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An Extended KdV Hierarchy via an Energy
Dependent Scattering

By Yutaka KAMIMURA

Abstract. This paper formulates an extended KdV hierarchy in-
volving a coupled KdV equation, the Boussinesq system as well as their
higher order versions. Based upon an inverse scattering method on an
energy dependent Schrodinger operator, N-soliton solutions in the ex-
tended hierarchy are constructed in a unified fashion. In even-order
systems, each soliton is multi-peaked when a parameter exceeds the
critical value. The classical solitons in the KdV hierarchy are embed-
ded into those with the parameter being zero of even-order systems.

1. Introduction and Main Results

This paper gives a unified aspect of solitons to a class of soliton equations
involving the KdV equations and the Boussinesq systems by carrying out
rigorously a scheme proposed by Jaulent and Miodek [25]. In this section
we only sketch the problem of interest here, main results and defer proofs
of them, further details to succeeding sections.

Let L be an energy dependent Schrédinger operator

(1.1) L= D?*— (U +2kQ),
where D = %, k is a spectral parameter (wave number), U, @) are functions
(potentials) in the Schwartz class S on R, and let A,, n = 1,2,---, be
operators
n ' 1 n '
(1.2) A, = Z;)pjknj D — B Z;pjk:n] with pg =1,
Jj= j=

xT
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with differential polynomials p; in U, @ (namely, polynomials of U, @ and
their z-derivatives) satisfying the Lax [35] commutator representation:

10
(1.3) s opl = A Ll

Here a,, are nonzero constants concerned with scaling of time, on which an
additional requirement will be imposed later. By a computation (see Section
2) with a replacement D? = U + 2kQ — k?, we see that the polynomials Dj
are determined as follows:

3 1
(14) b1 = Qa p2 = 5@2 + §Ua

1 .
(1.5)  2pf,9 = 4Qp) 41 + 2Qupjy1 + 2Up; + Uspj — 5]93//, J=12,--

Then equation (1.3) leads to

1 /
ﬁ@t = Pn+1>
(1.6) QUin] i ) i
an Ut =2Up,, + Uzpn 5Dn -

This is a couple of partial differential equations for each n = 1,2,---. We
refer to (1.6) as a QU system and denote it by QUJn].

Example 1.1. The first four systems are written as:

QU] { Q= (3Q°+3U),,
iUi = QQGCU + QUI - %Qxa:x

(= (O + 30U~ 1Qu),
QU[2] %Ut = _%Qmex - %Qzme + GQQxU

+3Q%, + 3UU, — Usus.
Q= (2Q"+ QW + 30U - 3QQu — 3Q2 - LUs),
QUi { sl =20 (3Q° + 30U ~30Qu),
+ UI (§Q3 + QQU - Zsz)
B % (%Qg + %QU B iQmm)mmm :
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Qi = (LQ° +BQ - 2QuUs — £Q?*Qur — 3Quall
+18_5QU2 - %QQ% - gQUxx =+ T%Qx:cmx)xa
Quial { @0 =2U ($Q" + QU + 3U° — §QQu — 307 — Uas),,
+Us (RQ" + RQU + §U% ~ 3QQus — 303 — §Ua)
-1 (50! + $QU + 102
_%Qsz - gQ% - %Uzz)

rxx

Notice that QU[2] with ag = —4i can be found in Jaulent and Miodek
[25, equation (5.2)], where our @ b/ecomes %Q. For a deduction of more
general evolution systems, see Martinez Alonso [38].

If @ = 0 then QU[n] with an even n gives the §-th order KdV equation,
because, in the case Q = 0, recursion relation (1.5) reads pogq = 0 as well

as
ui

1
2p,2(1/+1) = 2Upl2u + Uzpav — §p2y7

which is no other than the recursion relation of differential polynomials (see,
e.g., Marchenko [37, equation (4.1.9)]) for the KdV hierarchy. This implies
that, for even n, if @ = 0 then the first equation of (1.6) gives a trivial
equation with both sides being 0 and the second equation of it becomes the
5-th order KdV equation. Thus QU[even] can be viewed as a generalization
with two unknowns of the KdV hierarchy. In particular QU[2| with iag = 4
is a system involving the KdV equation.

A primary aim of this paper is to establish a method by which soliton
solutions of QU[n] can be constructed. For the aim we employ an inverse
scattering theory on the energy dependent Schrodinger operator (1.1). This
subject, inverse scattering problem, is to reconstruct the potential (U, @) in
(1.1) from the scattering matrix

(L.7) S(k) = < HEZ; 1283 ) . heR

composed of the transmission coefficient s11(k) (= s22(k)) and the reflection
coefficients s12(k), s21(k). The coefficient s11(k) can be analytically contin-
ued to a meromorphic function in the upper half plane C; having at most
finitely many (distinct) poles kg, £ = 1,--- | N. We refer to the poles ky
simply as bound states for L because k:? correspond to bound state energy
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levels. Moreover scattering is said to be reflectionless when
(1.8) s91(k) = s12(k) =0 for any k € R.

In the standard case, namely, for Schrédinger operator Lg = D? —U, the
inverse problem was solved in Deift and Trubowitz [9] completely, that is,
by giving a necessary and sufficient condition for a matrix in the form (1.7)
to be the scattering matrix for some potential U, based on reconstruction
formulas derived by Kay and Moses [33], Marchenko [36], Faddeev [11]. The
seminal work Gardner, Greene, Kruskal and Miura [13, 14] discovered that
the KdV equation (QUJ[2] with @ = 0 in our terminology) is an isospectral
flow for Lg to solve the Cauchy problem for the equation with initial data
in S.

The inverse scattering problem on (1.1) was studied by Jaulent [21, 22],
Jaulent and Jean [23, 24|, Sattinger and Szmigielski [41], Aktosun, Klaus
and van der Mee [1, 2], Kamimura [27, 28, 29, 30, 31]. Provided that
U, @ are real and that there are no bound states (N = 0), a complete
generalization of [9, Theorem 5.3] was obtained by [29]. Nevertheless, for
potentials with bound states (N > 0), the generalization is still open. In
the reflectionless case (1.8), the inverse scattering problem on (1.1) has been
solved completely in [30] provided that U, @ are real, and in [31] provided
that

(1.9) U is real, Q is purely imaginary.

We employ the inverse scattering theory developed by the latter paper; so
here and hereafter we assume (1.9) as well as U, Q € S.

Under assumption (1.9), the transmission coefficients s{; (k) for potential
(U, -Q) and s11(k) for (U, Q) are identical (see [31, Proposition 2.3]) in the
reflectionless scattering, and hence (U, Q) and (U, —Q) admit identical poles
(bound states) k¢, £ = 1,--- , N. In addition, every pole ky is simple (see
[31, Corollary 3.7]). Thus, in the reflectionless scattering, the matrix S(k)
for (U, £Q) with (1.9) is written as

NEp =
0 [T i

At each pole k = kg, the Wronskian W{[fy(x, k), f—(x, k)] of Jost solutions
fo(z, k), f_(x,k) of (L + k?)f = 0 with asymptotic behaviors fi ~ et
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as x — Foo vanishes, and hence two solutions are connected by a nonzero
constant d? as f_(z,k¢) = dijr(x,k‘g). The constants d?, £=1,---,N,
are called the coupling constants for (U, Q). In a similar manner, coupling
constants d, , £ = 1,--- , N, for (U, —Q) are defined.

The potential (U, Q) is not determined only by its bound states; we
require a priori knowledge of certain additional information. The following
nonzero constants are adopted in this paper:

(1.11) CZI: = —1 Resk:kgsll(k) X d?:’ {=1,---,N.

This is a generalized concept of the norming constants used in the scattering
theory in the standard Schrodinger case (see, e.g., [9, p.158 and p.146]).
Notice that, in the energy dependent case, the constants ci,t defined in (1.11)
are complex numbers, in general.

The scattering transform (ST): (U, Q) — {0, ky, c}t} in which 0 indicates
merely the reflectionless condition (1.8) and its inverse (IST) are completely
characterized by functions A% defined by

(1.12) A% (z) :=det(I — BYB™)
+ (e®e N (T — BTBEY (BTu® — o).

Here BT are N x N matrices and v* are N column vectors defined in terms
of the scattering data {0, ky, cét} by

(ik[-l-’ik‘j)x ikox

e e

1.13 BE=(ctS |, vti=(cf :

(1.13) <Cf ike + ik; ) “ ik,

I is the N x N identity matrix, (1% ... e*NT)isa 1 x N matrix, and

(I — BT B¥) denote the cofactor matrices of I — BT BE. In particular (IST):
{0, kg,cét} — (U, Q) is given by

{ Q) = — 3 & (log A* (z) — log A~ (x)) ,
Uz) + Qx)? = =1L (log A* (2) +log A~ ().

A precise formulation of the characterization is:

(1.14)

ProposSITION 1.2 ([31]). A prescribed triplet {0, k’g,cf} is the scatter-
ing data for some (U,Q) € S x S if and only if {0, k:g,cei} satisfies the
following two conditions:
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(I) there exists a permutation o € &y such that k, () = —ky, cif(e) = %;
(IT) A*(z) >0 on R.

Under these conditions, (U, Q) is uniquely determined by (1.14).

This proposition gives a generalization of the reflectionless inverse scat-
tering theory on the standard Schrodinger equation, because if ik, < 0
(namely, o is the identity permutation) and cj = ¢, > 0 for each ¢ then
At (x) = A= (z) = (det(I — BT))? > 0 (see [31, Corollary 3.8]) and hence,
by (1.14),

2

(1.15) Q(x)=0, U(x)= —2% logdet(I — BY).

This is an expression of reflectionless potentials of the standard Schrédinger
equation (see [33], [14], Hirota [15], Wadati and Toda [47]).

Let us return to QU systems (1.6). In order to make (1.6) real systems,
here and hereafter we impose the following condition on a:

(1.16) = (-1)"ta,, n=1,2,---,

that is, assume a,, are real for odd n and purely imaginary for even n. Then
it turns out (see Proposition 2.4) that, for each n = 1,2,---, QU[n| defined
in (1.6) gives a real expression for physical variables %Q and U. In addition
(see Lemma 3.2), for each n = 1,2,---, QU[n| gives an isospectral flow for
L in (1.1), that is, if (Q(x,t),U(x,t)) with (1.9) satisfies QU[n] with (1.16)
then bound states for L(t) = D? — (U(x,t) + 2kQ(z,t)) are t-invariant. In
this way we obtain an inverse scattering method in Figure 1.

ST
(Q(z,0),U(x,0)) Initial scattering data {0, ke, czt (0)}
Flow on QUJn] Time evolution of data
IST
(Q(x,t),U(z, 1)) Ea(14) Scattering data {0, ke, c; (t)}

Fig. 1. Inverse scattering method.
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The time evolution of the constants c;t(t) is derived by a standard,
asymptotic analysis (see Section 3) for the Jost solutions fi as

_ nan n+1
(1.17) cE(t) = cF(0)e 2ED anke"

under assumptions (1.9), (1.16). In particular if ¢k, < 0 and a,, satisfies
(1.16) then —2(£1)"ank," ™ is real, and so that ¢;7(0) > 0 = ¢°(t) > 0.
We are now in a position to state our main result.

THEOREM 1.3. Assume that iky < 0, cét(O) >0 forl{=1,---,N and
define c}t(t) by (1.17). Then (Q(x,t),U(z,t)) defined by (1.14) is a solution
on R? of QU[n] with (1.16).

This result guarantees that if ik, < 0, c;t(O) > 0 then (Q(z,t),U(x,t))
obtained by the schema in Figure 1 give global solutions of QUIn| for n =
1,2,---. The proof is given in Section 6 after showing (see Corollary 6.2)
that if ik, < 0, c}t >0 for £ = 1,--- , N then A% satisfy condition (II) in
Proposition 1.2.

Time evolution of cgi(t) is quite different depending on whether n is odd
or even:

(1.18) n is odd = cj(t)ce_(t) = CZF(O)CZ_(O)’ ¢=1,---,N,

(O _ o)
¢ (1) ¢ (0)
By definition (1.11) and the first formula in (1.14) we see that Q@ = 0 &
czr = ¢, . Accordingly we have

(1.19) n is even = ¢=1,--- N.

COROLLARY 1.4. Let iky < 0, czt(O) > 0, let czt(t) be functions in
(1.17), and define (Q(z,t),U(x,t)) by (1.14). Then

(1) Ifn is odd then Q(z,t) # 0.

(2) Ifnis even and ¢} (0) = ¢, (0) for £ =1,--- , N then (Q(z,t),U(z,t))
is a pair of Q =0 and an N-soliton solution U(x,t) of the 5-th order
KdV equation.

In light of (1.14), we rewrite (1.4), (1.5), (1.6) by a nonsingular trans-
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formation
(1.20)
2
0 4 _ v v T _ 2
iQ = T U 4+16 (<=u 4iQ, w 4U+ Q7).

