J. Math. Sci. Univ. Tokyo **30** (2023), 1–20.

A Remark on Quadratic Functionals of Brownian Motions

By Shigeo KUSUOKA and Yasufumi OSAJIMA

Abstract. It is a classical problem to give explicit formulae for characteristic functions of quadratic functionals of Brownian motions, and there are many works on this topic. Ikeda-Kusuoka-Manabe [4], [5] gave a new idea to solve this problem and showed some results from which almost all known results followed. In this paper the authors extend their results based on their idea.

1. Introduction and Result

Let $d \geq 1, T > 0, W_0 = \{w \in C([0,T]; \mathbf{R}^d); w(0) = 0\}$, and $\mathcal{B}(W_0^d)$ be the Borel algebra over W_0^d . Let μ be the Wiener measure on $(W_0^d, \mathcal{B}(W_0^d))$. Now let $a_i^k : [0,T] \to \mathbf{R}, b_i^k : [0,T] \to \mathbf{R}, i = 1, \ldots, N, k = 1, \ldots, d$, be continuous functions. Let $X : W_0^d \to \mathbf{R}$ be a random variable given by

$$X(w) = \sum_{i=1}^{N} \sum_{k,\ell=1}^{d} \int_{0}^{T} (\int_{0}^{t} b_{i}^{\ell}(s) dw^{\ell}(s)) a_{i}^{k}(t) dw^{k}(t).$$

Here stochastic integrals are Ito integrals.

Let $\lambda \in \mathbf{C}$. Our concern is to compute the following.

$$E^{\mu}[\exp(\sum_{k=1}^{d} \int_{0}^{T} h^{k}(t) dw^{k}(t) + \lambda X)], \qquad h \in L^{2}([0,T]; \mathbf{C}^{d}, dt).$$

Such a problem was first considered by Lévy [6] and then many people studied this problem and gave explicit formulae (e.g. [1], [3], [4], [5]). In the present paper, we consider general cases and show that we can reduce this problem to a problem of a linear ordinary differential equation by using ideas in [4] and [5], where symmetric linear operators are decomposed

²⁰²⁰ Mathematics Subject Classification. 60E10, 60H05.

Key words: Brownian motion, quadratic functional, characteristic function.

into summations of Volterra type operators and linear operators of finite dimensional range.

Let $\alpha^k : [0,T] \to \mathbf{R}^{2N}, k = 1, \ldots, d$, be given by

$$\alpha_{j}^{k}(t) = \begin{cases} a_{j}^{k}(t), & j = 1, \dots, N, \\ b_{j-N}^{k}(t), & j = N+1, \dots, 2N. \end{cases}$$

Let $J: \mathbf{R}^{2N} \to \mathbf{R}^{2N}$ be a linear operator given by

$$J((z_i)_{i=1}^{2N})_j = \begin{cases} -z_{j+N}, & j = 1, \dots, N, \\ z_{j-N}, & j = N+1, \dots, 2N. \end{cases}$$

Let $\beta^k : [0,T] \to \mathbf{R}^{2N}$, $k = 1, \dots, d$, be given by $\beta^k(t) = J\alpha^k(t)$. Then we have

$$\beta_j^k(t) = \begin{cases} -b_j^k(t), & j = 1, \dots, N, \\ a_{j-N}^k(t), & j = N+1, \dots, 2N. \end{cases}$$

Let $c_{i,j}: [0,T] \to \mathbf{R}, i, j = 1, \dots, 2N$, be given by

$$c_{i,j}(t) = \sum_{k=1}^{d} \alpha_i^k(t) \beta_j^k(t), \quad t \in [0, T].$$

Also, let $e_{\lambda,i_1,i_2}: [0,T] \to \mathbf{C}, i_1, i_2 = 1, \dots, 2N, \lambda \in \mathbf{C}$, be the solution to the following ODE

(1)
$$\frac{d}{dt}e_{\lambda,i_1,i_2}(t) = \lambda \sum_{j=1}^{2N} c_{i_1,j}(t)e_{\lambda,j,i_2}(t),$$
$$e_{\lambda,i_1,i_2}(0) = \delta_{i_1,i_2}, \qquad i_1, i_2 = 1, \dots, 2N.$$

Let e_{λ} be a $2N \times 2N$ -matrix valued function defined in [0, T] given by $e_{\lambda}(t) = (e_{\lambda,i,j}(t))_{i,j=1,\dots,2N}$, and let e_{λ}^{0} be an $N \times N$ -matrix valued function defined in [0,T] given by $e_{\lambda}^{0}(t) = (e_{\lambda,i,j}(t))_{i,j=1,...,N}$. Let $\gamma_{\lambda}^{k}: [0,T] \to \mathbf{R}^{2N}, \ k = 1, \ldots, d$, be continuous functions given by

$$\gamma_{\lambda,i}^{k}(t) = -\sum_{j=1}^{2N} e_{\lambda,j,i}(t)\beta_{j}^{k}(t), \qquad i = 1, \dots, 2N, \ t \in [0,T].$$

Now let $\Psi_{\lambda} : L^2([0,T]; \mathbf{C}^d, dt) \to C([0,T]; \mathbf{C}^{2N})$ be bounded linear operators given by

$$(\Psi_{\lambda}h)_{i}(t) = \sum_{k=1}^{d} \int_{0}^{t} \gamma_{\lambda,i}^{k}(s)h^{k}(s)ds, \qquad t \in [0,T], \ h \in L^{2}([0,T]; \mathbf{C}^{d}, dt).$$

Also, let

$$\lambda_0 = \inf\{s \in \mathbf{R}; \ E^{\mu}[\exp(sX)] < \infty\},\$$

and

$$\lambda_1 = \sup\{s \in \mathbf{R}; E^{\mu}[\exp(sX)] < \infty\}.$$

As is explained in Section 2, we see that $\lambda_0 < 0 < \lambda_1$.

Our main result is the following.

THEOREM 1. Assume that $\lambda \in \mathbf{C}$ and $\lambda_0 < \operatorname{Re} \lambda < \lambda_1$. Then we have the following.

