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A Remark on Quadratic Functionals of Brownian

Motions

By Shigeo Kusuoka and Yasufumi OSAJIMA

Abstract. It is a classical problem to give explicit formulae for
characteristic functions of quadratic functionals of Brownian motions,
and there are many works on this topic. Tkeda-Kusuoka-Manabe [4], [5]
gave a new idea to solve this problem and showed some results from
which almost all known results followed. In this paper the authors
extend their results based on their idea.

1. Introduction and Result

Let d > 1, T >0, Wy = {w € C([0,T]; R%); w(0) = 0}, and B(W{) be
the Borel algebra over W{. Let u be the Wiener measure on (W¢, B(W)).
Now let a¥ : [0,7] — R, b¥ : [0,T] = R,i=1,... ,N, k= 1,... .d, be
continuous functions. Let X : ng — R be a random variable given by

N d T ot
Xw) =3 /O ( /0 () dw(5))ak (t)du® (1),

i=1 k=1

Here stochastic integrals are Ito integrals.
Let A € C. Our concern is to compute the following.

d T
E*exp() / RE()dw®(t) + AX)], ke L*([0,T]; C%, dt).
k=10

Such a problem was first considered by Lévy [6] and then many people
studied this problem and gave explicit formulae (e.g. [1], [3], [4], [5]). In
the present paper, we consider general cases and show that we can reduce
this problem to a problem of a linear ordinary differential equation by us-
ing ideas in [4] and [5], where symmetric linear operators are decomposed
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into summations of Volterra type operators and linear operators of finite
dimensional range.
Let o : [0,T] - R*N, k=1,...,d, be given by

’“(t):{ ak(t), j=1,...,N,

% bE_n(t), j=N+1,... 2N.

Let J : R?Y — R?" be a linear operator given by

NNy ) —Zans J=1,... N,
J((Zz)@:ﬂy—{ Zj_N, j=N+1,... ,2N.

Let 8% :[0,7] — R?N, k= 1,... ,d, be given by *(t) = Ja*(t). Then we

have
—bE(t), j=1,...,N
]f: = J ’ ’ ) )
o) { ab_ (), j=N+1,...,2N.

Let ¢;;: [0,T] = R, 4,5 =1,...,2N, be given by

d

cii(t) = Yok (0)pkw), e 0.7

k=1
Also, let ey, 4, : [0,T] — C, i1,i2 =1,... ,2N, A € C, be the solution
to the following ODE

d 2N
(1) ae/\,ihiz t) =X\ Z cirj(t)exin(t),
j=1

6)\’1'171'2(0) :(51171'2, il,ig = 1,... ,QN.
Let ey be a 2N x 2N-matrix valued function defined in [0, T] given by
ex(t) = (ex,ij(t))ij=1,.. 2N, and let e(/{ be an N x N-matrix valued function

defined in [0, T given by € (t) = (ex,ij(t))ij=1,...N-
Let ’y’)f :10,7] - R?N, k=1,...,d, be continuous functions given by

2N
Wilt) == erjs®B(t), i=1,...,2N, te[0,T].
j=1
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Now let Wy : L2([0,T]; C4,dt) — C([0,T]; C?V) be bounded linear op-
erators given by

t
/ 'y)\z *(s)ds, te[0,T], h e L*([0,T); C%,dt).
0

M“

(Wrh)i(
k=1

Also, let
Ao = inf{s € R; EF[exp(sX)] < oo},

and

A1 =sup{s € R; E![exp(sX)] < oo}.

As is explained in Section 2, we see that A\g < 0 < Aq.
Our main result is the following.

