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Mono-anabelian Reconstruction of Solvably Closed

Galois Extensions of Number Fields

By Yuichiro Hoshi

Abstract. A theorem of Uchida asserts that every continuous
isomorphism between the Galois groups of solvably closed Galois ex-
tensions of number fields arises from a unique isomorphism between
the solvably closed Galois extensions. In particular, the isomorphism
class of a solvably closed Galois extension of a number field is com-
pletely determined by the isomorphism class of the associated Galois
group. On the other hand, neither the statement of this theorem
nor the proof of this theorem yields an “explicit reconstruction” of
the given solvably closed Galois extension. In the present paper, we
establish a functorial “group-theoretic” algorithm for reconstructing,
from the Galois group of a solvably closed Galois extension of a num-
ber field, the given solvably closed Galois extension equipped with the
natural Galois action.
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Introduction

Let us first recall the following result, i.e., a theorem of Uchida [cf. [8,

Theorem]]:
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For � ∈ {◦, •}, let F� be a number field and F̃� a Galois ex-

tension of F� that is solvably closed, i.e., does not admit any

nontrivial finite abelian extension; write Q�
def
= Gal(F̃�/F�).

Moreover, write

Isom(F̃•/F•, F̃◦/F◦)

for the set of isomorphisms F̃•
∼→ F̃◦ of fields that restrict to

isomorphisms F•
∼→ F◦ of subfields and

Isom(Q◦, Q•)

for the set of continuous isomorphisms Q◦
∼→ Q•. Then the

natural map

Isom(F̃•/F•, F̃◦/F◦) �� Isom(Q◦, Q•)

is bijective.

That is to say, every continuous isomorphism between the Galois groups

of solvably closed Galois extensions of number fields arises from a unique

isomorphism between the given solvably closed Galois extensions. In par-

ticular, it follows from the [surjectivity portion of the] above result that the

isomorphism class of a solvably closed Galois extension of a number field

is completely determined by the isomorphism class of the associated Galois

group.

On the other hand, let us observe that neither the statement of the above

result nor the proof of the above result yields an “explicit reconstruction” of

the given solvably closed Galois extension. That is to say, the above result

does not tell us how to reconstruct explicitly the given solvably closed Galois

extension. Put another way, the above result yields only a bi-anabelian

reconstruction, i.e., in the sense of [6, Introduction] [cf. also [6, Remark

1.9.8]], of solvably closed Galois extensions of number fields. In the present

paper, we discuss a mono-anabelian reconstruction, i.e., in the sense of [6,

Introduction] [cf. also [6, Remark 1.9.8]], of solvably closed Galois extensions

of number fields. In particular, we concentrate on the task of establishing

“group-theoretic software” [i.e., “group-theoretic algorithms”] related to the

Galois groups of solvably closed Galois extensions of number fields.
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We shall say that a field of characteristic zero is absolutely Galois if the

field is Galois over the [unique] minimal subfield of the field. We shall say

that a profinite group is of GSC-type (respectively, of AGSC-type) if the

profinite group is isomorphic to the Galois group of a solvably closed Galois

extension (respectively, an absolutely Galois solvably closed extension) of

a number field [cf. [2, Definition 3.2]]. In [2], the author of the present

paper has established a mono-anabelian reconstruction of absolutely Galois

solvably closed extensions of number fields. More concretely, in [2], the

author of the present paper has established a functorial “group-theoretic”

algorithm [cf. [6, Remark 1.9.8] for more on the meaning the terminology

“group-theoretic”] for constructing, from a profinite group of AGSC-type,

a suitable absolutely Galois solvably closed field equipped with an action of

the profinite group. The purpose of the present paper is to generalize this

reconstruction result to the case of profinite groups of GSC-type. The main

result of the present paper may be summarized as follows [cf. Definition 3.8

and Theorem 3.9]:

Summary. There exists a functorial [cf. Remark 3.9.1] “group-

theoretic” algorithm

G �→ (
G � F̃ (G)

)
for constructing, from a profinite group G of GSC-type, a solvably closed

field F̃ (G) equipped with an action of G such that the subfield F̃ (G)G ⊆
F̃ (G) of F̃ (G) of G-invariants is a number field, and, moreover, the action

of G on F̃ (G) determines a continuous isomorphism

G
∼ �� Gal

(
F̃ (G)/F̃ (G)G

)
.

We thus conclude from this reconstruction result that a profinite group

isomorphic to the Galois group of a solvably closed Galois extension of a

number field admits a ring-theoretic basepoint [i.e., a “ring-theoretic inter-

pretation” or a “ring-theoretic label”] group-theoretically constructed from

the given profinite group. Note that the above result of Uchida plays a

crucial role in the establishment of our reconstruction result. In particular,

the proof of the reconstruction result given in the present paper does not

yield an alternative proof of the above result of Uchida.
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0. Notational Conventions

Monoids. If M is a monoid, then we shall write M� def
= M ∪ {∗M def

= M};
we regard M� as a monoid, that contains M as a submonoid, by setting

∗M · ∗M def
= ∗M , a · ∗M def

= ∗M , and ∗M · a def
= ∗M for every a ∈M .

Modules. If M is a module, then we shall write

M∧ def
= lim←−

n

M/nM

— where the projective limit is taken over the positive integers n.

Profinite Groups. Let G be a profinite group. Then we shall say that G

is slim if the centralizer in G of an arbitrary open subgroup of G is trivial.

If H ⊆ G is a closed subgroup of G, then we shall write CG(H) ⊆ G for the

commensurator of H in G, i.e., the subgroup of G consisting of the elements

g ∈ G such that the intersection H ∩ gHg−1 ∩ g−1Hg is of finite index in

H; we shall say that H is commensurably terminal in G if the equality

H = CG(H) holds. If n is an integer, and M is a topological G-module,

then we shall write Hn(G,M) for the n-th continuous group cohomology of

G with coefficients in M and

∞Hn(G,M)
def
= lim−→

H�G

Hn(H,M)

— where the injective limit is taken over the open subgroups H ⊆ G of G.