(1) The $N \times N$ -matrix $e_{\lambda}^{0}(T)$ is invertible. (2) Let $e_{\lambda}^{0}(T)^{-1} = (e_{\lambda}^{0}(T)_{i,j}^{-1})_{i,j=1,...,N}$ be the inverse matrix of $e_{\lambda}^{0}(T)$. Let $d_{\lambda,i,j} \in \mathbf{C}, i, j = 1, ..., N$, be given by

$$d_{\lambda,i,j} = \sum_{r=1}^{N} e_{\lambda}^{0}(T)_{i,r}^{-1} e_{\lambda,r,N+j}(T).$$

Then $d_{\lambda,i,j} = d_{\lambda,j,i}$, $i, j = 1, \dots, N$. (3) For any $h \in L^2([0,T]; \mathbf{C}^d, dt)$

$$\begin{split} E^{\mu}[\exp(\sum_{k=1}^{d}\int_{0}^{T}h^{k}(t)dw^{k}(t)+\lambda X)] \\ = \det(e_{\lambda}^{0}(T))^{-1/2}\exp(-\frac{\lambda}{2}\sum_{i=1}^{N}\sum_{k=1}^{d}\int_{0}^{T}a_{i}^{k}(t)b_{i}^{k}(t)dt \\ +\frac{1}{2}\int_{0}^{T}(\sum_{k=1}^{d}h_{k}(s)^{2})ds + \frac{\lambda}{2}\mathcal{A}_{\lambda}(h,h)), \end{split}$$

where

$$\begin{aligned} \mathcal{A}_{\lambda}(h,h) \\ = -\int_{0}^{T}\sum_{i=1}^{2N}\frac{d}{dt}(\Psi_{\lambda}h)_{i}(t)(J(\Psi_{\lambda}h)(t)))_{i}dt + \sum_{i=1}^{N}(J(\Psi_{\lambda}h)(T))_{i}(\Psi_{\lambda}h)(T)_{i} \\ + \sum_{i,j=1}^{N}d_{\lambda,ij}(\Psi_{\lambda}h)(T)_{i}(\Psi_{\lambda}h)(T)_{j}. \end{aligned}$$

2. Preliminary Facts

In this section we assume that $E^{\mu}[\exp(X)] < \infty$. Let \tilde{H} be the Cameron-Martin space of the Wiener space (W_0, μ) , i.e.,

$$\tilde{H} = \{k \in W_0; \ k(t) \text{ is absolutely continuous in } t, \ \int_0^T |\frac{dk}{dt}(t)|^2 dt < \infty\},\$$
$$(k_1, k_2)_{\tilde{H}} = \int_0^T \frac{dk_1}{dt}(t) \cdot \frac{dk_2}{dt}(t) dt.$$

Here \cdot stands for the natural innner product in \mathbf{R}^d . Let $H = L^2([0,T]; \mathbf{R}^d, dt)$. Then the map $\Phi : \tilde{H} \to H$ corresponding k to $\frac{dk}{dt}$ is an isomorphism.

Let $\mathcal{E}: H \times H \to \mathbf{R}$ be the symmetric bilinear form given by

$$\begin{split} \mathcal{E}(h_1,h_2) \\ = \sum_{i=1}^N \sum_{k,\ell=1}^d \int_0^T \int_0^T \mathbf{1}_{\{t>s\}} a_i^k(t) b_i^\ell(s) h_1^k(t) h_2^\ell(s) dt ds \\ &+ \sum_{i=1}^N \sum_{k,\ell=1}^d \int_0^T \int_0^T \mathbf{1}_{\{t>s\}} a_i^k(t) b_i^\ell(s) h_1^\ell(s) h_2^k(t) dt ds \end{split}$$

for $h_1, h_2 \in H$.

The associated symmetric bounded linear operator $E:H\to H$ to ${\mathcal E}$ is given by

$$(Eh)^{k}(t) = \sum_{i=1}^{N} \sum_{\ell=1}^{d} \int_{0}^{T} \mathbf{1}_{\{t>s\}} a_{i}^{k}(t) b_{i}^{\ell}(s) h^{\ell}(s) ds + \sum_{i=1}^{N} \sum_{\ell=1}^{d} \int_{0}^{T} \mathbf{1}_{\{s>t\}} a_{i}^{\ell}(s) b_{i}^{k}(t) h^{\ell}(s) ds$$

$$=\sum_{i=1}^{N}\sum_{\ell=1}^{d}a_{i}^{k}(t)\int_{0}^{t}b_{i}^{\ell}(s)h^{\ell}(s)ds - \sum_{i=1}^{N}\sum_{\ell=1}^{d}b_{i}^{k}(t)\int_{0}^{t}a_{i}^{\ell}(s)h^{\ell}(s)ds + \sum_{i=1}^{N}\sum_{\ell=1}^{d}b_{i}^{k}(t)\int_{0}^{T}a_{i}^{\ell}(s)h^{\ell}(s)ds, \quad t \in [0,T], \ k = 1, \dots, d, \ h \in H.$$

Then we see that E is a Hilbert-Schmidt type symmetric linear operator in H. So there are a complete orthonormal basis $\{g_m\}_{m=1}^{\infty}$ in H and a sequence $\{\eta_m\}_{m=1}^{\infty}$ of real numbers such that

$$Eh = \sum_{m=1}^{\infty} \eta_m(h, g_m)_H g_m, \qquad h \in H,$$

and $\sum_{k=1}^{\infty} \eta_k^2 < \infty$. Moreover, we see that

$$X = \frac{1}{2} \sum_{m=1}^{\infty} \eta_m ((\sum_{k=1}^d \int_0^T g_m^k(t) dw^k(t))^2 - 1).$$

Note that $\sum_{k=1}^{d} \int_{0}^{T} g_{m}^{k}(t) dw^{k}(t)$, $m = 1, 2, \dots$, is a sequence of independent normal distributed random variables.

