Cellular Chain Complexes of Universal Covers of Some 3-Manifolds

By Takefumi Nosaka

Abstract

For a closed 3-manifold M in a certain class, we give a presentation of the cellular chain complex of the universal cover of M. The class includes all surface bundles, some surgeries of knots in S^{3}, some cyclic branched cover of S^{3}, and some Seifert manifolds. In application, we establish a formula for calculating the linking form of a cyclic branched cover of S^{3}, and develop procedures of computing some Dijkgraaf-Witten invariants.

1. Introduction

In order to investigate a connected CW-complex X with a non-trivial fundamental group $\pi_{1}(X)$, it is important to give a concrete presentation of the cellular chain complex, $C_{*}(\widetilde{X} ; \mathbb{Z})$, and the cup-products of the universal cover \widetilde{X}. In fact, the homology of X with local coefficients and the (twisted) Reidemeister torsion of X are defined from $C_{*}(\widetilde{X} ; \mathbb{Z})$. If X is a $K(\pi, 1)$ space, the chain complex means a projective resolution of the group ring $\mathbb{Z}\left[\pi_{1}(X)\right]$. Thus, it is also of use for computing many invariants to concretely present $C_{*}(\widetilde{X} ; \mathbb{Z})$.

This paper focuses on a class of closed 3-manifolds satisfying the following condition:

Assumption (\dagger). A closed oriented 3-manifold M satisfies that any closed 3-manifold M^{\prime} with a group isomorphism $\pi_{1}(M) \cong \pi_{1}\left(M^{\prime}\right)$ admits a homotopy equivalence $M \simeq M^{\prime}$.

For example, M satisfies this assumption if M is an Eilenberg-MacLane space of type $\left(\pi_{1}(M), 1\right)$, which is equivalent to that M is irreducible and has an infinite fundamental group. In Section 3, we examine many 3-manifolds,

[^0]including all surface bundles, some surgeries of knots in S^{3}, spliced sums, cyclic branched covers of S^{3} with Assumption (\dagger), and some Seifert manifolds. For when M is one of these, we describe presentations of the complex $C_{*}(\widetilde{M} ; \mathbb{Z})$ and of the cup-product $H^{1}(M ; N) \otimes H^{2}\left(M ; N^{\prime}\right) \rightarrow H^{3}\left(M ; N \otimes N^{\prime}\right)$ for any local coefficient modules N, N^{\prime}. The procedure for obtaining such descriptions essentially follows from the work of [Sie, Tro] in terms of "identity", which we review in Section 2. This procedure can also be used to describe the fundamental homology 3 -class, $[M]$ of M; see Remark 2.4.

In application, we give a formula for the linking forms of cyclic branched covers of S^{3} with Assumption (\dagger) (see Propositions 4.1). Furthermore, we develop procedures of computing some Dijkgraaf-Witten invariants from the above descriptions; see $\S 5$. In addition, such descriptions of identities are used for computing knot concordance groups, Reidemeister torsions, and Casson invariants; see [MP, No1, Waki]. There might be other applications from the above presentations of the complexes $C_{*}(\widetilde{M} ; \mathbb{Z})$

Conventional notation. In this paper, every manifold is understood to be smooth, connected, and orientable. By M, we mean a closed 3manifold with orientation $[M]$.

2. Taut Identities and Cup-Products

2.1. Review: identities and cup-products

Let us recall the procedure of obtaining cellular chain complexes of some universal covers, as described in the papers [Sie] and [Tro]. There is nothing new in this section.

We will start by reviewing identities. Take a finitely presented group $\left\langle x_{1}, \ldots, x_{m} \mid r_{1}, \ldots, r_{m}\right\rangle$ of deficiency zero. Setting up the free groups $F:=$ $\left\langle x_{1}, \ldots, x_{m} \mid\right\rangle$ and $P:=\left\langle\rho_{1}, \ldots, \rho_{m} \mid\right\rangle$, let us consider the homomorphism,

$$
\psi: P * F \longrightarrow F \quad \text { defined by } \quad \psi\left(\rho_{j}\right)=r_{j}, \quad \psi\left(x_{i}\right)=x_{i}
$$

An element $s \in P * F$ is an identity if $s \in \operatorname{Ker}(\psi)$ and s can be written as $\prod_{k=1}^{n} \omega_{k} \rho_{j_{k}}^{\epsilon_{k}} \omega_{k}^{-1}$ for some $w_{k} \in F, \epsilon_{k} \in\{ \pm 1\}$ and indices j_{k} 's.

Given a closed 3 -manifold M with a genus- m Heegaard splitting, let us review the cellular complex of the universal cover, \widetilde{M}, of M. A CW-complex structure of M induced by the splitting consists of a single zero-cell, m onehandles, m two-handles, and a single three-handle. Therefore, $\pi_{1}(M)$ has a
group presentation $\left\langle x_{1}, \ldots, x_{m} \mid r_{1}, \ldots, r_{m}\right\rangle$, and the cellular complex of \widetilde{M} is described as

$$
\begin{align*}
C_{*}(\widetilde{M} ; \mathbb{Z}): 0 \rightarrow \mathbb{Z}\left[\pi_{1}(M)\right] \xrightarrow{\partial_{3}} \mathbb{Z}\left[\pi_{1}(M)\right]^{m} \tag{1}\\
\quad \xrightarrow{\partial_{2}} \mathbb{Z}\left[\pi_{1}(M)\right]^{m} \xrightarrow{\partial_{1}} \mathbb{Z}\left[\pi_{1}(M)\right] \rightarrow 0 .
\end{align*}
$$

Here, $\mathbb{Z}\left[\pi_{1}(M)\right]$ is the group ring of $\pi_{1}(M)$. We will explain the boundary maps ∂_{*} in detail. Let $\left\{a_{1}, \ldots, a_{m}\right\},\left\{b_{1}, \ldots, b_{m}\right\}$, and $\{c\}$ denote the canonical bases of $C_{1}(\widetilde{M} ; \mathbb{Z}), C_{2}(\widetilde{M} ; \mathbb{Z})$, and $C_{3}(\widetilde{M} ; \mathbb{Z})$ as left $\mathbb{Z}\left[\pi_{1}(M)\right]$-modules, respectively. Then, as is shown in [Lyn], $\partial_{1}\left(a_{i}\right)=1-x_{i}$, and $\partial_{2}\left(b_{i}\right)=$ $\sum_{k=1}^{m}\left[\frac{\partial r_{i}}{\partial x_{k}}\right] a_{k}$, where $\frac{\partial r_{i}}{\partial x_{k}}$ is the Fox derivative. Moreover, the main result in [Sie] is that there exists an identity s such that $\partial_{3}(c)=\sum_{k}\left[\psi\left(\frac{\partial s}{\partial \rho_{k}}\right)\right] b_{k}$.

Next, we will briefly give a formula for the cup-product in terms of the identity, which is a result of $[\operatorname{Tro}, \S 2.4]$. Let N and N^{\prime} be left $\mathbb{Z}\left[\pi_{1}(M)\right]$ modules. We can define the cochain complex on $C^{*}(M ; N):=$ $\operatorname{Hom}_{\mathbb{Z}\left[\pi_{1}(M)\right]}\left(C_{*}(\widetilde{M} ; \mathbb{Z}), N\right)$ with local coefficients. Recalling the definition of the identity $s=\prod_{k=1}^{n} \omega_{k} \rho_{j_{k}}^{\epsilon_{k}} \omega_{k}^{-1}$, define

$$
\begin{equation*}
D^{\sharp}(c)=\sum_{k=1}^{n} \epsilon_{k}\left(\sum_{\ell=1}^{m}\left[\frac{\partial \omega_{k}}{\partial x_{\ell}}\right] a_{\ell} \otimes \omega_{k} b_{j_{k}}\right) \in C_{1}(\widetilde{M} ; \mathbb{Z}) \otimes C_{2}(\widetilde{M} ; \mathbb{Z}) . \tag{2}
\end{equation*}
$$

Then, for cochains $p \in C^{1}(M ; N)$ and $q \in C^{2}\left(M ; N^{\prime}\right)$, we define a 3-cochain $p \smile q$ by

$$
p \smile q(u c):=(p \otimes q)\left(u D^{\sharp}(c)\right) \in N \otimes_{\mathbb{Z}} N^{\prime} .
$$

Here, $u \in \mathbb{Z}\left[\pi_{1}(M)\right]$. Then, the map

$$
\smile: C^{1}(M ; N) \otimes C^{2}\left(M ; N^{\prime}\right) \rightarrow C^{3}\left(M ; N \otimes \mathbb{Z} N^{\prime}\right) ; \quad(p, q) \mapsto p \smile q
$$

induces the bilinear map on cohomology, which is known to be equal to the usual cup-product. Here, notice that, since the third $\partial_{3} \otimes_{\mathbb{Z}}\left[\pi_{1}(M)\right] \mathrm{id}_{\mathbb{Z}}$ is zero, the 3-class $s \otimes 1 \in C_{*}(\widetilde{M}) \otimes_{\mathbb{Z}\left[\pi_{1}(M)\right]} \mathbb{Z}$ is a generator of $H_{3}\left(C_{*}(\widetilde{M}) \otimes \mathbb{Z}\right) \cong$ $H_{3}(M ; \mathbb{Z}) \cong \mathbb{Z}$, which represents the fundamental 3-class $[M]$; thus, given a $\pi_{1}(M)$-invariant bilinear map $\psi: N \otimes N^{\prime} \rightarrow A$ for some abelian group A, we have the following equality on the pairing of $[M]$:

$$
\begin{equation*}
\psi \circ \smile(p, q)=\psi\langle p \smile q,[M]\rangle \in A \tag{3}
\end{equation*}
$$

for any cochains $p \in C^{1}(M ; N)$ and $q \in C^{2}\left(M ; N^{\prime}\right)$.
In summary, for a description of the complex $C_{*}(\widetilde{M})$ and the cupproduct, it is important to describe an identity from M.

2.2. Taut identities

In order to find such identities giving the complex (1), we review tautness from [Sie]; see also [Waki, Appendix] for a brief explanation. Fix a finite presentation $\left\langle x_{1}, \ldots, x_{m} \mid r_{1}, \ldots, r_{m}\right\rangle$. Let $s=\prod_{k=1}^{2 m} w_{k} \rho_{j_{k}}^{\epsilon_{k}} w_{k}^{-1} \in P * F$ be an identity, where $\rho_{j_{k}}$ and w_{k} can be written in

$$
\rho_{j_{k}}=a_{k, 1}^{\epsilon_{k, 1}} \cdots a_{k, \ell_{k}}^{\epsilon_{k, \ell_{k}}}, \quad w_{k}=b_{k, 1}^{\eta_{k, 1}} \cdots b_{k, n_{k}}^{\eta_{k, n_{k}}}, \quad\left(\epsilon_{i, j}, \eta_{i, j} \in\{ \pm 1\}\right)
$$

Here, $a_{k, \ell}$ and $b_{k, \ell}$ lie in $\left\{x_{1}, \ldots, x_{m}\right\}$. For each $w_{k} \rho_{j_{k}}^{\epsilon_{k}} w_{k}^{-1}$, take the ℓ_{k}-gon $D_{j_{k}}$ whose i-th edge is labeled by $a_{k, i}^{\epsilon_{k, i}}$, and the segment $I_{k}=\left[0, n_{k}\right]$ such that $[i-1, i]$ is labeled by $b_{k, i}^{\eta_{k, i}}$.