Then (1.4), (1.5) can be rewritten as

—su _ 1.2 1
pl—ZZ7 p2__ﬁu _ng

) 1 ) 1 w2\ v 1 1 1.
2Pjyo = WPy + 3P+ — 3 (w - T) Py — 1 (we = 5uue) pj — 507"

This gives a recursive definition of differential polynomials p; in terms of
(u,w). By the polynomials, QU[n] in (1.6) is transformed via (1.20) to

(1.21) UW[TL] { up — 4ap, (anrl)l- =0,

wt + ap, (8ipp12 + 2upp41), =0,

which gives an expression of QU[n| in terms of (u,w).

We thus have the hierarchy (1.21) of coupled equations equivalent to
QU[n|. We denote it by uw[n]. In the case iky < 0, in order for ¢-dependence
of czt (t) to be simple, it is convenient to normalize a,, as

(1.22) an = (=2)"" M n=1,2,--,
for instance a; = 2, ao = —4¢ and so on. Then we get
(1.23) cf (1) = cF(0)eEN (2R g g LN,

The first system of hierarchy (1.21) with a; = 2 is
Ut + Wy + utt, = 0,
uw|1]
Wt + Uggy + (uw)x = 0,
the second system with ay = —41 is
g [ G i), <o
uw
wy + (%uuxx + %um2 + %UQUJ + %MZ + wxw)x =0,
the third system with ag = —8 is
w4 (3uPw + gy + Sw? + wee + FuL? + Jut) =0,
uw(3] wy + (%u?’w + %uw2 + %uwww + %umw
+2uwgy + %UuwQ =+ %UQUJ?x + uxwxw)x =0,
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the fourth system with a4 = 167 is

Ut + % (U5 + 20utw + 30uw? + 30uuy? + 40ugw,

uwl[4] wy + 1—16 (5u4w + 30uw? 4 30uuy,? + 50u,2w + 100w w,
+40u Wy + 80Uz Uzzy + 40UULpgre + 20uB Uy,
+100Ut g w + 60Uz, + 10w 4 40wy,

\ +20wm2 + 16w:cx:cx)$ =0,

and so on. It should be mentioned that each uw[n] is a couple of conservation
laws.
The following is a recast of Theorem 1.3 and Corollary 1.4 via (1.20):

COROLLARY 1.5. Assume iky < 0, czt(O) >0 for{ =1,--- N and
define c; =(t) by (1.23). Then

(1) Fach pair (u,w) defined by

{ u(z,t) = %(logAJr(m t) —log A~ (x,t)),

(1.24)
w(x,t) = é?— (log AT (2, t) + log A~ (x, 1)),

is a solution on R* of uw[n] with (1.22).
(2) Ifn is odd then u(x,t) # 0.

(3) If n is even and ¢/ (0) = ¢;(0) for £ = 1,--- N then (u(z,t),
w(z,t)) = (0,—4U), where U is an N-soliton solution of the F-th
order KdV equation in the form (1.15) with (1.23).

The assertion (3) above implies that soliton solutions of the KdV hi-
erarchy are embedded into the hierarchy uw[even] as waves —tw with the
no-motion field u = 0.

The system uw|[1] is a dispersive, shallow water equation when the grav-
ity force dominates over the capillary one (see Kamchatnov, Kraenkel and
Umarov [26, page 356], see also [31]). In the equation, u denotes the hori-
zontal velocity field and w denotes the height of the water surface above the
horizontal bottom. Following Sachs [40] we use the symbols u, w and call
uw[1] the Boussinesq system and, in addition, we view uw[odd] as higher
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order Boussinesq systems though any physical meaning can not be specified
for n = 3,5,---. For other notation, terminology, and extensions of uw|1]
(& QUI1]), refer to Broer [7], El, Grimshaw and Kamchatnov [10], Kuper-
shmidt [34], Antonowicz and Fordy [5, 6], Alber, Luther and Marsden [3],
Alber, Luther and Miller [4].

Ezample 1.6 (uw[n], N = 1). We treat l-soliton solutions of uwn]
with (1.22) under assumption ¢k; < 0. For N = 1, from definition (1.12)
with cofactor matrix being the identity, we have

eQiklx €4ik1r

T —
ik L (24k,)2

Set b = —2ik; (> 0). Then formula (1.24) reads

e (¢ — ) (1 cfer© bibm>

(1_|_2¢:1 e—b +0101_e 22bT) (1+2016 b —|—Cl e _1)2257)

Af(z)=1—¢cf

u==4%4

—2bx

— _—bx x
cf(1+201++cfcl_eb2 ) —l—cl_(l—i—

— 2
(1+2¢1 ; +Cfc1_eb22bz) <1+261 ;— teler ;zbm)

_ 3
201 e b + —e 2=
+¢ ¢ 2

w = 4be=®

Here ¢ = cli(O)e(il)nant by (1.23). Let us introduce real parameters 6, p

by relations

(1.25) b — i (0)

— #7 e '
et (0)er (0) c1 (0)

Corresponding to (1.18), (1.19), we consider separately two cases.

Case 1: n =odd. In this case, 1-soliton solutions of uw[n| are expressed
as follows:

(eanrl(t—}—p) _ e—bn+1(t+p)) sinh b(z + 6)
(COSh b(x +6) + 6b"+l(t+p)) (cosh b(x +6) + e—b"“(ter)) ’
(1.27) w(z, t) = op2 ( 1+ ") cosh bz + 5)2
(cosh b(x +6) + eb"+1(t+p))
1+ e V"7 40) cosh b(x + 6)
(coshb(z + 6) + e—b"“(tﬂ)))?) '

(1.26) u(x,t) = 2b
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Y

Fig. 2. Profile of 1-soliton solutions (u(z,t), w(z,t)) of uw[odd] for § = p = 0 at
large t so that t > ﬁrc- The velocity u(z,t) takes the value +b approximately
at the stationary points = z+ of the height w(z,t), which behaves, near x4, such
as the solitary waves 1b”sech®(b(|z| — b™t) — log2) with amplitude 1b%, speed b"
asymptotically as t — 400 .

By shifts of z, t we may assume § = p = 0. Then the followings hold (see
Figure 2): (1) 0 < w(x,t) < 2b%. The maximum 2b% is attained only at
x=0. (2)If |t| < bn%rc where 7. denotes a critical ratio

11+ 55
g%f ~ 2.406

(1.28) re :=1lo

then w(z,t) has only one maximum 2b%, while if [t| > bn%rc then w(x,t)
has a local maximum other than the maximum 2b? at two points 2, which
have the asymptotic behaviors b|zs| = b"F1t| +log2 + o(1) as [t| — oc.
The local maximum decreases monotonically from £-b? to 1b? as [¢| moves
from bn%rc to 00. (3) |u(x,t)| < 2b, and |u(z4,t)] — b as |t| — oco.

Case 2: n =even. In this case, under assumption ¢k; < 0, 1-soliton solu-
tions of uw([n] with (1.22) are expressed, in the (common) setting (1.25), as
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N

IS 4

Fig. 3. Profile of 1-soliton solutions (u(z,t),w(z,t)) of uwleven] for large p so that
p> ﬁrc- The function u(x,t) takes the values +b at the stationary points x = x4
of w(z,t) asymptotically as p — +oo. The stationary points z+ have the asymptotic
behaviors |b (z+ — (b"t — 8)) | = b"T'p4log2 + o(1) as p — +o0..

follows:
(ebn,+1p — e*bm—lp) sinh b(a: — bt + 5)
(coshb(z — b7t + 8) + €2 7) (coshb(a — bt + 6) + e=t"*'r)
pntl, o
wia,t) = 22 | A eoshble Z b E0)
(Cosh b(z — bt + 6) + eanrlp)

n 1+ e—bn+1p cosh b(a: — b+ (5)

(COSh b(l‘ — bnt + 6) + e_b'rL+1p)2

(1.29) u(x,t)=2b

The solutions (u,w) are travelling waves with amplitudes (2b,2b%) and the
propagation velocity b".

For each t € R, the followings hold (see Figure 3): (1) 0 < w(x,t) < 2b2.
The maximum 2b% is attained only at x = b"t — 6. (2) If |p| < bn%rc
then w(x,t) has only one maximum 2b, while if |p| > bn%rc then w(x,t)
has a local maximum other than 2b% at two stationary points . The
local maximum decreases monotonically from %62 to %b2 as p moves from
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:tbn%rc to +o00. (3) |u(x,t)| < 2b, and |u(x+,t)] — b as |p| — oo.
Notice that
u(z,t) =0<= p=0,

in which we have 1-soliton solutions —w(z,t) = —%seeh%b(x — V"t +9)
of the 5-th order KdV equations.

Kaup [32] studied the inverse scattering problem on an energy depen-
dent operator L,, = D? +m? — (U + 2kQ) with m # 0 to construct soliton
solutions of the Boussinesq system uw[1]. In connection with Kaup’s solu-
tion, the problem on L,, has been studied by Tsutsumi [45], Sattinger and
Szmigielski [42], van der Mee and Pivovarchik [46]. Kaup’s solution was
also derived in Hirota and Satsuma [19, 20] by the Hirota direct method
(Hirota [16]). Apart from Kaup’s solution, Hirota [17] constructed N-
soliton solutions of uw[1] by using a reduction way from the first modified
KP (Kadomtsev-Petviashvili) equation. For other solutions of uw[1], refer
to Hirota [18], Sachs [40], Matveev and Yavor [39], Freeman, Gilson and
Nimmo [12], Clarkson [8]. Unlike these solutions, the N-soliton solutions
(u(z,t),w(x,t)) of uw[l] obtained as a consequence of Corollary 1.5(1), for
instance 1-soliton (1.26), (1.27) with n = 1 that was found in [31], are
solutions in § x S for each t € R.

The succeeding sections are organized as follows. In Section 2 we es-
tablish a recursion relation of differential polynomials p, to provide QU
systems QU[n]. In Section 3 we deduce the time evolutions of the constants
cét to present an inverse scattering method for QU[n]. These two sections
are mainly concerned with the forward scattering problem on energy de-
pendent operator L. In Section 4 we find a characteristic of the inverse
scattering method that if (Q,U) defined by its inversion formula satisfies
the first equation of QU[n] then the (Q,U) satisfies necessarily the second
equation of it. For the proof a wave equation of a transformation kernel (the
unknown of the Gelfand-Levitan-Marchenko equation) for L plays a funda-
mental role of connecting the polynomials p,, with the kernel. In Section
5 we show that (Q,U) obtained by the inverse scattering method satisfies
the first equation of QU[n] by using an algebraic computation with a linear
equation associated with the scattering data. In Section 6 an expression of
the functions A* is obtained by means of the cofactor expansion. By using
it, at the end of this section, we complete the proof of our main result. In
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Section 7 we employ approaches developed for the KdV solitons together
with the expression of A¥ to investigate N-soliton solutions of uw/[n).

2. Differential Polynomials

This section is devoted to a deduction of QU system (1.6). Let n =
1,2,--+, let L = D? — (U + 2kQ), and define A, by (1.2). We set

" » 1 & i
(2.1) a= E pik"7, b= —3 E p}k” J
Jj=0 Jj=1

Then A,, = aD+b with a relation a,+2b = 0. The reason for the choice (1.2)
of the operators A,, has to do with this relation. By [aD, D?| = [a, D?|D,
[a, D?] = —2a,D — ayy, [aD,c] = acy,

—[Ap, L] = —[aD + b, D* — (U + 2kQ)]
= 2a,D? + (ag + 2b)oD + by + a(Uy + 2kQ)

n . 1 n . n .

_ /7.n— 2 /y.n— .17.n—

=2 § 1pjk D7 -5 E 1pj K+ E Opgk T (U + 2kQy).
J= J= J=

We now use the replacement D? = U + 2k@Q — k%. Then we have
_[Ana L] = Q(Qx - pll)kn—H + (4Qp/1 + 2pr1 + Ua: - 2p,2)kn

n—2 n—1
—2 Zpggr?k;"_] + Z(4Qp;+1 +2Qupj+1)k"
Jj=1 j=1

n
1 »
+ Z <2Up;- + Uzpj — 5p9”> k"

j=1

Since the left side in (1.3) is linear in k we take p1, p2 as (1.4). Then

(2.2) ——(2KQs + U) = —[An, L]

1ay,
n—2

1 .
=> <4Qp}+1 +2Qupj+1 + 201 + Uspj — 51} — 2p§+2) k"
=1
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1
+ <4Qp;1 + szpn + 2Up;7,—1 + prnfl - 5]9%/_1) k‘

1
+ <2Up;1 + Uzpn — Ep;;,> .

For the consistency of (2.2), recursion relation (1.5) is required.

