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Invariants of PSLnR-Fuchsian Representations

and a Slice of Hitchin Components

By Yusuke Inagaki

Abstract. The Hitchin component Hn(S) is a special component
of the PSLnR-character variety of a closed surface S of genus g ≥ 2
which contains the discrete faithful representations π1(S) → PSL2R

via an irreducible representation. Bonahon-Dreyer ([BD14], [BD17])
gave a parameterization of Hn(S) by the triangle invariants and the
shearing-type invariants fixing an arbitrary maximal geodesic lamina-
tion on S, so that the Hitchin component is a cone in a Euclidean
space.

The images of discrete faithful representations π1(S) → PSL2R in
Hn(S) are called PSLnR-Fuchsian representations. In this paper we
characterize the PSLnR-Fuchsian representations of the Hitchin com-
ponent in the Bonahon-Dreyer coordinates. In particular this explicit
characterization implies the set of the PSLnR-Fuchsian representations
is an affine slice. We also discuss the case when S has boundary.

1. Introduction

Let S be a closed oriented surface of genus g ≥ 2. The Hitchin com-

ponent of S is a special connected component Hn(S) of the PSLnR-character

variety Xn(S) = Hom(π1(S),PSLnR)/PSLnR, the space of conjugacy

classes of representations. This component was introduced by Hitchin in

[Hi92]. When n = 2, the Hitchin component H2(S) is the Teichmüller

space �(S) of S, which is the deformation space of hyperbolic structures

on S. For general n ≥ 2, Hn(S) is, by definition, the connected com-

ponent of Xn(S) which contains elements induced from holonomy repre-

sentations of hyperbolic structures on S via the irreducible representation

ιn : PSL2R → PSLnR. The Hitchin component has many properties which

the Teichmüller space has, and it is a higher dimensional analog of the

Teichmüller space in the sense of the rank of Lie groups. It is natural to
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consider the relation between the Teichmüller space and the Hitchin com-

ponent.

In this paper, we characterize PSLnR-Fuchsian representations in the

Hitchin component. We call the elements of Hn(S) the Hitchin represen-

tation, and call Hitchin representations induced from holonomy represen-

tations of hyperbolic structures the PSLnR-Fuchsian representation. The

locus of PSLnR-Fuchsian representations in Hn(S) is called the Fuchsian

locus. To characterize PSLnR-Fuchsian representations, we use the parame-

terization of the Hitchin component given by Bonahon and Dreyer ([BD14],

[BD17]). The Hitchin component is parameterized by two kinds of invari-

ants, the triangle invariant and the shearing-type invariant along maximal

geodesic laminations on S. Through an observation of the invariants of

PSLnR-Fuchsian representations, we show that, a Hitchin representation is

a PSLnR-Fuchsian representation if and only if the triangle invariants are

equal to zero, and the shearing-type invariants are equal to the shearing

parameters of hyperbolic structures.

Let λ be an arbitrary maximal geodesic lamination on S, which yields

an ideal triangulations of S. Given a representation in Hn(S), the trian-

gle invariants are defined for ideal triangles of this triangulation, and the

shearing-type invariants are defined for leaves of λ.

The Bonahon-Dreyer parameterization is different depending on whether

λ consists of finitely many geodesics, or contains an irrational sublamination.

Although the triangle invariants are defined in the same way, the shearing-

type invariants are defined in different ways. In particular, the former case is

more combinatorial. In this paper, we characterize, indeed, the parameters

for PSLnR-Fuchsian representations in the both cases.

When λ consists of finitely many leaves, letting χ(S) be the Euler char-

acteristic, we set λ = {C1, · · · , Ck, B1, · · · , B3|χ(S)|} where C1, · · · , Ck is a

closed geodesic (1 ≤ k ≤ 3g−3), and Bi is a bi-infinite geodesic. We denote

the ideal triangles which are complementary regions of λ by T1, · · · , T2|χ(S)|.
Let si0, s

i
1, s

i
2 be the spikes of the ideal triangle Ti. In this case, Bonahon and

Dreyer introduced the invariants, called the triangle invariants, the shear-

ing invariants, and twist invariants to define the parameterization of Hn(S).

Given ρ ∈ Hn(S),

(1) the triangle invariant τpqr(s
i
j , ρ) is defined for spikes sij of the ideal

triangles Ti,
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(2) the shearing invariant σb(Bi, ρ) is defined for the bi-infinite leaves

Bi, and

(3) the twist invariant θc(Ci, ρ) is defined for the closed leaves Ci,

where the indices p, q, r, b, c are positive integers with p + q + r = n, and

1 ≤ b, c ≤ n − 1. In this setting, the Bonahon-Dreyer parameterization

Φλ : Hn(S) → RN is defined by

Φλ(ρ) = (τpqr(s
i
j , ρ), · · · , , σb(Bi, ρ), · · · , θc(Ci, ρ), · · · ),

where N = 6|χ(S)|
(
n−1

2

)
+ 3|χ(S)|(n − 1) + k(n − 1). The image of Φλ,

denoted by Pλ, is the interior of a certain polyhedron of RN ([BD14]). The

following is our main theorem.

Theorem 1. Let S be a closed oriented surface of genus g ≥ 2, and λ

be a maximal geodesic lamination on S consisting of finitely many leaves.

Then, it holds that

(i) a Hitchin representation ρ ∈ Hn(S) is PSLnR-Fuchsian if and only if

all triangle invariants are zero, and the shearing, and twist invariants

are constants depending only on ρ, i.e.

τpqr(s
i
j , ρ) = 0, σb(Bi, ρ) = σb′(Bi, ρ), θc(Ci, ρ) = θc′(Ci, ρ)

for all possible i, j, p, q, r, b, b′, c, c′.

(ii) Moreover, if ρ is a PSLnR-Fuchsian representation, setting

η : π1(S) → PSL2R be its corresponding Fuchsian representation (so

that ρ = ιn ◦ η), it holds that σb(Bi, ρ) = ση(Bi) for all b and i.

This theorem characterizes the PSLnR-Fuchsian representations in the

Hitchin component by the conditions of the triangle, shearing, and twist

invariants.

In the case of general laminations, we use the shearing classes instead of

shearing, and twist invariants. In [BD17], Bonahon and Dreyer defined

the twisted tangent cycle relative to slits for maximal geodesic lamina-

tions, which was a vector valued cocycle defined on the set of oriented

arcs transverse to λ. The shearing class is a twisted tangent cycle rel-

ative to slits defined by Hitchin representations. The Bonahon-Dreyer
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parametrization in this case is a parameterization defined by the trian-

gle invariant and the shearing class. We denote this parameterization by

Φλ : Hn(S) → Z(λ, slits; Rn−1)×R6|χ(S)|(n−1
2 ), where Z(λ, slits; Rn−1) is the

vector space of the twisted tangent cycles relative to slits. The image Pλ of

Φλ is the interior of a convex polyhedron in Z(λ, slits; Rn−1)×R6|χ(S)|(n−1
2 )

([BD17]). We show that the shearing classes σιn◦ρ of PSLnR-Fuchsian rep-

resentations ιn ◦ ρ are determined only by the shearing cocycle σρ.

Theorem 2. Suppose that λ is an arbitrary maximal geodesic lamina-

tion. Then a Hitchin representation ρ ∈ Hn(S) is PSLnR-Fuchsian if and

only if all triangle invariants are equal to zero, and, for any oriented arc

k tightly transverse to λ, the shearing class is of the form (σ(k), · · · , σ(k))t

where σ is a transverse cocycle of λ, i.e. σ ∈ Z(λ; R).

Theorem 2 generalizes Theorem 1, in the following sense. Let λ be an

oriented maximal geodesic lamination which consists of finitely many leaves.

For a bi-infinite leave Bi of λ, we pick an oriented arc k transverse to Bi

so that k intersects to Bi only once from left to right. Then the shear-

ing class σρ(k) associated to k is the vector whose entries are the shearing

invariants σb(Bi, ρ), i.e. σρ(k) = (σ1(Bi, ρ), · · · , σn−1(Bi, ρ)). Since The-

orem 2 implies that all entries of shearing classes are equal to each other

for PSLnR-Fuchsian representations, Theorem 2 proves the statement with

bi-infinite leaves in Theorem 1.

Structure of this paper

- Section 2: We recall Teichmüller spaces, geodesic laminations, and the

shearing parameterization of Teichmüller spaces.

- Section 3: We define Hitchin components, and recall the related con-

cepts, the hyperconvexity, the flag curves and the Anosov property.

The flag curves play an important role in the definition of the

Bonahon-Dreyer parameterization of Hitchin components. The

Veronese flag curve, defined in Subsection 3.2, is used in Section 5.

This is the flag curve of PSLnR-Fuchsian representations.

- Section 4: The Bonahon-Dreyer parameterization of Hitchin compo-

nents is defined. In Subsection 4.1, we recall the double ratio and the

triple ratio, which are certain ratios defined for tuples of flags. We
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consider the case of maximal geodesic laminations with finitely many

leaves in Subsection 4.2, and the case of maximal geodesic laminations

which may contain irrational laminations in Subsection 4.3. In each

case, we define the Bonahon-Dreyer parameterization.

- Section 5: We compute the triple ratios and the double ratios of the

Veronese flag curves. The main propositions are Proposition 26 and

Proposition 30.

- Section 6: We show the main results of this paper. Theorem 31 and

Theorem 33 give the sufficiency of the main theorems. Theorem 31

and Theorem 33 characterize the triangle invariants and the shearing-

type invariants of PSLnR-Fuchsian representations. Theorem 32 and

Theorem 34 imply the necessity of the main theorems. In the proof

of these theorems, for any parameters which satisfy the condition

for invariants, we construct PSLnR-Fuchsian representations whose

Bonahon-Dreyer parameters are equal to given parameters.

- Section 7: We give an argument with surfaces with boundary. The

main theorems are extended to the case of compact surfaces with

boundary.

Remark. This paper is an updated version of the author’s unpublished

paper [In]. Theorem 1 and Theorem 2 hold true for general compact surfaces

with boundary (we consider only the case of a pair of pants in [In]).

Acknowledgements. The author would like to thank Shinpei Baba,

Hideki Miyachi, and Ken’ichi Ohshika for their warm encouragement and

valuable discussions. He also would like to thank the referee for useful com-

ments.

2. Hyperbolic Geometry of Surface

2.1. Hyperbolic structures on surfaces

Let S be a closed oriented surface of negative Euler characteristics. A

hyperbolic metric on S is a complete Riemannian metric on S of constant

curvature −1. A hyperbolic structure on S is an isometric class of a hyper-

bolic metric on S.
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We denote, by H2, the hyperbolic plane of the upper-half plane model

with the orientation induced by the framing 〈e1, e2〉, where e1 = (1, 0)t, e2 =

(0, 1)t. The group of orientation-preserving isometries Isom+(H2) is isomor-

phic to PSL2R, where PSL2R acts on H2 as linear fractional transformations.

If S is endowed with a hyperbolic metric, we obtain an isometry f : S̃ →
H2 with respect to the metric on S̃ induced from the hyperbolic structure

on S. Then, there exists a representation ρ : π1(S) → PSL2R so that f

is (π1(S), ρ)-equivariant, i.e. for any x ∈ S̃ and γ ∈ π1(S), f(γ · x) =

ρ(γ) · f(x). This representation ρ is discrete, faithful and unique up to

conjugacy of PSL2R. We call a discrete faithful representation ρ : π1(S) →
PSL2R a Fuchsian representation. The above isometry f : S̃ → H2 with

the equivariance for a Fuchsian representation ρ is called the developing

map associated to ρ. In this paper, we denote, by fρ, the developing map

associated to ρ.

The correspondence between hyperbolic structures and conjugacy classes

of Fuchsian representations is one to one. In fact, for a Fuchsian represen-

tation ρ, we have the universal covering H2 → S with the covering trans-

formation group ρ(π1(S)). This covering map defines the hyperbolic metric

on S, which is unique up to isometry.

2.2. Teichmüller space

The Teichmüller space �(S) of S is defined by

�(S) = {ρ : π1(S) → PSL2R | Fuchsian, fρ is orientation-pres.}/PSL2R

where the quotient is defined by the conjugate action of PSL2R. The topol-

ogy of �(S) is the quotient topology of the compact open topology which

is defined on the set of representations.

