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A Remark on Quadratic Functionals of Brownian

Motions

By Shigeo Kusuoka and Yasufumi Osajima

Abstract. It is a classical problem to give explicit formulae for
characteristic functions of quadratic functionals of Brownian motions,
and there are many works on this topic. Ikeda-Kusuoka-Manabe [4], [5]
gave a new idea to solve this problem and showed some results from
which almost all known results followed. In this paper the authors
extend their results based on their idea.

1. Introduction and Result

Let d � 1, T > 0, W0 = {w ∈ C([0, T ];Rd); w(0) = 0}, and B(W d
0 ) be

the Borel algebra over W d
0 . Let µ be the Wiener measure on (W d

0 ,B(W d
0 )).

Now let aki : [0, T ] → R, bki : [0, T ] → R, i = 1, . . . , N, k = 1, . . . , d, be

continuous functions. Let X : W d
0 → R be a random variable given by

X(w) =
N∑
i=1

d∑
k,�=1

∫ T

0
(

∫ t

0
b�i(s)dw

�(s))aki (t)dw
k(t).

Here stochastic integrals are Ito integrals.

Let λ ∈ C. Our concern is to compute the following.

Eµ[exp(

d∑
k=1

∫ T

0
hk(t)dwk(t) + λX)], h ∈ L2([0, T ];Cd, dt).

Such a problem was first considered by Lévy [6] and then many people

studied this problem and gave explicit formulae (e.g. [1], [3], [4], [5]). In

the present paper, we consider general cases and show that we can reduce

this problem to a problem of a linear ordinary differential equation by us-

ing ideas in [4] and [5], where symmetric linear operators are decomposed
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into summations of Volterra type operators and linear operators of finite

dimensional range.

Let αk : [0, T ] → R2N , k = 1, . . . , d, be given by

αkj (t) =

{
akj (t), j = 1, . . . , N,

bkj−N (t), j = N + 1, . . . , 2N.

Let J : R2N → R2N be a linear operator given by

J((zi)
2N
i=1)j =

{
−zj+N , j = 1, . . . , N,

zj−N , j = N + 1, . . . , 2N.

Let βk : [0, T ] → R2N , k = 1, . . . , d, be given by βk(t) = Jαk(t). Then we

have

βkj (t) =

{ −bkj (t), j = 1, . . . , N,

akj−N (t), j = N + 1, . . . , 2N.

Let ci,j : [0, T ] → R, i, j = 1, . . . , 2N, be given by

ci,j(t) =

d∑
k=1

αki (t)β
k
j (t), t ∈ [0, T ].

Also, let eλ,i1,i2 : [0, T ] → C, i1, i2 = 1, . . . , 2N, λ ∈ C, be the solution

to the following ODE

d

dt
eλ,i1,i2(t) = λ

2N∑
j=1

ci1,j(t)eλ,j,i2(t),(1)

eλ,i1,i2(0) = δi1,i2 , i1, i2 = 1, . . . , 2N.

Let eλ be a 2N × 2N -matrix valued function defined in [0, T ] given by

eλ(t) = (eλ,i,j(t))i,j=1,... ,2N , and let e0λ be an N ×N -matrix valued function

defined in [0, T ] given by e0λ(t) = (eλ,i,j(t))i,j=1,... ,N .

Let γkλ : [0, T ] → R2N , k = 1, . . . , d, be continuous functions given by

γkλ,i(t) = −
2N∑
j=1

eλ,j,i(t)β
k
j (t), i = 1, . . . , 2N, t ∈ [0, T ].
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Now let Ψλ : L2([0, T ];Cd, dt) → C([0, T ];C2N ) be bounded linear op-

erators given by

(Ψλh)i(t) =

d∑
k=1

∫ t

0
γkλ,i(s)h

k(s)ds, t ∈ [0, T ], h ∈ L2([0, T ];Cd, dt).

Also, let

λ0 = inf{s ∈ R; Eµ[exp(sX)] <∞},

and

λ1 = sup{s ∈ R; Eµ[exp(sX)] <∞}.

As is explained in Section 2, we see that λ0 < 0 < λ1.