THEOREM 1. Assume that A € C and A\g < Re A < A\1. Then we have
the following.
(1) The N x N-matriz S(T) is invertible.
(2) Let {(T)7! = (eg(T)Zj.l)i,jzl,,,,7N be the inverse matriz of €3(T). Let
dr;,; €C,i,5=1,... ,N, be given by

N
drij = Z (1) enrn(T)-

Then d)\ﬂ;’j = d)\,j,i7 i,j = 1, e ,N.
(3) For any h € L*([0,T); C4, dt)

M=

T
B [exp( /0 BE(#)duwk (£) + AX)

g:zd:/oTa t)dt

=1 k=1

b
Il
—

= det(e(T)) /2 exp(—

l\3|>/

1 T
+§/O ;hk )ds + AA(h h)),
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Ax(h, h)

/ Z 2 (Uah)i(1) (T (Eah) (¢ dt+z (UAR)(T))i(Wrh)(T);

n Z dxij (UAR)(T)i(UR)(T);.

ij=1

2. Preliminary Facts

In this section we assume that E*[exp(X)] < oc. Let H be the Cameron-
Martin space of the Wiener space (W, i), i.e.,

T
- dk
H = {k € Wy; k(t) is absolutely continuous in t, / 7 —(t)|?dt < oo},
0

T
dk dko
ki,ko) s = —(t t)dt.
(ko) = [ GO G20
Here - stands for the natural innner product in RY. Let H = L?([0,T7;

. dk
R, dt). Then the map ® : H — H corresponding k to 7 is an isomorphism.
Let £: H x H — R be the symmetric bilinear form given by

E(ha, ha)

N d T T
:Z Z /0 /0 1{t>s}af(t)bf($)h’f(t)hg(s)dtds
i=1 k=1
+Z Z / / 1{t>s}a bz( )hz( )hk( t)dtds

=1 kl=1

for hy,ho € H.
The associated symmetric bounded linear operator £ : H — H to £ is
given by

N d T N d T
=33 [ e @ s + 303 [ 1nallphon' ()

i=1 (=1 i=1 ¢=1
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LS TN, : Yo
= ak S S)as — k a;\(s s)as
=SS a0 [ demsas =30 Y ok [ altonts)a
N d T
+Zbe(t)/ at(s)ht(s)ds, te[0,T), k=1,...,d, he H.
~ 0

Then we see that F is a Hilbert-Schmidt type symmetric linear operator in
H. So there are a complete orthonormal basis {g,, }7°_; in H and a sequence
{nm }o0_;of real numbers such that

Eh =Y nm(h,gm)agm,  h€H,

m=1

and >_p2, n? < co. Moreover, we see that

Note that 22:1 fOT gk (t)dw"(t), m = 1,2,... , is a sequence of independent
normal distributed random variables.

Therefore for any A € R we see that E¥[exp(AX)] < oo if and only if
sup,, A\m < 1.

Let p(E) be the set of eigenvalues of E. That is p(E) = {nm,; m =
1,2,...}. Since we assume that E*[exp(X)] < oo, we see that p(E) C
(—o00,1). Hence we see that Iy — FE : H — H is invertible and positive-
definite. Also, we have

d

Z/T k k
EFlexp( RE(t)dw" (t) + X)]
g k=1"0

= L0~ )2 exp(= 1 /2) 5D (1 = 7)™ (g )

m=1

(2) = dety(Iy — E)~/? exp(%(h, (Ig — E) 'h)p), h € H.

Here dety is a regularized deteminant (see [2] for its definition and proper-
ties).



6 Shigeo KUuSUOKA and Yasufumi OSAJIMA

Let Vo1 : H — H,and A, : H— RY, r =0, 1, be given by

(Vorh)*(t)
a k VRN Al k RNy
= a;i (t) | bi(s)h™(s)ds — bi(t) | a;(s)h(s)ds,
IN d ’
- ZZﬁf(t)/ ol(s)h(s)ds, heH k=1,....d,
i=1 (=1 0
d T
(Aoh); = Z/ at(s)ht(s)ds, heH,i=1,...,N,
=170
and
d T
(ALh); = Z/ W(s)hi(s)ds, heEH, i=1,...,N.
¢=1"0

Note that Vp; is a Volterra type operator. So we see that a bounded
linear map Iy — Vp1 : H — H is invertible. Also, we see that

E=Vyn+ ATAO

PROPOSITION 2.  Assume that EF[exp(X)] < oo. Then we have the
following.
(1) deta(Iy — E)

=det(Iy — Ao(Ig — V1) L AT) exp(traceAgAY}),

where Iy is the identity map in RN,
In particular, the N x N-matriz Iy — Ag(Iy — Vo1) "L AT is invertible .
(2) (Ig —E)~!