It is not obvious that p; determined by (1.5) become differential polyno-
mials; we adopt, instead of an indefinite form (1.5), the following, definite
definition:

(2'3) pn—Qijpn 1—5 + Uzp]pn 2—j

7=0

Z Dj+2Dn-2-; if n is odd

n—3 1
Z Dj+2Pn—2—j + 5(]9%)2 if n is even

n—3
Z p} p;_Q_j if n is odd

with the convention p_; = 0, and the fourth term in the right side being 0
if n =3, being 7 - £(p})? if n = 4. Then we have the following:

LEMMA 2.1. A sequence {p,}52 of differential polynomials defined by
(1.4), (2.3) satisfies (1.5) for j = —1,0,1,---

PROOF. Let n be odd. Then, by pj = 0,

/

—2

1 n

3 Z Dby = D _ V) Pn-2—j
j=1
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1 n—3 n—3 n—2 n—2
/1 1 /1 i /)
=9 Z PjPn—2-j + Z PjPn—2—j — ij Pn—2-j = ij Pn—2—;
=t ="y =t =t

1 n—2
7j=1

Hence, by differentiating definition (2.3) multiplied by 2, we have, for odd
n?

n—1 n—1 n—2
20, =4Q> Pipn-1-j+2Q > pipn-1-5+2U Y pipn-a-;
=0 =0 =0
n—2 n—3 1 n—2
+Us ZP; Pn—2—j — 2 Z Pjt2Pp—o—j = 3 ZP}" Pn—2-j-
j=0 Jj=-1 J=1

In analogy for odd n we verify that this equality holds also for even n. Thus
we obtain, for any n,

|
—

n

(4Qph, 1 +2Qupn—1-j +2Up,, o,

<.
Il
o

1
+UsPn—2-j = 5Pn-2-j ~ 2P%—j> pj = 0.

Provided that (1.5) holds for j =0, 1,--- ,n — 3, this shows that (1.5) holds
for j = n — 2, since pg = 1. Accordingly, by induction, we complete the
proof. [

A few words are in order on definition (2.3). By induction we see that

(2.4) {pn}o2q, {an}22 satisfy (1.4), (1.5),
Pny Gn— 07 r— 00 = {pn}%o:1 = {qn}%OZI
It follows from this observation that definition (1.4), (2.3) and definition

(1.4), (1.5) with p, — 0, z — oo are equivalent.
By (1.5), the equality (2.2) is rewritten as

1 1
(2.5) —(2kQu + Ur) = 2pp ik + (2Up; + Upp — 51,;;/) ,
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which leads to (1.6). We now summarize the discussions above in:

PROPOSITION 2.2.  Let {pn}5°, be the sequence of differential polyno-
mials defined by (1.4), (2.3), and let A,, be operators defined by (1.2). Then
the operator equation (1.3) for solutions f of (L + k?)f = 0 is equivalent to
evolution system (1.6).

o

We pick out some characters of {py}22,

which will be required later.

LEMMA 2.3. Assume (1.9) and denote p,, for (U,—Q) by p,;. Then
(1) o= (=1)"pn
(2) pp = (=1)"pn

(3) pn

Pn

(4) In the case n is odd, if Q = 0 then p, = 0.

PROOF. Assertions (1), (2) follow from (1.4), (1.5) by induction. As-
sertion (3) is immediate from (1), (2). Assertion (4) follows from (2), since
if @ =0 then p,, =p,. O

Under the assumption (1.9) we have

PROPOSITION 2.4.  Assume (1.16). Then, for eachn =1,2,---, QUIn|
s a couple of real equations.

PrOOF. From Lemma 2.3(1) and (1.16), we get anp),,; = anD ;-
Hence a,pp+1 are real-valued functions for n = 1,2,---. This implies that
the first equation 1Q; = a,pl,,; in (1.6) is real for each n because Q is
purely-imaginary. Similarly we can show that R := ia, (2Up), + Uypy, — 5P
are real-valued functions for n = 1,2,---. This implies that the second

equation U; = R in (1.6) is real for each n. O
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3. Time Evolution of Scattering Data

In this section we will show that systems QU[n] in (1.6) are isospectral
flows for the operator L and derive the time evolutions of the constants
czt. Throughout this section we use the notation ¢(z) ~ e(x) when ¢'(z) =
e/ (x)[1+ o(1)] as well as ¢(x) = e(z)[1 + o(1)].

Let M,, be operators defined by

1 0
3.1 M, =———-A =1,2,---
( ) n Zanﬁt Ty n y “y 9
namely,
10 - , 1 [ & ,
M, — — — _ =il p_ = R
"= Gy Ot ;Opj 2 ;pﬂ

x

As for the standard case (see Tanaka [43], [37, Chapter 4.2]), we have:

LEmMA 3.1. A pair (Q(z,t),U(x,t)) satisfies QU[n] if and only if the
operator M, transforms each solution f of (L + k?)f = 0 to a solution of
the same equation.

PrROOF. By Proposition 2.2, QU[n] is equivalent to (1.3), which is
rewritten as the operator equation [L, M,] = 0. Since, for each solution f
of (L+k?)f =0, the equation [L, M,]f = 0 is written as (L + k%)M, f = 0,
we arrive at the conclusion in the lemma. [

On applying M, to the Jost solutions f(z,k,t) of (L+k?)f = 0, whose

asymptotic behaviors are fi ~ e*** ag 2 — +00, we have solutions M, f+

of (L + k*)f = 0. In view of definition (1.2) where p; € S for j > 1, these
solution have the asymptotics

My fe ~ Fik" et 2 +oo.
Hence, by the uniqueness of the Jost solution, we find

(3.2) M, f+ = Fik" ™ fx,
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provided (Q,U) satisfies QUj[n]. Conversely, if (3.2) holds then

(L + k*>)M, f+ = 0 and so, by means of (L + k;Q)%fi = — (%L) S+, it
follows that

L O 4 1]) =0

ia, Ot " ==

Since fi are nontrivial solutions, this implies that (2.5) holds. We thus see
that

(3.3) (Q(x,t),U(x,t)) satisfies QU[n] <= M, f+ = Fik" 1 f.
Let fi be Jost solutions of (L+k?)f = 0 with —Q in place of Q. Under
assumption (1.9), we have four solutions of (L + k2)f = 0 for k € R:
frlw k), f(a, k), [y, k), f2(x, k).
By means of asymptotic behaviors, the Wronskians are computed as
(3.4) Wifs(z, k), f£ (2, k)] = F2ik.

The transmission coefficient s11(k) (= s22(k)) and the reflection coefficients
s12(k), s21(k) are defined as coefficients appearing in the linear combinations

si (k) f+(z, k) = fZ (2, k) + s12(k) f- (=, k),
s22(k) f- (. k) = [ (2, k) + s21(k) f+(z, k).
Use of (3.4) and (3.5) shows that

(3.5)

2ik
su(k) = S Wfe(z, k), f-(z, k)]

Time evolutions of the scattering data of the family QU[n| are derived
as follows.

(3.6)

LEMMA 3.2. Suppose that (Q,U) = (Q(z,t),U(x,t)) with (1.9) satis-
fies QU[n] with (1.16). Then:

(1) Time evolutions of the scattering matrices

B s (k},t) S (k7t)
S(k,t) = ( si(k:,t) s;z(kﬂf) > ’

o skt si(kt)
S (k,t) = ( Sg(k,t) s;z(k‘,t) >
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of (L+ k%) f =0 with (£Q,U) = (£Q(z,t),U(x,t)) are given by

k1) = o1 (1,0, stk 1) = 5715, 0),
stalk, 1) = s1ak, 0)ck™, ik, 1) = siylk, 0)e o™,

Sgl(k,t) = $91 k70)672ankn+1t’ Sz_l(k,t) — 82_1(]{,0)672(71)na”kn+1t.

In particular reflectionless scattering is preserved in time evolution.
Moreover poles kg, £ =1,--- N, in Cy of s11(k,t) are t-invariant.

(2) In the reflectionless scattering, time evolutions of the constants c}t(t)
defined in (1.1) are given by

(B7) ()= ()T e (1) = ey (0)e XD ek,

PrOOF. (1) Set

L L Slg(k,t) L Sgl(k‘,t)
a(k,t) = L by (k1) = D b_(k,t) = NI
Then, from (3.5), we get
(3.8) fala ko t) = a(k, t) f5 (2, k, t) + ba (K, t) f (2, k, 1).

We apply the operator M, in (3.1) to both sides. Then, by (3.2), we have

Tk fa = My (alk ) f5 +ba(k,0)f)

In view of (3.2) and (1.2) with p; € S for j > 1,

19
o1 /F = Anfz k" fr ~ 0, @ — Foo,
for K € R. By replacement ) — —(@), we have also m 5 f¢ ~ 0, as
T — Foo, and therefore
1 0=
f$ 0, x— Foo.

ia, Ot
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This leads to, for k € R,

Tk = My (alk, )5 + b (k1) f)
1 tike |, L Fike
mna(k,t)e + ianbi(k’t)e

== ik"“a(k, t)eiika: + ikn+1bi(k’ t)eiFikx

1 , 1. .
— <,—a(k,t) T z‘k"“a(k,t)) etk 4 <,—bi(k,t) + z’k"“bi(k:,t)> eTike

iQy, 1Qp

~ <ia(k,t) :Fz‘k:”Ha(k,t)) fr+ (ibi(k,t) iz‘k"“bi(k,t)) f+,

1ay, 1a

as x — Foo. Since, by (3.4), E and fr are linearly independent, this
implies that

n 1, . -
mk“ﬁ=<£ﬂ%ﬁ¥m+%%ﬁ>H

+ (il}i(k:,t) iz’k"“bﬂk,t)) f=.
Comparing this with (3.8) we obtain
a(k,t) =0, by(k,t) = £2a,k" by (k,t),
and so, we conclude that, for k € R,

511(l€,t) = O, §12(l€,t) = 2ank"+1512(k:,t), éQl(k,t) = —2ankn+1521(k,t).

Similarly, by applying the operator M, in (3.1) to every term of

f;(l‘, k, t) = af(k‘,t)fq;(x, k7t) + b;(k‘,t) fq?(xa k’,t),

where
1 _ _
O R L
s11(k,t) s11(k,t) s11(k, 1)
we obtain

a=(k,t) =0, bi(k,t) = F2a, k" 05 (k).
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By taking the complex conjugate and using (1.16), we conclude that
a (k,t) =0, bi(k,t)=+2(=1)"a k" b (k,1).
This leads to

sk, t) =0, $n(k,t) =2(=1)"a k" s, (k. 1),
$31(k,t) = =2(=1)"ank™ " s5; (k, t).
We have thus proved assertion (1).
(2) We prove only the second formula in (3.7) because the first one can

be derived similarly. The poles k; of s11(k,t) = s11(k,0) are time-invariant.
We apply M,, in (3.1) to both sides of

(3.9) Fo(z ke t) = d, (8) f1 (z, ke £).

By Lemma 3.1, the function M, f~ (x, k¢, t) is a solution of (L + k_gQ)f =0,
whose asymptotics are

Mnm ~ _k_én(m)/ ~ _k_ﬁnlk_ﬁezk_ew = —ik_£n+1e7;k_£x7

as x — —oo. Hence, by the uniqueness of the Jost solution and (3.9), we
find that

n+1

(310) Mnf:(xakfat) = _ik_ﬁn-i_lf:(x?kb ) = _’ka ( )f+ (3’} kfa )

On the other hand, it follows that, as + — +o0,

M, d_( )f;(l"kﬂat)
~ S O f (ke t) — R dy () (@ ke )

1Qp

<—d () + ike" d—(t)> e ther,

This implies that

Mnf:(‘r?kfvt) = MndZ(t> f;(.’l]’,k‘g,t)
— (7 O+ &) Pk,

n
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and, combined with (3.10), yields

dy () f7 (@, ke, t) = < d; (t) +ikz_gn+1d5(t)> Fi (@, ke, ).

1
1Qp,

id; (t) = —2ik"1d; (1).

Taking the complex conjugate and using (1.16), we obtain
d; (t) = —2(—1)"anke " d, (1).

This yields the second formula in (3.7). O

We thus have the inverse scattering method in Figure 1 in the following
sense.

ProprosiTION 3.3. Let n be a natural number, let a,, be a nonzero con-
stant satisfying (1.16), and assume that (Q(z,0),U(x,0)) € S x S with
(1.9) is a reflectionless potential with N bound states ky. If the Cauchy
problem QU[n] with an initial value (Q(x,0),U(x,0)) admits a solution
(Q(x,t),U(x,t)) € S x S with (1.9) for each t, then the solution is obtained
by the formula

. Q(z,1) = —5; 3 (log AT (x,t) —log A~ (1)),
e { Uz, t) + Q(w,t)2 = —§ 2 (log A* (2, 1) + log A~ (x, 1)) ,
0

as long as A*(z,t) > 0. Here A*(z,t) are functions defined by (1.12) with
(1.17).

PROOF. By assumption, k, ¢ (0) satisfies (I), (II) in Proposition 1.2.
By Lemma 3.2, scattering transform of (Q(x,t),U(x,t)) is {0, kg, czt(t)} with
(1.17). It is easy to see that the constants c}t (t) satisfy the condition in (I)
of Proposition 1.2. This completes the proof. [J

The formula (3.11) is based on Proposition 1.2, in which (1.14) has the
following character.

