1 ≤ · · · ≤ XN :N be the order statistics of

X1, . . . , XN ,

Zi = (XN :i + XN :i+1)/2 (i = 1, . . . , N − 1),

R̂m
N = {(Zi1 , . . . , Zim) | 1 ≤ i1 ≤ · · · ≤ im ≤ N − 1} (m = 1, 2, . . . ).

To avoid trivialities, we set Z1 = X1 if N = 1. Note that R̂m
N ⊂ Rm

≤
(m = 1, 2, . . . ) and recall that n = #C(π1f1, π2f2). Define v̂N
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∈ arg max
v∈R̂

n
N
{∆ÎN (Sv)} and

ρ̂v,N =

m+1∑
k=1

min
j

{
P̂N (X ∈ Sv,k, Y = j)

}
(v ∈ Rm

≤ ; m = 1, 2, . . . ).(6)

We propose ρ̂v̂N ,N as an estimator of ρ(π1f1, π2f2).

Definition 4.3. Let ξ be a random variable and {ξi} a sequence of

random variables on (Ω,F ,P) taking values in a separable metric space

(A, d). We say that {ξi} converges almost surely to ξ if

P

({
ω ∈ Ω

∣∣∣ lim
i→∞

ξi(ω) = ξ(ω)

})
= 1.

We also say that {ξi} converges completely to ξ if

∞∑
i=1

P ({ω ∈ Ω | d (ξi(ω), ξ(ω)) > ε}) < ∞

for any ε > 0.

Remark 4.4 (See [2] for reference). In Definition 4.3, {ξi} converges

almost surely to ξ if and only if

lim
l→∞

P

(∞⋃
i=l

{ω ∈ Ω | d (ξi(ω), ξ(ω)) > ε}
)

= 0

for any ε > 0. If {ξi} converges completely to ξ, then {ξi} converges almost

surely to ξ.

Theorem 4.5. As N tends to ∞, v̂N converges completely to c.

Theorem 4.6. As N tends to ∞, ρ̂v̂N ,N converges completely to

ρ(π1f1, π2f2).

The proofs of Theorems 4.5 and 4.6 are given in Appendix A. While v̂N

and ρ̂v̂N ,N are treated as random variables, their measurability is in fact

nontrivial and will be discussed in Appendix B.
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Remark 4.7. For each N = 1, 2, . . . , let (X
(N)
1 , Y

(N)
1 ), . . . ,

(X
(N)
N , Y

(N)
N ) be i.i.d. random variables with the distribution P on R×{1, 2}

to calculate v̂
(N)
N ∈ R̂n

N and ρ̂
(N)

v̂
(N)
N ,N

in the same way as v̂N and ρ̂v̂N ,N in

Definition 4.2, respectively. By Theorems 4.5 and 4.6, we have

∞∑
N=1

P

({
ω ∈ Ω

∣∣∣ ∥∥∥v̂(N)
N − c

∥∥∥ > ε
})

=
∞∑

N=1

P ({ω ∈ Ω | ‖v̂N − c‖ > ε}) < ∞

and

∞∑
N=1

P

({
ω ∈ Ω

∣∣∣∣ ∣∣∣∣ρ̂(N)

v̂
(N)
N ,N

− ρ(π1f1, π2f2)

∣∣∣∣ > ε

})

=

∞∑
N=1

P

({
ω ∈ Ω

∣∣ ∣∣∣ρ̂v̂N ,N − ρ(π1f1, π2f2)
∣∣∣ > ε

})
< ∞

for any ε > 0, where ‖ · ‖ denotes the Euclidean norm. Hence v̂
(N)
N and

ρ̂
(N)

v̂
(N)
N ,N

, as well as v̂N and ρ̂v̂N ,N , converge completely to c and ρ(π1f1, π2f2),

respectively.

5. Numerical Experiments

Here we perform numerical simulations to illustrate the results in Sec-

tion 4. A set of random samples {(Xi, Yi) | 1 ≤ i ≤ N} was simulated under

the following two conditions: first,

π1 = 2/3, π2 = 1/3, f1 = ν−1,1, f2 = ν1,1,

and second,

π1 = π2 = 0.5, f1 = 0.5ν−1,1 + 0.5ν1,1, f2 = 0.8ν0,1 + 0.2τ0,0.5,

where νµ,σ represents the Gaussian PDF defined as

νµ,σ(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(x ∈ R)(7)
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and τa,b is the triangular PDF defined as

τa,b(x) =


4(x− a)/(b− a)2 if a ≤ x ≤ (a + b)/2,

4(b− x)/(b− a)2 if (a + b)/2 < x ≤ b,

0 otherwise.

(x ∈ R; a < b),

(8)

Then, we can analytically calculate

C(π1f1, π2f2) = {c1} = {(log 2)/2} � {0.347},(9)

ρ(π1f1, π2f2) = [2 − 2Φ (c1 + 1) + Φ (c1 − 1)] /3 � 0.145(10)

for the first case, and

C(π1f1, π2f2) = {c1, c2} = cosh−1
(
0.8

√
e
)
� {−0.779, 0.779},(11)

ρ(π1f1, π2f2) = 0.8 − 0.5Φ(c1 + 1) + 0.5Φ(c2 + 1) − 0.8Φ(c2) � 0.362(12)

for the second case, where Φ denotes the cumulative distribution function

of the standard normal distribution given by

Φ(x) =
1√
2π

∫ x

−∞
exp

(
− t2

2

)
dt (x ∈ R).(13)

See Appendix C for the proof of (9)–(12). With the knowledge that n = 1

and n = 2 for the first and second cases, respectively, we numerically

calculated v̂N and ρ̂v̂N ,N for each case with N = 10000. The subsets

{(Xi, Yi) | 1 ≤ i ≤ 100} and {(Xi, Yi) | 1 ≤ i ≤ 1000} were also applied to

calculate v̂N and ρ̂v̂N ,N . This trial (from the generation of 10000 random

samples) was repeated independently for 30 times, and the convergence of

v̂N and ρ̂v̂N ,N was visually assessed.

To begin with, we exhibit a representative sample distribution (N =

10000) for each case with the calculated values of v̂N and ρ̂v̂N ,N (Figures 2

and 3). As a result of the 30 trials for each case, v̂N and ρ̂v̂N ,N appear

to converge to c and ρ(π1f1, π2f2), respectively, as N increases (Figures 4

and 5).

