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Superconducting Phase in the BCS Model with
Imaginary Magnetic Field. III.

Non-Vanishing Free Dispersion Relations

By Yohei KASHIMA

Abstract. We analyze a class of the BCS model, whose free dis-
persion relation is non-vanishing, under the influence of imaginary
magnetic field at positive temperature. The magnitude of the nega-
tive coupling constant must be small but is allowed to be independent
of the temperature and the imaginary magnetic field. The infinite-
volume limit of the free energy density is characterized. A spontaneous
symmetry breaking and an off-diagonal long range order are proved to
occur only in high temperatures. This is because the gap equation in
this model has a positive solution only if the temperature is higher
than a critical value. The proof is based on a double-scale integration
of the Grassmann integral formulation. In this scheme we integrate
with the infrared covariance first and with the ultra-violet covariance
afterwards, which is opposite to the previous schemes in [Kashima, Y.,
J. Math. Sci. Univ. Tokyo 28 (2021), 1-179], [Kashima, Y., J. Math.
Sci. Univ. Tokyo 28 (2021), 181-398] or [13], [14] in short. As the other
focus, we study geometric properties of the phase boundaries, which
are periodic copies of a closed curve in the two-dimensional space of
the temperature and the real time variable. Here we adopt the real
time variable in place of the temperature times the imaginary mag-
netic field by considering its relevance within contemporary physics
of dynamical phase transition at positive temperature. As the main
result, we show that for any choice of a non-vanishing free dispersion
relation the representative curve of the phase boundaries has only one
local minimum point, or in other words the phase boundaries do not
oscillate with temperature, if and only if the minimum of the magni-
tude of the free dispersion relation over the maximum is larger than
the critical value v/17 — 12v/2. Overall we use the same notational
conventions as in [13], [14]. So this work is a continuation of these
preceding papers.
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1. Introduction

1.1. Introductory remarks

Since the proposal in 1957 ([2]), the Bardeen-Cooper-Schrieffer (BCS)
model of interacting electrons has been considered as a primal model to
explain superconductivity from a microscopic principle. Apart from the
conventional reduction of its quartic Fermionic interaction to a solvable
quadratic one, we are still unable to make explicit the thermodynamic limit
of the BCS model for full set of physical parameters. It is our longstand-
ing desire to complete the rigorous derivation of the thermodynamics and
acquire fully coherent applications of the BCS model.

It was shown in our previous works [13], [14] that the infinite-volume
limit of the BCS model interacting with imaginary magnetic field can be
rigorously derived. The main difference between these two constructions
lies in properties of the free dispersion relation. In [13] we assumed the
nearest-neighbor hopping and tuned the chemical potential in a way that
the free Fermi surface does not degenerate. On the contrary, in [14] we
considered a class of free dispersion relations which widely cover the ones
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with degenerate but not empty free Fermi surface. Our mission here is
to achieve the same goal for non-vanishing free dispersion relations. We
characterize the infinite-volume limit of the free energy density and the
thermal expectation values of Cooper pair operators. The proof is based
on a multi-scale analysis of the Grassmann integral formulation. As an
illustration, let us summarize the applicability of the main theorems of this
series to the typical free dispersion relation of nearest-neighbor hopping
electron, e(k) = 22?21 coskj — p : R — R, where d (€ N) is the spatial
dimension and p (€ R) is the chemical potential.

e [13, Theorem 1.3] applies to the case that d is arbitrary and || < 2d.
e [14, Theorem 1.3] applies to the case that d € {3,4} and |u| = 2d.

e Theorem 1.3 of the present paper applies to the case that d is arbitrary
and |p| > 2d.

Qualitative properties of the free dispersion relation around its zero points
deeply affect the possible magnitude of interaction in this approach. There-
fore, characteristics of each paper of this series can be explained in terms
of dependency of the allowed magnitude of the coupling constant on the
temperature and the imaginary magnetic field. In [13] the magnitude of the
coupling constant must be smaller than some power of these parameters.
Though the claimed dependency is most complicated in this series, we can
actually choose the parameters so that they obey the necessary constraint
and the gap equation has a positive solution at the same time. In [14] the
magnitude of the coupling constant can be largely independent of the tem-
perature and the imaginary magnetic field if the temperature is lower than
a certain constant. As the result, we were able to prove phase transitions in
arbitrarily small temperatures for a fixed coupling constant. In this paper
the magnitude of negative coupling constant must be small but is indepen-
dent of the temperature and the imaginary magnetic field. It turns out that
the gap equation has a positive solution only if the temperature is higher
than a critical value. Accordingly, the phase transitions characterized by
spontaneous symmetry breaking (SSB) and off-diagonal long range order
(ODLRO) are proved to occur in the high-temperature regions.

The gapped property of the free dispersion relation is one essential factor
to make it possible to analyze the system independently of the temperature
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and the imaginary magnetic field. However, a direct combination of the
non-vanishing free dispersion relation and the same strategy as the core
part of the multi-scale integrations of [13], [14] does not lead to the desired
result. We can see from the constraints on the coupling constant [13, (1.2)],
[14, (1.18)] that the magnitude of the coupling constant must be arbitrarily
small in high temperatures for some choices of the imaginary magnetic field
in our previous constructions. The extra constraint in high temperatures
stems from a determinant bound on the covariance of the last integration
scale, which is tactically manipulated to be independent of (imaginary) time
variables. This constraint remains regardless of the gapped property of the
free dispersion relation as long as we follow the same strategy as in [13],
[14].

Let us explain this issue more by using formulas in a simple way, as it also
shows a novel aspect of the present construction. As usual, let 5 (€ Rxg)
denote the inverse temperature. Take an artificial parameter h € %N and

set L9 )
[07/8)}7/ = {O>E>E7"' 76_ E}a

which is a discrete analogue of the interval [0,3). For a finite set S, which
should be considered as a generalization of the product set of the spatial
lattice points and the orbital index, let C : (S x[0, 3),)? — C denote the full
covariance of the Grassmann Gaussian integral formulation of our system.
The main object to analyze is the Grassmann Gaussian integral

/ @ dyc()

with a quartic Grassmann polynomial V' (1), which is as before a correction
term left after extracting the reference Grassmann polynomial. The full
covariance C' can be decomposed as follows.

1

(1.1) C(Xs,Yt)=e 85 (Co(Xs,YE) + Ci(Xs,YH)),
(VX,Y €S, s,t€[0,0)n),

where the covariance Cp : (S x [0, 3),)? — C is in particular independent of
the time variables.

C()(XS,Yt) = Co(XO,YO), (VX,Y S S, S,t € [O,ﬁ)h)
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In essence the Matsubara frequency is fixed to be 7/ inside Cj and C} sums
over all the Matsubara frequencies but /3. Due to the gapped property of
the free dispersion relation and the partition of the Matsubara frequencies,
the covariances Cy, C satisfy the following bound properties.

| det(Co(Xiss, Yit;))1<ij<n| < Const" 87",
| det(C1 (X84, Yitj))1<ij<n| < Const’s
(\V/TL €N, Xj,Y}‘ es, 8j,t; € [O,ﬁ)h (] =1, - ,n)),

sup (l Z (|C.(Xs,Yt)| + \Ca(Yt,Xs)])> < Const

(Y,t)eSx[0,8) h(x,s)eSx[Oﬂ)h
(Va S {07 1})7

where const (€ Rsg) is independent of 5 and the imaginary magnetic field,
though it may depend on other parameters such as the spatial dimension
or the minimum value of the magnitude of the free dispersion relation. By
(1.1) and a gauge invariance we can transform as follows.

/ Puc // @D ey (4°) ducy, (1)
://6v ) dpe, (0 ) dpaoy (1°).

At this point we have two ways to proceed, either integrating with Cy first or
with C first. Integrating with C first is essentially the same strategy as in
the previous papers and the determinant bound on Cj remains to affect the
possible magnitude of the coupling constant at the end. This is the reason
why the coupling constant needed to be small even in high temperatures
n [13], [14]. We can see from the §-dependent determinant bound on Cj
claimed above that this is not the way to achieve our goal. Interestingly
we find that the determinant bound on Cjy does not affect the magnitude of
the coupling constant at all if we integrate with Cj first and make use of a
vanishing property of the kernel function of V'(¢). Since the other bounds
on Cy, C1 listed above are independent of 3 and the imaginary magnetic
field, this way leads to the goal.

We can apply many of the general estimates established in [13], [14]
and the Grassmann Gaussian integral formulation stated in [14] without
any modification. At the same time we need some modified versions of the
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previous general estimates in order to implement the present double-scale
integration scheme. However, the modification can be done in a systematic
way so that it does not require a widespread reconstruction. Therefore, as
far as it concerns the general estimation of the Grassmann integration, the
present construction should not be longer than the previous ones. More-
over, the conclusive part of the derivation of the infinite-volume limit after
building the general integration regime is essentially parallel to that of the
previous papers. Not to disappoint the readers later, we should clearly men-
tion at this stage that we will only explain which lemmas are necessary to
complete the proof of each claim of the theorem in the final part of our
construction (Subsection 3.4). On the other hand, estimation of the real
covariance needs to be carefully performed so that it does not yield any ex-
tra dependency on the temperature and the imaginary magnetic field in the
resulting theory. In particular the determinant bound on the ultra-violet
covariance C] requires a complicated application of the useful general deter-
minant bound by de Siqueira Pedra and Salmhofer [20, Theorem 1.3]. The
parts making up the proof of the derivation of the infinite-volume limit are
presented in the second half of the paper, namely Section 3.

As yet we cannot prove a superconducting order characterized by SSB
and ODLRO by this method in the BCS model without imaginary magnetic
field. In this approach we fail to take the coupling constant large enough to
ensure the solvability of the gap equation without the imaginary magnetic
field. The present class of free dispersion relations includes the non-zero
constant ones, with which the Hamiltonian is called the strong coupling
limit of the BCS model. We should remark that a totally different method
based on characterization of equilibrium state on C*-algebra applies to the
strong coupling limit of the BCS model and proves SSB and ODLRO ([4]).
However, the method is not known to be applicable to the BCS model with
imaginary magnetic field, which is not hermitian, at present.

In the first half of the paper we analyze the free energy density, which
is made explicit by the theorem proved in the second half of the paper, as
a real-valued function of the temperature and the real time variable. Here
let us introduce the free energy density at a formal level for illustrative
purposes. The official definition will be given in the next subsection. Let
H, S, denote the BCS model Hamiltonian and the z-component of the spin
operator respectively. For § € R we consider the operator H + i0S, as the
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BCS model interacting with the imaginary magnetic field. The infinite-
volume limit of the free energy density is the following.

1 .
: - —B(H+i6S:)
A < gra os(Tre 7 )> :

LeN

where the parameter L (€ N) controls the size of a d-dimensional spatial
lattice. By admitting the explicit form of the limit we study regularity of
the function

1 .
(1.2) (8.1) > Jim <_W 1og(TreﬁH+”Sz)) ‘Reg xR —R
LeN

and geometric properties of the subset of R~y X R where this function loses
analyticity. The reason why we study the free energy density as a function
of (f3,t) rather than (3, 0) is that functions of the form

Tr 675H+it52

. 1
are becoming relevant in contemporary physics of dynamical phase transi-
tion (DPT) at positive temperature ([3], [8], [1], [19], [18] and so on). In
this context the function (1.3) is seen as a finite-temperature version of the

infinite-volume limit of the overlap amplitude
lim - log (4o, ¢ o)
L1—>n;o d 0g (Yo, € 0/
where 19 is a ground state of H. Since the function
. 1 —BH
BHLIergoﬁlog(Tre ):Rsop— R

is real analytic in the weak coupling regime of this paper (see Proposition
2.5 (1)), the regularity of the function (1.3) is equivalent to that of (1.2). In
fact the concept of dynamical quantum phase transition at zero temperature
has become a notable topic of physics ([9], [7], [22]) and it recently reached
a state of experimental confirmation (see e.g. [10], [21], [6]). As the term
indicates, non-analyticity with the real time variable ¢ defines an occur-
rence of DPT both at zero temperature and at positive temperature. DPTs
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at positive temperature have been shown in quantum many-body systems
which can be mapped to Fermionic systems governed by quadratic Hamil-
tonians (see e.g. [3], [8]). To the author’s knowledge, no rigorous result of
DPT in the BCS model at positive temperature has been reported. In this
situation we believe that we should push forward mathematical analysis of
the function (1.2) for possible future physical applications.

It is advantageous that with the present class of free dispersion relations
the characterization of the function (1.2) is justified for any (3,t) € Rso xR
as long as the coupling constant is fixed to be small. The contents of the
first half of this paper, which is Section 2 plus Appendices A, B, are essen-
tially independent of the second half. The readers who want to complete the
proof of the characterization of the function (1.2) can read the second half
first. We prove that the function is C'-class in R~ x R and the second order
derivatives have jump discontinuity across a one-dimensional submanifold
of Ryg x R which we call phase boundaries. Then we focus on describ-
ing geometric properties of the phase boundaries. We find that the phase
boundaries consist of periodic copies of one closed curve (or more precisely
periodic copies of the restriction of one closed curve in R? to R-g x R) and
the representative curve is axially symmetric with respect to the horizontal
line {(8,27) | B € Rso}. Therefore, letting 5. denote the critical inverse
temperature, the problem is reduced to an analysis of graph of a function
on (0, 3.), which is the lower half of the representative curve. In particular
we focus on determining when the function has only one local minimum
point in (0, 3.), or in other words, when the representative curve of the
phase boundaries does not oscillate with temperature. It will turn out that
answers to this question can be expressed in terms of the ratio of the max-
imum and the minimum of the magnitude of the free dispersion relation.
The results are summarized in Theorem 2.19 as the second main result of
this paper.

Overall we keep using the same notational conventions as in [13], [14].
We will often refer the readers to related parts of these papers for the mean-
ing of notations rather than restating them. We provide a supplementary
short list of notations which only contains new notations at the end of the
paper. The readers should refer to the comprehensive lists presented at the
end of [13], [14] for the other notations.

This paper is organized as follows. In the next subsection we state the
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theorem concerning the infinite-volume limit of the BCS model with imag-
inary magnetic field at positive temperature and outline the main results
concerning the analysis of the free energy density and the phase bound-
aries. In Section 2 by admitting the explicit form of the free energy density
we study its regularity and geometric properties of the phase boundaries.
Moreover we analyze the phase boundaries for a couple of specific examples
of the free Hamiltonian. In Section 3 we prove the theorem concerning the
infinite-volume limit in the constructive manner. In Appendix A we prepare
a lemma which is used to study the phase boundaries in Section 2. In Ap-
pendix B we give a formula of a definite integral which we need to analyze
a specific model in Sub-subsection 2.3.2.

1.2. The main results

First let us state our main results on the derivation of the infinite-volume
limit of the free energy density and the thermal expectation values. Let d
(€ N) denote the spatial dimension. Let {v; };l:l, {v; };;:1 denote a basis of
R?, its dual basis respectively. They satisfy that

<VZ7‘A’]> - 6i,j7 (VZ,] € {17 ’ 7d})7

where (-,-) is the canonical inner product of R?. With L € N the spatial
lattice I' and the momentum lattice I'* are defined by

d
r.— ijvj)mje{o,L--.,L—u G=1,-,d) 5,
j=1

d 2r A4rw 2w
= ;mm)mje{o,f,f,---,%—f} (j=1,---,d)

To formulate the infinite-volume limit of our interest, we use the infinite
sets I'oo, I's, defined by

d
Ny := ijVj‘ijZ(jzl,'-',d) ,

d
= 4> ke,
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Let us define a set of matrix-valued functions, which are one-particle
Hamiltonians in momentum space. Using a function belonging to the set, we
will define the free part of our Hamiltonian. For b € N and €,,in, €maz € Rsg
With emin < emar We define the subset &(emin, €maz) of Map(R?, Mat (b, C))

as follows. E belongs to £(emin, €maz) if and only if

E € C*°(R¢,Mat(b, C)),
(1.4) E(k) = E(k)*, (VkeR%),
E(k +27v;) = E(k), (VkeR? je{l,---,d}),
E(k) = E(-k), (vk € R?),
inf inf |E(k)ullce = emin(>0),

keR?  ueC®
with |Jullp=1

Sup ||E( )||b><b = €maz-

keR
We remark that for n € N Mat(n,C) denotes the set of n x n complex
matrices, ||-||nxn denotes the operator norm on Mat(n,C) and ||-||cr denotes
the canonical norm of C™. Set B :={1,2,--- ,b}. For E € E(emin, €maz) We
define the free Hamiltonian Hg as follows.

UESE D DI DD SE s L TR T

(p,x),(n,y)EBXT oce{1,]} kel*

where ¥,xs (¥5x,) denotes the Fermionic annihilation (creation) operator
for (p,x,0) € BxT x{1,|}. It follows from (1.4) that Hy is a self-adjoint
operator on the Fermionic Fock space Fy(L*(B x T' x {T1,]})). With the
negative coupling constant U (€ R.q) the interacting part V is defined by

U * *
V.= ﬁ Z wprwpxleYlwWYT'

(0:%),(n,y)EBXT

The whole Hamiltonian H is then defined by H := Hp+V. As a common pur-
pose of this series, we study the infinite-volume limit of the many-electron
system governed by H +i6S, (6 € R), where S, is the z-component of the
spin operator defined by

1
S: = B Z (T/’;de’pXT - ¢;x1¢pxw-

(p,x)eBxT
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To describe SSB, we need the symmetry breaking external field operator F
defined by

F:= Y Z (¢ZXT¢;XL + wpxlwpxﬂa (7 € R)

(p,x)eBXT

One essential difference from the previous works [13], [14] is the solv-
ability of the gap equation. Let us formulate the gap equation and see
when it is solvable. Take E € E£(emin,€mas) and define the function gg :
Ryog xR xR — R by

ge(z,t,2)
- 2
U]

sinh(z+/FE(k)? + 22) )

D /p;o i <(cos(t/2) + cosh(z/EK)Z + 22))/E(K)? + 22

where
Dy = | det(Vl, s 7{,d)’71(2ﬂ_>7d‘

As in [14], throughout the paper we admit that for any function f : R\{0} —
C and E € E(emin, €maz) the map f(E())) : R* — Mat (b, C) is defined via
the spectral decomposition of E(k) for each k € R?. We should remark that
because of the property (1.6), f(E(k)) is well-defined for any k € R? even
if f(x) is not defined at x = 0. Our gap equation is to find A € R>( such
that

The following lemma can be proved by using the fact that for any e € [—1,1]
the function

sinh x
1.7 — (0 R
(L.7) x'_}(a—i-coshx)x (0,00) =
is strictly monotone decreasing in the same way as in the proof of [14,
Lemma 1.2].

LEMMA 1.1. The following statements hold for any (3,0) € Rsg x R.
The equation gg(5,00,A) = 0 has a solution A in [0,00) if and only if
9 (8, 56,0) > 0. Moreover, if a solution exists in [0,00), it is unique.
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The next lemma tells us that if the interaction in the present model
is weak, there is a critical temperature such that the gap equation has a
positive solution if and only if the temperature is higher than the critical
temperature.

LEMMA 1.2. Assume that

2emin

U
Ul <=

Then, there uniquely exists

2 b
B € (O, tanh™! <ﬂ>]
Emin 2€min

such that the following statements hold.

(i) For any B € Rso gp(B,7,0) <0.

(i) For any B € (0,0:) ge(B,2m,0) > 0 and thus there exists € R such
that the gap equation gg(5,360,A) =0 has a solution in (0, 00).

(iii) gr(Be,2m,0) = 0 and thus there exists 8 € R such that gg(0e, 5.0, A)
=0 has the solution A = 0.

(iv) For any B € (B¢, 00) gr(f,2m,0) < 0 and thus for any 6 € R the gap
equation gg(53, 0, A) =0 has no solution in [0,00).

ProoFr. By the assumption, for any 5 € Rsg

g5(3.7.0) =~ + Ds | P

< 0.
U]

E(k) a m * Emin

dk Tr <

*
oo

Thus (i) holds.
Observe that the function 8 +— gg(8,27,0) : Ryy — R is monotone
decreasing,

li 21, 0) =
ﬁ%gE(ﬁ, m,0) = oo,

2

lim gp(8,27,0 :——+D/
ﬁ/oogE(ﬂ ) 7] a |

1 2 b
dk Tt | s | < = 4+ —— < 0.
(!E(k)\> Ul emin

*
oo
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Thus, there uniquely exists 8. € Ry such that

gE(ﬁv2ﬂ'a0) > 07 (Vﬂ € (Ovﬁc))a
gE(/Bcv 27T7 O) = 07
ge(B,27,0) <0, (V6 € (B, )).

Moreover,

2 b
0= e, 2m,0) < — ’
95(Be, 2m,0) U] + tanh(Bcemin/2)emin

2 blU
B, < —— tanh™* <L> )
Emin 2emin

The claims (ii), (iii), (iv) follow from these properties. [J

which implies that

To shorten formulas, let us introduce the parameterized matrix-valued
functions G, . : R — Mat(b,C) ((x,y,2) € Rsg x R x R) by

sinh(z+/FE(k)? + 22)
(cos(xy/2) + cosh(z+/E(k)? + 22))\/E(k)2 + 22

Gzy (k) =

Also, for E € E(emin, €maz) let us set

d

o
(1.8) Cp = sup  sup —aE(k) Iqa .
keR? m,; €NU{0} jabe Bk;jmj b j=1M <d+2
(j=1,--,d) bxb

For any Z;l:l m;v; € I's there uniquely exists Z?:l mv; € I' such that
m; = m} (mod L) for any j € {1,---,d}. This rule defines the map ry, :
[oo — I For any (p,x,0) € B x T'o x {T,]} we identify ¢7,;, ¥pxo with
w;m(x)a, Yprr(x)o Tespectively. For clarity of the statements of the main
results let us recall a few more notational rules. For a function f : 'y X
I'no — C and a € C we write lim”x,yHRdﬂoo f(x,y) = a if for any € € R+
there exists 6 € Rsq such that for any x,y € I's satisfying ||x — y||lga > 6,
|f(x,y) —a|] < e. Here || - ||ga denotes the Euclidean norm of R¢.
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THEOREM 1.3. Let E € E(emin, €maz). Let A (€ Rxq) be the solu-
tion of the gap equation gg(5,00,A) = 0 if gg(8,50,0) > 0. Let A :=
0 if gu(5,860,0) < 0. Then, there exists ¢ € (0,1] depending only on
d,b, ({/j);l:l, cg such that the following statements hold for any

2 /
Uc <—TC min{emm,e%;}ﬁ),
ﬁ S R>0, 0 € R
(i) There exists Ly € N such that

Tre PHH0SAF) c R (VL € N with L > Lo, ~ € [0,1]).

(ii)

lim L log(Tr ¢~ AH+052))

L—o0 /BLd

LeN
A2 Dy <ﬁ9> _

= — — — dk Trlog | 2cos [ =2 | e PEK)
U~ 8 Jrg g( 2

4 SWEWFAT-EW) | e—ﬁ(\/E(k)2+A2+E(k))> _

(iii)

—B(H+i0S.+F),/* *
lim lim Tr(e Vit Vi)
N0 L—oo Ty e—B(H+i0S:+F)
~7€(0,1] LeN

—B(H+i65,+F

ot S s )
N0 Lo Ty o—B(H+i0S.+F)
v€(0,1] LeN

AD .. R .
- £ / dkGg.a(k)(p,9), (¥ € B, % € T's).
I

*
(s3]

(iv) 1If gu(83,50,0) # 0,

—B(H+i0S.) /% y ) -
T LG PO s ¥ Yy g
”)A(—)A'HRd —00 LL_E)IO\IO Tr e*,@(HJri@Sz)
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(5

dkG,0,a(K)(p, p)) ., (Vp,h € B).
pe{p,n}

Ing(/B7697O) =0,

— 10S.), /,* *
Tr(e B(H+i6 )¢ﬁg¢¢ﬁ&l¢ﬁyl¢ﬁﬁ)
Tr e—B(H+i6S-)

lim  limsup =0, (Vp,neB).
H’AC_}A’”Rd_’OO L—oo

LeN

(v)

Tr(e PPH052)ys. e Wng 1 ¥age) A2

Py 2 Tr e—B(H+i0S.) U
LeN (p,%),(11,5)€BXT

REMARK 1.4. We should emphasis that ¢’ is independent of 3, §. Thus,
once U is fixed, the infinite-volume limits are valid for all (3,6) € R>¢ x R.
This is a notable difference from [13, Theorem 1.3], [14, Theorem 1.3] where
it is assumed that 30/2 ¢ 7(2Z+1) and U is not independent of (3, 0). Since

/
2 .
U] < == minfeqin, et} < =72,
Lemma 1.2 ensures that there exists (3, 60) € R x R such that gg(8, 86,0)
> 0 and A > 0. Thus the claims (iii), (iv) in particular imply the existence
of SSB, ODLRO respectively.

REMARK 1.5. The smoothness of k — FE(k) is assumed only for sim-
plicity. All the results in this paper can be reconstructed by assuming
that k +— FE(k) : R? — Mat(b,C) is continuously differentiable to some
finite degree depending only on the spatial dimension. The symmetry (1.5)
is assumed to adopt [14, Lemma 3.6] as our formulation. More precisely,
we used the symmetry (1.5) to characterize the covariance “C(¢)” in [14,
Lemma 3.5 (ii)]. Since the Grassmann integral formulation [14, Lemma 3.6]
contains the covariance “C(¢)”, accordingly we assume (1.5). The covari-
ance “C'(¢)” will be explicitly written in Subsection 3.1 in the same form as
in [14, Lemma 5.1], which was derived from [14, Lemma 3.5 (ii)]. However,
the symmetry (1.5) itself plays no explicit role in this paper.
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REMARK 1.6. In [14, Corollary 1.11] we derived the zero-temperature
limit of the free energy density and the thermal expectations. By arguing
in parallel with the proof of [14, Corollary 1.11] presented at the end of [14,
Subsection 5.2] we can derive the zero-temperature limit from Theorem 1.3.

Not to lengthen the paper, let us state the results in an abbreviated form.

d

There exists ¢ € (0,1] depending only on d, b, (V;)§_;, cp such that for

any
20// .
U e (—7 min{emin, egj;}l}, 0)

and 0 € R five claims which are same as the claims “(i), (ii), (iii), (iv), (v)”
of [14, Corollary 1.11] without the constraint 30/2 ¢ (27 + 1) hold.