Fields. Let K be a field of characteristic zero. Then we shall say that

• the field K is an NF [where “NF” is to be understood as an abbre-

viation for “Number Field”] if K is finite over the [unique] minimal

subfield of K,
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• the field K is absolutely Galois if K is Galois over the [unique] minimal

subfield of K, and

• the field K is solvably closed if there is no nontrivial finite abelian

extension of K.

We shall write K× for the multiplicative module of nonzero elements of

K and K×
def
= K× ∪ {0} for the underlying multiplicative monoid of K.

[So we have a natural isomorphism (K×)�
∼→ K× of monoids that maps

∗K× ∈ (K×)� to 0 ∈ K×.] If, moreover, the field K is solvably closed, then

we shall write Λ(K) for the cyclotome associated to K, i.e.,

Λ(K)
def
= lim←−

n

µn(K)

— where the projective limit is taken over the positive integers n, and we

write µn(K) ⊆ K× for the multiplicative submodule of n-th roots of unity

in K. Thus, one verifies immediately that the cyclotome has a natural

structure of profinite, hence also topological, module and is isomorphic, as

an abstract topological module, to the profinite completion of an infinite

cyclic module.

1. Characterization of Minimal Solvably Closed Fields

In the present §1, we give a certain characterization of the minimal

solvably closed subfield of a given solvably closed field [cf. Lemma 1.4 below].

In the present §1, let F be an NF and F̃ a Galois extension of F that is

solvably closed. We shall write

• QF
def
= Gal(F̃ /F ) for the Galois group of the Galois extension F̃ /F ,

• V
F̃
� VF for the respective sets of nonarchimedean primes of F̃ , F ,

• Vd=1
F ⊆ VF for the subset consisting of nonarchimedean primes of F

of degree one,

• Ifin
F for the group of finite idèles of F ,

• Fprm ⊆ F for the [unique] minimal subfield of F [i.e., the unique

subfield of F of PmF-type — cf. [2, Definition 2.1]], and
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• F slv
prm ⊆ F̃ for the [unique] maximal prosolvable extension of Fprm in

F̃ . [Note that since F̃ is solvably closed, one verifies easily that F slv
prm

is a solvable closure of Fprm.]

Moreover, for each v ∈ VF , we shall write

• Fv for the completion of F at v.

Observe that, for ṽ ∈ V
F̃
, if one writes ṽ|F ∈ VF for the restriction of ṽ to F ,

then since F̃ is solvably closed, it follows immediately from [5, Proposition

2.3, (iii)] [i.e., the Grunwald-Wang theorem — cf., e.g., [7, Theorem 9.2.8]]

that the pair (F̃ , ṽ) determines an algebraic closure of Fṽ|F , together with

a natural inclusion from F̃ into the algebraic closure. For each ṽ ∈ V
F̃
, we

shall write

• F̃ṽ (⊇ F̃ ) for the algebraic closure of Fṽ|F determined by the pair

(F̃ , ṽ).

Definition 1.1. We shall write

H×(F ) ⊆ Ifin
F

(
⊆

∏
v∈VF

F×
v

)

for the Kummer container associated to F [cf. [2, Definition 3.9]], i.e., the

module obtained by forming the fiber product of the diagram of the natural

inclusions of modules

Ifin
F� �

��

(F×)∧ � � ��
∏
v∈VF

(F×
v )∧.

Moreover, we shall write

H×(F )
def
= H×(F )�

[cf. [2, Definition 3.9]]. Thus, the natural inclusion F× ↪→ Ifin
F and the nat-

ural homomorphism F× → (F×)∧ determine an injective homomorphism
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F× ↪→ H×(F ), hence also an injective homomorphism F× ↪→ H×(F ). Let us

regard F×, F× as submonoids of H×(F ), H×(F ) by means of these injective

homomorphisms, respectively:

F× � � ��
� �

��

F×� �

��
H×(F )

� � �� H×(F ).

Lemma 1.2. Let a be an element of H×(F ) and N a positive integer. If

the N -th power aN ∈ H×(F ) is contained in the submodule F× ⊆ H×(F ),

then a ∈ H×(F ) is contained in the submodule F× ⊆ H×(F ).

Proof. Since [one verifies easily that] the natural homomorphism

F× → (F×)∧ factors as the composite of the natural inclusion F× ↪→
H×(F ) and an injective homomorphism H×(F ) ↪→ (F×)∧, to verify Lemma

1.2, it suffices to verify the triviality of the torsion submodule of the coker-

nel of the natural homomorphism F× → (F×)∧. On the other hand, this

triviality follows from [1, Lemma 5.29, (ii)]. This completes the proof of

Lemma 1.2. �

Definition 1.3. Let F ′ be an intermediate field of the extension F̃ /F

finite over F . [So F ′ is an NF.] Then, for each positive integer n, we shall

define two subsets

G(F ′, n) ⊆ F(F ′, n) ⊆ F ′
×

(
⊆ H×(F ′)

)

of F ′
× as follows:

• We shall write G(F ′, 1)
def
= F(F ′, 1)

def
= (Fprm)× (⊆ F ′

×).

• If n ≥ 2, then we shall write G(F ′, n) ⊆ F ′
× for the subset of F ′

× con-

sisting of the elements a ∈ H×(F ′) that satisfy the following condi-

tion: There exists a positive integer N such that the N -th power aN ∈
H×(F ′) is contained in the subset F(F ′, n − 1) ⊆ H×(F ′). [Observe

that it follows from Lemma 1.2 that the inclusion F(F ′, n− 1) ⊆ F ′
×

implies the inclusion G(F ′, n) ⊆ F ′
×.]
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• If n ≥ 2, then we shall write F(F ′, n) ⊆ F ′
× for the [underlying set of

the] subfield of F ′ generated by G(F ′, n) ⊆ F ′
×.