LEMMA 3.4. The followings are equivalent.

i) Q=0. (i) ¢f =¢,,¢=1,---N. (iii) AT=A".
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ProOOF. (i) = (ii): If Q(z) = 0 then fi (z,k) = fi(x, k). Hence, by
fo(z, kp) = d?f+(x,kg), fZ(x, ke) = dy [ (x,ke), we get d; = d, and so
¢f = c;. (i) = (iii) is direct from definitions (1.12), (1.13). (iii) = (i)
follows from the first equality in (1.14). O

From the time evolutions in (3.7) and Lemma 3.4 we draw the following
conclusion.

ProprosITION 3.5. Under the same assumptions as in Proposition 3.3,
Q(z,t) = 0 if and only if n is even and c*(0) = ¢ (0).

PrOOF. If Q(z,t) = 0 then, by Lemma 3.4, ¢} (t) = ¢, (¢). But, in the
case n is odd, ¢/ (t) = ¢, (¢) in (3.7) is impossible. Conversely if n is even
and ¢™(0) = ¢ (0) then, by (3.7), ¢/ (t) = ¢, (t) and so, by Lemma 3.4,
Q(z,t) =0. 0

4. Reduction

Let a, be nonzero constants satisfying (1.16). Following Figure 1 with
(1.17), we take (Q,U) of L in (1.1) so that

(41) Q@)U 1) — {0,k cf(0)e 2E) kL
Eq.(3.11)
In this section we shall prove that if (Q(z,t),U(z,t)) satisfies the first
equation of the evolution system QUIn|, namely iQt = p4, of (1.6),
then it satisfies the second equation of QU[n| automatically, and hence,
(Q(z,t),U(x,t)) becomes a solution of the system QU[n].
For the proof we employ the transformation kernel representation

(4.2) fi(z, k,t) = e 15 Q(rpydr Fika

+oo ) L
+/ A:t(m7y7t)eizkydy7 k€ C+7

(see [24, page 110], where our k becomes —k) of the Jost solutions of (L +
k%) f = 0 in terms of functions A (z,-,t) € L'(z,+00) N L>®(x, +00).

We begin with an expression of the recursion formula (1.5) (< (2.3)) in
terms of the transformation kernel A (z,y,t).
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LEMMA 4.1.  The sequence {p,}>2, defined by (1.4) and (1.5) satisfies,
forn=0,1,---,

i , .
(4.3) Pnt2 = Qpnt1 — 5]3%4_1 - an+1A+(17, aj,t)e i Qdr

PROOF. The proof proceeds in three steps.

Step 1. We rewrite the fourth term of the right side in (4.3) by

((3) %) e
- a% (((z%)n_] A+> (x,a:,t)) +i <<ia%>n_j+l A+) (z,,t)

and use pg = 1 to have

;
Prt2 = QPny1 — §p§m

) <,a>"ﬂ' > i1 Qd
_Zp]_ Ur e A+ (.T,J?,t) e e "

— 0 (( oy

1

X
J:
Sin((igs) ) waperior
=1 Y
1 AN i Qu
+;§p; <<28—y> A+> (x,z,t)e "= Qdr

By noting that (%gp)e‘”woo Qdr — (% — iQ)(gpe‘”woo Qdry and setting

(4.4) b = ((iﬁ) A+> (2,2, t)e" e QI =0,1,2, -
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recursion formula (4.3) is rewritten as

. n n
i, / .
Pnt2 = Qpni1 — oPn+1 — Zopj¢n—j + ZOPJZQ¢nj
J: ]:

n n 1
=) ipjradnj+ > §p;‘¢n—j-
=0 =0

We use the convention ¢_; = —i. Then, by noting —2p; — ip(, + 2Qpo = 0,
recursion formula (4.3) can be written as

n+1 n
(4.5) > (=2pj11 — i)+ 2Qp;) dnj + Y _ 2ipidh,_; = 0.
=1 i=0

Hence our task becomes to show that {p,}°  satisfies (4.5).
Step 2. The transformation kernel A, = A (z,y,t) satisfies a wave equa-
tion:

0 02 , 0
<8—y2 T o2 T 22@(96’)—> Ay =-U(x)Ay

Jy
(see [24, page 114]). Since
0 o . o\
(F+a+ie) (i) +
(Gta) (o) 2

i [02 02 0 o™ !
(== - =202 ) (i— A
+2<8y2 9% ZQay) <’ay> *’

we have
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) ((65) 2 )een)

This is written in terms of ¢,, as

il o )\?
¢m:§<<%_l ) _U>¢m—1-

Accordingly ¢,, admits a recursion formula

(4.6) 20}, =i (dh—1 — 2iQ¢, 1 — (IQu + Q° + U)pm—1),

m=1,2,---
By noting (see [29, equation (2.7)]) that
(4.7) ¢y = —% (iQs + Q>+ U)
and remembering the convention ¢_; = —i, it follows that (4.6) holds even
for m = 0.

Step 3. In view of (2.4), to prove the lemma, it suffices, in place of to
show {py, }5°; determined by (1.4), (1.5) satisfies (4.5) directly, to prove that
a sequence defined by (4.5) with the same functions for n = 0,1 as pg, p1
satisfies (1.5). Hence we shall prove that a sequence {g,}5, of functions
defined by ¢p = 1, g1 = @, and the recursion formula

n+1 n
j=1 =0
satisfies

1 .
(4.9)  24)12 = 4Qd) 41 +2Quqjr1 +2Uq; + Upgy — 5475 J = 1,2,

By (4.8)0, (4.7), 2 = 3Q>+ 35U, and, by (4.8)1, (4.6)1, g3 = 3Q3+3QU -
%Qm. It follows from these results that (4.9); holds. We now assume that
(4.9) holds for j =1,--- ,n — 1. By setting

Sj = —2qj41 — iq} +2Qq;, Tj:= 2igj,
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(4.8),, is written as

n+1

(4.10) ZS b J+2Tg¢n =

We compute (4.8)), — 2(4.8)"_; — Q(4.8)!,_,, which equals 0, as follows:

Z( 1 — S” QS;-) bn1-j + Sidn-1

j=1
n—1 .

+ Z i1 — 18— QSj) ¢y + Z < J+1 %TJ” - QTJ/> D1
Jj=0 7=0

___'E::S ¢n 1— j_% E::1}+1¢n 1—j l}::jﬂ n—1—j (22531}¢n 1—j

j=—1
111
D) E :1}¢n 1—5 —

From (4.6), (4.7) we get ¢} _; ; = —2¢dn—1-j+2iQ¢],_; ;—2id;,_;. Hence
this yields

)
BUEDS < ‘o Lsr Qs;.) bno1y+ Sinr

7j=1
n—1 n—1 i

+ Z ( ZSI) ¢n 1—j5 + Z < 7j+1 = 51}// - Q]‘;) gb'/n,—l—j
7=0 7=0

3

+> (18 — 2Tj 11 + 2iT) + 2QT) $odn-1-;
=1

n—1
+ 3 (4iQT)u1 +2QT] — 26Q°T) — 20Tjrs — 2T},1) 61,
=0

. n—1
? .
—5 D Tty — 4 + 4,y — 4Qd, =0
7=0
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In a similar way, the last line can be computed as
i n—1
-5 Z Ty 1 — 4iddn + 46,1 — Q0

= iTi¢f¢n1 ]+Z 2T 11 — 2QT}) by bn—1-;

Jj=1 7j=1
n—1 n—1
Z {(Qw + QZQQ) - 4ZQT'J+1 + 22T]+2} (bn 1—j + Z ZT ¢O¢n 1—j
7=0 7=0
- 2¢ ¢n 1-

Substituting this to (4.11) and noting that S} = 2¢yj, we obtain

5 (S 554 = @S} 65, + 2T + 7305 ) i

Jj=1

n— .
+ Z < i) = Tfy = 517 + Q)+ QuT; + z‘ng) )
It is easy to see from definition of S, T; and (4.7) that

i — S” QS + 20T, ¢ + iTj¢y

1
= =212 +4Qqj11 +2Qugj1 + 2Ug; + Usgy — 54’

and that '
. 7
IS} Tl ~ ST+ QT)+ QuTy =0,

Consequently

n
Z (_ZQ;JFQ + 4@Q§‘+1 +2Qzqj+1 + 2qu' + Uzqj — —q}") Pn—1—j
j=1

n—1
ZS% 1 Y Ty | igh = 0.
7j=1 7=0
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But originally, by (4.10), the second term vanishes. We thus find that

n
1
§ <—2q§-+2 +4Qq} 11 +2Quqj 41+ 2Uq; + Upqs — 5%’”) ¢n-1-; = 0.
i=1

In view of the induction assumption that (4.9) holds for j = 1,--- ,n—1 and
¢_1 # 0, this implies that (4.9) holds for j = n. The proof is complete. ]

We now define g4 (z,k,t) by g+ = M, f+ £ ik"" ., namely,

1 0
+ k" o (x k), ke CL.

Though these functions depend on n, we write them simply as g+ with
abbreviation of n because, in what follows, we consider n to be fixed.

LEMMA 4.2. The functions g+ are expressed as, for k € C,
+oo 1 oo
g:t(x’ ]{},t) — (:l:l/ (—Qt _p;z-i-l) dy e:i:zfm Q(r,t)dr
. iay
+oo ) )
—l—/ O (z,x+ 2, t)ei’kzdz) etike,
0

with some bounded, integrable functions O(x,z + -,t) € L'(0,+00) N
L*>(0, +00).

Proor. The proof, which proceeds in two steps, is given for g.

Step 1. By induction on v, we shall prove that, forv =1,--- | n,
o0 - 1 oAy
(4.13) g4 = —z/ Q¢ (y,t dyer Qdr gike | —/ —E ek dy
ian, iay J, Ot

Zp+1kn j el fm er ikx
j=v

n n
. oo X 1 i

§ :pjkn—] (zkel /s erezkx . fjr) + 5 § p;kn J f+

j:l/ j:V
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v—1 v—1—j
o 0 T OA »
_ vl p./ <Z—> Yo+ PRLIP
jz_l 7], By oz Y
i v-1 1, [ 9 v—1—j "
s () )

o0 v—1
e [ ) (5) ) o

where terms with Z?:_;l when n—1 < v and those with Z;’;ll whenv—1<j
are supposed to be zero.
We differentiate representation (4.2) for fi in ¢t and = to get

T b [ Qdr ik T O0AL g
(4.14) fy = z/ Qqdr etle Qlrgike —i—/ ——e"dy,
. . Ot
(415) f—/s— _ Zk?ezf;)o ereikr _ Z-Qeif;o chreikm _ A+($,$,t)€ikz

+ / %eikydy.
. Oz

By substituting these representations into (4.12), using the integration by
parts

* 0A,

e’ikyd ,
y y

S . .
ik"“/ ApeMdy = —k" A, (z,z,t)e*® — k”/
xz T

and taking p; = @ into account, it follows that (4.13) holds for v = 1.
By setting

n—1
) oo )
E, = —i § :ijrlknij ezfx Qdr jikz
Jj=v

n n
‘ o ‘ 1 .
+ E pik" Y (ik:esz Qdr gike _ fjr) + 3 E PR | £y
i=v

Jj=v

v—1 ) v—1—j
0 T 0A -
Iy P n—v+1 § : ) . + iky
K jlp]/z <<18y> ox )e dy
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v—1 1 00 a y—l—j )
+ k,n—l/-‘rl Z 5]9; / <<Za—y) A+> elkydy
j=1 e e

(7o d o\ :
e [ m) () )

formula (4.13), is written as

1 o° oo 4
(4.16) g+ = —1/ Quly, t)dye'ls Qreike
iy Jy
1 oA
el A TR B R

n Jzx

For v =1,--- ,n — 1, this becomes
1 & oo ~ 1 * 0AL
. g+ =1 t(y,t)dye = e + — &, ¢ Ty
4.17 N . d i) 77 Qdr ikx + zkyd
ian Ju iay J, Ot

+ Ey+1 - ipu—i—lkn_u i Qd’r‘eikx
i) ; 1 _
o kY (zk;e’fw QdT€ka—f_/,_> —l—§p:,k‘n v+,

By performing integrations by parts, I,, is rewritten as

v—1 v—1—7
Sy n—v 0 ! aA+ ikx
(4.18) I, = —ik J}le] ((Z@) W) (z,3,t)e

—i-ikn_”llzl lp" zg o Ay | (z,x,t) e*®
2 ¥ ay Y Y

Jj=1

S n—v 9 9 0 v ikx
— ik ((% + 8_y> <28—y) A+> (x,z,t)e

C0AL 1 oo ,
+ Iy+1 —i—pykn_y/ a_;ezk:ydy _ §p;jk,n—u/ A+ezkydy
x x

for v =1,--- ,n. This, together with (4.12), (4.14), (4.15), leads to

1 OO i [ % Qdr ik L [*0AL
(419) g4+ = —Z/ Quy, t)dye'ls etk 4 —/ ——e"Ydy
ian J, iap, J, Ot

+ k" {qu - %p'y —ip, Ay (z, 3, t) et O
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v—1 v—1—j
—2n <<a—y> W) et
J=1
v—1 v—1—7
L, ((.9 ’ i Qdr
+; 517] <<za_y> A+) (ZL’,IIZ‘,t) e

g 9 o\ ! oo
_ v v - U A —sz Qdr
((396 - 8y> (Zﬁy) +> @at)e
— py.‘,—l} Gi ];0 ereik‘x + EV+1 + IV+1.