Here we can drop the constraint 30/2 ¢ w(27Z + 1) as we do not need it
throughout this paper thanks to the assumption (1.6). After the inequality
“(5.72)” in the proof of [14, Corollary 1.11] a spatial decay property of
the infinite-volume, zero-temperature limit of the covariance was proved in
order to study the zero-temperature limit of the 4-point correlation function.
This part can be replaced by the decay property discussed in Remark 3.3
later. The property (1.6) also helps to shorten the derivation of the zero-
temperature limit of the free energy density. Apart from these changes,
the arguments close to the proof of [14, Corollary 1.11] yield the claims.
Again the results imply no superconducting order in the zero-temperature
limit. However, this time the results may not come as a surprise, since
in low temperatures our gap equation has no solution at all as shown in
Lemma 1.2 (iv).

REMARK 1.7. Since we do not have any 3-dependent constraint on U
in Theorem 1.3, we can also study the infinite-temperature limit G\, 0 of
the free energy density and the thermal expectations. If we set A € R>g
by the same rule as in Theorem 1.3, it follows that for any U € R.g, 8 € R
there exists 3. € R~ such that A =0 for any 8 € (0, 4.]. This is because

2
lim g5 (3, 80,0) = —— < 0.

Let us take U € (—QTCI min{emin, -1}, 0) for the constant ¢ introduced in
Theorem 1.3 and fix any 6 € R. Considering the above property of A, we
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can see from Theorem 1.3 (ii) that

1 A
S 2 <_W 10g<Tfe‘ﬂ(“+’esz>>) = —co.
LeN

Moreover, it is not difficult to modify the proof of [14, Corollary 1.11] to
confirm that three claims which are same as the claims “(iii), (iv), (v)” of
[14, Corollary 1.11] apart from having the notation limg\ o in place of
lim
B—00,8€R>0
with 22 ¢r(2Z+1)

hold. To prove the analogue of the claim “(iv)”, we need a spatial decay
property of the covariance in the limit L — oo, 8 Y\, 0 in particular. We
can explicitly take the limit L — oo, 8 \, 0 in the characterization [14,
Lemma 5.11] and observe that the covariance is in fact diagonal with the
spatial variables in the limit. Again the results imply no superconducting
order in the limit 5\, 0.

Theorem 1.3 (ii) gives the exact formula for the function (1.2), provided
|U| is small as required in the theorem. Loss of analyticity of the function
(1.2) with ¢ is considered as an indication of DPT at positive temperature
in contemporary physics (see e.g. [3], [8], [1]), though the function (1.2)
with the BCS model has not been rigorously treated yet, to the author’s
knowledge. As one of the main themes of this paper, we focus on the
following questions.

e At which (8,t) € Ryp x R does the function (1.2) lose analyticity 7
e What is the regularity of the function (1.2) when it is not analytic 7

e What is the shape of the subset of Ry x R where the function (1.2)
is not analytic ?

We will study these questions in Section 2. Answers to the first and the
second question can be found without much difficulty, since we have already
studied similar questions in [14, Section 2]. After studying these two ques-
tions, we will know that the function (1.2) is C''-class in R~ xR and its 2nd
order derivatives have jump discontinuities across a subset of R~ xR, which
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consists of periodic copies of one closed curve. To answer the last question,
we need constructive arguments. It will turn out that the ratio emin/€max
is the key parameter to classify the shape of the set of our interest. In
particular we will show that the lower half of the representative curve of
the set has only one local minimum point, in other words the representative
curve does not oscillate with the temperature, for any E € E(emin, €maz)

if and only if €541 /€maqs is larger than the critical value /17 — 12v/2. The
result will be officially stated in Theorem 2.19 as the second theorem of this

paper.
2. Analysis of the Free Energy Density

We assume that |U| < 2€,in/b throughout this section so that we can
refer to the results of Lemma 1.2. Let E € £(emin, €maz) and let us define
the function A : Ryg x R — R>( as follows. Let A(f,t) be the solution of
ge(B,t,A) = 0 if gg(5,t,0) > 0. Let A(B,t) := 0 if gp(5,t,0) < 0. The
well-definedness of the function A(-) is guaranteed by Lemma 1.1. Then we
define the function Fg: Rsg x R — R by

A(B, 1) Dy <t> —BE(k
= = dk Trlog | 2cos [ = | e PEK)
Ul "B Jrs & 2

+ BWEK?+APB)?-EK) 4 o—B(V E(k)2+A(ﬁ7t)2+E(k))> _
It follows from Theorem 1.3 (ii) that if U € (—QTC/ min{emin, €11, 0),

L—oo ﬁLd

mm=m@¢mm%%ﬂJWM&wm
LeN

Thus the function Fg(3,t) can be seen as an extension of the free energy
density with respect to the magnitude of the coupling constant. In this
section we study the regularity of Fg with (/3,t) and characterize the subset
of Ryg x R where the analyticity is lost. The contents of this section are
independent of Section 3, which is devoted to proving Theorem 1.3. The
readers can read this section separately from Section 3.
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2.1. Phase transitions

The domain Rsg x R can be decomposed as follows. Rsg x R = Q4 U
Q- U Qo, where

Q+ = {(/Bat) € R>0 x R ‘ gE(ﬁ7t7O) > 0}7
Q- ={(8,t) € R0 x R | gp(8,t,0) <0},
QO = {(5775) S R>0 x R ‘ gE(Bﬂf?O) = 0}

In this subsection we will prove that the function F is C'-class in Rsg x R,
real analytic in @4+ U @_ and non-analytic at any point of Qg as a function
of two variables. More specifically, we will prove that 2nd order derivatives
of Fg have jump discontinuity across )y, which is a sign of 2nd order
phase transition. Also, we will see that )y consists of periodic copies of
a restriction of a closed curve in R%2. Let us call the curves making up
Qo phase boundaries. In fact the regularity of Fg can be studied in a
way similar to [14, Section 2]. However, we decide not to omit it, since it
characterizes the nature of the phase transitions.

Let us start by describing universal properties of the phase boundaries,
which hold regardless of €in, €maz(€ Rsg). We can deduce from Lemma
1.2 (i),(ii) that for any 5 € (0, 8.) there uniquely exists 7(3) € (m, 27) such
that gg(8,7(5),0) = 0. This rule defines the function 7 : (0, 8.) — (m, 2).
The following lemma means little at this point. However, it will support
conclusive parts of our construction later, or more specifically the proofs of
Proposition 2.13 and Proposition 2.23. Also, it will implicitly support the
proof of Proposition 2.16.

LEMMA 2.1. Assume that |U| < 2emin/b, y € (—=1,0), 5 € Rsg, E €
g(emin>emax) and

2
——+D/
o) "7 e

Then € (0,5.) and y = cos(7(8)/2).

sinh(BE(k)) ) 0
(y + cosh(BE(k))) E(k) ’

dk Tr <

Basic properties of the function 7(-) are summarized as follows. For an
open set O of R™ let C¥(0) denote the set of real analytic functions on O.
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LEMMA 2.2.
(i)
7€ C¥((0,6c))-
(i1)
B0 = iy =2
(iii)
I 0= =

REMARK 2.3. In the proofs of Lemma 2.2, Proposition 2.4, Proposition
2.5 and Proposition 2.10 we will apply the implicit function theorem, the in-
verse function theorem and the identity theorem for real analytic functions.
These theorems are found in e.g. [15, Chapter 1, Chapter 2].

PrROOF OF LEMMA 2.2. (i): One can see from the definition that
the function (z,t) — gg(z,t,0) : Ryg x R — R is real analytic. Since
%;f(ﬂ,T(ﬂ),O) # 0 for all 5 € (0,3.), the analytic implicit function theo-
rem ensures the claim.

(ii): Suppose that there exists ¢ € R-( such that for any § € R-q there
exists Os € (6. — 6,0:) N (0, B.) such that 7(8s) < 2w — e. Then for any
6 € Ryg

OZQE(ﬁ(S,T(,B&),O) SgE(B&QW_E?O) < sup gE(/B727T_570)'
BE(Be—6,8c)
By sending 6 \, 0, 0 < gg(0¢, 27 —€,0) < gr(B,27,0) = 0, which is a
contradiction. Thus limg ~g, 7(8) = 27.

Suppose that there exists € € R+ such that for any § € Rsq there exists
Bs € (0,6) N (0, B.) such that 7(8s) < 2m — e. Then for any § € R+

0=gr(Bs,7(Bs),0) < sup ggr(B,27 —¢,0).
B€(0,6)

By sending 6 \, 0, 0 < gg(0,27 —¢,0) = —2/|U| < 0, which is a contradic-
tion. Thus limg\ o 7(3) = 2.
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(iii): For € (0, ;)

iy B0
8" = 25, 75).0)

14-cos(7(8)/2) cosh(BE(k))
2 fl"* dk Tr ((COS(T(g)/Q)+cosh(BE(k)))2)

sinh(BE(k)) ’
Sm( )fr dkTr((cos(T(,G)/2)—|—cosh(,6’E(k)))2E(k))

Then by using the result of (ii),

dr 2 [r. dkTr (W)

lim —(B) = lim .
. d . sinh(B. E(k
8,5 dfs 578 sin ("9 .. dkTr((Cosh(ﬁc,;(k))ﬁl))éE(k))

@H

= Q.

To study the limit limg\ o g—g(ﬁ), let us show that

(2.2) lim cos(7(8)/2) +1 _ b|U|.
BN0 8 2
Suppose that there exists ¢ € Rsg such that

sup COS(T(ﬁ)/2) +1 > b‘U‘ + €, (V(S S (Oaﬁc))'
BE(0,6) B 2

Take any 6 € (0, 3;). Then there exists 85 € (0,6) such that
cos(T(0s)/2) + 1 S b|U| L€

ﬂ(s - 2 2’
and thus
l <Dd/ dkTr( sinh(BsE(k)) )
- . bjU h(Bs E(k
‘ ’ x (%'f‘%—f-%)ﬂE()

<soreete 2 (Mieeg )

By sending 6 Y\, 0, \U| < b|l?\b+e < ﬁ, which is a contradiction. Thus for
any € € Ry there exists 6 € (0, 8.) such that
2)+1 b|U
py STE2 41 WUl
BE(0.8) p 2
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which implies that

i sup cos(7(6)/2) +1 < b\U]'
AN\0 g 2

On the other hand, suppose that there exists ¢ € Ry such that

nf cos(7(8)/2) +1 < b|U| .

BE(0,6) 3 =7 , (V86€(0,8.)).

Take any 6 € (0,3.). Then there exists s € (0,6) such that

cos(7(Bs)/2) + 1 < b|U| €
Bs -2 2
and thus
2 sinh(Bs F(k))

(B — g 4 comhBBON1Y g, (i)

1
Z Dd/* dk Tr <bU| e cosh(éE(k))l) :
N B

By sending 6 \, 0, ‘27| > % > %, which is a contradiction. Thus for

any € € Ry there exists 6 € (0, 3.) such that

nf cos(T(08)/2) + 1 - b|U| e
BE(0,6) g 2

which implies that

cos(7(8)/2) +1 S b|U|
B -2
Therefore, the property (2.2) follows.
By applying (2.2) we can derive that

liminf
B\0

1+4-cos(7(8)/2) cosh(BE(k))
lim ngo dk Tr <(cos(T(ﬁ)/?)-Fcosh(ﬁE(k)))2> _ b‘U‘ .

e sinh(BE(K)) 5
Jrs, dkTx ((COS(T(B)/2)+Cosh(,3E(k)))2E(k))
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By combining this with (2.1) and the result of (ii) we can deduce the claim
on the limit limg\ o g—g(ﬁ) O

By parity, periodicity and Lemma 1.2 the set g is characterized as
follows.

(2.3) Qo ={(8,67(B) +4mwm) | B € (0,0.), 6 € {1,-1}, m € Z}
U{(Be, 2m + 4mm) | m € Z}.

Set

Qo :=={(B.7(8)), (B.4m —7(8)) | B € (0,8:)} U{(0,2m), (Be,2m)},

which is a closed curve in R? by Lemma 2.2 (ii). We can see that Qg consists
of periodic copies of Qp N (Rsg x R). This fact motivates us to study the
curve Qg as the representative of the phase boundaries.

PROPOSITION 2.4. @0 is a I1-dimensional real analytic submanifold
of R2.

ProOF. By Lemma 2.2 (i) the maps

B = (B,7(8)) : 0,8) = {(B,7(8)) | B € (0,5)},
B (B,4r —7(B)) : (0,8.) — {(B,4m —7(B)) | B € (0, Bc)}

are real analytic homeomorphism. Thus it suffices to prove that there exist
open intervals I7, I, an open neighborhood U; of (0, 27), an open neighbor-
hood Us of (8., 27) in R? and real analytic homeomorphisms f; : I; — U; N
@0 (j = 1,2). We can see that %’;f(ﬁc, 27m,0) < 0. Thus the analytic implicit
function theorem ensures that there exists e, € (0,7) and f € C¥((2r —
£1,2m + 1)) such that f(2r) = B, f(t) > 0 and gg(f(t),t,0) = 0 for any
t € (2mr—ey, 2m+e1). Thus, (8., 27) € {(f(t),t) | t € 2m—e1, 2m+e1)} C Qo.
Since Qg is symmetric with respect to the line {(z,27) | z € R}, there exists
g9 € Ry such that

{(f(t),t) | t € (2m — 21,27 +e1)}
= (Be — €2, B + £2) X (21 — £1,27 + 1) N Q.
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If we define the map fo : (2 —e1,2m +€1) — (B — €2,0: + €2) x (27 —
e1,2m+e1)NQo by f2(t) := (F(t),t), we see that the claim on (3., 27) holds.

Let us prove the claim on (0,27). Observe that there exist €3, £4 € Rsg
such that the function

2 sinh(zE(k))
r,y)— ——+D / dk Tr
(@) U] ‘ I, (y—i—%)xE(k)

is real analytic in (—¢e3, e3) X (b|U|/2—¢4,b|U|/2+¢4). Let ¢(z,y) denote this
function. We can check that ¢(0,b|U|/2) = 0 and g—ﬁ(O,b\U\/Q) < 0. Thus
by the analytic implicit function theorem there exist €5 € (0,e3) and a real
analytic function 7 : (—¢5,e5) — R such that n(0) = b|U|/2, ¢(x,n(z)) =
0, (Vz € (—e5,e5)). Then let us define the function £ : (—e5,e5) — R by
¢(x) := xn(z) — 1. Tt follows that & € C¥((—e5,¢5)), £(0) = —1, £(0) =
b|U|/2 > 0. Thus there exists g € (0,€5) such that £(+) is strictly monotone
increasing in (—eg,6) and

B i . sinh(zE(k)) _
o] TP /rm T ((&(az) T cosh(xE<k>>>E<k>> ’
(Vz € (—e6,€6)\{0}).

Then by the inverse function theorem there exist e; € R and a real
analytic function A : (=1 —¢e7, —14e7) — (—¢¢,6) such that A(-) is strictly
monotone increasing, A\(—1) =0, {(A(y)) =y, (Vy € (-1 —e7, —1+4¢7)). It

follows that
2 . sinh(A(y)E(k)) _
0] *Dd/p;o et <(y+cosh(>\(y)E(k)))E(k)> N

(Vy € (=1 —e7,—14¢e7)\{—1}).

We can take eg € (0,7) so that cos(t/2) € [-1,—1 4 ¢7), (Vt € (27 —
8,21 + €g)). Let us define the function v : (27 — eg,2m + e3) — R by
v(t) := A(cos(t/2)). Observe that v € C¥((2w — eg, 27w + €3)), v(27) = 0,
v(t) > 0, (Vt € (2 — e5,2m + e3)\{27}), gr(v(t),t,0) = 0, (Vt € (27 —
e, 2m + £3)\{27}). Thus (0,27) € {(v(t),t) | t € (27 — 5,27 + £8)} C Qo.
Since Qo is symmetric with respect to the line {(z,27) | x € © € R}, there
exists €9 € Ry such that

{(v(0),1) | £ € (27 — 5,27 + £5)} = (€9, 29) X (27 — £5,27 + £5) N Qo
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We can define the map f1 : (27 — eg, 27 + £8) — (—¢€9,€9) X (27 — 8,27 +
eg) N Qo by fi(t) := (v(¢),t) so that the claim on (0, 27) holds as well. The
proof is now complete. [

By taking into account the definition of the function A(-), Lemma 2.2
and Proposition 2.4 we can schematically draw a 0 — t phase diagram re-
stricted within the plane Rs¢ x (0,47) as in Figure 1.

4+

Fig. 1. The schematic § — ¢ phase diagram restricted within R~ x (0,4w). The curve
corresponds to Q.

Next let us study the regularity of Fg(-,-). In particular let us show
non-analyticity of Fg(-,-) on Q.

PRrRoOPOSITION 2.5. The following statements hold.
(1)
Fglo,ug- € C¥(Q+UQ-), FpeC'(Rs xR).

.. . 2
(i1) For any (Bo,to) € Qo limg4)—(8y.t0),(3,)cQ %(5707

M g1y (8o,t0),(8,) €@ a;%(ﬁ,t) converge to finite values. Moreover,
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if Bo € (0, 8) and $5(Bo) # 0 or By = b,

O?*Fg i O*Fp

li , J1).
(B,t)— I%O,to 852 <ﬁ ) (8, t)ﬂ(ﬁo,to 852 (ﬂ )
(B.4)eQ+ (B,H)eQ-—
If Bo € (0, 8c) and $5(00) =
O?*Fg i O?*Fg

lim 1) = 1)
(B.6)—(Boto) OB2 (6,8) = (ﬁt)ﬂ(ﬁo,to ) 052 (8,¢)
(8, t)€Q+ (B,1)€Q—

. 2
(“UJ%TWW(@LW)GQOhmwwewwwmqu+%§?U%ﬂ7
im g,y (8o,t0),(8,) €@ 8t2 E(B,t) converge to finite values. Moreover,

if Bo € (0,8c),

82F‘E 62FE
lim 1) < lim —(0,1).
(B,t)—(Bosto) o2 (8,1) (B,t)— (Bo,to) Ot2 (8,1)
(Bt)eQ+ (Bt)eQ-
If BO — Bc;
im P wm gy
,1) = m — (5, 1).
(B,6)—(Boto) Ot? (B,6)—(Boyto) Ot?
(Bt)eQ+ (Bt)eQ-

PROOF. The claims can be proved in a way similar to the proofs of
“Lemma 2.2”, “Proposition 2.6” of [14]. However, we do not significantly
skip the explanations for the readers’ convenience.

(i): By using the fact that for e € [—1,1] the function (1.7) is strictly
monotone decreasing we can check that E)g—f(ﬁ, t,A(B,t)) < 0forany (3,t) €
Q+. Thus by the analytic implicit function theorem Alg, € C¥(Q). Since
Alg_ € C¥(Q-) trivially, Alg,ug_ € C*(Q+ UQ-). Let us prove that
A € C(Rso xR). Let (Bo,t0) € Qo. Suppose that there exists ¢ € R~ such
that for any 6 € Ry there exists (fs,ts) € Rso x R such that ||(Go, o) —
(Bs,ts)|lre < 6 and A(Bs,ts) > €. Then,

0= gr(Bs, ts: A(Bs, ts)) < sup ge(B,t,€).
(B,t)eR>o xR
with [|(8,t)—(Bo,to) |lgz <6
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By sending 6 N\, 0, 0 < gg(fo,to,e) < gr(Bo,t0,0) = 0, which is a con-
tradiction. Thus, limg 1) (3,,40) A(8,t) = 0 = A(fBo,?0). This implies that
A € C(Rsg xR). It readily follows from the confirmed regularity of A that
Fglo,ug. € C¥(Q+UQ-), Fg € C(R5p x R). Let us define the function
Fg:Rsgx Rx R — R by

(2.4)

~ 2 D t
Fr(x,t, 2) = - —d/ dk Trlog | cos | = | + cosh(z+/E(k)? + 22) | .

Ul Jrs, 2
Observe that the regularity of the function (3, t) — Py (B,t, A(B,t)) : Rsg X
R — R is same as that of Fg(53,t). By considering the definition of A(3,t)
we can derive that for any (5,t) € Q4+ U Q-

OFy

(25) O F(0,1,A(8,1)) = S E

B
QFE(ﬁ,t A(B, 1)) = agf (B,t,A(B,1)).

Take any (8o, to) € Qo. The above equalities imply that

/87 t’ A(ﬂ? t))’

d = OFg
2.6 li —F ;t A ) - 7'[,' , "[: ,
2 polm S FE(8 L AB, 1) = T (B to, Ao to))
(B,)eQ+UQ—
9 = OFg
2.7 lim —F Jt, A(B, = to, A(Bo, to)).
( ) (B:£)—(Bo.to) ot E(ﬂ (ﬁ )) ot (60 0 (BO O))
(B,)EQ 4 UQ—
We remark that the function 8 +— gg(f, to,0) is real analytic in Rsq. Since
2 b
li at 70 S - + — < 0
N

by assumption, this function is not identically zero. Therefore, there exists
e € Ry such that for any 8 € (8o — ¢, 8o +)\{Bo} 9(5,to,0) # 0. Other-
wise the identity theorem for real analytic functions yields a contradiction.
This means that (3,tp) € Q+ UQ_ for any 8 € (8o —¢, Bo+¢)\{0Bo}. Thus,
it follows from (2.6) that 3 — Fg(8,to, A(B,to)) is differentiable at 8 = By
and

8FE

_FE(ﬁvth (B,t0))

B g = o Dot AlBo to)).
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By recalling Lemma 2.2 (ii),(iii) and (2.3) we see that there exists ¢ € Rsg
such that (fo,t) € @4+ U Q- for any t € (to —&,t0 +€)\{to}. Thus by (2.7)
t — Fg(fBo,t, A(fo,t)) is differentiable at t = ¢y and

0 OF
oy Pt Ao, )| _, = =5 (Bo to, Ao, to)):

Since (3,t) — (6FE (B, A(ﬁ, 1)), % BFE (B,t,A(B,t))) is continuous in R X
R, it follows that ((,t) — FE(B,t A(ﬁ, t)) is C'-class in Rsg x R and so is

(ii): We can derive from (2.5) and the gap equation gg(3,t, A(5,t)) =0
((B,t) € Q4) that

2 2
(2.8) 8‘9—[,217 <ﬁ,t,A<ﬂ,t>>—‘9FE<ﬁ,m<ﬁ, D), (8.1 € Q).
32
s A CAINCY))
2 2
-2 FE O (5,1, M8, 0) + 3 (5,1, A(5 t>>8§ 8.)
0z
L N %w,t NCYINCRETERY

% (5,1, 0(5,1)))
GE (8.1, A(B.1))

82FE

—7 (8.1, A(8,1)) +A(ﬁ7t)<
( (ﬁa )E Q+)

Let us define the function §: Ryg X R x Ryg — R by

9

sinh(zz)
(cos(t/2) + cosh(zz2)) 2

g(x,t,2) =

Observe that for (5,t) € Q4+

1 agE(
A(B,t) 0=z

_Dd/r* dkﬁ(a—i(ﬁ,tME P+ AG ) VE(X) iAﬂ ))

8,6, A(5,1))

(oo}
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and
. 1 09k

2.9 lim .- ,t7 A 7t

2 (B,)—(Borto) A(B,t) 0z (6 (B8,1))
(B;H)EQ+
_D/ i Tr (29 (o, 0, | B - -
=Dy . Oz 05 L0y ’E(k)’
< 0.

Here we again used the monotone decreasing property of the function (1.7).
Let us study the term ‘?—f(ﬂo,to, 0). If 5y € (0, 5.),

%92 (0, 10,0) = 29 (B, 7(680),0) = — 7 (80) 222 (o, (1), 0).

ﬁ

Since 7(8) € (0,27) and ¢ — gg(fo, t,0) is strictly monotone increasing in
(0,2m),

(2.10) %92 (50,7(f0). 0) # 0.

Thus —(ﬁo,to, ) = 0 if and only lf (,80) = 0. If ﬂo = ﬂc, to = 2w

(mod 47). In this case we can directly check that 2 FE(Bo,t0,0) < 0. We
can conclude the claimed convergent properties by comblnlng the above
properties of HE (8o, to,0) with (2.8), (2.9).

(iii): In the same way as in the proof of (ii) we have that

(2.11)
82 *Fp
le]
. ok % (5,1, 2(5.))

(V(8,t) € Q).
If By € (0, 5.), T7(Bo) € (0,27). By periodicity and (2.10)

0 0
%(ﬁo,to, )‘ = ﬂ(ﬁo, (50)70)‘ >0
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If Bo = Be, to = 27 (mod 47), and thus Bg—f(ﬁo,to,O) = 0. The claimed
convergent properties follow from (2.9), (2.11) and the above properties of
E)g;f(ﬁﬂa to, O) O

REMARK 2.6. For (p,n) = (+,—) or (—,+) let us set
B
Qo

= {(ﬁo,to) € Qo | Ie € Ryg sit. (8,t0) € @p, (V6 € (6o —¢,60)), }

(B,t0) € Qn, (VB € (Bo,Bo +¢))

Proposition 2.5 (ii) implies that if (5o, t9) € inn satisfies By # (. and
55(B0) # 0 or By = B,

0*Fg 0*Fg

lim 22208 1) # lim Z=E

235, apz P10 7 i o

This means that a 2nd order phase transition driven by 3 occurs at (3,t) =

(Bo, to). Assume that Gy € (0,5.), j—g(ﬁo) = 0 and 8 — 7(03) is monotone

increasing or decreasing in a neighborhood of By. Then (8o, 7(50)) € @ -

(B, to).

or (Bo,7(Bo)) € Qé + respectively. In this case Proposition 2.5 (ii) implies
that 8 — 8;%(6, 7(fp)) is continuous at 5 = [y, even though the trajectory

B — (B,7(6p)) crosses Qo at B = [y from Q4 to Q— or from Q_ to Q. This
interestingly suggests a possibility of higher order phase transition with

at (6,t) = (6o, 7(5o)). However, as we will see in the following subsections,
the monotonicity of 7(-) is sensitive to individual characteristics of E(-) and
we do not pursue the question whether 7(+) can satisfy the above properties
in this paper. On the other hand, if we set

(Bo,t) € Qp, (VEE (to —€,10)), }
(ﬁo,t) S Q’?’ (Vt c (to,to + 6))

for (p,n) = (+,—) or (—,+), we can see from Lemma 2.2 and (2.3) that
L UQL L ={(Bo,t0) € Qo | o # fe}-

Thus by Proposition 2.5 (iii)

tp,n = {(ﬂo,to) € Qo de € R>0 s.t.