Our main result is the following.

Theorem 1. Assume that λ ∈ C and λ0 < Re λ < λ1. Then we have

the following.

(1) The N ×N -matrix e0λ(T ) is invertible.

(2) Let e0λ(T )−1 = (e0λ(T )−1
i,j )i,j=1,... ,N be the inverse matrix of e0λ(T ). Let

dλ,i,j ∈ C, i, j = 1, . . . , N, be given by

dλ,i,j =
N∑
r=1

e0λ(T )−1
i,r eλ,r,N+j(T ).

Then dλ,i,j = dλ,j,i, i, j = 1, . . . , N.

(3) For any h ∈ L2([0, T ];Cd, dt)

Eµ[exp(
d∑

k=1

∫ T

0
hk(t)dwk(t) + λX)]

= det(e0λ(T ))−1/2 exp(−λ
2

N∑
i=1

d∑
k=1

∫ T

0
aki (t)b

k
i (t)dt

+
1

2

∫ T

0
(

d∑
k=1

hk(s)
2)ds+

λ

2
Aλ(h, h)),
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where

Aλ(h, h)

= −
∫ T

0

2N∑
i=1

d

dt
(Ψλh)i(t)(J(Ψλh)(t)))idt+

N∑
i=1

(J(Ψλh)(T ))i(Ψλh)(T )i

+

N∑
i,j=1

dλ,ij(Ψλh)(T )i(Ψλh)(T )j .

2. Preliminary Facts

In this section we assume that Eµ[exp(X)] <∞. Let H̃ be the Cameron-

Martin space of the Wiener space (W0, µ), i.e.,

H̃ = {k ∈W0; k(t) is absolutely continuous in t,

∫ T

0
|dk
dt

(t)|2dt <∞},

(k1, k2)H̃ =

∫ T

0

dk1

dt
(t) · dk2

dt
(t)dt.

Here · stands for the natural innner product in Rd. Let H = L2([0, T ];

Rd, dt). Then the map Φ : H̃ → H corresponding k to
dk

dt
is an isomorphism.

Let E : H ×H → R be the symmetric bilinear form given by

E(h1, h2)

=
N∑
i=1

d∑
k,�=1

∫ T

0

∫ T

0
1{t>s}a

k
i (t)b

�
i(s)h

k
1(t)h

�
2(s)dtds

+
N∑
i=1

d∑
k,�=1

∫ T

0

∫ T

0
1{t>s}a

k
i (t)b

�
i(s)h

�
1(s)h

k
2(t)dtds

for h1, h2 ∈ H.
The associated symmetric bounded linear operator E : H → H to E is

given by

(Eh)k(t)

=

N∑
i=1

d∑
�=1

∫ T

0
1{t>s}a

k
i (t)b

�
i(s)h

�(s)ds+

N∑
i=1

d∑
�=1

∫ T

0
1{s>t}a

�
i(s)b

k
i (t)h

�(s)ds
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=
N∑
i=1

d∑
�=1

aki (t)

∫ t

0
b�i(s)h

�(s)ds−
N∑
i=1

d∑
�=1

bki (t)

∫ t

0
a�i(s)h

�(s)ds

+

N∑
i=1

d∑
�=1

bki (t)

∫ T

0
a�i(s)h

�(s)ds, t ∈ [0, T ], k = 1, . . . , d, h ∈ H.

Then we see that E is a Hilbert-Schmidt type symmetric linear operator in

H. So there are a complete orthonormal basis {gm}∞m=1 in H and a sequence

{ηm}∞m=1of real numbers such that

Eh =
∞∑

m=1

ηm(h, gm)Hgm, h ∈ H,

and
∑∞

k=1 η
2
k <∞. Moreover, we see that

X =
1

2

∞∑
m=1

ηm((

d∑
k=1

∫ T

0
gkm(t)dwk(t))2 − 1).

Note that
∑d

k=1

∫ T
0 g

k
m(t)dwk(t), m = 1, 2, . . . , is a sequence of independent

normal distributed random variables.

Therefore for any λ ∈ R we see that Eν [exp(λX)] < ∞ if and only if

supm ληm < 1.