Moreover, we shall write

F(F ′,∞)
def
=

⋃
n

F(F ′, n) ⊆ F ′
×

— where the union is taken over the positive integers n.

Lemma 1.4. The equality, i.e., in F̃×,

⋃
F ′

F(F ′,∞) = (F slv
prm)×

— where the union is taken over the intermediate fields F ′ of the extension

F̃ /F finite over F — holds.

Proof. Let us first verify the inclusion

⋃
F ′

F(F ′,∞) ⊆ (F slv
prm)×.

Now observe that one verifies immediately [cf. also the definition of the

subset “F(F ′, 1)”] that, to verify this inclusion, it suffices to verify the

following assertion:

Claim 1.4.A. For each intermediate field F ′ of F̃ /F finite over

F and each integer n ≥ 2, the inclusion F(F ′, n− 1) ⊆ (F slv
prm)×

implies the inclusion G(F ′, n) ⊆ (F slv
prm)×.

On the other hand, Claim 1.4.A follows immediately from the definition of

the subset “G(F ′, n)”.

Next, we verify the inclusion

⋃
F ′

F(F ′,∞) ⊇ (F slv
prm)×.

Now observe that one verifies immediately that, to verify this inclusion, it

suffices to verify the following assertion:
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Claim 1.4.B. For each subfield E ⊆ F slv
prm of F slv

prm finite and

Galois over Fprm, there exists an intermediate field F ′ of F̃ /F

finite over F such that the inclusion E ⊆ F(F ′,∞) holds.

To this end, let E ⊆ F slv
prm be a subfield of F slv

prm finite and Galois over Fprm.

Then it follows from [2, Lemma 5.6, (iii)] — i.e., in the case where we take

the “(F, F̃ , E)” of [2, Lemma 5.6, (iii)] to be (Fprm, F slv
prm, E) — that, to

verify Claim 1.4.B, we may assume without loss of generality, by replacing

E by a suitable finite extension of E in F slv
prm Galois over Fprm, that there

exists a finite sequence of finite extensions of Fprm contained in E

Fprm = F1 ⊆ F2 ⊆ . . . ⊆ Fn−1 ⊆ Fn = E

such that, for each i ∈ {2, . . . , n}, the extension Fi/Fi−1 is Galois, and,

moreover, one of the following two conditions is satisfied:

(1) The field Fi is obtained by adjoining a root of unity in F̃ to Fi−1.

(2) If one writes di for the degree of the finite extension Fi/Fi−1, then di
is a prime number, and, moreover, the field Fi−1 contains a primitive

di-th root of unity.

In particular, one verifies immediately [cf. also the definition of the subset

“F(F ′, 1)”] that, to verify Claim 1.4.B, it suffices to verify the following

assertion:

Claim 1.4.C. For each i ∈ {2, . . . , n}, if one writes F ′ ⊆ F̃ for

the subfield of F̃ generated by E and F , then the inclusion

Fi−1 ⊆ F(F ′, i− 1) implies the inclusion Fi ⊆ F(F ′, i).

On the other hand, Claim 1.4.C follows immediately from Kummer the-

ory, together with above conditions (1), (2). This completes the proof of

Lemma 1.4. �

2. Reconstruction of Minimal Solvably Closed Fields

In the present §2, we establish a functorial “group-theoretic” algorithm

for reconstructing, from the Galois group of a solvably closed Galois exten-

sion of an NF, the minimal solvably closed subfield of the given solvably

closed extension [cf. Definition 2.6 below and Proposition 2.7 below]. In the
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present §2, let G be a profinite group of GSC-type, i.e., a profinite group iso-

morphic to the Galois group of a solvably closed Galois extension of an NF

[cf. [2, Definition 3.2]]. Thus, by applying some functorial “group-theoretic”

algorithms established in [2, §3] to G, one obtains

• sets Ṽ(G) � V(G) ⊇ Vd=1(G) [cf. [2, Proposition 3.5, (1), (2)]] and

• a monoid H×(G) [cf. [2, Proposition 3.11]].

Moreover, for each D ∈ Ṽ(G) that maps to D ∈ V(G), by applying some

functorial “group-theoretic” algorithms established in [2, §1] and [2, §3] to

D and D, one obtains

• a prime number p(D) [cf. [2, Theorem 1.4, (1)]],

• a positive integer d(D) [cf. [2, Theorem 1.4, (2)]], and

• monoids k×(D)
∼→ k×(D) ⊆ k×(D) [cf. [2, Theorem 1.4, (8), (9)], [2,

Proposition 3.7, (2)]].

Definition 2.1. Let D be an element of Vd=1(G).

(i) For each D ∈ D, since d(D) = 1, we have a topological field k(D) and

a natural identification k(D)× = k×(D) [cf. [3, Definition 5.2]; also

Remark 2.1.1 below]. Then it follows from [2, Proposition 3.7, (i)]

and [3, Theorem 5.4, (i)] that the topological field structures of the

various topological fields k(D) — where D ranges over the elements

of D — and the inclusion of monoids of [2, Proposition 3.7, (2)]

k×(D) ⊆
∏
D∈D

k×(D)

determine

• a topological field structure on the monoid k×(D), whose resulting

topological field we denote by

k(D),

• a natural identification k(D)× = k×(D), and
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• an inclusion of topological rings

k(D) ⊆
∏
D∈D

k(D).

