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On the Stability of Pulled Back Parabolic

Vector Bundles

By Indranil Biswas, Manish Kumar and A. J. Parameswaran

Abstract. Take an irreducible smooth projective curve X de-
fined over an algebraically closed field of characteristic zero, and fix
finitely many distinct point D = {x1, · · · , xn} of it; for each point
x ∈ D fix a positive integer Nx. Take a nonconstant map f : Y −→
X from an irreducible smooth projective curve. We construct a nat-
ural subbundle F ⊂ f∗OY using (D, {Nx}x∈D). Let E∗ be a stable
parabolic vector bundle whose parabolic weights at each x ∈ D are
integral multiples of 1

Nx
. We prove that the pullback f∗E∗ is also

parabolic stable, if rank(F) = 1.

1. Introduction

We begin by recalling the main result of [BP]. Let f : Y −→ X be a

surjective separable morphism between irreducible smooth projective curves

defined over an algebraically closed field k. It is called genuinely ramified if

the rank of the maximal semistable subbundle F ⊂ f∗OY is one. The main

result of [BP] says that the pullback f∗E of every stable vector bundle E

on X is also stable, provided f is genuinely ramified.

Our aim here is to prove an analogue of it for parabolic vector bundles,

but under an extra assumption that the characteristic of the base field k is

zero.

Let X be an irreducible smooth projective curve defined over an al-

gebraically closed field k of characteristic zero. Fix finitely many points

D = {x1, · · · , xn} ⊂ X, and for each x ∈ D fix a positive integer Nx. We

consider the category of parabolic vector bundles E∗ on X with parabolic

divisor D such that all the parabolic weights of E∗ at any x ∈ D are integral

multiples of 1
Nx

.
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Let f : Y −→ X be a nonconstant morphism from an irreducible

smooth projective curve Y . Using the above data (D, {Nx}x∈D) we con-

struct a natural subbundle

F ⊂ f∗OY .(1.1)

This F is an analogue of the above mentioned maximal semistable subbundle

F ⊂ f∗OY in the context of parabolic bundles. It should be clarified that

f∗OY is parabolic polystable (see Proposition 2.1), so F is not related to

the Harder–Narasimhan filtration or the socle filtration of f∗OY .

We prove the following (see Theorem 5.1):

Theorem 1.1. Let

f : Y −→ X

be a nonconstant map between irreducible smooth projective curves defined

over an algebraically closed field k of characteristic zero. Take any stable

parabolic vector bundle E∗ on X with parabolic structure over D such that

all the parabolic weights of E∗ at each point x ∈ D are integral multiples

of 1
Nx

. If the rank of the vector bundle F −→ X in (1.1) is one, then the

parabolic vector bundle f∗E∗ on Y is also stable.

We also prove the following converse of Theorem 1.1 (see Lemma 4.3):

Lemma 1.2. Let

f : Y −→ X

be a nonconstant map between irreducible smooth projective curves defined

over an algebraically closed field k of characteristic zero. Assume that the

rank of the holomorphic vector bundle F −→ X in (1.1) is at least two.

Then there is a stable parabolic vector bundle E∗ on X with parabolic struc-

ture over D such that

(1) all the parabolic weights of E∗ at each x ∈ D are integral multiples of
1
Nx

, and

(2) the parabolic vector bundle f∗E∗ on Y is not stable.

Theorem 1.1 is first proved for k = C; see Theorem 4.2. Then theorem

1.1 is deduced using Theorem 4.2.
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2. Direct Image and Parabolic Structure

Let k be an algebraically closed field of characteristic zero.

Let X be an irreducible smooth projective curve defined over k. Fix a

nonempty finite subset

D := {x1, · · · , xn} ⊂ X

The reduced effective divisor x1 + . . . + xn on X will also be denoted by

D. A quasiparabolic structure on a vector bundle E on X is a filtration of

subspaces of the fiber Exi of E over xi

Exi = Ei,1 ⊃ Ei,2 ⊃ · · · ⊃ Ei,li ⊃ Ei,li+1 = 0

for every 1 ≤ i ≤ n. A parabolic structure on E is a quasiparabolic

structure as above together with a string of rational numbers

0 ≤ αi,1 < αi,2 < · · · < αi,li < 1

for every 1 ≤ i ≤ n. The above number αi,j is called the parabolic weight

of the subspace Ei,j . (See [MS], [MY], [Bh], [IIS], [In].)

A parabolic vector bundle is a vector bundle E equipped with a parabolic

structure ({Ei,j}, {αi,j}). For notational convenience, (E, ({Ei,j}, {αi,j}))
will be denoted by E∗. The divisor D is known as the parabolic divisor of

E∗.
The parabolic degree of E∗ is defined to be

par-deg(E∗) := degree(E) +
n∑

i=1

li∑
j=1

αi,j · dim(Ei,j/Ei,j+1) ,

and par-deg(E∗)
rank(E) ∈ Q is denoted by par-µ(E∗).

