On Regularizable Birational Maps

By Julie DÉsERTI*

Abstract

Bedford asked if there exists a birational self map f of the complex projective plane such that for any automorphism A of the complex projective plane $A \circ f$ is not conjugate to an automorphism. In this article we give such an f of degree 5 .

1. Introduction

Let us consider $\operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)$ the group of all birational self maps of $\mathbb{P}_{\mathbb{C}}^{k}$, also called the k-dimensional Cremona group. A birational map $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)$ is regularizable if there there exist a smooth projective variety V and a birational map $g: V \rightarrow \mathbb{P}_{\mathbb{C}}^{k}$ such that $g^{-1} \circ f \circ g$ is an automorphism of V. For instance any $f \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)=\operatorname{PGL}(k+1, \mathbb{C})$ is regularizable but any $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ such that $\left(\operatorname{deg} f^{n}\right)_{n}$ grows linearly is not regularizable ([6]). To any element f of $\operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)$ we associate the set $\operatorname{Reg}(f)$ defined by

$$
\operatorname{Reg}(f):=\left\{A \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{k}\right) \mid A \circ f \text { is regularizable }\right\}
$$

On the one hand Dolgachev asked ${ }^{1}$ whether there exists a birational self map of $\mathbb{P}_{\mathbb{C}}^{k}$ of degree >1 such that $\operatorname{Reg}(f)=\operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)$. In [4] we give a negative answer to this question; more precisely we prove:

THEOREM 1.1 ([4]). Let \mathbb{k} be an uncountable, algebraically closed field. Let f be a birational self map of $\mathbb{P}_{\mathbb{k}}^{m}$ of degree $d \geq 2$. The set of automorphisms A of $\mathbb{P}_{\mathbb{k}}^{m}$ such that $\operatorname{deg}\left((A \circ f)^{n}\right) \neq(\operatorname{deg}(A \circ f))^{n}$ for some $n>0$ is a countable union of proper Zariski closed subsets of $\mathrm{PGL}(m+1, \mathbb{k})$.

[^0]Let \mathbb{k} be a field of characteristic zero. Let f be a birational transformation of \mathbb{P}^{m} which is defined over the field \mathbb{k}, i.e. the formulas defining f have coefficients in \mathbb{k}. Then, there exists an element A of $\operatorname{PGL}(m+1, \mathbb{k})$ such that $\operatorname{deg}\left((A \circ f)^{n}\right)=\operatorname{deg}(f)^{n}$ for all $n \geq 1$.

On the other hand Bedford asked ${ }^{2}$: does there exist a birational map f of $\mathbb{P}_{\mathbb{C}}^{k}$ such that $\operatorname{Reg}(f)=\emptyset$? We will focus on the case $k=2$. According to $[1,5]$ if $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ and $\operatorname{deg} f=2$, then $\operatorname{Reg}(f) \neq \emptyset$. Furthermore Blanc proves that the set

$$
\left\{f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right) \mid \operatorname{deg} f=3, \operatorname{Reg}(f) \neq \emptyset, \lim _{n \rightarrow+\infty}\left(\operatorname{deg}\left(f^{n}\right)\right)^{1 / n}>1\right\}
$$

is dense in $\left\{f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right) \mid \operatorname{deg} f=3\right\}$ and that its complement has codimension 1 (see [2]). Blanc also gives a positive answer to Bedford question in dimension 2: if $\chi \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ is given by

$$
\chi:(x: y: z) \rightarrow\left(x z^{5}+\left(y z^{2}+x^{3}\right)^{2}: y z^{5}+x^{3} z^{3}: z^{6}\right)
$$

then $\operatorname{Reg}(\chi)=\emptyset$. Note that $\chi=\left(x+y^{2}, y\right) \circ\left(x, y+x^{3}\right)$ in the affine chart $z=1$. Indeed Blanc example can be generalized as follows: the birational map of degree $n p$ given in the affine chart $z=1$ by

$$
\chi_{n, p}=\left(x+y^{n}, y\right) \circ\left(x, y+x^{p}\right)=\left(x+\left(y+x^{p}\right)^{n}, y+x^{p}\right)
$$

satisfies $\operatorname{Reg}\left(\chi_{n, p}\right)=\emptyset$. Finally Blanc asked ([2, Question 1.6]): does there exists $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ such that $\operatorname{deg} f<6$ and $\operatorname{Reg}(f)=\emptyset$? In this article we give a positive answer:

THEOREM A. If ψ is the birational self map of $\mathbb{P}_{\mathbb{C}}^{2}$ given by

$$
\psi:(x: y: z) \rightarrow\left(x^{2} y z^{2}-z^{5}+x^{5}: x^{2}\left(x^{2} y-z^{3}\right): x z\left(x^{2} y-z^{3}\right)\right)
$$

then $\operatorname{Reg}(\psi)=\emptyset$.
Acknowledgements. I would like to thank Serge Cantat for many interesting discussions. I am also grateful to the referee who has led me to considerably improve the drafting of the article.