But, by virtue of Lemma 4.1, the term {---} in the above vanishes. Hence
we arrive at

1 o0 ;[ » 1 [*0AL
ot | Quu 1 e o [T SRy ¢ B L
ian Jg iap J, Ot

forv=1,---,n—1. In view of (4.16), this shows that (4.13),1; holds,
under the induction assumption (4.13), holds. We have thus shown that
(4.13) holds for v =1,--- ,n.

9+ =

Step 2. We take v =n in (4.13). Then
1 o oo : 1 [®0A; ;
g+ = —Z/ Quly, t)dy e’ @Uretke —/ TR
ian Ju iay J, Ot
e . 1
+ Pn (’Lke”l erezk:p - f_l|_) + §p/nf+ + 1.
This equality is of the form (4.17) with changes v — n, E,11 — 0, py+1 — 0.

So, by using (4.18) with v = n, we follow the same steps as for (4.17) up to
(4.19). Then, applying Lemma 4.1 to p,,4+1, we obtain

. >~ 1 oo .
g+ =1 </ —Q4(y,t)dy +Pn+1> etls Qdrgike
L dan

1 [®0A,

iap, J, Ot

[ 1 / i [ °° Qdr ik

= z/ (.—Qt(y,t) —pn+1(y,t)> dye'’s =T
" 1Gn

1 [®0A,

tap, J, Ot

e*dy + Iq

eikydy
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S (ONTT ALY
J=1
~ 1 / > .0 n ik
o - A iky
+;2p]/x <<28y> +>e dy
&0 0 0 o\" <
_ . . s A zkyd
/x <<<9fr " ay) <Zé’y> +> o

which can be represented in the form

(1 oo .
ng(l', y7t) = Z/ (_Qt(y’ t) - p;l-‘rl(y?t)) dy esz erezkz
T

10,
o0 .
+ / O (x,y,t)e™dy.
x
This yields the expression for g4 of the lemma. [J
We are now in a position to prove the following

THEOREM 4.3. Let n be any (fized) natural number and let a, # 0
satisfy (1.16). If a pair (Q(z,t),U(x,t)) obtained by the inverse scattering
method (4.1) satisfies the first equation ——Q; = Pry1 of the system QU[n]

10n

then (Q(x,t),U(x,t)) is a solution of QU[n].

PrROOF. Let (Q(z,t),U(x,t)) satisfy ﬁ@t = pj,41- Then, by Lemma
4.2,

+oo
g+ (z, k,t) = / Oy(x,z+ z,t)eﬂ”kzdz etk ke O
0

This, combined with (4.2), i.e.,

fel(z K t) = <eﬂf§°"@(nt>dr n /
0

where AL (z,x + -,t) € L'(0,£00) N L>(0, £00), gives a representation

+o0

Ag(z,x + 2, t)eﬂkzdz> etihe

f-i-(xa k,t)g_(l', ka t) - f—(x, k,t)g+(a:, k?ﬂf) = / E(:L Z,t)eikzdz
0

for k € C, where Z(z,-,t) € L'(0,00) N L>(0,00). This implies that the
function in the left side is a bounded, analytic function on C, (in particular,
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a function in the Hardy space H?'). By the Riemann-Lebesgue lemma it
tends to zero as |k| — oo.
When £k is a bound state k¢, by f—(x, kg, t) = dg(t) f4(x, ke, t), we have

fo(@, kg t) = do(t) fo (2, ke, t) 4+ do(t) f1 (2, ko, 1).

In our setting (4.1), the coupling constant dy(t) admits de(t) =
—Qank}?—’_ldg(t). This implies that

1 0

<E& - k[ +1) f_($,k'g,t) = dé(t) <E& +Zk‘£ +1> f+($7kfat)7

and so, by definition (4.12), that

g*(xv kfvt) = dg(t)g+(l1§', k£>t)‘

Accordingly, for each (z,t) € R?, a function

(4'20) Qo(k) = isll(k)(f-k(x? k, t)g_ (x, k, t) - /- (xv k, t)g+($, k, t))

is also a bounded, analytic function on Cy, tending to zero as |k| — oo,
because each bound state is a simple pole (see [31, Corollary 3.7]) of s11(k).
We next, by replacing Q) by —@Q), define

(=" o
ia, Ot

steb) = ( A7) Ji (o) £ 07 k), ke T

where

n n
— —1.n—j 1 —1.n—j
Ap = | DK | D= | Yk
=0 j=1 N
Then by the same discussion with ¢, (£) = —2(—1)"a,k; " c,(t) as in the
above it follows that

Soi(k) = isll(k)(f-;(x’kvt)g:(xakvt) - f—_( ,k,t)g_'__(ili,k,t))

is a bounded, analytic function on C, tending to zero as |k| — co. Notice
(see [31, Proposition 2.3]) that s;;(k) is invariant in the replacement: @ —

—-Q.
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We now consider ¢(k), ¢~ (k) for real k. By (3.5), in the reflection
scattering, Jost solutions satisfy

Sll(k)fi<x’k7t):f:;(x’kat)v ke R.

In addition, by virtue of Lemma 2.3(3), A = A,,, and moreover, by (1.16),
@n = (—1)"la,. It follows from these properties that

Sll(k)gi(l', kat) - gq_:(xa kvt)a ke R.

As is readily seen by definition of ¢, ¢~ and condition s11(k)sii(k) = 1 that
follows from (3.5), this leads to the relation ¢(k) = ¢~ (k) on the real axis.
This implies that the analytic function ¢ (k) on the upper half plane C'; can

be analytically continued to the lower half plane C_ as a function ¢~ (k),

because ¢~ (k) = p(k) for k € R. Accordingly (k) is an entire function.
But it is bounded and is going to 0 as |k| — oo, and hence, by Liouville’s
theorem, ¢(k) = 0. We have thus proved that

f+($,k,t)g_($,k,t) - f—(kaat)g-‘r(x?kat) =0, ke C—+

Differentiating this yields

I+ f- _ g+ 9-
det(gjr g,)—det<fjr f’)'

On the other hand, using the notation (2.1) with a, = —2b, we find that

I+ f- 9+ 9-
det(g:L g,_)—i—det<fjr f'_>

~ det ' f+ . f-
[y A Ok i e fL 4 (b — ik fL
+ et ( Lfy bk - (b kY S )
fi fL
1 0
=—=W _
ian ot [f+7 f ]7
which vanishes because s11(k) is time-invariant (see (1.10)) and so, by (3.6),
%W[ﬁ_, f-] = 0. Consequently

(57 ) (%)=
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Since, in the reflectionless scattering, fi(z,k,t) and f_(x,k,t) are lin-
early independent for £ € R\ {0} (see [31, equation (2.7)]), this implies
that g (z,k,t) = 0, namely, M,fr = Fik""'fi. Therefore, by (3.3),
(Q(z,t),U(x,t)) satisfies QU[n]. We complete the proof. [J

5. The First Equation

In this section we shall prove that if A*(x,t) > 0 then (Q(x,t),U(x,1))
obtained by the inverse scattering method (4.1) satisfies the first equation

of the system (1.6). For the proof we employ functions J*(z,v,t) defined
by

(5.1) JE(z,y,t)
= (eh ... ¢kvy (1 — BFBE) L (BTot —oT), z<y,
where BT, vT are functions in (1.13) with (1.17):
czt(t) = czt(O)ed(il)n“”kant.
The functions J*(z,y,t) are defined for (z,t) such that
(5.2) D(z,t) := det(I — BTB%) #0.

Note that det(] — AB) = det(I — BA) in general. One can show (see [31,
Section 2]) that 1+ J*(x,z,t) # 0 and

(5.3) A% (x,t) = D(x,t)(1 + J5(z, 2,1))

for (x,t) such that (5.2). The determinant D(z,t) is an analytic function
and so, for each ¢, zeros x of D(z,t) are discrete.
Let

N
(5.4) FE(y,t) == — Z c}t(t)eik‘fy.
(=1
Then J¥(x,y,t) satisfies a Gelfand-Levitan-Marchenko (GLM) equation:

(5.5) J:F(:U,y,t)+/ Ji(x,r,t)Fi(r—l—y,t)dr

T

oo
+/ FEr+y,t)dr=0, z<uy.
x
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In other words, D(z,t) is the Fredholm determinant of integral equation
(5.5), which is uniquely solved as (5.1) under the condition D(z,t) # 0.
Throughout this section we use the following notation:

Citeiklm
te — <6qu o eme>7 bt — : ’
cﬁeisz
ik 0
K = ..
0 ikn

Moreover, for simplicity, we use the abbreviation J* := J*(x,z,t).
The time evolution (1.17) of c}t(t) is passed on to F'* as a linear equation

1 0 o O s
= (F)" N ) Ff =0, n=23,--.
(o PO ) P =0 n=2

So, applying the differential operator above to (5.5) and using this linear
equation, we obtain

(5.6) 2an_1Jf(x,y,t) +/x 2an_1Jf(:c,r, ) FE(r +y,t)dr
n JF
- (;1)”—%’"%(% g 1) = 0.
Since
onJT : -

7(:1:1)n71ina—yn(xaya t) = ( ezkly T eszy ) w:l:7

w® = (£1)" 1 (—iK)"(I — BEBT ) Y(BfoT —v?),
(5.6) is an equation with ( €% ... e*~¥ ) w® in place of the last term

o0
/ Fi(T—O—y,t)dT: (e’kly eZkNy>vi
X

in (5.5). From this observation it follows that (5.6) is solved as, for n =
27 37 )
1 0

—J* = ( k1Y ... oikNy _ nFpt\-l/pF,.t _ ..F
5a 5 @) <e ¢ )(I BTB*)~! (B¥w® — wT).
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Hence, by setting y = x, we have

1
Sa %Ji = (£1)" " tle (I — BTB%)™1 x
(BF(—iK)"(I — B*BT )™ (B*v¥ — o)

+(iK)"(I — B¥B*) ' (BTv* —vT)).

By using a relation

— K(I — BFB*) Y (BTo* —o¥)
= (I — B¥B®)"' ((1+ J5)B¥b™ + (1 + J7)bT)

between v* and b* (see [31, equation (5.9)]) and the identity
(5.7) B*(I - B¥B*)™! = (I - B*BF)™'B*,

we arrive at
1 0 + n n—1t F pt\—1
5 _1aJ =1"(£1) e(I-BTB*)"" x
{(-)" 'BTK" ! — K" 'BT)(I — BEBT)"'b*(1+ JF)

+ ()" *BTK" 1B — K" NI — B¥BY)" T (14 JT)}.

(5.8)

This gives an expression of %J + which leads to

LEMMA 5.1. We define, form=1,2,---,

(5.9) 7, :=i"te (I — B"BT)™! x
{(-)"'B"K" ' - K" 'B")(I-B"B")"'b"

1+J~
_1\n—1lp—gn—-1p+ 7n—1 _ np—pt\-1—
+((-)"'B"K"'Bt - K" " (I-B BY)"'b 1+J+}

—i"te(I - B*B7)" ! x
{(BJranl . (_1)nflanlB+) (I _ B*B+)flb7

323

Jr
+(BYK"'B” — (-1)" K" (I - B+B—)—1b+—1 +J } .

1+J-
Then, forn > 2,

1 90 + -\ _
2an_la(logA —log A )—rn.

(5.10)
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In particular, if AT > 0 then the function ry,(-,t) is of the class C*°(R) for
n > 2.

PRrROOF. By virtue of (5.3) we get, for (x,t) such that D(z,t) # 0,

1 0 + Ny 0 " _
PR (log AT —log A7) = PN (log(1 4 JT) —log(1 + J7))

o) 9 7—
_ 1 57 Hd
20,1 \1+J+ 14+J- )
Insertion of (5.8) now into the right side yields (5.10). Provided that A* >
0, the left side is analytic and zeros of D(x,t) is discrete for each t. Hence
this implies that r,, is continuously continued as a smooth function, namely,

each point (x,t) such that (5.2) is an apparent singularity of r,,. The proof
is complete. [J

We wish to prove that r, = p, for n = 1,2,---. By a linear algebraic
computation we shall show that r,, satisfies the recursion relation in (1.5):

LEMMA 5.2.  The sequence {r,}°°; satisfies

1
(5.11) 27,9 = 4Qr, 1 + 2Qurny1 + 2Ur), + Upry, — §r;;’, n=12--

Proor. We set 1
Pn = (—i)"irn.