(ii) We shall write

Fprm(D) ⊆ k(D)

for the [unique] minimal subfield of k(D). Note that since the topo-

logical field k(D) is of characteristic zero [cf. [3, Remark 5.2.1]], the

field Fprm(D) is of PmF-type.

(iii) Let E be an element of Vd=1(G). Then we shall write

ιprm
D,E: Fprm(D) ∼ �� Fprm(E)

for the unique [cf. (ii)] isomorphism of fields.

Remark 2.1.1. In light of the importance of the topological field

“k(D)” that appears in Definition 2.1, (i), we pause to give a brief re-

view of the reconstruction algorithm of this field structure on the monoid

k×(D) in the case where d(D) = 1 as follows: Write (Λ(D)(p(D)))pf for the

topological D-module that “corresponds” to the topological Galois module

“Qp(D)(1)” [cf. [2, Theorem 1.4, (9), (iv)], [3, Definition 4.5, (i)]]. Then

since we are working with the assumption that d(D) = 1, by considering

the character on D that “corresponds” to the p(D)-adic cyclotomic char-

acter, we may construct an isomorphism of the monoid k×(D) with the

underlying multiplicative monoid End((Λ(D)(p(D)))pf)× of the topological

field End((Λ(D)(p(D)))pf) [isomorphic to the topological field “Qp(D)”] ob-

tained by forming the algebra of endomorphisms of the topological mod-

ule (Λ(D)(p(D)))pf . In particular, by transporting the additive structure of

the field End((Λ(D)(p(D)))pf), we obtain a field structure on the monoid

k×(D).

Definition 2.2. Let us recall the natural inclusion of monoids [cf. [2,

Proposition 3.11, (ii)]]

H×(G) ⊆
∏

D∈Vd=1(G)

k×(D).
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We shall write

(Fprm)×(G) ⊆ H×(G)

for the subset of H×(G) consisting of the elements a ∈ H×(G) that satisfy

the following condition: For each D, E ∈ Vd=1(G), if one writes aD∈ k×(D),

aE ∈ k×(E) for the images of a ∈ H×(G) in k×(D), k×(E), respectively, then

aD ∈ Fprm(D)× (⊆ k×(D)), aE ∈ Fprm(E)× (⊆ k×(E)), and, moreover, the

equality ιprm
D,E(aD) = aE holds.

Proposition 2.3. Suppose that we are in the situation at the beginning

of the preceding §1. Then the isomorphism of monoids of [2, Proposition

3.11, (i)]

H×(F )
∼ �� H×(QF )

restricts to a bijective map of subsets

(Fprm)×
∼ �� (Fprm)×(QF ).

Proof. This assertion follows immediately from the various definitions

involved. �

Definition 2.4. Let us recall the natural inclusions [cf. [2, Proposition

3.11, (ii)]]

(Fprm)×(G) ⊆ H×(G) ⊆
∏

D∈Vd=1(G)

k×(D) =
∏

D∈Vd=1(G)

k(D)×.

For each positive integer n, we shall define two subsets

G(G,n) ⊆ H×(G), F(G,n) ⊆
∏

D∈Vd=1(G)

k(D)×

as follows:

• We shall write G(G, 1)
def
= F(G, 1)

def
= (Fprm)×(G).
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• If n ≥ 2, then we shall write G(G,n) ⊆ H×(G) for the subset ofH×(G)

consisting of the elements a ∈ H×(G) that satisfy the following condi-

tion: There exists a positive integer N such that the N -th power aN ∈
H×(G) is contained in the subset F(G,n− 1) ⊆

∏
D∈Vd=1(G) k(D)×.

• If n ≥ 2, then we shall write F(G,n) ⊆
∏

D∈Vd=1(G) k(D)× for the

[underlying set of the] subring of
∏

D∈Vd=1(G) k(D) generated by

G(G,n).

Moreover, we shall write

F(G,∞)
def
=

⋃
n

F(G,n) ⊆
∏

D∈Vd=1(G)

k(D)×

— where the union is taken over the positive integers n.

Proposition 2.5. The following assertions hold:

(i) Suppose that we are in the situation at the beginning of the preceding

§1. Then the isomorphism of monoids [cf. [2, Proposition 3.5, (i), (ii)],

[2, Proposition 3.7, (i)]]

∏
v∈Vd=1

F

(Fv)× ∼ ��
∏

D∈Vd=1(QF )

k×(D) =
∏

D∈Vd=1(QF )

k(D)×

restricts to a bijective map of subsets

F(F,∞)
∼ �� F(QF ,∞).

(ii) The subset F(G,∞) ⊆
∏

D∈Vd=1(G) k(D)× is contained in the subset

H×(G) ⊆
∏

D∈Vd=1(G) k(D)×:

F(G,∞) ⊆ H×(G) ⊆
∏

D∈Vd=1(G)

k(D)×.

Proof. Assertion (i) follows immediately from Proposition 2.3, to-

gether with the various definitions involved [cf. also [2, Proposition 3.11,
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(i)]]. Assertion (ii) is a formal consequence of assertion (i) [cf. also [2,

Proposition 3.11, (i)]]. �

Definition 2.6. We shall write

F slv
prm(G)

def
= lim−→

H�G

F(H,∞) ⊆ lim−→
H�G

H×(H)

[cf. Proposition 2.5, (ii)] — where the injective limits are taken over the

open subgroups H ⊆ G of G [cf. also [2, Proposition 3.11, (iii)]] — for the

ring obtained by forming the injective limit of the various rings F(H,∞).

Note that since [it is immediate that] the assignment “G �→ F slv
prm(G)” is

functorial with respect to isomorphisms of profinite groups, the action of G

on G by conjugation induces an action of G on the ring F slv
prm(G).