[^1]
2. Proof of Theorem A

Let S be a smooth projective surface. Let $\phi: S \rightarrow S$ be a birational map. This map admits a resolution

where $\pi_{1}: Z \rightarrow S$ and $\pi_{2}: Z \rightarrow S$ are finite sequences of blow-ups. The resolution is minimal if and only if no (-1)-curve of Z is contracted by both π_{1} and π_{2}. Assume ϕ is minimal; the base-points $\operatorname{Base}(\phi)$ of ϕ are the points blown-up by π_{1}, which can be points of S or infinitely near points. Finally we denote by $\operatorname{Exc}(\phi)$ the set of curves contracted by ϕ.

Denote by $\mathfrak{b}(\phi)$ the number of base-points of ϕ; note that $\mathfrak{b}(\phi)$ is equal to the difference of the ranks of $\operatorname{Pic}(Z)$ and $\operatorname{Pic}(S)$ and thus equal to $\mathfrak{b}\left(\phi^{-1}\right)$. Let us introduce the dynamical number of the base-points of ϕ

$$
\mu(\phi)=\lim _{k \rightarrow+\infty} \frac{\mathfrak{b}\left(\phi^{k}\right)}{k}
$$

Since $\mathfrak{b}(\phi \circ \varphi) \leq \mathfrak{b}(\phi)+\mathfrak{b}(\varphi)$ for any birational self map φ of $S, \mu(\phi)$ is a non-negative real number. As $\mathfrak{b}(\phi)=\mathfrak{b}\left(\phi^{-1}\right)$ one gets $\mu\left(\phi^{k}\right)=|k \mu(\phi)|$ for any $k \in \mathbb{Z}$. Furthermore if Z is a smooth projective surface and $\varphi: S \rightarrow Z$ a birational map, then for all $n \in \mathbb{Z}$

$$
-2 \mathfrak{b}(\varphi)+\mathfrak{b}\left(\phi^{n}\right) \leq \mathfrak{b}\left(\varphi \circ \phi^{n} \circ \varphi^{-1}\right) \leq 2 \mathfrak{b}(\varphi)+\mathfrak{b}\left(\phi^{n}\right)
$$

hence $\mu(\phi)=\mu\left(\varphi \circ \phi \circ \varphi^{-1}\right)$. One can thus state the following result:
Lemma 2.1 ([3]). The dynamical number of base-points is an invariant of conjugation. In particular if ϕ is a regularizable birational self map of a smooth projective surface, then $\mu(\phi)=0$.

A base-point p of ϕ is a persistent base-point if there exists an integer N such that for any $k \geq N$

$$
\diamond p \in \operatorname{Base}\left(\phi^{k}\right)
$$

\diamond and $p \notin \operatorname{Base}\left(\phi^{-k}\right)$.
Let p be a point of S or a point infinitely near S such that $p \notin \operatorname{Base}(\phi)$. Consider a minimal resolution of ϕ

Because p is not a base-point of ϕ it corresponds via π_{1} to a point of Z or infinitely near; using π_{2} we view this point on S again maybe infinitely near and denote it $\phi^{\bullet}(p)$. For instance if $S=\mathbb{P}_{\mathbb{C}}^{2}, p=(1: 0: 0)$ and f is the birational self map of $\mathbb{P}_{\mathbb{C}}^{2}$ given by

$$
\left(z_{0}: z_{1}: z_{2}\right) \longrightarrow\left(z_{1} z_{2}+z_{0}^{2}: z_{0} z_{2}: z_{2}^{2}\right)
$$

the point $f^{\bullet}(p)$ is not equal to $p=f(p)$ but is infinitely near to it. Note that if φ is a birational self map of S and p is a point of S such that $p \notin \operatorname{Base}(\phi), \phi(p) \notin \operatorname{Base}(\varphi)$, then $(\varphi \circ \phi)^{\bullet}(p)=\varphi^{\bullet}\left(\phi^{\bullet}(p)\right)$. One can put an equivalence relation on the set of points of S or infinitely near S : the point p is equivalent to the point q if there exists an integer k such that $\left(\phi^{k}\right)^{\bullet}(p)=q$; in particular $p \notin \operatorname{Base}\left(\phi^{k}\right)$ and $q \notin \operatorname{Base}\left(\phi^{-k}\right)$. Remark that the equivalence class is the generalization of set of orbits for birational maps.