Similarly, we next performed 30 independent trials for each case to sim-

ulate three independent sets of random samples, of the forms {(Xi, Yi) |
1 ≤ i ≤ 100}, {(X ′

i, Y
′
i ) | 1 ≤ i ≤ 1000}, and {(X ′′

i , Y
′′
i ) | 1 ≤ i ≤ 10000}.
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Fig. 2. In the upper row, π1f1 and π2f2 for the first case are plotted. Normalized
histograms corresponding to π1f1 and π2f2 (denoted by π̂1,N f̂1,N and π̂2,N f̂2,N , re-
spectively) were generated using a representative set of N = 10000 random samples,
{(Xi, Yi) | 1 ≤ i ≤ 10000}. The vertical dotted line indicates the estimated crossover
point v̂1,N ≈ 0.355, where its theoretical counterpart is c1 � 0.347. In the lower
row, ∆ÎN (Sv1) for all v1 ∈ R̂

1
N are plotted. The overlap ρ(π1f1, π2f2) � 0.145 was

estimated as ρ̂v̂N ,N ≈ 0.140.

Each set was used to calculate v̂
(N)
N and ρ̂

(N)

v̂
(N)
N ,N

(see Remark 4.7). Then, in

both the cases, v̂
(N)
N and ρ̂

(N)

v̂
(N)
N ,N

appear to converge to c and ρ(π1f1, π2f2),

respectively, as N increases (Figures 6 and 7).

6. Conclusion

In this paper, we propose a new nonparametric framework to calculate

OVL based on a decision tree algorithm. The estimators of crossover points

and overlaps for continuous PDFs were shown to converge to the expected
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Fig. 3. In the upper row, π1f1 and π2f2 for the second case are plotted. Normalized
histograms corresponding to π1f1 and π2f2 (denoted by π̂1,N f̂1,N and π̂2,N f̂2,N , re-
spectively) were generated using a representative set of N = 10000 random samples,
{(Xi, Yi) | 1 ≤ i ≤ 10000}. The dotted lines indicate the estimated crossover points
v̂1,N ≈ −0.757 and v̂2,N ≈ 0.763, where their theoretical counterparts are c1 � −0.779
and c2 � 0.779, respectively. In the lower row, ∆ÎN (S(v1,v2)) for all (v1, v2) ∈ R̂

2
N

are visualized in a heatmap. The overlap ρ(π1f1, π2f2) � 0.362 was estimated as
ρ̂v̂N ,N ≈ 0.361.
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Fig. 4. In the first case, 30 independent trials were performed to simulate 10000 random
samples: (X1, Y1), . . . , (X10000, Y10000). For each trial, {(Xi, Yi) | 1 ≤ i ≤ 100},
{(Xi, Yi) | 1 ≤ i ≤ 1000}, and {(Xi, Yi) | 1 ≤ i ≤ 10000} were used to calculate v̂1,N ,
|v̂1,N−c1|, ρ̂v̂N ,N , and |ρ̂v̂N ,N−ρ(π1f1, π2f2)|. Each dotted line indicates the expected
value: c1 � 0.347 for v̂1,N , 0 for |v̂1,N − c1|, ρ(π1f1, π2f2) � 0.145 for ρ̂v̂N ,N , and 0
for |ρ̂v̂N ,N − ρ(π1f1, π2f2)|. In this figure, ρ̂v̂N ,N and ρ(π1f1, π2f2) are abbreviated as
ρ̂N and ρ, respectively.

values (both analytically and numerically). However, there remain several

issues to be addressed:

1. We have not established a general way to know the number n of

crossover points (which is required to be known in advance), though

we may estimate it beforehand by obtaining partial information about

the distributions (e.g., there exist precisely two crossover points be-

tween any two normal distributions with different variances) or by

using some numerical tools like histograms.

2. Our method has not been applied to real data or compared numerically

with other nonparametric methods, though the following arguments

seem to exemplify the theoretical advantages of ours over the previous

ones (described in detail in [6]): (i) our OVL estimator depends only on

the rank statistics of X1, ..., XN (labeled by Y1, . . . , YN , respectively),
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Fig. 5. In the second case, 30 independent trials were performed to simulate 10000 ran-
dom samples: (X1, Y1), . . . , (X10000, Y10000). For each trial, {(Xi, Yi) | 1 ≤ i ≤ 100},
{(Xi, Yi) | 1 ≤ i ≤ 1000}, and {(Xi, Yi) | 1 ≤ i ≤ 10000} were used to calculate
v̂1,N , v̂2,N , ‖v̂N − c‖, ρ̂v̂N ,N , and |ρ̂v̂N ,N − ρ(π1f1, π2f2)|. Each dotted line indi-
cates the expected value: c1 � −0.779 for v̂1,N , c2 � 0.779 for v̂2,N , 0 for ‖v̂N − c‖,
ρ(π1f1, π2f2) � 0.362 for ρ̂v̂N ,N , and 0 for |ρ̂v̂N ,N − ρ(π1f1, π2f2)|. In this figure,
ρ̂v̂N ,N and ρ(π1f1, π2f2) are abbreviated as ρ̂N and ρ, respectively.

as is consistent with the nature of OVL, while the OVL estimators in

[6] depend not only on the rank statistics ([6, pp. 1588–1589]); (ii)

our OVL estimator converges completely to the true value (Theorem

4.6).

Further studies on these problems are needed for the practical use of our

method.
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Fig. 6. In the first case, 30 independent trials were performed to simulate three
independent sets of random samples, of the forms {(Xi, Yi) | 1 ≤ i ≤ 100},
{(X ′

i, Y
′
i ) | 1 ≤ i ≤ 1000}, and {(X ′′

i , Y
′′
i ) | 1 ≤ i ≤ 10000}. Each set was used

to calculate v̂1,N , |v̂1,N − c1|, ρ̂v̂N ,N , and |ρ̂v̂N ,N − ρ(π1f1, π2f2)|. Note that the su-
perscript (N) in Remark 4.7 is omitted here. The dotted lines indicate the expected
values: c1 � 0.347 for v̂1,N , 0 for |v̂1,N − c1|, ρ(π1f1, π2f2) � 0.145 for ρ̂v̂N ,N , and 0
for |ρ̂v̂N ,N − ρ(π1f1, π2f2)|. In this figure, ρ̂v̂N ,N and ρ(π1f1, π2f2) are abbreviated as
ρ̂N and ρ, respectively.

Appendix A. Additional Proofs

Theorems 4.5 and 4.6 will be proved in this section. We shall take over

the notations in Section 4 and, in addition, write h(v) and ĥN (v) in place

of ∆I(Sv) and ∆ÎN (Sv), respectively.

Definition A.1. For j ∈ {1, 2} and x ∈ R, define

F̂j,N (x) =

{
NXY ((−∞, x], j)/NY (j) if NY (j) > 0,

0 if NY (j) = 0.