Definition 2.1 ([Sie]).
(1) A self-bijection

$$
\mathcal{I}: \cup_{k=1}^{2 m}\left\{(k, 1), \ldots,\left(k, \ell_{k}\right)\right\} \rightarrow \cup_{k=1}^{2 m}\left\{(k, 1), \ldots,\left(k, \ell_{k}\right)\right\}
$$

is called a syllable if $a_{\mathcal{I}(i, j)}=a_{i, j} \in F$ and $\epsilon_{i, j}=-\epsilon_{\mathcal{I}(i, j)} \in\{ \pm 1\}$.
(2) For a syllable \mathcal{I}, consider the following equivalence on the disjoint union $\sqcup_{i=1}^{2 m} D_{r_{i}}$: the interval with labeling $a_{i, j}$ is identified with those with labeling $a_{\mathcal{I}(i, j)}$.
(3) An identity s is said to be taut if there is a syllable \mathcal{I} such that the quotient space $\sqcup_{i=1}^{2 m} D_{r_{i}} / \sim$ of $\sqcup_{i=1}^{2 m} D_{r_{i}}$ subject to the above equivalence \sim is homeomorphic to S^{2}, and if there are injective continuous maps

$$
\kappa_{k}: I_{k}=\left[0, n_{k}\right] \rightarrow \sqcup_{i=1}^{2 m} \partial D_{r_{i}} / \sim, \quad \lambda_{k}:\left[0, \ell_{k}\right) \rightarrow \partial D_{r_{k}} / \sim
$$

satisfying the following condition $\left(^{*}\right)$.
$\left(^{*}\right)$ For each k, the image $\kappa_{k}([i-1, i])$ coincides with an edge labeled by $b_{k, i}$ compatible with the orientations, and $\lambda_{k}([j-1, j])$ coincides with the j-th edge of $D_{r_{k}}$ compatible with the orientations. Furthermore, $\kappa_{k}\left(n_{k}\right)=\lambda_{k}(0)=\lambda_{k}\left(\ell_{k}\right)$.

This paper is mainly based on the following theorem of Sieradski:
TheOrem 2.2 ([Sie]). Given a group presentation $\left\langle x_{1}, \ldots, x_{m}\right|$ $\left.r_{1}, \ldots, r_{m}\right\rangle$ with a taut identity s, there exists a closed 3-manifold M with
a genus-m Heegaard splitting such that the complex $C_{*}(\widetilde{M} ; \mathbb{Z})$ is isomorphic to the complex (1).

In a concrete situation where an identity s is explicitly described, it is not so hard to find such a \mathcal{I} and show the tautness of s (in fact, this check is to construct a 2 -sphere from the disjoint union $\sqcup_{i=1}^{n} D_{r_{i}}$ as a naive pasting). In all the statements in $\S 3$, we will claim that some identities satisfy the taut condition; however, we will also omit the check by elementary complexity, as in other papers on taut identities [BH, Sie, Tro].

Example 2.3. As an easy example of the pasting, we focus on the 3dimensional torus $M=\left(S^{1}\right)^{3}$ with presentation $\pi_{1}(M)=\langle x, y, z \mid r, s, u\rangle$, where $r=[x, y], s=[y, z], u=[z, x]$. As in [Sie], consider the following identity.

$$
W_{\left(S^{1}\right)^{3}}=r\left(y^{-1} u^{-1} y\right) s\left(z^{-1} r z\right) u\left(x^{-1} s^{-1} x\right)
$$

Then, Figure 1 gives a self-bijection and λ_{m}, κ_{m} satisfy the tautness. Moreover, if we attach a 3 -ball in the right hand side in the figure along the boundary of the 3 -cube, the resulting space is equal to $\left(S^{1}\right)^{3}$.

REMARK 2.4. Suppose that we find a taut identity s from $\left\langle x_{1}, \ldots, x_{m}\right|$ $\left.r_{1}, \ldots, r_{m}\right\rangle$, and the resulting 3 -manifold M satisfies Assumption (\dagger). Then, by Assumption (\dagger), the resulting 3-manifold up to homotopy does not depend on the choice of s. In particular, we emphasize that, if M satisfies Assumption (\dagger) and we find a taut identity from $\pi_{1}(M)=\left\langle x_{1}, \ldots, x_{m} \quad\right|$

Fig. 1. The tautness of $\left(S^{1}\right)^{3}$. The right side means the 2 -sphere obtained as the quotient $\sqcup_{i=1}^{6} D_{i} / \sim$. Here, the restriction map on I_{i} of Φ means λ_{i}, and the restriction map on ∂D_{i} of Φ means κ_{i}.
$\left.r_{1}, \ldots, r_{m}\right\rangle$, then the third ∂_{3} and the cup-product are uniquely determined, up to homotopy, by the identity. In fact, if we have another identity ω^{\prime} and consider the associated $C_{*}(\widetilde{M})^{\prime}$, Assumption (\dagger) ensures a chain map $C_{*}(\widetilde{M}) \rightarrow C_{*}(\widetilde{M})^{\prime}$, which induces a homotopy equivalence.

3. Descriptions of Taut Identities of Various 3-Manifolds

In this section, we give several examples of identities from some classes of 3 -manifolds. We will describe the cellular complexes of some universal covers.

3.1. Fibered 3 -manifolds with surface fibers over the circle

First, we will focus on surface bundles over S^{1}. Let Σ_{g} be an oriented closed surface of genus g and $f: \Sigma_{g} \rightarrow \Sigma_{g}$ an orientation-preserving diffeomorphism. The mapping torus, T_{f}, is the quotient space of $\Sigma_{g} \times[0,1]$ subject to the relation $(y, 0) \sim(f(y), 1)$ for any $y \in \Sigma_{g}$. The homeomorphism type of T_{f} depends on the mapping class of f. Conversely, if a closed 3-manifold M is a fibered space over S^{1}, then M is homeomorphic to T_{f} for some f. Since T_{f} is a Σ_{g}-bundle over S^{1}, it is a $K(\pi, 1)$-space and therefore satisfies Assumption (\dagger).

We will construct an identity. Choose a generating set $\left\{x_{1}, \ldots, x_{2 g}\right\}$ of $\pi_{1}\left(\Sigma_{g}\right)$, which gives the isomorphism $\pi_{1}\left(\Sigma_{g}\right) \cong\left\langle x_{1}, \ldots, x_{2 g}\right|\left[x_{1}, x_{2}\right] \ldots$ $\left.\left[x_{2 g-1}, x_{2 g}\right]\right\rangle$. Following a van Kampen argument, we can verify the presentation of $\pi_{1}\left(T_{f}\right)$ as

$$
\begin{align*}
&\left\langle x_{1}, \ldots, x_{2 g}, \gamma\right| r_{i}:=\gamma f_{*}\left(x_{i}\right) \gamma^{-1} x_{i}^{-1}, \quad(i \leq 2 g) \tag{4}\\
& r_{2 g+1}\left.:=\left[x_{1}, x_{2}\right] \cdots\left[x_{2 g-1}, x_{2 g}\right]\right\rangle
\end{align*}
$$

Here, γ represents a generator of $\pi_{1}\left(S^{1}\right)$. For $i \leq 2 g$, define $w_{i}=$ $\prod_{j=1}^{i}\left[x_{2 j-1}, x_{2 j}\right] \in F$, and

$$
\begin{aligned}
W_{i}:= & w_{i-1} \rho_{2 i-1} w_{i-1}^{-1} \cdot\left(w_{i-1} x_{2 i-1}\right) \rho_{2 i}\left(w_{i-1} x_{2 i-1}\right)^{-1} \\
& \cdot\left(w_{i} x_{2 i}\right) \rho_{2 i-1}^{-1}\left(w_{i} x_{2 i}\right)^{-1} \cdot w_{i} \rho_{2 i}^{-1} w_{i}^{-1} .
\end{aligned}
$$

Since f can be isotoped so as to preserve a point $z \in \Sigma_{g}$, we regard the induced map f_{*} as a homomorphism $: \pi_{1}\left(\Sigma_{g} \backslash\{z\}\right) \rightarrow \pi_{1}\left(\Sigma_{g} \backslash\{z\}\right)$. Since
f_{*} is a group isomorphism, there exists a unique element $q_{f} \in\left\langle x_{1}, \ldots, x_{2 g} \mid\right\rangle$ satisfying

$$
f_{*}\left(\left[x_{1}, x_{2}\right] \cdots\left[x_{2 g-1}, x_{2 g}\right]\right)=q_{f}\left(\left[x_{1}, x_{2}\right] \cdots\left[x_{2 g-1}, x_{2 g}\right]\right) q_{f}^{-1} \in\left\langle x_{1}, \ldots, x_{2 g} \mid\right\rangle
$$

Theorem 3.1. Let W be $\left(\Pi_{i=1}^{g} W_{i}\right) \rho_{2 g+1}\left(\gamma q_{f} \rho_{2 g+1}^{-1} q_{f}^{-1} \gamma^{-1}\right) \in F * P$. Then, W is an identity.

Proof. Direct calculation gives $\psi\left(W_{i}\right)=w_{i-1} \gamma\left[f_{*}\left(x_{2 i-1}\right)\right.$, $\left.f_{*}\left(x_{2 i}\right)\right] \gamma^{-1} w_{i}^{-1}$, which implies

$$
\begin{aligned}
\psi\left(\Pi_{i=1}^{g} W_{i}\right) & =\gamma\left(\Pi_{i=1}^{g}\left[f_{*}\left(x_{2 i-1}\right), f_{*}\left(x_{2 i}\right)\right]\right) \gamma^{-1} w_{g}^{-1} \\
& =\gamma \Pi_{i=1}^{g}\left[f_{*}\left(x_{2 i-1}\right), f_{*}\left(x_{2 i}\right)\right] \gamma^{-1}\left(\Pi_{i=1}^{g}\left[x_{2 i-1}, x_{2 i}\right]\right)^{-1}
\end{aligned}
$$

Hence, $\psi(W)=1$ by definition; that is, W turns out to be an identity.

Furthermore, we can verify that W is taut by the definition of W. Hence, from the discussion in $\S 2$, we can readily prove the following corollary.

