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Polystable Log Calabi-Yau Varieties and

Gravitational Instantons

By Yuji Odaka

Abstract. Open Calabi-Yau manifolds and log Calabi-Yau va-
rieties have been broadly studied over decades. Regarding them as
“semistable” objects, we propose to consider their good proper sub-
class, which we regard as certain polystable ones, morally correspond-
ing to semistable with closed (minimal) orbits as the classical analogue
of GIT.

We partially confirm that the new polystability seems equivalent to
the existence of non-compact complete Ricci-flat Kähler metrics with
small volume growths, notably many examples of gravitational instan-
tons. Also, we prove some compactness or polystable reduction type
results, partially motivated by bubbles of compact Ricci-flat metrics.

1. Introduction

1.1. History and motivation

Since the celebrated existence theorem of compact Ricci-flat Kähler

manifolds [Yau78a], sometimes under the name as the Calabi conjecture,

there has been also plenty of nice works of constructing non-compact com-

plete Ricci-flat Kähler metrics. Another origin is the group of various grav-

itational instantons in real four dimensions with rapid curvature decays,

while their signature being Lorenzian [Hawk77, GH78, EH78], in the context

of general relativity. We are not able to make an exhaustive list of references

right here due to its numbers, but our discussion to follow necessarily in-

cludes many important examples. The first age general existence theorems

in Kähler setting seem to be due to the papers [BK87, TY90, TY91, BK90]

(cf., also [Yau78b]) outside smooth complement divisors in smooth Kähler

manifolds.
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This paper means to be the first part of our attempt to lay an algebro-

geometric foundation for these spaces, especially to allow the complement of

singular divisors which are much subtler. Therefore, although we basically

work over complex numbers C, all algebro-geometric arguments work over

an arbitrary algebraic closed field of characteristic 0 at least. Such hope

for presence of such algebro-geometric treatment could have been in the

line along the conjecture in [Yau78b], which predicted that any complete

Ricci-flat Kähler metrics on Xo may be compactifiable to a compact Kähler

manifold X whose complement is the support of an anticanonical divisor

D. However, the conjecture of loc.cit is not necessarily true as discovered

counterexamples by [AKL89, Goto94, Goto98, Hat11] etc, hence this paper

restricts our attention to compactifiable case i.e., when Xo can be written

as complement of analytic closed subset of projective normal variety X.

Combined with the Hironaka’s log resolution in such compactifiable case,

there should be a log pair (X,D) such that X is smooth, D is simple normal

crossing such that Xo = X \ Supp(D). We call such pair log smooth in this

paper as we expect no confusion, taking our context to account. Also, just

in this introduction, we suppose D is a reduced (Z-)divisor for simplicity of

exposition, while we discuss with Q-divisor D from the next section.

The notion of dlt (divisorially log terminal) pair of a variety X and a

boundary divisor D, introduced by Shokurov [Sho93] and more clarified in

[Sza95], [KM98] (cf., also [KMM87], [Fjn07]), slightly extends the ubiquitous

log smooth setup. We propose to use this notion of dlt pairs more system-

atically, in much wider context of studying limiting behaviour of canonical

Kähler metrics, their singularities, or its non-compact versions among oth-

ers. For the details of the notion, we refer to [KM98], [Fjn18], [Kol13] for

instance. As a technical important tool, extension of the minimal model

program for only klt singular setting (as the groundbreaking [BCHM10])

to even more singular setting will be effectively used as in this paper; al-

lowing dlt, log-canonical or even semi-log-canonical singularities. See e.g.,

[Fjn00, Amb03, KK10, Gon11a, Gon11b, FG14, HX13, Fjn17, Has16, HH20]

as foundational results and recent developments in such direction.

We start with raising the following conjecture, partially to set the scene.

Conjecture 1.1 (Asymptotics). Suppose Xo is a non-proper but sep-

arated (Hausdorff) variety which only has kawamata-log-terminal singular-
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ities (assume smoothness for simplicity, if not familiar) over C and admits

a complete Ricci-flat weak Kähler metric g in which we fix a base point p.

We suppose that

vol(B(p, r)) ∼ crd,

for r → +∞ where B(p, r) denotes the geodesic balls of radius r > 0 with

the center p, and call this d as the volume growth dimension vg(Xo, g).

(i) if vg(Xo, g) > dimC(X) then the logarithmic Iitaka dimension

( [Iit77]1) satisfies κ̄(Xo) = −∞. In particular, any compactification

(Xo ⊂)X is covered by rational curves i.e., uniruled2.

(ii) If Xo is compactified to be a log pair (X,D) of smooth projective vari-

ety X and its simple normal crossing divisor D(∈ | −KX |) such that

X \ Supp(D) = Xo, then the following inequalities hold;

dimR∆̃(D) = dim(Xo)an ≤ vg(Xo, g) ≤ dimR(X) = 2 dimC(X),

where ∆̃(D) means the dual intersection cone complex 3 of D and

(Xo)an is the Berkovich analytification of Xo for trivial valuation (cf.,

[Ber90]).

Note that, the volume growth dimension vg(Xo, g) is at most

2dimC(Xo) = dimR(X) by the Bishop-Gromov comparison and it is not

necessarily integer. Indeed, in the classical examples of [TY90], 2 dim(X)
dim(X)+1

is attained. Also, although we excluded in the above situation, compact

Ricci-flat Kähler varieties can be also regarded as those with volume growth

dimension 0.

Remark 1.2. For above (i) case, the converse does not hold in general.

For instance, appropriate products of known gravitational instantons easily

give examples. Also, even an indecomposable (surface) example exists by

1contains an interesting metaphor from the 70s by its author as follows in loc.cit
§11.16 “V = P

2 − D̄ is algebraic geometry for dimension 1.5” (translated from Japanese
version)

2For instance, if Xo is a smooth surface, more strongly it holds that κ̄(Xo) = −∞
is equivalent to that Xo is dominated by images of A

1
C = C. This is due to the works of

[MT84a, MT84b, KeMc99].
3Note that the “common” dual intersection complex is ∆(D) = (∆̃(D) \�0)/R>0
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the thesis of Hein [Hein12]. Indeed, the complement of type II, III, IV

degenerations (resp., type I∗ degenerations) in rational elliptic surfaces with

Tian-Yau metric [TY90] are shown to be such examples, in [Hein12] (resp.,

[Hein12]).

More details are as follows. For any of those fibers of type II, III, IV,

after passing to a log resolution, the log crepant boundary divisor supported

on the fiber becomes “combinatorially same” i.e., they all become simple

normal crossing with 4 components with just one non-reduced component

of multiplicity 2 penetrating the others. On the other hand, we remark that

the conical angle of the ALG type bubble in that case ([Hein12], [CVZ20]) is

the inverse of the ramification index for the necessary semistable reduction.

Also, Type I∗ (minimal) degenerations are originally non-reduced.

This paper mainly focuses on the case when they are non-compact and

also the volume growth dimension should not exceed the original complex

dimension of X. We wish to discuss the remained case in near future, and

mean this paper to be the first for such series (We would like to call the

property of complete Ricci-flat Kähler manifold being vg(Xo, g) > dimC(X)

very open-ness.) Anyhow, for various examples of open Calabi-Yau mani-

folds, by which we mean the open part Xo = X \ Supp(D) of log Calabi-

Yau manifolds (X,D), it is not known if Xo admits any complete Ricc-flat

Kähler metric. Recently, S. Sun asked a question if possible obstruction is

detectable in a systematic algebro-geometric framework.

Before defining our stability conditions to answer his question, we recall

further background. The K-stability of polarized variety [Tia97, Don02]

has a version for log pairs introdued by [Don12] which aims to understand

existence of edge-conical singular (weak) Kähler-Einstein metrics with cone

angle 2πβ, when the coefficient 1− β of the divisors are strictly less than 1

(i.e., β > 0). There is also the framework via intersection numbers [OS15].

One may think it would be natural to use this log K-stability notion, even in

the case the boundary divisors have coefficients 1, so we recall the following

result, formally applying the definition of log stabilities [Don12, OS15] even

for “conical angle 0” which do not a priori make sense for metrics.

Theorem 1.3 (cf., [OS15]). Assume X is a smooth projective variety,

(X,D) is a log smooth Calabi-Yau pair, i.e., KX +D is numerically equiv-
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alent to zero divisor with a polarization L.4 Then, ((X,D), L) is logarith-

mically K-semistable if and only if coefficients of D are at most 1 but it

cannot be log K-polystable unless 
D� = 0.

More generally, semi-log-canonical Calabi-Yau polarized pair ((X,D), L)

is log K-semistable but it is log K-polystable if and only if the pair has only

klt singularities.

Therefore, the main issue is to refine the log stability notion, which

will be our stability notions. Another motivation of the introduction of the

notion for the author is for the problem of compactifying the moduli with its

relation with bubbles of Ricci-flat Kähler metrics, as we indeed prove some

“valuative criteria of properness” type results in §4. We leave the details of

the actual stability conditions to section 2 while we give some hints here. We

introduce following three variants with slightly different purposes, reflecting

the subtlety of setup of discussing complete Ricci-flat Kähler metrics, and

for later each usefulness.

• (Definition 2.3) We first introduce weakly open K-polystability of open

Calabi-Yau pair, which concerns log test configurations with only ir-

reducible degeneration fibers. As we show, one of our main points of

the notion is it can be studied fairly systematically and easily (unlike

the usual K-stability!) in terms of log canonical valuations and log

canonical centers. In particular, the set of test configurations for this

are only countably infinite even over C.

Another point is that the definition also somewhat resembles the orig-

inal Futaki’s obstruction [Fut83].

• (Definition 2.11) A somewhat stronger notion open K-polystability,

stronger than weakly open K-polystability, means to detect the exis-

tence of complete Ricci-flat Kähler metric.

• (Definition 2.13) The strongly open K-polystability, stronger than open

K-polystability, means to detect the existence of complete Ricci-flat

Kähler metric which is limit of conical singular canonical metric with

angle converging to 0. The definition involves log K-polystability

([Don12, OS15]).

4We remark that “polarization” in our context refers to an ample line bundle unless
otherwise stated.
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• We show some stable reduction type results (compactness theorem)

in §4, partially motivated by minimal non-collapsing pointed Gromov-

Hausdorff limits of compact Ricci-flat Kähler metrics for special max-

imal degenerating holomorphic families.

1.2. Conjectures on metrics

As mentioned above, one side of the main motivations for our attempt

to introduce stability notions is following expectation on metric existence.

Conjecture 1.4 (Non-compact Yau-Tian-Donaldson conjecture).

Take an arbitrary a polarized dlt log Calabi-Yau pair ((X,D), L) with 
D� =∑
iDi, KX +D ≡ 0 and L being ample on Xo := X \ Supp(
D�).

(i) Then, if there is a complete Ricci-flat Kähler metric g on Xo of the vol-

ume growth dimension at most dimR(X) = 2 dimC(X), whose Kähler

class is c1(L)|Xo, (Xo, Lo) is weakly open K-polystable.

(ii) Furthermore, such a complete Ricci-flat Kähler metric with any base

point is the pointed Gromov-Hausdorff limit of the conical singular

weak5 cscK metric on some polarized dlt log Calabi-Yau compactifi-

cation ((X, (1− ε)D), Lε) for ε→ 0 with appropriate base points with

c1(Lε|Xo) → c1(L|Xo) for ε → 0, if and only if (Xo, Lo) is strongly

open K-polystable.