Proposition 2.7. The following assertions hold:

(i) Suppose that we are in the situation at the beginning of the preceding

§1. Then the various isomorphisms H×(F ′)
∼→ H×(Gal(F̃ /F ′)) of

monoids [cf. [2, Proposition 3.11, (i)]] — where F ′ ranges over the

intermediate fields of the extension F̃ /F finite over F — determine a

QF -equivariant isomorphism of rings

F slv
prm

∼ �� F slv
prm(QF ).

(ii) The ring F slv
prm(G) is a field that is absolutely Galois and solv-

ably closed. In particular, the group of automorphisms of the field

F slv
prm(G) — equipped with the profinite topology determined by the

various subfields of F slv
prm(G) that are NF’s — is a profinite group

of AGSC-type [cf. [2, Definition 3.2]].

Proof. Assertion (i) follows immediately from Lemma 1.4 and Propo-

sition 2.5, (i), together with the various definitions involved. Assertion (ii)

is a formal consequence of assertion (i). �
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3. Mono-anabelian Reconstruction of Solvably Closed Galois Ex-

tensions

In the present §3, we finish establishing a functorial “group-theoretic”

reconstruction algorithm for profinite groups of GSC-type [cf. Definition 3.8

below and Theorem 3.9 below]. In the present §3, we maintain the notational

conventions introduced at the beginning of the preceding §2.

Definition 3.1. Let D be an element of Ṽ(G).

(i) Write G0 for the profinite group of automorphisms of the field F slv
prm(G)

[cf. Proposition 2.7, (ii)]. Then it follows from the Grunwald-Wang

theorem [cf., e.g., [7, Theorem 9.2.8]], together with Proposition 2.7,

(i), and [2, Proposition 3.5, (i)], that the composite

D
� � �� G �� G0

of the natural inclusion D ↪→ G and the action G → G0 of G on

F slv
prm(G) [cf. Definition 2.6] is injective. Moreover, it follows imme-

diately from [5, Proposition 2.3, (v)] and a similar argument to the

argument applied in the proof of [7, Theorem 12.1.9], together with

Proposition 2.7, (i), and [2, Proposition 3.5, (i)], that if one writes

C ⊆ G0 for the commensurator of the image of D in G0 by the above

displayed composite, then

• the subgroup C of G0 is an element of Ṽ(G0) [cf. Proposition 2.7,

(ii), [2, Proposition 3.5, (1)]], and

• the above displayed composite D ↪→ G0 factors through a con-

tinuous open injective homomorphism D ↪→ C.

Thus, we have a field k(C) and a natural identification k(C)× = k×(C)

[cf. Proposition 2.7, (ii), [2, Theorem 1.4, (9)], [2, Proposition 5.8, (3)]].

Moreover, the field structure of the field k(C) and the isomorphism

k×(D)
∼→ k×(C) of monoids induced by the resulting continuous open

injective homomorphism D ↪→ C [cf. [2, Theorem 1.4, (9)]] determine

• a field structure on the monoid k×(D), whose resulting field we

denote by

k(D),



272 Yuichiro Hoshi

and

• a natural identification k(D)× = k×(D).

(ii) We shall write

k(D)
def
= k(D)D

for the subfield of k(D) of D-invariants. Thus, it follows from [2,

Theorem 1.4, (iv)] that we have a natural identification k(D)× =

k×(D).

Proposition 3.2. The following assertions hold:

(i) Suppose that we are in the situation at the beginning of §1. Let ṽ be

an element of V
F̃
. Write v

def
= ṽ|F ∈ VF for the restriction of ṽ ∈ V

F̃

to F and Dṽ ∈ Ṽ(QF ) for the image of ṽ ∈ V
F̃

by the bijective map of

[2, Proposition 3.5, (i)]. Then the commutative diagram of monoids

(Fv)×
� � ��

�
��

(F̃ṽ)×

�
��

k×(Dṽ)
� � �� k×(Dṽ)

— where the horizontal arrows are the natural inclusions, the left-hand

vertical arrow is the isomorphism of monoids of [2, Theorem 1.4, (iii)],

and the right-hand vertical arrow is the isomorphism of monoids of [2,

Theorem 1.4, (iv)] — determines a commutative diagram of fields

Fv
� � ��

�
��

F̃ṽ

�
��

k(Dṽ)
� � �� k(Dṽ)

— where the horizontal arrows are the natural inclusions, and the

right-hand vertical arrow is Dṽ-equivariant.

(ii) Let D be an element of Ṽ(G). Then the action of D on the field k(D)

determines a continuous isomorphism

D
∼ �� Gal

(
k(D)/k(D)

)
.
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Proof. Assertion (i) follows immediately from [2, Proposition 5.8],

together with the various definitions involved. Assertion (ii) is a formal

consequence of assertion (i). �

Definition 3.3. Let D be an element of Ṽ(G). Then we shall say that

a collection

F [D] ⊆ F̃ [D] ⊆ k(D)

of two subfields F [D] ⊆ F̃ [D] of k(D) is of standard type if the following

four conditions are satisfied:

(1) The field F [D] is an NF.

(2) The field F̃ [D] is Galois over F [D] and solvably closed.

(3) For each element of D, the action of the element of D on k(D) pre-

serves the subfield F̃ [D] ⊆ k(D) and induces the identity automor-

phism of the subfield F [D] ⊆ F̃ [D].

(4) There exists a continuous isomorphism Gal(F̃ [D]/F [D])
∼→ G [cf.

(2)] such that the composite of the resulting homomorphism D →
Gal(F̃ [D]/F [D]) [cf. (3)] and the isomorphism Gal(F̃ [D]/F [D])

∼→ G

coincides with the natural inclusion D ↪→ G.

Proposition 3.4 (Uchida). For � ∈ {◦, •}, let F� be an NF and F̃�

a Galois extension of F� that is solvably closed; write Q�
def
= Gal(F̃�/F�).