Let F ⊂ E be a subbundle. Then a parabolic structure on E produces

a parabolic structure on F . The parabolic divisor for the induced parabolic

structure on F is D itself. A subspace 0 �= V ⊂ Fxi appears in the

quasiparabolic filtration of Fxi if

Fxi

⋂
Ei,j+1 �= V = Fxi

⋂
Ei,j
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for some 1 ≤ j ≤ li. The parabolic weight of such a subspace V is αi,j .

The vector bundle F with the induced parabolic structure will be denoted

by F∗.
The parabolic bundle E∗ is called stable (respectively, semistable) if

par-µ(F∗) < par-µ(E∗) (respectively, par-µ(F∗) ≤ par-µ(E∗))

for every subbundle 0 �= F � E. The parabolic bundle E∗ is called

polystable if the following two conditions hold:

• E∗ is parabolic semistable, and

• E∗ is a direct sum of stable parabolic bundles.

Let Y be an irreducible smooth projective curve and

f : Y −→ X(2.1)

a nonconstant morphism. Let

Df := {p1, · · · , pm} ⊂ X(2.2)

be the subset over which the map f is ramified.

Proposition 2.1. The direct image f∗OY has a parabolic structure

whose parabolic divisor is Df defined in (2.2). This parabolic bundle given

by f∗OY is parabolic polystable of parabolic degree zero.

Proof. We use a local model of the map f to describe the parabolic

structure on f∗OY . Take

• Y to be an open subset of U ⊂ A1
k containing 0,

• X to be the image of U under the map A1
k −→ A1

k defined by

z �−→ zd, where d is a positive integer, and

• f to be the map z �−→ zd.

Then the quasiparabolic filtration of the fiber (f∗OU )0 = (f∗OU )p1 over

0 = p1 is given by the image of the fibers of the filtration of subsheaves

f∗OU ⊃ f∗(OU (−p1)) ⊃ f∗(OU (−2p1))

⊃ · · · ⊃ f∗(OU (−(d − 1)p1)) ⊃ f∗(OU (−dp1)) ,
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and the parabolic weight of the image of the fiber (f∗(OU (−kp1)))p1 in

(f∗OU )p1 is k
d . Note that the image of the fiber (f∗(OU (−dp1)))p1

in (f∗OU )p1 is zero, because by the projection formula we have

f∗(OU (−dp1)) = (f∗OU ) ⊗Of(U)(−p1).

Now consider the map f in (2.1). For each zi ∈ Df (see (2.2)), let

{y1
i , · · · , ybii } be the reduced inverse image f−1(zi)red. For 1 ≤ j ≤ bi, let

U j
i be the formal completion of yji in Y . The restriction of f to U j

i will be

denoted by f j
i . Now we have

(f∗OY )zi =

bi⊕
j=1

(
(f j

i )∗OUj
i

)
zi

.(2.3)

Each direct summand
(
(f j

i )∗OUj
i

)
zi

of the fiber (f∗OY )zi in (2.3) has a

parabolic structure which is described above. The parabolic structure on

(f∗OX)zi is given by the direct sum of the parabolic structures on the direct

summands in (2.3).

We will give an alternative description of the parabolic structure on

f∗OY . Let Z be an irreducible smooth projective curve and

φ : Z −→ Y(2.4)

a nonconstant morphism, such that f ◦ φ : Z −→ X is a (ramified) Galois

covering. Let Γ = Gal(f ◦ φ) ⊂ Aut(Z) be the Galois group.

Let k[Γ] denote the algebra of functions on the finite group Γ. The left-

translation action of Γ on itself produces an action of Γ on k[Γ]. On the

other hand, the group Γ ⊂ Aut(Z) has a tautological action on Z. Consider

the diagonal action of Γ on Z × k[Γ]. This action makes the trivial vector

bundle

Z × k[Γ] −→ Z(2.5)

a Γ–equivariant vector bundle on Z. Using the natural correspondence

between equivariant bundles and parabolic bundles (see [Bis1], [Bo1], [Bo2]),

this Γ–equivariant vector bundle Z × k[Γ] on Z produces a parabolic vector

bundle on Z/Γ = X. This parabolic vector bundle on X will be denoted

by W∗. The parabolic divisor par-div(W∗) for W∗ is the subset of X over

which the map f ◦ φ is ramified, where φ is the map in (2.4). Note that

Df ⊂ par-div(W∗), and par-div(W∗) may be larger than Df .
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The vector bundle underlying the parabolic vector bundle W∗ is (f ◦
φ)∗OZ [Bis2], [Par]. On the other hand, we have

f∗OY ⊂ (f ◦ φ)∗OZ .

In fact, f∗OY is a subbundle of (f ◦ φ)∗OZ .