Corollary 3.2. Under the above terminology, the cellular chain complex of $\widetilde{T_{f}}$ is given by

$$
\begin{aligned}
C_{*}\left(\widetilde{T_{f}} ; \mathbb{Z}\right): 0 \rightarrow \mathbb{Z}\left[\pi_{1}\left(T_{f}\right)\right] \xrightarrow{\partial_{3}} \mathbb{Z}\left[\pi_{1}\left(T_{f}\right)\right]^{2 g+1} \\
\quad \xrightarrow{\partial_{2}} \mathbb{Z}\left[\pi_{1}\left(T_{f}\right)\right]^{2 g+1} \xrightarrow{\partial_{1}} \mathbb{Z}\left[\pi_{1}\left(T_{f}\right)\right] \rightarrow 0 .
\end{aligned}
$$

Here, $\partial_{1}\left(a_{i}\right)=1-x_{i}, \partial_{1}(\gamma)=1-\gamma$, and ∂_{2} and ∂_{3} have the matrix presentations,

$$
\left.\begin{array}{c}
\left(\begin{array}{cc}
\left\{\gamma \frac{\partial f_{*}\left(x_{i}\right)}{\partial x_{j}}-\delta_{i j}\right\}_{1 \leq i, j \leq 2 g} & \left\{1-x_{i}\right\}_{1 \leq i \leq 2 g}^{\text {transpose }} \\
\left\{\frac{\partial r_{2 g+1}}{\partial x_{j}}\right\}_{1 \leq j \leq 2 g} & 0
\end{array}\right) \\
\left(\left\{w_{j-1}-w_{j} x_{2 j}, w_{j-1} x_{2 j-1}-w_{j}\right\}_{1 \leq j \leq g},\right. \\
1-\gamma q_{f}
\end{array}\right) .
$$

Furthermore, the diagonal map $D^{\sharp}(c)$ is represented by

$$
\begin{gathered}
\left(\sum_{i=1}^{g} \sum_{k=1}^{2 g} \frac{\partial w_{i-1}}{\partial x_{k}} a_{k} \otimes w_{i-1} b_{2 i-1}-\frac{\partial\left(w_{i} x_{2 i-1}\right)}{\partial x_{k}} a_{k} \otimes w_{i} x_{2 i} b_{2 i-1}\right. \\
\left.\quad-\frac{\partial\left(w_{i-1} x_{2 i-1}\right)}{\partial x_{k}} a_{k} \otimes w_{-1 i} x_{2 i-1} b_{2 i}+\frac{\partial w_{i}}{\partial x_{k}} a_{k} \otimes w_{i} b_{2 i}\right) \\
\quad-\left(\sum_{k=1}^{2 g} \frac{\partial\left(\gamma q_{f}\right)}{\partial x_{k}} a_{k} \otimes \gamma q_{f} b_{2 g+1}\right)+a_{2 g+1} \otimes\left(1-\gamma q_{f}\right) b_{2 g+1}
\end{gathered}
$$

REMARK 3.3. Corollary 3.2 for every g is a generalization of the result of [Mar]; the paper gives the cellular complexes of $\widetilde{T_{f}}$ only in the case $g=1$. We can verify that Corollary 3.2 with $g=1$ coincides with the results in [Mar].

Finally, we mention the virtually fibered conjecture, which was eventually proven by Wise; see, e.g., [Wise]. This conjecture states that every closed, irreducible, atoroidal 3-manifold M with an infinite fundamental group has a finite cover, which is homeomorphic to T_{f} for some f. Let $d \in \mathbb{N}$ be the degree of the covering. Then, if we can find such a cover $p: T_{f} \rightarrow M$, the pushforward of the above identity W gives an algebraic presentation of $d[M]$.

3.2. Spliced sums and $(p / 1)$ - and $(1 / q)$-surgeries of S^{3} along knots

We will focus on spliced sums and some surgeries of S^{3} along knots and construct taut identities. This section supposes that the reader has basic knowledge of knot theory, as in [Lic, Chapters 1-11].

Let us review spliced sums. Take two knots $K, K^{\prime} \subset S^{3}$ and an orienta-tion-reversing homeomorphism $h: \partial\left(S^{3} \backslash \nu K\right) \rightarrow \partial\left(S^{3} \backslash \nu K^{\prime}\right)$, where νK means an open tubular neighborhood of K. Then, we can define a closed 3 -manifold, $\Sigma_{h}\left(K, K^{\prime}\right)$, as the attaching space $\left(S^{3} \backslash \nu K\right) \cup_{h}\left(S^{3} \backslash \nu K^{\prime}\right)$ with $\partial\left(S^{3} \backslash \nu K\right)$ glued to $\partial\left(S^{3} \backslash \nu K^{\prime}\right)$ by h. This space is commonly referred to as the spliced sum of $\left(K, K^{\prime}\right)$ via h. Spliced sums sometimes appear in discussions on additivity of topological invariants; see, e.g., [BC]. Further, choose the preferred meridian-longitude pair $(\mathfrak{m}, \mathfrak{l})$ (resp. $\left.\left(\mathfrak{m}^{\prime}, \mathfrak{l}^{\prime}\right)\right)$ as a generating set of $\pi_{1} \partial\left(S^{3} \backslash \nu K\right)$ (resp. of $\partial\left(S^{3} \backslash \nu K^{\prime}\right)$). If $h_{*}: \pi_{1} \partial\left(S^{3} \backslash \nu K\right) \rightarrow$
$\pi_{1} \partial\left(S^{3} \backslash \nu K^{\prime}\right)$ is represented by $\left(\begin{array}{ll}0 & 1 \\ 1 & p\end{array}\right)$ (resp. $\left(\begin{array}{cc}1 & 0 \\ q & -1\end{array}\right)$) for some $p, q \in \mathbb{Z}$, we denote $\Sigma_{h}\left(K, K^{\prime}\right)$ by $\Sigma_{p / 1}\left(K, K^{\prime}\right)$ (resp. $\left.\Sigma_{1 / q}\left(K, K^{\prime}\right)\right)$. In particular, if K^{\prime} is the unknot, then $\Sigma_{p / 1}\left(K, K^{\prime}\right)$ and $\Sigma_{1 / q}\left(K, K^{\prime}\right)$ are the closed 3manifolds obtained by $(p / 1)$ - and $(1 / q)$-Dehn surgery on K in S^{3}, respectively.

Since the identities of $\Sigma_{p / 1}\left(K, K^{\prime}\right)$ and $\Sigma_{1 / q}\left(K, K^{\prime}\right)$ will be constructed in an analogous way to [Tro, Page 481], let us review the terminology in [Tro]. Choose a Seifert surface Σ of genus g and a bouquet of circles $W \subset \Sigma$ such that W is a deformation retract of Σ and $\pi_{1}\left(S^{3} \backslash \Sigma\right)$ is a free group. 21. Page. For example, any Seifert surface obtained by a Seifert algorithm admits such a bouquet. Choose a bicollar $\Sigma \times[-1,1]$ of Σ such that $\Sigma \times\{0\}=$ Σ. Let $\iota_{ \pm}: \Sigma \rightarrow S^{3} \backslash \Sigma$ be embeddings whose images are $\Sigma \times\{ \pm 1\}$. Take generating sets $\left\{v_{1}, \ldots, v_{2 g}\right\}$ of $\pi_{1} \Sigma$ and $\left\{x_{1}, \ldots, x_{2 g}\right\}$ of $\pi_{1}\left(S^{3} \backslash \Sigma\right)$, and set $u_{i}^{\sharp}:=\left(\iota_{+}\right)_{*}\left(v_{i}\right)$ and $u_{i}^{b}:=\left(\iota_{-}\right)_{*}\left(v_{i}\right)$, where we may suppose that $\left[v_{1}, v_{2}\right] \cdots\left[v_{2 g-1}, v_{2 g}\right]$ represents a loop of $\pi_{1} \partial \Sigma$; a van Kampen argument yields a presentation

$$
\begin{equation*}
\left\langle x_{1}, \ldots, x_{2 g}, \mathfrak{m} \mid r_{i}:=\mathfrak{m} u_{i}^{\sharp} \mathfrak{m}^{-1}\left(u_{i}^{b}\right)^{-1} \quad(1 \leq i \leq 2 g)\right\rangle \tag{5}
\end{equation*}
$$

of $\pi_{1}\left(S^{3} \backslash K\right)$. Here, \mathfrak{m} is a representative of a meridian in $\pi_{1}\left(S^{3} \backslash K\right)$, and the x_{i} 's lie in the commutator subgroup of $\pi_{1}\left(S^{3} \backslash K\right)$. Since the boundary loops of $\pi_{1} \Sigma$ and $\pi_{1}\left(S^{3} \backslash \Sigma\right)$ are equal by definition, we should notice

$$
\begin{equation*}
\left[u_{1}^{b}, u_{2}^{b}\right] \cdots\left[u_{2 g-1}^{b}, u_{2 g}^{b}\right]=\left[u_{1}^{\sharp}, u_{2}^{\sharp}\right] \cdots\left[u_{2 g-1}^{\sharp}, u_{2 g}^{\sharp}\right] \in \pi_{1}\left(S^{3} \backslash \Sigma\right), \tag{6}
\end{equation*}
$$

which we denote by \mathfrak{l}. In other words, \mathfrak{l} means a preferred longitude of K.
In a parallel way, concerning the other K^{\prime}, we have a generating set $\left\{x_{1}^{\prime}, \ldots, x_{2 g^{\prime}}^{\prime}\right\}$ of $\pi_{1}\left(S^{3} \backslash \Sigma^{\prime}\right)$ and can define appropriate words $\mathfrak{u}_{i}^{\sharp}$ and \mathfrak{u}_{i}^{b} such that

$$
\pi_{1}\left(S^{3} \backslash K^{\prime}\right) \cong\left\langle x_{1}^{\prime}, \ldots, x_{2 g^{\prime}}^{\prime}, \mathfrak{m}^{\prime} \mid r_{i}^{\prime}:=\mathfrak{m}^{\prime} \mathfrak{u}_{i}^{\sharp}\left(\mathfrak{m}^{\prime}\right)^{-1}\left(\mathfrak{u}_{i}^{b}\right)^{-1} \quad\left(1 \leq i \leq 2 g^{\prime}\right)\right\rangle
$$

We also redefine \mathfrak{l}^{\prime} by $\left[\mathfrak{u}_{1}^{b}, \mathfrak{u}_{2}^{b}\right] \cdots\left[\mathfrak{u}_{2 g-1}^{b}, \mathfrak{u}_{2 g}^{b}\right]$.
Before we state Theorem 3.4, we should notice from the van Kampen theorem that the fundamental groups $\pi_{1}\left(\Sigma_{p / 1}\left(K, K^{\prime}\right)\right)$ and $\pi_{1}\left(\Sigma_{1 / q}\left(K, K^{\prime}\right)\right)$ are presented by

$$
\begin{align*}
\left\langle x_{1}, \ldots, x_{2 g}, \mathfrak{m} x_{1}^{\prime}, \ldots, x_{2 g^{\prime}}^{\prime}\right| r_{1}, r_{2}, \ldots, r_{2 g}, r_{1}^{\prime}, \ldots, r_{2 g^{\prime}}^{\prime} & \tag{7}\\
r_{2 g+1} & \left.:=\mathfrak{l m}^{p}\left(\mathfrak{l}^{\prime}\right)^{-1}\right\rangle,
\end{align*}
$$

$$
\begin{aligned}
\left\langle x_{1}, \ldots, x_{2 g}, \mathfrak{m} x_{1}^{\prime}, \ldots, x_{2 g^{\prime}}^{\prime}, \mathfrak{m}^{\prime}\right| r_{1}, r_{2}, \ldots, & r_{2 g}, r_{1}^{\prime}, \ldots, r_{2 g^{\prime}}^{\prime} \\
r_{\dagger} & \left.:=\mathfrak{m l}^{q}\left(\mathfrak{l}^{\prime}\right)^{-1}, r_{\star}:=\mathfrak{m}^{\prime} \mathfrak{l}^{-1}\right\rangle
\end{aligned}
$$

Here, in (7), we identify \mathfrak{m} with \mathfrak{m}^{\prime}. Define w_{i} to be $\prod_{j=1}^{i}\left[u_{2 j-1}^{b}, u_{2 j}^{b}\right]$, and

$$
\begin{aligned}
W_{i}:= & w_{i-1} \rho_{2 i-1} w_{i-1}^{-1} \cdot\left(w_{i-1} u_{2 i-1}^{b}\right) \rho_{2 i}\left(w_{i-1} u_{2 i-1}^{b}\right)^{-1} \\
& \left(w_{i} u_{2 i}^{b}\right) \rho_{2 i-1}^{-1}\left(w_{i} u_{2 i}^{b}\right)^{-1} \cdot w_{i} \rho_{2 i}^{-1} w_{i}^{-1}
\end{aligned}
$$