Moreover, write

Isom(F̃•/F•, F̃◦/F◦)

for the set of isomorphisms F̃•
∼→ F̃◦ of fields that restrict to isomorphisms

F•
∼→ F◦ of subfields and

Isom(Q◦, Q•)

for the set of continuous isomorphisms Q◦
∼→ Q•. Then the natural map

Isom(F̃•/F•, F̃◦/F◦) �� Isom(Q◦, Q•)
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is bijective.

Proof. This assertion follows from [8, Theorem]. �

Lemma 3.5. The following assertions hold:

(i) In the situation of Proposition 3.4, let ṽ◦, ṽ• be elements of V
F̃◦

, V
F̃•

,

respectively. Write D◦ ∈ Ṽ(Q◦), D• ∈ Ṽ(Q•) for the respective im-

ages of ṽ◦, ṽ• by the bijective map of [2, Proposition 3.5, (i)]. Let

α, β be continuous isomorphisms Q◦
∼→ Q• such that the equalities

α(D◦) = β(D◦) = D• hold, and, moreover, the resulting continuous

isomorphism α|D◦ : D◦
∼→ D• coincides with the resulting continuous

isomorphism β|D◦ : D◦
∼→ D•. Then the equality α = β holds.

(ii) A continuous isomorphism Gal(F̃ [D]/F [D])
∼→ G as in condition (4)

of Definition 3.3 is unique.

Proof. First, we verify assertion (i). Write αF , βF for the respective

isomorphisms F̃•
∼→ F̃◦ of fields that correspond to α, β by the bijective map

of Proposition 3.4. Then since α(D◦) = β(D◦) = D•, one verifies easily that

the isomorphisms αF , βF determine isomorphisms (F̃•)ṽ•
∼→ (F̃◦)ṽ◦ of fields

that restrict to isomorphisms (F•)ṽ•|F•
∼→ (F◦)ṽ◦|F◦

of subfields, respectively.

Write αF,v, βF,v for these isomorphisms (F̃•)ṽ•
∼→ (F̃◦)ṽ◦ , respectively; αD,

βD for the continuous isomorphisms D◦
∼→ D• induced by the isomorphisms

αF,v, βF,v : (F̃•)ṽ•
∼→ (F̃◦)ṽ◦ , respectively. Now observe that it follows imme-

diately from the various definitions involved that the equalities α|D◦ = αD,

β|D◦ = βD hold. Thus, it follows from our assumption that αD = βD, which

thus [cf., e.g., [4, Proposition 2.1]] implies that αF,v = βF,v. In particular,

one may conclude that αF = βF , which thus implies that α = β, as desired.

This completes the proof of assertion (i).

Assertion (ii) is a formal consequence of assertion (i) [cf. also [2, Propo-

sition 3.5, (i)]]. This completes the proof of Lemma 3.5. �

Lemma 3.6. The following assertions hold:

(i) Suppose that we are in the situation at the beginning of §1. Let D be

an element of Ṽ(QF ). Write ṽD ∈ VF̃ for the image of D ∈ Ṽ(QF )

by the bijective map of [2, Proposition 3.5, (i)]. Thus, it follows from
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Proposition 3.2, (i), that we have an isomorphism F̃ṽD
∼→ k(D) of

fields. Then the collection consisting of the two subfields of k(D) ob-

tained by forming the images of the two subfields F ⊆ F̃ of F̃ṽD by

the above isomorphism F̃ṽD
∼→ k(D) is of standard type [i.e., with

respect to the profinite group QF of GSC-type].

(ii) Let D be an element of Ṽ(G). Then there exists a unique collection

of two subfields of k(D) of standard type.

Proof. Assertion (i) follows immediately from Proposition 3.2, (i),

together with the various definitions involved. Next, we verify assertion (ii).

The existence portion of assertion (ii) is a formal consequence of assertion

(i) [cf. also Proposition 3.2, (i), [2, Proposition 3.5, (i)]]. To verify the

uniqueness portion of assertion (ii), let

F [D]◦ ⊆ F̃ [D]◦ ⊆ k(D), F [D]• ⊆ F̃ [D]• ⊆ k(D)

be two collections of standard type. Now I claim the following assertion:

Claim 3.6.A. There exists a D-equivariant [cf. condition (3) of

Definition 3.3] isomorphism of fields

ιF̃ : F̃ [D]◦
∼ �� F̃ [D]•

that restricts to an isomorphism F [D]◦
∼→ F [D]• of subfields.

To this end, let us observe that it follows immediately from Proposition 3.4,

together with conditions (1), (2), (4) of Definition 3.3, that there exists an

isomorphism ιF̃ : F̃ [D]◦
∼→ F̃ [D]• of fields that restricts to an isomorphism

F [D]◦
∼→ F [D]• of subfields such that the composite

G Gal(F̃ [D]•/F [D]•)
∼�� ∼ �� Gal(F̃ [D]◦/F [D]◦)

∼ �� G

— where the first and third arrows are the respective unique [cf. Lemma 3.5,

(ii)] isomorphisms of condition (4) of Definition 3.3, and the second arrow is

the isomorphism obtained by conjugating by ιF̃ — is the identity automor-

phism of G. Then one verifies immediately from condition (4) of Definition

3.3, together with the various definitions involved, that the isomorphism ιF̃
is D-equivariant, as desired. This completes the proof of Claim 3.6.A.
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For each � ∈ {◦, •}, write

ι� : F̃ [D]×�
�� ∞H1

(
D,Λ

(
k(D)

))

for the homomorphism obtained by forming the composite

F̃ [D]×� = lim−→
H

(F̃ [D]×�)H �� lim−→
H

H1
(
H,Λ(F̃ [D]�)

)

= ∞H1
(
Gal(F̃ [D]�/F [D]�),Λ(F̃ [D]�)