Therefore for any $\lambda \in \mathbf{R}$ we see that $E^{\nu}[\exp(\lambda X)] < \infty$ if and only if $\sup_m \lambda \eta_m < 1$.

Let $\rho(E)$ be the set of eigenvalues of E. That is $\rho(E) = \{\eta_m; m = 1, 2, ...\}$. Since we assume that $E^{\mu}[\exp(X)] < \infty$, we see that $\rho(E) \subset (-\infty, 1)$. Hence we see that $I_H - E : H \to H$ is invertible and positive-definite. Also, we have

$$E^{\mu}[\exp(\sum_{k=1}^{d} \int_{0}^{T} h^{k}(t) dw^{k}(t) + X)]$$

$$= \prod_{m=1}^{\infty} ((1 - \eta_{m})^{-1/2} \exp(-\eta_{m}/2) \exp(\frac{1}{2}(1 - \eta_{m})^{-1}(g_{m}, h)_{H}^{2}))$$

$$(2) \qquad = \det_{2}(I_{H} - E)^{-1/2} \exp(\frac{1}{2}(h, (I_{H} - E)^{-1}h)_{H}), \qquad h \in H.$$

Here det_2 is a regularized deteminant (see [2] for its definition and properties).

Let $V_{01}: H \to H$, and $A_r: H \to \mathbf{R}^N$, r = 0, 1, be given by

$$(V_{01}h)^{k}(t) = \sum_{i=1}^{N} \sum_{\ell=1}^{d} a_{i}^{k}(t) \int_{0}^{t} b_{i}^{\ell}(s)h^{\ell}(s)ds - \sum_{i=1}^{N} \sum_{\ell=1}^{d} b_{i}^{k}(t) \int_{0}^{t} a_{i}^{\ell}(s)h^{\ell}(s)ds,$$
$$= \sum_{i=1}^{2N} \sum_{\ell=1}^{d} \beta_{i}^{k}(t) \int_{0}^{t} \alpha_{i}^{\ell}(s)h^{\ell}(s)ds, \qquad h \in H, \ k = 1, \dots, d,$$
$$(A_{0}h)_{i} = \sum_{\ell=1}^{d} \int_{0}^{T} a_{i}^{\ell}(s)h^{\ell}(s)ds, \qquad h \in H, \ i = 1, \dots, N,$$

and

$$(A_1h)_i = \sum_{\ell=1}^d \int_0^T b_i^\ell(s) h^\ell(s) ds, \qquad h \in H, \ i = 1, \dots, N.$$

Note that V_{01} is a Volterra type operator. So we see that a bounded linear map $I_H - V_{01} : H \to H$ is invertible. Also, we see that

$$E = V_{01} + A_1^* A_0.$$

PROPOSITION 2. Assume that $E^{\mu}[\exp(X)] < \infty$. Then we have the following. (1) $\det_2(I_H - E)$

$$= \det(I_N - A_0(I_H - V_{01})^{-1}A_1^*) \exp(\operatorname{trace} A_0A_1^*),$$

where I_N is the identity map in \mathbf{R}^N .

In particular, the $N \times N$ -matrix $I_N - A_0 (I_H - V_{01})^{-1} A_1^*$ is invertible. (2) $(I_H - E)^{-1}$

$$= (I_H - V_{01})^{-1} + (I_H - V_{01})^{-1} A_1^* (I_N - A_0 (I_H - V_{01})^{-1} A_1^*)^{-1} A_0 (I_H - V_{01})^{-1}.$$

PROOF. Let $z \in \mathbf{C}$ for which |z| is sufficiently small. Then we have

$$\det_2(I_H - zE)$$

= $\det_2((I_H - zV_{01})(I_H - z(I_H - zV_{01})^{-1}A_1^*A_0)).$

Since V_{01} is a Volterra type operator, we have $det_2(I_H - zV_{01}) = 1$. So we have

$$\det_2(I_H - zE)$$

$$= \det_2(I_H - zV_{01})\det_2(I_H - z(I_H - zV_{01})^{-1}A_1^*A_0)$$

$$\times \exp(-\operatorname{trace}(z^2V_{01}(I_H - zV_{01})^{-1}A_1^*A_0))$$

$$= \exp(-\sum_{k=2}^{\infty} \frac{1}{k}\operatorname{trace}((z(I_H - zV_{01})^{-1}A_1^*A_0)^k))$$

$$\times \exp(-\operatorname{trace}(zA_0((I_H - zV_{01})^{-1} - I_H)A_1^*)))$$

$$= \exp(-\sum_{k=1}^{\infty} \frac{1}{k}\operatorname{trace}((zA_0(I_H - zV_{01})^{-1}A_1^*)))\exp(\operatorname{trace}(zA_0A_1^*)))$$

$$= \det(I_N - zA_0(I_H - zV_{01})^{-1}A_1^*)\exp(z\operatorname{trace}(A_0A_1^*)).$$

Here we use the fact that

 $\det_2((I_H+K_1)(I_H+K_2)) = \det_2(I_H+K_1)\det_2(I_H+K_2)\exp(-\operatorname{trace}(K_1K_2))$ and

$$\operatorname{trace}(K_1K_2) = \operatorname{trace}(K_2K_1)$$

for any linear Hilbert-Schmidt type operators $K_i : H \to H$, i = 1, 2. We also use the fact that

$$\det_2(I_H - K) = \exp(-\sum_{k=2}^{\infty} \frac{1}{k} \operatorname{trace}(K^k))$$

for any linear Hilbert-Schmidt type operator $K : H \to H$ such that the Hilbert-Schmidt norm of K is less than 1.