0*Fg . O0*Fg
(IBOJ)#tl{‘% 52

lim

t/tO W (607t)7 (v</807t0) (= th, U Qi,+)
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8;£E (8,t) has jump discontinuity whenever the trajec-
tory t — (f3,t) crosses Qo from Q1 to Q_ or from Q_ to Q4. This means
that the phase transitions driven by ¢ in this system are of 2nd order.

In other words, t —

REMARK 2.7. The free energy density characterized in Theorem 1.3
(ii) corresponds to Fg(f3,56). In [14, Subsection 2.3] we focused on the
properties of the function (3,0) — Fg(3,50) : R~9 x R — R under different
assumptions on E(-). The reason why we treated the function (3,t) —
Fg(B,t) here is that it is considered as a dynamical free energy density
studied in today’s physics of DPT. At this point the function Fg(/S3,/30)
lacks physical interpretation and its phase boundaries are structurally more
complicated to analyze than those of Fg(f,t). Nonetheless, it is possible to
study the regularity of (3, 60) — Fg((,30) in a manner similar to Proposition
2.5. In this case the set

{(ﬁ79) € R>0 xR | gE(ﬁaﬁev()) = 0}

defines the phase boundaries and it can be shown that 2nd order partial
derivatives of the function (3,0) — Fg((, 36) have jump discontinuities on
the phase boundaries. However, we do not explicitly present the results for
conciseness of the paper.

2.2. Shape of the phase boundary

In view of the characterization (2.3), we notice that the graph of the
function 7(-) determines the shape of the phase boundaries. So let us study
the profile of 7(-) more deeply. Its universal properties have already been
summarized in Lemma 2.2 and Proposition 2.4. As the next step, we should
try to reveal geometric properties which may vary with details of E(-). It
will turn out that the ratio €,in/€maqs is @ prime index to classify the shape
of 7(-). From now on we let ¢ denote a generic positive constant independent
of any parameter. The following proposition tells us when 7(+) : (0,8.) — R
is strictly downward convex.

PROPOSITION 2.8. There exists eg € (0,1) independent of any pa-
rameter such that if €min/€maz > €o, for any U € [—Siflgl("g)b,O), E ¢

g(emirw ema:r) and /8 € (07 ﬂc)a

d2r

d—ﬂQ(ﬁ) > 0.
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PrRoOF. First of all let us prepare a few quantitative bounds based on
the assumption

Emin
. < .
(2.12) U= G

Observe that 1/sinh(2) < 2tanh(1) < 2, which implies that |U| < 2ein/b
and combined with Lemma 1.2 that

2

(2.13) B < tanh ™! < oYl ) < 2 tanh ™! (tanh(1)) =

Emin Emin Emin €min

It follows from (2.13) and the equality

(2.14) 9e(8,7(8),0) =0, (8 €(0,5))
that
2 bsinh(Bemin)

(215) U] emin(cos(r(8)/2) + cosh(Bemin)

< bsinh(2)

~ emin(cos(7(8)/2) + cosh(Bemin))’
or by (2.12)
(2.16) cos (@) + cosh(Bemin) < %,
(2.17) — cos <@) > %, (VB € (0,5.)).

By differentiating both sides of (2.14) twice and substituting the first
equality of (2.1) we obtain that for any 8 € (0, 5;)

(2.18)
d?r
d—ﬁg(ﬁ)
1 O*9r 9k 9k
= (B,7(8),0)=—(8,7(3),0)—-(8,7(8),0)
<aag_f(ﬂﬁ(m 0))3< Oxot ox ot
32913
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> gr 99k 2
- S 0. 0.0 (FE0.0).0) )
Define the functions fg, 15 fé, f5%, f5' £ R —Rby

fg(y) ‘= coS (@) + cosh(By),

f5y) =y (COS (T(f)) cosh(By) + 1) :

7 = ysin (75 ) (),

75 (0) =17 () (o (72 ) = cos (T2 ) conn(om) 2.
f5() o= Y sin (@) (cos <T(f )) cosh(By) +1 - sinh2(6y)> ,
fHy) = %sinh(ﬂy) <1 + sin? (@) + cos <@> cosh(ﬁy)) .

Then the formula (2.18) can be rewritten as follows. For any 5 € (0, 3.)

d*r 1 3
—(B) = 11 (Dd dkj>
w (8), 0)>3 j=1 /Foo

(%e .7
. f5H(E (k1)) f5(1E(k2)])
(m (\E(kl)lfS(E(kl))?’) o (IE(k2)|fB(E(kz))2>

_Tr< 5B (ks))) )

B (ks)| (B (k3))?
_H< 5 (|E(ki))) >T< FH(IE(k2))) )
B (k)| fH(E(k))? B (k)| [ (E(kz))?
_Tr< 5B (ks))) )
B (ks)| f9(E(k3))?
f5( E(ka)]) )

fg (|E(k1)])
o <|E<k1>|fg<E<k1>>3> o <|E<k2>|fg<E<k2>>2
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T f5(E(ks)])
|E(ks)| f3(E(ks))? ) |

Let us define the function fg : R3 — R by

Ty, y2,y3)
=215 (1) £5 (y2) F5(ys) — F57 () Fh(w) £5(ys) — f5 (1) £5 (y2) £5 (y3).-

We can see from above that if

(2 19) min{fﬁ(?/l,y%%) | Yy € [eminvemax] (] = 17273)} > Oa
then jﬁg (B) > 0.

Let us prove (2.19). Observe that
fﬁ(y YY)

( Y i) (s (22 con +1>2
——sm <T(25)>51nh3 By) (cos (T >+cos<7(25)>cosh(ﬁy)>

= fét( )f5(y)?

- _y; sinh(3y) <cos ( ) + cos <T(ﬁ ) cosh(By) )
. (cos (@) cosh(By) + 1)
yj sin? <T(25 )> sinh®(By) (0082 (TTB)> + cos (T(Qﬁ )> cosh(ﬁy)>

— _31 sinh(By) cos( (5)) f3w)?,

which combined with (2.17) implies that

2
: Cmin
(220) min f,@(%ya y) > 3 Slnh(ﬂemin)fg(emin)g-

ye[eminﬁmaz}

For a continuous function f : [emin,€maz] — R let |[f]leo denote
SUPyee,nin,emas] |f(y)| in the following. For any y; € [emin, €maz) (7 = 1,2, 3)

(2.21)

|fa(y1,y1,91) — fa(y1, y2, y3)|
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<\ fs(y,y1,91) — fo(yr, y2, y1)| + [fa(y1, 2, 1) — f5(y1, 92, y3)]

d . 4
s2<emm—emm>(u Hoo(\d—yfﬁ !!fé!!oo+!!ngooHd—yfé )

T d T
1 ool bl Hd—yfé )

. d
ol 72 Hd—yfﬁ

To estimate the right-hand side of the above inequality, let us prepare nec-
essary bounds.

||fﬁwHOO S Cemaxfg(emax)y

d
d—yfg <c (flg(emaz) + Sinh2(/66maz)) )

oo

1.
féHoo < Cfg(emaa:)z sinh(Bemaz),

d (76
d_yfé . S ﬁ s1n (%) fg(emaz)

+ 5

< Cﬁ(fg(emaxﬁ + [Yemar)?),
175" oo < CCrmaa Smh(ﬂemam)fﬁ(emam),
15 s0 < Cemarfﬁ(emax) (f3(emaz) + sinh?(Bemaz)) ,
H 8 Hoo < CSlnh(/@emax)fﬁ(emax)a

which lead to that
d T t
19511 | 25581530
< clmaz Sinh(ﬁemax)fg(emax)?) + Clmax Sinh5 (Bemam)fg(emam);

d
xt x t
15" ool 5 lloo d—yfﬁ N
4

< Clmaz Slnh(ﬂemax Z fﬁ ema:c) + Cemax SlIlh (ﬁema:z:)
Jj=3 J
3

< Clmaz Slnh Bemax § f ema:c s

e Jj=

M

fﬂo(emaa:)ja

[|
N

15 o 5 oo H—fg

d
tt x x
14 ||oouf5||ooHd—yfﬁ }
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S Ceémax sinh (/Bemax ) fg (emax ) 3 + cemax sinh3 (5emaa: ) fg (emax ) 2 .

By combining these inequalities with (2.21) we obtain that

(222) ‘fﬁ(yhyl?yl) _fﬂ(ylvy%y?))‘

< C(emam - emin)ema:p Sinh(ﬂemax)

3
(Z emax ‘I'Slnh 6emam Zf ema:p :
=2

+ sinh4(ﬁemam)fg(emax)> .

Let us bound the right-hand side of this inequality by that of (2.20). Let
us prepare a few more inequalities for this purpose. We can use (2.13) to
derive that

(2.23)
inh max) — inh min .
ﬂ(emam - emin) COSh(ﬁema:r) .
< ( Sinb(Bemm) + 1) sinh(Bemin)
< <emax - 1) cosh <2€ma‘r> + 1) sinh(Bemin),
€min €min

) +1+ (ﬁemax)Q cosh(Bemaz)

min

2
2
<2 <emaa;) cosh < emam> fg(emm)
€min €min

Moreover, by (2.13) and (2.24)

< cos <@> F1+2 (e”ﬂ)Qcosh(ﬁemm)(coshwemm) —1)

(2.25)

sinh? (Bemaz) = COShQ(ﬂemam) -1
< (cosh(Bemaz) + 1)fg(€maﬂc)
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2
2 2
<2 (@) cosh <M) (cosh <M> + 1> fg(emm).
Cmin Emin €min
Substitution of (2.16), (2.23), (2.24), (2.25) into (2.22) yields the following
inequality. We especially use (2.23) to bound sinh(fey,q,) in front of the
large parenthesis and (2.25) to bound sinh?(femqz), sinh* (Bemqz) inside the
large parenthesis.
|f(y1, y1,91) — f5(y1, v, 93)|
<ec <ema:c _ 1> €mazx <<6max _ 1> cosh <26max> + 1)
Emin Emin €min Emin
e 8 2e 4
‘ < mam) (cosh( mam))
€min €min
+ <cosh <2€mm> + 1> (emax>8 <cosh <2€mm ) > '
Cmin €min €min
2€emaz 2 €mazx 0 2emaz 5
(o () =) () (e (52)
Emin Emin €min
: e?nin Sinh(ﬁemm)fg(emin)3,

(Vyj € [emimemam] (.7 = 17273))'

We can see that there exists eg € (0, 1) independent of any parameter such
that if emin/€maz > €0,

2
er .
(2.26) | fa(yr,y1,91) — Fa(yr, y2, ys)| < 2% sinh(Bemin) f5 (€min)®,

16
(vyj € [eminaema:p] (] = 1,2,3)).

The inequalities (2.20), (2.26) imply (2.19) and thus the claim holds
true. O

Proposition 2.8 together with Lemma 2.2 means in particular that under
the assumptions of Proposition 2.8 7(+) has one and only one local minimum
point in (0,0.). We will see that this property does not always hold if
€min/€maz 1S small. To describe the profile of 7(-) in terms of number of
local minimum points, let us make clear the definition.



436 Yohei KASHIMA

DEFINITION 2.9. Let f be a real-valued function on an open interval
(a,b) and ¢ € (a,b). The point c is said to be a local minimum point of f if
there exists € € Ry such that f(c) < f(z) for any z € (¢ —e,c+ ¢).

Our main goal in this section is to give a necessary and sufficient con-
dition for 7(-) to have only one local minimum point for any choice of
E € E(emin, €maz)- The next proposition gives a sufficient condition.

PROPOSITION 2.10.  Assume that emin/emaz > V17 —12v/2. Then
there exists Uy (b, €min, €maz) € (0, Sli’g—&b)b] depending only on b, emin, €max
such that for any U € [—Up(b, emin, €maz),0) and E € E(emin, €maz) T(*)
has one and only one local minimum point in (0, 5.).

REMARK 2.11. According to the proof of the proposition,
Uo (b, €mins €maz) is equal to

¢ Enin ((£min)? _ 17 4 12,/2)

€mazx €mazx

sinh(2)b cosh? (2¢”€2e2 ) cosh? (¢ Gz )

min

with generic constants ¢ € (0,1], ¢’ € Rsp. More specifically,
Uo (b, €mins €maz) is given by the right-hand side of (2.40).

Let us prepare an essential part of the proof of Proposition 2.10 sepa-
rately in the next lemma. Define the function u : Ryg x [—1,1] X Ryg — R
by

sinh(xz2)

(y + cosh(zz))z’

(2.27) u(q:,y7 z) =

LEMMA 2.12.  Assume that /17 — 12¢/2 < emin/€maz < 1. Then there
exists ¢ € Rsg independent of any parameter such that for any (x,y) €

R~ X (—1,0) satisfying
ly +1] fmin ((Emin)® — 17 +12V2)

€max €mazx

c
1—|y+1] ! cosh?(2z) cosh?(z)

and e1, e2 € IR>0 Satisfying €maz = €1 > €2 2 Emin,
0

028 (i1 ” Pul =3 T
. 6(17 ) 617y761 8302 Yy el7y762
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9%

T ou T
9.2 (\/?J 1'6—1731,61) 97 (\/?J 1'a,y,€2) > 0.

PROOF. Define the function v : Ryy x (—=1,0) x Ryg — R by

v(z,y,2)
= % (zsinh(\/y +1- xz)(y2 —cosh(y/y +1-z2)y — 2)
z(y +1)2

- (cosh(y/y+1- )y + 1) (cosh(vy 1) +y)
_ sinh(\/m . Q:) (y2 — cosh(\/yﬁ . x)y _ 2)

- (cosh(v/y +1-z2)y+1)(cosh(y/y +1-2z) +y)>.

Let us observe that for any (z,y) € Rsg x (—1,0)

(2.29)

e1x(y +1)

(L.ILS of (2.28)) = [ (oooh (V5T 25) 4 v <x,y, 6—1> :

We can also derive that

(2.30)

v(z,y, 2)

)
_ 1 n 2n+1_2n
_Z<Z+Zlm(y+1)z x
n=

o0 1
. —_92_ - 1 n—1_2n_.2n
(y ynE_l (2n)!(y+ )T )
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This expansion implies that the function v(:,-,-) can be analytically contin-
ued into C3. By abusing notation we let v(z, %, 2) denote the entire function
defined by the right-hand side of (2.30) as well. It follows from the assump-
tion that for any x € R

(2.31) v (a; 1, 6—2>
€1

(Ga) si)
%E)); (17+ 122 — <§>2> ( <z—j>2 — 17+ 12\/§>

€1

) 2
> <1 _ e—2> ( <em’”> 17+ 12\/§> >0
€1 €max

Also, the Taylor expansion and the Cauchy formula yield that for any z € C,
Yy e (_17 O)

(=02)
viTY, —
€1
()
:v(x,—l,—2>
€1

& J v(z, ¢, §)
+m,2:z:l 27TZ fCJ’,l:l Cfig”:l df(c+1)m+1(€_1)n+1

S+ 1) (§1>n.

v

o

1 v(z,¢, &) .
IS BN TR

1
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In the second equality we used the fact that v(x,y,1) = 0 for any z, y € C.
Moreover, by considering (2.30) we can see that for any = € R5g, y € (—1,0)

€9 €9
v x,y,a —v x,—l,a

< ccosh?(2zx) cosh?( Z ly + l\mz

e |y+1|
L—ly+1f

< ccosh?(2z) cosh?(x) Cmaz
€min

€1
which combined with (2.31) implies that for any = € R-q, y € (—1,0)

(2.32)

< 62)
v\T,Y, —
el

> (1 _ e_2>
€1

2
min 1
: ( (6 ) 17+ 12V2 — Emee % cosh?(2x) cosh?(x )M>

Cmax Emin 1- |y + 1|

We can deduce the claim from (2.29), (2.32). O

In the following we let cosh™ (: R>1 — Rxg) denote the inverse function
of cosh ’Rzo :R>0 — R>q.

PROOF OF PROPOSITION 2.10. Let us fix L € Nand y € (—1,—1/2].
Define the function F7, : R — R by

. sinh(zE(k))
Fr(z) : 7d Z < y—}—cosh(xE(k)))E(k)) .

kel

There are €; € [€min, €maz) (j = 1,2, ,bL?) such that e,q, > e > e >
- > eprd 2 emin and

bLd
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where u(-) is the function defined in (2.27). Let us prove that

(2.33) 31130 S

cosh™ (Jy[ ™), —

€mazx min

(Vl‘ c (0, (IZQ)),

cosh™!(ly|™")

) >0,
s.t. %FL(xo) = O,
%FL(x) < 0, (VZ‘ S (1‘0,00)).

We can check by calculation that for any z € R+

ou

(2.34) %(x,y,z) >0, (\m € (0, % cosh1(|y|1))> ,

ou (1 101 B

5 (zcosh (ly] ),y,Z> =0,

ou 1 10 -1
o) <0, (v (Lo iy 0] ).

0%u (1 _ _
922 (; cosh 1(\y\ 1),y,z) < 0.

Thus, if e; = epa, the claim (2.33) holds with zp = écosh*1(|y|*1). Let
us assume that e; > e;;a. This obviously implies that e,,q0 > €min. We can
deduce from (2.34) that

d 1

L LR |
Lru@ >0, (vee (0. 2oy ] ).
iF (x) <0 Vo € ! b=y )

dr © ’ €prd o Y ' .

Thus there exists xg € (é cosh™(|y|~1),
%FL(xo) = 0. Set

cosh™!(Jy|™)) such that

€prd

cosh™!(ly| ")

(2.35) Cmaz 1=  Sup 7
ye(_lr_%] y + 1

By using the equality

(2.36) cosh™ (Jy[7") = log(|y|™" + V/ly| =2 - 1),
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one can confirm that 0 < ¢pe: < 00. It follows that

S CmamMa (Vj € {17 e 7de})

min

€j
X
NOES

Then we can apply Lemma 2.12 to conclude that if

; 2
(2.37) y+1) < 2. Comin ((Emin )" 17 4 12/2)
. 2 cosh? (2Cmaq Smex ) cosh? (Cmag 2202

and €; > €prd,

ou 0% 0% ou
a(ﬂvo?y, ej)w(iﬂoaya eprd) — W(mo,y, ‘fj)%(ﬂfoﬁl/, epra) > 0.

Since ey > €14, this implies that
d
ou d? 1 2% 92y ou

%(ﬂfo, Y, €de)wFL(ﬂf0) = ﬁ JZI W(zo’ Y, Gj)%(.fo, Y, ede)

L) P d 9%u
Ld Z O I07y76] o a..2 (£07y76de) = %FL(xo)w(:BOvya Ede) =0.

1

Since zy € (0

“yI™Y), 2(x0,y, epra) > 0 by (2.34). Thus we

obtain that - FL(:L‘O) < 0. It follows from the above argument that if
e1r > eprd and (2.37) holds, the claim (2.33) holds. This can be confirmed
as follows. Suppose that z1,x2 € | cosh™(Jy|=1), = cosh ™1 (|y|~)],

? emin

€mazx
r1 < x9 and %FL($]') = 0 for j = 1,2. Since the function %FL(-) is
non-constant and real analytic in Ry,

ﬁ{x € [z1, 2] | %FL(x) = 0} < 00

Thus, there exists z3 € (21, ¥2] such that L Fy(z3) = 0 and L Fy(z) # 0 for
any z € (z1,x3). Since %FL(J:J-) < 0 for j =1, 3, there exists x4 € (z1,z3)
such that %FL(u) = 0, which is a contradiction. Now we can conclude
that under the assumption (2.37) the claim (2.33) holds.

Define the function F, : R x (=1,0) — R by

_ sinh(zFE(k))
(2.38) Foo(z,y) := Dd/;o dkTx <(y + cosh(:z:E(k)))E(k)> '
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Since E € C*(R4, Mat(b,C)), for any y € (—1,—3] da:FL()
9 (. ) locally uniformly as L — oo. Therefore if y € (~1
)

Ox
(2.37), there exists & € [ﬁ cosh™ (|y|~h) cosh™t(|y| "

converges to
,—3] satisfies
| such that

’ emln

OF
ox

(x,y) >0, (Vxe (0,%)),
OF
ox

(#,y) =0,
OF

o (wy) <0, (Yo € (#,00)).

Let us recall that the assumption (2.12) implies (2.15) and (2.17). If we
assume that

(2.39)

min {1, 9} Soin ((2min)? _ 17 4 12,/2)

€max €max

Sinh(Q)b cosh? (QCmax Z:z—j::) cosh? (Cma:v Zm‘” ) ’

(2.40) U] <

(2.12) holds. Thus, by (2.17) cos(7(5)/2) € (—1,—1/2] for all g € (0, 3.).
Moreover, (2.15) and (2.40) again ensure that (2.37) holds with y =
cos(7(03)/2) for any B € (0,0.). Let us note that the right-hand side of
(2.40) does not depend on E (€ E(emin, €maz)). These properties combined
with (2.39) imply that on the assumption (2.40) for any E € E(emin, €maz),
B € (0, 5.) there exists & € Rq such that

(2.41) %95 (4. 7(8).0) 2 0, (v € (0.8)).
99k
%98 (3, 7(8),0) =0,
%98 (4,7(5),0) <0, (Ve € (3,00).

Finally let us prove that 7(-) has one and only one local minimum point
n (0,5.). Suppose that 0 < f; < (2 < (. and (31, (2 are local minimum
points. If 7(81) < 7(B2), there exist 81, 35, 55 € (0, B2] such that 5] < 35 <
B4 and 7(B]) = 7(8,) = 7(65). If T(ﬁl) > 7(f2), we can take such (3], 35,
By from [B1, Bc). It follows that gr(3},7(5]),0) = 0 for all j € {1,2,3}. By
(2.41) there exists & € R+ such that

99k

T (3.0 20, (var € (0,8)),
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0 :
(@7 (8).0) =0,

0 , -

I (a,7(81),0) 0, (Vo € (3,)).

If # € (0,0, the function z — gg(z,7(8]),0) must be identically zero
in [B5, B5]. Since this function is real analytic in R, the identity theorem
ensures that this function is identically zero in R+, which is a contradiction.
If £ € (), 00), this function must be identically zero in [3], 53], which also
leads to a contradiction. Therefore, if 7(-) has a local minimum point in
(0, Bc), it must be unique. Let us define the function 7(-) : [0,5.] — R as
follows. 7(x) := 2r for z € {0, 8.}, 7(x) := 7(z) for z € (0, 3.). By Lemma
2.2, 7 € C(]0,5.]) and 7(x) < 7(0) = 7(B.) for any = € [0, 5.]. Thus 7(-)
attains its global minimum in (0, 3.), which implies that 7(-) has a local
minimum point in (0, 3.). The proof is complete. [J

Next we will prove that the conclusion of Proposition 2.10 does not
hold if emin/€maz < V17 — 12v/2. We divide the problem into two cases,

emin/€mar = V17T =122 or emin/€maz < V17 —12y/2. The following

proposition states the result for the case that the equality holds.

PROPOSITION 2.13.  Assume that emin/€maz = V' 17 — 12v/2. Then for
any d, b € N, basis (‘A’j)?zl of R%, Uy € (0,2€min/b) there exist U € [~Up,0)
and E € E(emin, €maz) such that 7(-) has more than one local minimum
points in (0, 5e).

REMARK 2.14. We should stress that in our proof we construct such
E(€ &(emin, €maz)) depending on Uy. On the contrary, we will construct
E(€ E(emin, €maz)) independently of the magnitude of the coupling constant

when we deal with the case epin/emar < V17 — 12v/2 in Proposition 2.16.

Let us show a lemma which we need to prove the above proposition. Set

(2.42)

D:= {(:r,y, z) € Rsg x (—1,0) x Ry ) < (coshl(lyll))Q} :

22(y+1)
Define the function w : D — R by

(1 + ycosh(v/y F 1v22)) (y + cosh(v/y F 1v/2z2))?
(1 + ycosh(v/y + 1v/2z2))(y + cosh(v/y + 1v2z))?

(243) w(z,y,z):=—
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The necessary lemma concerns properties of the function w. For (z,y, 2)
€ D we can rewrite as follows.

(2.44)

2
(1 YL %Tn m) (1 + 20 yﬂn 2”z”x”)

- 5.
(v P ) (15 o )
Define the open set D of C? by
(2.45)

w(z,y,2) = —

Z‘” (y+1)" i
Yy n,.n
n=1

Then we can define the analytic function @ : D — C by the right-hand
side of (2.44). It follows that w|p = w. It will often be more convenient
to deal with @ than w during our construction. Note that for z € Ryg
and z € (0,271, (z,—1,2) € D. We will particularly use the following
equalities. For z € Ry and z € (0,271)

(2.46)

- ~(z— 1)1+ za)?

b, —1,2) = (1—z2x)(1+x)%’

(2.47)

ow ~3z(1 = 2)(1 + zx) z+1 1
(9_$(x’71’ )= (1—zx)2(1+2)3 ( T 3z $+;) ’
(2.48)

ow B z(1+ zx)

8_y(x’ —Lz)= C6(1— zz)2(z + 1)3

(64 3z +2%)(1 — 222%) + 2(2? — 1)(6 + 3z + 2%2?)).
To shorten subsequent formulas, let us set ag := 34 2v/2, np := 17— 12v/2.

LEMMA 2.15.  There ezists yo € (—1,0) such that for any y € (—1,yo]

(2.49) (cosh™ (|y[~1))?,

1 1
—— (cosh M|y ™) < ag < ———
2(y+1)( (w) < a0 2m0(y + 1)
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(2.50) 0 < w(ag,y,m0) < 1.

Moreover, there exist
1
€ [ =————(cosh™1(Jy| ™))%, ,
1) € (o™ 1)

oaly) € <ao, <cosh—1<|yr—1>>2)

2n0(y + 1)
such that

w(z1(y),y,m0) = w(ao,y,n0) = w(@2(y),y,m0),
w(x,y,m0) > w(ao,y,m), (Vz € (x1(y),an)),
w(l‘»yaUO) < w(a07y7770)7 (VZL' € (CL(],LEQ(y)))-

Proor. The following equalities are useful.

(2.51) ne — 34mo +1 =0,
1
(2.52) ap = %,
(2.53) ap(no + 1) =6,
1
(2.54) ag = -
(2.55) a2 — ”‘;):7:)1% + % = 0.

We can deduce from (2.36) that

1
lim ——(cosh ™ (ly ™ ))2 =1<ay < —
N1 2(y+1)( (|y’ )) 0 0

(cosh ™ (Jy[™))*.