We remark an equivalent definition of the Teichmüller space via hyper-

bolic structures on S. Let Hyp(S) be the set of hyperbolic metrics on S, and

Diff0(S) be the group of diffeomorphisms isotopic to the identity. The group

Diff0(S) acts on Hyp(S) by the pull-back. Then the Teichmüller space is

also defined by �(S) = Hyp(S)/Diff0(S).

Two definitions above are equivalent via the one to one correspondence

between hyperbolic structures and Fuchsian representations. There are an-

other equivalent definitions of �(S), see [IT].
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2.3. Geodesic laminations

Fix a hyperbolic metric on S. A geodesic lamination is a closed subset

of S which is a disjoint union of simple complete geodesics, called leaves.

Geodesic laminations consist of closed geodesic, called closed leaves, and

bi-infinite geodesics, called bi-infinite leaves.

The concept of geodesics depends on a hyperbolic metric on S. We

remark that, for different hyperbolic metrics g1 and g2 on S, there exists a

natural bijection between the set of g1-geodesic laminations and the set of

g2-geodesic laminations. In particular, for any hyperbolic metric g and any

simple curve c on S, there is a g-geodesic cg which is isotopic to c.

The bi-infinite geodesics on the universal covering S̃ are characterized

their ideal end points. Especially, there exists a bijection between the space

G(S̃) of bi-infinite geodesics on S̃ and (∂S̃ × ∂S̃ −∆)/Z2, where ∆ denotes

the diagonal and where Z2 acts by exchanging the two factors. The metric

structure and the Hölder structure on G(S̃) (used in Section 4.3.2) is given

by an (arbitrary) metric structure on (∂S̃ × ∂S̃ − ∆)/Z2 via this bijection.

A geodesic lamination is oriented if each leaf is oriented. We may choose

the orientation of each leaf independently.

For a geodesic lamination λ of S, the preimage λ̃ of λ in S̃ gives a

geodesic lamination of H2. A connected component of the closure of H2 \ λ̃
is called a plaque.

A geodesic lamination is said to be maximal if it is properly contained in

no other geodesic lamination. This property is equivalent to the condition

that the complementary regions of λ consists of ideal triangles. Hence, a

maximal geodesic lamination induces an ideal triangulation on S.

Given maximal oriented geodesic lamination λ with finitely many leaves,

we often use the bridge system for closed leaves as an additional data, which

is used in [SZ], [SWZ]. Let C be a (oriented) closed leaf of λ. Since λ

consists of finitely many leaves, in both sides of C, some bi-infinite leaves

and ideal triangles spiral to C. A bridge JC along C is a pair of ideal triangles

{TL, TR} where TL spirals to C from left, and TR spirals to C from right.

A bridge system of λ is J = {JC | C is a closed leaf}, an association of

bridges to closed leaves. We denote, by λJ , the lamination λ with a bridge

system J . The bridge system in this paper plays a role of the system of

short arcs in [BD14].
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2.4. Hyperbolic structures on surfaces with boundary

Let S be a compact oriented surface of negative Euler characteristics,

which has non empty boundary. A hyperbolic metric on S is a complete

Riemannian metric of constant curvature −1 which makes the boundary

components totally geodesic. A hyperbolic structure on S is an isometric

class of hyperbolic metrics on S. Geodesic laminations on S is similarly

defined. In the case of compact surfaces with boundary, we require that

maximal geodesic laminations must contain all of the boundary compo-

nents as closed leaves. A hyperbolic structure on the surface with boundary

also uniquely corresponds, up to conjugacy, to a representation with the

following properties:

(i) ρ is a discrete and faithful representation, and

(ii) if γ ∈ π1(S) is the homotopy class of a boundary component, then

ρ(γ) is a hyperbolic element in PSL2R.

In this paper, we call such a representation a hyperbolic Fuchsian repre-

sentation. We can associated to a hyperbolic Fuchsian representation ρ the

developing map fρ : S̃ → H2. The image of fρ is a convex domain of H2,

which does not coincides with H2 in general.

We define the Teichmüller space �(S) of S by

�(S) = {ρ : π1(S) → PSL2R | ρ is hyperbolic Fuchsian,

fρ is orientation-pres. }

This Teichmüller space is also identified with the deformation space of hy-

perbolic structures as in the case of closed surfaces.

2.5. Shearing parameterization of Teichmüller spaces

2.5.1 The space of transverse cocycles

We recall transverse cocycles. Let S be a compact oriented surface of

negative Euler characteristics, and λ be an (arbitrary) maximal geodesic

lamination on S. An (R-valued) transverse cocycle σ for λ is a map asso-

ciating a real number σ(k) ∈ R to each (unoriented) arc k transverse to λ

which satisfies that

(i) (Additivity) if k is cut into the union of two subarcs at an interior

point of k \ λ so that k = k1 ∪ k2, then σ(k) = σ(k1) + σ(k2), and
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Fig. 1. Train track neighborhood.

(ii) (Homotopy invariance) if k and k′ are homotopic respecting to λ, then

σ(k) = σ(k′).

We denote the space of transverse cocycles for λ by Z(λ).

The space Z(λ) is parameterized by the train track neighborhood

([Bo97]). The train track neighborhood Nλ of λ is a family of finitely many

“long” rectangles e1, · · · , el, called edges, so that the union of ei contains λ.

Two rectangles intersect only along their short sides, and every point of the

short side of a rectangle is contained in another short side of the rectangles.

We require that the complementary region of Nλ contains no component

which is a disc with 0, 1, or 2 spikes, or an annulus with no spikes. Trans-

verse cocycles σ ∈ Z(λ) associate a real number to each ei as follows. Each

ei is foliated by the arcs parallel to the short sides of ei. We call the leaves

of this foliation ties. We pick a tie ki for the edge ei, which is transverse

to λ. Given σ ∈ Z(λ), we define σ(ei) by the value σ(ki). The homotopy

invariance of σ implies that σ(ei) is independent of the choice of ki.

Theorem 3 ([Bo97, Theorem 11]). Let λ be a geodesic lamination,

and let Nλ be an train track neighborhood of λ consisting of the edges

e1, · · · , e�. Then, the mapping Z(λ) → Rl, which sends transverse cocy-

cles σ to the point (σ(e1), · · · , σ(el)), is a bijection onto the image. The

image is defined by the switch relation.
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Let us recall the switch relation. Switches of Nλ are ties, which are short

sides of edges. Suppose that eL1 , · · · , eLp and eR1 , · · · , eRq intersect along a

switch s such that eL1 , · · · , eLp are the edges adjacent to the one side of s,

and eR1 , · · · , eRq are the edges adjacent to the other side. The switch relation

at s is the equation eL1 +· · ·+eLp = eR1 +· · ·+eRq . All possible switch relations

define the range of the above parameterization of Z(λ). The topology and

the analytic structure of Z(λ) is defined by the structure of the Euclidean

space Rl via the mapping in Theorem 3.

2.5.2 Shearing cocycles and a parameterization of Teichmüller spaces

Given ρ ∈ �(S), we construct the shearing cocycle σρ ∈ Z(λ) of ρ, which

is the transverse cocycle associated to ρ. Fix a universal covering H2 → S

associated to ρ. To define σρ(k) for an arbitrary arc k transverse to λ, we

lift k to k̃, which is transverse to the preimage λ̃ ⊂ H2 of λ. Then the

endpoints of k̃ are contained in different plaques. We denote these plaques

by P and Q, and consider the set � of plaques which separate P and Q. Let

g (resp. h) be the boundary leaf P (resp. Q) which is nearest to Q (resp.

P ). On g (resp. h), there is a canonical base point which is the orthogonal

projection of the third vertex of P (resp. Q). We call this point the base

point of g (resp. h). Each plaque in � is partially foliated by the horocyclic

flow. Then, we can construct a foliation which joins g and h. Along this

foliation, we carry the base point of g to a point in h.

We define σρ(k) by the signed length between the carried point and the

base point of h. Here the sign of the length is defined by the parameteriza-

tion of h by R as follows. The orientation of S defines an orientation of the

boundary of Q, so of h. Then we can take an isometric parameterization

R → h so that it is compatible with the orientation of h and maps 0 to the

base point of h. The value σρ(k) is independent of the choice of k̃, and we

finish the construction of the shearing cocycle σρ of ρ.

For an arc k which is transverse to a bi-infinite leaf B of λ only once,

there is a simple formula of the value σρ(k). To explain this, we recall the

cross ratio on the boundary ∂H2.

Definition 4. Let a, b, c, d ∈ ∂H2 be a quadruple of distinct points of

the ideal boundary ∂H2. The cross ratio cr(a, b, c, d) is the ratio

cr(a, b, c, d) =
(a− c)(b− d)

(a− d)(b− c)
.



Invariants of PSLnR-Fuchsian Representations 603

We respectively lift k and B to k̃ and B̃ on the universal covering so that

they intersect. There are two plaques P,Q which contains the endpoints

of k̃. In particular, since λ is maximal, these plaques are adjacent ideal

triangles along B̃. We denote, by x, y, zL, zR, the ideal vertices of P,Q by

the following rules : (i) x and y are the endpoints of B̃, (ii) x, zL, y, zR are

in counterclockwise order. By direct computations, we obtain the following

relation. Let us write σρ(k) by σρ(B).

Lemma 5.

σρ(B) = log[−cr(x, y, zL, zR)].

The shearing cocycle is applied to parameterize the Teichmüller spaces.

Theorem 6 ([Bo96, Theorem A]). There is a real analytic homeomor-

phism φλ : �(S) → Z(λ) : ρ �→ σρ onto an open convex cone bounded by

finitely many faces in Z(λ).

This parameterization is called the shearing parameterization. The im-

age of φλ is characterized by a certain intersection form on Z(λ), defined

along train tracks. A train track neighborhood is called generic if all

switches are trivalent as Figure 2.

Fig. 2. A generic switch.

We can always choose a generic train track neighborhood for all geodesic

laminations. Fix a generic train track Nλ of λ. At each switch s of Nλ, a

single edge “comes” to the switch s, and two edges “leave” the switch. We

denote, by eLs , the edge which leaves to the left of the incoming edge, and,
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by eRs , the edge which leaves to the right. For σ, η ∈ Z(λ), the intersection

form τ is defined by

τ(σ, η) =
1

2

∑
s

(
σ(eRs )η(eLs ) − σ(eLs )η(eRs )

)
,

where s ranges over all switches of Nλ. The following theorem determines

the image of φλ.

Theorem 7 ([Bo96, Theorem 20]). For every non-zero transverse

measures µ ∈ Z(λ) and for every shearing cocycles σρ, τ(µ, σρ) > 0.

Note that this theorem follows for all generic train track neighborhoods

of λ, hence the positivity of intersection numbers is independent of the

choice of Nλ.

2.5.3 Shearing parameterization along train tracks

We arrange Theorem 6 by the weights on the edges of the train track

neighborhood and the twist parameters along closed leaves of λ. Let us

define the twist parameter. Let C1, · · · , Ck be closed leaves of λ, contained

in the interior of S. Under the ideal triangulation by λ, some ideal triangles

spiral to Ci from the both sides. Choose an ideal triangle TL in the one

side, and an ideal triangle TR in the other side.

We respectively lift Ci, T
L, and TR to C̃i, T̃

L, and T̃R so that T̃L and

T̃R have a common end point with C̃i. We denote, by x and y, the endpoints

of Ci so that x is on the left from T̃L. Two edges of T̃L are asymptotic to

C̃i. In particular, one of these edges separates S̃ so that C̃i, T̃
L, and T̃R are

contained in the same component. We denote, by zL, the end point of the

edge, which is different from x or y. Similarly we take the ideal vertex zR
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for T̃R. Note that the points x, zL, y, zR are in counterclockwise order. We

define the twist parameter θρ(Ci) by log[−cr(fρ(x), fρ(y), fρ(z
L), fρ(z

R))].

We distinguish the edges of generic train track neighborhoods as follows.

We call that an edge is internal if the edge intersects to no closed leaves,

and we call the other edges non-internal. In addition, we call that a switch

is internal if it is a short side of three internal edges, and we call other

switches non-internal. In other words, the internal switch is a switch which

intersects to no closed leaves.

The following version of Theorem 6 is used in the proof of Theorem 32.