Also, we have

$$(I_H - zE)^{-1} = \{(I_H - zV_{01})(I_H - z(I_H - zV_{01})^{-1}A_1^*A_0)\}^{-1}$$

= $(\sum_{k=0}^{\infty} (z(I_H - zV_{01})^{-1}A_1^*A_0)^k)(I_H - zV_{01})^{-1}$
= $\{I_H + \sum_{k=0}^{\infty} z(I_H - zV_{01})^{-1}A_1^*(zA_0(I_H - zV_{01})^{-1}A_1^*)^kA_0\}(I_H - zV_{01})^{-1}$
= $(I_H - zV_{01})^{-1} + z(I_H - zV_{01})^{-1}A_1^*(I_N - zA_0(I_H - zV_{01})^{-1}A_1^*)^{-1}$
 $\times A_0(I_H - zV_{01})^{-1}.$

Note that $\det_2(I_H - zE)$ and $(I_H - zE)$ are holomorphic in z over \mathbb{C} . So we see that $(I_H - zE)^{-1}$ is holomorphic in z around [0, 1]. So we have our assertion. \Box

3. Special Case

We also consider the case that $E^{\mu}[\exp(X)] < \infty$ in this section. Let $\tilde{e}_{i_1,i_2}: [0,T] \to \mathbf{R}, i_1, i_2 = 1, \ldots, 2N$, be the solution to the following ODE

(3)
$$\frac{d}{dt}\tilde{e}_{i_1,i_2}(t) = \sum_{j=1}^{2N} c_{i_1,j}(t)\tilde{e}_{j,i_2}(t),$$
$$\tilde{e}_{i_1,i_2}(0) = \delta_{i_1,i_2}, \qquad i_1, i_2 = 1, \dots, 2N.$$

Let \tilde{e} be a $2N \times 2N$ -matrix valued function defined in [0, T] given by $\tilde{e}(t) = (\tilde{e}_{i,j}(t))_{i,j=1,\ldots,2N}$, and let \tilde{e}^0 be an $N \times N$ -matrix valued function defined in [0, T] given by $\tilde{e}^0(t) = (\tilde{e}_{i,j}(t))_{i,j=1,\ldots,N}$.

Let $\tilde{\gamma}^k: [0,T] \to \mathbf{R}^{2N}, \ k = 1, \dots, d$, be continuous functions given by

$$\tilde{\gamma}_i^k(t) = -\sum_{j=1}^{2N} \tilde{e}_{j,i}(t)\beta_j^k(t), \qquad i = 1, \dots, 2N, \ t \in [0,T].$$

Now let $\tilde{\Psi}: H \to C([0,T]; \mathbf{R}^{2N})$ be bounded linear operators given by

$$(\tilde{\Psi}h)_i(t) = \sum_{k=1}^d \int_0^t \tilde{\gamma}_i^k(s)h^k(s)ds, \qquad t \in [0,T],$$

for $h \in H$.

In this section we prove the following.

THEOREM 3. Assume that $E^{\mu}[\exp(X)] < \infty$. Then we have the following.

(1) The $N \times N$ -matrix $\tilde{e}^0(T)$ is invertible. (2) Let $\tilde{e}^0(T)^{-1} = (e^0(T)_{i,j}^{-1})_{i,j=1,...,N}$ be the inverse matrix of $\tilde{e}^0(T)$. Let $\tilde{d}_{i,j} \in \mathbf{R}, i, j = 1,..., N$, be given by

$$\tilde{d}_{i,j} = \sum_{r=1}^{N} \tilde{e}^0(T)_{i,r}^{-1} \tilde{e}_{r,N+j}(T).$$

Then
$$\tilde{d}_{i,j} = \tilde{d}_{j,i}, i, j = 1, ..., N.$$

(3) For any $h \in H$

$$E^{\mu}[\exp(\sum_{k=1}^{d} \int_{0}^{T} h^{k}(t) dw^{k}(t) + X)]$$

$$= \det(\tilde{e}^{0}(T))^{-1/2} \exp(-\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{d} \int_{0}^{T} a_{i}^{k}(t) b_{i}^{k}(t) dt + \frac{1}{2} ||h||_{H}^{2} + \frac{1}{2} \tilde{\mathcal{A}}(h,h)),$$

where

$$\begin{split} \tilde{\mathcal{A}}(h,h) \\ = -\int_0^T \sum_{i=1}^{2N} \frac{d}{dt} (\tilde{\Psi}h)_i(t) (J(\tilde{\Psi}h)(t)))_i dt + \sum_{i=1}^N (J(\tilde{\Psi}h)(T))_i (\tilde{\Psi}h)(T)_i \\ + \sum_{i,j=1}^N \tilde{d}_{ij} (\tilde{\Psi}h)(T)_i (\tilde{\Psi}h)(T)_j. \end{split}$$

We make some preparations to prove this theorem.

PROPOSITION 4. Let $\tilde{e}(t)^{-1}$ be the inverse matrix of $\tilde{e}(t)$, $t \in [0,T]$. Then we see that

$$\tilde{e}(t)^{-1} = -J\tilde{e}(t)^*J, \qquad t \in [0, T].$$

Moreover,

$$J(\tilde{\Psi}h)(t) = \sum_{k=1}^{d} \int_{0}^{t} \tilde{e}(s)^{-1} \alpha^{k}(s) h^{k}(s) ds, \qquad t \in [0, T].$$

PROOF. Remind that

$$\frac{d}{dt}\tilde{e}(t) = c(t)\tilde{e}(t), \qquad t \in [0,T].$$

Then we have

$$\frac{d}{dt}\tilde{e}(t)^{-1} = -\tilde{e}(t)^{-1}c(t), \qquad t \in [0,T].$$

Note that

$$(Jc(t))_{i,j} = \sum_{k=1}^{d} \beta_i^k(t) \beta_j^k(t) = (Jc(t))_{j,i} \qquad i, j = 1, \dots, N.$$

So we see that

$$c(t)^* = -(JJc(t))^* = Jc(t)J.$$

Therefore we have

$$\frac{d}{dt}(-J\tilde{e}(t)^*J) = -J(c(t)\tilde{e}(t))^*J = -(-J\tilde{e}(t)^*J)c(t).$$

Since $-J\tilde{e}(0)^*J = I_{2N}$, we have the first assertion by the uniqueness of a solution to ODE.

