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On Regularizable Birational Maps

By Julie Déserti∗

Abstract. Bedford asked if there exists a birational self map f of
the complex projective plane such that for any automorphism A of the
complex projective plane A ◦ f is not conjugate to an automorphism.
In this article we give such an f of degree 5.

1. Introduction

Let us consider Bir(PkC) the group of all birational self maps of P
k
C, also

called the k-dimensional Cremona group. A birational map f ∈ Bir(PkC)

is regularizable if there there exist a smooth projective variety V and a

birational map g : V ��� P
k
C such that g−1 ◦ f ◦ g is an automorphism of

V . For instance any f ∈ Aut(PkC) = PGL(k + 1,C) is regularizable but any

f ∈ Bir(P2
C) such that (deg fn)n grows linearly is not regularizable ([6]). To

any element f of Bir(PkC) we associate the set Reg(f) defined by

Reg(f) :=
{
A ∈ Aut(PkC) | A ◦ f is regularizable

}
.

On the one hand Dolgachev asked1 whether there exists a birational self

map of P
k
C of degree > 1 such that Reg(f) = Aut(PkC). In [4] we give a

negative answer to this question; more precisely we prove:

Theorem 1.1 ([4]). Let k be an uncountable, algebraically closed field.

Let f be a birational self map of P
m
k of degree d ≥ 2. The set of automor-

phisms A of P
m
k such that deg

(
(A ◦ f)n

)
�=

(
deg(A ◦ f)

)n
for some n > 0

is a countable union of proper Zariski closed subsets of PGL(m+ 1,k).
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Let k be a field of characteristic zero. Let f be a birational transforma-

tion of P
m which is defined over the field k, i.e. the formulas defining f

have coefficients in k. Then, there exists an element A of PGL(m + 1,k)

such that deg((A ◦ f)n) = deg(f)n for all n ≥ 1.

On the other hand Bedford asked2: does there exist a birational map f

of P
k
C such that Reg(f) = ∅ ? We will focus on the case k = 2. According

to [1, 5] if f ∈ Bir(P2
C) and deg f = 2, then Reg(f) �= ∅. Furthermore Blanc

proves that the set

{
f ∈ Bir(P2

C) | deg f = 3, Reg(f) �= ∅, lim
n→+∞

(deg(fn))1/n > 1
}

is dense in
{
f ∈ Bir(P2

C) | deg f = 3
}

and that its complement has codi-

mension 1 (see [2]). Blanc also gives a positive answer to Bedford question

in dimension 2: if χ ∈ Bir(P2
C) is given by

χ : (x : y : z) ���
(
xz5 + (yz2 + x3)2 : yz5 + x3z3 : z6

)

then Reg(χ) = ∅. Note that χ = (x+ y2, y) ◦ (x, y + x3) in the affine chart

z = 1. Indeed Blanc example can be generalized as follows: the birational

map of degree np given in the affine chart z = 1 by

χn,p = (x+ yn, y) ◦ (x, y + xp) =
(
x+ (y + xp)n, y + xp

)

satisfies Reg(χn,p) = ∅. Finally Blanc asked ([2, Question 1.6]): does there

exists f ∈ Bir(P2
C) such that deg f < 6 and Reg(f) = ∅ ? In this article we

give a positive answer:

Theorem A. If ψ is the birational self map of P
2
C given by

ψ : (x : y : z) ���
(
x2yz2 − z5 + x5 : x2(x2y − z3) : xz(x2y − z3)

)
,

then Reg(ψ) = ∅.
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2. Proof of Theorem A

Let S be a smooth projective surface. Let φ : S ��� S be a birational

map. This map admits a resolution

Z
π2

��
��

��
��

�
π1

����
��

��
�

S
φ

��������� S,

where π1 : Z → S and π2 : Z → S are finite sequences of blow-ups. The

resolution is minimal if and only if no (−1)-curve of Z is contracted by

both π1 and π2. Assume φ is minimal; the base-points Base(φ) of φ are the

points blown-up by π1, which can be points of S or infinitely near points.

Finally we denote by Exc(φ) the set of curves contracted by φ.

Denote by b(φ) the number of base-points of φ; note that b(φ) is equal

to the difference of the ranks of Pic(Z) and Pic(S) and thus equal to b(φ−1).

Let us introduce the dynamical number of the base-points of φ

µ(φ) = lim
k→+∞

b(φk)

k
.