= (Ig—Vor) '+ Iy — Vo) P AT (Iy — Ao(Iy — Vor) HAD) P Ao(T — Vor) .

PROOF. Let z € C for which |z| is sufficiently small. Then we have

detQ(IH - ZE)
= detQ((IH — Z‘/Ol)(IH — Z(IH — Z‘/()l)_lATAo)).
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Since V{1 is a Volterra type operator, we have deta(Iy — zVp1) = 1. So we
have
detQ(IH - ZE)
= dety (I — 2Vo1)deto(Ig — 2(Ig — 2Vo1) L AT A)
x exp(—trace(z2Vo1 (Iy — 2Vo1) LA} Ap))

=1
= exp(— Z Etrace((z(IH — 2Vo1) LA Ag)F))
k=

x exp(— trace(on((IH — 2Vo) 7 = Ip)AY))

[e.9]

1
= exp(— Z Etrace((on(IH — 2Vo1) L AD)F)) exp(trace(zAgA))
k=1

= det(Iy — zAg(Iy — 2Vo1) L A}) exp(z trace(AgAY)).
Here we use the fact that
detQ((IH+K1)(IH+K2)) = detQ(IH+K1)det2(IH+K2) exp(—trace(KlKg))

and
trace(K1K3) = trace( K2 K7)

for any linear Hilbert-Schmidt type operators K; : H — H, i = 1,2. We
also use the fact that

deta(Igg — K) = exp(— Z —trace Kk

for any linear Hilbert-Schmidt type operator K : H — H such that the
Hilbert-Schmidt norm of K is less than 1.
Also, we have

(I = 2B) ™ = {(Inr — 2Vo) (I — 2(Im — 2Vin) ™ A7 40)} !

= (O (g — 2Vin) ' Aj A0 ) (T — 2Vor) ™
k=0
={Tu + ) 2(Iy — 2Vor) " A (zAo(Iy — 2Vin) " AT A} (T — 2Vir) ™!

k=0
= (Ig — 2Vo1) L 4 2(Iy — 2Voy) YA (In — zA0(Iy — 2Vo1) TAD) 7!
XAo(IH — ZVOl)_l
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Note that deto(Iy — zF) and (Ig — zE) are holomorphic in z over C.
So we see that (Iyy — 2F)~! is holomorphic in z around [0, 1]. So we have
our assertion. [

3. Special Case

We also consider the case that E*[exp(X)] < oo in this section. Let
€irio - [0,T] — R, 41,42 =1,... ,2N, be the solution to the following ODE

d 2N
3) TEna(t) =D i (0215, (0),
j=1
éilin(O): 7:1,2'27 7/177/2:1, ,2N

Let € be a 2N x 2N-matrix valued function defined in [0, T] given by
é(t) = (&,(t))ij=1,. 2n, and let ¢ be an N x N-matrix valued function
defined in [0, T given by é%() = (&;;(t))ij=1... N-

Let 4% : [0,7] — R?N, k =1,... ,d, be continuous functions given by

2N
W) == &it)s5(1), i=1,....2N, te[0,7].
j=1
Now let ¥ : H — C([0,T]; R*) be bounded linear operators given by

@mwzzlﬁ@Wwa te0,T],

for h € H.
In this section we prove the following.

THEOREM 3. Assume that E*[exp(X)] < co. Then we have the follow-
mg.
(1) The N x N-matriz é°(T) is invertible.
(2) Let e9(T)! = (2T,
(L,j eR,i,7=1,...,N, be given by

)ij=1,..,N be the inverse matriz of e%(T). Let

N
dij = &T);  ernis(T).
r=1
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Then dNZ'J' = CZj’Z', i,j = 1,... 7]\7.
(3) For any h € H

1,j=1

We make some preparations to prove this theorem.