Then (5.11) is equivalent to the following recursion relation for the sequence
{pntnii:

(5.12) 4p'/rz—|—2 = _8iQP;z+1 — 4iQqpuv1 — AU P, — 2Uzpn + py,
n=12---.

In what follows we give the proof of (5.12), which proceeds in four steps. In
the proof we borrow

0 7+
895‘]

= —2%e(I — BTB)"1bT,
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from [31, equation (5.1)].
Step 1. Let ®F, ¥ be N x N matrices defined by

ot = (—1)" K" 'Bt - BYK™! @ :=(-1)"'B K" ! - K" B,
Uf = (-1)" K" - BYTK"TIBT, U, = (-1)" !B K" !Bt — K"

In addition, we put

Ff:=_'e(I — B*BT)'oX(1 — BTB*)"'bT,

N

GE .= te(I - BEBT)lwi (1 — BEBF) bt

n
Then definition (5.9) is rewritten in terms of p,, as

114 J* 11+J°
14 n=Ff+F, += rc :

A computation with

(‘e) = teK, (b*) = Kb,

5.15
(5:15) (I = B¥B*)™'Y = (I - B¥B*)"(B¥B*)'(I - BFB*)™!
shows that
9 - 9 t —np+\-1
(5.16) 25T :%( e(I-B B")'x

(-1)"'B K" ' - K" 'B7)(I-B"B7)"'p")
=te(I-B B")!x

[I-B B")K(I-B B") 'x

(-1 'B"K"' - K"'B")

+((B7)YBT + B~ (B"))(I - B B")'x

()" 'B K" ' - K"'B")

+H=) (BT KT - KB

+ ((_1)n—lB—Kn—1 _ Kn—lB—) x

(I =B*B7)"'(B*)B™ +B*(B7))

+((-1)"'B K" ' -~ K"'B7) x

(I-B*B")'K(I-B*'B")]

x (I —B*B™) 'bT.
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The bracketed term [------ | can be computed as

[oee | =(I—-B B")K({I-B B") ' ((-)"'B"K"!'-K"'B")
+B(BY(I-B BYH) ' ((-1)"'B K" - K"'B")
—(B7)YBY(I-B BT 'K" !B~

+ (=) B (BT (I-B B") B +1)K"!

~ K" ' (I+B (I-B*B7)"'B") (B

+ (- 'BK" (I -B*B")"'BY(B7)

+((-1)"'B K" ' -~ K"'B7)(I-B"B")"{(B")B"~

+ ()" 'B"K"' - K"'B")(I-B'B)"'K(I - B"B").

By using
B¥(I - BTB*) " 'BT 4+ 1= (I - B*BT)!

and (B*) = B*K + K B*, this can rewritten as

[ ] =(K+B KB")I-B B") ' ((-1)"'B" K"~ K" 'B")
—(B™YBY(I-B B") 'K" !B~
+ (=) Y(B™Y(I-B"B")'K"!
~ K" Y1 -B BT YB™Y
+ (-1 'B~K"Y(1-BTB7)"'BT(B7Y
+ ()" 'B K™™' -~ K"'B7) x
(I-B*B™)"YB"KB™ + K).
=2(-1)"B K" +2K"B~
+ 2(_1)n—1(B—)/(I _ B+B_)_1K"_1
—2K" Y1 -B BT)"Y(B)
—2(K+B KB")(I-B BY) 'K" !B~
+2(-1)" !B K" Y(I - BBy} (K +BTKB").

This, together with (B~)" = b~ e, leads to

0

55 tn = te(I—B BT)tx

[(-1)"B K"+ K"B~
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+ ( l)n—lb— te(I o B-i-B—)—lKn—l . Kn—l(I . B—B+)—1b— t
—(K+B KBY)(I-B BY) K" !B~
(-1)"'B"K""YI-BT™B™)""(K+BTKB™)]

(

I-B"B7) 'bt.

O

By using

K+ B KBt =K(—-B BY)+ (B K+ KB™)B",
K+ BYKB~ =(I-B*B)K + B*(B"K + KB")

and (5.7), (5.13), this can be written as

%Fn_ =te(I-B B!
[(-1)" b te(I - B*B ) 'K" ' - K" '(I-B B") b !
—b 'eB"(I-B BY)'K" !B~

+(-1)"'B K" (I -BTB7)"'Bb e

x (I -—B™B™) "

1 2t
=3 fjr e te(I — BFB™) ' (=1)" 'K" (I — BFB™)"'b+
1 2J-
4 lai Jr ‘e(I-B BY)'K" ' (I-B B")"'b"
1 2t
+ 5 18—3'0_ e te([ o B+B—)—IB+Kn—1B—(I o B+B—)—1b+
1 2J-
— 5 g e = BB =) T BTE T B (1= BTBT) 'y
Accordingly
0 1 2t 1 2J-
5.17 Sy i R LA ¢ R T A ¢
(5.17) dr "™ 21+J- 21+ J+F

By the change Q — —@Q, we also have

+ —
1 8:5J + 1 azJ

aF+
n T 91+ g 21+ J+

D



328 Yutaka KAMIMURA

and so

o FF+F; 1 2Jt 127
(518) Y n + 1y, - _ - oz - G:L— o
ox 2 214+J 21+JF

In a similar way to for the deduction of (5.17) we obtain

10 - 2 -
1 il + _ Oz F— oz F+
(5 9) 26 G Gn+1 1 4 J+ n 1 + JJr n o

and also, by the change ) — —(@, we have

Y PR LT Yl
‘ 20¢ " Ll 14 g 14—
We now set .

P i

Then (5.14), (5.18), (5.19), (5.20) are simply expressed as

11+J+G+ 11+J”

5.21 =2F, + - L
(5:21) =2t o = O T O
( Fn/: 1 81‘J+ + 1 81:‘]7
21+ J- 21+ J+F
o —
(5.22) 1(G+)/—_2 o/ F, -G
2 T T gt ntl’
1 2 g+ ~
§(Gn)' - _218i e Fo+ G

Step 2. In order to compute derivatives of p,, we employ the formulas:

9 7+ 9 71—
= J = J
92 —2i0 = oz Oz
(5:23) Q=17 i
) a 71— \' ) 9 17— \ 2
G2y —ov= (20 el ) (@ g
' 1+Jt  14+J- 2\14+Jt  14+J- ’

1/14+J%\ 1+ J*
2 - = Fi .
(525) 3 <1+J3F> R
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Formula (5.23) is immediate from (3.11) and (5.3) as

9 (log(1+ ) — log(1 + J7))

—2iQ) = (log AT —log A*) =5

formula (5.24) is borrowed from [31, equation (3.9)], and formula (5.25)
follows from (5.23) because

AN S DAl O CANN 2
1+JF)  T14+JF\14+JF 1+J )

By using (5.21), (5.22), (5.25), (5.23), the derivative of p,, is computed

as

1 1+Jt 1 1+J-
5.26 I = —2QF, — =Q B R
(5.26) Pn 21+ J- 214 J+

1+J 1+J
g G T e

G,

where we put
d 1+ o 71—
_ %'] + Bm']
1+Jt  14+J

This coupled with (5.21) yields

(5.27) - 4/);—1-2 - SiQper-l — 4iQupnt1 — 2Up},
1+ J7F 1+J"
UG+ Q
1+J- 1+ Jt
8(N2iQ —iQy) Fry1 +2(22iQ —iQ, + U)

)1+J_
14+ J*

14+ J*
+ 8QF, 42 +2 (2 + 4iQ) 7G:+2
14+ J-

J

1+J+ 1+J* _
14+J- Gn+3 1_|_J+G

=4QUF, —I—Q UG,

LT
14 J- ntl

2(02iQ — iQ, — U G,

+
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Step 3. Differentiating (5.26), using (5.22), (5.25), (5.24), (5.23), (5.21),
and noting (5.24) < ' = —2U + 0?2 show that

,OZ—QUpn
1 14+ JF 1+J-
=Q%F, + -0? 92 G- + 8iQF,
Tt 15 g+ On 8@
o — _
+2%J 1+J+G+ B 2Tt 1+J
1+J-1+J- 7l 1+ Jt1+Jt
1+Jt 14+ J-
2 " GF 2 Grio
+ 1+J n+2+ J+

We differentiate this and use (5 22) Then, with the aid of (5.24), (5.25),
(5.23), the coefficients of F},, G;f Gn+1 can be computed respectively as

200 — Q3 = —4QU,
1o 5 1 o1+ JFY +
_(2 0= +_ 0? +J :_Qi ’
2 14 JF 1+ JF 14 JF
2((%ﬁ 1+Ji> 275 1 21+Ji

_l’_

oz
JT1+JTF Ql—i—JjF 1+ JF

1+Ji

=2(-02iQ +iQ, FU) T

Consequently we find
(PZ - QUPn),
1 +
= —4QUF, — Ql +J

1+J~
UG —
T
1+JF
1+4+J- ntt
1+J
1+J+G”+1

1+ JHY D= 14+J*
28) — 8OF, 2 — 9 0z” +
(5.28) — 8Q2Fnis + (<1+J> 21+J*1+J* vz

1+J7\ Oyt 14 g
49 +J P +J o,

1+ J+ 1+J+1+J* n
14+ Jt 1+J-

+ —_
- 4H7Gn+3 + 4WG7H—3

UG, +8(iQs — 22iQ) Fyt1

2(—Q2iQ +iQ, — U)

2(—Q2iQ +iQ, + U)




An Extended KdV Hierarchy via an Energy Dependent Scattering 331

Step 4. Adding (5.28) to (5.27) and observing

1+ J* 1+Ji’_28—‘zﬂ¢1+Ji
1+J7  \1+JF

1+JF1+JF 7

(Q £ 4iQ)

we conclude that
/ . / . / 1/ /
—4py, 40 — 8iQpy 1 — 4iQupni1 — 2Up, + (py — 2Up,) = 0.
This is nothing but (5.12). We have thus proved (5.11). O

We are now in a position to prove

THEOREM 5.3. Let AT be functions in (1.12) with (1.17) and assume
that A% (z,t) > 0. Then (Q,U) defined by (3.11) satisfies the first equation

1
(5.29) T @ = Paa

of system QU[n| for eachm =1,2,---.
PrROOF. In the case n =1, (5.9) becomes

1+J‘_
1+J*

1 +
r=—i (te(I—B—Bﬂ—lb— te (I—B+B—)—1b++—‘]>.

1+J-
Use of (5.13), (5.23) now shows that

1 QJ+ QJ—
T = <81‘ — )‘Q—pl-

i\ 1+Jt 1+

As was shown in Lemma 5.1, if A* > 0 then the function r,(-,t) is of the
class C*°(R) for n > 2. The equality above tells us that ri(-,t) is also of
the class. Therefore the recursion relation (5.11) holds on R for each t.

In the case n = 2, since B*K + K B* = b* e, expression (5.9) gives

ro=2%e(I—B B") b~ te(I—B"B™) 'b"

14J-

te(l—-B BY ' (K+B KBYY(I-B BY)) 'pv—2_

¢ + -1 + - T Al
+'eI-B*'B")"'"(K+B*KB")(I-B"B") '"bt ——

14+J-
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The first term in the right is rewritten via (5.13). Also, by differentiating
(5.13) and using (5.15) as in (5.16), we have

~1onitgF — €U —BTBT) (K +BTK BY)(I - BYBT) b,
x

Hence r9 is expressed as

125t 25 1o ZJt\1+J
o L L
2T ol g 1+ gt 4\dxi+J ) 1+Jt
10 ZJ \14+Jt
4\0z1+JT ] 1+J-
o) a
_ %J+ 8_J _1 8x2‘]++ 8z2J
1+J-14+Jt 4\1+Jt  1+J ]

On the other hand, a direct computation shows (see [31, page 704]) that

9 9 71—\ 2
U= 1 8x2J++8x2J 41 5" 4 o2/
1+ 1+7-) " 2\1+F "1+ )

which together with (5.23) yields

2% 7+ 0? 0 1+ O 7—
1 (2 J- gt 2
U+Q*+2Q° = — ( e > +o0z dnt_

2\14+JF  1+J- 14+Jt1+J

Hence py = 5(U + 3Q%) = ro.
This, combined with Lemma 5.2, shows that r, = p,, for n > 1, and so,

by (5.10), that

1

0
T (log AT —1log A7) = ppt1

for n > 1. Diﬁerent1at1ng this in x and taking (3.11) into consideration we
get the desired result (5.29). O

By combining Theorem 5.3 with Theorem 4.3 we draw the following
conclusion.

THEOREM 5.4. Let a, satisfy (1.16). Assume that kg, c}t(O) satisfy
conditions (I), (II) in Proposition 1.2 and define c; E(t) by (1.17). Then
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(Q,U) defined by (3.11) satisfies the system QU[n] for each natural number
n as long as A*(x,t) >0 on R.