This obviously reflects the following question.

Question 1 (Approximability / Metric compactifiability). For an ar-

bitrary open complete Ricci-flat Kähler manifold (Xo, g) with the volume

growth dimension at most dimC(X), is there a compactification Xo ⊂ X

such that (X,X \ Xo =: D) is dlt, where D is a reduced integral divisor,

g is the limit of a sequence of conical singular weak cscK metrics (cf., e.g.,

[KZ18, LWZ20]) gi(i = 1, 2, · · · ) on X whose singularities are supported

5Note that this notion of conical singular weak cscK metric makes sense in the same
way as weak Kähler-Einstein metric on klt pairs (see e.g. [BBEGZ19, Ber16, KZ18,
LT19, LWZ20]), since the concerned log pairs (X, (1 − ε)D) are klt for ε > 0 in our
situation. More precisely, it refers to the Kähler current of conical singular cscK metric
(cf., [KZ18, LWZ20]) on the log smooth locus which defines a current on whole X whose
volumes are right intersection numbers.
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in D, whose conical angles βi converge to 0? If not true in general, what

conditions on g ensures such approximability?

For a special case of the above question for Tian-Yau metric [TY90],

especially when X is a Fano manifold and D is smooth (cf., Theorem 3.1

(i), (iii) later) the answer is expected to be affirmative in [Don12]. Also, a

partial confirmation of Conjecture 1.4 below follows from a result of Berman

[Ber16] stratightforwardly.

Corollary 1.5 (of [Ber16]). In the setting of Conjecture 1.4, under

further assumption that Lε ≡ −(KX + (1− ε)D), existence of a sequence of

conical singular weak Kähler-Einstein metrics for ((X, (1 − ε)D), Lε) with

ε → 0 (which is expected to automatically converge to a complete Ricci-flat

weak Kähler metric on Xo) implies strongly open K-polystability of (Xo, Lo).

In general, there are many difficulties to work on Kähler geometry for

open manifolds compared with compact case. For instance, even for rela-

tively simple complete Kähler manifolds, ∂∂̄ lemma does not holds. (Nev-

ertheless, some affirmative results are in [Del90], [CH13], for instance.) We

also remark there is another systematically studied class of non-compact

complete canonical Kähler metrics; the Kähler-Einstein metrics with neg-

ative Ricci curvature i.e., hyperbolic metrics on smooth locus of Deligne-

Mumford stable curves and its higher dimensional extension to KSBA va-

rieties (semi-log-canonical models), whose existence ([BG14]) matches to

corresponding algebro-geometric K-stability results ([Od13a, Od12, OS15]).

This paper focuses on the Ricci-flat case and more precisely on concrete

analysis of our new stability notions which provide many evidences to the

above conjecture 1.4 on the existence of complete Ricci-flat Kähler metrics,

and also explore an application to the non-collapsing limits of families of

compact Ricci-flat Kähler metrics, and the moduli compactification prob-

lem: see our next subsection and §4. The supporting evidences for the

above conjecture 1.4 are obtained from some results of concrete analysis of

the stability notion below.

Theorem 1.6 (A weaker version of Theorem3.1). Suppose (Xo, Lo) is

an open n-dimensional polarized Calabi-Yau pair, and its compactifying po-

larized smooth log Calabi-Yau pair is denoted as ((X,D), L). In this intro-

duction, we assume X is smooth and D is a reduced (coefficients 1) integral
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simple normal crossing divisor, for simplicity just in this introduction. (See

more singular extensions in Theorem 3.1.)

(i) If D is smooth, then (Xo, Lo) is weakly open K-polystable for any L.

If X is a Fano manifold, then it is strongly open K-polystable. (We

extend to slightly more singular case in Theorem3.1 ii).

(ii) If Xo is algebraic torus, then strongly open K-polystable.

(iii) Moreover, if Xo is semi-abelian variety, then strongly open K-

polystable.

(iv) If G := Auto(X) is reductive and ((X,D), L) is weakly open K-

polystable, then D is GIT polystable with respect to the G-action.

(v) cluster log surface (cf e.g. [GHK]) is not even weakly open K-polystable

with respect to any polarization.

(vi) rational elliptic surface X with D a nodal reduced fiber of Iν(ν ≥ 1)

Kodaira type, then (Xo, Lo) is strongly open K-polystable at least for

some Lo.

(vii) If ((X,D), L) is weakly open K-polystable and some irreducible com-

ponent Di of D satisfies that

• L|X\Di
∼Q 0 and

• Di is ample (e.g. when ρ(X) = 1),

then ((X,D), L)|X\Di
is the affine cone of a certain (n − 1)-dimen-

sional dlt log Calabi-Yau pair ((X ′, D′), L′) := ((Di,∪j �=iDj ∩ Di),
NDi/X).

The above results match with known existence of gravitational instan-

tons such as: [TY90, BK90], [Hein12] (cf., also [CJL21]), [GCh17, CC15,

CC21], [CHNP13, HHN15] for example.
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S. Honda, R. Kobayashi, H. Nakajima, Y. Oshima, C. Spotti, S. Sun and

J. Viaclovsky. The author is partially supported by KAKENHI 18K13389

(Grant-in-Aid for Early-Career Scientists), KAKENHI 16H06335 (Grant-

in-Aid for Scientific Research (S)) during this research.
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2. The Stability Conditions

This section introduces various stability notions for “polarized Calabi-

Yau varieties” in somewhat generalized senses which are allowed to be either

non-proper, or “log pairs” i.e., (X,D) with KX+D ≡ 0, or with non-normal

reducible X. The author believes the number of variants for these stability

notions below indirectly reflect the subtlety of handling general complete

Ricci-flat Kähler metrics. Indeed, we use most of the notions introduced

here in later sections.

2.1. Irreducible case

Firstly, we make the following usual setup.

Definition 2.1.

(i) A polarized (dlt) log Calabi-Yau pair ((X,D), L) in this paper means

• KX is Q-Cartier (“Q-Gorenstein” condition),6

• D is Q-divisor such that the pair (X,D) is dlt, KX + D ≡ 0

(which is equivalent to KX +D ∼Q 0 by [Fjn00, Gon11a]),

• the rounddown part of D which we write as 
D�, and its frac-

tional part {D}(= D − 
D�) are both Q-Cartier

• L is ample .

We denote Xo := X \ Supp
D� = Xklt as its klt locus, a Zariski open

subset, and call it open locus sometimes in this paper. We also set

Lo := L|Xo . Any polarized log Calabi-Yau pair is log K-semistable as

reviewed as Theorem 1.3 ([OS15]) above. If further L = −K(X,{D}) :=

−(KX + {D}), we call ((X,D), L) is anti-log-canonically polarized.

Also, if we consider ((X,D), L) which satisfies all above condition ex-

cept for the dlt property while (X,D) is still log canonical (resp., semi-

log-canonical), each time we write so as log-canonical (resp., semi-log-

canonical) polarized log Calabi-Yau pair.

6We put it here for simplicity. It is not necessary for various part of the following
discussions.
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(ii) A non-proper polarized log pair (Y,M) is said to be open polarized

Calabi-Yau pair in this notes if it is compactifiable to a polarized log

Calabi-Yau pair ((X,D), L) which satisfies 
D� �= 0, associated with

a fixed isomorphism (Xo, Lo) � (Y,M).

Remark 2.2. Note that the above compactifications are not unique for

a fixed open polarized Calabi-Yau pair as well-known. Nevertheless, as an

easy obvious case of the Shokurov-Kollár connectedness principle, between

different such compactifications, still the set of the connected components of


D� are canonically bijective to each other. They are at most two connected

components of 
D� (cf., e.g., [Fjn00], [Gon11a]).

Now we define weakly open polystability notion and prepare its founda-

tion.

Definition 2.3 (Weakly open polystability).

(i) For a polarized log Calabi-Yau pair ((X,D), L), a log test configu-

ration (see [Don12], [OS15] for the definition) ((X ,D),L) is called

plt-type in this paper, if (X ,X0) is plt.7

(ii) Take an arbitrary log Calabi-Yau pair (X,D) which is dlt so that

for its any polarization L log K-semistability holds by Theorem 1.3

above. We denote the restricted polarization as Lo := L|Xo . A pair

(Xo, Lo) or a triple ((X,D), Lo) is said to be weakly open K-polystable

if any plt-type test configuration ((X ,D),L) of ((X,D), L) whose

log Donaldson-Futaki invariant vanishes DF((X ,D),L) = 0 ([Don12],

[OS15]) is product log test configuration i.e., ((X,D), L)-fiber bundle

over P1. We will see in Proposition 2.8 that the notion only depends

on (Xo, Lo) to L, hence the terminology.

Furthermore, if the only product log test configuration is trivial one,

i.e., when Aut((X,D), L) is finite, then we call the triple ((X,D), Lo)

weakly open K-stable.

The plt-type condition together with the automatic Cartierness prop-

erty of X0 imply that X0 is klt and vice versa ([KM98]). If L = −KX
7plt means purely log terminal. See [KM98] for details if not familiar. This condition

in particular implies X0 is klt and there is associated dreamy valuation for K(X × A
1).
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modulo QD, then L ≡ −KX/P1 modulo QD (cf., [OSS16]). The notion may

remind the experts of the notion of “special test configurations” for anti-

canonically polarized Q-Fano varieties ([DT92, Tia97, LX14]) as examples,

but note that we do not require L is anticanonical which will be important

later on. Therefore, our notion strictly extends the notion of special test

configuration of Fano varieties. Also, it is easy to see that if we would al-

low log canonical Calabi-Yau variety as X0, then [TY90] examples do not

satisfy the corresponding polystability notion e.g. P2 degenerating into the

projective cone over elliptic curve.

We make following remark about the product-ness of log test configura-

tion.

Proposition 2.4. The automorphism groups Auto((X,D), L) and

Auto(Xo, Lo) are different for general triple ((X,D), L), while they coin-

cide when KX + D = 0 (assuming the base field k has uncountable or-

der). Auto(−) mean the identity connected component of the automorphism

groups here and henceforth.

Proof of Proposition 2.4. As an example, of which the above two

automorphism groups are different, simply we can take the affine spaceXo =

An so that (Xo, L|Xo) includes the whole polynomial ring k[X2, · · · , Xn](�
f) as

(a1, · · · , an) �→ (a1 + f(a2, · · · , an), a2, · · · , an),

hence far from being an algebraic group, as it would be of course finite

dimensinal if so.

Lemma 2.5. For any fixed dlt log Calabi-Yau pair (X,D), there are

only at most countably many log crepant (X ′, D′) with X \ Supp
D� =

X ′ \ Supp
D′�, modulo the isomorphisms.

Note that for instance, there are countable infinite order of toric pairs

for each fixed dimension more than 1.

Proof of Lemma 2.5. Since (X ′, D′) is log crepant to (X,D) for the

obvious reason, all the irreducible components of D′ are log canonical places

for the log pair (X,D). From Zariski lemma (cf., e.g., [KM98]) and the dlt
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property of (X,D), there are only countably many such log canonical places

hence we conclude the proof. �

We now return to continue the proof of Proposition 2.4. We take a

connected algebraic subgroup of Auto(Xo, L|Xo) which we denote as Go.