Hence the parabolic structure of W∗ induces a parabolic structure on

f∗OY . Let

(f∗OY )∗ −→ X

denote the parabolic vector bundle with parabolic structure on f∗OY in-

duced by W∗.
The parabolic structure on (f∗OY )∗ over the complement

par-div(W∗) \ Df is the trivial one, meaning (f∗OY )∗ does not have any

nonzero parabolic weight on the points of par-div(W∗) \ Df .

It is straight-forward to check that (f∗OY )∗ coincides with the parabolic

bundle given by the parabolic structure on f∗OY constructed earlier. In

particular, the above parabolic structure on (f∗OY )∗ does not depend on

the choice of the pair (Z, φ).

Since the vector bundle underlying the Γ–equivariant vector bundle in

(2.5) is polystable (it is in fact trivial), the corresponding parabolic bundle

(f∗OY )∗ is polystable [BBN, p. 350–351, Theorem 4.3]. Since the degree of

the Γ–equivariant vector bundle in (2.5) zero, it follows that the parabolic

degree of (f∗OY )∗ is zero [Bis1, p. 318, (3.12)]. �

We refer the reader to [Yo] for the definition of parabolic dual of

parabolic vector bundles.

Lemma 2.2. The parabolic dual of the parabolic vector bundle (f∗OY )∗,
constructed in the proof of Proposition 2.1, is (f∗OY )∗ itself.

Proof. If E∗ is the parabolic vector bundle corresponding to an equiv-

ariant bundle V , then the parabolic vector bundle corresponding to the

equivariant bundle V ∗ is the parabolic dual E∗
∗ of E∗ [BBN].

Let

k[Γ] ⊗ k[Γ] −→ k(2.6)
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be the pairing defined by


∑

γ∈Γ

aγγ,
∑
γ∈Γ

bγγ


 �−→

∑
γ∈Γ

aγbγ ,

where aγ , bγ ∈ k. Consider the Γ–equivariant vector bundle Z×k[Γ] −→ Z

in (2.5). The paring in (2.6) defines a homomorphism of coherent sheaves

(Z × k[Γ]) ⊗ (Z × k[Γ]) −→ OZ

which is fiberwise nondegenerate. The resulting isomorphism of vector bun-

dles

Z × k[Γ]
∼−→ Z × k[Γ]∗ = (Z × k[Γ])∗

is in fact Γ–equivariant. Therefore, we conclude that the parabolic dual of

(f∗OY )∗ is (f∗OY )∗ itself. �

3. Construction of a Parabolic Subbundle

Let V∗ = (V, ({Vi,j}, {αi,j})) be a semistable parabolic bundle on X

with parabolic divisor

D := {t1, · · · , tr} ⊂ X .

For any subbundle F ⊂ V , the parabolic vector bundle defined by F

equipped with the parabolic structure induced by V∗ will be denoted by

F∗.
For each parabolic point t ∈ D, we fix an integer Nt ≥ 1. Assume that

there is a subbundle

F ⊂ V

satisfying the following two conditions:

(1) All the parabolic weights of F∗ at every t ∈ D are integral multiples of
1
Nt

. (If Nt = 1, then F∗ does not have any nonzero parabolic weight

at t.)

(2) par-µ(F∗) = par-µ(V∗).
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Lemma 3.1. There is a unique maximal subbundle

F ⊂ V

satisfying the following two conditions:

(1) All the parabolic weights of F∗ at every t ∈ D are integral multiples

of 1
Nt

, and

(2) par-µ(F∗) = par-µ(V∗).

Proof. Let F 1 and F 2 be two subbundles of V such that for 1 ≤ j ≤ 2,

(1) all the parabolic weights of F j
∗ at every t ∈ D are integral multiples

of 1
Nt

, and

(2) par-µ(F j
∗ ) = par-µ(V∗).

Since V∗ is parabolic semistable, and par-µ(F j
∗ ) = par-µ(V∗), it follows

immediately that F j
∗ is semistable for j = 1, 2. Consider the subsheaf F 1 +

F 2 ⊂ V equipped with the parabolic structure induced by the parabolic

structure of V∗; the resulting parabolic bundle will be denoted by (F 1+F 2)∗.
So

par-µ((F 1 + F 2)∗) ≤ par-µ(V∗)(3.1)

because V∗ is parabolic semistable. On the other hand, (F 1 + F 2)∗ is a

quotient of the direct sum F 1
∗ ⊕ F 2

∗ , and F 1
∗ ⊕ F 2

∗ is parabolic semistable

with

par-µ((F 1 ⊕ F 2)∗) = par-µ(F 1
∗ ) = par-µ(F 2

∗ ) = par-µ(V∗) .

Hence we have

par-µ((F 1 + F 2)∗) ≥ par-µ(V∗) .