Theorem 8. Let S be a compact oriented surface of negative Euler

characteristics, and λ be an arbitrary maximal geodesic lamination on S,

which has closed leaves C1, · · · , Ck in the interior of S. Fix a generic train

track neighborhood Nλ. We denote, by e1, · · · , el, the internal edges of Nλ.

Then, the following map is an analytic embedding of the Teichmüller space

�(S).

φ̃λ : �(S) → Rl+k : ρ �→ (σρ(e1), · · · , σρ(el), θ
ρ(C1), · · · , θρ(Ck)).

To prove this, we determine the range of the mapping φ̃λ by three con-

ditions as follows.

(I) The parameters σρ(e1), · · · , σρ(el) satisfy the switch relations at all

internal switches by Theorem 3. This is the first condition which defines

the image of φ̃λ.

(II) Next, we focus on the spiraling of bi-infinite leaves along closed

leaves. Let us introduce the signature of the spiraling of bi-infinite leaves.

When the spiraling occurs in the direction opposite to the orientation of S,

we call this spiraling positive spiraling. See Figure 3. Similarly, we call the

spiraling in Figure 4 negative spiraling.

We refer to the following proposition.

Proposition 9 ([Th, Proposition 3.4.21]). Let F be a compact ori-

ented surface of negative Euler characteristics with boundary. Fix ρ ∈ �(F ),

and a maximal geodesic lamination λ on F . Let B1, · · · , Bl be the bi-infinite

leaves of λ spiral to a boundary component C of F . Then, if the spiraling
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Fig. 3. Positive spiraling. Fig. 4. Negative spiraling.

of Bj is positive,

lρ(C) =

l∑
j=1

σρ(Bj),

and if the spiraling of Bj is negative,

lρ(C) = −
l∑

j=1

σρ(Bj).

For each Ci, let Bi,L
1 , · · · , Bi,L

lL
be bi-infinite leaves spiraling to Ci from

the one side, and Bi,R
1 , · · · , Bi,R

lR
be bi-infinite leaves spiraling to Ci from

the other side. Then, Proposition 9 gives us the following relation

sign ·
lL∑
k=1

σρ(Bi,L
k ) = sign ·

lR∑
k=1

σρ(Bi,R
k ) > 0 · · · (∗).

The symbol “sign” means the signature of each spiraling along Ci. Similarly,

for each boundary component C of S, letting BC
1 , · · · , BC

lC
be the bi-infinite

leaves spiraling to C, it follows that

sign ·
lC∑
k=1

σρ(BC
k ) > 0 · · · (∗∗)
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by Proposition 9, where “sign” also means the signature of the spiraling

along C.

By definition of σρ(ei), (∗) and (∗∗) give the relations between the pa-

rameters σρ(e1), · · · , σρ(el), which are the second condition.

(III) The final condition is given by Theorem 7, which implies that

τ(µ, σρ) > 0 for every non-zero transverse measure µ. For switches s, set

τs(µ, σ
ρ) = µ(eRs )σρ(eLs ) − µ(eLs )σρ(eRs ). The non-internal switches corre-

spond to the spiraling of bi-infinite leaves to closed leaves. Depending the

signature of the spiraling, two types of the branches at non-internal switches

occur as the following figures.

Fig. 5. Positive case. Fig. 6. Negative case.

If s is given by the positive spiraling (Figure 5), then τs(µ, σ
ρ) =

µ(eRs )σρ(eLs ), since the support of µ contains no isolated bi-infinite leaves,

so µ(eLs ) = 0. Similarly if s is given by the negative spiraling (Figure 6),

then τs(µ, σ
ρ) = −µ(eLs )σρ(eRs ). Hence, τ(µ, σρ) > 0 implies that∑

s

τs(µ, σ
ρ) +

∑
s′

(
µ(eRs′)σ

ρ(eLs′)
)
−
∑
s′′

(
µ(eLs′′)σ

ρ(eRs′′)
)
> 0,

where s ranges over the internal switches, s′ (resp. s′′) ranges over the non-

internal switches which correspond to the positive (resp. negative) spiraling.

If λ is uncountable, then we can take transverse measures µ such that µ
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associates 0 to the non-internal edges. Hence, for all such µ,∑
s

τs(µ, σ
ρ) =

∑
s

(
µ(eRs )σρ(eLs ) − µ(eLs )σρ(eRs )

)
> 0,

where s ranges only over internal switches. Note that eLs and eRs are

internal edges, and this inequality is a relation between the parameters

σρ(e1), · · · , σρ(e�).

If λ consists of finitely many leaves, all bi-infinite leaves are isolated.

Then µ(e1) = · · · = µ(e�) = 0 since the support of µ contains no isolated

bi-infinite leaves. Hence we obtain

∑
s′

(
µ(eRs′)σ

ρ(eLs′)
)

+

(
−
∑
s′′

(
µ(eLs′′)σ

ρ(eRs′′)
))

> 0.

However this inequality follows from the condition (II) since µ(eRs′) and

µ(eLs′′) are positive, so it gives no new conditions.

We summarize these conditions (I), (II), and (III).

Proposition 10. The parameters σρ(e1), · · · , σρ(e�) satisfy the fol-

lowing three conditions:

(I) The switch relations at all internal switches.

(II) The equality and inequality obtained from the condition (∗) and (∗∗)
along each closed leaf.

(III) The positivity
∑

s τs(µ, σ
ρ) > 0, where µ is an arbitrary transverse

measure which associates 0 to the non-internal edges, and s ranges

over the internal switches.

Now we prove Theorem 8. The analyticity is obtained from the argu-

ment of [Bo96] and [BD14]. Hence it suffices to give an inverse mapping of

φ̃λ. In particular, we reconstruct a Fuchsian representation of S from the

parameters which satisfy the conditions (I), (II), and (III) in Proposition 10.

Proof (Theorem 8). Given parameter (x1, · · · , xl, y1, · · · , yk) where

xi is the σρ(ei)-entry and yi is the θρ(Ci)-entry , we construct a Fuchsian

representation which has this parameter. To construct this, cut the surface
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S along the closed leaves Ci of λ. Then S is separated to finitely many

(compact) surfaces with boundary.

First we construct a Fuchsian representation of each separated compo-

nent. Let F be a connected component which is obtained in the above

separation. Then the lamination λ (resp. the train track neighborhood Nλ)

are restricted to the lamination λF (resp. the train track neighborhood

NλF
) on F . We denote the internal edges of NλF

by eFi1 , · · · , eFip , and denote

the σρ(eFij )-parameter by xFij . The switch condition (I) implies the existence

of a transverse cocycle in Z(λF ) which sends eFij to xFij (Theorem 3), and

the condition (II) and (III) implies that its transverse cocycle satisfies the

positivity in Theorem 7 for all non-zero transverse measures µ of λF . Thus,

applying Theorem 6 to λF , we obtain a Fuchsian representation ρF ∈ �(F ).

We can glue these representations ρF on each component F to obtain a

Fuchsian representation ρ on S. Indeed, the condition (II) implies that the

glued boundaries have the same length. By the construction, σρ(ei) of ρ is

equal to the given parameter xi.

Now we deform the Fuchsian representation ρ to a representation η by

the twist deformation along each closed leaf Ci to realize that θη(Ci) = yi.

For the universal covering π : S̃ → S, we set �i = π−1(Ci), which is an

geodesic lamination on the universal covering. In the definition of θρ(Ci),

we fix a geodesic C̃i, ideal triangles T̃L, T̃R, and ideal vertices x, y, zL, zR.

We orient C̃i in the direction from y to x, and orient the leaves of �i so

that, for all 3 ∈ �i, π(3) and π(C̃i) are oriented in the same direction.

Let fρ be the developing map associated to ρ. The twist deformation of ρ

along Ci is lifted onto the universal covering as follows. Each leaf 3 ∈ �i cuts

S̃ into two components P and Q, where P is on the left of 3. We consider

these 3, P,Q in the hyperbolic plane H2 via fρ. Let h�t be the hyperbolic

translation along 3 whose translation length is t. Here the direction of h�t
is determined by the orientation of 3. Then we define a mapping g�t by h�t
on P \ 3, and the identity on Q. The iteration of such an action via g�t for

all 3 ∈ �i gives a new universal covering of S, and the associated Fuchsian

representation is a twist deformation of ρ.

We consider the variation of θρ(Ci) under the twist deformation along

Ci. Let 3 ∈ �i, and let P (resp. Q) be the left (resp. right) side of 3. If 3 is

different from C̃i, the ideal verices x, y, zL, zR are in the common side for 3.
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Hence, in the both cases,

cr(g�t ◦ fρ(x), g�t ◦ fρ(y), g�t ◦ fρ(zL), g�t ◦ fρ(zR))

= cr(fρ(x), fρ(y), fρ(z
L), fρ(z

R)).

If 3 = C̃i, z
L is on P and zR is on Q. Then, via the translation g�t , only zL

moves on the interval between x and y, and the other vertices x, y, zR are

fixed. In particular, the point zL goes to x when t → ∞ and goes to y when

t → −∞. Hence, we obtain the following variation of the cross ratio.

cr(g�t ◦ fρ(x), g�t ◦ fρ(y), g�t ◦ fρ(zL), g�t ◦ fρ(zR))

= cr(fρ(x), fρ(y), g
�
t ◦ fρ(zL), fρ(z

R))

→
{

0 (t → ∞)

−∞ (t → −∞).

Note that the cross ratio is monotone for t. This proves the next lemma.

Lemma 11. For any negative real numbers r < 0, there exists a unique

twist deformation ηi of ρ along Ci such that

cr(fηi(x), fηi(y), fηi(z
L), fηi(z

R)) = r.

Applying Lemma 11 as r = −eyi , we complete the twist deformation

ηi of ρ along the leaf Ci to obtain a Fuchsian representation ηi such that

θηi(Ci) = yi. We note that this twist deformation preserves the other twist

parameters θρ(Cj) for i �= j. Since the closed leaf Cj does not intersect to

Ci, the geodesic laminations �i and �j are disjoint. Moreover, Ci is asymp-

totic to some bi-infinite leaves, but does not intersect to bi-infinite leaves

transversally. Thus the points x, y, zL, zR, which define the twist parameter

along Cj , belong to a common plaque of �i. Hence, under the twist deforma-

tion along Ci, it holds that θρ(Cj) = θηi(Cj). Similarly, the twist deforma-

tion preserves the shearing parameters, i.e. σρ(e1) = σηi(e1), · · · , σρ(e�) =

σηi(e�). Therefore, twisting ρ along all closed leaves C1, · · · , Ck, we obtain a

Fuchsian representation η of S such that θη(C1) = y1, · · · , θη(Ck) = yk. For

this η, the shearing parameter does not change from one of the original rep-

resentation ρ. We finish the reconstruction of Fuchsian representations. �
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Finally, we make remarks about the case of laminations λ consisting

of finitely many leaves. In this case, letting B1, · · · , B3|χ(S)| be bi-infinite

leaves of λ, and C1, · · · , Ck be closed leaves in the interior of S, we can take a

simple generic train track neighborhood Nλ which satisfies that the internal

edges of Nλ are only 3|χ(S)| edges e1, · · · , e3|χ(S)| such that ei intersects only

to Bi and has no intersections with other leaves. Then the parameterization

φ̃λ along Nλ is defined by

φ̃λ(ρ) = (σρ(e1), · · · , σρ(e3|χ(S)|), θ
ρ(C1), · · · , θρ(Ck)).

Note that there are no internal switches of Nλ. Thus, Proposition 10 im-

plies that the range of φ̃λ is determined only by the condition (II). This

parameterization is used in the proof of Theorem 32.

3. Hitchin Representations and their Properties

3.1. Hitchin components

The PSLnR-representation variety Rn(S) of S is the set of group homo-

morphisms Rn(S) = Hom(π1(S),PSLn(R)) with the compact open topol-

ogy. PSLnR acts on the representation variety by conjugation. The quotient

space Xn(S) = Rn(S)/PSLn(R) is called the PSLn(R)-character variety.

The Teichmüller space �(S) is naturally embedded in the character variety

X2(S) by definition. It is known that �(S) is a connected component of

X2(S) ([Go88]).

The Hitchin component is the component of Xn(S) which contains �(S)

in the following sense. Let us consider an irreducible representation SL2R →
SLnR which is unique up to conjugacy. This representation is obtained by

the symmetric power. We denote its projectivization PSL2R → PSLnR

by ιn. The representation ιn induces a map between character varieties

(ιn)∗ : X2(S) → Xn(S) by the correspondence ρ �→ ιn ◦ ρ. Since ιn is a

group homomorphism, this induced map is well-defined.