So we see that

$$J\tilde{\gamma}^k(t) = -J\tilde{e}(t)^* J\alpha^k(t) = \tilde{e}(t)^{-1}\alpha^k(t) \qquad k = 1, \dots, d.$$

This implies the second assertion. \Box

Then we have the following.

Proposition 5. (1) $I_N - A_0 (I_H - V_{01})^{-1} A_1^* = \tilde{e}^0(T),$ and

$$\det(I_N - A_0(I_H - V_{01})^{-1}A_1^*) = \det(\tilde{e}^0(T)).$$

Moreover, $\tilde{e}^0(T)$ is invertible. (2) For any $h \in H$,

$$(A_0(I_H - V_{01})^{-1}h)_i = \sum_{j=1}^{2N} \tilde{e}_{i,j}(T)(J(\tilde{\Psi}h)(T))_j, \qquad i = 1, \dots, N$$

(3) For any $h \in H$ and $v \in \mathbf{R}^N$,

$$(h, (I_H - V_{01})^{-1} A_1^* v)_H = \sum_{i=1}^N v_i(\tilde{\Psi}h)_i(T), \qquad k = 1, \dots, d, \ t \in [0, T].$$

10

(4) For any $h \in H$,

$$((I_H - V_{01})^{-1}h)^k(t) = h^k(t) - \sum_{j=1}^{2N} \tilde{\gamma}_j^k(t) (J(\tilde{\Psi}h)(t))_j,$$

 $k = 1, \dots, d, \ t \in [0, T].$

In particular,

$$(h_1, (I_H - V_{01})^{-1}h_2)_H = (h_1, h_2)_H - \int_0^T (\frac{d}{dt}(\tilde{\Psi}h_1)(t), J(\tilde{\Psi}h_2)(t))_{\mathbf{R}^{2N}} dt$$

for $h_1, h_2 \in H$.

PROOF. Let $f \in C_0^{\infty}((0,T); \mathbf{R}^d) \subset H$ and let $\xi = (I_H - V_{01})^{-1} f$. Then we have

$$\xi = f + V_{01}\xi$$

Let

$$\eta_i(t) = \sum_{k=1}^d \int_0^t \alpha_i^k(s) \xi^k(s) ds, \quad i = 1, \dots, 2N.$$

Then we have

(4)
$$(A_0(I_H - V_{01})^{-1}f)_i = \eta_i(T), \quad i = 1, \dots, N.$$

Also we have

$$\xi^k(t) = f^k(t) + \sum_{i=1}^{2N} \beta_i^k(t) \eta_i(t), \qquad k = 1, \dots, d,$$

and so we have

$$\frac{d}{dt}\eta_i(t) = \sum_{k=1}^d \alpha_i^k(t)\xi^k(t)$$
$$= \sum_{k=1}^d \alpha_i^k(t)f^k(t) + \sum_{j=1}^{2N} c_{ij}(t)\eta_j(t), \qquad i = 1, \dots, 2N.$$

Note that $\eta_i(0) = 0, i = 1, \dots, 2N$. So we see that

$$\eta_i(t) = \sum_{j_1, j_2=1}^{2N} \sum_{\ell=1}^d \tilde{e}_{i,j_1}(t) \int_0^t \tilde{e}(s)_{j_1, j_2}^{-1} \alpha_{j_2}^\ell(s) f^\ell(s) ds$$
$$= \sum_{j=1}^{2N} \tilde{e}_{i,j}(t) (J(\tilde{\Psi}f)(t))_j, \qquad i = 1, \dots, 2N, \ t \in [0, T].$$

This and Proposition 4 imply Assertion (2), since $C_0^{\infty}((0,T); \mathbf{R}^d)$ is dense in H.

Also, we see that

$$\xi^{k}(t) = f^{k}(t) + \sum_{j_{1}, j_{2}=1}^{2N} \beta^{k}_{j_{1}}(t)\tilde{e}_{j_{1}, j_{2}}(t)(J(\tilde{\Psi}f)(t))_{j_{2}},$$

for $k = 1, ..., d, t \in [0, T]$. This implies the assertion (4). Let $v \in \mathbb{R}^N$. Then we have by Proposition 4

$$(J(\tilde{\Psi}A_1^*v)(t))_i = \sum_{r=1}^N \sum_{j=1}^{2N} \sum_{\ell=1}^d v_r \int_0^t \tilde{e}(s)_{i,j}^{-1} \alpha_j^\ell(s) b_r^\ell(s) ds$$
$$= -\sum_{r=1}^N \sum_{j=1}^{2N} \sum_{\ell=1}^d v_r \int_0^t \tilde{e}(s)_{i,j}^{-1} c_{j,r}(s) ds$$
$$= \sum_{r=1}^N v_r \int_0^t \frac{d}{ds} \tilde{e}(s)_{i,r}^{-1} ds = \sum_{r=1}^N v_r \tilde{e}(t)_{i,r}^{-1} - v_i$$

Therefore by Assertion (4) we have

$$(h, (I_H - V_{01})^{-1} A_1^* v)$$

$$= (h, A_1^* v) + \sum_{j_1, j_2 = 1}^{2N} \sum_{i=1}^N v_i \int_0^T \beta_{j_1}^k(t) \tilde{e}(t)_{j_1, j_2} \tilde{e}(t)_{j_2, i}^{-1} h^k(t) dt$$

$$- \sum_{j=1}^{2N} \sum_{i=1}^N v_i \int_0^T \beta_j^k(t) \tilde{e}(t)_{j, i} h^k(t) dt$$

$$= \sum_{i=1}^N v_i \int_0^T \tilde{\gamma}_i^k(t) h^k(t) dt = \sum_{i=1}^N v_i (\tilde{\Psi} h)_i(T).$$

This implies the assertion (3).