Combining this with (3.1) we conclude that

par-µ((F 1 + F 2)∗) = par-µ(V∗).(3.2)

We will show that V/(F 1 + F 2) is torsionfree. To prove this, if T0 is

the torsion part of V/(F 1 + F 2), consider S = q−1
0 (T0), where
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q0 := V −→ V/(F 1 +F 2) is the quotient map. Let S∗ denote the parabolic

vector bundle given by S equipped with the parabolic structure induced by

the parabolic structure of V∗. If T0 �= 0, then

par-µ(S∗) > par-µ((F 1 + F 2)∗) = par-µ(V∗)

(see (3.2)). But this contradicts the given condition that V∗ is parabolic

semistable. Therefore, we conclude that V/(F 1 + F 2) is torsionfree. In

other words,

F 3 := F 1 + F 2 ⊂ V

is a subbundle.

Consider the parabolic vector bundle F 3
∗ defined by F 3 equipped with

the parabolic structure induced by the parabolic structure of V∗. Recall

that for 1 ≤ j ≤ 2, all the parabolic weights of F j
∗ at every t ∈ D are

integral multiples of 1
Nt

. This immediately implies that all the parabolic

weights of F 3
∗ at each t ∈ D are also integral multiples of 1

Nt
.

In (3.2) we have seen that par-µ(F 3
∗ ) = par-µ(V∗).

Now take F to be the coherent subsheaf of V generated by all subbundles

F ⊂ V

such that

(1) all the parabolic weights of F∗ at each t ∈ D are integral multiples of
1
Nt

, and

(2) par-µ(F∗) = par-µ(V∗).

From the above observations on F 3
∗ it follows immediately that this coherent

subsheaf F ⊂ V satisfies all the conditions in the statement of the lemma. �

As in (2.1), take any irreducible smooth projective curve Y together

with a nonconstant morphism

f : Y −→ X .

As in (2.2), Df := {p1, · · · , pm} ⊂ X denotes the subset over which f is

ramified. Fix a divisor

D := {x1, · · · , xn} ⊂ X .(3.3)
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Also, fix an integer

Nx ≥ 1(3.4)

for each point x ∈ D.

Proposition 3.2. Let (f∗OY )∗ be the parabolic bundle defined by

f∗OY equipped with the natural parabolic structure (see Proposition 2.1).

Then there is a unique maximal subbundle

F ⊂ f∗OY

satisfying the following three conditions:

(1) For any x ∈ D
⋂

Df , all the parabolic weights of F∗ at x are integral

multiples of 1
Nx

(see (3.4)),

(2) F∗ does not have any nonzero parabolic weight over any point of

Df \ (D
⋂

Df ), and

(3) par-deg(F∗) = 0.

Proof. In Lemma 3.1, set

• V∗ = (f∗OY )∗, (so the parabolic divisor D in Lemma 3.1 is now Df ),

• Nx = 1 if x ∈ Df \ (D
⋂

Df ) (see (3.3) for D), and

• Nx = Nx (see (3.4)) if x ∈ D
⋂

Df .

Recall from Proposition 2.1 that par-deg((f∗OY )∗) = 0. So we have

par-µ((f∗OY )∗) = 0.

Therefore, in view of Lemma 3.1 it suffices to show that there is a subbundle

F ⊂ f∗OY

satisfying the following two conditions:

(1) All the parabolic weights of F∗ at each x ∈ Df are integral multiples

of 1
Nx

, and
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(2) par-deg(F∗) = 0.

Since

H0(Y, Hom(OY , OY )) = H0(Y, Hom(f∗OX , OY ))

= H0(X, Hom(OX , f∗OY ))

(see [Ha, p. 110]), the identity map of OY produces a nonzero homomor-

phism

OX ↪→ f∗OY .

This coherent subsheaf is actually a subbundle. Indeed, this follows immedi-

ately from the fact that for any ψ ∈ H0(U, OU ), where U ⊂ X is a Zariski

open subset, the section ψ ◦ f ∈ H0(f−1(U), Of−1(U)) has the property

that if ψ(x) �= 0, then ψ ◦ f does not vanish on any point of f−1(x).

From the construction of the parabolic structure on f∗OY in Proposition

2.1 it follows immediately that the induced parabolic weight on OX at any

x ∈ Df is zero. Consequently, F = OX satisfies the above two conditions.

This proves the proposition. �

Equip the curve X with the following orbifold structure: For each point

x ∈ D the inertia group is Z/NxZ, where Nx is the integer in (3.4). The

curve X equipped with this orbifold structure will be denoted by X . An

étale covering

ϕ : Z −→ X(3.5)

is an irreducible smooth projective curve Z together with a nonconstant

morphism

ϕ0 : Z −→ X(3.6)

such that the following conditions hold:

• the map ϕ0 is unramified over X \ D = X \ {x1, · · · , xn}, and

• for every x ∈ D, the order of ramification of ϕ0 at each z ∈ ϕ−1
0 (x)

is a divisor of Nx.
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An étale covering ϕ of X will be called nontrivial if degree(ϕ0) ≥ 2.