Likewise, we also define words w_{i}^{\prime} and W_{i}^{\prime}. We consider the two words,

$$
\begin{aligned}
& W_{p / 1}^{K, K^{\prime}}:=\left(\Pi_{i=1}^{g} W_{i}\right) \cdot \rho_{2 g+1} \cdot\left(\Pi_{i=1}^{g^{\prime}} W_{i}^{\prime}\right)^{-1}\left(\mathfrak{m} \rho_{2 g+1}^{-1} \mathfrak{m}^{-1}\right) \\
& W_{1 / q}^{K, K^{\prime}}:=\left(\Pi_{i=1}^{g} W_{i}\right) \cdot \rho_{\star}^{-1} \cdot\left(\mathfrak{m}^{\prime} \rho_{\dagger}\left(\mathfrak{m}^{\prime}\right)^{-1}\right) \cdot\left(\Pi_{i=1}^{g^{\prime}} W_{i}^{\prime}\right) \cdot\left(\mathfrak{l}^{\prime} \rho_{\star}\left(\mathfrak{l}^{\prime}\right)^{-1}\right) \cdot \rho_{\dagger}^{-1}
\end{aligned}
$$

Theorem 3.4. Then, $W_{p / 1}^{K, K^{\prime}}$ and $W_{1 / q}^{K, K^{\prime}}$ are taut identities with respect to the presentations (7) of $\pi_{1}\left(\Sigma_{p / 1}\left(K, K^{\prime}\right)\right)$ and $\pi_{1}\left(\Sigma_{1 / q}\left(K, K^{\prime}\right)\right)$, respectively.

Proof. An immediate computation gives $\psi\left(W_{i}\right)=w_{i-1} \mathfrak{m}\left[u_{2 i-1}^{\sharp}\right.$, $\left.u_{2 i}^{\sharp}\right] \mathfrak{m}^{-1} w_{i}^{-1}$, so that $\psi\left(\Pi_{i=1}^{g} W_{i}\right)=\mathfrak{m} \Pi_{i=1}^{g}\left[u_{2 i-1}^{\sharp}, u_{2 i}^{\sharp}\right] \mathfrak{m}^{-1} w_{g}^{-1}$. Then, $W_{p / 1}^{K, K^{\prime}}$ and $W_{1 / q}^{K, K^{\prime}}$ turn out to be identities by (7). Furthermore, by the definition of $W_{\bullet}^{K, K^{\prime}}$, we verify that $W_{\bullet}^{K, K^{\prime}}$ are taut.

As a corollary, if K^{\prime} is the unknot, we have the complex $C_{*}(\widetilde{M} ; \mathbb{Z})$, where M is the 3 -manifold, $M_{p / 1}(K)$, obtained by $p / 1$-surgery of S^{3} along K :

Corollary 3.5. If $M:=M_{p / 1}(K)$ satisfies Assumption (\dagger), then the boundary maps ∂_{2} and ∂_{3} in the associated complex $C_{*}(\widetilde{M} ; \mathbb{Z})$ in (1) are given by the following matrix presentations:

$$
\begin{gathered}
\left(\begin{array}{cc}
\left\{\mathfrak{m} \frac{\partial u_{i}^{\sharp}}{\partial x_{j}}-\frac{\partial u_{i}^{b}}{\partial x_{j}}\right\}_{1 \leq i, j \leq 2 g} & \left\{1-\frac{\partial \mathfrak{l}}{\partial x_{j}}\right\}_{1 \leq j \leq 2 g}^{\text {transpose }} \\
\left\{\frac{\partial \mathfrak{l}}{\partial x_{j}} \mathfrak{m}^{p}\right\}_{1 \leq j \leq 2 g} & \mathfrak{l} \frac{\mathfrak{m}^{p}}{\partial \mathfrak{m}}
\end{array}\right), \\
\partial_{3}(s)=(1-\mathfrak{m}) b_{2 g+1}+\sum_{i=1}^{g}\left(w_{i-1}-w_{i} u_{2 i}^{b}\right) b_{2 i-1}+\left(w_{i-1} u_{2 i-1}^{b}-w_{i}\right) b_{2 i} .
\end{gathered}
$$

REMARK 3.6. We give a comparison to Theorem 3.9 in [MP]. The authors give an expression of the chain complex $C_{*}(\widetilde{M} ; \mathbb{Z})$, where $M=$ $M_{0 / 1}(K)$. However, the numbers of basis of C_{3}, C_{2}, C_{1} are $2, c+1, c$, respectively, where c is the crossing number of K, while those in Corollary 3.5 are fewer.

Let us recall the cabling conjecture, which predicts that if K is not a cabling knot, then $M_{0}(K)$ is irreducible; this conjecture has been proven for some classes of knots. Since $\pi_{1}\left(M_{0}(K)\right)$ is of infinite order, it is fair to say that most $M_{0}(K)$ satisfy Assumption (\dagger). Incidentally, it is a problem for the future to clarify a taut identity for the (p / q)-surgery for any $p / q \in \mathbb{Q}$.

3.3. Branched covering spaces of S^{3} branched over a knot

Take a knot K in S^{3}, and $d \in \mathbb{N}$. In this subsection, we will give a taut identity of $\pi_{1}\left(B_{K}^{d}\right)$, where we mean by B_{K}^{d} the d-fold cyclic covering space of S^{3} branched over K. We should remark the fact that, if K is a prime knot and $\pi_{1}\left(B_{K}^{d}\right)$ is of infinite order, then B_{K}^{d} is aspherical and therefore admits Assumption (\dagger). Let $p: E_{K}^{d} \rightarrow S^{3} \backslash K$ be the d-fold cyclic covering. For $k \in \mathbb{Z} / d$, let $x_{i}^{(k)}$ be a copy of x_{i} and $u_{i, k}^{\sharp}$ be the word obtained by replacing x_{i} with $x_{i}^{(k)}$ in the word u_{i}^{\sharp}. We similarly define the word $u_{i, k}^{b}$. Then, by using the Reidemeister-Schreier method (see, e.g., [Kab, Proposition 3.1]), it follows from presentation (5) that $\pi_{1}\left(E_{K}^{d}\right)$ is presented by

$$
\begin{align*}
&\left\langle x_{1}^{(k)}, \ldots, x_{2 g}^{(k)}, \overline{\mathfrak{m}} \quad(k \in \mathbb{Z} / d)\right| \overline{\mathfrak{m}} u_{i, k}^{\sharp} \overline{\mathfrak{m}}^{-1}\left(u_{i, k+1}^{\mathrm{b}}\right)^{-1} \tag{8}\\
&(1 \leq i \leq 2 g, k \in \mathbb{Z} / d)\rangle
\end{align*}
$$

Since B_{K}^{d} is obtained from E_{K}^{d} by attaching a solid torus which annihilates the meridian $\overline{\mathfrak{m}}, \pi_{1}\left(B_{K}^{d}\right)$ is presented by the quotient of $\pi_{1}\left(E_{K}^{d}\right)$ subject to $\overline{\mathfrak{m}}=1$; that is,
(9) $\pi_{1}\left(B_{K}^{d}\right) \cong\left\langle x_{1}^{(k)}, \ldots, x_{2 g}^{(k)} \quad(k \in \mathbb{Z} / d)\right| r_{i, k}:=u_{i, k}^{\sharp}\left(u_{i, k+1}^{b}\right)^{-1}$

$$
(1 \leq i \leq 2 g, k \in \mathbb{Z} / d)\rangle
$$

Let F be the free group $\left\langle x_{1}^{(k)}, \ldots, x_{2 g}^{(k)} \quad(k \in \mathbb{Z} / d) \mid\right\rangle$. From (6), we should notice that $\left[u_{1, k}^{b}, u_{2, k}^{b}\right] \cdots\left[u_{2 g-1, k}^{b}, u_{2 g, k}^{b}\right]=\left[u_{1, k}^{\sharp}, u_{2, k}^{\sharp}\right] \cdots\left[u_{2 g-1, k}^{\sharp}, u_{2 g, k}^{\sharp}\right] \in F$ for any $k \in \mathbb{Z} / d$.

Similarly to $\S 3.2$., we will give an identity with respect to the presentation (9). For $1 \leq i \leq g, 1 \leq k \leq d$, define $w_{i, k}=\prod_{j=1}^{i}\left[u_{2 j-1, k+1}^{b}, u_{2 j, k+1}^{b}\right]$, and

$$
\begin{gathered}
W_{i, k}=w_{i-1, k} \rho_{2 i-1, k} w_{i-1, k}^{-1} \cdot\left(w_{i-1, k} u_{2 i-1, k+1}^{b}\right) \rho_{2 i, k}\left(w_{i-1, k} u_{2 i-1, k+1}^{b}\right)^{-1} \\
\left(w_{i, k} u_{2 i, k+1}^{b}\right) \rho_{2 i-1, k}^{-1}\left(w_{i, k} u_{2 i, k+1}^{b}\right)^{-1} \cdot w_{i, k} \rho_{2 i, k}^{-1} w_{i, k}^{-1}
\end{gathered}
$$

Proposition 3.7. Define W to be $\Pi_{k=1}^{d} W_{1, k} W_{2, k} \cdots W_{g, k}$, by the above equality in F. Then, W is a taut identity. In particular, if B_{K}^{d} satisfies Assumption (\dagger), the associated complex in (1) is isomorphic to the cellular chain complex of the universal cover of B_{K}^{d}.

Proof. Direct calculation gives $\psi\left(W_{i, k}\right)=w_{i-1, k}\left[u_{2 i-1, k}^{\sharp}, u_{2 i, k}^{\sharp}\right] w_{i, k}^{-1}$, which deduces

$$
\begin{aligned}
\psi\left(\Pi_{i=1}^{g} W_{i, k}\right) & =\left(\Pi_{i=1}^{g}\left[u_{2 i-1, k}^{\sharp}, u_{2 i, k}^{\sharp}\right]\right) w_{g, k}^{-1} \\
& =\Pi_{i=1}^{g}\left[u_{2 i-1, k}^{\sharp}, u_{2 i, k}^{\sharp}\right]\left(\Pi_{i=1}^{g}\left[u_{2 i-1, k+1}^{b}, u_{2 i, k+1}^{b}\right]\right)^{-1} .
\end{aligned}
$$

Thus, W turns out to be an identity. Furthermore, since we can verify that W is taut by the definition of W, Remark 2.2 readily leads to the latter part.