So we have

$$((I_N - A_0(I_H - V_{01})^{-1}A_1^*)v)_i$$

= $v_i + \sum_{k=1}^d \sum_{j_0=1}^{2N} \sum_{j_1=1}^N v_{j_1} \int_0^T a_i^k(t)\beta_{j_0}^k(t)\tilde{e}_{j_0,j_1}(t)dt$
= $v_i + \sum_{j_0=1}^{2N} \sum_{j_1=1}^N v_{j_1} \int_0^T c(t)_{i,j_0}\tilde{e}(t)_{j_0,j_1}dt$
= $v_i + \sum_{j=1}^N v_j(e(T)_{i,j} - \delta_{ij}) = \sum_{j=1}^N \tilde{e}(T)_{i,j}v_j.$

This and Proposition 2 (1) imply Assertion (1). \Box

PROPOSITION 6. (1) $\tilde{d}_{i,j} = \tilde{d}_{j,i}$, for all i, j = 1, ..., N. (2) For any $h_1, h_2 \in H$,

$$(h_1, (I - E)^{-1}h_2)_H$$

= $(h_1, h_2)_H + \sum_{i=1}^N J(\tilde{\Psi}h_2)(T)_i(\tilde{\Psi}h_1)(T)_i$
 $- \int_0^T (\frac{d}{dt}(\tilde{\Psi}h_1)(t), J(\tilde{\Psi}h_2)(t))_{\mathbf{R}^{2N}} dt$
 $+ \sum_{i,j=1}^N \tilde{d}_{ij}(\tilde{\Psi}h_2)(T))_i(\tilde{\Psi}h_1)(T)_j.$

PROOF. Note that $\tilde{e}(t)J\tilde{e}(t)^* = J$. This implies that for i, j = 1, ..., N,

$$0 = (\tilde{e}(t)J\tilde{e}(t)^*)_{i,j} = -\sum_{r=1}^N \tilde{e}_{i,r}(t)\tilde{e}_{j,N+r}(t) + \sum_{r=1}^N \tilde{e}_{i,N+r}(t)\tilde{e}_{j,r}(t)$$

Let $f_{i,j}:[0,T] \to \mathbf{R}, i, j = 1, \dots, N$, be given by

$$f_{i,j}(t) = \sum_{r=1}^{N} \tilde{e}_{i,r}(t) \tilde{e}_{j,N+r}(t),$$

and let F(t) be an $N \times N$ -matrix given by $F(t) = (f_{i,j}(t))_{i,j=1,\ldots,N}$. Then we have $F(t)^* = F(t)$. Since we have

$$(\tilde{d}_{i,j})_{i,j=1,\dots,N} = \tilde{e}^0(T)^{-1}(\tilde{e}^0(T)^{-1}F(T))^* = \tilde{e}^0(T)^{-1}F(T)(e^0(T)^{-1})^*,$$

we have Assertion (1).

By Propositions 2 and 5, we have for $h_1, h_2 \in H$,

$$(h_1, ((I_H - E)^{-1}h_2)_H$$

$$= (h_{1}, (I_{H} - V_{01})^{-1}h_{2})_{H}$$

$$+ (h_{1}, (I_{H} - V_{01})^{-1}A_{1}^{*}(I_{N} - A_{0}(I_{H} - V_{01})^{-1}A_{1}^{*})^{-1}A_{0}(I_{H} - V_{01})^{-1}h_{2})_{H}$$

$$= (h_{1}, h_{2})_{H} - \int_{0}^{T} (\frac{d}{dt}(\tilde{\Psi}h_{1})(t), J(\tilde{\Psi}h_{2})(t))_{\mathbf{R}^{2N}}dt$$

$$+ \sum_{i,j=1}^{N} \sum_{\ell=1}^{2N} \tilde{e}^{0}(T)_{ij}^{-1}\tilde{e}(T)_{j,\ell}(J(\tilde{\Psi}h_{2})(T))_{\ell}(\tilde{\Psi}h_{1})(T)_{i}$$

$$= (h_{1}, h_{2})_{H} - \int_{0}^{T} (\frac{d}{dt}(\tilde{\Psi}h_{1})(t), J(\tilde{\Psi}h_{2})(t))_{\mathbf{R}^{2N}}dt$$

$$+ \sum_{i=1}^{N} (J(\tilde{\Psi}h_{2})(T))_{i}(\tilde{\Psi}h_{1})(T)_{i}$$

$$+ \sum_{i,j=1}^{N} \tilde{d}_{ij}(\tilde{\Psi}h_{2})(T)_{i}(\tilde{\Psi}h_{1})(T)_{j}.$$

So we have Assertion (2). \Box

Now Theorem 3 is an easy consequence of Propositions 2, 5, 6 and Equation (2).

4. Proof of Theorem 1

Now let us prove Theorem 1. First assume that $\lambda \in (0, \lambda_1)$. Let

$$\begin{split} X(w) &= \lambda X(w) \\ &= \sum_{i=1}^{N} \sum_{k,\ell=1}^{d} \int_{0}^{T} (\int_{0}^{t} (\lambda^{1/2} b_{i}^{\ell}(s)) dw^{\ell}(s)) (\lambda^{1/2} a_{i}^{k}(t)) dw^{k}(t). \end{split}$$

Then we see that $E^{\mu}[\exp(\tilde{X})] < \infty$. So if we replace $a^{k}(t), b^{k}(t), k = 1, \ldots, N, t \in [0, T]$, by $\lambda^{1/2}a^{k}(t), \lambda^{1/2}b^{k}(t), k = 1, \ldots, N, t \in [0, T]$, and apply results in the previous section, we have the following.

$$\tilde{e}(t) = e_{\lambda}(t), \quad \tilde{e}^{0}(t) = e_{\lambda}^{0}(t), \qquad t \in [0, T],$$
$$\tilde{\gamma}^{k}(t) = \lambda^{1/2} \gamma_{\lambda}^{k}(t), \qquad t \in [0, T], \quad k = 1, \dots, d,$$

and

$$\tilde{\mathcal{A}}(h,h) = \lambda \mathcal{A}_{\lambda}(h,h), \quad t \in [0,T], \ h \in H.$$

So we see by Theorem 3 that Assertions (1),(2) and (3) in Theorem 1 are valid for $\lambda \in (0, \lambda_1)$ and $h \in H$.