PROPOSITION 4. Let é(t)~1 be the inverse matriz of é(t), t € [0,T].
Then we see that

eyt =—Je)*g,  telo,T).

Moreover,

d ¢
OESS /0 o(s) Lok ()W (s)ds,  te[0.T].

PROOF. Remind that

Then we have
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Note that

d

(Je®)iy = S BEOBE®) = (Je(®)sa  ivj = L. . N.

So we see that

Therefore we have

%(—Jé(t)*J) = —J(c(t)e(t) J = —(=Je(t)" J)c(t).

Since —Jé(0)*J = Ian, we have the first assertion by the uniqueness of a
solution to ODE.
So we see that

JAE() = —Jet) Jak(t) =e(t) Lok (t)  k=1,....,d
This implies the second assertion. [

Then we have the following.

PROPOSITION 5. (1) Iy — Ag(Iy — Vo)t AT = &%(T),
and
det(Iy — Ao(Ig — Vo1) LAY = det(&%(T)).

Moreover, é°(T) is invertible.
(2) For any h € H,

(Ao(Ig — Vor) 'h)i =Y & (T)(J(TR)(T));, i=1,...,N.
j=1

(3) For any h € H and v € RY,

(hy (I = Vo) ' Ajo)g = > _0i(Uh)i(T),  k=1,....d, t€[0,T].
=1
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(4) For any h € H,

2N
((Ier = Vor) "' h)F(t) = h*(t) — Zﬁf(t)(tf(‘i’h)(t))j,
k=1,...,d, t€[0,T].
In particular,
1 Ta . -
(b1, (I — Vo1)” ho)m = (b1, ho)n — / (53 (Ph)(2), J(Wha)(t))gandt
0

for hi,he € H.

PrOOF. Let f € C3°((0,T); R?Y) C H and let ¢ = (Iy — Vp1) "' f. Then

we have

§=f+ Vo
Let
d ot
ni(t) = Z/ ok (s)E¥(s)ds, i=1,... 2N.
k=10
Then we have
(4) (Ao(Ig — Vo) Y f)s =ms(T), i=1,...,N.

Also we have
2N
&)=+ B tmlt), k=1,....4d,
i=1

and so we have

d
= okt fre) + Zcij(t)nj(t), i=1,...,2N.
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Note that 7;(0) =0,i=1,... ,2N. So we see that

ON  d "
= 3 Y e /0 (s)7L o, (3)1*(s)ds

Ji1,j2=14=1

2N
=> &MU,  i=1,...,2N, t€[0,T].
Jj=1

This and Proposition 4 imply Assertion (2), since C5°((0,7); RY) is dense
in H.
Also, we see that

2N
) =1+ D B 0EL RO,

Ji,j2=1
for k=1,...,d, t € [0,T]. This implies the assertion (4).
Let v € RV. Then we have by Proposition 4

N 2N d

CLZRIOIED 95 D) W (O HEOTE

r=1j=1 (=1

=(hAjv)+ > D w /O BE (DE(t)j, jue (D) LR (£)dt
1,J2=1i1=1
" 2N N T
33w / B (0)a(8); 1 (t)
j=1i=1 0
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This implies the assertion (3).
So we have

((IN — Ao(Ig — Vo) ' A )v);
2N N

= + Z Z Z v, / ﬂjo V€051 (T)dt

k=1 jo=1751=1

aN N
= Uy + Z Z v]l / JO ]Ovjldt
Jo=1j1=1
N
=v; + Z vj(e(T)ij —bij) = D e(T)izv;.
=1 =1

This and Proposition 2 (1) imply Assertion (1). O

PROPOSITION 6. (1) d;; = dj;, for alli,j=1,...N.
(2) For any hi,he € H,

(hi,(I — E) " ho) g
N
= (ha,ho)u + Y J(Uho)(T)i(Vhy )(T);

=1

T d - )
_/ %(\I’hl)(t)’ J(\I}hQ)(t))R2th
0

(
N -
3 dy(Fho)(T))i(Fh)(T);.