We also define F̂j,N (−∞) = 0 and F̂j,N (∞) = 1.
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Fig. 7. In the second case, 30 independent trials were performed to simulate three
independent sets of random samples, of the forms {(Xi, Yi) | 1 ≤ i ≤ 100},
{(X ′

i, Y
′
i ) | 1 ≤ i ≤ 1000}, and {(X ′′

i , Y
′′
i ) | 1 ≤ i ≤ 10000}. Each set was used

to calculate v̂1,N , v̂2,N , ‖v̂N − c‖, ρ̂v̂N ,N , and |ρ̂v̂N ,N − ρ(π1f1, π2f2)|. Note that the
superscript (N) in Remark 4.7 is omitted here. The dotted lines indicate the expected
values: c1 � −0.779 for v̂1,N , c2 � 0.779 for v̂2,N , 0 for ‖v̂N−c‖, ρ(π1f1, π2f2) � 0.362
for ρ̂v̂N ,N , and 0 for |ρ̂v̂N ,N − ρ(π1f1, π2f2)|. In this figure, ρ̂v̂N ,N and ρ(π1f1, π2f2)
are abbreviated as ρ̂N and ρ, respectively.

Proposition A.2. For v = (v1, . . . , vm) ∈ Rm
≤ with m a positive in-

teger,

ĥN (v) =

m+1∑
k=1

max
j

{
π̂j,N

[
F̂j,N (vk) − F̂j,N (vk−1)

]}
− max

j
{π̂j,N} ,

where v0 = −∞, vm+1 = ∞, F̂j,N (v0) = 0, and F̂j,N (vm+1) = 1.
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Proof. From (5), we have

ĥN (v) =
∑
k

P̂N (X ∈ Sv,k) max
j

{
P̂N (Y = j | X ∈ Sv,k)

}
− max

j

{
P̂N (Y = j | X ∈ R)

}
,

(14)

where the sum is over all k with NX(Sv,k) > 0. Since P̂N (X ∈ Sv,k) =

NX(Sv,k)/N , P̂N (Y = j | X ∈ Sv,k) = NXY (Sv,k, j)/NX(Sv,k), and

NXY (Sv,k, j) = Nπ̂j,N [F̂j,N (vk) − F̂j,N (vk−1)], we obtain

P̂N (X ∈ Sv,k) max
j

{
P̂N (Y = j | X ∈ Sv,k)

}
= max

j

{
π̂j,N

[
F̂j,N (vk) − F̂j,N (vk−1)

]}
.

As for the last term of (14), we have P̂N (Y = j | X ∈ R) = π̂j,N by

definition. �

Corollary A.3. For v ∈ Rm
≤ with m a positive integer, ĥN (v) ≥ 0

and h(v) ≥ 0.

Proof. Let π̂p,N = max {π̂1,N , π̂2,N}. By Proposition A.2, we have

ĥN (v) =
m+1∑
k=1

max
j

{
π̂j,N

[
F̂j,N (vk) − F̂j,N (vk−1)

]}
− max

j
{π̂j,N}

≥
m+1∑
k=1

π̂p,N

[
F̂p,N (vk) − F̂p,N (vk−1)

]
− π̂p,N = 0.

We can similarly prove that h(v) ≥ 0 from Proposition 3.1. �

For simplicity, we may write ϕj(v, v
′) and ϕ̂j,N (v, v′) in place of

πj [Fj(v) − Fj(v
′)] and π̂j,N [F̂j,N (v) − F̂j,N (v′)], respectively, so that

h(v) =
m+1∑
k=1

max
j

{ϕj(vk, vk−1)} − max
j

{πj} ,(15)

ĥN (v) =

m+1∑
k=1

max
j

{ϕ̂j,N (vk, vk−1)} − max
j

{π̂j,N}(16)
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by Propositions 3.1 and A.2.

Definition A.4. For m = 1, . . . , n, define

Vm = arg max
v∈Rm

≤

{h(v)} ,

V̂m,N = arg max
v∈R̂

m
N

{
ĥN (v)

}
,

Cm = {(ci1 , . . . , cim) | 1 ≤ i1 < · · · < im ≤ n} .

Remark A.5. We will see that Vm �= ∅ (m ≤ n) by Corollary A.7

and Proposition 3.4. Since R̂m
N is a nonempty finite set (see Definition 4.2),

V̂m,N �= ∅.

Proposition A.6. Let m be a positive integer with m < n. Then for

any v = (v1, . . . , vm) ∈ Rm
≤ , there exists w = (ci1 , . . . , cim) with 1 ≤ i1 ≤

· · · ≤ im ≤ n such that h(w) ≥ h(v).

Proof. Let v = (v1, . . . , vm) ∈ Rm
≤ be given. Set v0 = −∞, vm+1 =

∞, and r(v) = #{k ∈ {1, . . . ,m} | vk /∈ C(π1f1, π2f2)}. The statement

obviously holds when r(v) = 0.

Let r(v) > 0. Then we can choose vp /∈ C(π1f1, π2f2) (1 ≤ p ≤ m)

and cq ∈ C(π1f1, π2f2) (1 ≤ q ≤ n) satisfying cq−1 < vp < cq ≤ vp+1 or

vp−1 ≤ cq < vp < cq+1. We will only show the case cq−1 < vp < cq ≤ vp+1,

as the other is similar. Without loss of generality, we may assume that

π1f1 ≥ π2f2 on (vp, cq), so that ϕ1(cq, vp) > ϕ2(cq, vp) and ϕ1(vp, cq−1) >

ϕ2(vp, cq−1), since C ′(π1f1, π2f2) is finite. In the following, we consider the

cases (I) ϕ1(vp, vp−1) ≥ ϕ2(vp, vp−1) and (II) ϕ1(vp, vp−1) < ϕ2(vp, vp−1).

(I) Suppose ϕ1(vp, vp−1) ≥ ϕ2(vp, vp−1). Then

ϕ1(cq, vp−1) > ϕ2(cq, vp−1),

ϕj(vp+1, cq) = ϕj(vp+1, vp) − ϕj(cq, vp) (j = 1, 2),

ϕj(cq, vp−1) = ϕj(vp, vp−1) + ϕj(cq, vp) (j = 1, 2),

hence

max
j

{ϕj(cq, vp−1)} + max
j

{ϕj(vp+1, cq)}

= ϕ1(cq, vp−1) + max
j

{ϕj(vp+1, vp) − ϕj(cq, vp)}
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= ϕ1(vp, vp−1) + ϕ1(cq, vp) + max
j

{ϕj(vp+1, vp) − ϕj(cq, vp)}

≥ ϕ1(vp, vp−1) + ϕ1(cq, vp) + max
j

{ϕj(vp+1, vp)} − ϕ1(cq, vp)

= ϕ1(vp, vp−1) + max
j

{ϕj(vp+1, vp)}

= max
j

{ϕj(vp, vp−1)} + max
j

{ϕj(vp+1, vp)} ,

and setting v′ = (v1, . . . , vp−1, cq, vp+1, . . . , vm) ∈ Rm
≤ gives r(v′) < r(v)

and h(v′) ≥ h(v).