Then, thanks to the cute lemma above 2.5, ((X,D), L) also admit natural

Go-action so that Go ⊂ Auto((X,D), L). Then, ranging Go finishs the

proof. �

Corollary 2.6 (Product-ness). Any plt-type log test configuration

((X ,D),L) of ((X,D), L) which contains a product test configuration of

(Xo, L|Xo) as the complement of the closure of D × (P1 \ {0}) is itself a

product log test configuration of ((X,D), L). Further, it is determined by

the open product test configuration associated in that way.

Proof of Corollary 2.6. Thanks to Proposition 2.4, what remains

is to show there is no plt-type testconfiguration ((X ′,D′),L′) which coincides

outside Supp(D) and Supp(D′) but it follows from the presence of polar-

izations since the two spaces are isomorphic in codimension 1 with same

restriction of the polarizations in the common open locus (cf., [MM64]). �

Next we characterize the plt-type log test configuration with vanishing

log Donaldson-Futaki invariant, which is one of the keys for our later analysis

of the stability notion.

Proposition 2.7 (Test configuration as log canonical valuations).

Plt-type test configuration ((X ,D),L) for a polarized log Calabi-Yau variety

((X,D), L) has vanishing log Donaldson-Futaki invariant if and only if the

discrepancy vanishes

a((X,D)×P1)(X0) = 0.(1)

Note that this in particular implies the central fiber X0 is log canonical place

of ((X×P1, D×P1+X×{0}) i.e., the log discrepancy over ((X×P1, D×P1+

X × {0}) vanishes. Furthermore, such log test configuration is determined

by the log canonical place as valuation vX0.

Proof. The former claim follows straightforward from the intersec-

tion number formula of (log) Donaldson-Futaki invariant [OS15]. The latter
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claim follows from that the plt type test configuration has irreducible central

fiber so that vX0 determines X up to isomorphism in codimension 1 and the

same argument as previous Corollary 2.6 ([MM64]) using the polarization. �

The following supports the terminology.

Proposition 2.8. Weakly open K-polystability (resp., weakly open K-

stability) of polarized log Calabi-Yau pair ((X,D), L) only depends on the

open locus (Xo, Lo), not on the choice of compactification ((X,D), L).

Proof. For Xo, suppose there is a triple ((X1, D1), L1) which satisfies

the weakly open K-polystability condition as Definition 2.3. It suffices to

show the following; take another arbitrary polarized dlt Calabi-Yau com-

pactification ((X2, D2), L2) and we prove it also satisfies the condition of 2.3.

Consider a log test configuration of ((X2, D2), L2) of plt type, with vanish-

ing log Donaldson-Futaki invariant as 2.3, whose total space is denoted as

((X2,D2),L2) and its open subset X o2 := X2 \ Supp
D2�. Take an a priori

smaller open subset X oo2 (X o2 ) from which the birational map to Xo × P1 is

a morphism. We take (X ′
1,D′

1) := ((X1, D1) × (P1 \ {0})) ∪ X oo2 on which

there is also a naturally glued polarization L′
1. We compactify the triple

((X ′
1,D′

1),L′
1) to a log test configuration ((X ′′,D′′

1),L′′
1) so that (X ′′

1 ,D′′
1) is

Q-factorial dlt pair with birational morphism f to X1 × P1, by the use of

relative minimal model program over X1 × P1. By applying Lemma 2.7 to

X2, and combining with the log canonicity of ((X1×P1, D1×P1+X1×{0}),
we see that there is a Q-divisor F supported on the central fiber (X ′′

1 )|0 such

that (X ′′
1 , F ) is log crepant to ((X1 × P1, D1 × P1 +X1 × {0}). We denote

a birational map X ′′
1 ��� X2 as g. We take a small enough 0 < ε � 1

and run again the relative minimal model program, this time over P1, from

(X ′′
1 , F − εg−1

∗ (X2)|0). Then we obtain a dlt minimal model (X ′′′
1 ,D′′′

1 +

(X ′′′
1 )|0) with generic fiber (X1, D1). We take a general relative section of

|mL1 × P1| and its closure in X ′′′
1 . Take lc model of (X ′′′

1 ,D′′′
1 + ε′A) for

0 < ε′ � 1, then by the negativity lemma (cf., e.g., [KM98]), we obtain

the desired log test configuration (X1,D1) with the polarization extending

that of L1 × (P1 \ {0}). Its log Donaldson-Futaki invariant vanishes due

to Lemma 2.7, hence by the weakly open K-polystability (with respect to

((X1, D1), L1)) assumption we see that this is obtained by one parame-

ter subgroup of the automorphism group discussed in Proposition 2.4. By
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the same proposition, this also provides log product test configuration of

((X2, D2), L2) which has small birational map to ((X2,D2),L2). Applying

[MM64], we obtain it is isomorphism. Hence we conclude the proof. �

From the above lemma 2.7, the theory of log canonical centers ([Amb03],

[Fjn18]) play an essential role for this weakly open K-polystability notion.

See the arguments in the next section §3.

The following is motivated by the Shokurov connectedness principle and

the above Proposition 2.7. Take an arbitrary polarized (dlt) log Calabi-Yau

pair ((X,D), L) (Definition 2.1 (i)). For two log test configurations of plt-

type ((Xi,Di),Li)(i = 1, 2), we call one is elementary transform of the other

if there is a test configuration of X which is the blow up of a log canonical

center (with reduced structure) of (Xi,Di + Xi,0) for both i.

Proposition 2.9 (Connectedness). For any polarized (dlt) log Calabi-

Yau pair ((X,D), L) and any two log test configurations of plt-type

((Xi,Di),Li)(i = 1, 2) with DF((Xi,Di),Li) = 0 for i = 1, 2, is there always

a finite sequence of such plt type log test configurations ((X ′
i ,D′

i),L′
i)(i =

1, 2, · · · ,m) such that the following holds?

(X ′
i ,D′

i) and (X ′
i+1,D′

i+1) are elementary transforms of each other for

i = 1, · · · ,m− 1, with

(X1,D1) = (X ′
1,D′

1),

(X2,D2) = (X ′
m,D′

m).

Finally, as example, we give a systematic construction of plt-type test

configurations which we use in the next section.

Lemma 2.10. If ((X,D), L) is weakly open K-polystable and some ir-

reducible component Di of 
D� satisfies that

• L|X\Di
∼Q O and

• Di is ample (e.g. when ρ(X) = 1),

then there is a plt-type log test configuration of ((X,D), L) such that the

central fiber is the projective cone of ((Di,∪j �=iDj ∩Di), NDi/X).
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Proof. We first blow up Di×{0} ⊂ X×A1 to obtain b : B → (X×A1)

whose central fiber is b−1
∗ X ∪ P(NDi/X ⊕ ODi). The intersection is still

b−1
∗ X∩P(NDi/X⊕O) � Di. As the component P(NDi/X⊕O) is exceptional

divisor, we simply denote it as E. Then from the assumption it is easy to see

that b∗(L× A1)(−cE) gives a contraction to a polarized test configuration

X whose central fiber X0 is the contraction of P(NDi/X ⊕ O) along the 0-

section, i.e., the projective cone of ((Di,∪j �=iDj ∩ Di), NDi/X) which is a

process of the usual minimal model program which preserves dlt condition

(cf., [KM98]). Since the fiber X0 is irreducible, dlt condition implies that

the obtained polarized family is a plt-type log test configuration. �

Now we are ready to define open K-polystability and its further strength-

ening, following Definition 2.3.

From here, a main idea could be expressed as to study the structure

of the ends of the complete metrics to expect, “virtually” considering a

compact (non-canonical) model which “close the ends” with small angles,

which we analyze by algebro-geometric tools.

Definition 2.11 (Open polystability). (Xo, Lo) is said to be open K-

polystable if and only if there is a polarized dlt log Calabi-Yau pair compact-

ification (Xo, Lo) ⊂ ((X,D), L) in the sense of Definition 2.1 which satisfies

the followings;

(i) 
D�(≡ −K(X,{D}) := −(KX + {D})) is nef,

(ii) there is a constant ε ∈ (0, 1) such that for any β ∈ [0, ε), the log

Donaldson-Futaki invariant ([Don12, OS15]) is non-negative:

DF((X , {D}+ (1− β)
D�),L
( c
β

D�

)
)) ≥ 0(2)

for plt-type log test configuration

((X , {D}+ (1− β)
D�),L
( c
β

D�

)
)

in the sense of Definition 2.3 of (X, {D}+ (1− β)
D�) and the value

attains 0 if and only if ((X , {D}+(1−β)
D�),L( cβ 
D�)) is a product

log test configuration.
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We call such a compactification itself (Xo, Lo) ⊂ ((X,D), L) stabilizing, or

simply open K-polystable.

In many concrete situations, we only consider the cases when D is inte-

gral, i.e., D = 
D� so that the description is simpler.

For justification of the introduction of the constant c and the variation
c
β 
D� of polarization in the above definition, see the elliptic type spherical

(real) surfaces i.e., when X = P1 and D consists of two points, for instance.

From the definition, the lemma below immediately follows.

Lemma 2.12. Suppose (Xo, Lo) is open K-polystable and take a stabi-

lizing polarized dlt log Calabi-Yau pair compactification (Xo, Lo) ⊂
((X,D), L). Then, it implies:

(i) (Xo, Lo) is weakly open K-polystable

(ii) if further L = 
D�, there is a polarized dlt Calabi-Yau pair compacti-

fication ((X,D), L) such that for any log product log test configuration

((X ,D),L) satisfies (
D�)·(n+1) = 0.

We call a compactification ((X,D), L) of (X,L) satisfying the latter condi-

tion balancing.

The last variant definition is:

Definition 2.13 (Strongly open polystability). In the setting of

above Definition 2.11, (Xo, Lo) is called strongly open K-polystable if the

chosen compactification ((X,D), L) further satisfies that

(i) 
D�(≡ −K(X,{D}) := −KX − {D}) is nef and

(ii) for some fixed positive constant c > 0,

((X, {D}+ (1− β)
D�, L
( c
β

D�

)
)

is log K-polystable and any 0 < β � 1.

We call such compactification ((X,D), L) in the either way: strongly sta-

bilizing compactification, stable compactification, or simply, being strongly

open K-polystable.
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Then it follows straightforward from the definitions that:

Proposition 2.14. Strongly open K-polystable (Xo, Lo) is open K-

polystable.

On the other hand, [LX14] immediately implies the following.

Proposition 2.15. In the above situation as 2.13, suppose that open

K-polystable (Xo, Lo) has a stabilizing compactification ((X,D), L) which is

anti-log-canonically polarized (see [CR15] for related notion) in the sense

that there is a small enough positive real number β � 1 such that L is

proportional to −(KX + {D}+ (1− β)
D�). Then, it is strongly stabilizing

compactification, so that (Xo, Lo) is strongly open K-polystable in particular.

We add a useful remark, in the spirit of [LS14].

Lemma 2.16. In the above situation as 2.13, if (X,L(t
D�)) is K-

polystable for any t! 1, then (Xo, Lo) is strongly open K-polystable.