Example 3.8. Let K be the figure-eight knot. It can be verified that the presentation (5) can be written as

$$
\left\langle x_{1}, x_{2}, \mathfrak{m} \mid \mathfrak{m} x_{1} x_{2} \mathfrak{m}^{-1}=x_{1}, \mathfrak{m} x_{2} x_{1} x_{2} \mathfrak{m}^{-1}=x_{2}\right\rangle .
$$

Thus, by (9), we have

$$
\begin{aligned}
\pi_{1}\left(B_{K}^{d}\right) \cong\left\langle x_{1}^{(i)}, x_{2}^{(i)} \quad(1 \leq i \leq d)\right| & x_{1}^{(i)} x_{2}^{(i)}=x_{1}^{(i+1)} \\
& \left.x_{2}^{(i)} x_{1}^{(i)} x_{2}^{(i)}=x_{2}^{(i+1)} \quad(1 \leq i \leq d)\right\rangle
\end{aligned}
$$

Annihilating $x_{2}^{(i)}$ by using the relation $x_{1}^{(i)} x_{2}^{(i)}=x_{1}^{(i+1)}$, we have

$$
\pi_{1}\left(B_{K}^{d}\right) \cong\left\langle x_{1}^{(1)}, \ldots, x_{1}^{(d)} \mid\left(x_{1}^{(i)}\right)^{-1}\left(x_{1}^{(i+1)}\right)^{2}\left(x_{1}^{(i+2)}\right)^{-1} x_{1}^{(i+1)} \quad(1 \leq i \leq d)\right\rangle
$$

This isomorphism coincides exactly with the result in [KKV, Page 963].

Likewise, we can verify that some groups, called "cyclically presented groups" in [KKV] and references therein, are isomorphic to $\pi_{1}\left(B_{K}^{d}\right)$ for some K and d.

Remark 3.9. As the referee points out, it is reasonable to hope that Proposition 3.7 is true without Assumption (\dagger). In fact, as seen in [Sie], given a Heegaard diagram, we can construct a "squashing map" and a taut identity compatible with the complex (1). Thus, it is a conjecture that we can find an appropriate Heegaard diagram of B_{K}^{d} such that the associated taut identity is equal to the above W.

3.4. 0-Surgery-like spaces from branched covering spaces of S^{3}

Using the notation in the preceding subsection, we can examine the 3 -manifold obtained by the 0 -surgery on the knot $p^{-1}(K) \subset B_{K}^{d}$. The $0-$ surgery appears in the topic of the concordance group including the CassonGordon invariant [CG]. More precisely, regarding the boundary of E_{K}^{d} as a knot in B_{K}^{d}, we consider the 3 -manifold obtained by 0 -surgery on the knot in B_{K}^{d}. Notice from (8) that the fundamental group canonically has a group presentation

$$
\begin{align*}
\left\langle x_{1}^{(k)}, \ldots, x_{2 g}^{(k)} \quad(k \in \mathbb{Z} / d), \overline{\mathfrak{m}}\right| r_{i}^{(k)} \quad(i \leq 2 g, k \in \mathbb{Z} / d) \tag{10}\\
\left.\Pi_{i=1}^{g}\left[u_{2 i-1,1}^{b}, u_{2 i, 1}^{b}\right]\right\rangle .
\end{align*}
$$

Let $\mathfrak{l}^{(k)}:=\Pi_{i=1}^{g}\left[u_{2 i-1, k}^{b}, u_{2 i, k}^{b}\right]$, and consider an analogous presentation

$$
\begin{align*}
\left\langle x_{1}^{(k)}, \ldots, x_{2 g}^{(k)} \quad(k \in \mathbb{Z} / d), \overline{\mathfrak{m}}\right| r_{i}^{(k)} \quad(i \leq 2 g, k \in \mathbb{Z} / d) \tag{11}\\
\left.r_{\ell}:=\mathfrak{l}^{(1)} \mathfrak{l}^{(2)} \ldots \mathfrak{l}^{(d)}\right\rangle .
\end{align*}
$$

Similarly to $\S 3.3$, we can construct an identity. For $i \leq 2 g, k \leq d$, define $z_{k}=\mathfrak{l}^{(1)} \mathfrak{l}{ }^{(2)} \ldots \mathfrak{l}^{(k)}$ and

$$
\begin{gathered}
W_{i, k}=z_{k} w_{i-1, k} \rho_{2 i-1, k} w_{i-1, k}^{-1} z_{k}^{-1} \\
\left(z_{k} w_{i-1, k} u_{2 i-1, k+1}^{b}\right) \rho_{2 i, k}\left(z_{k} w_{i-1, k} u_{2 i-1, k+1}^{b}\right)^{-1} \\
\left(z_{k} w_{i, k} u_{2 i, k+1}^{b}\right) \rho_{2 i-1, k}^{-1}\left(z_{k} w_{i, k} u_{2 i, k+1}^{b}\right)^{-1} \cdot z_{k} w_{i, k} \rho_{2 i, k}^{-1} w_{i, k}^{-1} z_{k}^{-1}
\end{gathered}
$$

In the usual way, we can easily show the following:

Proposition 3.10. Define W to be $\left(\Pi_{k=1}^{d} \Pi_{i=1}^{g} W_{i, k}\right) \cdot \rho_{\ell} \cdot\left(\mathfrak{m} \rho_{\ell}^{-1} \mathfrak{m}^{-1}\right)$. Then, W is a taut identity. In particular, Remark 2.2 ensures that if the fundamental group of a closed 3-manifold satisfying Assumption (\dagger) is isomorphic to (11), then the cellular chain complex of the universal cover is isomorphic to the complex (1).

3.5. Some Seifert fibered spaces over S^{2}

In the last subsection, we will discuss some of the Seifert fibered spaces and Brieskorn manifolds. The theorem of Scott [Sc] shows that the homeomorphism types of such spaces with infinite π_{1} can be detected by the fundamental groups; thus, the spaces satisfy Assumption (\dagger).

Let us state Proposition 3.11. Take integers a_{1}, \ldots, a_{n+1} with $a_{i} \geq 2$, and $\epsilon_{1}, \ldots, \epsilon_{n} \in\{ \pm 1\}$. Let M be a Seifert fibered space of the form

$$
\Sigma\left(0 ;(0,1),\left(a_{1}, \epsilon_{1}\right),\left(a_{2}, \epsilon_{2}\right), \ldots,\left(a_{n}, \epsilon_{n}\right),\left(a_{n+1}, 1\right)\right)
$$

Then, as is classically known, the fundamental group has the presentation

$$
\left\langle x_{1}, \ldots, x_{n+1}, h \mid h x_{i} h^{-1} x_{i}^{-1}, \quad x_{i}^{a_{i}} h^{\epsilon_{i}} \quad(i \leq n) \quad, x_{n+1}^{a_{n+1}} h, \quad x_{1} \cdots x_{n+1}\right\rangle .
$$

Furthermore, let us consider a group G with the presentation

$$
\begin{equation*}
\left\langle x_{1}, \ldots, x_{n} \mid r_{i}:=\left(x_{i} x_{i+1} \cdots x_{n} x_{1} \cdots x_{i-1}\right)^{-a_{n+1}} x_{i}^{\epsilon_{i} a_{i}} \quad(i \leq n)\right\rangle \tag{12}
\end{equation*}
$$

We can easily check that the correspondence $x_{i} \mapsto x_{i}, x_{n+1} \mapsto\left(x_{1} \cdots x_{n}\right)^{-1}$, $h \mapsto x_{1}^{\epsilon_{1} a_{1}}$ gives rise to a group isomorphism $\pi_{1}(M) \cong G$. Therefore, we shall define a taut identity on the presentation (12):

Proposition 3.11. Suppose that $\pi_{1}(M)$ is of infinite order. Define W to be

$$
\rho_{1}\left(x_{1}^{-1} \rho_{1}^{-1} x_{1}\right) \rho_{2}\left(x_{2}^{-1} \rho_{2}^{-1} x_{2}\right) \cdots \rho_{n}\left(x_{n}^{-1} \rho_{n}^{-1} x_{n}\right)
$$

Then, W is a taut identity of the presentation (12).
The proof is similar to the ones above, so we will omit the details.
REmARK 3.12. The taut identity when $n=2$ is presented in [Sie, p. 127]. The paper does not mention the homeomorphism type of the associated 3-manifold; however, Proposition 3.11 implies that the homeomorphism type can be detected by a Seifert structure.

Finally, let us turn to the topic of Brieskorn 3-manifolds. Choose integers $a, b, p, q, m \in \mathbb{Z}$ and $\varepsilon \in\{ \pm 1\}$ satisfying $a p+b q=1$ and $p, q, m>1$. We will focus on the Brieskorn 3-manifold of the form,

$$
\begin{aligned}
M & :=\Sigma(p, q, m p q+\varepsilon) \\
& :=\left\{\left.(x, y, z) \in \mathbb{C}^{3}\left|x^{p}+y^{q}+z^{m p q+\varepsilon}=0, \quad\right| x\right|^{2}+|y|^{2}+|z|^{2}=1\right\}
\end{aligned}
$$

which is an Eilenberg-MacLane space if $1 / p+1 / q+1 /(m p q+\varepsilon)<1$. The manifold is known to be homeomorphic to a 3 -manifold obtained from (ε / m)-surgery on the (p, q)-torus knot $T_{p, q}$. Recall the presentation of $\pi_{1}\left(S^{3} \backslash T_{p, q}\right)$ as $\pi_{1}\left(S^{3} \backslash T_{p, q}\right) \cong\left\langle x, y \mid x^{q}=y^{p}\right\rangle$, and that the meridian \mathfrak{m} and the preferred longitude \mathfrak{l} are identified with $x^{a} y^{b}$ and $\left(x^{a} y^{b}\right)^{-p q} x^{q}$, respectively. Therefore, $\pi_{1}(M)$ admits a genus-two Heegaard decomposition and has the group presentation,

$$
\begin{align*}
& \pi_{1}(M) \cong\langle x, y| r_{1}:=x^{q m}\left(x^{a} y^{b}\right)^{-m p q-\varepsilon} \tag{13}\\
&\left.r_{2}:=\left(x^{a} y^{b}\right)^{m p q+\varepsilon} y^{-p} x^{-q m-q}\right\rangle
\end{align*}
$$

Likewise, we can show the following result:

Proposition 3.13. Suppose $1 / p+1 / q+1 /(m p q+\varepsilon)<1$ as above. Then the following word is a taut identity of the presentation (13).

$$
\rho_{1} \rho_{2}^{-1} \rho_{1}^{-1}\left(x^{q m} y^{-p} x^{-q m-q} \rho_{2} x^{q m+q} y^{p} x^{-q m}\right)
$$

4. First Application to the Linking Forms of Branched Covers

4.1. Review of the linking form and a theorem

Here, we will review the linking form of M for a closed 3-manifold M with $H_{*}(M ; \mathbb{Q}) \cong H_{*}\left(S^{3} ; \mathbb{Q}\right)$. Considering the short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q} / \mathbb{Z} \longrightarrow 0 \tag{14}
\end{equation*}
$$

we can easily check that the Bockstein maps

$$
\beta: H_{2}(M ; \mathbb{Q} / \mathbb{Z}) \cong H_{1}(M ; \mathbb{Z}), \quad \beta: H^{1}(M ; \mathbb{Q} / \mathbb{Z}) \cong H^{2}(M ; \mathbb{Z})
$$

are isomorphisms from the long exact homology sequences. Let $\mathrm{PD}_{M}^{\mathbb{Z}}$ be the Poincaré duality on the integral (co)-homology. We denote by Ω the composite map defined by setting

$$
\begin{aligned}
H_{1}(M ; \mathbb{Z}) \xrightarrow{\mathrm{PD}_{M}^{\mathbb{Z}}} H^{2}(M ; \mathbb{Z}) \xrightarrow{\beta^{-1}} H^{1}(M ; \mathbb{Q} / \mathbb{Z}) \\
\xrightarrow{\mathrm{ev}} \operatorname{Hom}\left(H_{1}(M ; \mathbb{Z}) ; \mathbb{Q} / \mathbb{Z}\right),
\end{aligned}
$$

where the last map is the Kronecker evaluation map. Then, the linking form of M is

$$
\lambda_{M}: H_{1}(M ; \mathbb{Z}) \times H_{1}(M ; \mathbb{Z}) \longrightarrow \mathbb{Q} / \mathbb{Z}
$$

defined by $\lambda_{M}(a, b)=\Omega(a)(b)$. This bilinear map is known to be symmetric and non-singular. This definition goes back to Seifert [Sei], and the form has sometimes appeared in the study of algebraic surgery theory (see, e.g., [Wall]) and the concordance groups of knots [CG]. Recently, the linking form of M can be computed in terms of Heegaard splittings [CFH].