Theorem 3.3. Consider the map f : Y −→ X, and the correspond-

ing subbundle

F ⊂ f∗OY

in Proposition 3.2. Then the following two statements are equivalent:

(1) There is a nontrivial étale covering

ϕ : Z −→ X

(see (3.5) and (3.6)) and a morphism β : Y −→ Z, such that ϕ0◦β =

f .

(2) The rank of F is bigger than one.

Proof. First assume that there is a nontrivial étale covering

ϕ : Z −→ X ,

and a morphism β : Y −→ Z, such that ϕ0 ◦ β = f . Consider the

subbundle

(ϕ0)∗OZ ⊂ f∗OY .(3.7)

The parabolic structure on (ϕ0)∗OZ constructed in Proposition 2.1 coincides

with the one induced by the parabolic structure of f∗OY on the subbundle in

(3.7). The parabolic bundle defined by this parabolic structure on (ϕ0)∗OZ

will be denoted by ((ϕ0)∗OZ)∗.
Using the given condition that ϕ is an étale covering of X it is straight-

forward to verify that for every point x ∈ D, all the parabolic weights of

((ϕ0)∗OZ)∗ at x are integral multiples of 1
Nx

. Since ϕ0 is unramified over

the complement X \D, the parabolic bundle ((ϕ0)∗OZ)∗ does not have any

nonzero parabolic weights on X \ D. Also, from Proposition 2.1 we know

that

par-deg(((ϕ0)∗OZ)∗) = 0.

In view of these, from the uniqueness property of F in Proposition 3.2 we

know that

(ϕ0)∗OZ ⊂ F .(3.8)
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Since degree(ϕ0) ≥ 2, from (3.8) we conclude that

rank(F) ≥ 2 .

To prove the converse, assume that

rank(F) ≥ 2 .(3.9)

As before, F∗ denotes the parabolic bundle defined by F equipped with the

parabolic structure induced by the parabolic structure of f∗OY .

The algebra structure of OY produces an algebra structure

Φ : (f∗OY )∗ ⊗ (f∗OY )∗ −→ (f∗OY )∗(3.10)

(see [Yo], [BBN] for the tensor product of parabolic vector bundles).

Since the parabolic weights of F∗ at every x ∈ D are integral multiples

of 1
Nx

, we conclude that the parabolic weights of F∗⊗F∗ at x ∈ D are also

integral multiples of 1
Nx

. From the given condition that par-deg(F∗) = 0 it

follows immediately that

par-deg(F∗ ⊗F∗) = 0 .

We note that F∗ ⊗ F∗ is parabolic semistable because F∗ is so [BBN,

p. 346, Proposition 3.2]. Let Φ(F∗ ⊗ F∗)∗ be the parabolic vector bundle

defined by Φ(F∗⊗F∗) equipped with the induced parabolic structure, where

Φ is the homomorphism in (3.10). Since Φ(F∗ ⊗ F∗)∗ ⊂ (f∗OY )∗ is a

quotient parabolic bundle of the semistable parabolic bundle F∗ ⊗ F∗, we

have

par-µ(Φ(F∗ ⊗F∗)∗) ≥ par-µ(F∗ ⊗F∗) = 0 .

On the other hand,

par-µ(Φ(F∗ ⊗F∗)∗) ≤ par-µ((f∗OY )∗) = 0 ,

because (f∗OY )∗ is polystable. Combining these, we have

par-µ(Φ(F∗ ⊗F∗)∗) = 0.

Since Φ(F∗ ⊗F∗)∗ is a quotient of F∗⊗F∗, and all the parabolic weights of

F∗ ⊗F∗ at every x ∈ D are integral multiples of 1
Nx

, it follows that all the
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parabolic weights of Φ(F∗⊗F∗)∗ at every x ∈ D are also integral multiples

of 1
Nx

.

Therefore, from the uniqueness property of F we conclude that

Φ(F∗ ⊗F∗)∗ ⊂ F∗ .(3.11)

From (3.11) it follows that there is a unique étale covering

ϕ : Z −→ X ,(3.12)

where X is the orbifold in (3.5), and a morphism β : Y −→ Z, such that

following two hold:

(1) ϕ0 ◦ β = f , and

(2) the two subsheaves (ϕ0)∗OZ and F of f∗OY coincide.

From (3.9) and the above statement (2) we know that the étale covering ϕ

in (3.12) is nontrivial. This completes the proof. �

Consider the set-up of Theorem 3.3. Let

Y ′ := Y \ f−1(D) ⊂ Y

be the complement. Let

f ′ := f
∣∣
Y ′ : Y ′ −→ X(3.13)

be the restriction of f to Y ′. The étale fundamental groups of Y ′ and X will

be denoted by π1(Y
′) and π1(X ) respectively. The following two statements

are evidently equivalent:

(1) There is a nontrivial étale covering

ϕ : Z −→ X

(see (3.5) and (3.6)) and a morphism β : Y −→ Z, such that ϕ0◦β =

f .