) ∼ �� ∞H1
(
G,Λ(F̃ [D]�)

)

�� ∞H1
(
D,Λ

(
k(D)

))

— where the injective limits are taken over the open subgroups H ⊆
Gal(F̃ [D]�/F [D]�) of Gal(F̃ [D]�/F [D]�), we write (F̃ [D]×�)H ⊆ F̃ [D]×�
for the submodule of F̃ [D]×� of H-invariants, the first arrow is the homomor-

phism obtained by forming the injective limit of the various homomorphisms

of [2, Lemma 3.10, (vi)], the second arrow is the isomorphism induced by

the unique [cf. Lemma 3.5, (ii)] isomorphism of condition (4) of Definition

3.3, and the third arrow is the homomorphism induced by the natural in-

clusion D ↪→ G and the natural identifications Λ(F̃ [D]�) = Λ(k(D)). Now

I claim the following assertion:

Claim 3.6.B. To complete the verification of the uniqueness por-

tion of assertion (ii), it suffices to verify the commutativity of the

diagram of modules

F̃ [D]×◦
ι◦

�������������

ιF̃ |
F̃ [D]×◦

�

��

∞H1
(
D,Λ

(
k(D)

))
.

F̃ [D]×•

ι•

�������������
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To this end, let us observe that it is immediate that, for each � ∈ {◦, •},
the homomorphism ι� factors as the composite of the natural inclusion

F̃ [D]×� ↪→ k(D)× and the homomorphism

k(D)× = lim−→
H�D

(
k(D)×

)H
�� lim−→
H�D

H1
(
H,Λ

(
k(D)

))

= ∞H1
(
D,Λ

(
k(D)

))
— where the injective limits are taken over the open subgroups H ⊆ D

of D, and we write (k(D)×)H ⊆ k(D)× for the submodule of k(D)× of

H-invariants — obtained by forming the injective limit of the various ho-

momorphisms of [2, Lemma 1.3, (x)] [cf. also Proposition 3.2, (ii)]. Thus,

Claim 3.6.B follows from the injectivity proved in [2, Lemma 1.3, (x)]. This

completes the proof of Claim 3.6.B.

Since the cyclotome Λ(k(D)) associated to k(D) is isomorphic, as an

abstract topological module, to the profinite completion Ẑ of the infinite

cyclic module Z, the automorphism

Λ
(
k(D)

)
= Λ(F̃ [D]◦)

∼ �� Λ(F̃ [D]•) = Λ
(
k(D)

)
induced by the isomorphism ιF̃ is given by multiplication by an element of

Ẑ×, which we denote by a ∈ Ẑ×. Now I claim the following assertion:

Claim 3.6.C. To complete the verification of the uniqueness

portion of assertion (ii), it suffices to verify that a = 1.

To this end, let us observe that it follows immediately from Claim 3.6.A

that we have a commutative diagram of modules

F̃ [D]×◦
ι◦ ��

ιF̃ |
F̃ [D]×◦

�
��

∞H1
(
D,Λ

(
k(D)

))

�
��

F̃ [D]×• ι•
�� ∞H1

(
D,Λ

(
k(D)

))

— where the right-hand vertical arrow is the automorphism given by mul-

tiplication by a ∈ Ẑ×. Thus, Claim 3.6.C follows from Claim 3.6.B. This

completes the proof of Claim 3.6.C.
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For each � ∈ {◦, •}, write F̃ [D]D� for the subfield of F̃ [D]� of D-

invariants. Then it follows immediately from Claim 3.6.A that we have

a commutative diagram of modules

(F̃ [D]D◦ )×
ι◦|(F̃ [D]D◦ )× ��

ιF̃ |
(F̃ [D]D◦ )× �

��

H1
(
D,Λ

(
k(D)

))

�
��

(F̃ [D]D• )×
ι•|(F̃ [D]D• )×

�� H1
(
D,Λ

(
k(D)

))

— where the right-hand vertical arrow is the automorphism given by mul-

tiplication by a ∈ Ẑ×. Thus, it follows immediately from Proposition 3.2,

(ii) [cf. also [2, Lemma 1.5, (i)]], that we have a commutative diagram of

modules

(F̃ [D]D◦ )× ��

ιF̃ |
(F̃ [D]D◦ )× �

��

Z ��
Ẑ

�
��

(F̃ [D]D• )× �� Z ��
Ẑ

— where the left-hand upper, lower horizontal arrows are the [necessarily

nontrivial ] valuations on F̃ [D]D◦ , F̃ [D]D• obtained by forming the restrictions

of a p(D)-adic valuation on k(D), respectively; the right-hand horizontal

arrows Z → Ẑ are the natural homomorphisms; the right-hand vertical

arrow is the automorphism given by multiplication by a ∈ Ẑ×. Thus, since

ιF̃ is an isomorphism of fields [which thus implies that ιF̃ maps p(D) ∈
F̃ [D]D◦ to p(D) ∈ F̃ [D]D• ], one may conclude that a = 1, which thus [cf.

Claim 3.6.C] implies the uniqueness portion of assertion (ii). This completes

the proof of the uniqueness portion of assertion (ii), hence also of assertion

(ii). �

Definition 3.7. Let D, E be elements of Ṽ(G) and

F [D] ⊆ F̃ [D] ⊆ k(D), F [E] ⊆ F̃ [E] ⊆ k(E)

respective unique [cf. Lemma 3.6, (ii)] collections of two subfields of k(D),

k(E) of standard type [cf. Lemma 3.6, (ii)]. Then it follows immediately
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from Proposition 3.4, together with conditions (1), (2), (4) of Definition 3.3,

that there exists an isomorphism F̃ [D]
∼→ F̃ [E] of fields that restricts to an

isomorphism F [D]
∼→ F [E] of subfields such that the composite

G Gal(F̃ [E]/F [E])
∼�� ∼ �� Gal(F̃ [D]/F [D])

∼ �� G

— where the first and third arrows are the respective unique [cf. Lemma 3.5,

(ii)] isomorphisms of condition (4) of Definition 3.3, and the second arrow

is the isomorphism obtained by conjugating by the isomorphism F̃ [D]
∼→

F̃ [E] — is the identity automorphism of G. Observe that it follows from

Proposition 3.4 that such an isomorphism is unique. We shall write

ιD,E : F̃ [D]
∼ �� F̃ [E]

for the unique isomorphism as above.