(2.56)

1
= lim ——
vN—12m0(y +1)
This implies that there exists € € Ry such that (ag,y,nm0) € D for any
y € (—1,—1+ ¢). Moreover, (ag,—1,1m9) € D. By multiplying both the
denominator and the numerator of (2.46) by a3 and using (2.54) we can
derive that

- 1
(2.57) w(ag, —1,m0) = —.
ao
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Thus, there exists y; € (—1,—1 + ¢) such that for any y € (—1,y1] (2.49)
and (2.50) hol;i: Also, by (2.47) and (2.55) %(007—1700) = 0. Next let
us compute gx—é‘;(ao, —1,m0). The computation can be quite complicated
if we follow a wrong way. Let us present right steps leading to a concise

formula, though this would not be the only approach. Let us decompose
the right-hand side of (2.48) as follows.

aa—j(x, —1,770) = wl(w)LUQ(l’),
- x(1+ nox)
wi(z) == —

6(1 —noz)?(x +1)3
wo(x) == (6 + 3x + :U2)(1 — 778332) + 770($2 —1)(6 + 3nox + n§x2).

Using (2.54), (2.52), (2.53), (2.54) in this order, we obtain that

(2.58)
@(a):_1+(3170—2)a0+3n0a3+3n§a8:_ 5+ 10 — 2ao
dr " 6(1 — moao)3(ao + 1)4 6(1 —noao)®(ao + 1)*
_ L —mo __wi(ao)
©6(1—mao)®(ag +1)3  ag

By using (2.51) and (2.54) repeatedly

(2.59) ’wg(ao) = (1 — 770)(46 + 3(1 + 770)@0).

By using (2.54) only,

dw
o (@0) = (1= 10) (2075 + 510 + Dag + 3(1 + 10)).
Then by using (2.51) and (2.54) again
dw
(2.60) aod—;(ao) = (1 =) (78 + 3(1 + m0)ao).-

By combining (2.58), (2.59), (2.60) and using (2.54) once

&% w1 (ao)
1 _ _ Z1\"0)
amay(a()? 77]0)

(wz(ao) - ao%(ao)) =32(1 — Tlo)wl(ao

dx
16(1 —no)?
3(1 — moag)3(ag + 1)3°

ao
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Since %(ao, —1,m0) < 0, there exists y2 € (—1,y1] such that
03w

Ox0y>? (

0%
(a0>_17770) + sup Cl(],t,?](])

0x0y te[—1,y1]

(y2+1) <0.

Since %(ao, —1,m9) = 0, this estimate ensures that for any y € (—1, yo]

9
(2:61) 5 (a0.y.m0)
0% Y Pw
= —1 S
8$6y ((10, 7770)(y + 1) + /_1 dt(y t) 8x8y2 (Clo,t,’l’](])

03w

&C—ayg (ag,t,mo)

+1 +1
920y o (2 )) (y+1)

< 0.

0%
< (a/Ov_laT/O) + sup

Let us fix y € (—1,y2]. Observe that

lim w(%@/ﬂ?o) = 07
w\m(cosh”(\ylfl)ﬁ
lim w(z,y,m0) = 00,

x/m(ms}lfl(m_l))z

which combined with the inequality (2.61) imply the existence of xi(y),
x2(y) with the claimed properties. O

Define the function W : Rsg x (—=1,0) x Ryo X Rsg — R by

sinh(x) sinh(zx)

(2.62) Wiz,y,25) = y + cosh(x) ’ (y + cosh(zx))z’

We will use this function and the functions w : D — R, @ : D — C in the
rest of this section mainly for organizing proofs.

ProorF or PropPOSITION 2.13. By Lemma 2.15 there exists yp €
(—1,0) such that for any y € (—1, y]

1
cosh™(|Jy|™) < v2ag < ———cosh ™ (|y|™}),

1
(2.63) NS PRUESY
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0< w(ag,y,no) < 1.
Observe that by (2.63) and the inequality sinh(z) > z (Vx € Rsy),

b
Wi(+/2 1
w(a07y7770) +1 ( aO(y+ )7?/7 \/%’w(a()’yanﬂ))

beosh™ ([y|™")

(2.64)

= 1
y + cosh(rgy * cosh™(|y| 1))

for any y € (—1,yg]. Take any Uy € (0, 2ep,in/b). By using (2.36) one can
check that the right-hand side of (2.64) diverges to 400 as y \, —1. Thus,
there exists y1 € (—1,yo] such that for any y € (-1, y1]

b

2
Wi(+\/2 1)y, , v, S 2
w(aog,y,mo) +1 (V2a0(y + 1)y, v/no, w(ao, y,m))

(2.65) 0

Note that for (z,y,2z) € Rsg x (=1,0) x Rso satisfying =z <

1 -1 -1
L cosh ™! (Jy| )

(2.66) %—Z/(\/y-i-l-a:,y, Vz,8)

- (o )

Let us fix y € (—1,y1]. Lemma 2.15 ensures that there exist

#1(y) € ( Vylﬁcosh—luyrl),m) |

Z2(y) € (\/%, ;1 COSh_l(’y’_1)>

no(y +1)
such that
ow R
%( VY +1- %(y)a% \/n_Oaw(a(%yanO))
ow

= —1'( 2a0(y+ 1)7y7 \/77_07w(a07y7n0)) = 07 (] = 172)’

W a1 2y, /o, wlao g m0)) <0, (Ve € (d1(y), vZa)),

X
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O (Va1 -,y Vo, wlao, o)) > 0, (Ve € (3, £2(0).

These imply that

(2.67) min W(\/y+1-2;(),y, /no,w(ao,y,n0))

je{l,2}
> W(\/2a0(y + 1), ¥, v/mo, w(ao, y,m0))-
By (2.65), (2.67) we can take small 6 € Rs( so that

1
’UJ(CL(), Y, 770) +1
(2.68)

2—<b< ! —6)
UO w(a(]ay?n()) +1

UJ(G/O,y, 770) + 6(“’(“0,% 770) + 1)
W < 2a0(y - 1)7 v \/?7_7 1- 5(11)(61,0, y7770) + 1)
b

< min W (\/y+1-2;(y),y, /10, w(ao,y,m))-

w(ag,y,no) + 1 je{1,2}

—6>0,

Here let us apply Lemma A.1 proved in Appendix A with epin = /7o,
Crmaxr — 1, S = m — 6, t= m. By Substituting the matrix-
valued function F into the function (2.38) and recalling the monotone de-

creasing property of the function (1.7) we observe that for any = € R

(2.69)
Foo(,y)
. sinh(z) . sinh(z) B sinh(z/n0)

2 b y + cosh(x) +o(t )y + cosh(x) +o(1—1) (y + cosh(x\/%))\/n_o
= e e W (a0, ).
Foo(z,y)

sinh(z) . sinh(x+/70)
- Sy + cosh(z) +o(t = s) (y + cosh(zy/M0))+/T0

sinh(z/n0)

+o(l-t) (y + cosh(z/m0))\/M0
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1
—b 5
<w(ao,y7no) +1 >
w(a()’y?n()) + 6(w(a0,y, 770) + 1)
W (‘““"’y’ VI S (w(ao. g, m0) £ 1) :

By combining these inequalities with (2.68) we have that

je{1,2
2
i <Jg{qg} (VY +1-25(y),y)

This implies that there exists U € [—Up,0) such that

2 . )
Foo(V2a0(y +1),y) < o < min Foo(\/y+1-2;(y),y).
U]~ je{1,2}

Therefore, by taking into account the fact Fo(0,y) = 0 we see that there

exist
B1e (0,Vy+1-21(y)),
B2 (Vy+1-21(y), v2a0(y + 1)),
B3 € (V2a0(y + 1), \/y+1 Za(y))

such that —2/|U| + Fso(B;,y) = 0 for all j € {1,2,3}. Moreover, it follows
from Lemma 2.1 that 0 < 1 < B2 < (3 < fB¢, y = cos(7(B;)/2) for all
j €{1,2,3}, and thus 7(51) = 7(82) = 7(f3). A A

Finally let us prove that there exist 1, 82 € (0, 3.) such that 3; < (2
and these are local minimum points of 7(-). If 7(8) = 7(82) (V0B € (51, 52))
or 7(8) = 7(B2) (V8 € (B2, 33)), such 31, B2 obviously exist. If there exists
B € (b1, F2) such that 7(5) > 7(f2), since limg\ o 7(8) = limg 5. 7(6) =
o1 > 7(61) = 7(B2), local minimum points f1, fy exist in (0,8, (3, 5e)
respectively. The same conclusion holds if there exists ' € (32, 33) such that
7(3') > 7(B2). It remains to study the case that there are 8] € (51, 52), 55 €
(B2, B3) such that 7(3;) < 7(B2) for j € {1,2}. In this case local minimum
points (1, B2 exist in (61, 32), (B2, P3) respectively. The proposition has
been proved. [J

A stronger conclusion than Proposition 2.13 holds when e,,in/€mar <

V17— 12V/2.
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PROPOSITION 2.16. Assume that €min/emaz < V17 — 12v/2. Then for
any d, b € N, basis (ffj)?zl of R there exist E € E(emin, €maz) and Uy €
(0,2emin/b) such that for any U € [=Up,0) 7(-) has more than one local
manimum points in (0, Bc).

REMARK 2.17. The difference from the conclusion of Proposition 2.13
is that here E (€ &(emin, €maz)) is independent of the choice of small U.
This conclusion implies the conclusion of Proposition 2.13.

Observe that for n € (0,17 — 12v/2], (1;—7]77)2 — % > 0. This allows us to
define the real numbers a4 (n), a_(n), a(n) by
1+n 1+7\2 1\3
2.70 =1 — Ny
(2.70) artn) =+ ()~ )
) 147 ((1—1—17)2 1)%
a =— (=) — =
n 617 6 n)
ayr(n)—a_(n
a(n) 1= a_(n) + =)

Let us summarize basic properties concerning these numbers, which can
be deduced from (2.47), (2.52) and will be used not only in the proof of
Proposition 2.16 but also in Sub-subsection 2.3.1.

LEMMA 2.18. Ifn =17 — 122 (= 1),
(2.71) L<ay(n)=a_(n)=a(n) =a =3+2vV2<n L.

For any n € (0,17 — 12V/2)

(2.72) 1<a—(n) <an) <ax(n) <n ',

07) P 1m)>0, (Ve 0.0 ()
g—im_m),—l,n) 0,
O e 1w <0, (V€ (a(n), ),
ow

o (as(m), ~L.m) =0,
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o .
%((IZ, _1777) > 07 (V.’E € (a+(77)777 ))7
(2.74) 0 <w(a+(n), —1,m) <w(a(n),—1,n) <wla—(n),—1,1n).

PROOF OF PROPOSITION 2.16. Define the function W : R<p x Ry %
o~ x x

Wiz, z,s):= + s .
(@:79) 142 14222

Let us observe that for (z,2) € Ryg x Ry satisfying z < /2/z
- 1 _2%2 ( (12 ))
—(r,Vz,8)=——=—[s—w|—,—-1,2) |.
Ox (#,V2,5) (1+ 2992_2)2 2

Fix n € (0,17 —12v/2). On the basis of (2.73) and the facts @ (1, —1,7) = 0,

lim, -1 w(z,—1,7) = +o0, we conclude that there exist z; €
(v2,4/2a(n)), v2 € (1/2a(n), /2n~1) such that
oW

%(xj’ \/7_” w(&(n)v -1, 77))

- %—Z/(m, Vi, w(a(n), —1,m)) =0, (vj € {1,2}),
%g?@%vﬁﬂﬂﬁﬂn%—an»<<0, (Vz € (z1,/2a(n))),

v @), ~1,m) > 0, (e € (v/2al),w2))

These imply that
min W (z;, /7, @(a(n), —1,17)) > W(y/2a(n), i, (a(n), —1,1)).

jef1,2}
We can choose small § € Ry so that

1

ﬁ}(d(n)v -1, 77) +1

b TS R

—6>0,
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1
>0 <w<a<n>,—1,n> 1 5)
= O(atn) o) + 8001+ 1)
W(”“”)W’ ~S{w(aln), 1) + 1) )

Here we apply Lemma A.1 with € = /7, €maz = 1, 8 =

_ 1
Fo:R—Rby

1
@ T
With the matrix-valued function E we define the function

~ X
Fo(z ::D/ akTr | — X ).
(#) = Da . <1+x2—2E(k)2)

By arguing in the same way as in (2.69) we can derive from (2.75) that

ﬁoo( 2a(n)) < minjeqy 2y ﬁoo(:ﬁj). Check that lim,\ 1 vy + 1F(Vy +1-
2,y) = Fo(x) for all z € R, where Fio(+) is the function defined in (2.38).
Thus, there exists y1(n) € (—1,0) such that for any y € (—1,y1(n)]

(2.76) Fo(W/2a(n)(y+1),y) < ‘min}Foo(\/y +1-z5,y).

Je{1,2

By recalling the monotone decreasing property of the function (1.7) we have
that for any y € (=1, y1(n)]

(2.77) bsinh(\/2d( )y +1)) I OIEE)

y + cosh(y/2a(n)(y + 1))

Set

Uy := min { Z7in (y1(n) + cosh( \/2a yi(n) +Dm))yn
0" b’ bsinh(+/2a(n) (77) +1)n) .

It follows that Uy € (0, 2,0 /b). Take any U € [—Uy,0). By (2.77)

2 2

Foo(v/2a(n)(y1(n) + 1), y1(n)) < T S o
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Set
si={ve L) | FuVEGIGT .00 = 7}

By considering the fact that the left-hand side of (2.77) diverges to +00 as
y \, —1 we see that S # 0. Set y2(n,U) :=supS. Then, —1 < ys(n,U) <
y1(n) and by (2.76)

o (v/28(m) (02, )+1),yz(n,U))=%

< Amin Foo( yQ(T],U)+1'$j,y2(77’U))7
36{172}

Foof 2a<n><y+1>,y><%, (Vy € (va(n, U), 52 ().

This implies that if we take y3(n,U) € (y2(n, U),y1(n)] sufficiently close to
y2(n,U),

2

\/2@ y3 77, )+ 1)7y3(777U)) < m

i FOO ,U 1- j o 7U .
<jé1{1512} (Vys(n,U) +1-z5,y3(n,0))

Then we only need to repeat the same argument as in the last part of
the proof of Proposition 2.13 to conclude that 7(-) has at least two local
minimum points. [J

By combining Proposition 2.10, Proposition 2.13, Proposition 2.16 we
reach the following theorem.

THEOREM 2.19. For anyd,b € N, basis (ff])j 1 of R? and emin, €maz €
R satisfying emin < €maz the following statements are equivalent to each
other.

(i) There ezists Uy € (0,2€emin/b) such that for any U € [—Uy,0) and
E € E(emin, €maz) T(+) has one and only one local minimum point in

(0, Be).-
(i)

Gmin. 17 = 12V/2.

€max
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REMARK 2.20. According to Theorem 1.3, we have to take small U
depending on E € &(emin, €maz) in order to justify the derivation of the
infinite-volume limit of the free energy density and the thermal expectations
from the finite-volume lattice Fermion system. The graph {(3,7(3)) | 8 €
(0, Bc)} can be rigorously considered as the representative curve of the phase
boundaries of the phase transition happening in our system only if the
derivation of the infinite-volume limit is justified. Here let us summarize
what we can conclude by combining the results obtained in this section with
the sufficient condition for justifying the derivation.

By Proposition 2.8 for any E € E(emin,€maz) With €min/€maz > €0
there exists Uy € (0, 2€pmin/b) such that for any U € [-Up,0) the derivation
is justified and %(ﬁ) > 0 for any 8 € (0, 5.).

By Proposition 2.10 for any E € E(emin,€maz) With €min/€maz >
V17 — 124/2 there exists Uy € (0, 2epin/b) such that for any U € [~Up,0)
the derivation is justified and 7(-) has only one local minimum point in
(0, 5).

By Proposition 2.16 for any emin, €maz € Rso With emin/€mar <
V17 — 12v/2 there exist E € £(€min, €maz) and Uy € (0, 2emin/b) such that
for any U € [—Up, 0) the derivation is justified and 7(-) has more than one
local minimum points in (0, G.).

However, in Proposition 2.13 we do not have freedom to choose small
U. The coupling constant U was chosen depending on F in the proof and it
is not clear whether for such U the derivation is justified by Theorem 1.3.
Thus, strictly speaking, in the case emin/€mer = V17 — 12v/2 we cannot
claim that 7(-) has more than one local minimum points while justifying
the derivation.

REMARK 2.21. In view of Proposition 2.8, we can propose a problem
to find a necessary and sufficient condition in terms of €y,ip/€mas for that
7(+) is downward convex in (0, 8.) for any E € E(emin, €maz). However, we
are unable to solve the problem at present.

2.3. Study of specific models

In the proofs of Proposition 2.13 and Proposition 2.16 we constructed
particular examples of E (€ £(emin, €maz)) for which 7(-) has more than
one local minimum points. However, these results do not tell us whether
7(+) can have more than one local minimum points when we change the
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value €in/€mas Within a one-particle Hamiltonian explicitly parameterized
by €min, €maz, though we know that 7(-) must have only one local minimum
point for small U when emin/€maz > V17 — 12¢/2 by Proposition 2.10. In
this subsection we study this question for the following two models. Let I,
denote the n X n unit matrix for n € N.

(1) Let d € N, b € N>o, V/ € {1,2,--- ,b— 1} and (\7]-);1:1 be any basis of
RY. Let us define Ey € £(emin, €maz) by

emaxI / 0
Ey(k) := ((emazli<ty + €minlisp)Lizj)i<ij<b = < 0 b e Ty )
mwn —
(k € RY),
which is a b-orbital model without hopping.

(2) Let d = b =1 and v; = 1. For t € R>g, emin € Rso let us define
Eq € E(emin, 2t + emin) by E1(k) :=t(cosk + 1) + emin, (kK € R). The
function Ej(+) is the dispersion relation of nearest-neighbor hopping free
electron on the 1-dimensional lattice Z.

It will turn out that the uniqueness of local minimum points is sensitive
to the ratios €min/€maz, (b — ')/ in the model (1), while the uniqueness
holds for any t € R>¢, emin € Rso in the model (2).

REMARK 2.22. For t, u € R let us define the function e; : R —
R by ej(k) := tcosk + u. The function e;(-) satisfying the condition
infrer|e1 (k)| > 0 is the most general form of a non-vanishing dispersion
relation of nearest-neighbor hopping free electron on Z. We can check that

/27r dk sinh(fe; (k))
o Wl cosh(Ber (B))er ()
[ sinh(B({t] cos k + |u])
o (y+cosh(B([t|cosk + |u])))(|t| cosk + |u[)’

(V6 € Rso, y € (—1,0)).

By using the above equality and the fact that inficr e (k)| > 0 is equivalent
to || > |t| we can reduce the problem with e;(-) to that with F1(-) defined
in (2). This means that the results we will obtain in Sub-subsection 2.3.2
for F1(-) also hold for e (-) satisfying infxer |e1(k)| > 0.
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2.83.1 The multi-orbital model without hopping
Here let us study the profile of 7(-) in the model defined in (1). Our
central question is when 7(+) has only one local minimum point. The answer
is given in the next proposition.

PROPOSITION 2.23. Set the condition (x) as follows.

(x) There exists Uy € (0, 2€min/b) such that for any U € [=Uy,0) 7(-) has
one and only one local minimum point in (0, B.).

Then the following statements hold.

(i) Assume that bg,b/ €B3- 2\/5, o0). Then for any emin, €maz € Rso
with emin < €maz (%) holds.

(ii) Assume that bg,b/ € (1/8,3 — 2v/2). Then there exist e, ey €
(0, V17 — 12v/2) such that ey < ea and (x) holds if emin/emaz € (€2,1],
(x) does not hold if emin/€maz € (€1,€2], (%) holds if emin/€maz €
(Oa 61] .

(iii) Assume that b;,b/ € (0,1/8]. Then there exists ey € (0,17 — 12/2)
such that (x) holds if emin/€maz € (€1,1], (x) does not hold if
emin/emaw € (0761]~

Again the proof of this proposition is based on some properties of the
function w defined in (2.43). Let us set two conditions concerning the
function w. Let n € (0,1), s € Rxo.

(i)n,s There exists yo € (—1,0) such that for any y € (—1,yo] there exists

s € (g o™ (™02, gy Coosh ™y 7))

such that

w(z,y,n) < s, (Vz € <2( L

y—+1)<cosh1<|y|1>>2,xo<y>>> ,

w(wo(y),y,n) = s,

wleapn) > s, (o€ (). 5o (eosh ol )7 ).
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(ii);,s There exists yo € (—1,0) such that for any y € (=1, o] there exist

2(y) € (ﬁm(cosh*uyr*»% ﬁ@osh-luyr-l»?) ,

y+1)
(j=1,2,3)

such that x1(y) < xz2(y) < x3(y),

w(z;(y),y,m) =s, (Vj€{1,2,3}),
w(z,y,n) >s, (Vo€ (r1(y),r2(y)),
w(z,y,n) <s, (Yz € (r2(y),23(y)))

We summarize sufficient conditions for (i), s (or (ii)y,s) to hold in the
next lemma. To understand the statements, we should recall the inequalities
(2.74).

LEMMA 2.24.
(i) Assume that n =17 —12v/2. Then for any s € (0,00) (4),,s holds.

(ii) Assume that n € (0,17 — 12v/2). Then for any s € [w(a_(n),—1,7),

00) (i)y,s holds. For any s € [w(ay(n), —1,n),w(a—(n), =1,n)) (it)y,s
holds. For any s € (0,w(at(n),—1,n)) (i), holds.

PROOF. Assume that n € (0,17 — 12v/2]. Let us prepare necessary
basic properties related to the function w. The preparation continues until
we prove the claim (2.86). Observe that there exists yp € (—1,0) such that

1

T T W > 1 (e (L))

This claim can be proved efficiently by proving the equivalent statement
that there exists yo € (—1,0) such that |y|=! > cosh(y/2(y + 1)) for any
y € (—1,yp]. Moreover, by (2.71), (2.72) there exists yo(n) € (—1,yo] such
that |yla(n) > 1 for any y € (—1,yo(n)]. We can see from (2.44) and
the limit in the left-hand side of (2.56) that for any y € (—1,y0(n)], € €

(0,77t —ay(n)) and

1
-1 L1y~ 1))2
e |n €, 00y + 1)(COS (yl—)7 ),
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(2.78)
w(z,y,mn)
- yln™ —e) -1
- 00 n—1 _ _ n ’
(gm0 = 2)) (1+ 202 Yo 2n (e (cosh™ (91 1)2)")
-1
. n - —ec—1
| .H.S of (2. =
NS oL 8 =5 e

Take any s € Rso. Note that there exists e(s,n) € (0,77 — ay(n)) such
that .

n _5(3777)_1 > 2s.

ne(s,m) (1 +n~1)?
Then it follows from the above claims that there exists y1(s,n) € (—1, yo(n)]
such that for any y € (—1,y1(s,n)]

1

(279) 1< 2 T D) (cosh™(lyI™"))* < a—(n) <ay(n) <n~ " —e(s,m)
1 _ _
< m(COSh Yyl™h)?

and for any

S 7771 - 5(577])’

——(cosh™! 12
ST (TR IR

(2.80) w(z,y,m) > s.

Recall (2.45). To justify the subsequent argument, let us check that there
exists 6(s,n) € (0,e(s,n)) such that

(1= 8(s,m),n~" = e(s,m) +8(s,m) x (=1 = 6(s,m), =1+ 6(s,m) x {n}
c D.
We can deduce from (2.48) that supgep ,-1-c(s) g—g’(x,—l,n) < 0. For

(Z’,y) < [177771 - 8(3777” X (_17 -1+ 6(8777)/2]

w(x,y,n)
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B 0 Y 020
Zw(fﬂ,—l,n)+a—Z(fﬂ,—1,n)(y+1)+/1d§(y—£)a—;;(fﬂ,§,n)

- ow
Sw(xa_]-an)—i_ sup 6_@7—1777)(@"'1)
46[1»7771—5(5,77)] y

9w

S e AR
¢ell,n™t—e(s,m) Yy

E€[-1,—1+6(s,m) /2]

Recall (2.42). These imply that there exists ya2(s,n) € (—1,y1(s,n)] such
that [1,77" —e(s,m)] x (=1, 42(s,m)] x {n} C D and

(2.81)
w(l‘ay/n) < “7(1’:—1777% (\v/(xhy) € [1>77_1 _5(5777)] X (_17y2(5a7])])'

We will also refer to the basic fact that

1
2.82 h=1(|y|~1))? = —1 .
282) w5 s ot ™)) =0 (€ (~Lans.nl)
Let us define the function w : R? — R by

w(x,y,2)
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By differentiating (2.44) we can derive that

(2.83)

ow
%(LI?, Y, 77)
1+ 220:1 (y-(‘rzl”z;_Iannxn
B oo (y+1m? 2 oo (y+1)nt sy,
<1+y2m:1 y(zm)g anmxm) (1+Zn:1 y(zn)! ann>

(V(l’,y) € [1777_1 _5(8777)] X (_17y2(3a77)])‘

Let us observe that

(2.84) w(z,—1,n) =301 —n)(z —ar(n)) (@ —a_(n)),
ZT%(:L’, —1,n) =6n(1 —n) > 0.

The above inequality implies that there exists y3(s,n) € (—1,y2(s,n)] such
that

2w
(2.85) Sz (@) >0, (V(@y) € [Ln " —e(sm] x (=1 ys(s,m)]).

Also, by (2.79) and (2.84) w(n~! —&(s,n), —1,1) > 0. Thus, there exists
ya(s,m) € (—1,y3(s,n)] such that

(2.86) win™t —e(s,n),y,m) >0, (Vy € (=1, p(s,n)]).

As we have prepared necessary tools, let us start proving the claims of
the lemma case by case.

(i): Assume that n = 17 — 124/2. Recall the relation (2.71). Assume
that s € (w(a—(n),—1,7n),00). We can deduce from (2.46), (2.47) that

(2.87)  x— w(z,—1,n): [1,77!) = R is strictly monotone increasing,

w(l,-1,7) =0and lim w(z,—1,n)= cc.
z /0t

Thus there uniquely exists a; € (a—(n),n~1) such that s = w(a1, —1,7). If
ap € (7" —e(s,m),n~"), by (2.81) and (2.87) w(z,y,n) < s, (V(z,y) €
[1,77! — e(s,m)] x (—1,%2(s,m)]). This contradicts (2.80). Thus, a; €
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(a—(n),nt — e(s,n)]. By (2.81) and (2.87) again w(x,y,n) < s for all
(z,y) € [1,a1] x (—=1,y2(s,n)]. This property coupled with (2.80) ensures
that for any y € (—1,v4(s,n)]

(2.88) 0 #{x € (2(yl+ 0 (cosh™(Jy|™H)?, 5

1 1y =12
7y (ol )

| wiay,m) = } < far, ™ = <(s,m).