Of particular interest to us is an application to the Casson-Gordon invariant [CG] and a procedure for computing λ_{M} in another way. In what follows, let B_{K}^{d} be the d-fold cyclic covering space of S^{3} branched over a knot K. In the context of the invariant, the linking form of B_{K}^{d} plays an important role: more precisely, it is important to calculate metabolizers of the form; see, e.g., [CG].

Now let us give a matrix presentation of the homology $H_{1}\left(B_{K}^{d} ; \mathbb{Z}\right)$ and state the main theorem. Choose a Seifert surface Σ of K whose genus is g, as in $\S 3.2$.. Then, we have the Seifert form $\alpha: H_{1}(\Sigma ; \mathbb{Z}) \otimes H_{1}(\Sigma ; \mathbb{Z}) \rightarrow \mathbb{Z}$; see [Lic, Chapter 6] for the definition. Let J be the inverse matrix $\left(V-{ }^{t} V\right)^{-1}$, where $\operatorname{det}\left(V-{ }^{t} V\right)=1$ is known (see [Lic, Theorem 6.10]). The matrix presentation is often written as $V \in \operatorname{Mat}(2 g \times 2 g ; \mathbb{Z})$ and is called the Seifert matrix. Consider the following matrices of size $(2 g d \times 2 g d)$:

$$
A:=\left(\begin{array}{ccccc}
-V & 0 & \cdots & 0 & { }^{t} V \\
{ }^{t} V & -V & \cdots & 0 & 0 \\
0 & { }^{t} V & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & { }^{t} V & -V
\end{array}\right)
$$

$$
B:=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & J^{t} V \\
J^{t} V & 0 & \cdots & 0 & 0 \\
0 & J^{t} V & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & J^{t} V & 0
\end{array}\right)
$$

which appear in [Tro, Page 494]. As is known (see [Sei, Tro] or [Lic, Theorem 9.7]), the first homology $H_{1}\left(B_{K}^{d} ; \mathbb{Z}\right)$ is isomorphic to the cokernel of A, i.e., $H_{1}\left(B_{K}^{d} ; \mathbb{Z}\right) \cong \mathbb{Z}^{2 g d} /{ }^{t} A \mathbb{Z}^{2 g d}$. In particular, $\operatorname{det}(A) \neq 0$ if and only if $H_{1}\left(B_{K}^{d} ; \mathbb{Q}\right) \cong 0$. The linking formula of B_{K}^{d} can be algebraically formulated in the above notation as follows:

Theorem 4.1. Suppose that B_{K}^{d} satisfies Assumption (\dagger) and $H_{1}\left(B_{K}^{d} ; \mathbb{Q}\right) \cong 0$. Then, the matrix multiplication $B: \mathbb{Z}^{2 g d} \rightarrow \mathbb{Z}^{2 g d}$ induces an isomorphism $\mathcal{B}: \mathbb{Z}^{2 g d} /{ }^{t} A \mathbb{Z}^{2 g d} \rightarrow \mathbb{Z}^{2 g d} /{ }^{t} A \mathbb{Z}^{2 g d}$ and the linking form $\lambda_{B_{K}^{d}}$ of B_{K}^{d} is equal to the form,

$$
\begin{align*}
\mathbb{Z}^{2 g d} /{ }^{t} A \mathbb{Z}^{2 g d} \times \mathbb{Z}^{2 g d} /{ }^{t} A \mathbb{Z}^{2 g d} & \longrightarrow \mathbb{Q} / \mathbb{Z} ; \tag{15}\\
(v, w) & { }^{t} v a d j(A)^{t} \mathcal{B}^{-1} w / \Delta .
\end{align*}
$$

Here, $\operatorname{adj}(A)$ is the adjugate matrix of A, and Δ is the order $\left|H_{1}\left(B_{K}^{d} ; \mathbb{Z}\right)\right| \in$ \mathbb{N}.

This statement is implicitly connoted in [Sei, Satz I] and [Tro, p. 496] ${ }^{1}$; however, there is no complete proof for this statement in the literature.

Here, let us make a few remarks. Whereas the matrix $\operatorname{adj}(A)^{t} \mathcal{B}^{-1}$ is not always symmetric, the quotient on $\mathbb{Z}^{2 g d} /{ }^{t} A \mathbb{Z}^{2 g d}$ is symmetric. Next, the second condition of $H_{1}\left(B_{K}^{d} ; \mathbb{Q}\right) \cong 0$ is not so strong: indeed, according to [Lic, Corollary 9.8], if any d-th root of unity is not a zero point of the Alexander polynomial of K (e.g., the case d is a prime power), then $H_{1}\left(B_{K}^{d} ; \mathbb{Q}\right) \cong 0$. Furthermore, as the proof and Remark 3.9 imply, one may hope that the theorem is true even if we drop the condition of Assumption (\dagger).

[^1]Proof of Theorem 4.1. It is known [CFH, Lemma 2.5] that the linking form can be formulated in the terminology of cohomology as

$$
\begin{equation*}
\lambda_{M}(a, b)=\left\langle\left(\beta^{-1} \circ \mathrm{PD}_{M}^{\mathbb{Z}}\right)(a) \smile \mathrm{PD}_{M}^{\mathbb{Z}}(b),[M]\right\rangle \tag{16}
\end{equation*}
$$

Here, \smile is the cup-product $H^{1}(M ; \mathbb{Q} / \mathbb{Z}) \otimes H^{2}(M ; \mathbb{Z}) \rightarrow H^{3}(M ; \mathbb{Q} / \mathbb{Z})$.
Let M be B_{K}^{d}, and let R be one of \mathbb{Z}, \mathbb{Q} or \mathbb{Q} / \mathbb{Z} as trivial coefficients. Let $\varepsilon: \mathbb{Z}\left[\pi_{1}(M)\right] \rightarrow \mathbb{Z}$ be the augmentation map. Then, as is known (see [Tro, Proposition 4.1]), by choosing a Seifert surface, the integral matrices $\left\{\varepsilon\left(\frac{\partial u_{i}^{\sharp}}{\partial x_{j}}\right)\right\}_{1 \leq i, j \leq 2 g}$ and $\left\{\varepsilon\left(\frac{\partial u_{i}^{b}}{\partial x_{j}}\right)\right\}_{1 \leq i, j \leq 2 g}$ are equal to V and ${ }^{t} V$, respectively. Let us identify the complex $C^{*}(M ; R)$ in the coefficients R with $C^{*}(\widetilde{M} ; \mathbb{Z}) \otimes_{\mathbb{Z}\left[\pi_{1}(M)\right]} R$ via ε. Then, by presentation (9), the complex $C^{*}(M ; R)$ reduces to

$$
\begin{equation*}
0 \rightarrow C^{0}(M ; \mathbb{Z}) \xrightarrow{0} C^{1}(M ; R) \xrightarrow{A} C^{2}(M ; R) \xrightarrow{0} C^{3}(M ; R) \rightarrow 0 . \tag{17}
\end{equation*}
$$

If $R=\mathbb{Q}$, the matrix A is an isomorphic because of $H^{*}(M ; \mathbb{Q}) \cong H^{*}\left(S^{3} ; \mathbb{Q}\right)$. Therefore, from the definition of the Bockstein inverse map β^{-1} : $C^{2}(M ; \mathbb{Z}) \rightarrow C^{1}(M ; \mathbb{Q} / \mathbb{Z})$ is identified with $\mathbb{Z}^{2 g d} \rightarrow(\mathbb{Q} / \mathbb{Z})^{2 g d} ; v \mapsto$ $\operatorname{adj}(A) v / \Delta$.

Meanwhile, from the formula for the identity W in Proposition 3.7 and the formula (3), the cup-product $\smile: C^{1}(M ; \mathbb{Q} / \mathbb{Z}) \times C^{2}(M ; \mathbb{Z}) \rightarrow$ $C^{3}(M ; \mathbb{Q} / \mathbb{Z}) \cong \mathbb{Q} / \mathbb{Z}$ is considered to be $(\mathbb{Q} / \mathbb{Z})^{2 g d} \times \mathbb{Z}^{2 g d} \rightarrow \mathbb{Q} / \mathbb{Z} ;(v, w) \mapsto^{t}$ $v B w$. The Poincaré duality ensures the non-degeneracy of the cup product on cohomology. In particular, the desired induced map \mathcal{B} is an isomorphism, and is identified with the duality $H_{1}(M ; \mathbb{Z}) \cong H^{2}(M ; \mathbb{Z})$, where $H^{2}(M ; \mathbb{Z})$ is canonically regarded as $\operatorname{Coker}(A)=\mathbb{Z}^{2 g d} / A \mathbb{Z}^{2 g d}$ by (17). Hence, upon the identification $H^{2}(M ; \mathbb{Z}) \cong H_{1}(M ; \mathbb{Z}) \cong \mathbb{Z}^{2 g d} /{ }^{t} A \mathbb{Z}^{2 g d}$, the formula (16) immediately implies that the linking form is equal to the required (15).

4.2. Example computations

It is easier to quantitatively compute kernels rather than cokernels. Let us examine Corollary 4.2 below. Let $\operatorname{Ker}(A)_{\mathbb{Z} / \Delta}$ be $\left\{v \in(\mathbb{Z} / \Delta \mathbb{Z})^{2 g d} \mid A v=\right.$ $\left.0 \in(\mathbb{Z} / \Delta \mathbb{Z})^{2 g d}\right\}$. Consider the linear map

$$
\mathbb{Z}^{2 g d} / A \mathbb{Z}^{2 g d} \longrightarrow \operatorname{Ker}(A)_{\mathbb{Z} / \Delta} ; \quad v \longmapsto \operatorname{adj}(A) v
$$

This map is an isomorphism if $|\Delta| \neq 0$: in fact, with a choice of the section $\mathfrak{s}: \mathbb{Z}^{2 g d} / A \mathbb{Z}^{2 g d} \rightarrow \mathbb{Z}^{2 g d}$, the inverse map is defined by $w \mapsto(A \mathfrak{s}(w)) / \Delta$. In summary, from Theorem 4.1, we immediately have the following:

Corollary 4.2. Let Δ, A, B and $\operatorname{adj}(A)$ be as in Theorem 4.1. Under the supposition in Theorem 4.1, the linking form $\lambda_{B_{K}^{d}}$ of B_{K}^{d} is isomorphic to the bilinear form

$$
\operatorname{Ker}(A)_{\mathbb{Z} / \Delta} \times \operatorname{Ker}(A)_{\mathbb{Z} / \Delta} \longrightarrow \mathbb{Q} / \mathbb{Z} ; \quad(v, w) \longmapsto{ }^{t} \mathfrak{s}(v)^{t} A B w / \Delta^{2}
$$

Example 4.3. Let $p, q, r \in \mathbb{Z}$ be odd numbers. Let K be the Pretzel knot $P(p, q, r)$. When $d=2$, the branched cover B_{K}^{2} is known to be a Seifert fibered space of type $\Sigma(p, q, r)$ over S^{2}. Furthermore, we can choose a Seifert matrix of the form $V=\frac{1}{2}\left(\begin{array}{cc}p+q & q+1 \\ q-1 & q+r\end{array}\right)$, and $\Delta=p q+q r+r p$; see [Lic, Example 6.9].