Definition 12. The (PSLnR-) Hitchin component Hn(S) is the

connected component of Xn(S) which contains the image Fn(S) =

(ιn)∗(�(S)).

We call the image Fn(S) of �(S) the Fuchsian locus of Hn(S). Hitchin

representations are representations ρ : π1(S) → PSLnR whose conjugacy
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class belongs to Hn(S). A Hitchin representation ρ is PSLnR-Fuchsian if ρ

is contained in Fn(S), i.e. there is a Fuchsian representation ρ0 : π1(S) →
PSL2R such that ρ = ιn ◦ ρ0.

The definition and the diffeomorphic type of Hitchin components was

given by Hitchin in [Hi92].

Theorem 13 (Hitchin [Hi92]). The Hitchin component Hn(S) is dif-

feomorphic to R(2g−2)(n2−1).

Moreover, Hn(S) consists of faithful discrete representations. This fact

was shown by Labourie [La06] from the Anosov property of Hitchin repre-

sentations, see Section 3.3.

3.2. Hyperconvex property

The projective special linear group PSLnR acts on the projective space

RPn−1 = P (Rn) by the projectivization of the linear action of SLnR on Rn.

We define the hyperconvexity of projective linear representations of π1(S).

Let ∂π1(S) be the ideal boundary of π1(S) which is the visual boundary of

a Cayley graph of π1(S). Note that ∂π1(S) is homeomorphic to ∂S̃ through

a hyperbolic structure on S. Therefore, in this paper, we identify ∂π1(S)

with ∂S̃ by using the reference hyperbolic structure on S.

Definition 14. A representation ρ : π1(S) → PSLnR is said to be

hyperconvex if there exists a (π1(S), ρ)-equivariant continuous map

ξρ : ∂π1(S) → RPn−1 such that ξρ(x1)+· · ·+ξρ(xn) is direct for any pairwise

distinct points x1, · · · , xn ∈ ∂π1(S).

The associated curve ξρ is called the hyperconvex curve of ρ. Labourie

showed that Hitchin representations are hyperconvex by the Anosov prop-

erty which is explained in the next subsection. The converse result was

shown by Guichard in [Gu08], so

Theorem 15 (Guichard [Gu08], Labourie [La06]). A representation

ρ : π1(S) → PSLnR is Hitchin if and only if ρ is hyperconvex.

In addition, Labourie showed the following theorem.

Theorem 16 ([La06]). Let ρ : π1(S) → PSLnR be a hyperconvex rep-

resentation with the hyperconvex curve ξρ : ∂π1(S) → RPn−1. Then there
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exists a unique curve ξkρ : ∂π1(S) → Grk(Rn) with the properties from (i) to

(iv) below.

(i) ξp(x) ⊂ ξp+1(x) for any x ∈ ∂π1(S).

(ii) ξ1(x) = ξρ(x) for any x ∈ ∂π1(S).

(iii) If n1, · · · , nl are positive integers such that
∑

ni ≤ n, then ξn1(x1) +

· · · + ξnl(xl) is direct for any pairwise distinct points x1, · · · , xl ∈
∂π1(S).

(iv) If n1, · · · , nl are positive integers such that p =
∑

ni ≤ n, then

lim
(y1,··· ,yl)→x; yidistinct

ξn1(y1) + · · · + ξnl(yl) → ξp(x)

This theorem implies that any hyperconvex curves are extended to

curves in the flag manifold. (See Section 4.1 for the precise definition of

flags.) The map (ξ1, · · · , ξn−1) : ∂π1(S) → Flag(Rn) is called the (osculat-

ing) flag curve of the hyperconvex curve ξρ.

We can explicitly describe the hyperconvex curve of PSLnR-Fuchsian

representations. Let ρn = ιn◦ρ be a PSLnR-Fuchsian representation. Recall

that the irreducible representation ιn is defined by symmetric power of the

representation (SL2R,R2). We identify Rn with Symn−1(R2). Consider

the Veronese embedding ν : RP1 → RPn−1 defined by sending [a : b] to

[an−1 : an−2b : · · · : bn−1]. Then the composition ν ◦ fρ of the Veronese

embedding with the developing map gives the hyperconvex curve of ρn.

Using homogeneous polynomials, the flag is also described explicitly. The

symmetric power Symn−1(R2), which is identified with Rn, is also identified

with the vector space

Polyn(X,Y ) = {a1X
n−1 + a2X

n−2Y + · · · + anY
n−1 | ai ∈ R}

of homogeneous polynomials of degree n−1. If we denote the canonical basis

of Symn−1(R2) by en−1
1 , en−2

1 · e2, · · · , en−1
2 , where e1, e2 are the canonical

basis of R2, the identification is defined by mapping the vector ei1 · en−1−i
2

to
(
n−1
i

)
XiY n−1−i. Then the one dimensional subspace ν([a : b]) is equal

to R{(aX + bY )n−1} in the vector space Polyn(X,Y ). In addition, the
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d-dimensional subspace of the flag curve associated to ν, which is again

denoted by ν, is defined by

{P (X,Y ) ∈ Polyn(X,Y ) | P (X,Y ) can be divided by (aX + bY )n−d}.

We call the flag curve ν the Veronese flag curve. The composition ν ◦ fρ
of the Veronese flag curve with the developing map is just the flag curve of

PSLnR-Fuchsian representations.

3.3. Anosov property

The existence of the flag curve of Hitchin representations follows from

the Anosov property. Although we do not need it essentially in this paper,

we recall this property to introduce backgrounds of Hitchin representations

and flag curves.

Let G be a semisimple Lie group, and P be a parabolic subgroup, that is,

the stabilizer of a point of the visual boundary of the Riemannian symmetric

space G/K. A representation ρ : π1(S) → G is said to be P -Anosov if there

exists a continuous ρ-equivariant map ξρ : ∂∞π1(S) → G/P with a certain

dynamical property with respect to the action of ρ(π1(S)). In general case,

the dynamical property is defined by the Cartan projection of G, and the

definition is not short. However, in the case of G = PSLnR, we can define

the Anosov property more simply and more explicitly. Let s1(A) ≥ s2(A) ≥
· · · ≥ sn(A) be the singular values of A ∈ PSLnR. For 1 ≤ k ≤ n

2 , a

representation ρ : π1(S) → PSLnR is said to be Pk-Anosov if there exist

constants A,C > 0 such that sk(ρ(γ))/sk+1(ρ(γ)) ≥ A expC|γ|.
Especially, when ρ is Pk-Anosov for all k, ρ is called Borel-Anosov. In

[La06], Labourie showed Hitchin representations are Borel-Anosov. More-

over it was also shown by the Borel-Anosov property that Hitchin represen-

tations are faithful, discrete, irreducible and purely-loxodromic.

For a Borel-Anosov representation ρ, through the argument with the

action on the symmetric space G/K and its Furstenberg boundary G/B,

we obtain a continuous ρ-equivariant map ξ : ∂∞π1(S) → G/B, called the

boundary map of ρ. The boundary maps are the analog of the limit set

of discrete subgroups of rank 1. In particular, when G = PSLnR, the

boundary G/B is the (complete) flag manifold Flag(Rn). Recall that Hitchin

representations are hyperconvex, and they have the osculating flag curves.

These osculating flag curves are just equal to the boundary maps of the

Borel-Anosov property.
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Remark 17. For general references of Anosov representations/

Anosov subgroups, see Guéritaud-Guichard-Kassel-Wienhard [GGKW17],

Kapovich-Leeb-Porti [KLP17]. The original definition was given by

Labourie [La06] for surface groups, and by Guichard-Wienhard [GW12] for

Gromov hyperbolic groups.

4. The Bonahon-Dreyer Parameterization

4.1. Projective invariants

We define projective invariants of tuples of flags. A (complete) flag in

Rn is a sequence of nested vector subspaces of Rn

{0} = F 0 ⊂ F 1 ⊂ F 2 ⊂ · · · ⊂ Fn = Rn,

where dim F d = d. The flag manifold of Rn is a set of flags in Rn. We

denoted the flag manifold by Flag(Rn). Note that Flag(Rn) is diffeomorphic

to a homogeneous space PSLnR/B, where B is a Borel subgroup of PSLnR,

and PSLnR naturally acts on the flag manifold. A generic tuple of flags is a

tuple (F1, F2, · · · , Fk) of a finite number of flags F1, F2, · · · , Fk ∈ Flag(Rn)

such that if n1, · · · , nk are nonnegative integers satisfying n1 + · · ·+nk = n,

then Fn1
1 ∩ · · · ∩ Fnk

k = {0}.
Let (E,F,G) be a generic triple of flags, and p, q, r ≥ 1 integers with

p+q+r = n. For each d = 1, · · · , n, choose a basis “ed, fd, gd” of the wedge

products “
∧dEd,

∧d F d,
∧dGd”, respectively. We fix an identification be-

tween
∧n

Rn with R. Then we can regard ed1 ∧ fd2 ∧ gd3 as an element of R

when d1 + d2 + d3 = n. In particular ed1 ∧ fd2 ∧ gd3 is not equal to 0 since

(E,F,G) is generic.

Definition 18. The (p, q, r)-th triple ratio Tpqr(E,F,G) is defined by

Tpqr(E,F,G) =
ep+1 ∧ f q ∧ gr−1 · ep ∧ f q−1 ∧ gr+1 · ep−1 ∧ f q+1 ∧ gr

ep−1 ∧ f q ∧ gr+1 · ep ∧ f q+1 ∧ gr−1 · ep+1 ∧ f q−1 ∧ gr
∈ R.

The value of Tpqr(E,F,G) is independent of the identification
∧n

Rn ∼= R

and the choice of elements ed, fd, gd. If one of exponents of ed, fd, gd is equal

to 0, then we ignore the corresponding terms. For example, e0∧f q∧gn−q =

f q ∧ gn−q. The triple ratio is invariant under the action of PSLnR.
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For permutations of (E,F,G), the triple ratio behaves as follows.

Proposition 19. For every generic triples (E,F,G) of flags,

Tpqr(E,F,G) = Tqrp(F,G,E) = Tqpr(F,E,G)−1.

Let (E,F,G,G′) be a generic quadruple of flags, and b be an inte-

ger with 1 ≤ b ≤ n − 1. We choose nonzero elements “ed, fd, gd, g′d”
of “

∧dEd,
∧d F d,

∧dGd,
∧dG′d” respectively. We fix an identification∧n

Rn ∼= R again. Then, ed1 ∧fd2 ∧gd3 and ed1 ∧fd2 ∧g′d3 are also regarded

as real values when d1 + d2 + d3 = n.

Definition 20. The b-th double ratio Db(E,F,G,G′) is defined by

Db(E,F,G,G′) = −eb ∧ fn−b−1 ∧ g1 · eb−1 ∧ fn−b ∧ g′1

eb ∧ fn−b−1 ∧ g′1 · eb−1 ∧ fn−b ∧ g1
∈ R.

This is well-defined since the ratio is independent of the choice of∧n
Rn ∼= R and ed, fd, gd, g′d. The double ratio is also invariant under

the action of PSLnR.

4.2. The Bonahon-Dreyer parameterization for finite lamina-

tions

4.2.1 Construction of invariants

We define three kinds of invariants of Hitchin representations, triangle

invariant, shearing invariant, and twist invariant for an oriented maximal

geodesic lamination which consists of finitely many leaves with a bridge sys-

tem. We fix a hyperbolic metric on S, and an oriented maximal geodesic

lamination λ on S. We suppose that λ consists only of closed leaves

C1, · · · , Ck and bi-infinite leaves B1, · · · , B3|χ(S)|. In addition, we fix a

bridge system J = {JCi}i of λ. The lamination λ induces an ideal tri-

angulation of S by ideal triangles T1, · · · , T2|χ(S)|. Each ideal triangle Ti

has three spikes. We denote these spikes by si0, s
i
1, s

i
2 so that, in a lift T̃i

of Ti, their corresponding ideal vertices of T̃i are in clockwise order. Let

ρ : π1(S) → PSLnR be a Hitchin representation and ξρ : ∂π1(S) → Flag(Rn)

the associated flag curve.
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Let Ti be an ideal triangle, and choose a spike sij of Ti. Fix a lift T̃i

of Ti. We denote the ideal vertex corresponding to sij by v. In addition,

we denote the other vertices of T̃i by v′, v′′ so that v, v′, v′′ are in clockwise

order. Let p, q, r be integers such that p, q, r ≥ 1 and p + q + r = n.