By (2.84) w(z,—1,1) > 3n(1 —n)(a1 —a_(n))? > 0 for any = € [a1,n" ' —
£(s,n)]. Thus there exists ys(s,n) € (—1,va(s,n)] such that for any (z,y) €
a1, —e(s,m)] % (=1, y5(s, )] w(z, y,n) > 0 and by (2.83) $%(x,y,n) > 0.
This property combined with (2.88) implies that (i) s holds

Assume that s € (0,w(a—(n),—1,7n)). By (2.87) there uniquely exists
a1 € (1,a_(n)) such that w(a1,—1,n7) = s. Since w(x,—1,n) > s for any

z € [a1 + §(a—(n) — ar),n~" — (s, n)], there exists ys(s,n) € (=1, ya(s,7)]
such that

(2.89) w(x,y,n) > s,

(G € fan + 5ot = e = el x (LG,

By (2.84) w(z,—1,m) > 0 for any = € [1,a1 + 3(a—(n) — a1)]. Thus there
exists y7(s,m) € (—1,y(s,n)] such that for any (:1: y) € [1,a1 + 3(a_(n) —
a)] x (=1,y7(s,n)] w(z,y,n) > 0 and thus g—’”(m y,m) > 0. ThlS property
together with (2.79), (2.80), (2.82), (2.89) implies that (i), s holds.

Assume that s = w(a_(n),—1,m). Since n = ny, a_(n) = ”g;;l —
ap by (2.52), we can apply (2.61) to ensure that there exists ys(s,n) €
(—1,y4(s,n)] such that for any y € (—1,ys(s,n)] %(a_(n),y,n) < 0. This
combined with (2.83) implies that w(a—(n),y,n) < 0 for any y €
(—1,ys(s,n)]. Therefore, by (2.85), (2.86) for any y € (—1,ys(s,n)] there
exists z1(y) € (a—(y),n~ 1 — (s, n)) such that

w(z,y,n) <0, (Vz € la—(n),21(y))),
w(r1(y),y,m) =0,
w(z,y,n) >0, (Voe (zi(y),n " —e(s,n)),



The BCS Model with Imaginary Magnetic Field. 111 463

or by (2.83)

090) Py <0, (o lo)m)
g—:(xl(y),y,n) =0,
ow

%(%yaﬁ) >0, (VI’ € (xl(y)vn_l - 5(8777)]>'
We can see from (2.81) and (2.87) that

(2.91) w(@,y,n) <s, (V(z,y) € [La(n)] x (=1, ys(s,n)]).

Considering (2.79), (2.80), (2.90) and (2.91), we can conclude that (i),
holds in this case.

(ii): Assume that n € (0,17 — 12v/2) and s € [@(a_(n), —1,7),00). The
properties (2.72), (2.73), (2.74) tell us the profile of the function w(-, —1,7),
which together with (2.81) implies that

(2'92) w(ﬂfayﬂ?) <s, (V(l‘,y) € [1,CL+(77)] X (_172/2(8,77)])-

Since w(a—(n) + (ay(n) — a—(n))/2,—1,n1) < 0 by (2.84), there exists

yo(s,n) € (=1,ya(s,n)] such that w(a_(n) + (a+(n) —a-(n))/2,y,m) <0
for any y € (=1, yo(s,n)]. By taking this property, (2.85) and (2.86) into
account we can prove the following statement. For any y € (—1,y9(s,n)]
there exists z2(y) € (a—(n) + (a+(n) —a—(n))/2,7~! — &(s,n)) such that

weyon) <0, (¥ e (a-()+ 50 ~a- ) ).

w(z2(y),y,m) =0,
w(z,y,n) >0, (Vo€ (za(y),n " —e(s,n)]),

or by (2.83)

o) <0, (voe (et + Jastn - a0z ).

0
8_1;](332(:’4)’?/777) =Y,

Z_Q:(x7y,n) >0, (Vz € (z2(y),n " —e(s,m)]).
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By this plroperty7 (2 80) and (2.92) for any y € (—1,y9(s,n)] there exists
z5(y) € (ay(n),n " — =(s,)) such that

w(z,y,m) <s, (Vo€ [l,z3(y))),
w(z3(y),y,n) = s,

wlean) > s, (Y€ (). gy (eosh ) ).

Thus, the property (i), s holds.
Assume that s € [w(at(n),—1,n),w(a-(n),—1,n)). By (2.81) there
exists y10(s,m) € (=1, y4(s,n)] such that

(2.93) w(a—(n),y,n) >s>wlar(m),y,m), Yy (=1,y10(s,n)])-

Since w(1+4(a—(n)—1)/2,-1,n) > 0 and w(a_(n)+(a+(n)—a-(n))/2, —1,7)
< 0 by (2.84), there exists y11(s,m) € (—1,y10(s,n)] such that w( +
(a-(n) —1)/2,y,m) > 0, w(a—(n) + (a+(n) — a—(n))/2,y,m) < 0 for any
y € (—=1,y11(s,m)]. This property combined Wlth (2.85), (2.86) implies
the following statement. For any y € (—1,y11(s,n)] there exist x4(y) €
(1+(a—(y) —=1)/2,a_(y) + (a4(y) — a—(y))/2), x5(y) € (a—(y) + (a+(y) —
a_(y))/2,n~ % —e(s,n)) such that

or by (2.83)
g—j(m(y),y,n) = g—:(x5(y)7ya77) = 07
Z—Z(a:,yﬂﬁ >0, (Voell,zay))),
Z_Il:(x7y’77) < 0, (\V/IE S (334(y)7$5(y)))7
ow

oo (@9, >0, (Yr € (as(y).n " —(s.m)]).

By considering these properties we can picture the profile of the function
w(-,y,n). Take any y € (=1,y11(s,n)]. Suppose that s > w(za(y), y,n)-
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1 1

Then, by the profile of w(-,y,n) in [1,n7" —e(s,n)], if a € [1,n7" —e(s,n)]
and w(a,y,n) > s, w(a',y,n) > s for any a’ € [a,n~! — &(s,n)]. This
claim contradicts (2.93). Suppose that s < w(z5(y),y,n). Then, if a €
1,77t — e(s,n)] and w(a,y,n) > s, w(d',y,n) > s for any o’ € [a,n~! —
£(s,m)]. This claim contradicts (2.93) as well. Therefore, w(z4(y),y,n) >
s > w(xs(y),y,n). Moreover, by (2.80), (2.82) and the profile of w(-,y,n),

z4(y) > m(cosh_lﬂyrl))2 and there exist

a6 € (g gy o o P )

z7(y) € (v4(y), 75(y)),

_ 1 _ _
(o) € (o) = (o) (© () s eosh™ 02 )
such that
w(ze(y),y,n) = w(zr(y),y,n) = w(zs(y),y,n) = s,
w(xay7n) > 8, (V$ € (xﬁ(y),x7(y))),
w(z,y,n) <s, (Vx € (z7(y),25(y)))

This means that (ii), s holds.

Finally let us assume that s € (0,w(a+(n),—1,7)). We can see from
the profile of w(-, —1,7n) that there uniquely exists as € (1,a_(n)) such
that s = w(az, —1,m). Moreover, there exists az € (az,a—(n)) such that

w(z,—1,7) > w(az,—1,n7) > s for all x € [a3,n~!). Thus we can take

y12(5,m) € (—1,94(s,m)] so that w(z,y,n) > s for any (z,y) € [az,n~ " —

e(s,m)] x (=1,y12(s,m)]. Since w(x,—1,m7) > w(az,—1,n7) > 0 for any
x € [1,a3] by (2.84), there exists y13(s,n) € (—1,y12(s,n)] such that for
any (z,y) € [1,as] x (—=1,y13(s,n)] w(z,y,n) > 0, and thus by (2.83)
g—;‘j(x,y,n) > 0. These combined with (2.79), (2.82) imply that for any
y € (—1,1y13(s,m)] ag > m(cosh*lﬂyrl))2 and there exists xg(y) €

(m(COSh”UyI”))?,ag) such that

wlean) <5, (o€ (ot ot ol P ) ).

w(wy(y),y,n) = s,
w(z,y,n)>s, (Vo e (vo(y),n " —e(s,n)).
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Taking into account (2.80), we conclude that (i), s holds. (J
By applying Lemma 2.24 we can prove Proposition 2.23.

PROOF OF PROPOSITION 2.23. Recalling (2.62), we see that

(2.94)
v 2€max t\ emin D=0
gEb(Z',t, 0) = % <_ b,|U| + W (emaacxvcos <§> ’ emaxa b )) .

Theorem 2.19 implies that if epin/€maz > V17 — 12v/2, for any b € N>o,
v € {1,---,b—1} (x) holds. Let us assume that e,in/emaezr < V17 — 12¢/2

in the following. For 1 = (emin/€maz)?, s = (b — ')/ let us prove the
following statements.

e If the condition (i), holds, (x) holds.
e If the condition (ii), s holds, () does not hold.

Assume that (i), s holds. Then by (2.66) there exists yo € (—1,0) such
that for any y € (—1,yo] there exists

roly) € (ﬁ@osh—l(\yrw <cosh—1<\y|—1>>2)

2n(y +1)
such that

ow
%(\/y—l-l-x,y,\/ﬁ,s) > 0,

(vx c ( Vylﬁcosh-luyrl),m)),

ow

5 (V20 + Dzoly).y, v, s) =0,
%—Z/(\/y-l—l‘x,y,\/ﬁ,s) <0,
S gL
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Let cos™! : [=1,1] — [0,7] denote the inverse function of cos|j . The
above property and (2.94) ensure that for any ¢ € [2 cos™! o, 27)(C (7, 27))

there exists
1 AV £\ |
~ h_1 M h—l e
z(t) € <€max Ccos ( cos <2> > o cos ( cos <2> ))
such that
0 1
IE, (z,t,0) >0, (V:L’ € ( cosh™! (
ox Emazx
09E,
ox

agEb R 1 1
5 (x,t,0) <0, [|Vze i), p— cosh

or by taking into account (2.34)

(i(t)? t O) =0,

(2.95)

(x,t,0) >0, (Vze(0,2(t)),

(z,t,0) <0, (Vxe (Z(t),0)).

Suppose that (x) does not hold. Then for any Uy € (0,2epmn/b) there
exists U € [~Uy, 0) such that 7(-) has more than one local minimum points
in (0,8). By (2.15) cos(r(8)/2) + 1 < SmCLy,  Thus if we take U
sufficiently small, 7(3) € [2cos™! yo, 27) for any 3 € (0, 3.). Now there are
Bi € (0,8:) (j =1,2,3) such that 81 < B2 < B3 and 7(81) = 7(B2) = 7(83).
Thus, gg, (8, 7(61),0) = 0 for j € {1,2,3}, which implies that there exist
x1 € (B1,02), x2 € (B2, 3) such that %(xj,T(/Bl),O) =0 for j € {1,2}.
This contradicts (2.95) with ¢t = 7(1). Therefore, (x) must hold.

Assume that (ii),,s holds. Take any Uy € (0, 2epmn/b). The limit in the
left-hand side of (2.56) tells us that there exists e € Rs( such that

cosh ™! (Jy| ™),

L B cosh_l(\y\_l) C [1 i]
Vy+1 Vi(y +1) VI
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for any y € (=1, —1 + ¢). Thus,

) sinh(vy+1-§)
w Vy_%l'laya n,s > inf ’
( Vi) gel, %]y +cosh(vy +1-¢)

(\w €(~1,-1+¢),

e cosh™" ([y| ™),

L e (7
Vil Vi )

Since the right-hand side of the above inequality diverges to +oo as y \, —1,
there exists y; € (—1,0) such that

(2.96)

2ema:c
W y+1-z,y,/n,s) > 7,

1 -1 -1 1 -1 -1
<Vy € (-Lwyl, z€ <\/ﬁ cosh™ ([y| )ymws}l (lyl ))) :

By the assumption and (2.66) there exist y € (—1, y1],

1 _ _ 1 _ _
2500 € (g gy eosh™ )P g cosh (102
(1=1,2,3)

such that x1(y) < z2(y) < z3(y),

88—11/( 2(y+ 1)-Tj<y),y, \/7_77 5) =0, (V] S {1,2,3}),
O (Vo L2y vis) <0, (e € (2 (0] v 2ma(0).
ow

T (VY1005 >0, (Y2 € (V222(y), v/ 223(1))-

By combining this with (2.96) we have that

jé’l{l}%} W(\/2(y + Dj(y), y, v/, 8) > W(V2(y + Daa(y), y, /1, 5)
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2emax

VU, -

Thus, there exists U € [-Uy, 0) such that

. 2emaz
W(/2(y+ Daxi(y),y, ,8) >

> W(V2(y + Dx2(y), y, v, 5)-

Therefore, there exist

B e <07 — 2(y+1)$1(y)>,
Bze( LAl D), \/2<y+1>x2<y>),

emaac ema:c

Bs € (e;x V2(y + 1)z2(y), ! V2(y + 1)583(2/))

emax

such that W(emaxﬁj,y, V1, 8) = 2b°7|1}}1|$ for j € {1,2,3}, or by (2.94) and
Lemma 2.1
7(655)

ﬁj € (0,8.), cos (T) =y, (Vje{l1,2,3}).

Then by repeating the same argument as the final part of the proof of
Proposition 2.13 we can reach the conclusion that 7(-) has more than one
local minimum points. This means that (x) does not hold.

Now we know that it suffices to determine for which (n,s) (i), (or
(ii)5,s) holds. In fact for this purpose we have prepared Lemma 2.24. We
still need more information about how the function w(-, —1,n) behaves when
n varies. We can derive from (2.46) that for z € R-g, 2 € (0,271)

ow (x — Dax(l + 2zx)(3 — zx)

P AR Ay provu T

Then we can see from this equality and (2.72) that for n € (0,17 — 12v/2),
6e{+,—-}, %—f(a(g(n), —1,7n) > 0. Combination of this inequality and (2.73)
implies that for n € (0,17 — 12v/2), § € {+, -}

d ow % ow

d—nu?(aa(n% -1,n) = %(aé(n% —1,m) a (n) + 5(%(17)7 —1,m) > 0.
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By this and (2.73) again we can understand that both the local maximum
and the local minimum of the function x ~— w(x, —1,7) : (0,77) — R are
strictly monotone increasing with n € (0,17 — 12y/2). Moreover, by (2.46),
(2.57), (2.70), (2.71)

lim o« = lim a_(n) =3+2V2,
n,/17—-12v/2 +) n,/17—-12v/2 ()

lim w(a-i—(n)a _17 77) = lim w(a—(n)a _17 77) =3- 2\/57
n,/17—-12v/2 n,/17—12v/2

lima_(n)=3, lima = 400,
lim, (n) lim +(n)
1

lim w(a_(n),—1,n) ==, limw(a ,—1,m) =0.
lim (a—(n), —1,n) = g, lim(a(n), ~1,7)

In the following we let 7 = (emin/€maz)?, § = (b—"0")/b". If emin/emaz =
V17 — 12/2, by Lemma 2.24 (i) for any b € N>o, ¥’ € {1,---,b— 1} the
condition (i), s holds and thus (%) holds.

Assume that emin/€maz € (0,17 — 12\/5). In this situation Lemma
2.24 (ii) is applicable. If 2¥ € [3 — 2v/2,00), Y € [w(a—(n),~1,7),00)
and thus (i), holds. Thus (%) holds. If ®2¥ € (1/8,3 — 2v/2), there exist

e1, ez € (0,1/17 — 12v/2) such that e; < es,

b—V - .o Emin /
Y € (07w(a+(77)7 _1777)) if € <627 17— 12\/5) ’

emax
b—"b N - .. Emin
% € [w(a+(n)>_1777)711)(&*(77)7_1’77)) if € (61a62]7
€mazx
b—V ;
o € [i(a-(n), ~1,m),00) if = € (0,e1],
or
(i)p,s holds and thus (x) holds if Cmin ¢ (62, V17 — 12\/5) ,
€mazx
(ii)y,s holds and thus () does not hold if Cmin (e1,ea],
€maz
(1) holds and thus (x) holds if <™ € (0, e1].

€mazx

If b;{b’ € (0,1/8], there exists e; € (0,v/17 — 121/2) such that

b—10t min /
y S (O,QD((Z+(77), *1377)) if ‘ € (ela 17— 12\/§> )

emax
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by 0 0 .0 Emin
- € [@(at(n), ~1,m), w(a—(n), ~1,n)) if € (0, 1],
emax
or
(i), holds and thus (x) holds if <™ ¢ (61, 17— 12\/5) ,
emax

(ii)y,s holds and thus (x) does not hold if Cmin ¢ (0, e1].

€max
These can be summarized as in the statements of the proposition. [J
In fact in this model 7(/3) can be exactly computed. Remind us that
cos™! : [=1,1] — [0, 7] denotes the inverse function of cos | .
PROPOSITION 2.25. Set
bl

€max

Dy := cosh(Bemaz) cosh(Bemin) — %(

Sinh(ﬂemal’ ) COSh(ﬂemin)

/

+ cosh(Bemaz) Sinh(ﬁemm)) ;

Emin

Dy := cosh(fBemaz) + cosh(Bemin)

_ M < v sinh(Bemaz) + bV sinh(ﬁemm)> .

2 Emazx Emin

Assume that U € (—2emin/b,0). Then for any B € (0,8.), D} — 4Dy > 0,

$(=D1 ++/D? —4Dy) € (—1,0) and
—Dy ++/D? — 4D,
7(5)22008_1< L 5 1 0).

PROOF. The statements of Lemma 1.2 (i),(ii) imply the following basic
fact. On the assumption |U| < 2€,,/b for any § € (0, 3.) there uniquely
exists y € (—1,0) such that

(2.97)
2, sinh(Bemaz) Y,
|U| +b (y + cosh(Bemaz))emaz + (=)

sinh(Bemin)
(y + cosh (/Bemm ) ) Emin

=0.



472 Yohei KASHIMA

63 |
2
627 |
624 |
g 6]
* o618 f
615 |
612 |
609 |
0 002 004 006 008 01 012 014
(a)
63 — ‘ ‘ ‘ ‘ ‘ : ‘ 63 — ‘ ‘ ‘ ‘ ‘ ‘
emax=7 —— Cmax=9 ——
2 2
627 | 627 |
624 | 624 |
~ 621 | —
= X 621
=] =]
618 [ L L L L ‘I L L L L
0015 003 0045 006 618 r 0009 0012 0015 0018
6.15 |
615 |
612 |
612 L
0 002 004 006 008 01 012 014 0 002 004 006 008 01 012 014

(b) ()

Fig. 2. The graph {(8,7(8)) | 8 € (0,8:)} drawn by implementing the exact solution
for b =8, =7, U = —1/8, emin = 1 and emas = 6,7,9. Picture (a) shows the
graphs for emaz = 6,7,9. We can see that 7(-) has only one local minimum point
when emq. = 6. Picture (b) shows the graph for €4, = 7. By magnifying we can see
that 7(-) has two local minimum points. Picture (c) shows the graph for emaz = 9.
By magnifying we can see that 7(-) has only one local minimum point.

Moreover, for y € [0,00) (2.97) does not hold. Observe that y € (—1,0) and
y solves (2.97) if and only if y € (—1,0) and y solves y? + D1y + Doy = 0.
Setting

Xy 1= cosh(Bemaz), X2 := cosh(Bemin),
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b/
ﬂ sinh(Bemar), Yo :=

2emaz

UI(b - )

2emin

Yy = sinh(Bemin),

we can derive that
D? — 4Dy = (X1 — Xo — Y1 + Y2)? +4Y1Y3 > 0.

Set yy := = D1 + —4Dyg), y— : —Dy — \/D? — 4Dy). These are
the roots of y? + Dy + Do The unique solutlon to (2.97) in (—1,0) must
be one of them. If y; > 0, (2.97) has a non-negative solution, which is a
contradiction. Thus y4 < 0. If y_ > —1, (2.97) has the 2 different solutions
Y+, y— € (—1,0), which is again a contradiction. Thus y_ < —1. Therefore
the solution to (2.97) in (—1,0) must be y4, and thus the claims follow. [J

Let b = 8, b = 7, emin = 1. In this case 53¥ = 1/7 € (1/8,3 —
21/2). Proposition 2.23 (ii) implies that there exist U € ( Zemm/b 0) (=
(—1/4,0)) and emaz,1; €maz,2s €maz3 € (1/V 17— 12v/2 (5.83,00))
such that epaz1 < €maz,2 < €maz,3 and for U 7(-) has only one local mini-
mum point if €42 = €magz,1, 7(-) has more than one local minimum points if
€maz = €maz,2, T(-) has only one local minimum point if €42 = €maz,3. Fig-
ure 2 shows the graph {(3,7(08)) | 8 € (0,5.)} for U = —1/8, emaz = 6,7, 9.
In these cases U € (—2€min/b,0), €maz € (1/V/ 17 — 12v/2,00). The fig-
ure demonstrates the properties described above. The graph was drawn by
implementing the exact solution obtained in Proposition 2.25.

2.8.2  The one-dimensional model with nearest-neighbor hopping

As for the model defined in (2), we find a simpler result as follows.

PROPOSITION 2.26. For any t € R>q, emin € Rsq there exists Uy €
(0,2epmin) such that for any U € [—=Uy,0) 7(-) has one and only one local
manimum point in (0, 5;).

PRrROOF. Let us assume that e,,;, = 1 for the moment. We will see

that the other case can be deduced from this special case. It follows that
emaz = 2t + 1. Define the open set O of R? by

(’)::{xy ERQ‘Z

"1$,ffam<lory>—1}.
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We define the function P : @ — R as follows.

2n+1

1 /de T+ | (g (Y + 1)"Eq (k)*

P(z,y) := 5
2 1+ Z B (k)2 + 300, (EZ)'(er 1)r=LE (k)2

The function P is real analytic in O. Let us observe that for (x,y) €
R>0 X (—1, OO)

Pla.y \/yT 2” sinh(y/y +1-xFy(k))
= oy T2 Br (k) Ex (k)

We can apply Lemma B.1 proved in Appendix B to derive that for any
reR

(2.98)

P(z,—1)?

—1 x? 1
Cmax <7> x2 x? _9 2 x? 1
- 22 22 _9 ? +1 2 + €max - ? + €maz | -
(7 + 1) (7 + 6mar>

To facilitate the derivation of the above equality from Lemma B.1, let us add
that we multiplied both the numerator and the denominator of P(x,—1)?

by
1 1
x? 2 x? 2 x?
(g + 1> (e?nax? + 1> - emax? —1

at the beginning. Moreover, setting

N[

2 2
Pole) = 2(e;2 + ephy + 1) ( )

2e x2 2 22 2
Py(z) := :‘“” <? + 1> <7 + e;ﬁw> ,

we see that for any x € Ry
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If we assume that & € R~g, y € (—1, —%] and %—1;(3?:,3/) =0, it follows from
(2.34) that

1 1
&€ | ———cosh }(|y|™h), cosh™!(Jy|~! ] ,
PEes K R U ==t T

4 prs 1) 9 2 pe 12| =
—P(e,~1?| _ + (P’ - Pl,~1)?)| _=o.

=T

Let us recall the definition (2.35) of ¢pe. We can also deduce from (2.36)
that if we set

' cosh™(Jy| ")
Cmin ‘= inf - =
ye(_lv_% \% y + 1

0 < ¢min < 00. Then the above properties lead to that

A Cmin
HAS |: y Cmax | »
€mazx

PL@)? — o0’ + 2Py (@) Py(#) - (Plary)? — Pla, ~1))

X
2
Ve

Let us define the function @ : R~g x (—1,00) — R by

=%

- e (Pl = Plo -1

€z &C(P(:Jc,y)Q _P(x>_1)2>

o 2
- P (P~ Pla-1))
We will prove the following statement.

(2.99)

Q. y) =Py(x)? — Po(x)? + 2Py(x) Py(x) 2

1
There exists yo(€maz) € (—1, —5} depending only on €,,4; such that

if for y € (—1, yo(emaz)] a solution to Q(x,y) = 0 exists in |:Cmin , maw} ,

€mazx
then it is unique.

We can expand P;(x)% — Pa(z)? as follows.

2

Py(2)? - Py(a)? = ilaxem) (x—) |

2
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where a;j(emaz) (j = 1,--- ,4) are real coefficients depending only on e,,45.
We can check that

(2.100) a1(emaz) >0,  a2(emaz) >0, a4(€maz) <O0.

We do not need to deal with ag(€mqs), since the term involving as(emaz)
will be subsequently canceled. Though it is not essential to make explicit,
a2(emaz) is computed as follows. a2(emaz) = Hepo, + 8ega, + 6end  +
8e, . + be .. Assume that (z0,Yy) € [Cmin/€maz, Cmaz) X (—1,—1/2] and
Q(zo,y) = 0. We can derive that

oQ
1‘0%(3307 Y)

4 22\’
j=1

+ xo% <2P2(x)P3(w)%(P(m, y)2 — P(z, —1)2)

= Z (2] — G)Qj(emax) (1:(2)>] 7
je{1,2,4} 2
_ 12P2($0)P3($0)%(P(&7, y)2 — P(.’E, —1)2) N
2

+ 60 (Pl = Pl 1P _ )
oo <2P2<x>P3< ) (Pl ~ P, 1))

2

- e (g (Pl - Pla 1)) )

2. \?
< _2a2(emax) ( T )

2
2emaa:

+c sup <(1 + Cmaz )| Po(2) Ps ()] + (1 + ¢maz)| P3(2)?

xe[cmin

Cmaz}
emaz’
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dP dP dP
T Cran d—;(z)Pg(l«) T Cran Pg(x)d—;(a:) T Cran d—;(x)Pg(:U) )
) 2
P Qitip
1+ Z li<ivj<2 sup sup 9 Z-(l’ﬂl)a 'E) (95777)‘
i.je{01,2} T[S emag] ne[-1,-3] | 9F vy
(y+1),

where ¢ is a positive constant independent of any parameter. In the
second equality we used the equality Q(xzo,y) = 0 to erase the term
a3(emaz)(3/2)3. In the last inequality we took (2.100) into account. The
above inequality implies that there exists yo(€maz) € (—1, —%] depending
only on e, such that if y € (=1, yo(€maz)], %(mo,y) < 0. We can sum
up the above arguments to conclude that if (zo,y) € [¢min/€mazs Cmaz] X
(—1,y0(emaz)] and Q(xp,y) = 0, then %—?(mo,y) < 0. This ensures that the
claim (2.99) holds true.