Definition 3.8. For each D ∈ Ṽ(G), let F [D] ⊆ F̃ [D] ⊆ k(D) be a

unique [cf. Lemma 3.6, (ii)] collection of two subfields of k(D) of standard

type [cf. Lemma 3.6, (ii)]. Then we shall write

F̃ (G) ⊆
∏

D∈Ṽ(G)

F̃ [D]

for the subset of the ring
∏

D∈Ṽ(G) F̃ [D] consisting of the elements (aD)D

such that, for each D1, D2 ∈ Ṽ(G), the equality ιD1,D2(aD1) = aD2 holds.

Note that since [it is immediate that] the assignment “G �→ F̃ (G)” is func-

torial with respect to isomorphisms of profinite groups, the action of G on

G by conjugation induces an action of G on the set F̃ (G). We shall write

F (G)
def
= F̃ (G)G

for the subset of F̃ (G) of G-invariants.

Theorem 3.9. The following assertions hold:

(i) The subset F̃ (G) of the ring
∏

D∈Ṽ(G) F̃ [D] [cf. Definition 3.8] forms

a subring. Moreover, the resulting ring is a solvably closed field.
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(ii) The subset F (G) of the field F̃ (G) [cf. (i)] forms a subfield. Moreover,

the resulting field is an NF.

(iii) The action of G on F̃ (G) determines a continuous isomorphism

G
∼ �� Gal

(
F̃ (G)/F (G)

)
.

(iv) Suppose that we are in the situation at the beginning of §1. Then the

isomorphism of rings [cf. Proposition 3.2, (i), [2, Proposition 3.5, (i)]]

∏
ṽ∈VF̃

F̃ṽ ∼ ��

∏
D∈Ṽ(QF )

k(D)

determines a commutative diagram of fields

F
� � ��

�
��

F̃

�
��

F (QF ) � � �� F̃ (QF )

— where the horizontal arrows are the natural inclusions, and the

right-hand vertical arrow is QF -equivariant.

(v) Let D be an element of Ṽ(G). Then the natural inclusion D ↪→ G

determines a commutative diagram of fields

F (G) � � ��
� �

��

F̃ (G)� �

��
k(D) � � �� k(D)

— where the horizontal arrows are the natural inclusions, and the

right-hand vertical arrow is D-equivariant.

Proof. These assertions follow immediately from Proposition 3.2, (i),

and Lemma 3.6, (i), (ii), together with the various definitions involved. �
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Remark 3.9.1. Let G◦, G• be profinite groups of GSC-type and α :

G◦ → G• a continuous open homomorphism.

(i) Suppose that α is injective. Then one verifies immediately that the

homomorphism α determines a commutative diagram of fields

F (G•)
� � ��

� �

��

F̃ (G•)

�
��

F (G◦)
� � �� F̃ (G◦)

— where the horizontal arrows are the natural inclusions, and the

right-hand vertical arrow is an isomorphism compatible with the re-

spective actions of G•, G◦ relative to α.

(ii) Suppose that α is surjective, and that Ker(α) has no nontrivial fi-

nite abelian quotient. Then one verifies immediately that the subfield

F̃ (G◦)Ker(α) of F̃ (G◦) of Ker(α)-invariants is solvably closed. Thus, it

follows immediately from the construction of “F̃ (−)” that the homo-

morphism α determines a commutative diagram of fields

F (G•)
� � ��

�
��

F̃ (G•)

�
��

F
(
G◦/Ker(α)

) � � ��

�
��

F̃
(
G◦/Ker(α)

)
� �

��
F (G◦)

� � �� F̃ (G◦)

— where the horizontal arrows are the natural inclusions, the up-

per vertical arrows are the isomorphisms induced by the isomorphism

G◦/Ker(α)
∼→ G• determined by α, and the right-hand upper vertical

arrow is compatible with the respective actions of G•, G◦ relative to

α.

(iii) Suppose that Ker(α) has no nontrivial finite abelian quotient. Then

it follows from (i), (ii) that the homomorphism α determines a com-
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mutative diagram of fields

F (G•)
� � ��

� �

��

F̃ (G•)� �

��
F (G◦)

� � �� F̃ (G◦)

— where the horizontal arrows are the natural inclusions, and the

right-hand vertical arrow is compatible with the respective actions of

G•, G◦ relative to α. In particular, one may assert that the “group-

theoretic” algorithm

G �→ (
G � F̃ (G)

)
established in the present paper is functorial with respect to con-

tinuous open homomorphisms of profinite groups of GSC-type whose

kernels have no nontrivial finite abelian quotients.

Remark 3.9.2. Note that, in the establishment of our reconstruction

result, Uchida’s theorem [i.e., Proposition 3.4] plays a crucial role [cf., e.g.,

the proof of Lemma 3.6, (ii)]. In particular, the proof of this reconstruction

result does not yield an alternative proof of Uchida’s theorem.

Remark 3.9.3. We thus conclude from the reconstruction result ob-

tained in the present paper that a profinite group of GSC-type admits a

ring-theoretic basepoint [i.e., a “ring-theoretic interpretation” or a “ring-

theoretic label”] group-theoretically constructed from the given profinite

group.
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