PrOOF. Note that é(t)Jé(t)* = J. This implies that fori,j = 1,. ..

N N
0= (@(t)Je(t) )iy = = D Eir(0En4r(t) + D Einsr(t)jn(t

Let f;;:[0,7] = R, 4,5 =1,...,N, be given by

fz,] zezr e]N-l—r )

13
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and let F'(t) be an N x N-matrix given by F(t) = (fi ;(t))ij=1,...n. Then
we have F(t)* = F(t). Since we have

(dij)ij=1,..n = &(T)"H(&(T) T F(T)" = &(T) " F(T)()(T) )",

we have Assertion (1).
By Propositions 2 and 5, we have for hi, he € H,

(h1, (I = E)"'ha)m
= (h17 (IH - VOl)ith)H
+(h1, (Ig = Vo) ' AT(In — Ao(Ig — Vi)' AT) " Ao(Te — Vou) ™ ho)

= (mho)s — [ (G0, T(Fha) (1)l

N 2N
+ )0 D) E(T) (T (Bho)(T) (U )(T)s

ij=1¢=1

So we have Assertion (2). O

Now Theorem 3 is an easy consequence of Propositions 2, 5, 6 and
Equation (2).

4. Proof of Theorem 1

Now let us prove Theorem 1.
First assume that A € (0, A\1). Let

X(w) = AX (w)

N T [t
=32 [ a2k @)t 0.
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Then we see that E#[exp(X)] < oo. So if we replace a¥(t),b(t), k =
1,...,N, t € [0,T], by \Y2a*(t), \'/?b*(t), k = 1,... ,N, t € [0,T], and
apply results in the previous section, we have the following.

and

A(h,h) = My (h,h), t€0,T], he H.
So we see by Theorem 3 that Assertions (1),(2) and (3) in Theorem 1 are
valid for A € (0, A1) and h € H.

In particular, we see that

det(e3(T)) E* [exp(\X)]?
n d

T
(A3 [ oo

i=1 k=1

for any A € (0, o). Note that ey; ;(t), i, = 1,... ,2N, t € [0,T], is holo-
morphic in A over C.

Let Dy = {z € C; A\g < Re z < A1}. Then EF[exp(AX)] is holomorphic
in A over Dy. So we see that dete{(T) # 0 for all A € Dy. This implies
Assertion (1).

Then we see that det e (7 )~! is holomorphic in A over Dy. So we see
that dy;;, 4,5 =1,..., N, is holomorphic in A over Dy. So we see that d ; ;
= dA,j,ia i,7=1,...,N, for all A € Dy.

Note that 4%(¢), k =1,... ,d, t € [0,7], is holomorphic in A over Dy.

We already showed that for any A € (0, A1), ho,h1 € H, and z € R

d

T
Brexp(> / (BE(t) + 2R3 () dw® (£) + AX)]
k=170

N d

A T
= det(e§(1) Mexp(-5 3 [ koo

i=1 k=1

1 T A
+—/ O (B (s) + 2k (s)%ds + S Ax(ho + zha, ho + zh1)).
2 )y & 2
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It is easy to see that

d T
Brlexp(y. / (RE(t) + 2B5(8))duh () + AX)]
k=170

is holomorphic in (A, z) over Dy x C. Also, we see that Ay (ho+zh1, ho+zh1)
is holomorphic in (A, z) over Dy x C. So we obtain Assertion (3) for all
h = ho+v/—1hy € L%((0,T); C%,dt) and X € Dj.

This completes the proof of Theorem 1.

5. Special Class

In this section we show that there is a special class where we can solve
Equation (1) by using solutions of linear ODE’s with constant coefficients
even though af(t),bf(t), i,j=1,...,d, k=1,..., N, are not constants.