If for y € (—1,yo(emaz)] & is a solution to %—I;(x,y) = 0 in Ry, then
T € [Cmin/€mazs Cmaz) and Q(Z,y) = 0 and thus it must be unique by (2.99).
We can deduce from (2.34) that

e (x,y) >0, <Vaj € (0, YT | cosh™ (|y| )>> ,
oP

P <o, (vee (eaturnc)),

which means that a solution to %—5(:5, y) = 0 actually exists in Rsg. Thus

we have proved that for any y € (—1,yo(€maz)] & solution to %—I;(a:, y) =0
uniquely exists in R~ (. Therefore, by (2.98) for any y € (—1, yo(€maz)] there

uniquely exists £ € R such that

d /1 [ sinh(zE (k)) —
(2.101) dr (%/0 dk (y + cosh(xEl(k)))El(k)) ‘x—i -

Now let us lift the condition e,,;, = 1. Since E;(k) = emm(%(cos kE+1)+
1), the above result implies that there exists yo(t/emin) € (—1,—1/2] de-
pending only on /e, such that for any y € (—1, yo(t/emin)] there uniquely

exists & € Rsq such that (2.101) with this £ holds. This further implies
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that for any y € [2cos ™ (yo(t/emin)), 2m) there exists #(y) € Rsq such that

99k, (
ox

998,
ox

8915‘1
ox

z,y,0) >0, (Vz €(0,2(y))),

(i(y)v Y, 0) =Y

(r,y,0) <0, (Vze (2(y),o0)).

Then by repeating the same proof by contradiction as that after (2.95) in
the proof of Proposition 2.23 we can conclude that the claim holds true. [

REMARK 2.27. One natural question is whether the same result holds
for the model in higher spatial dimensions

d
(2102)  E(k) =t > coskj+d | +emin, (t emin € Roo, d €N),
j=1

In the above proof we relied on the exact formula Lemma B.1. Since we
do not have a useful formula of the definite integral for the model (2.102)
with d > 2, we cannot find an answer to this question by this approach at
present.

3. Derivation of the Infinite-Volume Limit

In this section we will prove Theorem 1.3. As in the previous work
[13], [14], the proof is based on multi-scale analysis of Grassmann integral
formulations of the free energy density and the thermal expectations. In
this approach qualitative bound properties of the covariance matrices are
the essential ingredients. This time we decide to prepare them in the first
subsection (Subsection 3.1). The focus of this part is to find optimal up-
per bounds on norms of the covariances with respect to dependency on the
inverse temperature 3 and the magnitude of the imaginary magnetic field
6. Then in Subsections 3.2-3.3 we will develop a general double-scale in-
tegration scheme by assuming only generic bounds of the covariances. In
Subsection 3.4 we combine the proved bound properties of the real covari-
ances with the general integration scheme to complete the proof of Theorem
1.3. The index set of the finite-dimensional Grassmann algebra is exactly
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Subsection 3.1 [14] Lemma 3.5 (iii)
\ T
[20] Theorem 1.3
Subsection 3.2 Lemma 3.1, Lemma 4.1,
[13] ¢ Lemma 3.2, [14] ¢ Lemma 4.2,
Lemma 3.3, Lemma 4.4
Lemma 3.1,
Lemma 3.2,
Subsection 3.3 Lemma 3.6,
Proposition 5.9,

Proposition 5.10,
Lemma 5.11,
Lemma A.1,
Lemma A.2,

. Lemma A.3,
Subsection 3.4 Lemma A.4

[13] { Lemma 4.13,

Proposition 4.16, [14]

Fig. 3.  Dependencies between Subsections 3.1-3.4, results of [13], [14] and [20,
Theorem 1.3].

same as that in [14]. Accordingly, concerning the Grassmann integration,
we can use the same notations as in [14]. We will sometimes refer to the
definitions presented in [14] or [13] instead of restating them in order not to
lengthen the paper. We will also skip proofs of lemmas if they straightfor-
wardly follow from lemmas presented in [13], [14]. To support the readers,
we illustrate the dependencies between the following subsections and the
previous constructions in Figure 3.

One important difference from the previous construction is that here the
parameter 6 is allowed to take any real value thanks to the gapped property
of band spectra (1.6), while it could not belong to 27”(22 + 1) in [13], [14].
This affects the allowed value of 6(/3) as well. To make clear, we should state
the definition of 6((3) here. For any 5 € Ry, 6 € R there uniquely exists
0 € (—2n/p3,2m /3] such that § = 6" (mod 47/3). We define the number

0(8) € [0,2n/p] by 6(8) == |6'|.
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3.1. Properties of covariances
With the artificial parameter h € %N, we set [0, B)p :={0,1/h,2/h,---,
B — 1/h} as already stated in Subsection 1.1. Define the sets Iy, I by

Io:={1,2} x BT x[0,8)n, I:=1Iox{1,—1}.

As we have seen in [14, Section 3], our many-electron system is formulated
into the (imaginary) time-continuum limit & — oo of the Grassmann Gaus-
sian integral, which has the covariance C(¢) : I§ — C (¢ € C) defined
by

C(9)(ppxs,myt)

_ Ld ST eiflxy)Hisle
L kel weMy,

i

N Iy — e k@ D REOM0) (5 1)+ p, (7 — 1)b+ 7).

Here My, is the set of the Matsubara frequencies with cut-off
T
{w € 50Z+1) ’ w| < wh}

and

E(¢)(k) := < Eqﬁ(}:) _‘gf(bk) > € Mat(2b, C)

for ¢ € C. In fact C(¢) was originally defined as the free 2-point corre-
lation function in [14, Section 3] and was rewritten in the above form in
[14, Lemma 5.1]. As explained in Remark 1.5, the symmetry (1.5) was used
in the derivation of C(¢). Apart from the necessity to adopt the previous
derivation, we do not use the symmetry (1.5) in this paper. Our double-scale
integration regime is based on the following decomposition of the covariance.

(3.1) e "8TNC(¢) (ppxs, mmyt) = Co(ppxs, Tiyt) + Ci(ppxs, Tnyt),
(7, p,x,5), (@, m,y,t) € In, ¢ € C),

where the covariances Cp, Cy : I — C are defined by

Co(ppxs,nyt)
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- h™H (I — o (5= I+ WO (5 — 1)+ p, (7 — 1)b + 1),
Ci (ppxs myt)

s Z Z 6’i<k,xfy>+i(w7%)(sft)
L

kel weMp\{5}
6(8)
T Iy — e w @ T R B 15— 1)b 4 p, (T — 1)b+ 7).
Our aim here is to establish necessary bound properties of C(¢), Cop, Ci.
The bounds must be so sharp that the resulting multi-scale analysis does not
require any (3, #)-dependent condition on the coupling constant U. First let
us present bound properties which can be proved by standard arguments. In

the following we use the norms |||[1 00, ||-||7 » defined in [14, Subsection 4.1].
Let (-,-)cm denote the canonical inner product of C™. More precisely, for
u=(up,Up), V= (01, ,0m) € C™ (u,v)gm = 37", Ujv;. More-

over, for any f : I3 — C let f : I? — C denote the anti-symmetric extension
of f defined by

(32) F(X.6,(%.0) = 50 e0ma 0I5 Y) = Lggan f(¥ X))

(VXaY € IO’ £7C € {17_1})

From here for any objects a, - - - , auy, we let ¢(aq, -+ , ayy ) denote a positive
constant depending only on ayq, - , Q.

LEMMA 3.1. Assume that
(3.3) h > max{y/e7,,, + 9[> 1}.

Then there exists c(d, b, (Vj)?:17cE) € R~ depending only on d,b, (Vj)?zl,
cg such that the following statements hold.

(1)
(34)  [det((ui, w;)cn C(0)(Xs, Yj))1<ij<nl
< (e(d, b, (%5) =1, eB) (1L + 8 e )"
(Ym,n € N, u;,w; € C™ with ||u;||cm, ||Willcm <1, X;,Y; € I

(i=1,---,n)).
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(i)

| det((ug, w;)em Co(Xi, Yi))1<ijcn| < (e(d,b, (V)91 cE)B e i)™,
(Ym,n € N, u;,w; € C™ with ||u;||cm, ||Willcm <1, X;,Y; € I

(i=1,---,n)).
(iii)

1C0ll1,00 < €(d, b, (¥7)5=1, cp) max{ep,, et}

1Coll1.00 < €(d,b, (V5)0_y, cp) B~  max{e, ), e, a1},

(i)

||01H100 < C(d b, (v])] 17CE) ma‘x{emzn7em?'r:1 )

I1C1 11 00 < €(d,b, (VJ)J 1sep)(emin + 570+ 8 er, +11)

—d—1
min> Cmin

-max{e !
REMARK 3.2. The bound (3.4) is not directly used in our multi-scale
integration process, so its dependency on 3 does not affect the magnitude
of the coupling constant. The upper bounds on ||éO||ﬁ,m’ H6~‘1||’100 depend
on 3. However, they are to be multiplied by L= during the multi-scale
integration and thus do not yield a 8-dependent condition on the coupling
constant. Our essential problem is to prevent the §-dependent determinant
bound of C from affecting the magnitude of the coupling constant. Solving
this problem is the main novelty of the present double-scale integration
scheme.

Proor oF LEMMA 3.1. We fix ¢ € C during the proof. Resulting
bounds will be independent of ¢, mainly due to the assumption (3.3). First
of all let us list useful estimates. For (w,k) € R, set

B(w,k) = h(Iyy — e+~ I+ BE@) )y

We should recall the definition (1.8) of c¢g beforehand.

. . o 2 2
(35)  nfinf o E@)®ulon = /e, + ol

with [|ul|ces=1
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(3.6)  sup [E(d)(K)ll2x2p = V €Fan + |1,

keRd
1) 1B e < (W50 (g (0= 07 )

(3.8) H ((%)m B(w, k)

N|=

< ch™ ™t
2bx2b
o\ .
<(:)]% ) B <w, Z kZ\A/Z) < C(d, (\A/'j);-izl, CE),
J i=1 2bx2b

(Vme{l,---,d+2}, je{l,--,d}, weR, k., keR?).

(3.9) ‘

In the derivation of (3.7), (3.8), (3.9) we use (3.3), (3.5), (3.6). Also, to
derive (3.9), one can repeatedly use the formula

0 LB
ok;

1
:%/ dse%E(¢)(k)iE(qﬁ)(k)elﬁsE(d’)(k), (e{1,---,d}).
; A

(i): It was proved in [14, Lemma 3.5 (iii)], which is based on the general
determinant bound [20, Theorem 1.3], that

| det((ug, Wj)on C () (X, Yi))1<ij<nl
< (24b Tr (1 + 2 cos <%@> e BV EE)*+el?

Ld
kel*

L1\ 7
+€2mFE<k‘>2+|¢>|2) 2) ’

(Vm,n € N, w;, w; € C™ with ||u;||cm, ||Willcm <1, X;,Y; € Iy
(i=1,---,n)).

Observe that
_1
T <1 +9cos (@) o~ BYEMTHIR | 28 E<k>2+|¢|2> ’

< (1 — e Pemin)=t < eb(1 4+ B e L ).
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Thus the claimed bound holds.
(ii): Let L2({1,2} x B x I'* x M) be the Hilbert space whose inner
product is defined by

(f.9)0 :=ﬁ S FE)eE).

Ke{1,2}xBxI'*x My,

We derive the claimed bound by applying the Gram inequality in the Hilbert
space C™ @ L2({1,2} x B x T'* x My,). Let us define the vectors fx, gx €
L2({1,2} x Bx T* x M},) (X € Ip) by

Jopxs (7, 7. k,w) := e~ ikx) 1,—

9ppxs (?7 7k, w)
-1
. 1
= e—Z(k,X>1w:%efnt (%, k) (T=1b+7,(p—1)b+p).
It follows that Co(X,Y) = (fx,gy);2 for any X, Y € I. We can apply
(3.7) to verify that

IfxlZe < B emins llaxlZe < c(0)B ety (VX € Io).

Therefore by the Gram inequality

n
| det((us, W) en Co(Xi, Yi)1<ij<n| < [ IIwillon Iwillon | fx; [l z2llgv; |l 2
=1
< (e(0)8 tepin)"s
(Vm,n S N, u;, w; (S Cm Wlth ”uZ'H(C'm’ HWiHC"L S 1, XZ,Y; € IO
(i=1,---,n)).

(iii): By applying e.g. the formula [12, (C.1)] we can derive the following
inequality.

o\ & -
= B w, l;ZZ\A/'l
(%‘) ( ; )

n m

n
<ed) 3 I\ 22 ) =
m lu=1

=1u=1

2bx2b
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m d -1 9 b d
p=1 i=1 Ok; i=1
d -1
B (w, Z lgfz\A’z) )
i=1

2bx2b
(Vne{l,---,d+2}, j€{0,---,d}, weR, keR?,

2bx2b

where 67 denotes 8 . Combination of this inequality and (3.7), (3.8), (3.9)

yields that

(3.10)

2bx2b
< c(d, (V)41 cp)
+1

. Z <h2 sin? (% <w - @)) + e?mn>_T (Ljmoh ™™™ + 1551),

m=1
(Vne{l,---,d+2}, je€{0,---,d}, weR, keR?).

By periodicity we can perform integration by parts to derive that for any
X,y € Fv 87t S [076)}17 ] S {17 7d}
<2—( oy ) 1)) Co(-xs,yt)

ikx—y)

1
ﬂ— kel

dtl 0 o s - -
1__[ ( ) (a—k) B<E,k+kj\7j> -

Substitution of (3.7), (3.10) gives that

d+1

5 |Co(-xs,-yt)|26x26
T
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d+1
< e(d, (Vj)j—1,cB)B71 ) e

m=1
< e(d, (v;)§=1,c8)87" max{e;jm Contin )
Co(-x5, -yt)|l2pxap < B te, ),
(Vx,y €T, s,t €[0,5)n).

These bounds lead to that

~ C(d7 b7 (‘A"J )?:1? CE)B_ln
HCOHI,OO = Z —d—11\_1 d L (i35 (x,¥) d+1
wer 1+ (max{emm, e 1) ijl |52 (e Vi) — 1))

1
(d b, (VJ)] 17CE) ';Lt’n(Z emm>1

XGF1+Z] 1‘271'( <XVJ>_1)|d+1

]‘emin<1
+Z d+1 ~d L [, i2E(x,9; _1)‘d+1>

ohl4edt! Zj:l | (e'F (x,V;)

(d b ( )] 17CE) max{emzn’emcil;1

The claimed bound on HCOH/LOO is proved in the same way.
(iv): Let us apply a standard method of slicing the covariance. Let us
take a function x € C*°(R,R) satisfying that

x(x) =1, (Vo € (=00, 1)),
x(x) € (0,1), (Ve € (1,2)),
x(z) =0, (Va € [2,00)),

d
— < R).
L X(@) <0, (Vo eR)

Set

. g—1
N, = rog hJ 1Ny = {log(maxl{emm,ﬁ })J 7
og 2

where |z | denotes the largest integer less than or equal to z for z € R. By
(3.3) and the definition of h, b > max{emin, '} and thus Ny < Nj. Then
we define the functions x; € C*°(R) (I = No,No + 1,--- , Ny) by

o (329)).

XN, (W) :== x (2N°h
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xi(w) = x <2‘lh sin (*W) D

(gt |y (. 008)/2 ’
(ZN0+i.<--,Nh). < " >'>

These functions behave as follows.

1 if h ‘sin (‘“ 0(8)/2| < 9No.
(311)  xwo(w) =4 €(0,1) if 2% < nlsin (‘” 00)/2) | < gNo+1,
0 if b [sin (“’ 0(6)/ )‘ > oNo+l,
0 if h |sin ) < 2l=1
xi(w) =4 €(0,1] if 271 < h[sin (2=2O2) | < i+l
0 1fh’sm (W o3 2)’ >2ZJr1

(I=No+1,---,Np).

487

Moreover, there exists ¢(d, x) € Rsg depending only on d, x such that the

following statements hold.

(3.12) zh: xi(w)=1, (VweR).
I=Nog

313 |(5) we
(Vne{l,---,d+2}, l € {No, -+ ,Np}, weR).

< c(d, x)27™,

(3.14)

/8 xERwth

To prove (3.12), (3.13), we use that

(3.15) o2Nn=t < h < 2N,

sup Z Ly (wta)20 < c(d, )2, (Yl e {Ng,---,Np}).
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To prove (3.14), we use that 4! < ¢2No Then let us define the covariances
C):13 —-C (I=No,No+1,---,Np) by

1 KXy i (5 — —
C|(-xs, yt) := AL Z Z e!tkx=y)tiw(s=t) ) () B(w, k) L.
kel* weMy,
It follows from (3.12) that

Np,

(3.16) > Ci(xs,-yt) = C(¢)(-xs,yt), (Vx,y €T, s,t€0,0)).
I=Ng

Our strategy is as follows. We first find upper bounds on [|C(¢)|1.00,
[C(#)]1,00 by estimating each Cj and summing up them. Then we derive

the claimed bounds on ||C1|1,00, ||C~’1||’1700 by using the relation (3.1) and
the results of (iii). By (3.7), (3.11), (3.14)

(3.17) [|C1(-xs, -yt)|lapx2s < c(d, )2 (LimNg€min + LizNo+1 (2" + €min) ™),
(vz € {N07 to 7Nh}7 X,y € F? s, t e [Ovﬁ)h)

Integrating by parts based on periodicity yields that

(3.18)

( p (e—z‘%”(s—t) _ 1)>nCl’(-xs, yt)

2

- L Y eifhxoyhtists
ﬂL kel™ weMy,

27

n o\"
. H (g/oﬁ drm) <§> XZ(T)B(T, k)il TZW+Z:Ln:1Tm7

<£ G,i%(xfy,{’ﬁ _ 1)> C{('XS, yt)

(
_ % S Y eyttt

kel* weMy,

n 27 n

L/T 0 S
. — dpm, w ~ Blw,k+ kv, A ,
(£ [ )i () mencrion] .,
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(VZE {N07"' 7Nh}7 x,yeF, 87t€ [07ﬂ)h7 je {17 7d}7
nefl,--,d+2)).

Assume that [ > Ny + 1. By (3.7), (3.10), (3.11), (3.13), (3.14) and
(3.18)

d+2

2 (g
(3.20) O @0 )0 s, y0) s

1
’ m Z Z 1Xl(w+z ?n:1 rm )70

kel weM,,
a d+2
re|—mh,T
< e(d, (v)§-1, ¢, x)2'

d+1 d+2—p »
| (22‘“ R A b N

p=0 m=1

2bx2b

+27 (N e%n-nV%)
S C(d, (‘A’] )?:17 CE, X)Q_(d+2)l‘

In the last inequality we also used (3.15). On the other hand, by (3.10),
(3.11), (3.14) and (3.19) for j € {1,--- ,d}, n € {1,--- ,d+2}

L omyn oo "
(3.21) S (TR 1) (s, ) v
n i
< C(d, (‘A’j);'l:h CE, X)Ql Z (221 + egm'n)_T
m=1

< C(d7 (‘A’j);'izlv CE, X) maX{e%ﬁn’ er_n?n :

By combining (3.17), (3.20) and (3.21) for n = d + 2

C1 (x5, yt)||2px26
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< e(d, (V))j=1, e, )/(1 + 2(d+2)

d+2

g

27T (ei%(é}*t) _ 1)

d—27y—1 L 2
+ (max{e 1 e 4~ z; 5 (e oyvi) 1) 7
J:
(VX,y S F7 Svt S [076)]1)7
which together with (3.15) implies that
< C(d7 b, (‘A’j )?:17 CE, X)2_l max{l, e;nfiln .
Also by (3.21) forn=d +1
(3.23)
> _(ICT(x5,-00)ll2px2s + [|C7(-0L, x5) 2x20)
xel’
x#0
1

< c(d, (‘A’j)?:bCE, X) max{2~ Lo~ d“ﬂ}Z
xel' Luj= 1|27r<
x#0

ST (X, V5) 1)|d+1

< C(d, (‘A’j);'lzl, CE, X) ma‘X{Q_l7 2_(d+1)l}7 (VS, te [07 ﬁ)h)

Let us derive necessary bounds for [ = Ny. By (3.10), (3.14), (3.19)

n

L 2
HCJ/VO (-x5,-yt)|l2px 20

(el )

< C(dv ({’j)?zlﬂ CE, X )2N0 max{emm’ 6;1?71_1 )

(Vx,y €T, s,t €[0,8)n, j€{1,---,d}, ne{l,---,d+2}).

(3.24)

Assume that e,,;, < 71, It follows from (3.17), (3.24) for n = d + 1 that

HCJIVO('XS, V) |26 26
c(d, (v)9_y, e, x)2%0e, i,

T 14 (max{e ! e d-11)-1 ZJ G i (x—y ;) _ 1)’d+1’

man? mzn

(Vx,y €T, s,t €0,0)n),
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and thus

||é;Vo”1,00 < C(d b (‘A/j)?:l’cEv )62N0 mzn(lemin21 + 1emin<1€;16iln)

< ¢(d, b, (V;)1_y, e, x) max{e,,, end 1},

where we used that 2% < 371, On the other hand, let us assume that
emin > 871 By (3.7), (3.10), (3.13), (3.14) and (3.18)

(3.25)
el G A V] I (6 € S G2
v
< C(d, (‘A’j);l:la CE'»X)QNO
d+1 d+2—p
ZQ pNo Z h™ (d+2— p+m —m— 1+2 (d+2)NO€;7;n
d+1d+2—p
< e(d, (Vy)jr g )20 | D D 27 EREmm T gm0 Tl
p=0 m=1

< e(d, (V1)1 cp, x)2 7@ DNoe L

(Vx,y €T, s,t €[0,0)n).

In the second inequality we used (3.15). In the last inequality we used that
2No < e, By using (3.17), (3.24) for n = d + 2 and (3.25) we have that

|Cv, (x5, -yt) |25 26

<e(d, (¥5)y, cp. )26 / (1+2<d+2>N0 ﬁ(ei%"(H) —1)

2m
L s i d+2
+ (max{emzn7er—ncil;2 )—1 Z %(61 7 (x—y,V5) 1) ,
j=1

and thus by using (3.15)

”05\70”1700 S C(d b (‘A, )‘(]i 1’CE7X) ;ylin(]‘emzn>1 + ]‘emin<167_n(7?n)

< C(dv b7 (‘A/j)?:la CE, X) rna“x{emm,7 r_nczlrjl
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In both cases we have derived that

(3.26) 1O, 11,00 < €(d, b, (V)01 e, x) max{e,\ e, 1},

mwn

Moreover, it follows from (3.24) for n = d + 1 that

(327) > (IChy (x5, -0) | apxap + [|Cly, (-0, -x5)[|2bx20)
xel
x#0

< ¢(d, (f/j)?zl,cE,x)Q Omax{e 2 e 92} (Vs,t €[0,0)n).

min’ -min

Let us sum up the above estimates. By (3.16), (3.22) and (3.26)

(3.28)
Np,
IC(O)100 < D ICT
=Ny
< C(d b ( )j lvcE?X)(maX{emzn’ Cmin }+2 No maX{l?emm )
< C(d b, ( )j 170E7X) max{emzmem?nl
Also, we can apply (3.4), (3.16), (3.23) and (3.27) to deduce that
(3.29)
IC(D)100
<c(b) sup [|[C(4)(-0s,-0t)|2x2p
8,t€[07ﬂ)h
N}L
+eb) sup Yy ([1C](xs,-08)|lapxan + 1G] (-0, -x5) 12620)
$,t€[0,8)n 1= N, xeT
X0
S C(d, b? (vj)?:17 CE7 X)
Np,
I+ ﬁ Cmin + 2N0 maX{emzn’ Cmin } + Z maX{Q_l7 2_(d+1)l}
I=Np+1

C ) (V])J 17CE7X)

(d,b
(1 + ﬂ 1 mzn + (emin + ﬁi )max{emzn’ min } + emm + em%n )
(d,b

<c (V])J 1> CE; X)(emzn + ﬁ + ﬁ €min + 1) max{emzn’ m(zin ! :
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Observe that by (3.1)
1C1 111,00 < IC (D) 11,00 + 1 Coll1,00s NC1 100 < NC(@)][1,00 + Coll1 00

Then, substitution of (3.28), (3.29) and the results of (iii) yields the claimed
inequalities. [

REMARK 3.3. Assume that § > e;in. Then it follows from (3.16),
(3.21), (3.24) that

d
j=1
(vx,y €T, ¢ € C).

L - 270 X—V .V ~ _
(XYY )| [[C(8) (%0, -¥0) | apxan < e(dy (35)F1, €83 X)Emin:

N
3

The above inequality holds for any ¢ € C due to the fact that C'(¢)(-x0, -y0)
is independent of h (see [14, (3.2)]). As explained in Remark 1.6, the above
spatial decay property can be used to study the zero-temperature limit of
the 4-point correlation function.

Lemma 3.1 does not include a determinant bound of (', which crucially
affects the possible magnitude of the coupling constant in our double-scale
integration scheme. A determinant bound of C can be useful only if it is
optimal with respect to the dependency on (3, 0). Let us derive a desirable
bound in the next lemma. Again we will essentially apply not only the gen-
eral bound [20, Theorem 1.3] but the representation techniques presented in
[20, Subsection 4.1] by de Siqueira Pedra and Salmhofer as in our previous
derivation of determinant bound [13, Proposition 4.2]. We should remark
more specifically that the decompositions (3.36), (3.44) below are influenced
by the techniques of [20, Subsection 4.1]. However, the choice of the Hilbert
space, which will be denoted by H, and the construction of necessary vec-
tors belonging to the Hilbert space are much more complicated than the
corresponding parts of the previous papers. The essential idea here is to
replace the sum over M,\{m/B} by a contour integral plus an extra term
by means of the residue theorem.

LEMMA 3.4. Assume that

1
(3.30) h > /€2 + |67+ B(?m +2).
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Then there exists c(b) € Rso depending only on b such that

| det({u;, Wj)em C1(Xi, Yj))1<ij<n| < c(0)",
(Vm,n € N, u;, w; € C™ with ||u;||cm, |willcm <1, X;,Y; € Iy
(t=1,---,n)).