(II) Suppose ϕ1(vp, vp−1) < ϕ2(vp, vp−1). Since π1f1 ≥ π2f2 on (vp, cq),

we can see that vp−1 < cq−1 < vp and ϕ1(cq−1, vp−1) < ϕ2(cq−1, vp−1). First

consider the case (II-a) ϕ1(vp+1, vp) ≥ ϕ2(vp+1, vp). Then ϕ1(vp+1, cq−1) >

ϕ2(vp+1, cq−1), hence

max
j

{ϕj(cq−1, vp−1)} + max
j

{ϕj(vp+1, cq−1)}

= ϕ2(cq−1, vp−1) + ϕ1(vp+1, cq−1)

= ϕ2(cq−1, vp−1) + ϕ1(vp+1, vp) + ϕ1(vp, cq−1)

> ϕ2(cq−1, vp−1) + ϕ1(vp+1, vp) + ϕ2(vp, cq−1)

= ϕ2(vp, vp−1) + ϕ1(vp+1, vp)

= max
j

{ϕj(vp, vp−1)} + max
j

{ϕj(vp+1, vp)} ,

and setting v′ = (v1, . . . , vp−1, cq−1, vp+1, . . . , vm) ∈ Rm
≤ gives r(v′) < r(v)

and h(v′) > h(v). Next consider the case (II-b) ϕ1(vp+1, vp) < ϕ2(vp+1, vp).

If there exists x ∈ (cq−1, vp) such that ϕ1(vp+1, x) ≥ ϕ2(vp+1, x),

then ϕ1(x, vp−1) < ϕ2(x, vp−1), hence the case (II-a) applies to v′′ =

(v1, . . . , vp−1, x, vp+1, . . . , vm) ∈ Rm
≤ , where r(v′′) = r(v) and

h(v′′) − h(v)

= max
j

{ϕj(x, vp−1)} + max
j

{ϕj(vp+1, x)}

− max
j

{ϕj(vp, vp−1)} − max
j

{ϕj(vp+1, vp)}

= ϕ2(x, vp−1) + ϕ1(vp+1, x) − ϕ2(vp, vp−1) − ϕ2(vp+1, vp)

≥ ϕ2(x, vp−1) + ϕ2(vp+1, x) − ϕ2(vp, vp−1) − ϕ2(vp+1, vp)

= ϕ2(vp+1, vp−1) − ϕ2(vp+1, vp−1) = 0.
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If ϕ1(vp+1, x) < ϕ2(vp+1, x) for any x ∈ (cq−1, vp), then ϕ1(vp+1, cq−1) ≤
ϕ2(vp+1, cq−1), and setting v′ = (v1, . . . , vp−1, cq−1, vp+1, . . . , vm) ∈ Rm

≤
gives r(v′) < r(v) and

h(v′) − h(v)

= max
j

{ϕj(cq−1, vp−1)} + max
j

{ϕj(vp+1, cq−1)}

− max
j

{ϕj(vp, vp−1)} − max
j

{ϕj(vp+1, vp)}

= ϕ2(cq−1, vp−1) + ϕ2(vp+1, cq−1) − ϕ2(vp, vp−1) − ϕ2(vp+1, vp)

= ϕ2(vp+1, vp−1) − ϕ2(vp+1, vp−1) = 0.

Taken together, for any v ∈ Rm
≤ with r(v) > 0, there exists v′ ∈ Rm

≤ such

that r(v′) < r(v) and h(v′) ≥ h(v). The statement follows by induction. �

Corollary A.7. If m is a positive integer with m < n, then there

exists c′ ∈ Cm such that h(c′) = sup {h(v) | v ∈ Rm
≤}. Furthermore, h(c′) <

h(c).

Proof. Since there are only finitely many choices for w ∈ Rm
≤ in

Proposition A.6, we can choose w′ = (ci1 , . . . , cim) ∈ arg maxwh(w), where

w ranges over the choices. Then h(w′) ≥ h(v) for all v ∈ Rm
≤ . Let A =

{ci1 , . . . , cim} and assume that w′ /∈ Cm. Then #A < m, and there exists

A′ = {cj1 , . . . , cjm} such that A ⊂ A′ and 1 ≤ j1 < · · · < jm ≤ n. Put

c′ = (cj1 , . . . , cjm). Then c′ ∈ Cm, and we can see that h(c′) ≥ h(w′) by

definition. Furthermore, h(c′) < h(c) by Proposition 3.5. �

Remark A.8. Note that v ∈ Vm does not necessarily imply v ∈ Cm.

Here we give an example for the case where (n,m) = (2, 1) and V1 �⊂ C1.

Assume that π1 = 0.9, π2 = 0.1, f1 = ν0,1, and f2 = τ−0.1,0.1 (see (7)

and (8) for the definitions of ν and τ). Then π1f1(0) < π2f2(0), n = 2,

and C2 = {c1, c2} where −0.1 < c1 < 0 < c2 < 0.1. Since ϕ1(∞, 0.1) =

ϕ1(−0.1,−∞) = π1Φ(−0.1) � 0.4142 > π2 (see (13) for the definition of

Φ), ϕ1(v,−∞) > ϕ2(v,−∞) and ϕ1(∞, v) > ϕ2(∞, v) hold for all v ∈ R.

Hence h(v) = π1 for all v ∈ R, and therefore V1 = R �⊂ {c1, c2} = C1.

For a real random variable ξ on (Ω,F ,P), we denote its expectation and
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variance by

E [ξ] =

∫
Ω
ξ dP, Var [ξ] =

∫
Ω

(ξ − E [ξ])2 dP,

respectively. We also denote by A the indicator function of a set A, i.e.,

A(t) =

{
1 if t ∈ A,

0 if t /∈ A.

Theorem A.9 (Kolmogorov’s strong law of large numbers. See [2]

for the proof). Let {ξi} be a sequence of i.i.d. real random variables on

(Ω,F ,P) with E [|ξ1|] < ∞ and Var [ξ1] < ∞. Let µ = E [ξ1] and sk =

ξ1 + · · · + ξk (k=1,2, . . . ). Then sk/k converges completely to µ.

Theorem A.10 (The Glivenko-Cantelli theorem. See [7, Theorem A,

Section 2.1.4] for the proof). For each j ∈ {1, 2}, supx∈R |F̂j,N (x)−Fj(x)|
converges completely to 0 as N → ∞.

Proposition A.11. For each j ∈ {1, 2}, π̂j,N converges completely to

πj as N → ∞.