Let ρ(E) be the set of eigenvalues of E. That is ρ(E) = {ηm; m =

1, 2, . . . }. Since we assume that Eµ[exp(X)] < ∞, we see that ρ(E) ⊂
(−∞, 1). Hence we see that IH − E : H → H is invertible and positive-

definite. Also, we have

Eµ[exp(
d∑

k=1

∫ T

0
hk(t)dwk(t) +X)]

=
∞∏

m=1

((1 − ηm)−1/2 exp(−ηm/2) exp(
1

2
(1 − ηm)−1(gm, h)

2
H))

= det2(IH − E)−1/2 exp(
1

2
(h, (IH − E)−1h)H), h ∈ H.(2)

Here det2 is a regularized deteminant (see [2] for its definition and proper-

ties).
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Let V01 : H → H, and Ar : H → RN , r = 0, 1, be given by

(V01h)
k(t)

=
N∑
i=1

d∑
�=1

aki (t)

∫ t

0
b�i(s)h

�(s)ds−
N∑
i=1

d∑
�=1

bki (t)

∫ t

0
a�i(s)h

�(s)ds,

=

2N∑
i=1

d∑
�=1

βki (t)

∫ t

0
α�i(s)h

�(s)ds, h ∈ H, k = 1, . . . , d,

(A0h)i =

d∑
�=1

∫ T

0
a�i(s)h

�(s)ds, h ∈ H, i = 1, . . . , N,

and

(A1h)i =
d∑

�=1

∫ T

0
b�i(s)h

�(s)ds, h ∈ H, i = 1, . . . , N.

Note that V01 is a Volterra type operator. So we see that a bounded

linear map IH − V01 : H → H is invertible. Also, we see that

E = V01 +A∗
1A0.

Proposition 2. Assume that Eµ[exp(X)] < ∞. Then we have the

following.

(1) det2(IH − E)

= det(IN −A0(IH − V01)
−1A∗

1) exp(traceA0A
∗
1),

where IN is the identity map in RN .

In particular, the N ×N -matrix IN −A0(IH − V01)
−1A∗

1 is invertible .

(2) (IH − E)−1

= (IH −V01)
−1 +(IH −V01)

−1A∗
1(IN −A0(IH −V01)

−1A∗
1)

−1A0(IH −V01)
−1.

Proof. Let z ∈ C for which |z| is sufficiently small. Then we have

det2(IH − zE)

= det2((IH − zV01)(IH − z(IH − zV01)
−1A∗

1A0)).
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Since V01 is a Volterra type operator, we have det2(IH − zV01) = 1. So we

have

det2(IH − zE)

= det2(IH − zV01)det2(IH − z(IH − zV01)
−1A∗

1A0)

× exp(−trace(z2V01(IH − zV01)
−1A∗

1A0))

= exp(−
∞∑
k=2

1

k
trace((z(IH − zV01)

−1A∗
1A0)

k))

× exp(−trace(zA0((IH − zV01)
−1 − IH)A∗

1))

= exp(−
∞∑
k=1

1

k
trace((zA0(IH − zV01)

−1A∗
1)

k)) exp(trace(zA0A
∗
1))

= det(IN − zA0(IH − zV01)
−1A∗

1) exp(z trace(A0A
∗
1)).

Here we use the fact that

det2((IH+K1)(IH+K2)) = det2(IH+K1)det2(IH+K2) exp(−trace(K1K2))

and

trace(K1K2) = trace(K2K1)

for any linear Hilbert-Schmidt type operators Ki : H → H, i = 1, 2. We

also use the fact that

det2(IH −K) = exp(−
∞∑
k=2

1

k
trace(Kk))

for any linear Hilbert-Schmidt type operator K : H → H such that the

Hilbert-Schmidt norm of K is less than 1.