First, consider the case where p, q, r are relatively prime. Then, $\operatorname{Ker}(A)$ is generated by $(-r-q, q,-r-q, q)$, and we can easily verify that the linking form equal to $2(q+r) / \Delta$.

However, if p, q, r are not relatively prime, $\operatorname{Ker}(A)$ and the linking form are complicated. For example, if $(p, q, r)=(p,-p, p)$, then $\operatorname{Ker}(A) \cong(\mathbb{Z} / p)^{2}$ is generated by $(0, p, 0, p)$ and $(p, 0, p, 0)$; the linking matrix is equal to $\frac{2}{p}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Meanwhile, if $(p, q, r)=(p, p, p)$ and p is not divisible by 3 , then $\operatorname{Ker}(A) \cong \mathbb{Z} / p \oplus \mathbb{Z} / 3 p$ possesses a basis, $v=(0,3 p, 0,3 p), w=$ $\left(3 p+p^{2}, p^{2}, 3 p+p^{2}, p^{2}\right)$. Hence, $\left(\begin{array}{cc}\operatorname{lk}(v, v) & \operatorname{lk}(v, w) \\ \operatorname{lk}(w, v) & \operatorname{lk}(w, w)\end{array}\right)$ can be computed as $\frac{2}{p}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

In a similar way, we can compute many linking forms of d-fold branched covering spaces for small d with the help of a computer program.

5. Second Application to Dijkgraaf-Witten Invariants

As another application, we develop procedures of computing some Dijkgraaf-Witten invariants in terms of identities.

We start by reviewing the Dijkgraaf-Witten invariant [DW]. Let G be a finite group, A a commutative ring, and ψ a group 3-cocycle of G. Denoting by $B G$ an Eilenberg-MacLane space of type $(G, 1)$, we have a classifying $\operatorname{map} \iota: M \hookrightarrow B \pi_{1}(M)$ uniquely up to homotopy. Then, as is known, ψ can
be regarded as a 3-cocycle of $H^{3}(B G ; A)$, and any group homomorphism $f: M \rightarrow G$ canonically gives rise to the composite

$$
\iota^{*} \circ f^{*}: H^{*}(B G ; A) \rightarrow H^{*}\left(B \pi_{1}(M) ; A\right)=H^{*}\left(\pi_{1}(M) ; A\right) \rightarrow H^{*}(M ; A) .
$$

Then, the Dijkgraaf-Witten invariant of M is defined as a formal sum in the group ring $\mathbb{Z}[A]$ by setting

$$
\mathrm{DW}_{\psi}(M):=\sum_{f \in \operatorname{Hom}\left(\pi_{1}(M), G\right)}\left\langle\iota^{*} \circ f^{*}(\psi),[M]\right\rangle \in \mathbb{Z}[A] .
$$

Although the definition seems rather simple or direct, it is not easy to compute $\mathrm{DW}_{\psi}(M)$ except in the case where G is abelian, because it is not trivial to explicitly express $[M]$ and f^{*} (however, see [DW, Wakui] for the abelian case and [No2] for a partially non-abelian case). To the knowledge of the author, there are few examples of Dijkgraaf-Witten invariants when G is non-abelian.

This section develops a method for computing the invariants, and gives non-abelian examples. First, for simplicity, we now restrict on the case $\psi=\gamma \smile \delta$ for some $\gamma \in H^{1}(G ; A)$ and $\delta \in H^{2}(G ; A)$. Take a group homomorphism $f: \pi_{1}(M) \rightarrow G$ and a group presentation $G=\left\langle y_{1}, \ldots, y_{n}\right|$ $\left.s_{1}, \ldots, s_{\ell}\right\rangle$. Then, as in (1), we have a commutative diagram:

Here, the tensors are over $\mathbb{Z}[G]$, and $\partial_{2}^{\prime}\left(b_{i}^{\prime}\right)=\sum_{k=1}^{n}\left[\frac{\partial s_{i}}{\partial y_{k}}\right] a_{k}^{\prime}$.
Example 5.1. Suppose $p, q \in \mathbb{N}$ such that $(p, q)=1$. Let $A=G=\mathbb{Z} / p$, and M be the lens space $L(p, q)$. Then, as is known, $H^{*}(G ; A) \cong \mathbb{Z} / p$, and we can choose appropriate generators $\alpha_{i} \in H^{i}(G ; A) \cong \mathbb{Z} / p$ such that $\alpha_{3}=\alpha_{1} \smile \alpha_{2}$. We fix a presentation $G=\pi_{1}(M)=\langle x \quad| \quad\left|s:=x^{p}\right\rangle$. Then, the taut identity of $L(p, q)$ is known to be $W_{p, q}=s x^{-q} s^{-1} x^{q}$; see [Sie]. Then, for $i \leq 3$, we can regard α_{i} as a map $\mathbb{Z} / p=C_{*}(M ; \mathbb{Z} / p) \rightarrow \mathbb{Z} / p$ that sends a generator to 1 . Then it follows from (2) that the cup product $\smile: H^{1}(L(p, q) ; \mathbb{Z} / p) \times H^{2}(L(p, q) ; \mathbb{Z} / p) \rightarrow \mathbb{Z} / p$ is computed as $(a, b) \mapsto q a b$.

Moreover, for $a \in \mathbb{Z} / p$, if we define $f_{a}: \pi_{1}(M) \rightarrow G$ by setting $x \mapsto a$, then $\operatorname{Hom}\left(\pi_{1}(M), G\right)$ is equal to $\left\{f_{a} \mid a \in \mathbb{Z} / p\right\}$, and we can compute

$$
\left\langle f_{a}^{*}\left(\alpha_{3}\right), \iota_{*}[M]\right\rangle=\left\langle f_{a}^{*}\left(\alpha_{1} \smile \alpha_{2}\right), \iota_{*}[M]\right\rangle=\left\langle a \alpha_{1} \smile a \alpha_{2}, \iota_{*}[M]\right\rangle=q a^{2}
$$

In conclusion,

$$
\mathrm{DW}_{\alpha_{3}}(L(p, q))=\sum_{a \in \mathbb{Z} / p} 1\left\{q a^{2}\right\} \in \mathbb{Z}[\mathbb{Z} / p]
$$

In a similar way, if M is another manifold such that the cohomology ring is known, we can compute $\mathrm{DW}_{\alpha_{3}}(M)$ for $G=\mathbb{Z} / p$. Comparing with [DW, Wakui] as original computations, the above computation seems easier.

Example 5.2. Let m, n be natural numbers such that m is relatively prime to $6 n$. Let G be the non-abelian group of order m^{3} which has a group presentation

$$
\begin{equation*}
\left\langle x, y, z \mid x^{m}, y^{m}, z^{m}, s:=x z x^{-1} z^{-1}, t:=y z y^{-1} z^{-1}, u:=z y x y^{-1} x^{-1}\right\rangle \tag{18}
\end{equation*}
$$

The (co)-homology of G is known (see, e.g., [Lea]). As a result, $H_{1}(G ; \mathbb{Z}) \cong$ $(\mathbb{Z} / m)^{2}$. Dually, the first cohomology $H^{1}(G ; \mathbb{Z} / m) \cong(\mathbb{Z} / m)^{2}$ is generated by the maps α and β defined by $\alpha(x)=\beta(y)=1$ and $\alpha(y)=\beta(x)=0$. Furthermore, the Massey product $\langle\alpha, \beta, \alpha\rangle$ and the product $\psi:=\beta \smile$ $\langle\alpha, \beta, \alpha\rangle$ are known to be non-trivial. The equality $\psi=-\alpha \smile\langle\beta, \alpha, \beta\rangle$ is also known. Since the cup product $C^{1} \otimes C^{1} \rightarrow C^{2}$ is well described in [Tro, $\S 2.4]$, the Massey product $\langle\alpha, \beta, \alpha\rangle$ can be, by definition, regarded as the $\operatorname{map} C_{2}(G ; \mathbb{Z} / m) \rightarrow \mathbb{Z} / m$ by setting

$$
\begin{equation*}
x^{m} \mapsto 0, \quad y^{m} \mapsto 0, \quad z^{m} \mapsto 0, \quad s \mapsto 0, \quad t \mapsto 0, \quad u \mapsto 2 . \tag{19}
\end{equation*}
$$

On the other hand, for simplicity, we specialize to the Seifert manifolds of type $M_{m, n}:=\Sigma(0,(1,0),(m, 1),(m,-1),(n,-1))$ over S^{2}, whose fundamental groups are presented by

$$
\pi_{1}\left(M_{m}\right)=\left\langle x_{1}, x_{2} \mid r_{1}:=x_{1}^{m}\left(x_{1}^{-1} x_{2}^{-1}\right)^{n}, r_{2}:=x_{2}^{m}\left(x_{2}^{-1} x_{1}^{-1}\right)^{n}\right\rangle
$$

By Proposition 3.11, the identity is $W:=r_{2} x_{2} r_{2}^{-1} x_{2}^{-1} r_{1} x_{1} r_{1}^{-1} x_{1}^{-1}$. We further analyze the set $\operatorname{Hom}\left(\pi_{1}\left(M_{m, n}\right), G\right)$. For $a, b, c \in \mathbb{Z} / m$, consider the homomorphism $f_{a, b, c}: \pi_{1}\left(M_{m, n}\right) \rightarrow G$ defined by

$$
f_{a, b, c}\left(x_{1}\right):=x^{a} y^{b} z^{c}, \quad f_{a, b, c}\left(x_{2}\right):=x^{-a} y^{-b} z^{-c+a b}
$$

It is not so hard to check the bijectivity of $(\mathbb{Z} / m)^{3} \leftrightarrow \operatorname{Hom}\left(\pi_{1}\left(M_{m, n}\right), G\right)$ which sends (a, b, c) to $f_{a, b, c}$. Then, the conclusion is as follows:

Proposition 5.3. Let ψ be $\beta \smile\langle\alpha, \beta, \alpha\rangle \in H^{3}(G, \mathbb{Z} / m)$. Let $m \in \mathbb{Z}$ be relatively prime to $6 n$. Then, upon the identification $(\mathbb{Z} / m)^{3} \leftrightarrow$ $\operatorname{Hom}\left(\pi_{1}\left(M_{m, n}\right), G\right)$, the Dijkgraaf-Witten invariant is equal to

$$
\mathrm{DW}_{\psi}\left(M_{m, n}\right)=\sum_{(a, b, c) \in(\mathbb{Z} / m)^{3}} 1\{n(2 a b c-a(a-1) b(b-1))\} \in \mathbb{Z}[\mathbb{Z} / m]
$$