Proof. We can see {j}(Y1), . . . , {j}(YN ) as i.i.d. random variables

with E [ {j}(Y1)] = πj < ∞ and Var [ {j}(Y1)] = πj(1 − πj) < ∞. Since

NY (j) = {j}(Y1) + · · · + {j}(YN ), π̂j,N = NY (j)/N converges completely

to πj by Theorem A.9. �

Lemma A.12. If x, y, z, w ∈ R, then

(a) |max {x, y} − max {z, w}| ≤ |x− z| + |y − w|,

(b) |min {x, y} − min {z, w}| ≤ |x− z| + |y − w|.

Proof. For (a), suppose max {x, y} ≥ max {z, w} and x ≥ y without

loss of generality. If z ≥ w, then |max {x, y} − max {z, w}| = |x − z| ≤
|x − z| + |y − w|. If z < w, then |max {x, y} − max {z, w}| = |x − w| <

|x− z| ≤ |x− z| + |y − w|.
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For (b), suppose min {x, y} ≥ min {z, w} and x ≥ y without loss of

generality. If z ≥ w, then |min {x, y} − min {z, w}| = |y − w| ≤ |x − z| +
|y − w|. If z < w, then |min {x, y} − min {z, w}| = |y − z| ≤ |x − z| ≤
|x− z| + |y − w|. �

Theorem A.13. For any positive integer m, supv∈Rm
≤
|ĥN (v) − h(v)|

converges completely to 0 as N → ∞.

Proof. For all v ∈ Rm
≤ , we have∣∣∣ĥN (v) − h(v)

∣∣∣
≤

m+1∑
k=1

∣∣∣∣max
j

{ϕ̂j,N (vk, vk−1)} − max
j

{ϕj(vk, vk−1)}
∣∣∣∣

+

∣∣∣∣max
j

{π̂j,N} − max
j

{πj}
∣∣∣∣

≤
m+1∑
k=1

2∑
j=1

|ϕ̂j,N (vk, vk−1) − ϕj(vk, vk−1)| +
2∑

j=1

|π̂j,N − πj |

by (15), (16), and Lemma A.12. Since

|ϕ̂j,N (vk, vk−1) − ϕj(vk, vk−1)|

=
∣∣∣(π̂j,N − πj)

[
F̂j,N (vk) − F̂j,N (vk−1)

]
+ πj

[
F̂j,N (vk) − Fj(vk)

]
− πj

[
F̂j,N (vk−1) − Fj(vk−1)

] ∣∣∣
≤ |π̂j,N − πj |

∣∣∣F̂j,N (vk) − F̂j,N (vk−1)
∣∣∣

+ πj

∣∣∣F̂j,N (vk) − Fj(vk)
∣∣∣+ πj

∣∣∣F̂j,N (vk−1) − Fj(vk−1)
∣∣∣

≤ |π̂j,N − πj | + 2πj sup
x∈R

∣∣∣F̂j,N (x) − Fj(x)
∣∣∣ ,

we obtain

sup
v∈Rm

≤

∣∣∣ĥN (v) − h(v)
∣∣∣

≤ (m + 2)
2∑

j=1

|π̂j,N − πj | + 2(m + 1)
2∑

j=1

πj sup
x∈R

∣∣∣F̂j,N (x) − Fj(x)
∣∣∣ .
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Hence {
ω ∈ Ω

∣∣∣∣ sup
v∈Rm

≤

∣∣∣ĥN (v) − h(v)
∣∣∣ > ε

}

is contained in

2⋃
j=1

{
ω ∈ Ω

∣∣∣∣ |π̂j,N − πj | >
ε

4(m + 2)

}

∪
2⋃

j=1

{
ω ∈ Ω

∣∣∣∣ sup
x∈R

∣∣∣F̂j,N (x) − Fj(x)
∣∣∣ > ε

8(m + 1)

}
,

and therefore

∞∑
N=1

P

({
ω ∈ Ω

∣∣∣∣ sup
v∈Rm

≤

∣∣∣ĥN (v) − h(v)
∣∣∣ > ε

})

≤
2∑

j=1

∞∑
N=1

P

({
ω ∈ Ω

∣∣∣∣ |π̂j,N − πj | >
ε

4(m + 2)

})

+

2∑
j=1

∞∑
N=1

P

({
ω ∈ Ω

∣∣∣∣ sup
x∈R

∣∣∣F̂j,N (x) − Fj(x)
∣∣∣ > ε

8(m + 1)

})
< ∞

by Theorem A.10 and Proposition A.11. �

Definition A.14. Let (A, d) be a metric space. We define a discrep-

ancy of A1 ⊂ A from A2 ⊂ A by

D(A1, A2) = sup
a1∈A1

{
inf

a2∈A2

d(a1, a2)

}
.

If d is a Euclidean metric, we may write DE in place of D.

Lemma A.15. Let (A, d) be a metric space. Let g and gi (i=1,2, . . . )

be real functions on A such that max {g(t) | t ∈ A} and max {gi(t) | t ∈ A}
exist. Put T = arg maxt∈A {g(t)} and Ti = arg maxt∈A {gi(t)}. Suppose g
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is continuous on A, supt∈A |gi(t) − g(t)| → 0 as i → ∞, and there exists a

compact set K ⊂ A such that

sup {g(t) | t ∈ A \K} < max {g(t) | t ∈ A} .

Then D(Ti, T ) → 0 as i → ∞.

Proof. Put w1 = max {g(t) | t ∈ A}, w0 = sup {g(t) | t ∈ A \K}, and

w = (w1 − w0)/3. (Note that w0 < w0 + w < w0 + 2w = w1 − w < w1.)

For any ε > 0, there exists δ > 0 such that δ < ε and g(t) > w1 − w for

all t ∈ Tδ = ∪t∈T {x ∈ K | d(x, t) < δ}, since g is uniformly continuous on

K (see [5, Theorem 4.19]). (Note that T ⊂ K.) Put w′
0 = max {g(t) | t ∈

K \Tδ} (this exists because K \Tδ is compact) and w′ > 0 such that w′ < w

and w′
0 < w′

0 + 2w′ < w1. (Note that {t ∈ A | g(t) > w1 − 2w′} ⊂ Tδ since

w1−2w′ > w1−2w > w0 and w1−2w′ > w′
0.) Since supt∈A |gi(t)−g(t)| → 0

as i → ∞, there is an integer M such that i ≥ M implies supt∈A |gi(t) −
g(t)| < w′. Hence, for any i ≥ M and for all t1 ∈ Ti, we have g(t1) > w1−2w′

(because g(t1) + w′ > gi(t1) ≥ gi(t2) > w1 − w′ where t2 ∈ T ), and thus

t1 ∈ Tδ. Therefore, supt1∈Ti
{inft2∈T d(t1, t2)} ≤ δ < ε for any i ≥ M . Since

ε was arbitrary, the claim follows. �

Lemma A.16. There exists a compact set K ⊂ Rn
≤ such that

sup
{
h(v) | v ∈ Rn

≤ \K
}
< max

{
h(v) | v ∈ Rn

≤
}
.