Also, we have

(IH − zE)−1 = {(IH − zV01)(IH − z(IH − zV01)
−1A∗

1A0)}−1

= (

∞∑
k=0

(z(IH − zV01)
−1A∗

1A0)
k)(IH − zV01)

−1

= {IH +

∞∑
k=0

z(IH − zV01)
−1A∗

1(zA0(IH − zV01)
−1A∗

1)
kA0}(IH − zV01)

−1

= (IH − zV01)
−1 + z(IH − zV01)

−1A∗
1(IN − zA0(IH − zV01)

−1A∗
1)

−1

×A0(IH − zV01)
−1.
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Note that det2(IH − zE) and (IH − zE) are holomorphic in z over C.

So we see that (IH − zE)−1 is holomorphic in z around [0, 1]. So we have

our assertion. �

3. Special Case

We also consider the case that Eµ[exp(X)] < ∞ in this section. Let

ẽi1,i2 : [0, T ] → R, i1, i2 = 1, . . . , 2N, be the solution to the following ODE

d

dt
ẽi1,i2(t) =

2N∑
j=1

ci1,j(t)ẽj,i2(t),(3)

ẽi1,i2(0) = δi1,i2 , i1, i2 = 1, . . . , 2N.

Let ẽ be a 2N × 2N -matrix valued function defined in [0, T ] given by

ẽ(t) = (ẽi,j(t))i,j=1,... ,2N , and let ẽ0 be an N × N -matrix valued function

defined in [0, T ] given by ẽ0(t) = (ẽi,j(t))i,j=1,... ,N .

Let γ̃k : [0, T ] → R2N , k = 1, . . . , d, be continuous functions given by

γ̃ki (t) = −
2N∑
j=1

ẽj,i(t)β
k
j (t), i = 1, . . . , 2N, t ∈ [0, T ].

Now let Ψ̃ : H → C([0, T ];R2N ) be bounded linear operators given by

(Ψ̃h)i(t) =

d∑
k=1

∫ t

0
γ̃ki (s)hk(s)ds, t ∈ [0, T ],

for h ∈ H.
In this section we prove the following.

Theorem 3. Assume that Eµ[exp(X)] <∞. Then we have the follow-

ing.

(1) The N ×N -matrix ẽ0(T ) is invertible.

(2) Let ẽ0(T )−1 = (e0(T )−1
i,j )i,j=1,... ,N be the inverse matrix of ẽ0(T ). Let

d̃i,j ∈ R, i, j = 1, . . . , N, be given by

d̃i,j =

N∑
r=1

ẽ0(T )−1
i,r ẽr,N+j(T ).
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Then d̃i,j = d̃j,i, i, j = 1, . . . , N.

(3) For any h ∈ H

Eµ[exp(
d∑

k=1

∫ T

0
hk(t)dwk(t) +X)]

= det(ẽ0(T ))−1/2 exp(−1

2

n∑
i=1

d∑
k=1

∫ T

0
aki (t)b

k
i (t)dt+

1

2
||h||2H +

1

2
Ã(h, h)),

where

Ã(h, h)

= −
∫ T

0

2N∑
i=1

d

dt
(Ψ̃h)i(t)(J(Ψ̃h)(t)))idt+

N∑
i=1

(J(Ψ̃h)(T ))i(Ψ̃h)(T )i

+
N∑

i,j=1

d̃ij(Ψ̃h)(T )i(Ψ̃h)(T )j .

We make some preparations to prove this theorem.

Proposition 4. Let ẽ(t)−1 be the inverse matrix of ẽ(t), t ∈ [0, T ].

Then we see that

ẽ(t)−1 = −Jẽ(t)∗J, t ∈ [0, T ].

Moreover,

J(Ψ̃h)(t) =
d∑

k=1

∫ t

0
ẽ(s)−1αk(s)hk(s)ds, t ∈ [0, T ].

Proof. Remind that

d

dt
ẽ(t) = c(t)ẽ(t), t ∈ [0, T ].

Then we have
d

dt
ẽ(t)−1 = −ẽ(t)−1c(t), t ∈ [0, T ].
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Note that

(Jc(t))i,j =

d∑
k=1

βki (t)βkj (t) = (Jc(t))j,i i, j = 1, . . . , N.

So we see that

c(t)∗ = −(JJc(t))∗ = Jc(t)J.

Therefore we have

d

dt
(−Jẽ(t)∗J) = −J(c(t)ẽ(t))∗J = −(−Jẽ(t)∗J)c(t).