PRrROOF. Let us fix ¢ € C throughout the proof. We will need to assume
that h is large depending on ¢ on several occasions. We will eventually see
that the assumption (3.30) is sufficient. Let o(E(k)), o(E(¢)(k)) denote
the set of eigenvalues of E(k), F(¢)(k) respectively. For any k € T'* there
exist e,(k) € R (p =1,---,b) such that e;(k) < ea(k) < -+ < ey(k) and
o(B(K)) = {ep()) pes. Set

ép(k) :== /e, (k)2 + ||

for p € B. Observe that o(E(¢)(k)) = {+é,(k)},ecp. For any k € I'* there
exists xx € [1/3,2/0] such that

S -
T+ 1)

This claim can be proved as follows. Suppose that

(3.31) [mk -

s ) no(E@)0) .

1 2m+1 1 2m+3
T TR ) no(E(e)(K)) £ D
5365055 s s) NOEOM) 7
for any m € {0,1,--- ,b}. Since these b+ 1 intervals are disjoint, it implies
that #o(E(¢)(k)) NR>g > b+ 1. However, to(E(¢)(k)) N R>g < b, which
is a contradiction. Thus the claim holds with some zy € {% + % b o
Fix such {zy}xer-. For k € T'* let us set

B(k) := {pGB ‘ é,(k) Z$k+m}7

P, :={z € C| |z| = 7h},

2 2
Py(k) := {x+l%‘ kaSESZL‘k}U{CEkJriy‘ *%Syé W}
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U{x—i%‘ —mkgxgxk}
T

u{ ti ] < <27T}
— Ik TW | L >XYS (-
203 B

By the assumption (3.30), \/z% + (2rr/8)? < wh. This implies that P; N
Py(k) = (. We consider P; as a contour oriented counter-clockwise and

P, (k) as a contour oriented clockwise. Let us admit a convention that for
A, B € Mat(b,C) A& B denotes the 2b x 2b matrix

A 0
0 B )’
For any k € I'* there exists a 2b x 2b unitary matrix U (k) such that

(3.32)  UK)"E(¢)(K)U(k) = (6p,46p(k))1<pm<t ® (—0pn€p(K))1<pm<t-
It follows that

(3.33)
Ci(-xs,-yt)

1 i(k,x—y)—i Z (s—t)
= T4 Z e YI~'s

kel™*
Sl A e T O [ S I
weMp\{5} 1<p,n<b
@ (Sp_,n Z eiw(s—t)h—l(l _ e—%(W—@)_%ép(k))_l U(k)*,
weM\{3} 1<pn<b

(Vx,y €T, s,t €10,8)n).

The assumption (3.30) implies that |i0(3)/2+ 6é,(k)| < wh for any k € I'*,
p € B, 6e{l,—1}. Based on this fact and the property (3.31), the residue
theorem ensures that for any r e R, k e T, pe B, 6 € {1,-1}

1 e*r 1, ;08\, 5,
34 - d h—l 1— —(z—i752)+rép(k)y—1
(3.34) 271 e 27 v (1—en 2 )Th )
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_ LY e e a0

weMp\{5}
(112 462, (k))r

4 BT H6e, ()

+ Loeno)
1
Let us define the functions CZ |, CZ,, CF |, C<,, C1_1, C1_9: ({1,2} x
BxT x[0,3))? — C as follows.
C’lz_l(-xs, -yt)

1 . —1
= — l<k7X7y>_
Ld Z ¢ 27

kel™

z(s—t
% dz e ( ) - (I2b . h(z 16<B))Igb+%E(¢)(k))—1
PP k) 1+ e

012_2(9(5, -yt)

o1 40 (k) (s—1)

- Opml
E :ez<k,x—y)[f(k) pmipeB (k)€
1 + e (Z +8P(k))

kel < p<h
(122 =6, (k) (s—1)
bpmlpeBae 2 .
D 0(8) U(k) ’
1+ eﬁ(ZT—ep(k))
1<p,n<b
(ehs 1(‘X5 yt)
i(k,x—
L 3 et L
kel
z(s—t+p3
~ 7{ dz!h_l(fzb — e h D Bk FE(@) )1
P1UP2( ) 1 + eﬁz

Cl<_2('X8, yt)

(1752 46, (1) (s—t+B)

1 . 5 1
= — l<k7x7y>U k PN peB(k)
3 E e
‘ () 4 BEH2 4e,(x)

ket ! 1<p,n<b
0(B)
6ol eli=5=—€p(k))(s—t+p)
14+ eﬂ(zT—ep(k))
1<p,n<b

Ci-1(-xs,-yt) := 152t012_1('x°57 yt) — Lect O (x5, -yt),
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Cy_a(-xs,-yt) := lsthlz_Q(-xs, yt) — 1s<1Cr o (-xs, -yt),
(vx,y €T, s,t€]0,0)).

By combining these with (3.32), (3.33), (3.34) we have that
(3.35) ei%(s_t)Cl(-xs, yt) = C1-1(-xs,-yt) + C1_2(-xs, yt),
(vx7y € Fa s,te [Ovﬁ)h)

Let us find suitable determinant bounds of C7_1, C7_9 so that the claimed
determinant bound of Cy can be derived from them.

Let us consider C7_1 first. Let H denote the Hilbert space LQ({l, 2} x
B xT* xR x[0,1] x {1,2,3,4,5}) whose inner product is given by

(£ 9)n
= Z/ du/defTTkuvj)(TTkuvj)

(7, T)E{l 2}><B kel™

Let us define the vectors %, ¢ € H (X € {1,2} x BXxI'xR, a € {1,-1})
in the following arguments. For (7, p,x,s) € {1,2} x BxT'xR, a € {1, -1},
(7,1, k,u) € {1,2} x BxT* xR, z € P U Py(k), set

Sops (T, T: K, 1) (2)

1 . . 1+ e—ﬂaz
— 1 e—z(k,x}—zs(alm z—u)l _ ]
\/ﬁ aRez>0 (TyT)*(an) ’1 + e*ﬁaz‘%
G(ﬂ) 1
|Rez| |h ™ (I — € —h (i It E(#) () )= (=R
’7T iu+ Rez ’
Ippxs (T, T, K, 1) (2)
1 o 1
— 1 671<k,x)fzs(a Im z—u)
V2T aRez>0 |1+6—ﬁaz|%
B) _1
|Rez| |h " (I — € — 3 (=2 Iyt B () (K) ) MlosZon

T iu+ Rez

(I — e HE D @) (7 - 1)h 4 7, (5~ )b+ p).

Then, for (7,7, k,u,v,j) € {1,2} x BxT* xR x [0,1] x {1,2,3,4,5}, set

ngS(F’ T? k7 u’ U? j)
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=1;-1V2hm ppxs(T, T, k, u) (Trheﬂ’”’)
+ 1j:2\/2xkfgpxs(?, T, k, u) <2xkv —xK + z—>

O 0 — om
+1=3 %fﬁpxs(T,T, k, u) < Tk — z—v + 2—>

+ 1j=a V221 f5oxs (T, T, K, 1) < 200 + Ty — i26>

om _ s
+ 1j:5 ﬁfgpxs(TaTa ka u) < Tk + Z%U Zﬁ) )
G5oxs (T T, K, u, 0, 7)

=110V 2h7re’2mggpxs (7, 7, k, u) (mhe®™)

2
+ 1j=2 V221 G5,xs (T, T, K, 1) <2xkv — Tk + z%)

9N . - Ri%s 2m
+1j=3 | —1i 25 Gopxs(T> T K, u) | 2 — 251}+1F

+ 1j=a(=V22k) G5xs (T, 7, K, 1) ( 2T,V + TK — Zﬁ)

37 o7 s
+ 1=5i %gﬁoxs(T,T,k,U) zck—l—z%t} Qﬁ .

Moreover, using the vectors f}(, f)_(l, 9}0 g)_(l € H defined above, we define
the vectors f;(, I3 g)Z(, gy € H (X € {1,2} x BxT x R) as follows. For
(. p,x,5) € {1,2} x BxI' xR

> _ < gl -1

(3.36) Sopxs = Fopxs = Fopxs T Tpx(—s)
> 1 o < 1 1
Ippxs *= ~Ippx(B+s) gﬁpx(—s)’ Ippxs *= ~Ippxs gﬁpx(ﬁ—s)'

By using the formula

(3.37) oD /

one can verify that for any (p, p,x,s), (7,n,y,t) € {1,2} x Bx T x [0, )

u2 —|—D2’ (Vt € RZOa D e R>O)

> > 1 1 -1 -1
152t<fﬁ_pxs7 gﬁ_nyt>7-( = _182t(<fﬁpxsv gﬁny(ﬁ+t)>H + <fﬁpx(—s)7gﬁny(—t)>7'()
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=-1 / du% dz
5=t d Z P1UP2(k)

(7, r)e{l 2}xB kel
: ( ﬁlpxs(F T, k u)(z)gﬁny(ﬁ—kt) (Fv T, ka u)(z)
+ o) (T kW) (2)gg, (T, u)(2))
= LixCr (ppxs. Tmyt).
< < _ 1 1 —1 -1
15<t<fﬁpxs7 gﬁnyt>’}—( - _1S<t(<f,5pxsv gﬁnyt>’}—( + <fﬁpx(—s)’gﬁ77y([3—t)>7‘()

= 1,«:C7  (ppxs, nyt),
and thus

— _ > >
(3.38)  Ci1(ppxs,yt) = Lsxt(f5sr Grpyt) 1 — Lo<t{ Fopmss Grnyt )71

To apply [20, Theorem 1.3], we need to estimate Hf)Z(HH, Hg)Z(HH, 51
lgsllx, (X € {1,2} x BxT x [0,3)). These can be expanded as follows.
For any (p, p,x,s) € {1,2} x BxT'x [0,8) and A € {f, g}

(3.39) |14 = |45

pPXS ||H

= dZ/ du/dvz

(7, T)E{l 2}xB kel ae{l,—

sl

. <2h7r2 | A% 00(T, 7, K, u) (mhe™) |2

+ 22k | AZ 00 (T, 7, k, u) <2xkv —xx+i 3 >
57r 27
a = k s -
Zﬁ AZp00(T, 7, k, u) ( Tk Z U+ 3

+ 2z

T
AZ00(T, T K, 1) < 2oV + T — Z_ﬂ>

57r
Qﬁ

As the next step, let us fix k € I'* and estimate

AC (= 5%3 T
ppOO(T, T, k, u) ( TK + z%v - z%>

)

inf |14 €%, inf |14+ e77.
ze PLUP» (k) zePIUPs (k)
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For z € P; there exists ¢t € [—1, 1] such that

11+ %[ = 1+ 2cos(nBh\/1 — 12)e™ht 4 2mhht,

There exists m € N such that h = 2m/3. Then there exist n € {0,1,---
m — 1}, 6 € [0,27] such that 78hv1 —t> = 0 + 2nw. If 0 € [0,7/2] U
37/2,2n], |1 + P2 > 14 €20 > 1. If 0 € (n/2,37/2), (n3ht)?

vVl

(2mm —0 —2nm)(2mm +0+2nm) > 72 /4, and thus |1+e8%|? > (1—e™)2
(1 — e~ 2)2. We have proved that

inf [1+4e%| = 1nf 1+e P >1-e2.

zeP
If z € {ax +iy, —ac+iy | —g5 <y < 2”} min{[1 + €|, |1 + e %]} >

1—e P >1— e ,whereweusedthatwk>1/ﬁ Ifze{ac—i-zﬁ,x—
ig5 | —ak <@ < axf, min{|1 + e%?|, |1 + e7%%|} > 1. Thus

inf min{|1 4%, [14+e P} >1—¢!
z€Ps (k)

Now we can see that

3.40 inf |14+e¥?>1—¢e"', (Vae{l,-1}).
(3.40) zePJBPQ(k)‘ el >1—e (Va € })

We also need to find upper bounds on

sup ||h (Lo, — e*%(zfi@)b”%E(d))(k))*lH2bx2b,

zeP,
sup ||l (Ipp — "R IR E@0D) T,
z€P(k)
On the assumption (3.30)
1 ,9(5)) 1 1 <7r
sup sup ——lz—i——= |+ -a| <7+ - | s+ V2 .+ P2
2€Py aEJ(E(qb)(k))‘ h < 2 h h \B o+ 19
3_71'
= 2 P

. . 1 6(B) 1 1 (7
S AN R (PRPLICC) N DN Sy ;
zlélP1 aEJ(}EI‘l(qb)(k)) ‘ h <Z ! 2 ) * ha‘ = h <ﬂ + mar + |¢| )

v
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which imply that

inf inf [1—e G > nf [1— e >0,
2€Py aco(E(¢)(k)) - 2eC
with Z<|z|<3E
and thus
(3.41) sup ||~ (o — e~ #C—IED A EE@Y 1) o L

zeP;
On the other hand, since zy € [1/3,2/0],
1 /2
w2 <2 (2 v ),
€ Py (k) aco(E(¢)(k) h = 2n — h h \p

sup sup ‘Im <—E +i1—"+ -
zePy (k) aca(E(¢)(k)) h h

By the assumption (3.30)

sup sup
z€P2(k) aco(E(¢)(k))

and thus for any z € Py(k), a € o(E(¢)(k))

Therefore
(3.42)

z€P> (k)

“Hlopxab

—1
<c sup sup <]Rez—o¢]+‘1mz_9(ﬁ)‘>
2€P, (k) aco(E(¢)(k)) 2
-1

2r_0(B)
3 2

‘71

9

< cmax{ sup |TK —
aca(E(¢)(k))

< c(b)B,
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where we used that

1
inf Tk — Q| 2> ——————,
aea<E<¢><k)>| k—al 2 2(b+1)8

which is ensured by (3.31).
By substituting (3.40), (3.41), (3.42) into (3.39) and using (3.37) and
xx < 2/8 (Vk € T'*) we observe that for any X € {1,2} x Bx T x [0,3) and

Ae{f g}

>
1A% 17 = 4% 1%

S%Z/Zdu/oldv Z

NS R ae{l,—1}

) |7I'h COS(27TU)’1a7rhcos(27rv)>0 |2xkv - xk|1a(2xkv—mk)>0 xklaxk>0
u? + (mhcos(2mv))2 u? + (2zxv — 7 )2 u? + z}

< ¢(b).

Now we can apply the extended Gram inequality [20, Theorem 1.3] in the
representation (3.38) to derive that

(3.43)  [det({u;, wj)on C1-1(Xi, Yj))1<ij<nl < c(0)",
(Vm,n eN, u;,w; € C™ with ||112H(Cm, ||Wz||(Cm <1, X;,Y;, €l

(=1, ).
The readers can refer to [11, Remark 5.2] for a minor necessary modification
of [20, Theorem 1.3] concerning the factor (u;, w;)cm (4,7 =1,--- ,n), asit

was originally claimed only for m = n in [20, Theorem 1.3].

Let us treat C'i_o. In fact the procedure to find a determinant bound
on Ci_o is simpler than that on Cy_;. Let H denote the Hilbert space
L2({1,2} x B x I'* x R) whose inner product is defined by

<fa g)ﬂ = Z % Z /_OO duf(7, 7.k, u)g(7, 7.k, u).

(Fr)e{l2}xB kel*

Define the vectors f}i(, % € H (X € {1,2} x BxI'x R, a € {1,2}) as
follows.

Agpxs (Fu T, k) u)
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; ; a B)
= Lyqe 0= (CDTEE 0y T (- Db+ p, (7 — Db+ 7)
1 e BED™ERvert0)  fa ey
I+ e—ﬂ((—1)&+1i@+éf(k))|g 7 u+ér(k)

)

g%pxs (?7 T, kv U)
—i(k,x)—is((—1)2 m—u
= lp_ge X —is((7]) 5 )1reB(k)U(k) (F=Db+7,(p—1)b+p)
1 ér(k) 1
1+ 6—5((71)@+1i@+é7(k))|% 7 iu+ér(k)

Then let us define f;, f;, g§, g% € H (X € {1,2} x BxT x [0,03)) by

-~ .
(344) poxs ﬁ<pxs = ppxs+ ppx( s)?

S S | S| ~2

Gaps = Tap(prs) T Topx(—syr  Fnpxs = Tpps + Tppm(3—s):
By applying (3.37) repeatedly we can confirm that for any (p,p,x,s),
(T,m,y,t) € {1,2} x Bx T x[0,0)

>
152t<fppxs7gnnyt>ﬂ - 152t(<fppxs’gnny(ﬁ+t)>ﬂ + <fpp><( 5)? gnny( 0)7)

= 1::CF,(Ppxs, myt),
R A Al
Ls<t{Fxs: Gyt 7t = Vo<t (Fpomsr Gimyt)d 7 + <fPPX( o) Iy (517
= Ls<tCT o (ppxs,Tinyt),

and thus
— — r> A~ r A
(345) lez(prS, ’rlnyt) = 152t<fﬁ7;x57 gﬁnyt>ﬂ - 1S<t<fp<px57 gﬁ<77yt>’}:l

To estimate the norms of fX, fX, gX, T (X €{1,2} x BxT x[0,0)), let
us observe that for k € I'*, 7 € B(k), a e {1,2}

(346) |1 4 e—ﬁ(( 1)a+119(ﬂ>—|—e7.(k )’2 ( e—ﬁé-,—(k))2 Z (1 o 6_1)2,
where we used the fact that é,(k) > xy + m > 1/4. Taking into

account (3.46) and the unitary property of U(k) and using (3.37), we can
derive that for any (p, p,x,s) € {1,2} x BxI'x [0,5) and A € {f, g}

|| ppst2 = ||14ppxs||2 = ”A%pOOH% + HA%pOOH%
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<t > UG-+ F- Db =c

(7,7)e{1,2} xB kel'™*

With these bounds we can apply [20, Theorem 1.3] in (3.45) and conclude
that

(3.47)  [det({wi, wj)om C1-2(Xs, Yj))1<ij<n| < €,
(Vm,n € N, u;,w; € C"™ with ||u;||cm, [|willcm <1, X;,Y; € Iy
(=1, ,n)).

Since we have (3.43) and (3.47), we can apply the Cauchy-Binet formula
in a standard way (see e.g. [13, Lemma A.1]) in (3.35) to obtain the claimed
determinant bound. [

3.2. General estimation

Let V denote the complex vector space spanned by the abstract basis
{tx}xer. Then let AV be the Grassmann algebra generated by {1 x }xer
and A,,., V be the subspace of AV spanned by even monomials. These
Grassmann algebras are exactly same as those defined in [14]. The grand
canonical partition function and the thermal expectations are formulated
into a hybrid of Gaussian integral with real variables and Grassmann Gaus-
sian integral over /A V in the same way as [14, Lemma 3.6]. As in the pre-
vious papers, the proof of Theorem 1.3 relies on analysis of the Grassmann
Gaussian integral appearing in the hybrid formulation. The aim of this
subsection is to summarize necessary estimates of the output of the Grass-
mann Gaussian integral in a generalized setting. Here we do not introduce
concrete model-dependent Grassmann polynomials or covariances. We only
assume generic properties of Grassmann polynomials and a covariance. The
estimates can be used as tools to analyze the Grassmann integral formula-
tion if the real Grassmann polynomials and the real covariances stemming
from the model are substituted. In fact all the inequalities claimed be-
low are straightforward variants of the results of [13, Subsection 3.2], [14,
Subsection 4.2]. We only provide minimum sketches of the proofs rather
than fully repeat parallel arguments. However, the resulting inequalities
themselves will be stated without omission. We will see that seemingly sub-
tle changes from the previous estimates constitute the essence of the proof
of Theorem 1.3.
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In this subsection we assume that the covariance C : Ig — C satisfies
with a constant D € Ry that

(3.48)  C(ppxs,mmyt) = C(ppx0,7my0), (Y(p, p,%,5), (7,0, ¥,t) € Io),
| det({w;, wj)cnC(Xi, Yi))1<ij<n| < D™,
(Vm,n € N, u;,w; € C"™ with ||u;||cm, ||Wiljlcm <1, X;,Y; € Iy
(i=1,---,n)).

A common property satisfied by kernels of Grassmann polynomials in the
following analysis is the invariance

(3.49) F(Rg(X + s5)) = F(X), (vx eI, se %Z) ,

where F': I"™ — C. Let us refer to [14, Subsection 4.2] for the definition of
the map Rg. Also, the meaning of the notation X + s is explained in [13,
Subsection 3.1] in a parallel situation. The property (3.48) implies that its
extension C : I? — C defined as in (3.2) satisfies (3.49). In the following we
assume that F7(¢) (j € N), F(¢) € Ao V and the anti-symmetric kernels
Fl, :I™ - C, Fp : I™ — C (m = 2,4,---,N) satisfy (3.49). Here N
denotes 4bBhL?, the cardinality of I. We use these Grassmann polynomials
as input to the tree expansions. As another input, we take G € A
having the form

even V

N 1\P+a
G(¥) = > lpgeN (E) D Gpg(X, Y )vxtpy
P,q=2 Xel?
Yerlq

with the bi-anti-symmetric kernels G, 4 : IP x [? — C (p,q = 2,4,--- ,N)
satisfying (3.49) and the vanishing property

(3.50)

Z Gpa((Prp1x15181, -+, PpppXpspp), Y) f(s1, -+, sp) =0,
(s1,,5p)€[0,8)],

(v(ﬁhplaxlv‘gl)a' o 7(:5p7ppvxp7§p) € {172} X BxT x {L_l}a Y € Iq)a

Z GPvQ(X’ (ﬁ1771Y1t1C17 T aﬁqanqthq))g(tlv U ’tq) =0,
(t1, ,tq)€[0,8)}
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(VX € Ipa (ﬁlvnlathl)f" a(ﬁq777anq7Cq) < {172} X BxT x {17_1})7

for any f:[0,8)) — C, g:[0,3)] — C satisfying that

f(ra(si+s), -+ ,m3(sp+5)) = f(s1,--+,5p),

<V(51, .sp) €10,8)), se hZ>

g(rg(s1+s), - ,rp(sq+8)) = g(s1, -, sq),
1

<V(31, .Sq) €10,8)1, s € EZ> .

Recall that for any s € 3Z, m(s) € [0,8), and rg(s) = s in +Z/BZ.
The definition of the map rg : —Z — [0, 8)n, was originally given in [13,
Subsection 3.2]. We also mtroduce G? € Nppen V (7 € N), assuming that G
has the bi-anti-symmetric kernels G5, : I? x I1 — C (p,q = 2,4,---,N)
satisfying (3.49) and (3.50).

For n € N>o, 1 € {0,1,--- ,n} we define A™D () € A,,., V by

1
A(”vl)(z/;) = Tree({1,2,--- ,n},C) H (W7 +)

’ H Gk(¢k+¢) ¥i=0

k=I+1 (Vie{1,- n})

The definition of the operator “I'ree({1,---,n},C)” is written in [13, Sub-
section 3.1]. It applies to the present case if we add the set B to the index
set “I” of [13]. In fact the current version of Tree({1,--- ,n},C) is exactly
same as that used in [14, Subsection 4.2]. In the first lemma we summarize
necessary bound properties of the anti-symmetric kernels of A9 (z)). Let
us refer to [14, Subsection 4.1] for the definition of the norm || - ||;.

LeEMMA 3.5. For any m € {2,4,--- ,N}, n € N>o, I € {0,1,--- ,n}
the anti-symmetric kernel A%’;’”(-) satisfies (3.49). Moreover, the following
inequalities hold for any m € {0,2,--- ,N}, n € N>o, | € {0,1,--- ,n},
I'e{1,2,--- ,n}.

(3.51) ||
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N —mo—2m
<F> (n—2)!D~ "2 272m | C|p ]

l N n N v
k
Jlip> D7 |F oo | TT | 30 27D G e
Jj=1 \p;=2 k=l4+1 \pr=4

1y j1pi—2(n—1)>m>2(n—1)
(3.52) ||A®D)),

< (n—2)!D~ T2 C| Z 2" D% || By, |
p1=2
U n N
H Z 23paD 3 ||FJ 100 H Z 23ka%kHG];kHl,oo
Jj=2 \p;=2 k=l'+1 \pp=4

. 12 ;L:l pj—2(n—1)>m>2(n-1')"

PrROOF. The statement concerning the property (3.49) is essentially
implied by [13, Lemma 3.1]. Let us define the map Py : I'"™ — I™ by

PO((ﬁl)plathl)fl)?” : 7(ﬁm7pm)xma8m7§m))
= ((ﬁlvplaxla(Lél)a" : a(ﬁmapmyxmyoafm)),
(v(pjvpjaxjvspgj) el (.] = 11 7m))

Let us use the notation Py for different m for simplicity. Then by taking
into account anti-symmetry and the time-independent property (3.48) we
observe that for m € {0,2,--- N}, n € N>o, 1 € {0,1,--- ,n}

A,(fj’l)(zﬁ) =Tree({1,---,n},C)

EHEIO)

j=1 \n;=2m;=0

Z Z Fﬂ;]- (Yjan)waO(Yj)lﬁxj)

X;€l™ YiermiT™i

BES
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Z Z Gl (Yy, Xk)lbfoo(yk)@bxk)

Xk€lI™k Y, eIk~ ™k

TZJiZO 12 ?:1 mj=m:-

(Vie{1,-- ,n})

By the uniqueness of an anti-symmetric kernel, for any X = (X3, -+, X,,)
€ [

G, (X)
N

= E : Lp,.geaNLprg=ny
DP,q=2

1
' ] Z Sgn(U)Glg,q((XUﬂ% to aXa(p))7 (Xa(p+1)> T 7X0'(p+q)>>7
=y
g&On g,

where S, is the set of permutations of {1,--- ,n;} and sgn(o) is the sign
of 0 € Sy,. If my, <1, the property (3.50) implies that

Z Gflk (Y, Xk)wﬁ’o(Yk) =0
Y, eImk ™k
for any X € I"*. Therefore

A (@)
=Tree({1,---,n}C)

l N mn;—1 s
i 1 ) 4
11 ( > > (:j ) (ﬁ) J > > Féj(Yjan)w%(ijj)
J=1 nj:2 m]'=0 J XjEImj YjeI”J'_mj
TS ()0
k=111 \np=ame=0 \ 'k h

Y% Gﬁk(Yk,Xk)wé?kka>

Xp€l™k Y eIk~ ™k

Wi=0 Iy j=1mi=m>2(n—1)
(Vie{l, ,n})
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= 1m22(n7l)A£rrLL’l) (w)

We can apply the inequality “(3.16)” of [13, Lemma 3.1] or “(4.8)” of
[14, Lemma 4.1] to estimate the anti-symmetric kernel of Al (). Mul-

tiplying the result by 1,,>9(,—;) yields (3.51). Now we have A%’l/)(q/;) =

1m22(n_l,)A$;“")(¢). We can apply “(3.17)” of [13, Lemma 3.1] or “(4.9)” of

[14, Lemma 4.1] to bound ||A7(7if7l,)||1 and multiply the result by 1,500,
to obtain (3.52). O

Next we consider the Grassmann polynomials B(")(¢), E(n’)(w) c
Aeven V (n € N, 1/ € N>9) defined as below.