Let us give the relationship between the dynamical number of basepoints and the equivalence classes of persistent base-points:

Proposition 2.2 ([3]). Let S be a smooth projective surface. Let ϕ be a birational self map of S.

Then $\mu(\phi)$ coincides with the number of equivalence classes of persistent base-points of ϕ. In particular $\mu(\phi)$ is an integer.

This interpretation of the dynamical number of base-points allows to prove the following result that gives a characterization of regularizable birational maps:

THEOREM 2.3 ([3]). Let ϕ be a birational self map of a smooth projective surface. Then ϕ is regularizable if and only if $\mu(\phi)=0$.

2.1. Base-points of ψ

The birational map

$$
\psi:(x: y: z) \longrightarrow\left(x^{2} y z^{2}-z^{5}+x^{5}: x^{2}\left(x^{2} y-z^{3}\right): x z\left(x^{2} y-z^{3}\right)\right)
$$

has only one base-point in $\mathbb{P}_{\mathbb{C}}^{2}$, namely $p_{1}=(0: 1: 0)$, and all its base-points are in tower that is: the nine base-points of ψ that we denote p_{1}, p_{2}, \ldots, p_{9} are such that p_{i} is infinitely near to p_{i-1} for $2 \leq i \leq 9$. We denote by $\pi: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ the blow up of the 9 base-points, and still write L_{x} (resp. \mathcal{C}) the strict transform of the line $L_{x} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of equation $x=0$ (resp. the curve of equation $x^{2} y-z^{3}=0$) which is contracted by ψ. We denote by $E_{i} \subset S$ the strict transform of the curve obtained by blowing up p_{i}. The configuration of the curves $E_{1}, E_{2}, \ldots, E_{9}, L_{x}$ and \mathcal{C} is

Fig. 1.

Two curves are connected by an edge if their intersection is positive. Let us write $\psi_{A}=A \circ \psi$ where A is an automorphism of $\mathbb{P}_{\mathbb{C}}^{2}$. Because π is the blow-up of the base-points of ψ, which are also the base-points of ψ_{A}, the map $\eta=\psi_{A} \circ \pi$ is a birational morphism $S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ which is the blow-up of the base-points of ψ_{A}^{-1}. In fact this diagram

is the minimal resolution of ψ_{A}.
The morphism η contracts L_{x} and \mathcal{C} as well as the union of seven other irreducible curves which are among the curves $E_{1}, E_{2}, \ldots, E_{9}$. The configuration of Figure 1 shows that η contracts the curves $L_{x}, E_{2}, E_{3}, E_{4}, E_{5}$, $E_{6}, E_{7}, E_{8}, \mathcal{C}$ following this order.

We can see $\eta: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ as a sequence of nine blow-ups in the same way as we did for π. We denote by $q_{1}, q_{2}, \ldots, q_{9}$ the base-points of ψ_{A}^{-1} (or equivalently the points blown up by η) so that $q_{1} \in \mathbb{P}_{\mathbb{C}}^{2}$ and q_{i} is infinitely near to q_{i-1} for $2 \leq i \leq 9$. We denote by $D \subset \mathbb{P}_{\mathbb{C}}^{2}\left(\right.$ resp. $\left.\mathcal{C}^{\prime} \subset \mathbb{P}_{\mathbb{C}}^{2}\right)$ the line contracted by ψ_{A}^{-1} which is the image by A of the line $y=0$ (resp. of the conic $z^{2}-x y=0$). We denote by $F_{i} \subset S$ the strict transform of the curve obtained by blowing up q_{i}. Because of the order of the curves contracted by η we get equalities between $L_{x}, \mathcal{C}, E_{1}, E_{2}, \ldots, E_{9}$ and $D, \mathcal{C}^{\prime}, F_{1}, F_{2}, \ldots$, F_{9} as follows

Fig. 2.