Let K be a 2N x 2N real matrix and &* € R?2V, k = 1,...,d. We
assume that the matrix K satisfies

JKJ=K".
Note that the matrix K satisfies this condition, if and only if
K22 = —Kikl, Kikz = K12 and K;l = K21,

where Kjj, 1,7 = 1,2 are N x N matrix such that

K11 K12>
K= .
<K21 Ko

Now let . o : [0,T] — R*, k =1,... ,d be given by
o (t) = exp(tK)aF, tel0,T)], k=1,...,d.
Let a¥ : [0,7] — Rand ¥ : [0,T] = R,i=1,...,N,k=1,... ,d, be given
by
af(t) = af (), bf(t) = ayy(t), tel0,T].
Let g(t) = Jak(t), k = 1,...,d, t € [0,T)]. Also, let ¢;; : [0,T] — R,
1,7 =1,...,2N, be given by

Ci,j(t) = O‘f’;(t)ﬂj]?(t)v te[0,T].

>
Il B8
—
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Then we have the following.

PROPOSITION 7. Let L be a 2N x 2N real matrix given by

d d
L= Zak(Jak)* =— Zakak*l
k=1 k=1

Then JLJ = L*.
Let ey, i, : [0,T] = C, i1,i2 =1,... ,2N, X € C, be the solution to the
ODE (1). Then we have

ex(t) = {exiy o (t) Vit io=1,... 2n = exp(tK) exp(t(AL — K)), t€[0,7].

Proor. The first assertion is obvious. Note that

Jexp(tK) = i %J(Kﬂ)" = i %(JKJ)”J = exp(—tK*)J,
n=0 ’ n=0 ’

and so we have
BE(t) = JaF(t) = Jexp(tK)a* = exp(—tK*)Jak.

Then we see that

d

c(t) =Y oF(t)8(t)* = exp(tK)L exp(—tK).
k=1

Since we have
%(exp(tK) exp(t(\L — K)) = Aexp(tK)Lexp(t(A\L — K))
= Ac(t) exp(tK) exp(t(AL — K)),

the uniqueness of the solution to the ordinary equation implies our asser-
tion. [J

Example 1. Let d=1and N = 1. Also, let

0 2 - 2T
K—<O 0>,anda—< 1 >
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Then we see that a;(t) = 2(¢t — T) and b1 (t) = 1. So we have

2

T 1 Ty T e r
X:/O (/0 by (5)dw' (s))ar () dw (t) = /0 w0+ -

2 -1
L= <4T2 —2T>‘

Ezxample 2. Let d =2 and N = 2. Also, let K =0 as an 4 X 4 matrix,

In this case

0 1
T ! 2 |0
S I e
0 1
Then
ap(t) =0, ay(t)=-1, ai(t)=1, a3(t)=0
and
bi(t) =0, by(t)=1, bi(t)=1, b3(t)=0.
So

In this case

0 -1 1 0
1 0 0 1
L_—100—1
0 -1 1 0

Example 3. Let d = 2 and N 2 1. Let Kjj, i,j = 1,2 be N x N-
matrices given by

1, ifi=j+1,j=1,...,N—1,
, otherwise,

(K11)ij = { _0
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(K22)ij = —(K11) i, and K2 = K91 = 0. Let K be 2N x 2N-matrices given
by
K1 K12>
K = )
<K21 Koo
Also, let &@* € R?N, k = 1,2, be given by

and

Then we see that

(_t)i—l tN—i

a}(t):m, b?(t):m, i=1,...,N,

and a?(t) = b'(t) = 0. So we have

N T st N—i i—1
_ st w(s (—t)' w!
X—;/0 (| e o) e

_\N—1 T gt
_ E]V”ﬁ/o (/O (t — )N Ldw?(s))duw (2).

In this case, L = (Lij)i,jzl,...,QN is given by

1, ifi=1j57=N+1,
Lijj=4¢ -1, ifi=2N,j=N,
0, otherwise.
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