Proof. By Propositions 3.4 and 3.5 and Corollary A.7, there exist

Mm = max
{
h(v) | v ∈ Rm

≤
}

(m = 1 . . . , n)

and M = max {M1, . . . ,Mn−1} < Mn. Take ε > 0 such that ε < (Mn −
M)/3. We can take α, β ∈ R such that Fj(α) < ε and 1 − Fj(β) < ε

(j = 1, 2), since Fj are non-decreasing functions with limx→−∞ Fj(x) = 0

and limx→∞ Fj(x) = 1. Let K = [α, β]n∩Rn
≤ and v = (v1, . . . , vn) ∈ Rn

≤\K.

Then v1 < α or vn > β holds.



Estimation of Distribution Overlap 45

Suppose v1 < α. Put v′ = (v2, . . . , vn) and recall that ϕj(v, v
′) =

πj [Fj(v) − Fj(v
′)]. Using Lemma A.12, we obtain∣∣h(v) − h(v′)
∣∣

=

∣∣∣∣max
j

{ϕj(v1,−∞)} + max
j

{ϕj(v2, v1)} − max
j

{ϕj(v2,−∞)}
∣∣∣∣

≤
∣∣∣∣max

j
{ϕj(v1,−∞)}

∣∣∣∣+ ∣∣∣∣max
j

{ϕj(v2, v1)} − max
j

{ϕj(v2,−∞)}
∣∣∣∣

< ε + |ϕ1(v2, v1) − ϕ1(v2,−∞)| + |ϕ2(v2, v1) − ϕ2(v2,−∞)|
= ε + |ϕ1(v1,−∞)| + |ϕ2(v1,−∞)|
< 3ε.

Hence |h(v)| ≤ |h(v)−h(v′)|+|h(v′)| < 3ε+M . We can similarly prove that

|h(v)| < 3ε + M for the case vn > β. Therefore, sup {h(v) | v ∈ Rn
≤ \K} ≤

3ε + M < (Mn −M) + M = Mn. This completes the proof. �

Theorem A.17. The discrepancy DE(V̂n,N ,Vn) converges completely

to 0 as N → ∞.

Proof. In Lemma A.15, let (A, d) be the subspace Rn
≤ of the Euclidean

metric space Rn, g = h (which is continuous on Rn
≤), and gi = ĥi. It

follows from Remark A.5 and Lemma A.16 that for any ε > 0, we can take

w′ > 0 as in the proof of Lemma A.15, and observe that DE(V̂n,N ,Vn) < ε

if supv∈Rn
≤
|ĥN (v) − h(v)| < w′. (Note that max {ĥN (v) | v ∈ R̂n

N} =

max {ĥN (v) | v ∈ Rn
≤}, hence V̂n,N ⊂ arg maxv∈Rn

≤
{ĥN (v)}.) This means

that{
ω ∈ Ω

∣∣∣∣ sup
v∈Rn

≤

∣∣∣ĥN (v) − h(v)
∣∣∣ < w′

}
⊂
{
ω ∈ Ω

∣∣∣ DE

(
V̂n,N ,Vn

)
< ε
}
,

hence

{
ω ∈ Ω

∣∣∣ DE

(
V̂n,N ,Vn

)
> ε
}
⊂
{
ω ∈ Ω

∣∣∣∣ sup
v∈Rn

≤

∣∣∣ĥN (v) − h(v)
∣∣∣ > w′

2

}
,



46 Hisashi Johno and Kazunori Nakamoto

and therefore

∞∑
N=1

P

({
ω ∈ Ω

∣∣∣ DE

(
V̂n,N ,Vn

)
> ε
})

≤
∞∑

N=1

P

({
ω ∈ Ω

∣∣∣∣ sup
v∈Rn

≤

∣∣∣ĥN (v) − h(v)
∣∣∣ > w′

2

})
< ∞

by Theorem A.13. �

Corollary A.18. The estimator v̂N ∈ V̂n,N converges completely to

c as N → ∞.

Proof. Since Vn = {c} by Proposition 3.4, we have DE(V̂n,N ,Vn) =

sup
v∈V̂n,N

‖v − c‖ ≥ ‖v̂N − c‖. Hence the claim follows from Theorem

A.17. �

Theorem A.19. The estimator ρ̂v̂N ,N converges completely to

ρ(π1f1, π2f2) as N → ∞.

Proof. From (4) and (6), we have

ρ(π1f1, π2f2) =
n+1∑
k=1

min
j

{πj [Fj(ck) − Fj(ck−1)]} ,(17)

ρ̂v̂N ,N =
n+1∑
k=1

min
j

{
π̂j,N

[
F̂j,N (v̂k) − F̂j,N (v̂k−1)

]}
,(18)

where v̂N = (v̂1, . . . , v̂n) ∈ V̂n,N , v̂0 = −∞, and v̂n+1 = ∞. By Lemma

A.12,∣∣∣ρ̂v̂N ,N − ρ(π1f1, π2f2)
∣∣∣

≤
n+1∑
k=1

2∑
j=1

∣∣∣π̂j,N

[
F̂j,N (v̂k) − F̂j,N (v̂k−1)

]
− πj [Fj(ck) − Fj(ck−1)]

∣∣∣ ,
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where∣∣∣π̂j,N

[
F̂j,N (v̂k) − F̂j,N (v̂k−1)

]
− πj [Fj(ck) − Fj(ck−1)]

∣∣∣
≤
∣∣∣π̂j,N

[
F̂j,N (v̂k) − F̂j,N (v̂k−1)

]
− πj [Fj(v̂k) − Fj(v̂k−1)]

∣∣∣
+ |πj [Fj(v̂k) − Fj(v̂k−1)] − πj [Fj(ck) − Fj(ck−1)]|

≤
∣∣∣π̂j,N F̂j,N (v̂k) − πjFj(v̂k)

∣∣∣+ ∣∣∣π̂j,N F̂j,N (v̂k−1) − πjFj(v̂k−1)
∣∣∣

+ πj |Fj(v̂k) − Fj(ck)| + πj |Fj(v̂k−1) − Fj(ck−1)|

≤
∣∣∣π̂j,N F̂j,N (v̂k) − πjF̂j,N (v̂k)

∣∣∣+ ∣∣∣πjF̂j,N (v̂k) − πjFj(v̂k)
∣∣∣

+
∣∣∣π̂j,N F̂j,N (v̂k−1) − πjF̂j,N (v̂k−1)

∣∣∣+ ∣∣∣πjF̂j,N (v̂k−1) − πjFj(v̂k−1)
∣∣∣

+ πj |Fj(v̂k) − Fj(ck)| + πj |Fj(v̂k−1) − Fj(ck−1)|

≤ 2 |π̂j,N − πj | + πj

∣∣∣F̂j,N (v̂k) − Fj(v̂k)
∣∣∣+ πj

∣∣∣F̂j,N (v̂k−1) − Fj(v̂k−1)
∣∣∣

+ πj |Fj(v̂k) − Fj(ck)| + πj |Fj(v̂k−1) − Fj(ck−1)| .