In particular we see that the configuration of the points $q_{1}, q_{2}, \ldots, q_{9}$ is not the same as that of the points $p_{1}, p_{2}, \ldots, p_{9}$. Saying that a point m is proximate to a point m^{\prime} if m is infinitely near to m^{\prime} and that it belongs to the strict transform of the curve obtained by blowing up m^{\prime} the configurations of the points p_{i} and q_{i} are

Fig. 3. An arrow corresponds to the relation "is proximate to".

We will prove that for any integer $i>0$ the point p_{3} belongs to $\operatorname{Base}\left(\psi_{A}^{i}\right)$ and does not belong to $\operatorname{Base}\left(\psi_{A}^{-i}\right)$. It implies that $\mu\left(\psi_{A}\right)>0$ and that ψ_{A}
is not regularizable.
Denote by k the lowest positive integer such that p_{1} belongs to $\operatorname{Base}\left(\psi_{A}^{-k}\right)$. If no such integer exists we write $k=\infty$. For any $1 \leq i<k$ the point p_{1} does not belong to $\operatorname{Base}\left(\psi_{A}^{-i}\right)$ so ψ_{A} and ψ_{A}^{-1} have no common basepoint. As a consequence the set of base-points of the map $\psi_{A}^{i+1}=\psi_{A} \circ \psi_{A}^{i}$ is the union of the base-points of ψ_{A}^{i} and of the points $\left(\psi_{A}^{-i}\right)^{\bullet}\left(p_{j}\right)$ for $1 \leq j \leq 9$. Since the map ψ_{A}^{-i} is defined at p_{1} the point $\left(\psi_{A}^{-i}\right)^{\bullet}\left(p_{j}\right)$ is proximate to the point $\left(\psi_{A}^{-i}\right)^{\bullet}\left(p_{k}\right)$ if and only if p_{j} is proximate to p_{k}. Proceeding by induction on i we get the following assertions:
$\diamond \operatorname{Base}\left(\psi_{A}^{i}\right)=\left\{\left(\psi_{A}^{-m}\right)^{\bullet}\left(p_{j}\right) \mid 1 \leq j \leq 9,0 \leq m \leq i-1\right\}$ for any $1 \leq i \leq k ;$
\diamond for any $0 \leq-\ell \leq k$ the configuration of the points $\left\{\left(\psi_{A}^{\ell}\right)^{\bullet}\left(p_{j}\right) \mid 1 \leq\right.$ $j \leq 9\}$ is given by

$$
\begin{gathered}
\left(\psi_{A}^{\ell} \cdot \bullet\left(p_{1}\right) \longleftarrow\left(\psi_{A}^{\ell}\right)^{\bullet}\left(p_{2}\right) \longleftarrow\left(\psi_{A}^{\ell}\right)^{\bullet}\left(p_{3}\right) \longleftarrow\left(\psi_{A}^{\ell}\right) \cdot\left(p_{4}\right) \longleftarrow\left(\psi_{A}^{\ell}\right)^{\bullet}\left(p_{5}\right)\right. \\
\longleftarrow\left(\psi_{A}^{\ell}\right)^{\bullet}\left(p_{6}\right) \longleftarrow\left(\psi_{A}^{\ell}\right)^{\bullet}\left(p_{7}\right) \longleftarrow\left(\psi_{A}^{\ell}\right) \cdot\left(p_{8}\right) \longleftarrow\left(\psi_{A}^{\ell}\right)^{\bullet}\left(p_{9}\right)
\end{gathered}
$$

Hence the point p_{3} belongs to $\operatorname{Base}\left(\psi_{A}^{i}\right)$ for any $1 \leq i \leq k$.
If $k=\infty$, then p_{3} belongs to $\operatorname{Base}\left(\psi_{A}^{i}\right)$ for any $i>0$ and by definition of k the point p_{1} does not belong to $\operatorname{Base}\left(\psi_{A}^{-i}\right)$ for any $i>0$, and so neither p_{3}. We can thus assume that k is a positive integer.

Assume that q_{1} belongs to $\operatorname{Base}\left(\psi_{A}^{i}\right)$ for some $1 \leq i \leq k-1$. Then q_{1} is equal to $\left(\psi_{A}^{-m}\right)^{\bullet}\left(p_{j}\right)$ for some $0 \leq m \leq k-2$ and $1 \leq j \leq 9$. This implies that p_{j} belongs to $\operatorname{Base}\left(\psi_{A}^{m+1}\right)$ which is impossible because $m+1 \leq k-1$. Hence q_{1} does not belong to $\operatorname{Base}\left(\psi_{A}^{i}\right)$ for any $1 \leq i \leq k-1$.