Proof. This follows straightforward from the linearlity of the log

Donaldson-Futaki invariant with respect to the linear change of the co-

efficient of the boundary divisor D (see [OS15] and [LS14]). �

Remark 2.17. In the case when there is a non-negative linear combi-

nation of Di which is ample, so that (X,D) is asymptotically log Fano in

the sense of [CR15], effective K-stability criteria have already studied much

so that the above stability should be able to be studied by using them.

Finally, we remark that, specifying an action of algebraic group G on

(Xo, Lo) or (X,L), we can and do naturally define theG-equivariant version,

such as G-equivariantly (weak) open K-polystable etc, of above stability

notions mean that we only concern log test configurations with G- action

on whole total space with G-linearization. Then we can show:

Lemma 2.18. If G is a connected algebraic group acting on open

Calabi-Yau polarized variety (Xo, Lo), then for G-equivariant weakly open

K-polystability of (Xo, Lo) and weakly open K-polystability of (Xo, Lo) are

equivalent.
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Proof. This follows from Proposition 2.7 (also see Corollary2.6) which

implies all the log test configurations satisfying the condition in loc.cit

should hold G-action automatically. �

2.2. Reducible setup

Now we discuss stability notions for polarized Calabi-Yau varieties

(X,L) where X is non-normal. More precisely, we use the notion of semi-

divisorially log terminality (sdlt for short), as a natural non-normal or

demi-normal version of original divisorial log terminality. See e.g., [KM98],

[Fjn00] for details.

Definition 2.19. Suppose a connected projective scheme X has only

semi-dlt singularities and KX ≡ 0, hence equivalently KX ∼Q 0 by [Fjn00,

Gon11a].

We denote its irreducible decomposition as X = ∪iVi with the double

locus (conductor divisor) as Di ⊂ Vi so that (Vi, Di) is log Calabi-Yau dlt

pair for each i. We also consider a polarization i.e., an ample line bundle

on X.

(i) Consider all log test configurations ((X ,D),L) of ((X,D), L) which

satisfy that

• X satisfies Serre’s S2 condition,

• its restriction to the closure of Vi× (P1 \{0}) is of plt type in the

sense of Definition 2.3 (i),

• the log Donaldson-Futaki invariant (cf., [Don12], [OS15]) van-

ishes.

The polarized log Calabi-Yau pair ((X,D), L) is weakly open K-

polystable if any such above type log test configuration ((X ,D),L)

satisfies that the klt (open) locus of (X ,D) is a log test configuration

of product type of the open locus (Xo, Lo). By applying Lemma 2.6

to all its components, we see that the condition of such product-ness

is also equivalent to that the restriction of the log test configuration

to the closure of Vi × (P1 \ {0}) are log product test configurations for

every i.
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(ii) ((X,D), L) is open K-polystable if it is weakly open K-polystable and

furthermore for each i, ((Vi, Di), L|Vi) is stabilizing in the sense of

Definition 2.11.

(iii) ((X,D), L) is strongly open K-polystable if it is open K-polystable and

furthermore for each i, ((Vi, Di), L|Vi) is strongly stabilizing in the

sense of Definition 2.13.

Specifying an action of algebraic group G on ((X,D), L), we can nat-

urally introduce the G-equivariant version of above stability notions, such

as G-equivariantly open K-polystable etc. They mean that we only concern

log test configurations with G- action on whole ((X ,D),L).

Similarly to Lemma 2.18, the following holds.

Lemma 2.20. If G is a connected algebraic group acting on sdlt log

Calabi-Yau polarized variety ((X,D), L), then G-equivariant weakly open

K-polystability of ((X,D), L) holds if and only if weakly open K-polystability

of ((X,D), L) holds.

Proof. “If” direction is obvious by definition. The “only if” direc-

tion is reduced to Lemma2.18 as follows: suppose we take a log test con-

figuration ((X ,D),L) satisfying the three conditions in Definition 2.19(i).

Then, if we take the normalization of X , the log Donaldson-Futaki invariant

DF((X ,D),L) decomposes to the contributions of the log test configurations

of each closures of Vi × (P1 \ {0}) e.g., by the intersection number formula

([OS15]). Hence, the assertion follows from Lemma2.18 or more directly

from Proposition2.7 that each components are product test configurations

admitting extended G-action i.e., corresponding to a C∗-action which com-

mutes with the given G-action. By the uniqueness of gluing along conduc-

tors ([Kol13], also cf., [Fjn00]), the action also extends to the whole log test

configuration. �

Question 2 (Component-wise nature?). For a polarized semi-dlt

Calabi-Yau variety (X = ∪iVi, L) to be weakly open K-polystable, is it

equivalent to the weakly open K-polystability for all (V oi , L|V o
i
)? Here,

V oi denotes the open subset of Vi as the complement of the double locus

Vi ∩ (∪j �=iVj).
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We end the section by observing that at least partially this is true.

Proposition 2.21. For a polarized semi-dlt Calabi-Yau variety (X =

∪iVi, L), weakly open K-polystabilities for all (V oi , L|V o
i
) imply that of (X,L).

Furthermore, in case Vi is smooth (factoriality is enough) and the dual

complex is one dimensional (i.e., there is no three distinct Vi, Vj , Vk inter-

secting), the converse also holds.

Proof. The former statement is obvious from the definition. We prove

the latter statement by contradiction. If there is an index i such that

(V oi , L|V o
i
) is not weakly open K-polystable, there is a plt type test con-

figuration (Vi,Li) of (Vi, L|Vi) whose log Donaldson-Futaki invariant is zero

and is dominated by composite of blow up of the connected (or equiva-

lently, irreducible) components of Vi ∩ (∪j �=iVj). In particular, the double

loci remain isomorphic as original.

Then we can glue trivial test configurations of (Vk, Lk) for all k �= i and

(Vi,Li) by [Kol13] (as varieties) and [Kol13] (polarizations). This contra-

dicts the weakly open K-polystability of (X,L). �

3. Testing Known Examples

This section shows our analysis of the stability notions 2.3, 2.11, 2.13

for various class of examples below, which match to known (and unknown)

gravitational instantons as well as some phenomena observed in examples

of moduli. Here is the list of the results.

Theorem 3.1. Suppose ((X,D), L) is an n-dimensional polarized dlt

log Calabi-Yau pair, and take its klt open locus as Xo := Xklt, Lo = L|Xo.

As in section 2, we do not assume D to be integral divisor but can be real

divisor.

(i) If D is smooth and Cartier, then (Xo, Lo) is weakly open K-polystable

for any L.

(ii) More generally, suppose (X,D) is purely log terminal (plt) and further

D has only canonical singularities and satisfies adjunction i.e., KD =

0 (equivalently, the different in Shokurov’s sense is trivial). Then it

is weakly open K-polystable for any L.
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(iii) Under the situation (ii) above, if further one can take L as −KX
(hence, with Q-Fano X), then (Xo, Lo) is strongly open K-polystable.

(iv) Under the situation (ii) above, if we can take the compactification X

as a semi-Fano manifold in the sense of [CHNP13], then (Xo, Lo) is

again strongly open K-polystable.

(v) If Xo is algebraic torus, then (Xo, Lo) is strongly open K-polystable.

(vi) More generally, if Xo is semi-abelian variety, then (Xo, Lo) is strongly

open K-polystable.

(vii) If G is a reductive algebraic subgroup of Auto(X) and ((X,D), L) is

weakly open K-polystable, then D is GIT polystable with respect to the

G-action.

(viii) If (X,D) is a cluster log surface ( [FoGo09, GHK]), then ((X,D), L)

is not even weakly open K-polystable for any L.

(ix) If X is a rational elliptic surface with D a nodal fiber of Iν(ν ≥ 1)

type, then ((X,D), L) is strongly open K-polystable at least for some

L.

(x) If ((X,D), L) is weakly open K-polystable and some irreducible com-

ponent Di of 
D� satisfies that

• L|X\Di
∼Q 0 and

• Di is ample (e.g. when ρ(X) = 1),

then ((X,D), L)|X\Di
is the affine cone of a certain (n − 1)-dimen-

sional dlt log Calabi-Yau pair ((X ′, D′), L′) := ((Di,∪j �=iDj ∩ Di),
NDi/X).

(xi) Suppose (X, 
D� = D1 # D2) with Cartier 
D� and connected Di,

which dominates birationally X ′ which is a P1-bundle over a (n− 1)-

dimensional projective variety, such that the images D′
i of Di are its

two sections. Then the following holds.

• (D′
i,DiffD′

i
(0))(i = 1, 2), where Diff(−) denotes the Shokurov dif-

ferent (cf., e.g., [Kol13]), is a klt log Calabi-Yau pair, canonically

isomorphic to each other. We denote it as (B,DB).
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• If ((X,D), L) is weakly open K-polystable for a polarization L,

then X → X ′ is isomorphism and there is a holomorphic line

bundle N on B such that X ′ = PB(O ⊕N) and D′
1 and D′

2 are

the natural sections, the 0-section and the infinity section with

respect to the splitting.

• Suppose B is an elliptic curve.8 If (Xo, Lo) is further open K-

polystable as ((X,D), L) is stabilizing, if and only if N is a nu-

merically trivial line bundle.

Remark 3.2. For (ii), recall that if D is not necessarily Cartier, then

in general klt condition of Xo, D alone are not enough to imply plt condition

of (X,D) because of the failure of adjunction (yielding nontrivial Different

in the sense of Shokurov).

Remark 3.3. For (ii) again, [FA91], [Fjn18] show that 
D� has at most

two connected component and if there are two connected component D1 and

D2, they are birational through a P1-fibration over some (n−1)-dimensional

log terminal base B, up to a log crepant birational transform. We expect

that the only open K-polystable such (Xo, Lo) have a structure PB(O⊕M)

where B ∈ Pic0(B).

Remark 3.4. Cluster log surface in (viii) simply means the following in

our paper, as a simple variant of 2-dimensional cluster varieties introduced

originally in [FoGo09] (see also [GHK, MV20]).

Let us start from another log smooth Calabi-Yau surface (X ′, D′). Then

we can blow up a smooth point p of 
D′�, which we denote as ϕ as a

birational morphism here, and take the strict transform of D′ to obtain a

new log smooth Calabi-Yau surface (X = Blp(X
′), D = ϕ−1

∗ D′). In general,

cluster log surface in our paper means a log smooth Calabi-Yau surface

obtained by applying this procedure finite times (at least once) from a toric

log Calabi-Yau pair.

Also, the statements and the proof of (viii) should be easily extended to

its higher dimensional analogue log Calabi-Yau varieties of type [AG20] in

which much more deep analysis for the mirror symmetry is done. We wish

to leave the details to some readers.
8We expect this dimension condition would be removed if we do more refined discus-

sion.
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Proof of Theorem 3.1. We provide proofs to each item above one

by one.

Proof of (ii): The Iitaka dimension of D is 0 because of the canonic-

ity of the singularity, and therefore in particular it is not uniruled. Con-

sider plt-type testconfiguration with vanishing Donaldson-Futaki invariant

X then the strict transform of X × {0} is log canonical place of (X0,DX0)

as Proposition 2.7 shows. On the other hand, the adjunction says X0 is

klt. Therefore, [HM07] implies D with κ(D) = 0 cannot be contracted to

dimension less than n− 1 in X0. From the fiber connectedness of birational

morphisms between normal varieties (Zariski’s main theorem), the center

of X0 is birational to D. Consider the 1-dimensional general fiber F of the

birational map X0 ��� D, the genus g(F ) must be 0 because of the Iitaka

conjecture (this case of relative dimension 1 is certainly a theorem cf., e.g.,

[Kwmt85]).