Since −Jẽ(0)∗J = I2N , we have the first assertion by the uniqueness of a

solution to ODE.

So we see that

Jγ̃k(t) = −Jẽ(t)∗Jαk(t) = ẽ(t)−1αk(t) k = 1, . . . , d.

This implies the second assertion. �

Then we have the following.

Proposition 5. (1) IN −A0(IH − V01)
−1A∗

1 = ẽ0(T ),

and

det(IN −A0(IH − V01)
−1A∗

1) = det(ẽ0(T )).

Moreover, ẽ0(T ) is invertible.

(2) For any h ∈ H,

(A0(IH − V01)
−1h)i =

2N∑
j=1

ẽi,j(T )(J(Ψ̃h)(T ))j , i = 1, . . . , N.

(3) For any h ∈ H and v ∈ RN ,

(h, (IH − V01)
−1A∗

1v)H =

N∑
i=1

vi(Ψ̃h)i(T ), k = 1, . . . , d, t ∈ [0, T ].
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(4) For any h ∈ H,

((IH − V01)
−1h)k(t) = hk(t) −

2N∑
j=1

γ̃kj (t)(J(Ψ̃h)(t))j ,

k = 1, . . . , d, t ∈ [0, T ].

In particular,

(h1, (IH − V01)
−1h2)H = (h1, h2)H −

∫ T

0
(
d

dt
(Ψ̃h1)(t), J(Ψ̃h2)(t))R2Ndt

for h1, h2 ∈ H.

Proof. Let f ∈ C∞
0 ((0, T );Rd) ⊂ H and let ξ = (IH −V01)

−1f. Then

we have

ξ = f + V01ξ

Let

ηi(t) =

d∑
k=1

∫ t

0
αki (s)ξ

k(s)ds, i = 1, . . . , 2N.

Then we have

(A0(IH − V01)
−1f)i = ηi(T ), i = 1, . . . , N.(4)

Also we have

ξk(t) = fk(t) +

2N∑
i=1

βki (t)ηi(t), k = 1, . . . , d,

and so we have

d

dt
ηi(t) =

d∑
k=1

αki (t)ξ
k(t)

=
d∑

k=1

αki (t)f
k(t) +

2N∑
j=1

cij(t)ηj(t), i = 1, . . . , 2N.
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Note that ηi(0) = 0, i = 1, . . . , 2N. So we see that

ηi(t) =

2N∑
j1,j2=1

d∑
�=1

ẽi,j1(t)

∫ t

0
ẽ(s)−1

j1,j2
α�j2(s)f

�(s)ds

=
2N∑
j=1

ẽi,j(t)(J(Ψ̃f)(t))j , i = 1, . . . , 2N, t ∈ [0, T ].

This and Proposition 4 imply Assertion (2), since C∞
0 ((0, T );Rd) is dense

in H.

Also, we see that

ξk(t) = fk(t) +

2N∑
j1,j2=1

βkj1(t)ẽj1,j2(t)(J(Ψ̃f)(t))j2 ,

for k = 1, . . . , d, t ∈ [0, T ]. This implies the assertion (4).

Let v ∈ RN . Then we have by Proposition 4

(J(Ψ̃A∗
1v)(t))i =

N∑
r=1

2N∑
j=1

d∑
�=1

vr

∫ t

0
ẽ(s)−1

i,j α
�
j(s)b

�
r(s)ds

= −
N∑
r=1

2N∑
j=1

d∑
�=1

vr

∫ t

0
ẽ(s)−1

i,j cj,r(s)ds

=
N∑
r=1

vr

∫ t

0

d

ds
ẽ(s)−1

i,r ds =
N∑
r=1

vrẽ(t)
−1
i,r − vi

Therefore by Assertion (4) we have

(h, (IH − V01)
−1A∗

1v)

= (h,A∗
1v) +

2N∑
j1,j2=1

N∑
i=1

vi

∫ T

0
βkj1(t)ẽ(t)j1,j2 ẽ(t)

−1
j2,i
hk(t)dt

−
2N∑
j=1

N∑
i=1

vi

∫ T

0
βkj (t)ẽ(t)j,ih

k(t)dt

=

N∑
i=1

vi

∫ T

0
γ̃ki (t)hk(t)dt =

N∑
i=1

vi(Ψ̃h)i(T ).
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This implies the assertion (3).