Definition 21. The (p, q, r)-th triangle invariant τpqr(s
i
j , ρ) of a

Hitchin representation ρ associated to the spike sij of the ideal triangle Ti

is defined by

τpqr(s
i
j , ρ) = log Tpqr(ξρ(v), ξρ(v

′), ξρ(v
′′)).

The triangle invariant is independent of a choice of the lift T̃i since flag

curves are ρ-equivariant and the triple ratio is invariant under the PSLnR-

action. By Proposition 19, we have the relation between triangle invariants:

τpqr(s
i
0, ρ) = τqrp(s

i
1, ρ) = τrpq(s

i
2, ρ).

This relation is called the rotation condition, and is going to be used to

define the parameter space.

A bi-infinite leaf Bi ∈ λJ is a side of two ideal triangles. Let TL (resp.

TR) be the ideal triangle which is on the left (resp. right) side with respect

to the orientation of Bi. We lift Bi to a geodesic B̃i in S̃, and we also lift TL

and TR to two ideal triangles T̃L and T̃R so that they are adjacent along

B̃i. We denote the repelling point and the attracting point of B̃i by y and

x, and denote the other vertices of T̃L (resp. T̃R) by zL (resp. zR). Let b

be an integer with 1 ≤ b ≤ n− 1.

Definition 22. The b-th shearing invariant of a Hitchin representa-

tion ρ along Bi is defined by

σb(Bi, ρ) = logDb(ξρ(x), ξρ(y), ξρ(z
L), ξρ(z

R)).

This invariant is also well-defined for a choice of lifts by the same reason

with the case of triangle invariants.

Consider a closed (oriented) leaf Ci ∈ λJ . By the bridge system J , we

have a bridge JCi = {TL
i , TR

i } associated to Ci. Here TL
i spirals to Ci from
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the left, and TR
i spirals to Ci from the right. Lift Ci, T

L
i and TR

i to C̃i, T̃
L
i

and T̃R
i in the universal covering so that the ideal triangles T̃L

i , T̃R
i have a

common ideal vertex with C̃i. We denote, by x, the attracting point of C̃i

and, by y, the repelling point of C̃i. Let us define the vertex zL, zR of ideal

triangles T̃L
i , T̃R

i as follows. Note that two sides of T̃L
i are asymptotic to C̃i.

One of these sides cuts the universal cover S̃ such that an ideal triangle T̃L
i

and the geodesic C̃i is contained in the same connected component. The

ideal vertex zL is the end point of such a geodesic side of T̃L
i other from the

ideal point x or y. We define zR for T̃R
i similarly. Let c be an integer with

1 ≤ c ≤ n− 1.

Definition 23. The c-th twist invariant of a Hitchin representation ρ

along Ci is defined by

θc(Ci, ρ) = logDc(ξρ(x), ξρ(y), ξρ(z
L), ξρ(z

R)).

The invariants above are well-defined on Hitchin components i.e. these

three invariants are independent of representatives of conjugacy classes of

Hitchin representations.

4.2.2 The Bonahon-Dreyer parameterization

Set N = 6|χ(S)|
(
n−1

2

)
+ 3|χ(S)|(n− 1) + k(n− 1). Bonahon and Dreyer

showed that Hitchin representations are parameterized by the all triangle

invariants, shearing invariants, and twist invariants we can define.

Theorem 24 (Bonahon-Dreyer [BD14]). The map ΦλJ : Hn(S) →
RN defined by

ΦλJ (ρ) = (τpqr(s
i
j , ρ), · · · , σb(Bi, ρ), · · · , θc(Ci, ρ), · · · )

is an analytic homeomorphism onto the image. Moreover the image of this

map is the interior PλJ of a convex polyhedron.

We denote the coordinate of the image by

(τpqr(s
i
j), · · · , σb(Bi), · · · , θc(Ci), · · · ).
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4.2.3 The parameter space PλJ
The range PλJ is defined by the rotation condition referred after Defi-

nition 21, and the closed leaf condition defined as follows. This condition

is given by the equality and the inequality of triangle, shearing invariants

associated to closed leaves C. Let C be a closed oriented leaf of the lami-

nation λ. We focus on the right side of C with respect to the orientation

of C. Let B1, · · · , Bl be the bi-infinite leaves spiraling to C from the right,

and T1, · · · , Tl be the ideal triangles spiraling to C from the right. Suppose

that these leaves and ideal triangles spiral to C in the direction (resp. the

opposite direction) of the orientation of C. Let si is the spike of Ti which is

asymptotic to C. Define σb(Bi) by σb(Bi) if Bi is oriented toward C, and

by σn−b(Bi) otherwise. We define

Rb(C) =

l∑
i=1

σb(Bi) +

l∑
i=1

∑
q+r=n−b

τbqr(si)

in the former case, and

Rb(C) = −
l∑

i=1

σn−b(Bi) −
l∑

i=1

∑
q+r=b

τ(n−b)qr(si)

in the latter case.

When we focus on the left side of C, we can similarly define Lb(C) by

Lb(C) = −
l∑

i=1

σb(Bi) −
l∑

i=1

∑
q+r=n−b

τbqr(si)

if the spiraling is in the direction, and

Lb(C) =
l∑

i=1

σn−b(Bi) +
l∑

i=1

∑
q+r=b

τ(n−b)qr(si)

if the spiraling is in the opposite direction.

The closed leaf equality for C is the equality Lb(C) = Rb(C), and the

closed leaf inequality for C is the inequality Lb(C), Rb(C) > 0. The rotation

condition for all spikes and the closed leaf condition for all closed leaves

define PλJ . See [BD14] for details.
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4.3. The Bonahon-Dreyer parameterization for general lamina-

tions

In the previous subsection, we recall the Bonahon-Dreyer parameteriza-

tion for laminations with finitely many leaves, which is a higher dimensional

analog of Theorem 8. In this subsection, we recall the Bonahon-Dreyer pa-

rameterization for general laminations, which is a higher dimensional analog

of Theorem 6. In the following, we fix a maximal geodesic lamination λ on

S which may contain an irrational lamination.

4.3.1 Relative tangent cycles

A relative Rn−1-valued tangent cycle is roughly a twisted transverse

cocycle of λ, which is an association of vectors in Rn−1 to oriented tightly

transverse arcs. A tightly transverse arc k of λ is an arc transverse to λ with

the following properties:

(i) k is contained in a fixed small train track neighborhood of λ, and

(ii) if a component d of k \λ contains no end points of k, then d cuts only

one spike.

Here “spike” means a spike of an ideal triangle, which is a complementary

region of λ. We denote the set of such spikes by sλ. The tightness of a

transverse arc k implies that every components of k \ λ, which contains no

end points of k, pass near a spike s ∈ sλ.

A relative Rn−1-valued tangent cycle α for λ is an assignment of a vec-

tor α(k) ∈ Rn−1 to each oriented arc k tightly transverse to λ with the

homotopy invariance respecting λ, and the quasi-additivity defined below.

Consider the splitting of k to k1 and k2 at an interior point of a compo-

nent d of k \λ, where d has no end points of k. Let s ∈ sλ be a spike, which

corresponds to d. Then we require that there exists a vector ∂α(s) ∈ Rn−1

such that

α(k) = α(k1) + α(k2) − ∂α(s)

if k passes in counterclockwise direction for s, and

α(k) = α(k1) + α(k2) + ∂α(s)

if k passes in clockwise direction for s. This property is called the quasi-

additivity. We call the correspondence ∂α : sλ → Rn−1 the boundary of
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α. We denote the space of relative Rn−1-valued tangent cycles of λ by

Z(λ, slits; Rn−1) following [BD17]. We remark that, in this paper, “slits”

simply means sλ.

4.3.2 Slithering maps and shearing classes

Let ρ be a Hitchin representation and ξρ be the associated flag curve.

We denote, by λ̃, the preimage of λ into the universal covering of S. The

slithering map is a family of elements Σgg′ ∈ SLnR associated to all pairs of

leaves of λ̃ which is uniquely determined by the following conditions:

(i) Σgg = IdRn ,Σg′g = Σ−1
gg′ , and Σgg′′ = Σgg′ ◦ Σg′g′′ if g, g′, g′′ are leaves

of λ̃ such that g, g′′ are separated by g′,

(ii) Σgg′ depends locally Hölder continuously on g and g′ (here we fix an

arbitrary metric structure on G(S̃) in the sense of Section 2.3),

(iii) if g and g′ have a common ideal vertex, then Σgg′ naturally sends the

associated line decomposition of g′ to the line decomposition of g.

In the condition (iii), the line decomposition associated to a leaf g is defined

as follows. Fix an orientation of g. Let x be its attracting point, and y be its

repelling point. We set F+ = ξρ(x) and F− = ξρ(y). By the hyperconvexity,

the intersection Lb(g) = (F+)b ∩ (F−)n−b+1 are one dimensional subspaces

for every b = 1, · · · , n, and give a decomposition of Rn = ⊕n
b=1Lb(g). If

two geodesics g, g′ have a common vertex x, we orient g, g′ so that x is the

attracting point with respect to the orientation. The condition (iii) says

that Σgg′ is a unipotent special linear transformation which sends Lb(g
′) to

Lb(g) for all b = 1, 2, · · · , n.

The shearing class σρ of a Hitchin representation ρ is one of relative

Rn−1-valued tangent cycles defined by the flag curve ξρ. Let k be a tightly

transverse oriented arc of λ. We define σρ
b (k) (1 ≤ b ≤ n − 1) as follows.

Consider two plaques which contains the endpoints of a lift k̃ of k in the

universal covering. Note that k̃ is also oriented from the orientation of k.

We denote the plaque containing the starting (resp. terminal) point of k̃ by

P (resp. Q). Let g (resp. g′) be the side of P (resp. Q) which are nearest

to Q (resp. P ). Let x, y, z be the ideal vertices of P and z′ be the ideal

vertex defined as Figure 7. Then, for b = 1, 2, · · · , n− 1, we define

σρ
b (k) = log[Db(ξρ(x), ξρ(y), ξρ(z),Σgg′ξρ(z

′))].
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Combining these, we define σρ(k) =
(
σρ
b (k)

)
b
∈ Rn−1. We call this vector

valued cocycle σρ the shearing class of a Hitchin representation ρ. The

shearing class has the homotopy invariance respecting to λ, and has the

quasi-additivity, so this is a relative tangent cycle. For more details, see

[BD17, Section 5].

Fig. 7. Ideal vertices x, y, z, z′.

4.3.3 The Bonahon-Dreyer parameterization for general laminations

In general cases, the Hitchin components are parameterized by the shear-

ing classes and the triangle invariants. By the maximality, λ induces an

ideal triangulation of S. Let Ti be ideal triangles obtained by the ideal

triangulation of λ, and sij ∈ sλ be its spikes.

Theorem 25 ([BD17]). The map Φλ : Hn(S) → Z(λ, slits; Rn−1) ×
R6|χ(S)|(n−1

2 ) defined by Φλ(ρ) = (σρ, τpqr(s
i
j , ρ)) is a homeomorphism onto

the interior Pλ of a convex polyhedron.

4.3.4 The parameter space Pλ

The image of Φλ is determined by three conditions, the rotation condi-

tion, the shearing cycle boundary condition, and the positive intersection

condition. The rotation condition is the same as the case of laminations

with finitely many leaves. The shearing cycle boundary condition is given
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by the following relation. For every spikes s ∈ sλ,

∂σρ
b (s) =

∑
q+r=n−b

τbqr(s, ρ),

where ∂σρ
b is the boundary of the b-th entry of the coordinate σρ.

The positive intersection condition is defined by a homological interpre-

tation of relative tangent cycles. Each entry σρ
b of relative tangent cycles σρ

of λ can be translated to relative homology classes defined from train track

neighborhoods of λ. The positive intersection condition is the inequality

µ · σρ
b > 0

for all non-trivial transverse measures µ. Here the intersection number is

defined in the homological sense.

These three conditions define the range Pλ of the Bonahon-Dreyer pa-

rameterization. See [BD17, Section 8] for more details.