Proof of Fano manifolds case (iii): This follows from (ii) and [OS15],

[Od13c] (cf., also preceding [Ber13]), which shows log K-stability for small

angle with effective bound in terms of the alpha invariant.

Proof of semi-Fano manifolds case (iv): if we apply the Kawamata base-

pointfree theorem to X, as in [CHNP13], then it reduces to (iii) case.

Proof of (v) and (vi): we first prove the weakly open K-polystability. As

preparation, we show the following lemma which should be fundamental and

may be known to some experts but the author could not find the literatures.

We write for convenience of readers:

Lemma 3.5 (Torus invariance lemma). Consider an arbitrary toric log

Calabi-Yau pair (V,∆V ) i.e., toric variety V with the sum ∆V of all torus

invariant prime divisors. Its divisorial valuation v whose center exists inside

V is log canonical valuation i.e., A(V,∆V )(v) = 0 if and only if it is torus

invariant.

Proof of Lemma 3.5. Suppose v is realized as a prime divisor F

inside a blow up of V as b : W → V . If v is toric valuation i.e., torus invari-

ant, then we can take W and b inside the category of toric varieties. If we

write the sum of torus invariant prime divisor of W as ∆W , then obviously

(W,∆W )→ (V,∆V ) is log crepant so that F , which is a component of ∆W ,

is obviously a log canonical valuation.
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Conversely, suppose F gives a log canonical valuation v = vF . With-

out loss of generality, by toric log resolution again, we can and do assume

(V,∆V ) is dlt or even log smooth. From a lemma of Zariski (cf., [KM98]),

then W ′ (which could be a priori non-toric) can be obtained as a composi-

tion of blow up along the log canonical center of v. From [Amb03], [Fjn18],

it follows that the log canonical center (of v) in V is a torus invariant strata.

Therefore, the above obtained W ′ and the morphism b′ : W ′ → V is again

toric and F ⊂ W ′ realizing v is toric. Hence we complete the proof of

Lemma3.5. �

To show the weakly open K-polystability of an algebraic torus Xo = T

(there is no amiguity of Lo since Pic(Xo) = 0), we use Proposition 2.7

again. We take an arbitrary toric compactification ((X,D), L) ⊃ (Xo, Lo)

and consider a plt type log test configuration X such that X0 gives a log

canonical valuation of (X,D)× P1. Proposition2.7 says it is enough to see

that (X , D × (P1 \ {0})) is a product test configuration. Lemma 3.5 shows

vX0 is toric, while toric valuation is parametrized by Hom(Gm, T ×Gm)⊗Q

i.e., there is a product test configuration X ′ such that X ′
0 also gives vX0 .

From [MM64] again, we conclude that X ′ � X hence the proof of weakly

open K-polystability of (polarized) algebraic torus is completed. The weakly

open K-polystability of polarized semiabelian variety is basically the same

since it is étale locally product of an algebraic torus and smooth base.

Strong open K-polystability of Xo follows from that semi-abelian variety

Xo has a unique9 short exact sequence structure 1 → T → Xo → A → 1

where T is an algebraic torus, A is an abelian variety and if we see this

as principal (C∗)r(� T (C))-bundle, it has flat unitary connection or equiv-

alently it is unitary local system. Therefore, we can compactify naturally

to X → A as Pn-fiber bundle with transition function locally constant.

That projective bundle corresponds to polystable bundle, and hence from

Lemma 2.16, we end the desired proof of (vi).

Proof of (vii): We fix X and consider the natural universal family of

((X,D), L) where only D deforms as all D ∈ | −KX |, which we denote as

UX � BX = P(H0(−KX)). Then consider log CM line bundle λCM on

BX (cf., e.g., [PT06], [ADL19]) which admits the natural G-linearization.

Since we assume (X,D) is dlt, hence a log-canonical pair, Theorem1.3 (from

9thanks to the algebraicity of A
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[OS15]) applies to conclude that it is log K-semistable. Note that the log CM

line bundle is of the form OP(H0(−KX))(c) but as in the argument [OSS16],

[ADL19], we have c > 0 and log Donaldson-Futaki invariant of ((X,D), L)

is proportional to the GIT weight (of D) and the proportionality constant

is positive. Therefore, from the arguments [PT06], [OSS16], [ADL19], we

see that D is GIT semistable with respect to the G-action. A special case

where X = Pn+1 is proved in [Lee08, Okw11].

Now, we consider log test configuration of ((X,D), L) where the am-

bient space is a X-fiber bundle, in particular, of plt type. Since, we now

know D is at least semistable with respect to G-action, weakly open K-

semistability implies the G-orbit is closed in G-invariant affine open subset

of BX . Therefore, we see that weakly open K-polystability of ((X,D), L))

implies the GIT polystability of D.

Proof of (viii): this is easy to see since such a polarized pair ((X,D), L)

degenerates to a toric Calabi-Yau pair by degenerating the blow up cen-

ters to nodes in the toric boundary. Since X has vanishing irregularity, the

polarization naturally preserves as well. This forms a product test configu-

ration which is obviously plt-type. On the other hand, since toric polarized

Calabi-Yau pair is semi-log-canonical by the presence of toric log resolu-

tion (cf., e.g. [Ale96]), [OS15] or Theorem1.3 implies the Donaldson-Futaki

invariant vanishes. We conclude the proof of (viii).

Proof of (ix): First we prove weak K-polystability. Consider a plt

type test configuration ((X ,D),L) of vanishing Donaldson-Futaki invari-

ant. From 2.7, X0 is a log canonical place of (X×A1, D×A1 +X×{0}) i.e.,

A(X×A1,D×A1+X×{0})(X0) = 0. From a lemma due to Zariski (cf., [KM98]),

it follows that finite time blow up of X×A1 at the log-canonical center of X0

realizes X0. We concretely trace such possibility: the irreducible component

Di of the nodal degenerate fiber D has negative self- intersection as it is

well-known (Hodge index theorem), hence we see that the strict transform

of the irreducible component Di in the strict transform of X(×{0}) is still

negative. We write X ′ the other component than X(×{0}) which includes

Di. From the d-semistability result (a.k.a. the triple point formula) we eas-

ily see that Di ⊂ X ′ has positive self intersection, hence not contractible.

This would contradict unless the log canonical center of X0 is X×{0}, hence

weak K-polystability of (Xo, Lo) follows.

Now we prove the strongly open K-polystability. We regard X as a
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blow up (with the morphism ϕ : X → X ′ and the exceptional (−1)-curve

E) of DelPezzo surface X ′ of degree 1 at the base point of elliptic anti-

canonical linear system which we denote as π. Then, applying [AP06], it

follows that X admits a polarization Lε := ϕ∗(−K ′
X) − εE for ε � 1 such

that (X,L) has a corresponding cscK metric hence K-polystable by [Stp09].

Therefore, from Lemma 2.16, we obtain the strongly open K-polystability of

(Xo, Lo).

Proof of (x) follows from Lemma 2.10. We would like to call this pair

as being type E as in [Od20b], to which we consult the details.

Proof of (xi): The first item should be essentially known to birational

geometry experts. From a classification result (cf., e.g., [Fjn00], [Gon11a]),

it follows that X ′ is indeed a P1-bundle over a klt log Calabi-Yau pair

(Di,DiffDi(0)). Since (X,D) is a dlt log Calabi-Yau pair, as we assume

always during Theorem3.1, (X,D) is plt around Di. From Cartier assump-

tion of Di, if we consider the deformation to the normal cone with respect

to Di ⊂ X, we can contract the strict transform of the original central

fiber X × {0} to get a log test configuration of (X,D) degenerating to

PDi(O ⊕ NDi/X), whose log Donaldson-Futaki invariant vanishes. There-

fore, the second statement on the weakly open K-polystable case holds if

we put N = ND′
i/X

′ .

Finally, for the third statement, we suppose ((X,D), L) is a stabilizing

compactification. Then from [RT07] (also [AT08, AK19]), it follows that

(X ′, L′) has vanishing Futaki character if and only if N is numerically triv-

ial. �

For the last claim on (xi), we have not been able to succeed to remove

dimension assumption on B at this point, but we nevertheless expect follow-

ing more general claim would be algebraically proved eventually; connecting

the phenomenon observed in birational geometry ([FA91, Fjn00, Gon11a]

etc) and the Cheeger-Gromoll splitting [CG71].

Conjecture 3.6 (Algebraic Cheeger-Gromoll). If ((X,D), L) is open

K-polystable and there are two connected components of Supp(
D�) (i.e.,

“have two ends”), then there is a klt log Calabi-Yau variety (B,DB) and a

numerically trivial line bundle N such that X � P(O ⊕N), D is the union

of two natural sections, and a complete Ricci-flat weak Kähler metric on Xo
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is complex analytically locally a product of lower dimension Ricci-flat weak

Kähler metric and a flat metric.

Conversely, if (B,DB = 0) is smooth, then regarding Xo as a unitary

local system of rank 1 modulo the natural finite base change, we see the

existence of complete Ricci-flat Kähler metrics on Xo in the above form.

Corollary 3.7 (Classification for smooth surface case). Open K-

polystable (resp., weakly open K-polystable) smooth surfaces Xo compact-

ifiable in log smooth (X,D) are classified as follows:

(i) Xo is the 2-dimensionasl algebraic torus (i.e., (X,D) is a toric pair),

or

(ii) the complement of an elliptic curve in X or

(iii) rank 1 local system over elliptic curves (resp., holomorphic principle

C∗-bundle over elliptic curves).

Proof. Recall that D is connected or otherwise consists of two iso-

morphic disjoint sections of a ruled surface structure (Remark 3.3). The

latter case is reduced to above (ii) which is easy to show.

After log resolution, we can assume (X,D) is either of type (i), i.e., D

is smooth, or D is nodal i.e., so-called Looijenga pair first studied system-

atically in [Looi81]. Now, the assertion follows from Theorem3.1 (v), (viii)

since [GHK] shows that after finite times composition of blow ups of nodes

of the boundary curve D, the surface admits cluster surface structure. �

From now on, we examine some known gravitational instantons and

show their presence (and some non-existence) match to above Theorem 3.1.

Example 3.8. For (ix), this matches to the H-J.Hein’s gravitational in-

stanton [Hein12] as well as recent result of [CJL21] which relates it with

Tian-Yau metric [TY90] via hyperKähler rotation. Also recall G.Chen

([GCh17] or [CC15]) shows that ALG space Xo with curvature decay faster

than quadratic order can be compactified to a rational elliptic surface X and

its complement D is its singular nodal fiber. In particular, we expect our

(ix) holds for more general polarization L.
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Example 3.9. An easy typical example of (vii) is when X is the pro-

jective plane P2. Then weakly open K-polystability of (X,D) implies that

D is either smooth or union of three mutually transversal lines which fits

to i and v, but can not be the union of conic and line.

Example 3.10. [TY90] matches to above Theorem 3.1 (iii) well. In-

deed, recall that smooth X with smooth D form the most typical plt pair.