Hence ∣∣∣ρ̂v̂N ,N − ρ(π1f1, π2f2)
∣∣∣

≤ 2(n + 1)
2∑

j=1

|π̂j,N − πj |

+
n+1∑
k=1

2∑
j=1

πj

∣∣∣F̂j,N (v̂k) − Fj(v̂k)
∣∣∣

+
n+1∑
k=1

2∑
j=1

πj

∣∣∣F̂j,N (v̂k−1) − Fj(v̂k−1)
∣∣∣

+
n+1∑
k=1

2∑
j=1

πj |Fj(v̂k) − Fj(ck)| +
n+1∑
k=1

2∑
j=1

πj |Fj(v̂k−1) − Fj(ck−1)|

= 2(n + 1)
2∑

j=1

|π̂j,N − πj |

+ 2
n∑

k=1

2∑
j=1

πj

∣∣∣F̂j,N (v̂k) − Fj(v̂k)
∣∣∣+ 2

n∑
k=1

2∑
j=1

πj |Fj(v̂k) − Fj(ck)| .

(19)
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For any ε > 0, there exists δ > 0 such that |Fj(x)− Fj(ck)| < ε/(6n) for all

x ∈ R with |x− ck| < δ (j = 1, 2; k = 1, . . . , n). If

|π̂j,N − πj | <
ε

12(n + 1)
, sup

x∈R

∣∣∣F̂j,N (x) − Fj(x)
∣∣∣ < ε

6n
, |v̂k − ck| < δ,

for j = 1, 2 and k = 1, . . . , n, then∣∣∣ρ̂v̂N ,N − ρ(π1f1, π2f2)
∣∣∣

< 2(n + 1)
2ε

12(n + 1)
+ 2n(π1 + π2)

ε

6n
+ 2n(π1 + π2)

ε

6n
= ε

by (19). Hence {ω ∈ Ω | |ρ̂v̂N ,N − ρ(π1f1, π2f2)| > ε} is contained in

2⋃
j=1

{
ω ∈ Ω

∣∣∣ |π̂j,N − πj | >
ε

24(n + 1)

}

∪
2⋃

j=1

{
ω ∈ Ω

∣∣∣∣ sup
x∈R

∣∣∣F̂j,N (x) − Fj(x)
∣∣∣ > ε

12n

}

∪
{
ω ∈ Ω

∣∣∣ ‖v̂N − c‖ >
δ

2

}
,

and therefore

∞∑
N=1

P

({
ω ∈ Ω

∣∣ ∣∣∣ρ̂v̂N ,N − ρ(π1f1, π2f2)
∣∣∣ > ε

})
≤

2∑
j=1

∞∑
N=1

P

({
ω ∈ Ω

∣∣∣ |π̂j,N − πj | >
ε

24(n + 1)

})

+

2∑
j=1

∞∑
N=1

P

({
ω ∈ Ω

∣∣∣∣ sup
x∈R

∣∣∣F̂j,N (x) − Fj(x)
∣∣∣ > ε

12n

})

+
∞∑

N=1

P

({
ω ∈ Ω

∣∣∣ ‖v̂N − c‖ >
δ

2

})
< ∞

by Theorem A.10, Proposition A.11, and Corollary A.18. �
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Note that Corollary A.18 and Theorem A.19 are exactly Theorems 4.5

and 4.6, respectively.

As stated above, we have estimated c as v̂N ∈ V̂n,N . In fact, it is possible

to estimate c in another way. For v = (v1, . . . , vm) ∈ Rm
≤ with m a positive

integer, let us define

ρv =

m+1∑
k=1

min
j

{ϕj(vk, vk−1)} ,(20)

where v0 = −∞ and vm+1 = ∞. Note that we have

ρ̂v,N =

m+1∑
k=1

min
j

{ϕ̂j(vk, vk−1)}(21)

by (6). Here recall that

ϕj(vk, vk−1) = πj [Fj(vk) − Fj(vk−1)],

ϕ̂j,N (vk, vk−1) = π̂j,N [F̂j,N (vk) − F̂j,N (vk−1)].

Lemma A.20. For v = (v1, . . . , vm) ∈ Rm
≤ with m a positive integer,

we have

h(v) + ρv = 1 − max
j

{πj} ,(22)

ĥN (v) + ρ̂v,N = 1 − max
j

{π̂j,N} .(23)

Proof. For k = 1, . . . ,m + 1, choose

jk ∈ arg max
j

{ϕj(vk, vk−1)} ,

lk ∈ arg min
j

{ϕj(vk, vk−1)}

such that {jk, lk} = {1, 2}, where v0 = −∞ and vm+1 = ∞. By (15) and

(20), we have

h(v) + ρv =

m+1∑
k=1

[
max

j
{ϕj(vk, vk−1)} + min

j
{ϕj(vk, vk−1)}

]
− max

j
{πj}
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=
m+1∑
k=1

[ϕjk(vk, vk−1) + ϕlk(vk, vk−1)] − max
j

{πj}

=
m+1∑
k=1

[ϕ1(vk, vk−1) + ϕ2(vk, vk−1)] − max
j

{πj}

=
2∑

j=1

m+1∑
k=1

πj [Fj(vk) − Fj(vk−1)] − max
j

{πj}

=

2∑
j=1

πj [Fj(∞) − Fj(−∞)] − max
j

{πj}

= 1 − max
j

{πj} ,

which implies (22).

We can prove (23) in a similar way. For k = 1, . . . ,m + 1, redefine

jk ∈ arg max
j

{ϕ̂j(vk, vk−1)} ,

lk ∈ arg min
j

{ϕ̂j(vk, vk−1)}

such that {jk, lk} = {1, 2}. By (16) and (21), we have

ĥN (v) + ρ̂v,N

=
m+1∑
k=1

[
max

j
{ϕ̂j,N (vk, vk−1)} + min

j
{ϕ̂j,N (vk, vk−1)}

]
− max

j
{π̂j,N}

=
m+1∑
k=1

[ϕ̂jk,N (vk, vk−1) + ϕ̂lk,N (vk, vk−1)] − max
j

{π̂j,N}

=
m+1∑
k=1

[ϕ̂1,N (vk, vk−1) + ϕ̂2,N (vk, vk−1)] − max
j

{π̂j,N}

=
2∑

j=1

m+1∑
k=1

π̂j,N

[
F̂j,N (vk) − F̂j,N (vk−1)

]
− max

j
{π̂j,N}

=
2∑

j=1

π̂j,N

[
F̂j,N (∞) − F̂j,N (−∞)

]
− max

j
{π̂j,N}



Estimation of Distribution Overlap 51

= 1 − max
j

{π̂j,N} ,

which implies (23). �

It is immediate from Lemma A.20 that

arg min
v∈Rm

≤

{ρv} = Vm,(24)

arg min
v∈R̂

m
N

{ρ̂v,N} = V̂m,N(25)

for m = 1, . . . , n.