Since b(φ ◦ ϕ) ≤ b(φ) + b(ϕ) for any birational self map ϕ of S, µ(φ) is a

non-negative real number. As b(φ) = b(φ−1) one gets µ(φk) = |k µ(φ)| for

any k ∈ Z. Furthermore if Z is a smooth projective surface and ϕ : S ��� Z
a birational map, then for all n ∈ Z

−2b(ϕ) + b(φn) ≤ b(ϕ ◦ φn ◦ ϕ−1) ≤ 2b(ϕ) + b(φn);

hence µ(φ) = µ(ϕ ◦ φ ◦ ϕ−1). One can thus state the following result:

Lemma 2.1 ([3]). The dynamical number of base-points is an invariant

of conjugation. In particular if φ is a regularizable birational self map of a

smooth projective surface, then µ(φ) = 0.

A base-point p of φ is a persistent base-point if there exists an integer

N such that for any k ≥ N


 p ∈ Base(φk)
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 and p �∈ Base(φ−k).

Let p be a point of S or a point infinitely near S such that p �∈ Base(φ).

Consider a minimal resolution of φ

Z
π2

��
��

��
��

�
π1

����
��

��
�

S
φ

��������� S.

Because p is not a base-point of φ it corresponds via π1 to a point of Z or

infinitely near; using π2 we view this point on S again maybe infinitely near

and denote it φ•(p). For instance if S = P
2
C, p = (1 : 0 : 0) and f is the

birational self map of P
2
C given by

(z0 : z1 : z2) ��� (z1z2 + z2
0 : z0z2 : z2

2)

the point f•(p) is not equal to p = f(p) but is infinitely near to it. Note

that if ϕ is a birational self map of S and p is a point of S such that

p �∈ Base(φ), φ(p) �∈ Base(ϕ), then (ϕ ◦ φ)•(p) = ϕ•(φ•(p)). One can put

an equivalence relation on the set of points of S or infinitely near S: the

point p is equivalent to the point q if there exists an integer k such that

(φk)•(p) = q; in particular p �∈ Base(φk) and q �∈ Base(φ−k). Remark that

the equivalence class is the generalization of set of orbits for birational maps.

Let us give the relationship between the dynamical number of base-

points and the equivalence classes of persistent base-points:

Proposition 2.2 ([3]). Let S be a smooth projective surface. Let φ be

a birational self map of S.

Then µ(φ) coincides with the number of equivalence classes of persistent

base-points of φ. In particular µ(φ) is an integer.

This interpretation of the dynamical number of base-points allows to

prove the following result that gives a characterization of regularizable bi-

rational maps:

Theorem 2.3 ([3]). Let φ be a birational self map of a smooth projec-

tive surface. Then φ is regularizable if and only if µ(φ) = 0.
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2.1. Base-points of ψ

The birational map

ψ : (x : y : z) ���
(
x2yz2 − z5 + x5 : x2(x2y − z3) : xz(x2y − z3)

)

has only one base-point in P
2
C, namely p1 = (0 : 1 : 0), and all its base-points

are in tower that is: the nine base-points of ψ that we denote p1, p2, . . . ,

p9 are such that pi is infinitely near to pi−1 for 2 ≤ i ≤ 9. We denote by

π : S → P
2
C the blow up of the 9 base-points, and still write Lx (resp. C) the

strict transform of the line Lx ⊂ P
2
C of equation x = 0 (resp. the curve of

equation x2y− z3 = 0) which is contracted by ψ. We denote by Ei ⊂ S the

strict transform of the curve obtained by blowing up pi. The configuration

of the curves E1, E2, . . . , E9, Lx and C is

�

Lx
�

E2
�

E3

�
��

E1

�

E4
�

E5
�

E6
�

E7
�

E8

❅
❅�

C

�

E9

Fig. 1.

Two curves are connected by an edge if their intersection is positive. Let

us write ψA = A ◦ ψ where A is an automorphism of P
2
C. Because π is the

blow-up of the base-points of ψ, which are also the base-points of ψA, the

map η = ψA ◦ π is a birational morphism S → P
2
C which is the blow-up of

the base-points of ψ−1
A . In fact this diagram

S
η

��
��

��
��

�
π

����
��

��
�

P
2
C ψA

��������� P
2
C

is the minimal resolution of ψA.