We thus see that ψ_{A}^{-1} has no common base-point with ψ_{A}^{i} for $1 \leq i \leq$ $k-1$. In particular if B denotes $\operatorname{Base}\left(\psi_{A}^{-1}\right) \cap \operatorname{Base}\left(\psi_{A}^{k}\right)$, then

$$
B=\left\{\left(\psi_{A}^{-(k-1)}\right)^{\bullet}\left(p_{j}\right) \mid 1 \leq j \leq 9\right\} \cap\left\{q_{j} \mid 1 \leq j \leq 9\right\}
$$

Let us remark that p_{1} belongs to $\operatorname{Base}\left(\psi_{A}^{-k}\right)$ and p_{1} does not belong to $\operatorname{Base}\left(\psi_{A}^{-(k-1)}\right)$; as a result $\left(\psi_{A}^{-(k-1)}\right)^{\bullet}\left(p_{1}\right)$, which is a base-point of ψ_{A}^{k}, is also a base-point of ψ_{A}^{-1}. The set B is thus not empty.

The configurations of the two sets of points $\left\{\left(\psi_{A}^{-(k-1)}\right)^{\bullet}\left(p_{j}\right) \mid 1 \leq j \leq 9\right\}$ and $\left\{q_{j} \mid 1 \leq j \leq 9\right\}$ imply that $q_{1}=\left(\psi_{A}^{-(k-1)}\right)^{\bullet}\left(p_{1}\right)$.

Moreover either $B=\left\{q_{1}\right\}$, or $B=\left\{q_{1}, q_{2}\right\}$. Indeed $\left(\psi_{A}^{-(k-1)}\right)^{\bullet}\left(p_{3}\right)$ is proximate to $\left(\psi_{A}^{-(k-1)}\right)^{\bullet}\left(p_{2}\right)$ and $\left(\psi_{A}^{-(k-1)}\right)^{\bullet}\left(p_{1}\right)$ whereas q_{3} is proximate to q_{2} but not to q_{1}.

The point $\left(\psi_{A}^{-(k-1)}\right)^{\bullet}\left(p_{3}\right)$ is thus a point infinitely near to q_{1} in the second neighborhood which is maybe infinitely near to q_{2} but not equal to q_{3}. Recalling that η is the blow up of $q_{1}, q_{2}, \ldots, q_{9}$ the point $\left(\eta^{-1} \circ \psi_{A}^{-(k-1)}\right)^{\bullet}\left(p_{3}\right)$ corresponds to a point that belongs, as a proper or infinitely near point, to one of the curves $F_{1}, F_{2} \subset S$. So $\left(\pi \circ \eta^{-1} \circ \psi_{A}^{-(k-1)}\right)^{\bullet}\left(p_{3}\right)$ is a point infinitely near to p_{3}. For any $1 \leq i \leq k$ the point p_{3} does not belong to $\operatorname{Base}\left(\psi_{A}^{-i}\right)$; therefore there is no base-point of ψ_{A}^{-i} which is infinitely near to p_{3}. As a result $\left(\psi_{A}^{-k}\right)^{\bullet}\left(p_{3}\right)$ does not belong to $\operatorname{Base}\left(\psi_{A}^{-i}\right)$ and p_{3} does not belong to $\operatorname{Base}\left(\psi_{1}^{-(k+i)}\right)$. Moreover $\left(\psi_{A}^{-(k+i)}\right)^{\bullet}\left(p_{3}\right)$ is infinitely near to $\left(\psi_{A}^{-i}\right)^{\bullet}\left(p_{3}\right)$. Choosing $i=k$ we see that $\left(\psi_{A}^{-2 k}\right)^{\bullet}\left(p_{3}\right)$ is infinitely near to $\left(\psi_{A}^{-k}\right)^{\bullet}\left(p_{3}\right)$ which is infinitely near to p_{3}. Continuing like this we get

$$
\forall i \geq 1 \quad p_{3} \notin \operatorname{Base}\left(\psi_{A}^{-i}\right)
$$