In particular, we see that

$$\det(e_{\lambda}^{0}(T))E^{\mu}[\exp(\lambda X)]^{2}$$
$$=\exp(-\lambda\sum_{i=1}^{n}\sum_{k=1}^{d}\int_{0}^{T}a_{i}^{k}(t)b_{i}^{k}(t)dt)$$

for any $\lambda \in (0, \lambda_0)$. Note that $e_{\lambda, i, j}(t)$, $i, j = 1, \ldots, 2N$, $t \in [0, T]$, is holomorphic in λ over **C**.

Let $D_0 = \{z \in \mathbf{C}; \lambda_0 < Re \ z < \lambda_1\}$. Then $E^{\mu}[\exp(\lambda X)]$ is holomorphic in λ over D_0 . So we see that $\det e_{\lambda}^0(T) \neq 0$ for all $\lambda \in D_0$. This implies Assertion (1).

Then we see that det $e_{\lambda}^{0}(T)^{-1}$ is holomorphic in λ over D_{0} . So we see that $d_{\lambda,i,j}$, $i, j = 1, \ldots, N$, is holomorphic in λ over D_{0} . So we see that $d_{\lambda,i,j} = d_{\lambda,j,i}$, $i, j = 1, \ldots, N$, for all $\lambda \in D_{0}$.

Note that $\gamma_{\lambda}^{k}(t)$, k = 1, ..., d, $t \in [0, T]$, is holomorphic in λ over D_{0} . We already showed that for any $\lambda \in (0, \lambda_{1})$, $h_{0}, h_{1} \in H$, and $z \in \mathbf{R}$

$$\begin{split} E^{\mu}[\exp(\sum_{k=1}^{d}\int_{0}^{T}(h_{0}^{k}(t)+zh_{1}^{k}(t))dw^{k}(t)+\lambda X)]\\ = \det(e_{\lambda}^{0}(T))^{-1/2}\exp(-\frac{\lambda}{2}\sum_{i=1}^{N}\sum_{k=1}^{d}\int_{0}^{T}a_{i}^{k}(t)b_{i}^{k}(t)dt\\ +\frac{1}{2}\int_{0}^{T}(\sum_{k=1}^{d}(h_{0}^{k}(s)+zh_{1}^{k}(s)^{2}ds+\frac{\lambda}{2}\mathcal{A}_{\lambda}(h_{0}+zh_{1},h_{0}+zh_{1})). \end{split}$$

It is easy to see that

$$E^{\mu}[\exp(\sum_{k=1}^{d}\int_{0}^{T}(h_{0}^{k}(t)+zh_{1}^{k}(t))dw^{k}(t)+\lambda X)]$$

is holomorphic in (λ, z) over $D_0 \times \mathbf{C}$. Also, we see that $\mathcal{A}_{\lambda}(h_0 + zh_1, h_0 + zh_1)$ is holomorphic in (λ, z) over $D_0 \times \mathbf{C}$. So we obtain Assertion (3) for all $h = h_0 + \sqrt{-1}h_1 \in L^2((0,T); \mathbf{C}^d, dt)$ and $\lambda \in D_0$.

This completes the proof of Theorem 1.

5. Special Class

In this section we show that there is a special class where we can solve Equation (1) by using solutions of linear ODE's with constant coefficients even though $a_i^k(t), b_j^k(t), i, j = 1, ..., d, k = 1, ..., N$, are not constants.

Let K be a $2N \times 2N$ real matrix and $\tilde{\alpha}^k \in \mathbf{R}^{2N}$, $k = 1, \ldots, d$. We assume that the matrix K satisfies

$$JKJ = K^*$$

Note that the matrix K satisfies this condition, if and only if

$$K_{22} = -K_{11}^*, \ K_{12}^* = K_{12} \text{ and } K_{21}^* = K_{21},$$

where K_{ij} , i, j = 1, 2 are $N \times N$ matrix such that

$$K = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}.$$

Now let . $\alpha^k: [0,T] \to \mathbf{R}^{2N}, \, k = 1, \dots, d$ be given by

$$\alpha^k(t) = \exp(tK)\tilde{\alpha}^k, \qquad t \in [0,T], \ k = 1, \dots, dk$$

Let $a_i^k : [0,T] \to \mathbf{R}$ and $b_i^k : [0,T] \to \mathbf{R}$, $i = 1, \dots, N$, $k = 1, \dots, d$, be given by

$$a_i^k(t) = \alpha_i^k(t), \quad b_i^k(t) = \alpha_{N+i}^k(t), \quad t \in [0, T].$$

Let $\beta^k(t) = J\alpha^k(t), \ k = 1, \dots, d, \ t \in [0, T]$. Also, let $c_{i,j} : [0, T] \to \mathbf{R}$, $i, j = 1, \dots, 2N$, be given by

$$c_{i,j}(t) = \sum_{k=1}^{d} \alpha_i^k(t) \beta_j^k(t), \quad t \in [0, T].$$

Then we have the following.

PROPOSITION 7. Let L be a $2N \times 2N$ real matrix given by

$$L = \sum_{k=1}^{d} \alpha^k (J\alpha^k)^* = -\sum_{k=1}^{d} \alpha^k \alpha^{k*} J.$$

Then $JLJ = L^*$.