5. Computations of Ratios for the Veronese Flag Curve

In this section, we compute the triple ratio and the double ratio of the

Veronese flag curves. Let ν : RP1 → RPn−1 be the Veronese flag curve.

First we show that all triple ratios of ν are equal to 1.

Proposition 26. For any triples (x, y, z) of clockwise ordered points

in PR1, an integer n ≥ 2, and positive integers p, q, r which satisfy that

p + q + r = n, Tpqr(ν(x), ν(y), ν(z)) = 1.

Proof. Given (x, y, z), we can take a transformation A ∈ PSL2R such

that A(x) = ∞, A(y) = 1, and A(z) = 0. Using this normalization, we have

Tpqr(ν(x), ν(y), ν(z)) = Tpqr(ν(A−1(∞)), ν(A−1(1)), ν(A−1(0))

= Tpqr(ιn(A)−1ν(∞), ιn(A)−1ν(1), ιn(A)−1ν(0))

= Tpqr(ν(∞), ν(1), ν(0)).

Thus it is enough to consider the value Tpqr(ν(∞), ν(1), ν(0)).

Recall that the flag ν([a : b]) = {Vd}d for [a : b] ∈ RP1 consists of the

nested vector space Vd of dimension d = 0, 1, · · · , n defined by

Vd = {P (X,Y ) ∈ Polyn(X,Y ) |
P (X,Y ) can be divided by (aX + bY )n−d}.
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For example, the d-dimensional vector space ν(0)d is

ν(0)d = {P (X,Y ) | ∃Q(X,Y ) s.t. P (X,Y ) = Y n−dQ(X,Y )}
= {(k1X

d−1 + k2X
d−2Y + · · · + kdY

d−1)Y n−d | k1, · · · kd ∈ R}
= Span{Xd−1Y n−d, Xd−2Y n−d+1, · · · , Y n−1}.

Similarly,

ν(∞)d = Span{Xn−1, Xn−2Y, · · · , Xn−dY d−1},
ν(1)d = Span{(X + Y )n−dXd−1, (X + Y )n−dXd−2Y, · · · ,

(X + Y )n−dY d−1}.

To compute the triple ratio, first we choose a basis of
∧d ν(0)d,

∧d ν(1)d,∧d ν(∞)d as follows:

td0 = Xd−1Y n−d ∧Xd−2Y n−d+1 ∧ · · · ∧ Y n−1 ∈
d∧
ν(0)d,

td∞ = Xn−1 ∧Xn−2Y ∧ · · · ∧Xn−dY d−1 ∈
d∧
ν(∞)d,

td1 = (X + Y )n−dXd−1 ∧ (X + Y )n−dXd−2Y ∧ · · · ∧ (X + Y )n−dY d−1

∈
d∧
ν(1)d.

Then Tpqr(ν(∞), ν(1), ν(0)) is precisely equal to

tp+1
∞ ∧ tq1 ∧ tr−1

0 · tp∞ ∧ tq−1
1 ∧ tr+1

0 · tp−1
∞ ∧ tq+1

1 ∧ tr0

tp−1
∞ ∧ tq1 ∧ tr+1

0 · tp∞ ∧ tq+1
1 ∧ tr−1

0 · tp+1
∞ ∧ tq−1

1 ∧ tr0
,

so we should verify the values of wedge products tp∞ ∧ tq1 ∧ tr0 for integers

p, q, r with 0 ≤ p, q, r ≤ n and p + q + r = n. (There is abuse of notations

p, q, r which appeared in the statement of Proposition 26.) The following

formula is shown by easy linear algebra.

Lemma 27. Let V be an n-dimensional vector space with a basis

{b1, · · · , bn} and {v1, · · · , vn} be arbitrary vectors in V . We set vi =∑n
i=1 vijbj with vij ∈ R. Then

v1 ∧ · · · ∧ vn = Det((vij))b1 ∧ · · · ∧ bn.
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We fix a basis of Polyn(X,Y ) by b1 = Xn−1, b2 = Xn−2Y, · · · , bn =

Y n−1, and we may choose an identification
∧n Polyn(X,Y ) → R so that

b1 ∧ b2 ∧ · · · ∧ bn is identified with 1. Then, using this basis,

tp∞ ∧ tq1 ∧ tr0

= Xn−1 ∧Xn−2Y ∧ · · · ∧Xn−pY p−1 ∧
(X + Y )n−qXq−1 ∧ (X + Y )n−qXq−2Y ∧ · · · ∧ (X + Y )n−qY q−1 ∧

Xr−1Y n−r ∧Xr−2Y n−r+1 ∧ · · · ∧ Y n−1

= b1 ∧ b2 ∧ · · · bp ∧
n−q∑
i=1

(
n− q

i

)
bi+1 ∧

n−q∑
i=1

(
n− q

i

)
bi+2 ∧ · · · ∧

n−q∑
i=1

(
n− q

i

)
bi+q ∧

bn−r+1 ∧ bn−r+2 ∧ · · · ∧ bn.

By Lemma 27 and a computation of determinants of matrices, if q �= 0, then

tp∞ ∧ tq1 ∧ tr0 =

∣∣∣∣∣∣∣
(
p+r
p

)
· · ·

(
p+r

p−q+1

)
...

...
...(

p+r
p+q−1

)
· · ·

(
p+r
p

)
∣∣∣∣∣∣∣ ,

and if q = 0, then tp∞ ∧ t01 ∧ tr0 = 1. We may suppose q �= 0. In this

determinant, we consider an extended binomial coefficient which is defined

by (
n

p

)
=


n!

p!(n− p)!
(0 ≤ p ≤ n)

0 (otherwise).

Hence many zero entries may appear in the determinant above.

Lemma 28. The determinant∣∣∣∣∣∣∣
(
p+r
p

)
· · ·

(
p+r

p−q+1

)
...

...
...(

p+r
p+q−1

)
· · ·

(
p+r
p

)
∣∣∣∣∣∣∣

is equal to

(−1)
(q−1)q

2
(n− q)! (n− q + 1)! · · · (n− 1)! 1! 2! · · · (q − 1)!

(n− r − q)! (n− r − q + 1)! · · · (n− r − 1)! r! (r + 1)! · · · (r + q − 1)!
.
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Proof of Lemma 28. The following formulae still hold for extended

binomial coefficients.

(
n

p

)
=

(
n

n− p

)
,(5.1) (

n

p

)
+

(
n

p + 1

)
=

(
n + 1

p + 1

)
.(5.2)

By elemental transformations of matrices, adding the second row to the

first row, the third row to the second row, ... and then the qth row to the

(q − 1)th row, and applying the formula (5.2), we obtain

∣∣∣∣∣∣∣
(
p+r
p

)
· · ·

(
p+r

p−q+1

)
...

...
...(

p+r
p+q−1

)
· · ·

(
p+r
p

)
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
p+r+1
p+1

)
· · ·

(
p+r+1
p−q+2

)(
p+r+1
p+2

)
· · ·

(
p+r+1
p−q+3

)(
p+r+1
p+3

)
· · ·

(
p+r+1
p−q+4

)
...

...
...(

p+r+1
p+q−2

)
· · ·

(
p+r+1
p−1

)(
p+r+1
p+q−1

)
· · ·

(
p+r+1

p

)(
p+r

p+q−1

)
· · ·

(
p+r
p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Next, by adding the second row to the first row, the third row to the second

row, ... and then the (q − 1)th row to the (q − 2)th row and using (5.2),

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
p+r+1
p+1

)
· · ·

(
p+r+1
p−q+2

)(
p+r+1
p+2

)
· · ·

(
p+r+1
p−q+3

)(
p+r+1
p+3

)
· · ·

(
p+r+1
p−q+4

)
...

...
...(

p+r+1
p+q−2

)
· · ·

(
p+r+1
p−1

)(
p+r+1
p+q−1

)
· · ·

(
p+r+1

p

)(
p+r

p+q−1

)
· · ·

(
p+r
p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
p+r+2
p+2

)
· · ·

(
p+r+2
p−q+3

)(
p+r+2
p+3

)
· · ·

(
p+r+2
p−q+4

)(
p+r+2
p+4

)
· · ·

(
p+r+2
p−q+5

)
...

...
...(

p+r+2
p+q−1

)
· · ·

(
p+r+2

p

)(
p+r+1
p+q−1

)
· · ·

(
p+r+1

p

)(
p+r

p+q−1

)
· · ·

(
p+r
p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Iterating such a deformation, we get

∣∣∣∣∣∣∣
(
p+r
p

)
· · ·

(
p+r

p−q+1

)
...

...
...(

p+r
p+q−1

)
· · ·

(
p+r
p

)
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
p+r+q−1
p+q−1

)
· · ·

(
p+r+q−1

p

)(
p+r+q−2
p+q−1

)
· · ·

(
p+r+q−2

p

)(
p+r+q−3
p+q−1

)
· · ·

(
p+r+q−3

p

)
...

...
...(

p+r+2
p+q−1

)
· · ·

(
p+r+2

p

)(
p+r+1
p+q−1

)
· · ·

(
p+r+1

p

)(
p+r

p+q−1

)
· · ·

(
p+r
p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n−1

p+q−1

)
· · ·

(
n−1
p

)(
n−2

p+q−1

)
· · ·

(
n−2
p

)(
n−3

p+q−1

)
· · ·

(
n−3
p

)
...

...
...(

n−q+2
p+q−1

)
· · ·

(
n−q+2

p

)(
n−q+1
p+q−1

)
· · ·

(
n−q+1

p

)(
n−q

p+q−1

)
· · ·

(
n−q
p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Note that p + q + r = n for the last equality. We consider a similar defor-

mation for columns. By adding the second column to the first column, the

third column to the second column, ..., and the qth column to the (q− 1)th

column, and using the formula (5.2), the determinant is deformed to

∣∣∣∣∣∣∣
(

n
p+q−1

) (
n

p+q−2

) (
n

p+q−3

)
· · ·

(
n

p+2

) (
n

p+1

) (
n−1
p

)
...

...
...

...
...

...(
n−q+1
p+q−1

) (
n−q+1
p+q−2

) (
n−q+1
p+q−3

)
· · ·

(
n−q+1
p+2

) (
n−q+1
p+1

) (
n−q
p

)
∣∣∣∣∣∣∣ .

By adding the second column to the first column, the third column to the

second column, ..., and the (q − 1)th column to the (q − 2)th column, and

using the formula (5.2), the determinant is again deformed to

∣∣∣∣∣∣∣
(

n+1
p+q−1

) (
n+1

p+q−2

) (
n+1

p+q−3

)
· · ·

(
n+1
p+2

) (
n

p+1

) (
n−1
p

)
...

...
...

...
...

...(
n−q+2
p+q−1

) (
n−q+2
p+q−2

) (
n−q+2
p+q−3

)
· · ·

(
n−q+2
p+2

) (
n−q+1
p+1

) (
n−q
p

)
∣∣∣∣∣∣∣ .
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By iterating such a deformation, the determinant is deformed to:∣∣∣∣∣∣∣
(
n+q−2
p+q−1

) (
n+q−3
p+q−2

) (
n+q−4
p+q−3

)
· · ·

(
n+1
p+2

) (
n

p+1

) (
n−1
p

)
...

...
...

...
...

...(
n−1

p+q−1

) (
n−2

p+q−2

) (
n−3

p+q−3

)
· · ·

(
n−q+2
p+2

) (
n−q+1
p+1

) (
n−q
p

)
∣∣∣∣∣∣∣ .

Using p + q + r = n and replacing columns and rows, the determinant is

deformed as follows.∣∣∣∣∣∣∣∣∣∣∣∣

(
n+q−2
p+q−1

) (
n+q−3
p+q−2

)
· · ·

(
n

p+1

) (
n−1
p

)(
n+q−3
p+q−1

) (
n+q−4
p+q−2

)
· · ·

(
n−1
p+1

) (
n−2
p

)
...

...
...

...
...(

n
p+q−1

) (
n−1

p+q−2

)
· · ·

(
n−q+2
p+1

) (
n−q+1

p

)(
n−1

p+q−1

) (
n−2

p+q−2

)
· · ·

(
n−q+1
p+1

) (
n−q
p

)

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)
q(q−1)

2

∣∣∣∣∣∣∣∣∣∣∣∣

(
n−1

p+q−1

) (
n−2

p+q−2

)
· · ·

(
n−q+1
p+1

) (
n−q
p

)(
n

p+q−1

) (
n−1

p+q−2

)
· · ·

(
n−q+2
p+1

) (
n−q+1

p

)
...