To get the result it remains to show that p_{3} belongs to $\operatorname{Base}\left(\psi_{A}^{i}\right)$ for any $i \geq 1$. Reversing the order of ψ_{A} and ψ_{A}^{-1} we prove as previously that

$$
\forall i \geq 1 \quad q_{3} \notin \operatorname{Base}\left(\psi_{A}^{i}\right)
$$

Let us now see that

$$
\left(\forall i \geq 1 \quad q_{3} \notin \operatorname{Base}\left(\psi_{A}^{i}\right)\right) \Rightarrow\left(\forall i \geq 1 \quad p_{3} \in \operatorname{Base}\left(\psi_{A}^{i}\right)\right)
$$

For $i=1$ it is obvious. Assume $i>1$; let us decompose
$\diamond \psi_{A}^{i}$ into $\psi_{A}^{i-1} \circ \psi_{A}$,
$\diamond \pi: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ into $\pi_{12} \circ \pi_{39}$ where $\pi_{12}: Y \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ is the blow up of p_{1}, p_{2} and $\pi_{39}: S \rightarrow Y$ is the blow up of $p_{3}, p_{4}, \ldots, p_{9}$,
$\diamond \eta: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ into $\eta_{12} \circ \eta_{39}$ where $\eta_{12}: Z \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ is the blow up of q_{1}, q_{2} and $\eta_{39}: S \rightarrow Z$ is the blow up of $q_{3}, q_{4}, \ldots, q_{9}$.

Note that η_{39} contracts $F_{9}, F_{8}, \ldots, F_{3}$ onto the point $Z \ni q_{3} \notin \operatorname{Base}\left(\psi_{A}^{i-1} \circ\right.$ η_{12}). Consider the system of conics of $\mathbb{P}_{\mathbb{C}}^{2}$ passing through p_{1}, p_{2} and p_{3}. Denote by Λ its lift on Y; it is a system of smooth curves passing through
q_{3} with movable tangents and $\operatorname{dim} \Lambda=2$. The strict transform of Λ on S is a system of curves intersecting E_{3} at a general movable point. The map η_{39} contracts the curves $L_{x}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}, E_{7}$. As the curve E_{3} is contracted and is not the last one, the image of the system by η_{39} passes through q_{3} with a fixed tangent corresponding to the point q_{4}. Since $q_{3} \notin \operatorname{Base}\left(\psi_{A}^{i-1} \circ \eta_{12}\right)$ the image of $\Lambda \subset Y$ by $\psi_{A}^{i-1} \circ \eta \circ\left(\pi_{39}\right)^{-1}$ has a fixed tangent at the point $\left(\psi_{A}^{i-1} \circ \eta_{12}\right)\left(q_{3}\right)$. As a consequence p_{3} belongs to $\operatorname{Base}\left(\psi_{A}^{i-1} \circ \eta \circ\left(\pi_{39}\right)^{-1}\right)$ and thus to $\operatorname{Base}(\underbrace{\psi_{A}^{i-1} \circ \eta \circ\left(\pi_{39}\right)^{-1} \circ\left(\pi_{12}\right)^{-1}}_{\psi_{A}^{i}})$.

References

[1] Bedford, E.and K. Kim, Dynamics of rational surface automorphisms: linear fractional recurrences, J. Geom. Anal. 19(3) (2009), 553-583.
[2] Blanc, J., Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces, Indiana Univ. Math. J. 62(4) (2013), 1143-1164.
[3] Blanc, J. and J. Déserti, Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14(2) (2015), 507-533.
[4] Cantat, S., Déserti, J. and J. Xie, Three chapters on Cremona groups, arXiv:2007.13841.
[5] Diller, J., Cremona transformations, surface automorphisms, and plane cubics, Michigan Math. J. 60(2) (2011), 409-440. With an appendix by Igor Dolgachev.
[6] Diller, J. and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123(6) (2001), 1135-1169.
(Received July 8, 2020)
(Revised February 19, 2021)
Université Côte d'Azur
Laboratoire J.-A. Dieudonné
UMR 7351, Nice, France
E-mail: deserti@math.cnrs.fr

[^0]: *The author was partially supported by the ANR grant Fatou ANR-17-CE40-0002-01 and the ANR grant Foliage ANR-16-CE40-0008-01.

 2010 Mathematics Subject Classification. 14J50, 14E07.
 Key words: Cremona group, birational map, automorphisms of surfaces, regularizable.
 ${ }^{1}$ Summer school "Complex geometry and beyond", june 2016, Toulouse, France.

[^1]: ${ }^{2}$ Private communication, 2010.