In the construction of Tian-Yau [TY90] of complete Ricci-flat Kähler metric

on Xo, they assume D is (almost) ample i.e., X is Fano, as the construction

starts with positive curvature hermitian metric on OX(D) as a source of

reference metric.

Example 3.11. [HHN15] treats the case when X admits certain kind of

cyclic quotient singularity whileD(⊃ Sing(X)) is also a cyclic finite quotient

of a Calabi-Yau manifold. Since the finite cyclic group action, “ι” in loc.cit,

do not have fixing divisor, (X,D) is plt and as they show the adjunction

holds in this case. Therefore, the existence result [HHN15] of complete Ricci-

flat Kähler metric of asymptotically cyrindrical type (“ACyl”) perfectly fits

as example of above condition in Theorem 3.1 (ii).

As 3-dimensional special case, there is a work of [CHNP13] when X

is certain kind of smooth weak Fano manifold, which are then applied to

construction of compact G2 manifolds ([CHNP12]).

We end this subsection by algebraically showing the following analogue

of Matsushima reductivity theorem ([Mat57]) by reducing to another the-

orem of Y. Matsushima ([Mat60]) on homogeneous spaces! However, note

that the result is partial for now due to reductivity assumption of the am-

bient symmetry Aut(X,L).

Corollary 3.12 (Matsushima-type theorem). Consider a weakly

open K-polystable polarized log Calabi-Yau pair ((X,D), L). If we assume

reductivity of Aut(X,L), then Aut((X,D), L) is also reductive.

Proof. From the previous Theorem3.1 (vii), we see that D ∈ | −
KX | is GIT polystable with respect to the natural action of Aut(X,L).

Therefore, its Aut(X,L)-orbit is closed in an affine subset hence so is affine.

Thus, [Mat60] implies the isotropy of D is reductive which is nothing but

Aut((X,D), L). �
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4. Compactness and Stable Reduction

4.1. Introductory remarks

An important piece of general construction of compact or proper moduli

space is to establish the formal procedure of constructing canonical limits

of a sequence or a punctured family of objects in concern. In algebraic

geometry, it is formulated as the so-called valuative criterion of properness.

The purpose of this section is to make a progress in the case of moduli

of polarized Calabi-Yau varieties (X,L)s, by following similar idea to the

classical Jordan-Holder filtrations. With differential geometric perspective,

another purpose is to also understand the bubbling phenomena of maximally

degenerating Ricci-flat Kähler metrics.

First we observe that flops can cause serious non-separatedness of mod-

uli, even in polarized setting, if we do not put any stability assumption.

This phenomenon also partially motivates our study.

Example 4.1 (Flops cause un-separatedness, even with polarizations,

without polystability conditions). If has been well-known that families of

Calabi-Yau varieties can flop, which causes unseparatedness (non-Hausdorff

properties) of moduli.

Here, we clarify and enhance the meaning by seeing such examples even

under the presence of polarizations for convenience of readers, as the author

could not find literature.

Consider the well-studied family in 2-dimensional case X → A1
t as

Xt = [xyzw + tF4(x, y, z, w)] ⊂ P3
x,y,z,w, for general F4 ∈ H0(P3,O(4)).

There are four A1-singularities (conifold points) p1, · · · , p4 on x = y = t = 0

inside X0 which is intersection of the projective plane V1 = (t = x = 0) and

another projective plane V2 = (t = y = 0). To be precise, pis are zeroes

of F4(0, 0, z, w). (More generally, the total space of generically smooth hy-

persurfaces degeneration X = {tF + G = 0} is V (F ) ∩ Sing(X0). If we

blow up V1 (resp., V2) in X , then we obtain a different polarized model X2

(resp., X1). On the other hand, if we blow up p1, then we get yet another

model X̃ which dominates both Xis. The exceptional divisor of X̃ → X is

E � P1 × P1 and since X̃ is smooth and no critical point generically inside

E, a local section s(t) : ∆ → X̃ converging to a general point in E, the

image section inside Xi converges to Vi(⊂ X0) as t→ 0, whose open locus is

not isomorphic. In particular, if we simply consider the moduli functor of
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flat families of pointed open polarized Calabi-Yau varieties (“(Xo, Lo)”s), it

is not separated.

Another motivation for the following compactness type results come

from the desire to understand more local behavior of some special maximally

degenerating Calabi-Yau metrics.

More precisely, we are concerned with the pointed Gromov-Hausdorff

limits of Ricci-flat Kähler manifolds with minimal non-collapsing rescale in

the following sense, somewhat analogous to the notions of “regularity scales”

although not quite identical.

Definition 4.2 (Minimal non-collapsing rescale). A polarized flat (Q-

Gorenstein) punctured holomorphic family π∗ : (X ∗,L∗) → ∆∗ := ∆ \ {0}
of n-dimensional polarized klt projective varieties with continuous family

of Kähler metrics gt on Xt whose Kähler class is c1(Lt), take a sequence

pi ∈ Xti(i = 1, 2, · · · ) such that ti(�= 0) → 0 for i → ∞. Here, Xt :=

(π∗)−1(t) and Lt := L∗|Xt as usual. A sequence of real numbers ri is called

minimal non-collapsing order if (pi ∈ Xti , rigti) has non-collapsing10 pointed

Gromov-Hausdorff limit as Ricci-flat weak (klt) Kähler spaces but for any

εi > 0(i = 1, 2, · · · ) with limi εi = 0, (pi ∈ Xti , εirigti) does not have such

limit.

We are concerned with the natural equivalence class of the sequence

{ri}i by ∼ where

{ri}i ∼ {r′i}i,

simply means {log
r′i
ri
}i is bounded from both sides.

Particularly, we are interested in the case when pi moves along a mero-

morphic section over ∆∗, KX ∗/∆∗ ∼Q 0, and gt are Ricci-flat Kähler. For

instance, for degeneration of polarized elliptic curves with standard flat

metrics, the minimal non-collapsing limit is a cylinder C/Z � C∗ with a

standard flat metric. The rescaling parameter rt simply makes the injectiv-

ity radius of rtgt bounded. Now, we put an expectation which is inspired by

[DonSun17], which in particular gives partial confirmation for smooth case,

other than the metric completeness.

10in the sense of e.g., [DonSun17]
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Conjecture 4.3 (Existence of minimally non-collapsing limits). In

the above situation, there is a unique equivalence class of minimal non-

collapsing order. Furthermore, for sequences of points pi ∈ Xti with ti(�=
0) → 0 which are general enough in a certain sense, the pointed Gromov-

Hausdorff limits are complete Ricci-flat (weak) Kähler space.

Here, the “generality” condition should be necessary since for some se-

quences, we expect e.g., (multi-)Taub-NUT metrics as the occuring limits

as [HSVZ22] for instance.

We further put an inprecise expectation as it actually served as one of

the motivations of our open K-polystability notion.

Question 3 (Special maximal degeneration case). We expect that for

certain special maximally degenerating families of polarized Calabi-Yau

varieties, which are dlt minimal models over a curve, the minimal non-

collapsing pointed Gromov-Hausdorff limit in Conjecture 4.3 are nothing

but the open strata of open polystable dlt model reductions. Characterize

when this is true.

However we observe the following.

Caution-Conjecture 4.4. Note that minimal non-collapsing limits do

not respect product so that the above expectation 3 can not be extended to

general degenerations.

To provide a simple counterexample, first we take (X ∗,L∗)→ ∆∗ which

satisfies affirmatively the above Question 3. Then, if we take a fixed pointed

polarized m-dimensional Calabi-Yau variety s′ ∈ (S,M) and consider

(s(t), s′) ∈ (X × S, p∗1L ⊗ p∗2M) → ∆∗, then we expect the minimal non-

collapsing limit of the fiber Ricci-flat Kähler metrics on the fiber Xt×S to be

the isometric to the metric product of the following two metric spaces. One

is the minimal non-collapsing pointed Gromov-Hausdorff limit of Xt � s(t)
with respect to the original Ricci-flat Kähler metrics, and the other is the

(metric) tangent cone of S at s′ rather than S itself.

Indeed, this is easily verified in the case of degenerating polarized abelian

varieties as [Od19].

Furthermore, by the concrete analysis in [Od19], even some maximal

degenerations of polarized abelian varieties can have negative answers to
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Question 3. However, certainly good “balancing” class of maximal degener-

ations do exist, of which the answer to Question 3 are affirmative. We leave

the details to future papers.

4.2. Weakly open stable reduction

We used the notion of the dlt minimal models for flat family of Calabi-

Yau varieties in the formulation of above Question 3. It is obtained the

relative minimal model program over the base curve (see [Fjn11b]) gives a

powerful method of constructing degenerate Calabi-Yau varieties still with

trivial canonical divisor, in a certain sense. A good news is that, as the name

suggests, the singularities in such degeneration are controlled to be mild

(semi-dlt), but the filling is rather far from unique. As we mentioned, [OS15]

(Theorem 1.3) ensures their log K-semistability but never satisfies log K-

polystability, hence it does not help to obtain uniqueness. This section aims

to try to fix the problem by restricting the class of such occuring minimal

degenerations further by imposing our our new poly-stability notions in §2,

to obtain (unique and canonical) stable reduction type results.

We work in the setting of flat proper family over ∆ � 0, a germ of smooth

algebraic curve. Nevertheless, we expect the same holds for analytic or for-

mal germ if we replace the use of semistable MMP [Fjn11b] by its technical

extension to formal equicharacteristic setting (cf., e.g., [HP16, NKX18]).

We often denote ∆ \ {0} as ∆∗. The superscript ∗ denotes for punctured

setting i.e., away from central fiber as boundary, while the superscript o

means outside the horizontal boundary Supp(
D�). In this section, to avoid

technical difficulties of dealing with degenerations of boundary divisors (cf.,

e.g., [Kol]), we suppose D is reduced i.e., all coefficients being 1.

Theorem 4.5 (Weakly open polystable reduction, Type I case). Con-

sider a flat Q-Gorenstein family of open polarized Calabi-Yau varieties (re-

call Definition 2.1 (ii)) which we denote by (X ∗,o,L∗,o) � ∆∗ = ∆\{0} i.e.,

both horizontaliry and vertically compactifiable to ((X ,D),L) � ∆ which is

a family of log dlt Calabi-Yau varieties such that

• All components of D have coefficients 1 and are horizontal i.e., maps

to ∆ dominantly,

• X ∗ \ Supp(
D∗�) = X ∗,o,
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• L∗|X ∗,o = L∗,o,

• and (X ,X0) is of plt-type i.e., the open central fiber pair (X o0 ,D −

D�|X o

0
) is klt (we call “Type I” condition11).

Then, possibly after a finite base change of ∆ � 0, we can perform a bira-

tional transform along the fiber over 0, to obtain a priori new ((X ,D),L) �
∆ such that again

• All components of D have coefficients 1 and are horizontal i.e., maps

to ∆ dominantly,

• X ∗ \ Supp(
D∗�) = X ∗,o,

• L∗|X ∗,o = L∗,o,

and further that, most importantly,

• The central fiber ((X0,D|X0),L|X0) does not admit a plt type log test

configuration which is not a product log test configuration. In partic-

ular, the open central fiber ((X o0 ,D − 
D�|X o
0
),L|X o

0
) is weakly open

K-polystable klt open Calabi-Yau polarized variety in the sense of Def-

inition 2.19 (i).