Proof. Recall from (1) that the basis of $C_{2}\left(\widetilde{M_{m, n}}\right) \cong \mathbb{Z}\left[\pi_{1}\left(M_{m}\right)\right]^{2}$ is denoted by b_{1}, b_{2}, where b_{i} corresponds to the relator r_{i}. We now analyse $\left(f_{a, b, c}\right)_{*}\left(b_{1}\right) \in C_{2}(G ; \mathbb{Z} / m)$. We can easily check that $f_{a, b, c}\left(r_{i}\right)$ is transformed to $x^{a m} y^{b m} z^{c m(m+1) / 2}$ by the above relators s, t, u. Let us define $N_{b_{i}} \in \mathbb{Z}$ to be the numbers of applying u when we transform $\left(f_{a, b, c}\right)\left(r_{i}\right)$ by $x^{m a} y^{b m} z^{c m(m+1) / 2}$. Then, by (19), the pairing $\left\langle\langle\alpha, \beta, \alpha\rangle,\left(f_{a, b, c}\right)_{*}\left(b_{1}\right)\right\rangle$ is equal to $2 N_{b_{1}}$. From the definition of $N_{b_{1}}$, a little complicated computation can lead to

$$
N_{b_{1}}=\frac{m(m+1) a c}{2}+\left(\sum_{i=1}^{m-1} \frac{i a(i a-1)}{2}\right)+n a c-\frac{n a(a-1)(b-1)}{2} \in \mathbb{Z}
$$

Since m is relatively prime to $6 n$, we can easily check the first and second terms to be zero modulo m. Hence, using the above description of W and the formula (2), we have

$$
\begin{aligned}
\left\langle\psi,\left(f_{a, b, c}\right)_{*}\left[M_{m, n}\right]\right\rangle & =0+b \cdot 2 N_{b_{1}}-0 \cdot N_{b_{2}}+0 \\
& =b(2 n a c-n a(a-1)(b-1)) \in \mathbb{Z} / m
\end{aligned}
$$

which immediately leads to the conclusion.
The above computation is relatively simple, since so are the presentations of $\pi_{1}(M)$ and G; however, a similar computation seems to be harder if $\pi_{1}(M)$ is complicated.

In contrast, we conclude this paper by suggesting another procedure of computing $\mathrm{DW}_{\psi}(M)$, which is implicitly discussed in [No1, §4]. Hereafter $\psi \in H^{3}(G ; A)$ may be an arbitrary 3-cocycle.

Let $C_{*}^{\mathrm{nh}}(G ; \mathbb{Z})$ be the normalized homogenous complex of G, which is defined as the quotient \mathbb{Z}-free module of $\mathbb{Z}\left[G^{n+1}\right]$ subject to the relation $\left(g_{0}, \ldots, g_{n}\right) \sim 0$ if $g_{i}=g_{i+1}$ for some i; see [Bro, 19 page]. Assume that we know an explicit expression of $\psi: G^{4} \rightarrow A$ as an element of $C_{\mathrm{nh}}^{3}(G, A)$. When $* \leq 3$, we now define a chain map $c_{*}: C_{n}(\widetilde{M} ; \mathbb{Z}) \rightarrow C_{n}^{\mathrm{nh}}\left(\pi_{1}(M) ; \mathbb{Z}\right)$ as follows. Let c_{0} be the identity map. Let $A \in \mathbb{Z}\left[\pi_{1}(M)\right]$ be any element. Define $c_{1}\left(A x_{i}\right):=\left(A, A x_{i}\right)$. If r_{i} is expanded as $x_{i_{1}}^{\epsilon_{1}} x_{i_{2}}^{\epsilon_{2}} \cdots x_{i_{n}}^{\epsilon_{n}}$ for some $\epsilon_{k} \in\{ \pm 1\}$, we define

$$
\begin{aligned}
& c_{2}\left(A r_{i}\right)=\sum_{m: 1 \leq m \leq n} \epsilon_{m}\left(A, A x_{i_{1}}^{\epsilon_{1}} x_{i_{2}}^{\epsilon_{2}} \cdots x_{i_{m-1}}^{\epsilon_{m-1}} x_{i_{m}}^{\left(\epsilon_{m}-1\right) / 2}\right. \\
&\left.A x_{i_{1}}^{\epsilon_{1}} x_{i_{2}}^{\epsilon_{2}} \cdots x_{i_{m-1}}^{\epsilon_{m-1}} x_{i_{m}}^{\left(\epsilon_{m}+1\right) / 2}\right) \in C_{2}^{\mathrm{nh}}\left(\pi_{1}(M) ; \mathbb{Z}\right)
\end{aligned}
$$

Then, we can easily verify $\partial_{1}^{\Delta} \circ c_{1}=c_{0} \circ \partial_{1}$ and $\partial_{2}^{\Delta} \circ c_{2}=c_{1} \circ \partial_{2}$. Let $\mathcal{O}_{M} \in C_{3}(\widetilde{M} ; \mathbb{Z})$ be the basis. Notice that $\partial_{2}^{\Delta} \circ c_{2} \circ \partial_{3}\left(\mathcal{O}_{M}\right)=c_{1} \circ \partial_{2} \circ$ $\partial_{3}\left(\mathcal{O}_{M}\right)=0$, that is, $c_{2} \circ \partial_{3}\left(\mathcal{O}_{M}\right)$ is a 2 -cycle. If we expand $c_{2} \circ \partial_{3}\left(\mathcal{O}_{M}\right)$ as $\sum n_{i}\left(g_{0}^{i}, g_{1}^{i}, g_{2}^{i}\right)$ for some $n_{i} \in \mathbb{Z}, g_{j}^{i} \in G$, then $\mathcal{O}_{M}^{\prime}:=-\sum n_{i}\left(1, g_{0}^{i}, g_{1}^{i}, g_{2}^{i}\right)$ satisfies $\partial_{3}^{\Delta}\left(\mathcal{O}_{M}^{\prime}\right)=c_{2} \circ \partial_{3}\left(\mathcal{O}_{M}\right)$. Therefore, the correspondence $\mathcal{O}_{M} \mapsto \mathcal{O}_{M}^{\prime}$ gives rise to a chain map $c_{3}: C_{*}(\widetilde{M}) \rightarrow C_{*}^{\text {Nor }}\left(\pi_{1}(M) ; \mathbb{Z}\right)$, as desired. In conclusion, the above discussion can be summarized as follows:

Proposition 5.4. For any homomorphism $f: \pi_{1}(M) \rightarrow G$, the pushforward $f_{*} \circ \iota_{*}[M]$ is equal to $1 \otimes_{\pi_{1}(M)} f_{*} \circ c_{3}\left(\mathcal{O}_{M}\right)$ in $H_{3}^{\mathrm{nh}}(G ; \mathbb{Z})$.

To conclude, if we know an explicit presentation of $\pi_{1}(M)$ and a representative of the 3-cocycle $\psi: G^{4} \rightarrow A$, in principle, we can compute $\mathrm{DW}_{\psi}(M)$ in terms of the chain map c_{*} (with the help of computer program).

Acknowledgment. The author expresses his gratitude to an anonymous referee for reading this paper and giving him valuable comments.

References

[Bro] Brown, K. S., Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1994.
[BH] Brown, R. and H. Huebschmann, Identities among relations. Lowdimensional topology (Bangor, 1979), pp. 153-202, London Math. Soc. Lecture Note Ser., 48, Cambridge Univ. Press, Cambridge-New York, 1982. MR0662431
[BC] Boden, H. U. and C. L. Curtis, Splicing and the $S L_{2}(\mathbb{C})$ Casson invariant, Proc. Amer. Math. Soc. 136 (2008), 2615-2623.
[CG] Casson, A. and C. M. Gordon, Cobordism of classical knots, Progr. Math. 62, Birkhäuser, Boston (1986), 181-199.
[CFH] Conway, A., Friedl, S. and G. Herrmann, Linking forms revisited, Pure and Applied Mathematics Quarterly 12 (2016), 493-515.
[DW] Dijkgraaf, R. and E. Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990), 393-429.
[Kab] Kabaya, Y., Cyclic branched coverings of knots and quandle homology, Pacific Journal of Mathematics 259 (2012), No. 2, 315-347.
[KKV] Kim, G., Kim, Y. and A. Vesnin, The knot 5_{2} and cyclically presented groups, J. Korean Math. Soc. 35 (1998), 961-980.
[Lea] Leary, I. J., The mod- p cohomology rings of some p-groups, Math. Proc. Cambridge Philos. Soc. 112 (1992), No. 1, 63-75, MR1162933.
[Lic] Lickorish, W. B., An introduction to knot theory, Springer-Verlag, Berlin - New York, 1974.
[Lyn] Lyndon, R., Cohomology theory of groups with a single defining relation, Ann. of Math. 52 (1950), 650-665.
[Mar] Martins, S. T., Diagonal approximation and the cohomology ring of torus fiber bundles, Internat. J. Algebra Comput. 25 (2015), No. 3, 493-530.
[MP] Miller, A. and M. Powell, Symmetric chain complexes, twisted Blanchfield pairings and knot concordance, Algebr. Geom. Topol. 18 (2018), 3425-3476.
[No1] Nosaka, T., An $S L_{2}(\mathbb{R})$-Casson invariant and Reidemeister torsions, preprint, available at arXiv:2005.06132.
[No2] Nosaka, T., Quandle cocycle invariants of knots using Mochizuki's 3cocycles and Dijkgraaf-Wittten invariants of 3-manifolds, Algebraic and Geometric Topology 14 (2014), 2655-2692.
[Sc] Scott, P., There are no fake Seifert fibre spaces with infinite π_{1}, Ann. of Math. 117 (1983), 35-70.
[Sei] Seifert, H., Verschlingungs invarianten, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl. 1933, No. 26-29, (1933) 811-828.
[Sie] Sieradski, A. J., Combinatorial squashings, 3 -manifolds, and the third homology of groups, Invent. math. 84 (1986), 121-139.
[Tro] Trotter, H. F., Homology of group systems with applications to knot theory, Ann. of Math. 76 (1962), 464-498.
[Wall] Wall, T. C., Classification problems in differential topology. VI. Classification of $(s-1)$-connected $(2 s+1)$-manifolds, Topology 6 (1967),

273-296.
[Wakui] Wakui, M., On Dijkgraaf-Witten invariant for 3-manifolds, Osaka J. Math. 29 (1992), No. 4, 675-696, MR1192735.
[Waki] Wakijo, N., Twisted Reidemeister torsions of 3-manifolds via Heegaard splittings, Topology Appl. 299 (2021), 107731, MR4270619.
[Wise] Wise, D. T., The structure of groups with a quasiconvex hierarchy, Electronic Research Announcements In Mathematical Sciences 16, 44-55.
(Received August 20, 2021)
(Revised February 15, 2022)
Department of Mathematics Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku
Tokyo 152-8551, Japan
E-mail: nosaka@math.titech.ac.jp

[^0]: 2020 Mathematics Subject Classification. 57M10, 58K65, 57N60, 55N45.
 Key words: Universal covering, 3-manifold group, group homology, knot, branched coverings, linking form.

[^1]: ${ }^{1}$ To be precise, the original statements implicitly claim that the linking form $\lambda_{B_{K}^{d}}$ is equal to the matrix presentation $B \operatorname{adj}(A)$ up to isomorphisms. However, for applications to the Casson-Gordon invariants, we should describe the linking form from a basis of $H_{1}\left(B_{K}^{d} ; \mathbb{Z}\right)$.