Let $e_{\lambda,i_1,i_2}: [0,T] \to \mathbf{C}, i_1, i_2 = 1, \dots, 2N, \lambda \in \mathbf{C}$, be the solution to the ODE (1). Then we have

$$e_{\lambda}(t) = \{e_{\lambda, i_1, i_2}(t)\}_{i_1, i_2 = 1, \dots, 2N} = \exp(tK) \exp(t(\lambda L - K)), \qquad t \in [0, T].$$

PROOF. The first assertion is obvious. Note that

$$J\exp(tK) = \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} J(KJ^2)^n = \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} (JKJ)^n J = \exp(-tK^*)J,$$

and so we have

$$\beta^k(t) = J\alpha^k(t) = J\exp(tK)\tilde{\alpha}^k = \exp(-tK^*)J\tilde{\alpha}^k.$$

Then we see that

$$c(t) = \sum_{k=1}^{d} \alpha^k(t) \beta^k(t)^* = \exp(tK)L \exp(-tK).$$

Since we have

$$\frac{d}{dt}(\exp(tK)\exp(t(\lambda L - K))) = \lambda \exp(tK)L\exp(t(\lambda L - K)))$$
$$= \lambda c(t)\exp(tK)\exp(t(\lambda L - K)),$$

the uniqueness of the solution to the ordinary equation implies our assertion. \Box

Example 1. Let d = 1 and N = 1. Also, let

$$K = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
, and $\tilde{\alpha} = \begin{pmatrix} -2T \\ 1 \end{pmatrix}$.

Then we see that $a_1(t) = 2(t - T)$ and $b_1(t) = 1$. So we have

$$X = \int_0^T (\int_0^t b_1(s) dw^1(s)) a_1(t) dw^1(t) = -\int_0^T w^1(t)^2 dt + \frac{T^2}{2}.$$

In this case

$$L = \begin{pmatrix} 2T & -1 \\ 4T^2 & -2T \end{pmatrix}.$$

Example 2. Let d = 2 and N = 2. Also, let K = 0 as an 4×4 matrix,

$$\alpha^1 = \begin{pmatrix} 0\\-1\\1\\0 \end{pmatrix}, \ \alpha^2 = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}.$$

Then

$$a_1^1(t) = 0, \quad a_2^1(t) = -1, \quad a_1^2(t) = 1, \quad a_2^2(t) = 0$$

and

$$b_1^1(t) = 0, \quad b_2^1(t) = 1, \quad b_1^2(t) = 1, \quad b_2^2(t) = 0.$$

 So

$$X = \sum_{i=1}^{2} \sum_{k,\ell=1}^{2} \int_{0}^{T} (\int_{0}^{t} b_{i}^{\ell}(s) dw^{\ell}(s)) a_{i}^{k}(t) dw^{i}(t)$$
$$= \int_{0}^{T} w_{2}(t) dw_{1}(t) - \int_{0}^{T} w_{1}(t) dw_{2}(t).$$

In this case

$$L = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ -1 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 \end{pmatrix}.$$

Example 3. Let d = 2 and $N \ge 1$. Let K_{ij} , i, j = 1, 2 be $N \times N$ -matrices given by

$$(K_{11})_{ij} = \begin{cases} -1, & \text{if } i = j+1, \ j = 1, \dots, N-1, \\ 0, & \text{otherwise}, \end{cases}$$

18

 $(K_{22})_{ij} = -(K_{11})_{ji}$, and $K_{12} = K_{21} = 0$. Let K be $2N \times 2N$ -matrices given by

$$K = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}.$$

Also, let $\tilde{\alpha}^k \in \mathbf{R}^{2N}$, k = 1, 2, be given by

$$\tilde{\alpha}_{i}^{1} = \begin{cases} 1, & i = 1, \\ 0, & i = 2, \dots, 2N, \end{cases}$$

and

$$\tilde{\alpha}_{i}^{2} = \begin{cases} 0, & i = 1, \dots, 2N - 1, \\ 1, & i = 2N. \end{cases}$$

Then we see that

$$a_i^1(t) = \frac{(-t)^{i-1}}{(i-1)!}$$
, $b_i^2(t) = \frac{t^{N-i}}{(N-i)!}$, $i = 1, \dots, N$,

and $a^2(t) = b^1(t) = 0$. So we have

$$\begin{split} X &= \sum_{i=1}^{N} \int_{0}^{T} (\int_{0}^{t} \frac{s^{N-i}}{(N-i)!} dw^{2}(s)) \frac{(-t)^{i-1}}{(i-1)!} dw^{1}(t) \\ &= \frac{(-1)^{N-1}}{(N-1)!} \int_{0}^{T} (\int_{0}^{t} (t-s)^{N-1} dw^{2}(s)) dw^{1}(t). \end{split}$$

In this case, $L = (L_{ij})_{i,j=1,\dots,2N}$ is given by

$$L_{ij} = \begin{cases} 1, & \text{if } i = 1, j = N + 1, \\ -1, & \text{if } i = 2N, j = N, \\ 0, & \text{otherwise.} \end{cases}$$

References

- Aonghusa, P. M. and J. V. Pulé, An extension of Lévy's stochastic area formula, Stochastics Rep. 26 (1989), 247–255.
- [2] Dunford, N. and J. T. Schwartz, *Linear Operators, Part II*, Interscience, New York, 1963.
- [3] Helmes, K. and A. Schwane, Lévy's stochastic area formula in high dimensions, JJ. Funct. Anal. 54 (1983), 177–192.

Shigeo KUSUOKA and Yasufumi OSAJIMA

- [4] Ikeda, N., Kusuoka, S. and S. Manabe, Lévy's stochastic area formula for Gaussian processes, Comm. Pure Appl. Math. 47 (1994), 329–360.
- [5] Ikeda, N., Kusuoka, S. and S. Manabe, Levy's stochastic area formula and related problems. in Stochastic analysis (Ithaca, NY, 1993), pp. 281–305, Proc. Sympos. Pure Math., 57, Amer. Math. Soc., Providence, RI, 1995.
- [6] Lévy, P., Wiener's random function and other Laplacian random functions, pp. 171–186, in Proceedings 2nd Berkley Symp. Math. Stat. Prob. Volume II, 1950.

(Received July 31, 2014) (Revised October 11, 2020)

> Shigeo KUSUOKA Graduate School of Mathematical Sciences The University of Tokyo Komaba 3-8-1, Meguro-ku Tokyo 153-8914, Japan

Yasufumi OSAJIMA SMBC Nikko Securities Inc. Marunouchi 1-5-1, Chiyoda-ku Tokyo 100-6518, Japan

20