A special consequence for when the general fiber is smooth, is as follows.

Corollary 4.6 (A special case of Theorem 4.5). If there is a flat fam-

ily of polarized open Calabi-Yau manifolds (X o,Lo) � ∆, we can replace

the central fiber after finite base change to make it weakly open K-polystable.

Proof of Theorem 4.5. By [Fjn11b], there is at least such

((X ,D),L) which satisfies the conditions except for the last one i.e., non-

existence of non-product plt log test configuration of the central fiber is not

ensured.

Step 1. Suppose there is a there is a plt-type log test configuration

((X ′,D′),L′) of the central fiber ((X0,D0),L|X0). By the arguments of

11after the Kulikov-Pinkham-Persson classification of log smooth minimal degenera-
tions of K3 surfaces. This roughly means that the pair does not degenerate much.
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Lemma 2.18, Lemma 2.20, we can even assume it is Auto(X o0 ,L|X o
0
)-

equivariant.

Suppose the base curve germ ∆ � 0 is realized in a smooth algebraic

curve C � p. Possibly after a finite base change, we want to glue “base

changed enough” base curve C of ((X ,D),L) and the base P1 of ((X ′,D′),L′)
to obtain a birational transform of ((X ,D),L) only along the fiber over 0

so that the new fiber over 0 becomes (X ′
0,L′|X ′

0
). We provide its details as

following Step 2, Step 3, and Step 4.

Step 2 (Indeterminancy resolution). We take a certain component of

the incidence locus of the two Hilbert schemes one of which parametrizes

the fibers (Xt, L
⊗m
t ) for uniform m ! 0, as Hilb(PNX ), while the other

Hilb(PND) parametrizes at least (Dt,L⊗m|Dt) for the same fixed m. We

denote such incidence locus byH. Furthermore, we suppose the destablizing

log test configuration ((X ′,D′),L′) is induced by a C∗-action λ on PN hence

on H.

This gives a flat projective family over C∗×C in a C∗-equivariant man-

ner, extending X over {1} × C, hence a morphism C∗ × C → Hilb(PN ). In

particular, it induces a rational map

P1 × C ��� H.

We consider its indeterminancy locus which must be finite closed points

inside {0,∞} × C. In particular, we can take {p = p1, · · · , pl} ⊂ C so

that the indeterminancy locus is inside {0,∞}×{p = p1, · · · , pl}. Since we

assume that the order of the base field k is infinity, note that we can replace

the subset {p = p1, · · · , pl} of C by a larger one with arbitrarily big order

if we need, as we do in the next Step 3.

Now we consider a C∗-equivariant resolution of indeterminancy of the

rational map which we denote as B → H, which is a blow up of some close

subscheme of P1 × C which we denote as Σ. Then we obtain a diagram

B = BlΣ(P1 × C)

π����������������

��������������

P1 × C H,

and our flat projective family (over (C∗ × C)) extends over B. This is an

easy example of so-called flattening procedure.
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Now we define depth of the blow up π at a point in C × P1. First, since

π is a birational proper morphism from regular surface to regular surface,

it can be decomposed as the composition of finite maximal ideal blow up as

π = π(d)◦π(d−1)◦· · ·◦π(1) where each π(i) is a blow up with its corresponding

maximal ideal defining a closed point ci. We define depth(π, (x, y)) as

#{i | ci = (π(i−1) ◦ · · · ◦ π(1))∗(x× C) ∩ (π(i−1) ◦ · · · ◦ π(1))−1
∗ (C̃ × y)}.

Note that depth(π, (x, y)) = 0 unless x is either 0 or ∞ and y is one of pis.

Then take a positive integer m such that

m > max
(x,y)

{depth(π, (x, y))},(3)

Step 3 (Cyclic covering). If we replace {p1, · · · , pl} by a larger set if

necessary, we can and do assume that there is an effective Z-divisor D on

C such that
(∑

1≤i≤l pi
)
∼ mD.12

We set L := OC(D) on C, and exploits the standard cyclic cover con-

struction:

C̃ := SpecOC
(⊕0≤a<mOC(aD)) � C,

where the ring structure on the right hand side is induced by OC(mD) �
OC(

∑
i pi) ↪→ OC . Sincem is coprime to the characteristic of k, this gives an

integral normal curve C̃ which is cyclic cover of C. We denote the covering

by f and write its graph in C̃ ×C as Γf . Recall that Γf is isomorphic to C̃

through the projection.

Note that f∗pi = mp′i with p′i ∈ C̃ for each i.

Step 4 (Rational function for base change). We take a pair of disjoint

finite closed sets {qj}j ⊂ C and {q′j}j ⊂ C such that:

(i) {qj} = {q′j} ≥ 2g(C̃) + 1,

(ii) {p′i} ∩ {qj} = {p′1},

(iii) ({p′i} ∪ {qj}) ∩ {q′j} = ∅,

(iv)
∑
j qj ∼

∑
j q

′
j .

12Here we used that the base field is characteristic 0 hence infinity order in particular.
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From the last condition, we have a rational function r ∈ K(C̃)∗ whose

zeroes are {qj} with multiplicities 1 and poles {q′j} with multiplicities 1. In

particular, r is étale over {0,∞} ⊂ P1. Therefore, B̃ := B ×(P1×C) (C̃ × C)

is smooth, on which we also have a flat polarized family extending that of

original (X ,L) which is isotrivial for C̃-direction. We denote the obtained

morphism B̃ → (C̃ ×C) by π̃, which can be also seen as an indeterminancy

resolution for the corresponding rational map to Hilb(PN ). Summarizing,

we have the following diagram:

Γf� �

�

B̃
(̃r×id)

����

π̃ �� �� (C̃ × C)

(r×id)
����

B = BlΣ(P1 × C)
π �� �� (P1 × C).

Then we consider π̃−1
∗ Γf ⊂ B̃ which is isomorphic to C̃. The family over

Γf � C̃, pulled back from the incidence locus of Hilb(PNX )× Hilb(PND) is

our desired glued family of polarized log Calabi-Yau varieties.

Step 5. We denote the normalization of the new family over C̃ as X (1)

and replace the notion C̃ by C for simplicity. Note the normalization map

of X is bijective, which follows from fiberwise S2-condition. Therefore, the

pullback of the boundary divisor makes sense which we denote as D(1). Fur-

thermore, we put the pullback of the polarization denoted as L(1). A priori,

(X (1),D(1)) may be only log canonical, not necessarily dlt, by the inversion

of adjunction ([Kwkt07]). Therefore, we consider its dlt modification (cf.,

e.g., [Kol13, FG14, OX12]) to modify to a dlt minimal model over ∆.

Step 6. Notice that the rank of Auto(X o0 ,L|X o
0
) increases by the above

procedure, hence the replacement either stops after finitely many times,

to obtain a sequence ((X (i),D(i)),L(i))(i = 1, 2, · · · ) or X o0 becomes an

algebraic torus so that the assertion holds by Theorem3.1 (v) after all. �

To state a variant for general reducible degenerations, we introduce the

following a priori variant stability notion, which might remind the readers
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of the notion of pointed Gromov-Hausdorff limits in metric geometry. How-

ever, we recall from Caution 4.4 that the open parts of the components of

degenerate varieties which satisfy these (pointed) open polystability notion

can not be pointed Gromov- Hausdorff limits themselves in general, espe-

cially for non-maximal degenerations, even after rescale (cf., e.g., [Od19]).

Neverthelss, weaker relations can be expected in special situations and we

wish to explore relations in more general context in future.

Definition 4.7. We suppose a projective variety X has only sdlt sin-

gularities and KX ∼Q 0 and the irreducible decomposition as X = ∪iVi
so that each (Vi, Di) is a log Calabi-Yau dlt pair, where Di denotes the

conductor divisor.

Now we fix a reference closed point p inside the klt locus of X0. We also

fix a polarization i.e., an ample line bundle on X.

For a log test configuration ((X ,D),L) of ((X,D), L) such that

• X satisfies Serre’s S2 condition.

• Its restriction to the closure of Vi×(P1 \{0}) is of plt type in the sense

of Definition 2.3 (i).

• The log Donaldson-Futaki invariant DF((X ,D),L) (in the sense of

[Don12, OS15]) vanishes.

• The limit of p i.e., Gm · (p× {1})∩X0 is inside the klt locus of (X0,D0).

((X,D), L) is weakly pointed open K-polystable if every such log test

configuration ((X ,D),L) satisfies that the klt locus of (X ,D) is of product

type.

Theorem 4.8 (Weak (proper) pointed stable reduction). Take an ar-

bitrary flat Q-Gorenstein family ((X ∗,D∗),L∗)→ ∆∗ of polarized projective

klt log Calabi-Yau varieties over a punctured germ of smooth curve 0 ∈ ∆,

with KX ∗/∆∗ + D∗ ≡ 013 and a meromorphic section s : ∆∗ → X ∗, pos-

sibly after a finite base change of ∆ � 0, there is a dlt minimal model

(X ,D + X0)→ ∆ such that the following additional conditions hold:

(i) (X0,D|X0) is semi-dlt and KX0 +D|X0 ∼Q 0,

13again, equivalent to KX∗/∆∗ + D∗ ∼Q 0 by [Fjn00, Gon11a]
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(ii) limt→0 s(t) lies inside the klt locus X klt
0 of the central fiber (X0,D0)

(iii) ((X0,D|X0),L|X0) is a weakly pointed open K-polystable Calabi-Yau

polarized variety with respect to limt→0 s(t) in the sense of Defini-

tion 4.7.

Again, we also write brief version for a rather special i.e., log smooth

case, for readers’ convenience.

Corollary 4.9. Take an arbitrary degenerating polarized family

(X ,L) � ∆ of n-dimensional pointed smooth (projective) polarized Calabi-

Yau manifolds also with a holomorphic section {s(t)}t. We write the fibers

as (Xt,Lt) � s(t)(t �= 0) and suppose the degeneration X0 is a simple nor-

mal crossing Calabi-Yau variety. For instance, polarized Kulikov families

of pointed K3 surfaces, not of Type I, satisfy the condition.

Then, we can birationally modify the central fiber, possibly after a finite

base change, to make it a “better” degenerate polarized Calabi-Yau varieties

(X0,L0) which satisfies:

(i) X0 is simple normal crossing away from a closed subset of dimension

n− 2,

(ii) the limit point of limt→0s(t) stays outside the double locus of X0,

(iii) (X0,L|X0) is weakly pointed open K-polystable with respect to the limit

point of limt→0s(t).

Proof of Theorem 4.8.

Step 1. By the semistable reduction theorem [KKMSD73] and the

semistable minimal model program [Fjn11b], we can at least construct a

dlt minimal model (X ,D + X0)→ ∆.

Step 2. The main innovation from here is the following base change

trick, which more or less yields “sub-divided” dlt minimal models with much

more irreducible components in the central fiber.