So we have

((IN −A0(IH − V01)
−1A∗

1)v)i

= vi +
d∑

k=1

2N∑
j0=1

N∑
j1=1

vj1

∫ T

0
aki (t)β

k
j0(t)ẽj0,j1(t)dt

= vi +
2N∑
j0=1

N∑
j1=1

vj1

∫ T

0
c(t)i,j0 ẽ(t)j0,j1dt

= vi +
N∑
j=1

vj(e(T )i,j − δij) =
N∑
j=1

ẽ(T )i,jvj .

This and Proposition 2 (1) imply Assertion (1). �

Proposition 6. (1) d̃i,j = d̃j,i, for all i, j = 1, . . . N.

(2) For any h1, h2 ∈ H,

(h1, (I − E)−1h2)H

= (h1, h2)H +

N∑
i=1

J(Ψ̃h2)(T )i(Ψ̃h1)(T )i

−
∫ T

0
(
d

dt
(Ψ̃h1)(t), J(Ψ̃h2)(t))R2Ndt

+

N∑
i,j=1

d̃ij(Ψ̃h2)(T ))i(Ψ̃h1)(T )j .

Proof. Note that ẽ(t)Jẽ(t)∗ = J. This implies that for i, j = 1, . . . , N,

0 = (ẽ(t)Jẽ(t)∗)i,j = −
N∑
r=1

ẽi,r(t)ẽj,N+r(t) +
N∑
r=1

ẽi,N+r(t)ẽj,r(t)

Let fi,j : [0, T ] → R, i, j = 1, . . . , N, be given by

fi,j(t) =

N∑
r=1

ẽi,r(t)ẽj,N+r(t),
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and let F (t) be an N × N -matrix given by F (t) = (fi,j(t))i,j=1,... ,N . Then

we have F (t)∗ = F (t). Since we have

(d̃i,j)i,j=1,... ,N = ẽ0(T )−1(ẽ0(T )−1F (T ))∗ = ẽ0(T )−1F (T )(e0(T )−1)∗,

we have Assertion (1).

By Propositions 2 and 5, we have for h1, h2 ∈ H,

(h1, ((IH − E)−1h2)H

= (h1, (IH − V01)
−1h2)H

+(h1, (IH − V01)
−1A∗

1(IN −A0(IH − V01)
−1A∗

1)
−1A0(IH − V01)

−1h2)H

= (h1, h2)H −
∫ T

0
(
d

dt
(Ψ̃h1)(t), J(Ψ̃h2)(t))R2Ndt

+

N∑
i,j=1

2N∑
�=1

ẽ0(T )−1
ij ẽ(T )j,�(J(Ψ̃h2)(T ))�(Ψ̃h1)(T )i

= (h1, h2)H −
∫ T

0
(
d

dt
(Ψ̃h1)(t), J(Ψ̃h2)(t))R2Ndt

+
N∑
i=1

(J(Ψ̃h2)(T ))i(Ψ̃h1)(T )i

+

N∑
i,j=1

d̃ij(Ψ̃h2)(T )i(Ψ̃h1)(T )j .

So we have Assertion (2). �

Now Theorem 3 is an easy consequence of Propositions 2, 5, 6 and

Equation (2).

4. Proof of Theorem 1

Now let us prove Theorem 1.

First assume that λ ∈ (0, λ1). Let

X̃(w) = λX(w)

=
N∑
i=1

d∑
k,�=1

∫ T

0
(

∫ t

0
(λ1/2b�i(s))dw

�(s))(λ1/2aki (t))dw
k(t).
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Then we see that Eµ[exp(X̃)] < ∞. So if we replace ak(t), bk(t), k =

1, . . . , N, t ∈ [0, T ], by λ1/2ak(t), λ1/2bk(t), k = 1, . . . , N, t ∈ [0, T ], and

apply results in the previous section, we have the following.