The morphism η contracts Lx and C as well as the union of seven other

irreducible curves which are among the curves E1, E2, . . . , E9. The config-

uration of Figure 1 shows that η contracts the curves Lx, E2, E3, E4, E5,

E6, E7, E8, C following this order.
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We can see η : S → P
2
C as a sequence of nine blow-ups in the same way

as we did for π. We denote by q1, q2, . . . , q9 the base-points of ψ−1
A (or

equivalently the points blown up by η) so that q1 ∈ P
2
C and qi is infinitely

near to qi−1 for 2 ≤ i ≤ 9. We denote by D ⊂ P
2
C (resp. C′ ⊂ P

2
C) the line

contracted by ψ−1
A which is the image by A of the line y = 0 (resp. of the

conic z2 − xy = 0). We denote by Fi ⊂ S the strict transform of the curve

obtained by blowing up qi. Because of the order of the curves contracted by

η we get equalities between Lx, C, E1, E2, . . . , E9 and D, C′, F1, F2, . . . ,

F9 as follows

�

E9 = D

�

E8 = F2
❅

❅
❅
�

C = F1

�

E7 = F3

�

E6 = F4
�

E5 = F5

�

E4 = F6
�

E3 = F7

�
�
�

�

E1 = C′

�

E2 = F8
�

Lx = F9

Fig. 2.

In particular we see that the configuration of the points q1, q2, . . . , q9 is

not the same as that of the points p1, p2, . . . , p9. Saying that a point m is

proximate to a pointm′ ifm is infinitely near tom′ and that it belongs to the

strict transform of the curve obtained by blowing up m′ the configurations

of the points pi and qi are

p1 p2�� p3��
�� p4�� p5�� p6�� p7�� p8�� p9��

q1 q2�� q3�� q4�� q5�� q6�� q7�� q8�� q9��

Fig. 3. An arrow corresponds to the relation ”is proximate to”.

We will prove that for any integer i > 0 the point p3 belongs to Base(ψiA)

and does not belong to Base(ψ−i
A ). It implies that µ(ψA) > 0 and that ψA
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is not regularizable.

Denote by k the lowest positive integer such that p1 belongs to

Base(ψ−k
A ). If no such integer exists we write k = ∞. For any 1 ≤ i < k the

point p1 does not belong to Base(ψ−i
A ) so ψA and ψ−1

A have no common base-

point. As a consequence the set of base-points of the map ψi+1
A = ψA ◦ψiA is

the union of the base-points of ψiA and of the points (ψ−i
A )•(pj) for 1 ≤ j ≤ 9.

Since the map ψ−i
A is defined at p1 the point (ψ−i

A )•(pj) is proximate to the

point (ψ−i
A )•(pk) if and only if pj is proximate to pk. Proceeding by induc-

tion on i we get the following assertions:


 Base(ψiA) = {(ψ−m
A )•(pj) | 1 ≤ j ≤ 9, 0 ≤ m ≤ i−1} for any 1 ≤ i ≤ k;


 for any 0 ≤ −" ≤ k the configuration of the points {(ψ�A)•(pj) | 1 ≤
j ≤ 9} is given by

(ψ�
A)•(p1) (ψ�

A)•(p2)�� (ψ�
A)•(p3)��

��
(ψ�

A)•(p4)�� (ψ�
A)•(p5)��

(ψ�
A)•(p6)�� (ψ�

A)•(p7)�� (ψ�
A)•(p8)�� (ψ�

A)•(p9)��

Hence the point p3 belongs to Base(ψiA) for any 1 ≤ i ≤ k.

If k = ∞, then p3 belongs to Base(ψiA) for any i > 0 and by definition

of k the point p1 does not belong to Base(ψ−i
A ) for any i > 0, and so neither

p3. We can thus assume that k is a positive integer.

Assume that q1 belongs to Base(ψiA) for some 1 ≤ i ≤ k− 1. Then q1 is

equal to (ψ−m
A )•(pj) for some 0 ≤ m ≤ k − 2 and 1 ≤ j ≤ 9. This implies

that pj belongs to Base(ψm+1
A ) which is impossible because m+ 1 ≤ k − 1.

Hence q1 does not belong to Base(ψiA) for any 1 ≤ i ≤ k − 1.