Using the N -th ramifying finite morphism b(N) : (∆ � 0) → (∆ � 0)

with N ∈ Z>0, we take the base change of (X ,D) which we denote as
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(X (N),D(N)) = X ×∆,b(N) ∆. Recalling the determination of log canon-

ical centers of dlt pairs (cf., [Amb03], [Fjn07]), combined with [KM98],

the lc centers of (X (N),D(N) + X (N)
0 ) are simply the preimages of those of

(X ,D + X0). Let us consider the open subset of X where (X ,D + X0) is

log smooth, which we denote as X lsm and think of étale local structure of

X lsm×∆,b(N) ∆. From the log smoothness of (X ,D)∩X lsm, the preimage of

X lsm in (X (N),D(N) + X (N)
0 ) are toroidal and have simple explicit combi-

natorial description by a rational polyhedral fan over the dual intersection

complex ([KKMSD73]). We take an arbitrary regular subdivision of the cor-

responding fan, then it gives a crepant toric log resolution of the preimage

of X lsm inside X (N).

Step 3. Suppose that log resolution is given by the blow up of a coher-

ent ideal Io in the preimage of X lsm inside X (N). We extend the coherent

ideal Io to a coherent ideal I of whole OX (N) whose normalized blow up

gives still a log resolution (or we take the log canonical closure of [HX13]).

Then we run the relative minimal model program over X (N), which is now

allowed by using [HX13, HH20] etc. This gives a dlt minimal model over

X (N) which we denote by (X [N ],D[N ]). By a simple phenomenon that the all

log canonical centers of (X ,D) intersect with X lsm (cf., [Amb03], [Fjn07]),

it follows that (X [N ],D[N ]) is also a dlt minimal model over the base curve

∆ as well.

From our earlier determination of log canonical centers of (X (N),D(N) +

X (N)
0 ), it easily follows that all the irreducible components of X [N ]

0 intersect

with the preimage of X lsm.

Step 4. Now we consider ordert=0(s
∗Vi) ∈ Q and ordert=0(s

∗Di) ∈ Q

where Vi denotes the irreducible component of X0 and Di denotes irre-

ducible components of D. Comparing with those rational numbers, if we

take a prime number N which do not divide neither the numerators or de-

nominators, then our desired assertion (ii) easily follows. This fact can be

shown in standard explicit blow up calculation while it more systematically

follows by use of the Morgan-Shalen-Boucksom-Jonsson construction (cf.,

e.g., [Od19]) which we expand in details in another paper [Od20c] more. So

now we finish the discussion of our base change trick which ensures the dlt

model existence satisfying the condition (ii).
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Step 5. As a next step, we wish to improve further the obtained model

(X (N),D(N)) to make it satisfy (ii) i.e., the weak pointed open K-polystabil-

ity as desired. Here, we use the same trick as previous Theorem4.5 of “glu-

ing in” test configuration; we take an arbitrary ample extension L(N) which

extends that of (base change of) L∗. If ((X (N)
0 ,D(N)

0 ),L(N)|X (N)
0

) is not

weakly pointed open K-polystable with respect to the limit p := limt→0 s(t)

of meromorphic section s in X (N), then there is a log test configuration of

((X (N)
0 ,D(N)

0 ),L(N)|X (N)
0

) � p of plt-type ((X ′,D′),L′) such that the limit

of p is inside klt locus of (X (N)
0 ,D(N)

0 ), the log Donaldson-Futaki invariant

vanishes DF(X (N)
0 ,D(N)

0 ) = 0, and not of product type. More precisely,

completely similarly to the Steps 2,3,4 of the proof of Theorem 4.5, we

take a sufficiently high degree ramifying base change of (X (N),D(N)) and

glue them along the fiber over 0 ∈ ∆ with the above log plt-type test con-

figuration ((X ′,D′),L′). Therefore we obtain ((X ,D),L) which satisfies (ii).

Step 6. Finally we want to ensure the dlt property, and we slightly

modify as follows: we first take (semi-)normalization of the total space X
which must be bijective to X , then the inversion of adjunction tells us that

(X ,D +X0) is log canonical. Hence we can take log crepant dlt blow up as

in e.g., [FG14, OX12, Kol13], which is desired model. The condition (ii) is

automatically satisfied because of the glueing construction which preserves

the same property for ((X ′,D′),L′). �

We explore the above Step2 more systematically and thoroughly in an-

other paper in preparation. If we replace the use of weak pointed open

K-polystability in above 4.8, 4.9, by the weakly open K-polystability in the

sense of Definition 2.19 (i) (unpointed version), we also obtain the following.

Since the proof goes same way as that of Theorem 4.5 just by replacing the

definition of stability, hence easier than 4.8, we omit the proof.

Theorem 4.10 (Weak (proper unpointed) stable reduction). Take an

arbitrary flat Q-Gorenstein family ((X ∗,D∗),L∗) → ∆∗ of polarized pro-

jective klt log Calabi-Yau varieties over a punctured germ of smooth curve

0 ∈ ∆, with KX ∗/∆∗ +D∗ ≡ 014, possibly after a finite base change of ∆ � 0,

14again, equivalent to KX∗/∆∗ + D∗ ∼Q 0 by [Fjn00, Gon11a]
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there is a dlt minimal model (X ,D + X0) → ∆ such that the following ad-

ditional conditions hold:

(i) (X0,D|X0) is semi-dlt and KX0 +D|X0 ∼Q 0,

(ii) ((X0,D|X0),L|X0) is weakly open K-polystable (in the sense of Defini-

tion 2.19 (i)).

Remark 4.11. After above Theorem 3.1, Corollary3.7 etc, we expect

that the observation by Gross-Hacking-Keel [GHK] that any Type III one

parameter algebraic degeneration can be vertically birationally transformed

into a toric degeneration, can be seen as a special case of strongly open

K-polystable reduction.

In another paper [Od20c], we discuss a continuation of the above dis-

cussion in the proof.

Remark 4.12. Consider a log Calabi-Yau lc pair (P2, 3
4C) where C is

a “cat-eye” i.e., a union of two smooth conics C1 and C2 intersecting at two

tacnodes, i.e., 1-dimensional A3-singularities (cf., [HL10, OSS16, ADL19]).

Take the blow up of both tacnodes C1 ∩ C2 and further blow up the two

singular points of the strict transform of C. Then we obtain a birational

ruled surface X � P1 with two sections D1 and D2. We can make this

into a log crepant resolution (X,D1 +D2 + ∆) → P2. This log Calabi-Yau

(X,D1+D2+∆) is dlt and we can easily see its weakly open K-polystability

by its simple structure of log canonical centers by Theorem 2.7. However, in

the wall crossing of [ADL19], they replace this by (P(1, 1, 4), 3
4 [x4y4 = z2])

(cf., [ADL19], also [OSS16]). This gives an example of further reduction

process. See [Od20c] for further discussion.

4.3. Strong open stable reduction

This subsection shows another stable reduction type theorem in the case

approximated by log Fano pairs with conical singular weak Kähler-Einstein

metrics. We start with a subtle remark.

Remark 4.13. Consider a punctured family ((X ∗,D∗),L∗) → ∆∗ of

strongly open K-polystable log Calabi-Yau pairs, whose fibers Xt(t �= 0)
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are Q-Fano varieties. Even if they are smooth Fano varieties with Kähler-

Einstein metrics, whose existence ensures the strongly open K-polystabilities

of ((Xt,Dt),Lt) for any t �= 0 (cf., [LS14], [OS15]), in general, we can-not

get strongly open K-polystable central fiber after possible finite base change,

simply by applying the K-stable reduction to Xts by [DonSun14].

For instance, take a family of Tian-Yau metric on the complements of

quartic K3 surfaces which degenerates to the doubled quadric surface.

Nevertheless, by making the conical angles rather small (acute), we prove

the following.

Theorem 4.14 (Strongly open K-polystable reduction). Consider a

punctured polarized proper family ((X ∗,D∗),L∗)→ ∆∗ = ∆\{0} of strongly

open K-polystable log Calabi-Yau pairs. We suppose the fibres are asymp-

totic log Fano pairs in the sense of [CR15].

Then, possibly after finite base change, there is its model (X ,D) � ∆ �
0 such that the central fiber ((X0,D0),L0) is a strongly open K-polystable

asymptotic log Fano pair. Moreover, such filling is unique.

Proof. By the Zariski openness of ampleness of line bundles for flat

variation, there is a uniform constant 0 < c0 � 1 such that (Xt, cDt) are

(klt) log Fano pairs for any (0 <)c < c0 and any t ∈ ∆∗.
By [OS15] and the usual Skoda type estimate (cf., e.g., [Od12]), there

is a uniform β0 > 0 such that (Xt, (1 − β)Dt) is log K-polystable for any

(0 <)β < β0 and any t.

For any such fixed β, from [BHLLX21, LXZ21] (see also [CDS15],[Tia15]

for earlier partial results via Cheeger-Colding theory), there is a model

(X ,D) such that (Xt, (1− β)Dt) is a log K-polystable Q-Fano pair.

What remains is to show its independence of small β. Note that the

log canonical threshold of above obtained X0 with respect to Dt is at least

1 − β, as it follows from the klt property of the obtained pair (X0, (1 −
β)D0). Therefore, from [HMX14], for small enough β � 1, the concerned

log canonical threshold should be at least 1. In other words, (X0,D0) is log

canonical so that it is log K-semistable with respect to any polarization,

by [OS15] (=Theorem 1.3). Therefore, from the affine-linearity of the log

Donaldson-Futaki invariant with respect to the coefficient of the boundary,

it follows that ((X0,D0),L0) is strongly open K-polystable. The uniqueness

assertion follows from [BX19]. �
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Remark 4.15. For general punctured family of polarized log Calabi-

Yau pairs ((X ∗,D∗),L∗)→ ∆∗ = ∆\{0}, the uniqueness of strongly open K-

polystable reduction as in the above Theorem 4.14 case does not necessarily

holds.

We discuss related developments in [Od20c].
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[KK10] Kollár, J. and S. Kovács, Log canonical singularities are DuBois, J.
Amer. Math. Soc. 23(3), (2010), 791–813.

[Kol] Kollár, J., A book project on moduli of slc models, in preparation.
cf., https://web.math.princeton.edu/~kollar/

[KM98] Kollár, J. and S. Mori, Birational Algebraic Geometry, Cambridge
university press (1998).

[Lee08] Lee, Y., Chow stability criterion in terms of log canonical threshold,
J. Korean Math. Soc. 45(2), (2008), 467–477.

[LS14] Li, C. and S. Sun, Conical Kähler-Einstein metrics revisited, Comm.
Math. Phys. 331(3), (2014), 927–973.

[LX14] Li, C. and C. Xu, Special test configurations and K-stability of Fano
varieties, Ann. of Math. (2014).

[LXZ21] Liu, Y., Xu, C. and Z. Zhuang, Finite generation for valuations com-
puting stability thresholds and applications to K-stability, arXiv:
2102.09405, to appear in Ann. of Math.

[LWZ20] Li, L., Wang, J. and K. Zheng, Conic singularities metrics with
prescribed scalar curvature: a priori estimates for normal crossing
divisors, Bull. Soc. Math. France 148(1), (2020), 51–97.

[Looi81] Looijenga, E., Rational surfaces with an anti-canonical cycle, Annals
of Math. 114 (1981), 267–322.

[MM64] Matsusaka, T. and D. Mumford, Two fundamental theorems on de-
formations of polarized varieties, American Journal of Mathematics



K-Stability for Open Calabi-Yau Varieties 49

86(3), 668–684.
[Mat57] Matsushima, Y., Sur la structure du groupe d’homéomorphismes
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