ẽ(t) = eλ(t), ẽ
0(t) = e0λ(t), t ∈ [0, T ],

γ̃k(t) = λ1/2γkλ(t), t ∈ [0, T ], k = 1, . . . , d,

and

Ã(h, h) = λAλ(h, h), t ∈ [0, T ], h ∈ H.

So we see by Theorem 3 that Assertions (1),(2) and (3) in Theorem 1 are

valid for λ ∈ (0, λ1) and h ∈ H.
In particular, we see that

det(e0λ(T ))Eµ[exp(λX)]2

= exp(−λ
n∑

i=1

d∑
k=1

∫ T

0
aki (t)b

k
i (t)dt)

for any λ ∈ (0, λ0). Note that eλ,i,j(t), i, j = 1, . . . , 2N, t ∈ [0, T ], is holo-

morphic in λ over C.

Let D0 = {z ∈ C; λ0 < Re z < λ1}. Then Eµ[exp(λX)] is holomorphic

in λ over D0. So we see that det e0λ(T ) �= 0 for all λ ∈ D0. This implies

Assertion (1).

Then we see that det e0λ(T )−1 is holomorphic in λ over D0. So we see

that dλ,i,j , i, j = 1, . . . , N, is holomorphic in λ over D0. So we see that dλ,i,j
= dλ,j,i, i, j = 1, . . . , N, for all λ ∈ D0.

Note that γkλ(t), k = 1, . . . , d, t ∈ [0, T ], is holomorphic in λ over D0.

We already showed that for any λ ∈ (0, λ1), h0, h1 ∈ H, and z ∈ R

Eµ[exp(
d∑

k=1

∫ T

0
(hk0(t) + zhk1(t))dw

k(t) + λX)]

= det(e0λ(T ))−1/2 exp(−λ
2

N∑
i=1

d∑
k=1

∫ T

0
aki (t)b

k
i (t)dt

+
1

2

∫ T

0
(

d∑
k=1

(hk0(s) + zhk1(s)
2ds+

λ

2
Aλ(h0 + zh1, h0 + zh1)).
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It is easy to see that

Eµ[exp(

d∑
k=1

∫ T

0
(hk0(t) + zhk1(t))dw

k(t) + λX)]

is holomorphic in (λ, z) over D0×C. Also, we see that Aλ(h0+zh1, h0+zh1)

is holomorphic in (λ, z) over D0 × C. So we obtain Assertion (3) for all

h = h0 +
√
−1h1 ∈ L2((0, T );Cd, dt) and λ ∈ D0.

This completes the proof of Theorem 1.

5. Special Class

In this section we show that there is a special class where we can solve

Equation (1) by using solutions of linear ODE’s with constant coefficients

even though aki (t), b
k
j (t), i, j = 1, . . . , d, k = 1, . . . , N, are not constants.

Let K be a 2N × 2N real matrix and α̃k ∈ R2N , k = 1, . . . , d. We

assume that the matrix K satisfies

JKJ = K∗.

Note that the matrix K satisfies this condition, if and only if

K22 = −K∗
11, K

∗
12 = K12 and K∗

21 = K21,

where Kij , i, j = 1, 2 are N ×N matrix such that

K =

(
K11 K12

K21 K22

)
.

Now let . αk : [0, T ] → R2N , k = 1, . . . , d be given by

αk(t) = exp(tK)α̃k, t ∈ [0, T ], k = 1, . . . , d.

Let aki : [0, T ] → R and bki : [0, T ] → R, i = 1, . . . , N, k = 1, . . . , d, be given

by

aki (t) = αki (t), bki (t) = αkN+i(t), t ∈ [0, T ].

Let βk(t) = Jαk(t), k = 1, . . . , d, t ∈ [0, T ]. Also, let ci,j : [0, T ] → R,

i, j = 1, . . . , 2N, be given by

ci,j(t) =

d∑
k=1

αki (t)β
k
j (t), t ∈ [0, T ].
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Then we have the following.

Proposition 7. Let L be a 2N × 2N real matrix given by

L =

d∑
k=1

αk(Jαk)∗ = −
d∑

k=1

αkαk∗J.