(2) The homomorphism of étale fundamental groups

(f ′
et)∗ : π1(Y

′) −→ π1(X )(3.14)
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induced by f ′ in (3.13) is not surjective.

Therefore, Theorem 3.3 gives the following:

Corollary 3.4. Consider the map f : Y −→ X, and the corre-

sponding subbundle

F ⊂ f∗OY

in Proposition 3.2. Then the following two statements are equivalent:

(1) The homomorphism of étale fundamental groups (f ′
et)∗ in (3.14) is not

surjective.

(2) The rank of F is bigger than one.

4. Complex Curves and Pullback of Stable Parabolic Bundles

Throughout this section we assume that k = C. The topological fun-

damental group of any complex manifold or orbifold N will be denoted by

πt
1(N); this is to distinguish it from the étale fundamental group of N.

4.1. Homomorphism of topological fundamental groups

As before, f : Y −→ X is a nonconstant holomorphic map between

irreducible complex projective curves; the map f is ramified exactly over

Df := {p1, · · · , pm} ⊂ X .

Fix an integer Nx ≥ 1 for each x ∈ D, and the resulting orbifold is denoted

by X . The curve Y ′ and the map f ′ are both as in (3.13).

Proposition 4.1. The following two statements are equivalent:

(1) the homomorphism of topological fundamental groups

f ′
∗ : πt

1(Y
′) −→ πt

1(X )(4.1)

induced by f ′ in (3.13) is surjective.

(2) The rank of the holomorphic vector bundle F −→ X in Proposition

3.2 is one.
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Proof. First assume that the homomorphism

f ′
∗ : πt

1(Y
′) −→ πt

1(X )

is surjective. The group π1(Y
′) (respectively, π1(X )) is the profinite com-

pletion of πt
1(Y

′) (respectively, πt
1(X )). Therefore, from the surjectivity of

the above homomorphism f ′
∗ it follows immediately that the homomorphism

(f ′
et)∗ in (3.14) is surjective. Now Corollary 3.4 says that

rank(F) = 1 ,

where F −→ X is the holomorphic vector bundle in Proposition 3.2.

To prove the converse, assume that

rank(F) = 1 .(4.2)

In view of (4.2), from Corollary 3.4 it follows that the homomorphism

(f ′
et)∗ in (3.14) is surjective. From the surjectivity of (f ′

et)∗ it can be deduced

that the homomorphism of topological fundamental groups

f ′
∗ : πt

1(Y
′) −→ πt

1(X )(4.3)

induced by f ′ in (3.13) is surjective. To see this, first note that πt
1(X ) is

residually finite and πt
1(Y

′) is finitely generated as they are both surface

groups. Now a result of Peter Scott, [Sc, p. 555, Theorem 3.3], says that for

any finitely generated subgroup H of πt
1(X ), and any t ∈ πt

1(X ) \H, there

is a finite index subgroup

H̃ ⊂ πt
1(X )

such that

t /∈ H̃ ⊃ H

(see [Pat, p. 2892 Theorem 1.2] for an effective version of the theorem of

Scott). Applying this to the image f ′
∗(π

t
1(Y

′)) ⊂ πt
1(X ) we conclude that

if f ′
∗ is not surjective then the image f ′

∗(π
t
1(Y

′)) ⊂ πt
1(X ) is contained in a

proper subgroup

Γ � πt
1(X )(4.4)

of finite index.
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Consider the finite étale covering

ϕ : Z −→ X

given by the subgroup Γ in (4.4). Since f ′
∗(π

t
1(Y

′)) ⊂ Γ, and a morphism

β : Y −→ Z, such that ϕ0 ◦ β = f . But this implies that

(f ′
et)∗(π1(Y

′)) ⊂ π1(Z) � π1(X ) ,

where (f ′
et)∗ is the homomorphism in (3.14). But this contradicts the fact

that the homomorphism (f ′
et)∗ is surjective. Therefore, the homomorphism

f ′
∗ in (4.3) is surjective. �

4.2. Pullback of parabolic bundles

Let E∗ = (E, ({Ei,j}, {αi,j})) be a parabolic vector bundle with

parabolic divisor D = {x1, · · · , xn}. Take a nonconstant holomorphic

map

f : Y −→ X

from an irreducible complex projective curve Y . Then, using f , the

parabolic bundle E∗ pulls back to a parabolic bundle f∗E∗ on Y . We will

briefly recall the construction of the parabolic bundle f∗E∗.
We first consider the case where rank(E) = 1. So for each xi ∈ D the

parabolic weight of E∗ is αi,1 = αi. The parabolic divisor for f∗E∗ is the

reduced effective divisor f−1(D)red. For 1 ≤ i ≤ n, let

f−1(xi) = {yi,1, · · · , yi,bi} ⊂ Y

be the inverse image, and let mi,j be the multiplicity of f at yi,j for every

1 ≤ j ≤ bi. For any λ ∈ Q, let �λ� be the integral part of λ, so

0 ≤ λ − �λ� < 1.