The schema of inverse scattering method in Figure 1 based upon Propo-
sition 1.2 has been thus carried out as long as AT > 0.

6. Expansion Expression of A*

For further studies on soliton solutions of QU[n], in particular, to con-
sider under what conditions the situation A* > 0 can be guaranteed, we
require a more direct expression of A*.

PROPOSITION 6.1. Assume Imk, > 0, £ = 1,--- | N, set ap := iky,
Xy = e¥her = g2 qnd let V' denote the difference product

Vizi, -, 2m) = H (zm — 2n)

m<n

with the convention V(z1) = V(¢) = 1. Then the functions AT (x) are
expressed as polynomials of X1, , XN of the order 2N in the following
expansion forms:

N
(6.1) AF=1+4)" (—%) X,
p=1 P
N a .. a
+Z Z Z ( Q1 qu) y
r=2 p1<-<pr q1<--<gqr-1 Qpy = Cp,

2

V(“pu T vo‘pr)v(o‘!hv T ao‘qrq)

H H (m + )

m=p1, - ,Pr N=q1,"* ,qr—1

+
(I ax)( T e
Mm=pi, - ,pr m=qi, - ,qr—1
N [0 [0
Y Y ()

Qg * " Qg

r=1p1<--<pr q1<-<gr T
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2

V(ap17"' )y Ap,. )V(O‘qu"' aqr)

H H am—i-an

Mm=pi, - ,Pr N=q1," " ,qr

(e n )
m=pi, - ,pr m=qi, - ,qr

Here the highest order term of AT is given by r = N in the last term as

e c+c_X2>.
<IIm 1IL11(amf+O% ) (I]:7n7n m

PROOF. We shall prove the expression of AT. Set

— + +
c c c
A= (ay;) = ¢ B = (by;) = 4 =_ (L
(‘WJ) <ag—|—ocj> ) ( (J) (Oée +aj> , U ap )’
ayj b1,
a; = ) bj = )
4N b
1 1 0
al1tay artan .
G = : : , €; = 1 ,
1 .1

any—+toal anNtan 0
and use the notation

t

a1 X, N
. bj = ZCL@X@ bgj.
aAﬂXN =1
Then det(I — BTB™) is written as
N
det(I — Bt*B™) = (-1)V (H Xm> X
m=1
¢ a1 Xy ! a1 Xy

(62) |-Xi'ei+ : by —Xy'en + : by| .
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Also, —(e*1® ... ¢kNT ([ - B=BTy(B~vT —v7) is expressed as

N
I=(-D)" J] Xm x
m=1

t t

N a1 X, a1 Xy
Z_Xl_lel_l' by — vy + va‘
=1 anXn anXn

a1X
~Xyten + : by|.
aNXN
Accordingly
(6.3) AT =det(I - B™B7) - TI.
By introducing Iy, I by
N
(6.4) Io= (DN I Xm x
m=1
¢
N a1 X,
Z —-X; 161 + b; — vy
=1 an Xy
¢ a1X1
~Xy'en + : bn|,
an XN
N
(6.5) Iy o= ()N ] Xm x
m=1
N a1 X1 a1 X,
Z —Xflel + b, ’U(J)r
j=1 an XN any Xy
! a1X1
—X&leN + by|,
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where v is in the j-th column, I" is decomposed as I' = Iy + I. Note
that ay, by, 'uoi are independent of X, and hence I, I'» are polynomials in
X1, -+ Xy of the forms

N
M= Y CoponX{'- X3, D oy =odd,
(=1

0<o01,,0N<2

N
I = E Cop o on X7 X3, g 0y = even.

0<oy,,0N<2 =1

In view of (6.2), det(I — BT B™) consists of terms of even orders, namely,
of X{* -+ X3V with >~ oy being even. Hence the sum of odd order terms in
A which we denote by A¥,, is given by —I: A}, = —I}

With the aid of (6.3), (6.4), for s =1,--- ;N — 1, the sum of terms of
order 2N — (2s + 1) in AT is computed as

N
A;N—(2s+1) = ()N (H Xm) X

m=1
t
N a1 Xy
. —1 _
Z : b — Xy tew o —vg
j:l k1<"'<ks§ks7éj a’NXN
t
a1X1
_Xi;leks . bn
anXn
N
— (_1)N—1(_1)s+1 H Xm «
m=1
-1 -1
IS (D (R W
k1 <--<ks Gk, ks
t t
a1X1 a1X1
: bl...ekl...va...eks... . bN

aNXN G,NXN
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N
= (—1)N+s (H Xm> X

)P, CHEEED. R W

k1< <ks J#k1, ks
e Yoax,
k1 - _ ks
N bl...\/...vo...\/ N ij7
dNXN dNAXN
where a denotes a vector obtained by deleting the ki, --- , ks-th rows of a,

and v is the symbol for the delete of the k-th element. Taking the order
into account, we have

"oax, e
k1 - ks

J#k1, ks an Xy anXn

— s+1 —

= > oy (HX) X

A< <A1

with constants C,i‘ll,':,ij“. Because these constants can be obtained by
putting

X)\lz‘-':X)\5+1:0, Xm:1 for m;é)\l,---,)\S_H

these coefficients are expressed as

o
N
~ kl _ ks .
— Z Z ambml...\/...vo...\/... Z amme
j?'ékla ks m?é>\17 " s+1 m7é>\1,~~~ ,As+1
Thus
N
(6.6) A;—N—(Qs—l-l) = (_1)N+s <H X?ﬂ) z Xk_ll e Xk_sl
= k1< <l€s
)\1 )\s+1 1 -1
> o XXt

A< <Ast1



338 Yutaka KAMIMURA

>\3+1

By expanding C A with respect to the j-th column, we get

Al"‘AS+1 . Z-’-j CZ
Cryoe . = Z Z X

J¢k17' k é#klv'z

5 k1 J ks 5
g ambml...v...\/...\/... g amme7

MFANL, = As 41 MFEN, Ast1

where @ denotes a vector obtained by deleting the £, k1, - - , ks-th rows of
a. This becomes

Al As1 €+J Cf
Coyke = Z Z X

JF#k, ks 0F k-

(G1-- M - év“ ..&N)(i,l..kvl SN STl
where l; denotes the vector obtained by deleting the Ay,--- , Asy1-th rows
from b. Let A/\1 /\S“ denotes the (N —(s+1))x (N —(s+1))-matrix obtained

by deleting the K kl, -+, kg-th rows and the Ay, ---, As11-th columns from
an N x N-matrix A. Then we have

Al As41 €+JCZ Ast1 pkiksi
Coli™ =22 D A BT,
J#k1, ks £k, ks
o Z—l—j cf s+1 k1--ksj
- Z Z }Afkl BM-"AsH
JFEk1, ks £k, K

(s o

m;éklv'“ 7k5 m¢A17 o 9+1

¢ )xg
(-1) et AL As41

XZ ZTG

J#kL, ks LF kL, ks

(1t Gl

A1 Ast1

Lk

m#klf“vks m;é)\l, o 5+1
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S VU S B
a1+aq aq altan
k1>
X
ks> : : : : :
an—+oal an aN+an
1\ Ast1+7 | akiksy
X E (-1) G/\l--v\sH
JFk1, ks
= II = I e
m#k, ks MFAL, " As 41
altaq aq alt+an
k1>
X
ks> :
1 . a0 1
an+aq an anN+an
k k
D S A S
altaq alt+an
. <A1
% <As
1 1 e 1 —Ast1
an+tol anN+an

But, by [31, Lemma 3.1],

A As
S S S A S S
al+ay aq alt+an
k1>
ks> :
an—+tail an aN+an
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_ (_l)N_S_)\erl ( Ay O, >

a)\l e Oé)\erl

k1 ks Ap As+1
V(al’n- V DAV “jaN)V(al,.. V V . ,aN)
)
11 Il (em+an
mFEk1, ks nFEM - Ast1
and
1 ki ks 1
oiter VY aitan
. . <A1
<As
1 1 cee 1 —As41
1 . .o 1
an+ai antan
ky ks A1 As+1
_ (_I)AS“HV(QL $oV L an)Vian, - VY aw)
11 [I (amtan)
m#k1, ks nFEN, - As 41
Therefore

Al Asp1 N—s+1 — +
Crvoke = (1) I - |
m#k, ks MFAAL,  As 1

Viar,-- % -5 . an)Vian, - ¥ - ¥ ay)

H H (am + o)

m#F#k1, ks nFEAL - As 1
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This, together with (6.6), shows that, for s=1,--- /N —1,

(6.7) Ay —(2s41) = Z Z H Cm H Cm

k1<-<ks Mi<-<Ast1 \m#ki, ks MFAXL, - Ast1
" (_ Qy "+ )
125 VIR ) V]
2
ky ks A1 As+1
V(Cq,” VoV ”,OzN)V(Oq,” VAR ..7QN)

11 H (v + )

m#k1, ks nFA 0 Asp1
N
2 -1 —1y— 1
x (H Xm> > CRETED (P CRETED SR
m=1
In particular, in the case s = N — 1, we get
al 1
+ _ —
A=Y (7) X,
p=1 P

by setting p := {k1,--- , ks}°. In addition, for s = 0, formula (6.7) reads

siva= (1) (11 ()

. V(al’...;VaN])VV(ah...C...,aN) <ﬂX72n>X1
[T 1 (em +an) "

m=1n#\

which is verified by an easier computation than that for s > 1. We have
thus proved that

N-1
(6.8) A:ddzz Z Z H Cm H Cm

5=0 k1<--<ks A <-<Asy1 \m#ki, ks MAN -, As 41

y <_ Qpy * O, >
Oé/\1”'a>\s+1
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A
Viay, - ¥ -5 - an)V(ag, - o 8

H H (am + o)

m7£k1 [ 7k5 n#)‘lv'“ 7AS+1

N
x (H X%) Xt XX x
m=1

X

s+1 '

We next seek an expression of Af .. It follows from (6.2) that, for

s=1,---,N — 1, the sum of terms of order 2N — 2s in det(I — B™B7) is
written as

N
det(I — BYB™ )on_os = (—1)VF* (H Xm> X
m=1

t, t, .
a1 Xy a1 Xy
-1 -1 . k1 ks .
Z Xt X, : by o Voo Vo : by|,
i <ol anXn anXn
where @ is the same symbol as before. Because

t

y t, .
a1 X, a1 Xy
. k1 ks .
: bl eV ee e Ve : bN
anvXy anvXn
_ A1 As M As
— Z CRlids Xy Voo Ve Xy
A1 << s
with
A1 As . kq ks .
Ckll...ks e Z ambml cee Ve Ve Z amme
M#N A MEN s
_ )\1...)\5 kl'“ks
= Ak ks B
- + A | | ks
= H €m H Em ’lemks Ghroa|
m#ky,- ks MFAEN -, As
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it follows from the symmetry of the matrix G that
N
(6.9) det(I — BY B )oy_os = (—1)V s (H an) X
m=1

2. 2 I e)| II )

ke <-<ks M <-<As \mz#ki, ks M#N s

2
A1 As —1 —1v-—1 —1
‘le,,_,ﬂs Xplo X X

On the other hand, by (6.5), the sum of terms of the same order in I'y is
computed as

N N
<r2>2NZS:<—1>N+s<HXm>z S
m=1 PR
t

a1X1
: bl...Xk_llekl...

aNXN

"X, "oax,
: va—...Xk_Sleks... bN
aNXN aNXN
N
m=1 k1<-<ks
! CL1X1

k1
j#kh'“vks aNXN

¢ ¢
a1 Xy a1 Xy

an XN an Xy

N
= (_1)N+s (H X?ﬂ) %
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A1 s y—1 —1y—1 —1
Z Z Cklke_; Xkl T st X>\1 e X>\s ’
k1 <-<ks M1 <-<As
with

S e
Chit e

— Z Z dmbml"’kvl"‘

JFkL ks |MFEAL s

_ooh ks Y
Ay — v : CLmme
(0%
M#E, -+, As m M#E -+, As
o b b _d
al1taq a1 altan
_ A1 As
= D> A
JF#k1, ks : :
N & N
an+ai an anN+an
— + )\1 )\s
= [I « I < ‘le ks |
m#k1, ks MFEAL, s
k k +
1 v. L .7 =
a1+aq aq altan
. . <A1
]#klv"'yk‘s : : : : : A
1 B A S
any—+ol an anN+tan
But, by [31, Lemma 3.1(3)],
S S v B o
al+aq (e %1 alt+an
<A1
J#k1, ks : : : : : e
an+oal an an+tan
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o Al..AAS
- }leks

(1 b (—1)N—D BN O Nms) .

akl P ak
Hence

<r2>2N_23=(ﬂXa) DS

m=1 k1<-<ks A1<-<Ag

II )| II e

mky e ks AN, A

) \S

OZ)\ a>\.5 _ _ _ .
((1)N+s _ 14> chll . 'stlX/\ll . "XASI'

2
G>\1...>\S
ki-ks Ce
akl Ozks

This, together with (6.3), (6.9), leads to

sa-(fin) £ v

kp<--<ks A1 <-<As

+
[[ e II )~

m#ky, ks MFAN s
2
AL As Q) Q) -1 —1y -1 -1
)ka s (_akl ozk;) Ky X, Xy X5,
Since, by [31, Lemma 3.1(1)],
ki-ks | — ’
1 H H (o + )
m#k1, ks n# As

we obtain, for s =0, -

-1,
A;N 25 H C:—n
m#kl ok

k‘1< <ks /\1< <As MFENL, s

k ks A As
y (O%...O%> Vieg,-- vV v - an)V(ag,-- V-V - an)
S

Ay - O H H (am + Oén)

m#k1, ks nFEA, A

)\S
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N
« (H X%) Xk_ll"'Xk_le,\_ll”'X/\_sl?
m=1

which is, in the case s =0,

N N
Aby - (H c;c;) P (H
m=1

m=1

Since the constant term is 1 we get

N—-1
EENEEED SED DIED SN B |

xﬁ.