Then JLJ = L∗.
Let eλ,i1,i2 : [0, T ] → C, i1, i2 = 1, . . . , 2N, λ ∈ C, be the solution to the

ODE (1). Then we have

eλ(t) = {eλ,i1,i2(t)}i1,i2=1,... ,2N = exp(tK) exp(t(λL−K)), t ∈ [0, T ].

Proof. The first assertion is obvious. Note that

J exp(tK) =
∞∑
n=0

(−t)n
n!

J(KJ2)n =
∞∑
n=0

(−t)n
n!

(JKJ)nJ = exp(−tK∗)J,

and so we have

βk(t) = Jαk(t) = J exp(tK)α̃k = exp(−tK∗)Jα̃k.

Then we see that

c(t) =
d∑

k=1

αk(t)βk(t)∗ = exp(tK)L exp(−tK).

Since we have

d

dt
(exp(tK) exp(t(λL−K)) = λ exp(tK)L exp(t(λL−K))

= λc(t) exp(tK) exp(t(λL−K)),

the uniqueness of the solution to the ordinary equation implies our asser-

tion. �

Example 1. Let d = 1 and N = 1. Also, let

K =

(
0 2

0 0

)
, and α̃ =

(
−2T

1

)
.
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Then we see that a1(t) = 2(t− T ) and b1(t) = 1. So we have

X =

∫ T

0
(

∫ t

0
b1(s)dw

1(s))a1(t)dw
1(t) = −

∫ T

0
w1(t)2dt+

T 2

2
.

In this case

L =

(
2T −1

4T 2 −2T

)
.

Example 2. Let d = 2 and N = 2. Also, let K = 0 as an 4 × 4 matrix,

α1 =




0

−1

1

0


 , α2 =




1

0

0

1


 .

Then

a1
1(t) = 0, a1

2(t) = −1, a2
1(t) = 1, a2

2(t) = 0

and

b11(t) = 0, b12(t) = 1, b21(t) = 1, b22(t) = 0.

So

X =

2∑
i=1

2∑
k,�=1

∫ T

0
(

∫ t

0
b�i(s)dw

�(s))aki (t)dw
i(t)

=

∫ T

0
w2(t)dw1(t) −

∫ T

0
w1(t)dw2(t).

In this case

L =




0 −1 1 0

1 0 0 1

−1 0 0 −1

0 −1 1 0


 .

Example 3. Let d = 2 and N � 1. Let Kij , i, j = 1, 2 be N × N -

matrices given by

(K11)ij =

{
−1, if i = j + 1, j = 1, . . . , N − 1,

0, otherwise,
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(K22)ij = −(K11)ji, and K12 = K21 = 0. Let K be 2N × 2N -matrices given

by

K =

(
K11 K12

K21 K22

)
.

Also, let α̃k ∈ R2N , k = 1, 2, be given by

α̃1
i =

{
1, i = 1,

0, i = 2, . . . , 2N,

and

α̃2
i =

{
0, i = 1, . . . , 2N − 1,

1, i = 2N.

Then we see that

a1
i (t) =

(−t)i−1

(i− 1)!
, b2i (t) =

tN−i

(N − i)! , i = 1, . . . , N,

and a2(t) = b1(t) = 0. So we have

X =
N∑
i=1

∫ T

0
(

∫ t

0

sN−i

(N − i)!dw
2(s))

(−t)i−1

(i− 1)!
dw1(t)

=
(−1)N−1

(N − 1)!

∫ T

0
(

∫ t

0
(t− s)N−1dw2(s))dw1(t).

In this case, L = (Lij)i,j=1,... ,2N is given by

Lij =




1, if i = 1, j = N + 1,

−1, if i = 2N, j = N,

0, otherwise.
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Gaussian processes, Comm. Pure Appl. Math. 47 (1994), 329–360.

[5] Ikeda, N., Kusuoka, S. and S. Manabe, Levy’s stochastic area formula and
related problems. in Stochastic analysis (Ithaca, NY, 1993), pp. 281–305,
Proc. Sympos. Pure Math., 57, Amer. Math. Soc., Providence, RI, 1995.
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