Theorem A.21. For v ∈ Rn
≤, ρv attains its unique minimum

ρ(π1f1, π2f2) at v = c.

Proof. This follows from Proposition 3.4, (4), and (24). �

Theorem A.22. Let v̂′
N ∈ arg min

v∈R̂
n
N
{ρ̂v,N}. Then v̂′

N converges

completely to c as N → ∞. Furthermore, ρ̂
v̂
′
N ,N

converges completely to

ρ(π1f1, π2f2) as N → ∞.

Proof. Since v̂′
N ∈ V̂n,N by (25), the claim follows from Corollary

A.18 and Theorem A.19. �

Appendix B. Measurability of Some Functions

B.1 The measurability of ρ̂ v̂N ,N (associated with Theorems 4.6

and A.19)

It follows from (25) that ρ̂v̂N ,N = min
v∈R̂

n
N
{ρ̂v,N}, which depends only

on the rank statistics of X1, ..., XN (labeled by Y1, . . . , YN , respectively).

We then see that {ρ̂v̂N ,N (ω) | ω ∈ Ω} is a finite set and that ρ̂v̂N ,N is a

measurable simple function on Ω.

B.2 The measurability of supv∈Rm
≤
|ĥN (v) − h(v)| (associated with

Theorem A.13)

By the right continuity of F̂j,N (Definition A.1), we see that

supv∈Rm
≤
|ĥN (v) − h(v)| = supv∈Qm

≤
|ĥN (v) − h(v)| for any positive integer
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m, where Q is the set of rational numbers and Qm
≤ = {(v1, . . . , vm) ∈ Qm |

v1 ≤ · · · ≤ vm}. Since Qm
≤ is countable and ĥN (v) is obviously measurable

on Ω, supv∈Rm
≤
|ĥN (v) − h(v)| is also measurable on Ω.

B.3 The measurability of DE(V̂n,N ,Vn) (associated with Theorem

A.17)

Let {K1, . . . ,Km} be the collection of all nonempty subsets of

{(i1, . . . , in) | 1 ≤ i1 ≤ · · · ≤ in ≤ N − 1} with Kj �= Kl if (j �= l), ΩKj be

the set of all ω ∈ Ω such that V̂n,N = {(Zi1 , . . . , Zin) | (i1, . . . , in) ∈ Kj}.
Then ΩKj ∈ F for all j ∈ {1, . . . ,m}, Ω = ∪m

j=1ΩKj , and ΩKj ∩ ΩKl
= ∅

if j �= l. Since the restriction of DE(V̂n,N ,Vn) to each ΩKj coincides with

max {‖(Zi1 , . . . , Zin)− c‖ | (i1, . . . , in) ∈ Kj}, which is measurable on ΩKj ,

we see that DE(V̂n,N ,Vn) is measurable on Ω.

B.4 The measurability of v̂N (associated with Theorem 4.5 and

Corollary A.18)

We can choose v̂N ∈ V̂n,N such that v̂N : Ω → Rn is measurable.

Indeed, let I = {(i1, . . . , in) | 1 ≤ i1 ≤ · · · ≤ in ≤ N − 1} and Z(i1,... ,in) =

(Zi1 , . . . , Zin) ∈ R̂n
N for (i1, . . . , in) ∈ I. Note that Ω equals the disjoint

union of measurable sets

ΩJ =

{
ω ∈ Ω

∣∣∣∣ ĥN (Zj) = max
i∈I

ĥN (Zi) if and only if j ∈ J
}

over all nonempty subsets J of I. For such J , we can define maxJ and

minJ in lexicographic order. If we put v̂N = ZmaxJ (or v̂N = ZminJ ) on

each ΩJ , then v̂N is measurable.

If we choose v̂N ∈ V̂n,N at random independently of (Ω,F ,P), we cannot

guarantee that v̂N is measurable. In such a case, we mean by “v̂N converges

completely to c as N → ∞” that for any ε > 0, there exists a collection

{A1, A2, . . . } of measurable sets such that
∑∞

N=1 P(AN ) < ∞ and AN ⊃
{ω ∈ Ω | ‖v̂N − c‖ > ε} for all N , which also implies that v̂N converges

almost surely to c (in the sense that P({ω ∈ Ω | limN→∞ v̂N = c}) = 1) if

(Ω,F ,P) is complete (see Remark 4.4). In fact, we can take AN = {ω ∈ Ω |
DE(V̂n,N ,Vn) > ε}.
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Appendix C. Additional Proofs

In this section, (9)–(12) will be proved. We shall take over the notations

in Section 5.

Proposition C.1. In the first case,

C(π1f1, π2f2) = {c1} = {(log 2)/2} ,

ρ(π1f1, π2f2) = [2 − 2Φ (c1 + 1) + Φ (c1 − 1)] /3.

Proof. The equation π1f1(x) = π2f2(x) gives x = (log 2)/2, which is

a crossover point. Hence C(π1f1, π2f2) = {c1} = {(log 2)/2}. Next,

ρ(π1f1, π2f2) = π2F2(c1) + π1[1 − F1(c1)]

=
1

3
Φ(c1 − 1) +

2

3
[1 − Φ(c1 + 1)] . �

Proposition C.2. In the second case,

C(π1f1, π2f2) = {c1, c2} = cosh−1
(
0.8

√
e
)
,

ρ(π1f1, π2f2) = 0.8 − 0.5Φ(c1 + 1) + 0.5Φ(c2 + 1) − 0.8Φ(c2).

Proof. If x < 0 or x > 0.5, then f2(x) = 0.8ν0,1(x), and π1f1(x) =

π2f2(x) gives cosh(x) = 0.8
√

e. There is a unique c > 0 such that cosh(c) =

0.8
√

e. Since c > 0.5 and π1f1 < π2f2 on [0, 0.5], we have C(π1f1, π2f2) =

{−c, c} = cosh−1(0.8
√

e). Next,

ρ(π1f1, π2f2) = π2F2(−c) + π1[F1(c) − F1(−c)] + π2[1 − F2(c)]

= 0.8 − 0.5Φ(−c + 1) + 0.5Φ(c + 1) − 0.8Φ(c). �
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