+
II e
5=0 k1<-<ks A1 <-<As m?ékla"' ks m7é)‘17"' As
k1 ks A1 As
v (a)\l a)\s> V(Oél, P A VA ,OCN)V(Oél, P A VAR ’aN)
Qg - Qg H H (ot + )
m#k1, ks nFEAL, As
N
2 -1 —1y -1 -1
< | T] X5 ) x5t Xt x - x0h
m=1
This, combined with (6.8), shows that
At =1
N-1
LD OEDSEDD II e I e
5=0 k1<-<ks A <-<Asy1 \m#Fki, ks M#NL - , As+1
( Qg+ O, >
——— | X
aAl “ .. a)\s+1
2
k1 ks Al As41
V(Oél," \V V,OdN)V(Odl, Ve e \Vi . ,aN) v

H H (Qm + )

m#klz'“ akS n7é)‘17"' v>‘8+1

N

2 -1 —1y—1 -1

<H Xm> Xkl ...st X/\1 ...)()\S+1
m=1
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Y Y (m ol ool

s=0 k1<--<ks M1 <--<As \m#k1, ks MFEN s
(a)\l .. a/\s> "
Qi - Ol
2
kq ks A1 As
V(Oél," Vi V,OdN)V(Odl, VRV ,OCN)

H H (Qm + )

m;éklz'“ ks n;éAlz“' As
N
2 —1 —1y—1 -1
<H Xm> XXX X
m=1
Rewriting this by

T:N—S, {kla"'aks}cz{pb”'7]97'}7
{)\17"' 7/\8+1}c:{q17“' 7q7"—1} or {)\17"' 7)‘8}6:{q17"' 7q7‘}7

we arrive at expression (6.1) for AT. O
As a direct consequence of Proposition 6.1, we have:
COROLLARY 6.2. Ifiky <0, ¢y >0 for {=1,--- N then A* > 0.
We can now establish our main result.

Proor oF THEOREM 1.3. Immediate from Theorem 5.4 and Corol-
lary 6.2 because if ik, < 0, ¢ (0) > 0 then c¢f (t) defined in (1.17) remain
positive. [

7. N-Soliton Solutions

We conclude this paper with three propositions on N-soliton solutions
of uw[n].

PROPOSITION 7.1.  Let n be a (fized) natural number, assume iky < 0,
c}t(O) >0 fort=1,---,N, and define czt(t) by (1.23). Then the function
w(x,t) in each solution (u,w) of wwln] with (1.22) is positive on RZ.
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PRrROOF (Cf: [44, Section 9]). By means of Proposition 6.1 the functions
A*(2,t) with ¢f(t) are expressed in the forms

Ai(l‘,t)zl—i- Z Cai1,~~~,aNXfl"'XXIN7

where C}l’_,,ﬂN are positive functions of t with 0 < oy < 2, (01, -+ ,0n) #

(0,---,0). From this forms we have
(A%A7 - (47)?)

<1+ Z = Xfl--.vaN>
N 2

X Z 01, (ZO@O’() Xfl...XX[N
=1

( Z (ZO‘W} X"N>2
( (Zw@) e

C:I: +

01, ,0ON ~ T1,*,TN

I

l\DI}—l

01, ,GNﬂ'l, TN
2
X (E Qyoy — E Ongg) XflJrTl---XX[NJrTN.
=1 /=1

This shows that A*AL — (A$)? are positive functions on R?. Hence, by
(1.24),

2
w(z,t) = 28— (log A" +1log A7)

82
L (ATAL (AP AAL - (A
‘2< 4 T (ap >>0

on R?. The proof is complete. (J
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PROPOSITION 7.2. Let n be a (fized) even natural number, set
14 "' cosh b(z — bt + 6)
(Cosh b(z — bt + 6) + eb"“P)z
+ 1 -+ e*anrlp COSh b(m _ bnt + (S)
(COSh b(z — bt +6) + e_bn+1p)2

w®(z,t,0, 6, p) := 2b (

(see (1.29)), and assume that by := —2iky; > 0 which are ordered as by >
- > by. Then N-soliton solutions w(x,t) of uw[n] with (1.22) obtained by

Corollary 1.5 admit the asymptotic behaviors

(7.1) lim w(x,t)

t—+oo
4

M=

£
1
S E
< w :‘Cvt?bbéﬁ_b_e ~ Aéja pPe ) t — +o0,

1

wS x,t, b€a6€ Z Afjv pel, t— —o0,
j=0+1

WE

~
Il
_

where ¢, pe, Agj are defined by

ebede —
+
C
(7.2) Vel
o0 e CZ (0) — b, o0t pge—bg(55>
ce_ (0) ’
by — b, by — b;
7.3 et = | L7 Ay =21 2.
(73 o (<:> ;= 2log bﬁbj)

Proor (Cf: Wadati and Toda [47]). By (1.23) we take
(7.4) cE(t) = cE(0)e !
Also we use the notation

(7.5) ye i =x —b"t, £=1,--- N.
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In a coordinate y; we let ¢ — +o00. Then, by
yp:yl—i_(b?_bg)ta p:27"'7N7

we see that e %% — 0 ast — +oo for p > 2. Hence, by virtue of Proposition
6.1,

+ —
(7.6) Ai(:[;’t) — 1+ @6_1)1% + ol ((;))021 (0) e 2b1y1
1 1

— 1 4 2eF b +81) | =21 (nr+01)

as t — 4o00. This, together with the same computation as one for (1.29),
shows that

. . 9? 4 _
tllinoow(x,t) = 2tg?w 922 (log A*(x,t) +log A™ (, 1))

= ws(l’,t,bl,él,pl)

in the coordinate y;.

We next let £ > 2 be fixed and consider the behavior as ¢ — +oo in the
coordinate yy. By

yp:yﬁ‘*‘(bg_b;)tv p:]-’"'7Na

we see that e 011 ... ebe-1vi1 s oo emberYer1 L. eTINUN () as t —

+o00. It follows that the primary terms of A% (z,t) emerge in the three cases
in (6.1):

r=¢—1 and (p1, - - ,pr—1)=(1,---,0—1),

(g1, qe—1) = (1, , £ = 1);
r=~0 and (p1,---p)) = (1, 0), (q, - q-1) =, ,£—1);
r=/¢ and (pl,...’pl):(l’...’,g)7 (CI17"',QZ)=(1,"'7€)-

Since ¢t X, = ¢ (0)e~Pm¥m by (7.4), (7.5), these terms are respectively
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given by
2

a . )2 /—1 -1

Lo —1 —OmYm —OmYm

(L caoe > ) (T o o).
m=1 m=1

am—i—an

m=1 n=1

T =<
=~

2

2 J4
Vie,: -, 00) (H cE (0 mym> (H c$<o>e—bmym> .
[T Item+an) |

m=1 n=1

We denote the first term by e} where A(x,t) is linear in = because of
(7.5). Then, by

Viag, - ,ap) = (o —ayg) -+ (oy—1 — ag)V(oa, -+, 1),
¢ -1 =1 01
H H am + o) = (a1 + ay) -+ - (ap—1 + ap) H H(am—i-an),
m=1n=1 m=1n=1
¢ 0 =1 01
H H m + an) = 2ag(e1 + ag)® - (a1 + a)? H H(am + ),
m=1n=1 m=1n=1
we find that
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1 (b —b;\*
+ = H ( £ J) cf (0)e, (0)e~20e¥e | [1+ 0(1)]
=1
and so, by (7.2), (7.3), that
Ai(m t) = A@it) (1 + 96T e e_be(ye-*-t‘/‘e—biezﬁ;i Agz)
f o elurtmg R i A) ) [1+o(1)]

as t — +00. By observing that 88—;2 log eM@:t)

with (7.6), it follows that

= 0 and comparing the above

t—+o00

-1

1
li t) = ws t.b 6——§:A~
im w(z,t) =w> | z,t,bs, & b’szl s Pt

in the coordinate y, with £ > 2.
Similarly we have, in a coordinate yy,

N
1
. — S § :
tl}gloow(xﬂf) =w x,t, by, bp — b—é o AK]: pe
‘7:

for £ < N—1and = wS(x,t,by, 6N, pn) for £ = N. The proof is complete. [J

Ezample 7.3. Consider the system uw[2] with ag = —4i under the ini-
tial data
(b1, b2, ¢77(0), ¢ (0)) = (3,296, 66F) |

namely

1 1
(61,62, p1,p2) = <—§ log 3, —3 log 3,1, 1> :

This Cauchy problem can be solved by computing A*(z,t) for
cI—L = 9et27e27t cét = 6e*8e8 with the aid of Proposition 6.1 and then
applying (3.11) to the resulting functions. The profile of w(x,4) at t = 4
of the solution w(z,t) is given in Figure 4. Though the profile of w(z,t)
during an interaction region 0 < ¢ < 3 is rather complicated, time t = 4 is
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A
202 =18
2% =8 -
’| I
19) v

Fig. 4. A two-soliton of uw|[2].

sufficiently large in this case so that w(x,4) is well-splitted into two pure
solitons w® for £ = 1,2 in the formula (7.1). Since py > b%rc, {=1,2, both
£

wS are multi-peaked. Here 7. is the critical ratio defined in (1.28).

PROPOSITION 7.4.  On solutions (u, w) obtained in Corollary 1.5, there

exist infinitely many conserved densities. The first four conserved quantities
are written as:

(7.7) / " e, t)dz =0,

~ )
(7.8) / (e, )z =8> (~2iky),
- =1

(7.9) /oo u(z, t)w(z,t)de =0,

N
o 2
(7.10) / (w(z, t)? + ulz, ) 2w(e,t) — o (z,8)?) de = % S (2ik)?.
> (=1
PRrROOF (Cf. Zakharov and Faddeev [48]). Let |k| be sufficiently large

and write the Jost solution fy(z,k) of (L + k?)f = 0 in the form

(7.11) f—‘r(x, k‘) = eika:—f;o o(z,k)dz
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(see [37, page 330]). Insertion of this form into (L+k2)f = 0 yields a Riccati
equation

(7.12) o' 4+ 0% + 2iko — (U +2kQ) = 0.
On the other hand, by virtue of (3.5) with s12 =0,
fal@ k)e ™ = s (k)7 2 (2, k)etke — s11 (k)™

as & — —oo. Hence, by (7.11), we have [ o(z,k)dz = logs1i(k). This
implies that o(x.k) is a conserved density. In view of (1.10), log s11(k) is
expanded for large |k| as

o] Cm
logau(k) =), (2ik)™’

m=0
where
02j207 J=0,1,---,
(7.13) 2 . 2j+1
Cojr1 = 571 (2ike) 7™, j =01,
(=1
Therefore
(7.14) /Oo o(z, k)dr = i Com
‘ e B (2ik)™
m=0
for large |k|.

We expand o(z, k) asymptotically as

m=0
Then, by (7.12), we obtain
[ele) o0 / o0 m
Om+1 (o™ ZV:() OpOm—v
(7.15) doooE Y om0y
= (2ik) A= (2ik) = (2ik)

— (U +2kQ) = 0,
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and also, by (7.14), we get

(7.16) / om(z) =Chy m=0,1,2,---,
where C), are given by (7.13).

In the case m = —1, (7.15) yields 09 = —iQ = %. This, together with
(7.16), leads to (7.7). In the case m = 0, (7.15) and (1.20) yield o1 =
—1(u 4+ w), and so, by (7.16) with m = 1, lead to (7.8). For m =1,2,--- ,
(7.15) is written as

m
Omil = —0h — Z OvOm—u-

v=0

This proves the existence of infinitely many conserved densities
L (b L2 ’+ 1

oo=—-(u+w+-u —uw
2T 4 8
, 1 1

1 |
03 = — <02+Eu - guu’— guw> -1 (w? + v?w — (v)?)

and so on. The trace formulas (7.9), (7.10) are deduced from (7.16) with
m=2,3.
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