The holomorphic line bundle on Y underlying the parabolic line bundle

f∗E∗ is

F := (f∗E) ⊗OY (

n∑
i=1

bi∑
j=1

�mi,jαi� · yi,j) ,

and the parabolic weight of Fyi,j is mi,jαi − �mi,jαi�. Note that

par-deg(f∗E∗) = degree(f) · par-deg(E∗) .(4.5)
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Any parabolic vector bundle E∗ can locally be expressed as a direct sum

of parabolic line bundles. In other words, X can be covered by Zariski

open subsets U1, · · · , Um such that E∗
∣∣
Uj

is a direct sum of parabolic line

bundles on Uj for all 1 ≤ j ≤ m. We have described above the pullback

of parabolic line bundles. The pullback of a direct sum of parabolic line

bundles is the direct sum of the pulled back parabolic line bundles. Using

the decomposition of E∗
∣∣
Uj

into a direct sum of parabolic line bundles we

now have a description of the parabolic pullback f∗E∗. From (4.5) it follows

that

par-deg(f∗E∗) = degree(f) · par-deg(E∗)(4.6)

for any parabolic vector bundle E∗.
For each point x ∈ D fix an integer Nx ≥ 1.

Theorem 4.2. Take any stable parabolic vector bundle E∗ on X with

parabolic structure over D such that all the parabolic weights of E∗ at each

x ∈ D are integral multiples of 1
Nx

. If the rank of the holomorphic vector

bundle F −→ X in Proposition 3.2 is one, then the parabolic vector bundle

f∗E∗ on Y is also stable.

Proof. Assume that

rank(F) = 1 .(4.7)

Let E∗ be a stable parabolic vector bundle of rank r on X with parabolic

structure over D such that all the parabolic weights of E∗ at each x ∈ D are

integral multiples of 1
Nx

. Consider the parabolic principal PGL(r, C)–bundle

P(E∗) defined by E∗; see [BBN] for parabolic principal bundles. Since E∗
is stable, we know that the parabolic principal PGL(r, C)–bundle P(E∗) is

given by an irreducible homomorphism

ρ : πt
1(X ) −→ PU(r)(4.8)

[MS], [Biq]. Let P(f∗E∗) denote the parabolic principal PGL(r, C)–bundle

on Y defined by the parabolic vector bundle f∗E∗. Since P(E∗) is given

by the homomorphism ρ in (4.8), we conclude that the parabolic principal

PGL(r, C)–bundle P(f∗E∗) is given by the homomorphism

ρ ◦ f ′
∗ : πt

1(Y
′) −→ PU(r) ,(4.9)
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where f ′
∗ is the homomorphism in (4.1).

From (4.7) and Proposition 4.1 we know that the homomorphism f ′
∗ in

(4.9) is surjective. Therefore, from the property of the homomorphism ρ

in (4.8) that it is irreducible we conclude that the homomorphism ρ ◦ f ′
∗

in (4.9) is also irreducible. Since the parabolic principal PGL(r, C)–bundle

P(f∗E∗) is given by the irreducible projective unitary representation ρ ◦ f ′
∗

in (4.9), we now conclude that the parabolic vector bundle f∗E∗ is stable

[MS], [Biq]. �

The following lemma is a converse of Theorem 4.2.

Lemma 4.3. Assume that the rank of the holomorphic vector bundle

F −→ X in Proposition 3.2 is at least two. Then there is a stable parabolic

vector bundle E∗ on X with parabolic structure over D such that

(1) all the parabolic weights of E∗ at each x ∈ D are integral multiples of
1
Nx

, and

(2) the parabolic vector bundle f∗E∗ on Y is not stable.

Proof. Since rank(F) > 1, from Proposition 4.1 we know that the

homomorphism of topological fundamental groups

f ′
∗ : πt

1(Y
′) −→ πt

1(X )

(see (4.1)) induced by f ′ in (3.13) is not surjective. Fix an irreducible

representation

ρ : πt
1(X ) −→ U(r) ,

for some r ≥ 2, such that the composition of homomorphisms

ρ ◦ f ′
∗ : πt

1(Y
′) −→ U(r)

is not irreducible; such a ρ exists because f ′
∗ is not surjective.

Let E∗ be the parabolic vector bundle of rank r on X, with parabolic

structure over D, given by ρ. We note that

(1) all the parabolic weights of E∗ at each x ∈ D are integral multiples

of 1
Nx

, and

(2) the parabolic vector bundle E∗ is stable, because ρ is irreducible [MS].

Since ρ◦f ′
∗ : πt

1(Y
′) −→ U(r) is not irreducible, it follows that the parabolic

vector bundle f∗E∗ on Y is not stable. �
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5. Algebraically Closed Fields of Characteristic Zero

Now let k be any algebraically closed fields of characteristic zero. As in

Section 3, X is an irreducible smooth projective curve defined over k, and

D = {x1, · · · , xn} ⊂ X

is a finite subset.