...
...

...
...(

n+q−3
p+q−1

) (
n+q−4
p+q−2

)
· · ·

(
n−1
p+1

) (
n−2
p

)(
n+q−2
p+q−1

) (
n+q−3
p+q−2

)
· · ·

(
n

p+1

) (
n−1
p

)

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)
q(q−1)

2 · (−1)
q(q−1)

2

∣∣∣∣∣∣∣∣∣∣∣∣

(n−q
p

) (
n−q+1
p+1

)
· · ·

(
n−2

p+q−2

) (
n−1

p+q−1

)(
n−q+1

p

) (
n−q+2
p+1

)
· · ·

(
n−1

p+q−2

) (
n

p+q−1

)
...

...
...

...
...(

n−2
p

) (
n−1
p+1

)
· · ·

(
n+q−4
p+q−2

) (
n+q−3
p+q−1

)(
n−1
p

) (
n

p+1

)
· · ·

(
n+q−3
p+q−2

) (
n+q−2
p+q−1

)

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

( n−q
n−r−q

) (
n−q+1

n−r−q+1

)
· · ·

(
n−2

n−r−2

) (
n−1

n−r−1

)(
n−q+1
n−r−q

) (
n−q+2

n−r−q+1

)
· · ·

(
n−1

n−r−2

) (
n

n−r−1

)
...

...
...

...
...(

n−2
n−r−q

) (
n−1

n−r−q+1

)
· · ·

(
n+q−4
n−r−2

) (
n+q−3
n−r−1

)(
n−1

n−r−q

) (
n

n−r−q+1

)
· · ·

(
n+q−3
n−r−2

) (
n+q−2
n−r−1

)

∣∣∣∣∣∣∣∣∣∣∣∣
. · · · (†)

Lemma 28 is obtained by applying the following lemma. The determinant

♦(n, k, l) below corresponds to a rhombus in Pascal’s triangle. The entries

of ♦(n, k, l) are usual binomial coefficients, so positive integers. We can

apply the formula in Lemma 29 to compute (†) by replacing n, k, l to n −
q, n− r − q, q − 1, and we obtain Lemma 28. �
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Lemma 29. Let n, l ∈ N and 0 ≤ k ≤ n. The determinant

♦(n, k, l) =

∣∣∣∣∣∣∣∣∣∣

(
n
k

) (
n+1
k+1

)
· · ·

(
n+l
k+l

)(
n+1
k

) (
n+2
k+1

)
· · ·

(
n+l+1
k+l

)
...

...
...

...(
n+l
k

) (
n+l+1
k+1

)
· · ·

(
n+2l
k+l

)

∣∣∣∣∣∣∣∣∣∣
is equal to

n! (n + 1)! · · · (n + l)!

k! (k + 1)! · · · (k + l)! (n− k)! · · · (n− k + l)!
· (−1)

l(l+1)
2 1! · · · l!.

Proof of Lemma 29. First, we deform ♦(n, k, l) as follows.

♦(n, k, l) =

∣∣∣∣∣∣∣∣∣∣∣

n!
k!(n−k)!

(n+1)!
(k+1)!(n−k)! · · · (n+l)!

(k+l)!(n−k)!
(n+1)!

k!(n−k+1)!
(n+2)!

((k+1)!(n−k+1)! · · · (n+l+1)!
(k+l)!(n−k+1)!

...
...

...
...

(n+l)!
k!(n−k+l)!

(n+l+1)!
(k+1)!(n−k+l)! · · · (n+2l)!

(k+l)!(n−k+l)!

∣∣∣∣∣∣∣∣∣∣∣
= C

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

(n + 1) (n + 2) · · · (n + l + 1)
...

...
...

...
(n + 1) · · · (n + l) (n + 2) · · · (n + l + 1) · · · (n + l + 1) · · · (n + 2l)

∣∣∣∣∣∣∣∣∣,
where

C =
n! (n + 1)! · · · (n + l)!

k! (k + 1)! · · · (k + l)! (n− k)! · · · (n− k + l)!
.

We add the (−l+1) times of the l-th row to the (l+1)-th row, the (−l+2)
times of the (l− 1)-th row to the l-th row, ..., and (−1) times of the second
row to the third row:∣∣∣∣∣∣∣∣∣

1 1 · · · 1
(n + 1) (n + 2) · · · (n + l + 1)

...
...

...
...

(n + 1) · · · (n + l) (n + 2) · · · (n + l + 1) · · · (n + l + 1) · · · (n + 2l)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

(n + 1) (n + 2) · · · (n + l + 1)
...

...
...

...
(n + 1)2 · · · (n + l) (n + 2)2 · · · (n + l + 1) · · · (n + l + 1)2 · · · (n + 2l)

∣∣∣∣∣∣∣∣∣ .
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The iteration of such a deformation gives us the following determinant:∣∣∣∣∣∣∣∣∣
1 1 · · · 1

(n + 1) (n + 2) · · · (n + l + 1)
...

...
...

...

(n + 1)l (n + 2)l · · · (n + l + 1)l

∣∣∣∣∣∣∣∣∣ .
Using the formula of Vandermonde’s determinant, we can expand this as

follows.∣∣∣∣∣∣∣∣∣
1 1 · · · 1

(n + 1) (n + 2) · · · (n + l + 1)
...

...
...

...

(n + 1)l (n + 2)l · · · (n + l + 1)l

∣∣∣∣∣∣∣∣∣ = (−1)ll! · (−1)l−1(l − 1)! · · · (−1)

= (−1)l+(l−1)+···+1l! (l − 1)! · · · 1

= (−1)
l(l+1)

2 1! · · · l!.

Thus

♦(n, k, l) =
n! (n + 1)! · · · (n + l)!

k! (k + 1)! · · · (k + l)! (n− k)! · · · (n− k + l)!

· (−1)
l(l+1)

2 1! · · · l!. �

Finally, applying Lemma 28, we can check that the value of the triple

ratio Tpqr(ν(∞), ν(1),∞(0)) is equal to 1. We finish the proof of Proposi-

tion 26. �

Proposition 30. Let (x, z, y, z′) be a quadruple of counterclockwise

ordered points in RP1. The b-th double ratio Db(ν(x), ν(y), ν(z), ν(z′)) is

equal to −r for all integers b with 1 ≤ b ≤ n− 1, where r is the cross ratio

r = cr(x, y, z, z′).

Proof. Let A ∈ PSL2R be a transformation which sends x,y,z′ to

∞, 0, 1. Then the transformation A maps z to r−1, where r = cr(x, y, z, z′).
Then, by the same computation with the case of triple ratio,

Db(ν(x), ν(y), ν(z), ν(z′)) = Db(ν(∞), ν(0), ν(r−1), ν(1)).
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The flags ν(∞), ν(0), ν(r−1), ν(1) are defined by the following vector spaces:

ν(∞)d = Span{b1, b2, · · · , bd},
ν(0)d = Span{bn−d+1, bn−d+2, · · · , bn},

ν(1)1 = R

n−1∑
i=0

(
n− 1

i

)
bi+1,

ν(r−1)1 = R

n−1∑
i=0

(
n− 1

i

)
r−(n−1−i)bi+1,

where b1, · · · , bn are the basis of Polyn(X,Y ) we used in the proof of Propo-

sition 26. We choose bases of
∧d ν(∞)d,

∧d ν(0)d, ν(1)1, ν(r−1)1 as follows:

td∞ = b1 ∧ b2 ∧ · · · ∧ bd ∈
d∧
ν(∞)d,

td0 = bn−d+1 ∧ bn−d+2 ∧ · · · ∧ bn ∈
d∧
ν(0)d,

t11 =
n−1∑
i=0

(
n− 1

i

)
bi+1 ∈ ν(1)1,

t1r−1 =
n−1∑
i=0

(
n− 1

i

)
r−(n−1−i)bi+1 ∈ ν(r−1)1.

By the definition of the double ratio,

Db(ν(∞), ν(0), ν(r−1), ν(1)) = −
tb∞ ∧ tn−b−1

0 ∧ t1r−1 · tb−1
∞ ∧ tn−b

0 ∧ t11

tb∞ ∧ tn−b−1
0 ∧ t11 · tb−1

0 ∧ tn−b
0 ∧ t1

r−1

Compute each factor of this fraction.

tb∞ ∧ tn−b−1
0 ∧ t1r−1 =

∣∣∣∣∣∣∣∣∣∣
Idb 0

(
n−1

0

)
r−(n−1)(

n−1
1

)
r−(n−2)

...

0 Idn−b−1

(
n−1
n−1

)
(r−1)0

∣∣∣∣∣∣∣∣∣∣
= (−1)n−b−1

(
n− 1

b

)
r−(n−b−1),
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tb∞ ∧ tn−b−1
0 ∧ t11 =

∣∣∣∣∣∣∣∣∣∣
Idb 0

(
n−1

0

)(
n−1

1

)
...

0 Idn−b−1

(
n−1
n−1

)

∣∣∣∣∣∣∣∣∣∣
= (−1)n−b−1

(
n− 1

b

)
.

Hence

Da(ν(∞), ν(0), ν(r−1), ν(1))

= −
(−1)n−b−1

(
n−1
b

)
r−(n−b−1) · (−1)n−(b+1)−1

(
n−1
b+1

)
(−1)n−b−1

(
n−1
b

)
· (−1)n−(b+1)−1

(
n−1
b+1

)
r−(n−(b+1)−1)

= −r �

6. The Fuchsian Locus is a Slice

6.1. The case of finite laminations

Let S be a closed oriented hyperbolic surface, and λ be an oriented

maximal geodesic lamination consisting of finitely many leaves. We denote

bi-infinite (resp. closed) leaves of λ by Bi (resp. Ci). The maximal geodesic

lamination λ gives an ideal triangulation of S. We denote ideal triangles of

the ideal triangulation by Ti. In addition, we fix a bridge system system J
for λ. Recall that the Bonahon-Dreyer parameterization ΦλJ : Hn(S) → RN

associated to λJ is defined by

ΦλJ (ρ) = (τpqr(s
i
j , ρ), · · · , σb(Bi, ρ), · · · , θc(Ci, ρ), · · · )

and the coordinate of RN is represented by (τpqr(s
i
j), · · · , σb(Bi), · · · ,

θc(Ci), · · · ). Set PλJ = Image(ΦλJ ), which is the interior of a convex poly-

hedron in RN .

Theorem 31. If ρn = ιn ◦ ρ : π1(S) → PSLnR is a PSLnR-Fuchsian

representation, then
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(i) all triangle invariants τpqr(s
i
j , ρn) are equal to 0, and

(ii) all shearing invariants σb(Bi, ρn), and all twist invariants θc(Ci, ρn)

are constants depending only on the Fuchsian representation ρ, and

are independent of their indices b, c.

Moreover, the shearing invariant of ρn along Bi is equal to the shearing

parameter of ρ along Bi, i.e. σb(Bi, ρn) = σρ(Bi).

Proof. (i) Recall the definition of triangle invariants. Fix a spike sij
of the ideal triangle Ti, and a lift T̃i of Ti. Let x, y, z ∈ ∂π1(S) be the

the vertices of T̃i, where x corresponds to sij and they are in clockwise

order. Then τpqr(s
i
j , ρn) = log[Tpqr(ξρn(x), ξρn(y), ξρn(z))]. Since ξρn is of

the Veronese type, its triple ratio is equal to 1 by Proposition 26. Hence

τpqr(s
i
j , ρn) = 0.

(ii) Let B̃i be a lift of a bi-infinite leaf Bi. We denote the left ideal trian-

gle with the side B̃i by T̃L
i , and the right ideal triangle by T̃R

i . Respecting

the orientation of B̃i, we label x, y, zL, zR on the ideal vertices of T̃L
i , T̃R

i

as in Section 4.2. Then the quadruple (x, zL, y, zR) is counterclockwise or-

dered, so by Proposition 30,

σb(Bi, ρn) = logDb(ξρn(x), ξρn(y), ξρn(zL), ξρn(zR))

= log[−cr(fρ(x), fρ(y), fρ(z
L), fρ(z

R))].