We thus see that ψ−1
A has no common base-point with ψiA for 1 ≤ i ≤

k − 1. In particular if B denotes Base(ψ−1
A ) ∩ Base(ψkA), then

B = {(ψ−(k−1)
A )•(pj) | 1 ≤ j ≤ 9} ∩ {qj | 1 ≤ j ≤ 9}.

Let us remark that p1 belongs to Base(ψ−k
A ) and p1 does not belong to

Base(ψ
−(k−1)
A ); as a result (ψ

−(k−1)
A )•(p1), which is a base-point of ψkA, is

also a base-point of ψ−1
A . The set B is thus not empty.

The configurations of the two sets of points {(ψ−(k−1)
A )•(pj) | 1 ≤ j ≤ 9}

and {qj | 1 ≤ j ≤ 9} imply that q1 = (ψ
−(k−1)
A )•(p1).
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Moreover either B = {q1}, or B = {q1, q2}. Indeed (ψ
−(k−1)
A )•(p3) is

proximate to (ψ
−(k−1)
A )•(p2) and (ψ

−(k−1)
A )•(p1) whereas q3 is proximate to

q2 but not to q1.

The point (ψ
−(k−1)
A )•(p3) is thus a point infinitely near to q1 in the

second neighborhood which is maybe infinitely near to q2 but not equal to q3.

Recalling that η is the blow up of q1, q2, . . . , q9 the point (η−1◦ψ−(k−1)
A )•(p3)

corresponds to a point that belongs, as a proper or infinitely near point, to

one of the curves F1, F2 ⊂ S. So (π ◦η−1 ◦ψ−(k−1)
A )•(p3) is a point infinitely

near to p3. For any 1 ≤ i ≤ k the point p3 does not belong to Base(ψ−i
A );

therefore there is no base-point of ψ−i
A which is infinitely near to p3. As

a result (ψ−k
A )•(p3) does not belong to Base(ψ−i

A ) and p3 does not belong

to Base(ψ
−(k+i)
1 ). Moreover (ψ

−(k+i)
A )•(p3) is infinitely near to (ψ−i

A )•(p3).

Choosing i = k we see that (ψ−2k
A )•(p3) is infinitely near to (ψ−k

A )•(p3)

which is infinitely near to p3. Continuing like this we get

∀ i ≥ 1 p3 �∈ Base(ψ−i
A ).

To get the result it remains to show that p3 belongs to Base(ψiA) for any

i ≥ 1. Reversing the order of ψA and ψ−1
A we prove as previously that

∀ i ≥ 1 q3 �∈ Base(ψiA).

Let us now see that

(
∀ i ≥ 1 q3 �∈ Base(ψiA)

)
⇒

(
∀ i ≥ 1 p3 ∈ Base(ψiA)

)
.

For i = 1 it is obvious. Assume i > 1; let us decompose


 ψiA into ψi−1
A ◦ ψA,


 π : S → P
2
C into π12 ◦ π39 where π12 : Y → P

2
C is the blow up of p1, p2

and π39 : S → Y is the blow up of p3, p4, . . . , p9,


 η : S → P
2
C into η12 ◦ η39 where η12 : Z → P

2
C is the blow up of q1, q2

and η39 : S → Z is the blow up of q3, q4, . . . , q9.

Note that η39 contracts F9, F8, . . . , F3 onto the point Z � q3 �∈ Base(ψi−1
A ◦

η12). Consider the system of conics of P
2
C passing through p1, p2 and p3.

Denote by Λ its lift on Y ; it is a system of smooth curves passing through
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q3 with movable tangents and dim Λ = 2. The strict transform of Λ on

S is a system of curves intersecting E3 at a general movable point. The

map η39 contracts the curves Lx, E2, E3, E4, E5, E6, E7. As the curve

E3 is contracted and is not the last one, the image of the system by η39

passes through q3 with a fixed tangent corresponding to the point q4. Since

q3 �∈ Base(ψi−1
A ◦ η12) the image of Λ ⊂ Y by ψi−1

A ◦ η ◦ (π39)
−1 has a

fixed tangent at the point (ψi−1
A ◦ η12)(q3). As a consequence p3 belongs to

Base(ψi−1
A ◦ η ◦ (π39)

−1) and thus to Base(ψi−1
A ◦ η ◦ (π39)

−1 ◦ (π12)
−1

︸ ︷︷ ︸
ψi
A

).
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