For each point x ∈ D fix an integer Nx ≥ 1. Consider the holomorphic

vector bundle F −→ X in Proposition 3.2.

Theorem 5.1. Let

f : Y −→ X

be a nonconstant map from an irreducible smooth projective curve Y . Take

any stable parabolic vector bundle E∗ on X with parabolic structure over D

such that all the parabolic weights of E∗ at each point x ∈ D are integral

multiples of 1
Nx

. If the rank of the vector bundle F −→ X in Proposition

3.2 is one, then the parabolic vector bundle f∗E∗ on Y is also stable.

Proof. Assume that

rank(F) = 1 .(5.1)

Take any stable parabolic vector bundle E∗ on X with parabolic struc-

ture over D such that all the parabolic weights of E∗ at each x ∈ D are

integral multiples of 1
Nx

. We need to show that the parabolic vector bundle

f∗E∗ on Y is stable.

Let k0 ⊂ k be an algebraically closed field of characteristic of finite

transcendence degree over Q such that X, Y , D, f and E∗ are defined over

k0. Fix an embedding of k0 in C. Let

(5.2) XC := X ×k0 C, YC := Y ×k0 C, fC := f ×k0 C

and EC
∗ := E∗ ⊗k0 C

be the base changes to C of X, Y , f and E∗ respectively. Similarly, let

XC := X ×k0 C, Y ′
C := Y ′ ×k0 C and f ′

C := f ′ ×k0 C(5.3)
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where Y ′ and f ′ are as in (3.13), be the base changes to C of X , Y ′ and f ′

respectively.

We need the following lemma.

Lemma 5.2. The parabolic vector bundle EC
∗ = E∗ ⊗k0 C in (5.2) is

stable.

Proof of Lemma 5.2. An equivariant vector bundle is equivariantly

semistable if the underlying vector bundle is semistable, because the Harder–

Narasimhan filtration of an equivariant bundle is preserved by the action of

the group. It is known that the property of semistability of a vector bundle

is preserved under field extensions (see [HL, p. 18, Corollary 1.3.8]). Now

using the correspondence between the parabolic bundles and the equivari-

ant bundles we conclude that for a semistable parabolic bundle V∗ on X

the parabolic bundle V∗ ×k0 C on XC is also semistable. Therefore, the

given condition that the parabolic bundle E∗ is semistable implies that the

parabolic bundle EC
∗ is also semistable. Since the unique maximal polystable

parabolic subbundle of the semistable parabolic bundle EC
∗ (it is also known

as the socle of EC
∗ (see [HL, p. 23, Lemma 1.5.5]) is defined over k0, and E∗

is polystable, we conclude that the parabolic bundle EC
∗ is polystable (see

[HL, p. 24, Corollary 1.5.11].

For a parabolic vector bundle F∗, the sheaf of quasiparabolic structure

preserving endomorphisms of the underlying vector bundle F will be de-

noted by EndP (F∗). A polystable parabolic vector bundle F∗ is stable if

and only if the space of global sections of EndP (F∗) is the base field. Since

EndP (EC
∗ ) = EndP (E∗) ⊗k0 C ,

and E∗ is stable, we have

H0(XC, EndP (EC
∗ )) = H0(X, EndP (E∗)) ⊗k0 C = C .

This implies that the polystable parabolic bundle EC
∗ is stable. �

Continuing with the proof of Theorem 5.1, from Corollary 3.4 and (5.1)

we know that the homomorphism of étale fundamental groups (f ′
et)∗ in

(3.14) is surjective. This implies that the homomorphism of étale funda-

mental groups

(f ′
C,et)∗ : π1(Y

′
C) −→ π1(XC)
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induced by f ′
C in (5.3) is surjective; both Y ′

C and X are defined in (5.3).

Hence from Theorem 4.2 and Lemma 5.2 we conclude that the parabolic

vector bundle f∗
CEC

∗ on YC is stable, where fC is the map in (5.2). This

implies that the parabolic vector bundle f∗E is stable. �

Remark 5.3. We note that the main result of [BKP] implies that if

the base field is algebraically closed of characteristic 0 then the conclusion

to Theorem 5.1 holds under the strict condition that for every x ∈ X the

number Nx is coprime to the ramification indices of f at points above x.

Theorem 5.1 is more general than this as illustrated by Example 5.4.

Example 5.4. Let X = Y = P1
C and f : Y −→ X be the cyclic

covering of degree 6 ramified at 0 and ∞. Let N0 = 2 and N∞ = 3; then

the map π1(Y \ {0, ∞}) −→ π1(X ) is surjective, hence the rank of F is

one so Theorem 5.1 applies. Though the hypothesis of [BKP, Theorem 5.1]

does not hold in this example.
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