Especially, the shearing invariant is independent of the index b, and is equal

to the shearing parameter of ρ by Lemma 11. We can similarly show the case

of twist invariants. The differences are only in the choice of ideal triangles

and a quadruple of ideal vertices which are used in the definition of the twist

invariants. �

We define an affine slice SλJ of PλJ by τpqr(s
i
j) = 0, σb(Bi) = σb′(Bi),

and θc(Ci) = θc′(Ci) for all possible indices.

Theorem 32. The restriction ΦλJ |Fn(S) : Fn(S) → SλJ is surjective.

Proof. A point x ∈ SλJ is represented by the following coordinate

(0, · · · , 0, z1, · · · , z1, · · · , z3|χ(S)|, · · · , z3|χ(S)|, w1, · · · , w1, · · · , wk, · · · , wk),
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where 0 is the τpqr(s
i
j)-coordinate, zi is the σb(Bi)-coordinate, and wi is

the θc(Ci)-coordinate. It suffices to show that, for such zi, wi ∈ R, there

exists a Fuchsian representation ρ : π1(S) → PSL2R such that the associ-

ated PSLnR-Fuchsian representation satisfies that σb(Bi, ιn ◦ ρ) = zi and

θc(Ci, ιn ◦ ρ) = wi for all i.

We see that the closed leaf condition of the Bonahon-Dreyer parameter-

ization implies that the parameter (z1, · · · , z3|χ(S)|, w1, · · · , wk) is contained

in the range of the shearing parameterization φ̃λ in Theorem 8. Here we

define φ̃λ along the simple train track neighborhood Nλ (see the end of

Section 2.5.3). To define the twist parameter of φ̃λ, we require to choose

two spiraling ideal triangles for each closed leaf Ci on both sides. As these

two ideal triangles, we choose the bridge JCi = {TL, TR} from the bridge

system J . Then the parameterization φ̃λ : �(S) → R3|χ(S)|+k is defined by

φ̃λ(ρ) = (σρ(e1), · · · , σρ(e3|χ(S)|), θ
ρ(C1), · · · , θρ(Ck)).

Note that σρ(ei) is defined by σρ(Bi).

It is enough to check only the condition (II) of Proposition 10 by the final

remark in Section 2.5.3. Let Bi,L
1 , · · · , Bi,L

lL
be bi-infinite leaves spiraling to

Ci from left and Bi,R
1 , · · · , Bi,R

lR
be bi-infinite leaves spiraling to Ci from the

right. We denote, by zi,Lj , the σb(B
i,L
j )-coordinate of x. Since x ∈ SλJ ,

it satisfies the closed leaf condition. Note that Bi,L
j spirals to Ci from the

left with respect to the orientation of Ci. In addition, we remark that

Bi,L
j spirals to Ci in the direction (resp. the opposite direction) of the

orientation of Ci if and only if the sign of this spiraling is negative (resp.

positive). (See Figure 3 and Figure 4.) Hence, using the condition that all

τpqr(s
i
j)-coordinates are equal to 0, the closed leaf inequality implies that

Lb(Ci) = −
lL∑
j=1

σb(B
i,L
j ) = −

lL∑
j=1

zi,Lj > 0

if the spiraling is negative, and

Lb(C) =

lL∑
j=1

σn−b(B
i,L
j ) =

lL∑
j=1

zi,Lj > 0

if the spiraling is positive. Thus, we have Lb(Ci) = sign ·
∑lL

j=1 z
i,L
j > 0.
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We give a similar observation for the bi-infinite leaves Bi,R
j . Let zi,Rj

be the σb(B
i,R
j )-coordinate of x. Since Bi,R

j spiral to Ci from the right,

Bi,L
j spirals to Ci in the direction (resp. the opposite direction) of the

orientation of Ci if and only if the sign of this spiraling is positive (resp.

negative). Hence, the closed leaf inequality implies that

Rb(Ci) =

lR∑
j=1

σb(B
i,R
j ) =

lR∑
j=1

zi,Rj > 0

if the spiraling is positive, and

Rb(Ci) = −
lR∑
j=1

σn−b(B
i,R
j ) = −

lR∑
j=1

zi,Rj > 0

if the spiraling is negative. Thus, we have Rb(Ci) = sign ·
∑lR

j=1 z
i,R
j > 0.

Finally, the closed equality Lb(Ci) = Rb(Ci) gives us the following con-

dition

sign ·
lL∑
j=1

zi,Lj = sign ·
lR∑
j=1

zi,Rj > 0.

This implies that the parameters zi and wi satisfy the condition (II). Hence,

(z1, · · · , z|3χ(S)|, w1, · · · , wk) is contained in the range of φ̃λ.

Using the reconstruction of the Fuchsian representations in Theorem 8,

we obtain a Fuchsian representation ρ ∈ �(S) such that σρ(Bi) = σρ(ei) =

zi and θρ(Ci) = wi. For this Fuchsian representation ρ, we have θc(Ci, ιn ◦
ρ) = θρ(Ci) = wi by Proposition 30, and σb(Bi, ιn ◦ ρ) = σρ(Bi) = zi by

Theorem 31. Hence we finish the proof. �

6.2. The case of general laminations

The Fuchsian locus is a slice even in the case of general laminations. Let

S be a closed oriented hyperbolic surface, and λ be an arbitrary maximal

geodesic lamination on S. In this case, the Bonahon-Dreyer parameteriza-

tion Φλ : Hn(S) → Z(λ, slits; Rn) × R6|χ(S)|(n−1
2 ) is defined by

Φλ(ρ) = (σρ, τpqr(s
i
j , ρ)).
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Let ρn = ιn ◦ ρ ∈ Hn(S) be a PSLnR-Fuchsian representation.

Theorem 33. We denote, by σρn
b , the b-th entry of σρn. Let k be a

tightly transverse arc of λ. Then, for all b = 1, 2, · · · , n−1, σρn
b (k) = σρ(k),

where σρ is the shearing cocycle associated to ρ.

Proof. Recall the definition of the shearing class. For a tightly trans-

verse arc k, we take the plaques P,Q, the ideal vertices x, y, z, z′, and the

boundary leaves g, g′ as we prepared in Section 4.3.2. Then, the value of

the shearing class σρn
b (k) is defined by

σρn
b (k) = log[Db(ν ◦ fρ(x), ν ◦ fρ(y), ν ◦ fρ(z),Σρn

gg′ν ◦ fρ(z′))].

In the PSLnR-Fuchsian case, the slithering map Σρn
gg′ is equal to ιn(Σρ

gg′)

since the linear map ιn(Σρ
gg′) satisfies the properties which define Σρn

gg′ . In-

deed, the first property holds since Σgg′ is the slithering map and ιn is a

group homomorphism. The second property follows since ιn is Hölder con-

tinuous with respect to the operator norm. In particular, by definition of

ιn, the image ιn(A) has entries which are polynomials of the entries of A. In

the definition of Σρn
gg′ , we consider the flag curve of Veronese type. Since the

Veronese flag curve ν is ιn-equivariant, ιn(Σρ
gg′) satisfies the third property.

Thus we obtain Σρn
gg′ = ιn(Σρ

gg′) by the uniqueness.

Using this equality and Proposition 30, we can calculate the shearing

class as follows.

σρn
b (k) = log[Db(ν ◦ fρ(x), ν ◦ fρ(y), ν ◦ fρ(z),Σρn

gg′ν ◦ fρ(z′))]
= log[Db(ν ◦ fρ(x), ν ◦ fρ(y), ν ◦ fρ(z), ιn(Σρ

gg′)ν ◦ fρ(z′))]
= log[Db(ν ◦ fρ(x), ν ◦ fρ(y), ν ◦ fρ(z), ν ◦ Σρ

gg′fρ(z
′))]

= log[−cr(fρ(x), fρ(y), fρ(z),Σ
ρ
gg′fρ(z

′))].

We remark that the slithering map Σρ
gg′ is the extension of the horocyclic

flow onto the ideal boundary. The slithering map Σρ
gg′ is constructed by the

ordered product of Σρ
T ∈ PSL2R as T ranges over all ideal triangles of S̃ \ λ̃

separating g and g′ ([BD17, Proposition 5.1]). Here the ideal triangles T

are ordered from g to g′. All triangles T has two edges gT and g′T so that
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they separate g and g′, and gT (resp. g′T ) are near to g (resp. g′). The

element Σρ
T is defined by the parabolic element which sends g′T to gT , and

this implies that Σρ
gg′ is obtained by the horocyclic flow. Hence the last

quantity is just equal to the value σρ(k) by the definition of the shearing

cocycle. �

We construct an affine slice of Pλ. Let Sλ be the slice of Pλ so that the

first coordinate σρ consists of the same entry, i.e. σρ
1 = · · · = σρ

n−1 = α

where α is a R-valued relative tangent cycle of λ, and the second coordinate

is equal to 0. Let x = (σ, 0) be a point of Sλ, and let σ = (α, · · · , α). By

the shearing cycle boundary condition for x, the boundary of the tangent

cycle α is equal to zero since all τpqr(s
i
j)-coordinates are 0. Then the quasi-

additivity of α gives the additivity, so the entries α is just a transverse

cocycle. Moreover, the positive intersection condition implies that, for any

non-zero transverse measure µ on λ, the intersection number µ·α is positive.

Hence α is a shearing cocycle, and there exists a Fuchsian representation

which defines σ by the shearing parameterization. This argument shows the

following conclusion.

Theorem 34. Let Sλ be the affine slice which is defined by the condi-

tions that all τpqr(s
i
j)-coordinates are equal to zero, and, for any oriented arc

k tightly transverse to λ, the shearing class is of the form α(k) · (1, · · · , 1)t

where α is a transverse cocycle of λ. The restriction Φλ|Fn(S) : Fn(S) → Sλ

is surjective.

7. The Case of Surfaces with Boundary

7.1. The Hitchin component of surfaces with boundary

A representation ρ : π1(S) → PSLnR is said to be purely loxodromic

respecting boundary if the image of each boundary component via ρ is con-

jugate to an element with pairwise distinct, only real eigenvalues. We de-

note, by Rloxo
n (S), the space of representations which are purely loxodromic

respecting boundary. In addition, we define X loxo
n (S) = Rloxo

n (S)/PSLnR,

where the quotient is defined by the conjugate action.

Note that �(S) is contained in X loxo
2 (S), and (ιn)∗(�(S)) is contained

in X loxo
n (S). The (PSLnR-) Hitchin components Hn(S) is the connected

component of X loxo
n (S) which contains the image Fn(S) = (ιn)∗(�(S)).
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7.2. The main result for surfaces with boundary

To define the Bonahon-Dreyer parameterization for surfaces with bound-

ary, Bonahon and Dreyer used the result of Labourie and McShane.

Theorem 35 (Labourie-McShane [LaMc09, Theorem 9.1.]). Let S be

a compact hyperbolic oriented surface with nonempty boundary, and

ρ : π(S) → PSLnR be a Hitchin representation. Then there exists a unique

Hitchin representation ρ̂ : π1(Ŝ) → PSLnR of the fundamental group of the

double Ŝ of S such that the restriction ρ̂ to π1(S) is equal to ρ.

The extension ρ̂ of ρ is called the Hitchin double. For the flag curve

ξ̂ρ̂ : ∂π1(Ŝ) → Flag(Rn), we set ξρ = ξ̂ρ̂|∂π1(S), the restriction to the bound-

ary of π1(S). We call this restriction the restricted flag curve. In the param-

eterization of Hitchin representations in this case, we can use this restricted

flag curves instead of the usual flag curves. (See [BD14, Section 7].) Then

our results are extended to the case of surfaces with boundary. To check

this, we focus on the doubling construction of PSLnR-Fuchsian representa-

tions. In the proof of the existence of Hitchin doubles ([LaMc09, Theorem

9.1]), we can see that the double of a PSLnR-Fuchsian representation ιn ◦ ρ
is again PSLnR-Fuchsian. Especially, the Hitchin double ι̂n ◦ ρ is equal to

the PSLnR-Fuchsian representation ιn ◦ ρ̂ induced by the hyperbolic double

ρ̂ of the Fuchsian representation ρ. Thus the restricted flag curve of ιn ◦ρ is

the restriction of the Veronese flag curve of ιn ◦ ρ̂, and our results are shown

similarly in the case of compact surfaces with boundary.
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