N 1\ Pta
B™(p) =3 1p,q62N<E> > Gpg(X,Y)Tree({1, -+ ,n+1},C)

P,q=2 XelP
Yer?
n+1
1 2 TR
(W rox@ oy [[E@ 0|
Jj=3 (Vie{l, ,n+1})

N
~ 1 p+q
B ()= )" 1p,q€2N<E) > Gpo(X,Y)Tree({1, -+ ,n' +1},C)

D,q=2 XelP
Yelq
(W )x (V7 + )y
JIew +oF@ ™ v
7=3 (Vie{l,-- ,n'+1})

The anti-symmetric kernels of these polynomials can be estimated as follows.
See [14, Subsection 4.1] for the definition of the measurement [-, ] .

LEMMA 3.6. For any m € {2,4,--- N}, n € N, n’ € N>y the anti-

symmetric kernels BT(,?)(-), E,(ff/)() satisfy (3.49). Moreover, the following
inequalities hold for any m € {0,2,--- , N}, n € N>o.

(3.53)

1B 111,00
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N
2 2 P1+P2 ~
<D~ Z Lp, prcan2 Pt T [GphmvC]l,oolp1+p2—22m22‘

P1,p2=2
(3.54)

1B l1,00 < (n = 1D 52727 CI7

N
p1+P2 =
Z Lpy p2€2N23p1+3p2D [Gp1p2: Cli,co
P1,p2=2
n+1 N
9 DF | GY 1
: H Z 2 || ijLOO E?;Lllpj72n2m22n'
J=3 \pj=4
(3.55)
IBSly < (n— 1)!D_”"2 [
p1+P2 P
Z 1p1,P2€2N23p1+3p2D [Gphpzvc]l,oo
p1,p2=2
n
11 Z 225 DT G |1
j=3 \p;j=4
N
Z Pn+1 ~1 pj—2n>m>2n—2"
Prny1=2

PROOF. The first statement of the lemma is essentially proved in [13,
Lemma 3.2]. By the same consideration based on anti-symmetry and the
properties (3.48), (3.50) as in the proof of Lemma 3.5 we can deduce that
for any n € N>o, m € {0,2,--- , N}

B (v)

- (S () (8)

P1,p2=2 m1=0mo=0

Z Z Gp1,p2((Y17X1)7 (Y27X2))

Xiel™ Xoelm2
Y, cIP1—m1 Yye[P2—m2
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“Tree({1,--- ,n+ 1},C)¢%(11/1X1¢%{2¢X2
1

A(EEE(5) 3, amxms)

J=3 \pj= m;=0 X,;el™i
YjEij_mj
N Pn+1 pn+1_1
2 : (l " 2 : Pn+1
h m 1
pn+1:2 mn+1:0 nt
n+1
E : Fpn+1(Yn+laXn+1)¢yn+1wxn+1
Xpp1€IMn+1

Yn+1 e[pn+1_mn+l

12 n+1 mj=m>2n—2

=0
(Vie{l, ,n+1})

= 1m22n72§7(7?) (¥).

In the first equality we took into account the constraints mq > 1, mgy > 1,
mj > 2 (j = 3,---,n). Then we can apply “(3.27)” of [13, Lemma 3.2]

r “(4.14)” of [14, Lemma 4.2] to derive (3.55). In the same way as above
we have that for any m € {0,2,--- , N}, n € N>o B(l)(z/)) = 1m>2B(1)(¢)
B () = 1m>2nB( )(w) Then we can apply “(3.24)” of [13, Lemma 3.2] or
“(4.11)” of [14, Lemma 4.2] to derive (3.53) and “(3.26)” of [13, Lemma 3.2]
or “(4.13)” of [14, Lemma 4.2] to derive (3.54). O

Assume that n € N, m € {0,1,--- ,n — 1},

l=s1<s9< - <spy1<n, 1=t <te< - <tp_m <M,
{Sj}m+1 U {tk}k -2 = {273a' e 7”}7 {Sj}m+1 N {tk}k —9 = =0.

Finally let us study the Grassmann polynomials E(™ (1)), E® () € Neven V
defined as follows.

N 1\ Pta
=> 1p,qegN<E) > Gre(X,Y)

p,q=2 XelP
Yel1

m—+1
Tree({s)}74O@! +o)x [[ Y@ +0)| .

Jj=2 (Vj€{1,2,- ;m+1})
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Tree({thi O + o)y [[ 6@ +w)) o
k=2 (Vke{1,2,- ,n—m})
N 1\ P4
) = Z 1p,q62N<E> Z Gpq(X,Y)
p,q=2 XelP
Yer4
Tree({s;}74",C)(¥" +¥)x
m+1
T QG (0% + ) + Ly mn P +90))|
j=2 (Vje{1,2, m+1})
Tree({ti 1" C) (@' + )y
T QoG @+ ) + Lymn F@* +9))|
k=2 (Vke{1,2,:-- ,;n—m})

These Grassmann polynomials are special examples of those studied in [14,
Lemma 4.4] and also close to those studied in [13, Lemma 3.3]. The prop-
erties we need for later application are summarized in the next lemma. The
definition of the measurement [-,-]; is found in [14, Subsection 4.1].

LEMMA 3.7. For anyn €N, a,b € {2,4,--- N} there exist functions

E(gnb), E(n) I¢x I — C such that they are bi-anti-symmetric, satisfy (3.49),
(3. 50) (md
) N 1 a+b (n)
n _ n
EM @) =" lapean <5) > BN (X Y)exty,
a,b=2 Xelo
Yert
N 1 a+b ~(n)
= > lapeoN <5) > B (X Y)dxiy.
a,b=2 Xere
Yerb

Moreover, the following inequalities hold for any a,b € {2,4,--- ,N}, n €
N>o and anti-symmetric function g : I — C.

(3.56)

N N
1 p q 1 —a—
HEC(LJ?”LOO < Zzlp,q@N( a > < b ) D2t b)HGp,qHLOO'

p=a q=b
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(3.57)
N N D )
1 1 —a—
BBt <33 tpaean ( 2) (1) DEF VG0
p=a g=b
(3.58)
1B 1,00

< (1m¢0(m - DI+ 1m=0)(1m¢n—l(n —m =21+ 1y=n_1)

g e e Z Lps.ar 2N 30 D™ Gy 1o
P1,q1=2
m-+1 n—m N .
k
11 (Z 2301 D3 (|G ||1oo> 11 (Z 230 D2 (|Gl 1,oo>
j=2 \p;=4 k=2 \ gp=4

'12"1“1) —am>az2m+2 15 107 -2 (n-m—1)2b>2(n—m)"
(3.59)

[Eg;))v g]l,oo

< (1m;é()(m - 1)' + 1m:0)(1m;én—1(n —m — 2)' + 1m:n71)
. 2—2a—2bD—n+1—%(a+b) HCN||7L—2

} : 3p1+3q1 LU
1p1,(I1€2N2 e p
P1,q1=2

([Gprars 9l10lICll100 + [Gprars Cliooll911.00)

m+1 N nem N .
. H ( Z 23PJD 2 HG ||1 oo) H < Z 23qu7||GZ;Z 1700)

j=2 Dj =4 k=2 qi =4

'12 me _2m>a>2m+2122 1 qk—2(n—m—1)>b>2(n—m)"
(3.60)
IES |1y

< (1m7é0(m - 1)' + 1m:0)(1m7én71(n —-—m— 2)' + 1m:n—1)
N

R [ e S e
P1,q1=2

p1,q1||loo
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m

+

1/ N ).
. =2
(}:23%1)2( 557l 100 + Loj=nl| F ||1)>

2 \pj=2

( Z 23QkD 2 (1tk7ﬁnHG HLOO + 1tk:n‘FQkH1)>

qr=2

<.
||

H:i];i

-1

m+1 = _
ZJ 1T pj—2m>a>2m+2 21ne{s]~};,":451

S PR S
(3.61)
[Eﬁﬁ)ﬂh
< (Lo (m — 1)+ Lin=0) (Linzn—1(n — m — 2)! + 1y 1)
. 9~2a=2b py=nt1-5(atb) IC|32

ne{tk}z;zm

P1+q1

3 3
E : 1P17Q162N2 P DT
P1,q1=2

([Gprar 91.s5lICll 1,00 + [Gipr.ars Clrool9ll1.00)

m+1 N P
gl (Z?‘“’P@?( SN e PSR P . lh))

7j=2 p;=2

n—m N
qf
| ( S 24D (1, 2| Gl

k=2 qr=2

+ 1tk:n\FkuI1)>

. 1 m+1
250 pg72m2a22m+2721"€{&‘j};@;

* 1 n—m .
el qk—2(71—m—1)2b22(n—m)—21716{%}Z;g1

REMARK 3.8. In fact the inequalities (3.56), (3.57) are same as
“(4.16)”, “(4.18)” of [14, Lemma 4.4] respectively. However, we present
them for convenience in the subsequent application.

PROOF. The existence of the bi-anti-symmetric kernels satisfying the
claimed properties is essentially implied by [13, Lemma 3.3]. In fact the
kernels are explicitly given in [14, (4.15)] in a more general setting. To
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make clear, let us present the kernel E((;Z) 1 x I - CforneN,abe
{2,4,--- ,N}. For X = (X1, -+, X,) €I, Y =(Y1,---,Y,) eI’

EM(X,Y)

N p1
Z e Z (Lin=0 + Lm01uy <pi—1) ( Zi >

P1,q1=2 u1=0

q1 q
' Z (1m:n—1 =+ 1m7£n711v1Sq1—1) < ,Ul >
v1=0 !

1 P1+q1—u1—v1 , ,
' (E) Z Z Gmm((WlaXl)y(ZlaYﬂ)

WielP1—u1 Z;e]91—"1

eSS ()6 £ awx)

j=2 pj=4u;=0 W;eIPi™"
N Pl Pj—u;
pi (1 F, (W;, X’
+lo=n D Y u 7 >, (W5 X))
pj=2u;=0 W, erPi™"i
n—-m N qp—1 ” 1\ %~k
t /
(XS (9)() 5 amx
k=2 qr=4vr=0 Z, €%~k
N g1 n 1\ vk
eSS (1)) mm)
=2 vp=0 Z, €19k
m+1
-Tree({s;}74',C) H by W0

“Tree({tx}._1",C) H ¢%k

k=1

Pt =0
(Vke{1,- ,;n—m})
ST T (pi—w) X I T e P (g i)
(71) =t I+1 k=1 =kt 1Zm1 uj alz ot vR=b

' a‘b' Z Sgn Sgn( )1( "7X'Im+1):(Xo'(1)7'“7Xo-(a,))

oES,
TES},

Loy v )= (1) Yr ()
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By considering (3.48), (3.50) we can substitute the constraints

up > 1, Uj > 2189-7&717 (\V/j € {2a cee,mot 1})a
v >1, v > 21tk7éna (Vk‘ S {2, e, M — m})

Moreover, by using the fact that a, b must be even we have that

(n) _ (1)
E,p(X,Y) = Lazomez=21, (smia ozamom—21, o nm Eap (X,Y),

and thus
” a,b Hl a>2m-+2 21n€{sj-};7:51 b>2(n—m) 21n€{tk}z;£" H a,b Hl)
E(n) =1 _ 1 ) — E(n)
[ ab 79]1 a>2m-+2 21ne{s]~};-n;51 b>2(n—m) 2171/6{%}2;;} [ a,b g]l

for any anti-symmetric function ¢ : I? — C. Then we can apply “(3.37)” of
[13, Lemma 3.3] (or “(4.21)” of [14, Lemma 4.4]), “(4.23)” of [14, Lemma
4.4] to obtain (3.60), (3.61) respectively. By the same consideration based
on (3.48), (3.50) and the parity of a, b we see that

1ES o0 = Lazams21p220n-m) | B 1,001
[Eég),gh,oo = la>omt2lp>2(n—m) [Eo(ﬁ,),gh,oo

for any anti-symmetric function g : I? — C. Then combination with

“(3.36)” of [13, Lemma 3.3] (or “(4.20)” of [14, Lemma 4.4]), “(4.22)” of

[14, Lemma 4.4] leads to (3.58), (3.59) respectively. [J

3.3. Double-scale integration

In this subsection we construct a double-scale integration scheme based
on some general properties of a couple of covariances. With ¢y € R>q, A,
B € R the covariances Cy, Cy : Ig — C are assumed to satisfy the following
conditions.

(3.62) Co(ppxs,myt) = Co(ppx0,7my0), (V(P,p.x,s), (7,1,y.t) € Ip).

(3.63) CLR(X + ) = C1(X), (vx €2 se %Z) |
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[}
(364) | det((ui, Wj>CmC (Xz, }/j))lﬁi,jgn‘ < (CO(lazOA + ]—azl))nv

(Vm,n € N, u;,w; € C™ with ||u;||cm, ||willcm < 1, X;,Y; € Iy
(i=1,---,n), a€{0,1}).

[ ]

(3.65) [Call1,00 < coB, (Ya € {0,1}).
[ ]

(3.66) ICallt oo < cod, (Ya € {0,1}).

We should think of them as generalizations of the covariances Cy, Cy in-
troduced in Subsection 3.1. It is efficient to define the covariances by ab-
stracting the dependency on the physical parameters at this stage. On
the contrary, we explicitly define the input Grassmann polynomials to the
double-scale integration process as follows.

VO-10(u) (1) () S VOO w) (X,

Xerl?

VO-20(y) () 1= <1> > Vo w) (X, Y)exty,

h
X,Y€ET?

where the antl—symmetrlc kernel VO Yw) : 12 — C and the bi-anti-
symmetric kernel V272 O(w): 12 x I > — C are defined by

Vy T ) (Brprxisiér, papaxasata)

= _%ULidhl(51vPlvxlvsl):(52vP2aX2vs2)151:1(1(61152):(1»—1) ~ lae)=(-11);
‘/2?52’0(U)(ﬁ1plx181§17 Popaxasato, Tmy1t1C1, Tan2yatala)

= _EUL_th(hlslztl - 5_1)1(019(178177717y17t1):(pz,xmz,nz7y27t2)

Z Sgn(a) Sgn(T> 1(?0(1) 7ﬁu(2) 757—(1) 7ﬁ7—(2)):(1’272:1)
0,TESy

) 1(60(1)’50'(2)»CT(I)’CT(Q)):(laflzl,fl) :
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Here u is a complex parameter and should be considered as an extension
of the coupling constant U. Though the definitions seem complicated, they
can be simply rewritten as follows.

VW) =g X D Dt

(p,x)eBXT s€[0,8)n
(3.67)
u

V0_2’0(u) (¢) — _m Z Z Elpxsw2pxs$2nys¢177}%

(p7x),(77,y)€l’j’><l" SG[O,ﬁ)h

u — —
+ ,8th2 Z Z wlpxsw2pxsw2nyt¢lnyt-

(p,%x),(n,y)EBXT s,t€[0,8)n

We adopt [14, Lemma 3.6] as the formulation of our system. We can see from
(3.67) and [14, Lemma 3.6] that the Grassmann polynomial VO=50(U7)(¢)) +
VO=29(U) () appears in the Grassmann integral formulation as the effective
interaction. Our first goal in this subsection is to construct an analytic

continuation of the A, V-valued function

w i log ( / VOO WO VOO 4 g (wo)>

in a neighborhood of the origin. Let us remark that we integrate with
the time-independent covariance Cy as the first step, while the integration
with the time-independent covariance was performed in the last step of the
multi-scale integrations in [13], [14]. The determinant bound on Cp is the
main problematic contribution from the sliced covariances, while the ||-||1 0o-
norm bound on the time-independent covariance was so in [13], [14]. We
integrate with the covariance Cy first in order to remove the main burden
on the possible magnitude of u. The output of the integration with Cy will
be integrated with C; in the second step.

It will help us to organize our analysis if we prepare some sets of A_,.,, V-
valued functions in advance. For r € Ryq, set D(r) := {z € C | |2] < r}.
In the following o denotes a parameter belonging to R>;. Admitting the
convention concerning choice of a norm of A_,., V explained in the begin-
ning of [14, Subsection 4.4], for any domain D of C" we let C(D, A_,., V),
CW(D7 /\even even V’ the
set of analytic maps from D to /A V respectively. Let us also refer to the

V) denote the set of continuous maps from D to A

even
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beginning of [14, Subsection 4.4] for the definitions of the norm || - [[1 c0
of C(D(r),C) and C(D(r),Map(I™,C)) and the measurement [, -]1 o0 for
a coupling between a function belonging to C(D(r), Map(I™,C)) and an
anti-symmetric function on I2. For r € R~ we define the subsets Q(r),
R(r) of Map(D(r), Apyen V) as follows.

f € Q(r) if and only if

feC( /\V)m(]‘”( ),/\v).
e For any u € D(r) the anti-symmetric kernels f(u),, : I™ — C (m =
2,4,---,N) satisfy (3.49) and

h
(3.68) ~ Mfollteor < o ABTILT,

N
> e o™ fmlloor < (A+1)BILTY

f € R(r) if and only if

feC( /\v)rmw ),/\v).
e There exist f, 4 € C(D D(r), Map(]pxlq C)) (p,q e {2,4,--- ,N})such

that for any u € D(r), p,q € {2,4,--- ,N} fpq(u) : IP x I1 — C is
bi-anti-symmetric, satisfies (3.49), (3.50),

N 1\Pta
w)(®h) = Y 1pgeaN <E> > Foaw)(X, Y )y

i
and
N et
(3.69) Z co® P fpgllieor < BT,
P,q=2

(3.70) Z c 7 bt U fpgr 9100w < B~ (llgll 00 + AB™|gll1,00) L™
p,q=2



520 Yohei KASHIMA

for any anti-symmetric function g : I? — C.

Next we arrange the Grassmann polynomials

1 d " Y (u z et (u
(3.71) ! <E> log (/GZVO DO (u) (0 +4) +2V 0720 )(¢O+w)d/~LCo(¢0)>

z=0

(n € N) in the same way as in [13, Subsection 3.4]. One apparent difference
is that here we have the covariance Cy rather than C;. The difference in the
index of the covariances results in the difference in the second superscript of
the Grassmann polynomials. Let us remark that here the input polynomials
have 0 and the output polynomials have 1 in the second superscript. In [13,
Subsection 3.4] the Grassmann polynomials had the opposite numbers in
the second superscript. For n € N we define VO—1-1LL(1n)  10-1-21,(n)
VO0-2L(0) ¢ Map(C, A,,., V) as follows.

VO bL () ()

:niTree( - ,n},Co) ﬁ( Z V0030 () (4 _,_w))

even

WI=0
=1 \b;e{1,2} (Vjefl, - n})
“L3jb,=1)s
VOO () ()
1
— (ﬁ) Z 1/20220 (X Y) Tree({l <o n+1},Co)
X, YeI?
n+1
@+ Ox @ oy [TV )
Jj=3 (Vje{l,--~,n+1})
VO () ()
n—1
::%Z > <%) > L)X, Y)
m=0 ({s;} 74! {tx}p=1")ES(n,m) X yer
m+1
-Tree({sj};ngil, 0) (W +)x H VOT20(u) (9% + 1) %I =0
Jj=2 (Vje{l,“',m-l-l})

- Tree({tg 72, Co) (W1 + )y HVO D)+
(Vke{1,:- ,;n—m})
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where

S(n,m)

1l=51<s2< - <8py1 <,

_ l=ti<to< - - <th_m <n
sy (i . ’
({ J}]_l 7{ k}k_l ) {Sj};ﬁzgl U {tk}Z:gL — {2’3’... ’n},

{si )75 n {2y = 0.
The following equality is structurally same as [13, (3.56)], [14, (4.41)] and
originates from [17, (3.38)], [16, (IV.15)].
(3.72)  (The Grassmann polynomial (3.71))
= VIO () () + VOO ) () + VOO ) ),

Moreover, we set

VO ) () = VOO @) (), (=1,2),
n=1
2
VO ) () =Y VO () (9),
j=1

VO ) () =y VO (u) (),

if they converge in A_,., V. Bearing in mind that the constant A will be
B-dependent in practice, we want to prove the analyticity of u +— V=11 (v),
u +— VO~21(y) in an A-independent neighborhood of the origin. The ma-
chinery which essentially enables us to achieve this goal is the general es-
timations summarized in Subsection 3.2. They are applicable in the proof
below, mainly because VQO_I’O(U) : I? — C, V2?2_2’0(u) : I? x I? — C satisfy

(3.49), ‘/'202_20(u)() satisfies (3.50) and the covariance Cp satisfies (3.62).

LEMMA 3.9. There exists ¢ € Rsqg independent of any parameter such
that if a > c,

VOt e Q(eg?a BT, VO e R(gpPa b BT,
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PrOOF. We set r := cj « “2a7°p"1B~1. Let us begin by listing necessary
bounds on the input. It follows from the definitions that

3.73)  Vy leer < 7L
(3.74)  |[Vyg *ll100r < br,
(3.75)
(3.76)

3.75) IV e < 1Vag P10 < br,

0-2,0 — — —
[Vaz s gltcor < 7L (lgllh00 + 87 19ll1,00) < 2rL7 gl o

First let us consider VO~1=1LL(") By %(3.14)” of [13, Lemma 3.1] or
“(4.6)” of [14, Lemma 4.1], (3.64) and (3.73), for m € {0,2,--- , N}

N 1m:O

VO 1=1LMy, . < (ﬁ> (coA) 2" rL ey
N lm 0

< (E) o P AT E 0 BT L M e,

where we also used that c; ' < 1. Moreover, by (3.51), (3.64), (3.65), (3.73)
and (3.75) for any n € N>o, m € {0,2,--- ,N}

0-1-1,1,(n) N TS (o A)-nt1-Zo—2m
Ve < (50 () oty ooy
=1

- (2% Ar L) (22 A%br )" oty 125 m>2(n—1)-

Here we remark that when m = 0, only the term with [ = n remains in the
right-hand side of the above inequality. It follows that

GIT) VT O < T ABT L0,

(3.78) vt < N pntipn- L(26co ArL=0)m

< AB_lL_d(26Oé_5)n7

==

N
379 Y g [V MW o S o’rL <o *BTILTY

m=2

N
(3.80) > g ™|V tmhh
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<eY ( " ) A= B (9500 Ar LY (21262 Ay
=1

'274(n7l)A7(n7l) 2(n7l)(1+A71a2)

<cAB'(14A7! Z ( > (25coBrL=4)! (282 Ba2br)™ !
=1

< CAB 1 + A Z ( > 26a_5L—d)l(28a—3)n—l
=1
< eBTHA+ AL 2% )",

Next let us study VO=1=215(")  We can apply (3.53), (3.64), (3.66), (3.76)
to derive that for m € {0,2,--- | N}

< ccala_5AB_1L_d1m:2.

[VOL=2LW), o < e(cod) 2 (coA)?rLdeg Al p—s

For n € N>y we use (3.54) instead of (3.53) and (3.75) together with (3.76)
to derive that

IV =2 oo
< e(cgA) 2272 (o B)" g A) 2 r Lo A(2'2(co A)2br) M  eon
< cco_%AB_lL_d(QSa_5)”1m:2n.

Thus
N m
(3.81) > e am Ve Wy o < caPABTILTY,
m=2
N m
(3.82) > e am |V o < cABT LT (2807
m=2

Assume that o > 210, Then by (3.77), (3.78), (3.79), (3.80), (3.81) and
(3.82)

—Zu Vo oo < ca”PABTILY,
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y0-1-2,1,(n)

||1,oo,r)

N 00

S e am (g e
m=2 n=1
<ca3(A+1)B7ILY

These uniform convergent properties imply the well-definedness of V0=11
and the claimed regularity with u. It follows from the statements of [13,
Lemma 3.1] (or [14, Lemma 4.1]), Lemma 3.5, Lemma 3.6 that the kernels
of VO=L1 gatisfy (3.49). Moreover, the above inequalities ensure that if
a > ¢, VO~L1 satisfies (3.68). Therefore, V=11 € Q(r) on the assumption
o> c.

Let us treat V0=2L(W By Lemma 3.7 (or more originally by [13
Lemma 3.3], [14, Lemma 4.4]) there are bi-anti-symmetric functions
Vif’l’(")(u) 1 x I - C (neN,abe {24,---,N}, u € C) satis-
fying (3.49), (3.50) such that

a+b
U Z Lo peaN < h) > Voo M W) (X Y)uxby
a,b=2 XG]Z
Yel
(Vn eN, ueC).

By (3.56) and (3.74), for a,b € {2,4,--- ,N}

0—-2,1,(1 5y
V.22 D oo < IV 1000 Lambez < €520 5B M ampes,
and thus
L by,0-2,1,(1) 11
(3.83) D lageancy® oV, oor <atB7L
a,b=2

For n € N>g, a,b € {2,4,---, N} the inequalities (3.58), (3.64), (3.65),
(3.74) and (3.75) yield that

|| VO—Q,L(TL)

H 1,00,r

S

L
<
< 2

=0 ({5370 {12 ) €S (nm)

: ( m;é()( - 1)' + 1m:0)(1m;£n—1(n —m — 2)' + 1m:n71)
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) 2_2a_2b(COA)_n+1_%(a+b)(COB)n_l(212C%A2br)n1a:2m+2lbzz(nfm)

1/ n-1
Ly ( - )(1m¢0(m— 1)1+ Lyo)
m=0

(Iptn—1(n—m = 2)! 4+ 1p—p—1)
L8 %%B—la—5"1a:2m+21b:2(n,m).
Therefore,
N a+b
(384) D Lapeancy® oV Pl o < ca? BT (280",

a,b=2

On the other hand, let us take an anti-symmetric function g : I? — C. By
(3.57) and (3.76), for any a,b € {2,4,--- ,N}

0—-2,1,(1 —4,
[Va7b ( ),9]1,oo,r S [V2?22079]1,w,r1a:b:2
<2652 BT LY g} oo Lamb=2-
Thus
a b by 0-2,1,(1) 1p—17—d| |/
(3.85) > lapeancy® o™V, Y glicor < 207 BT g]l] oo
a,b=2

For n € N>g, a,b € {2,4,--- , N} we can apply (3.59), (3.64), (3.65), (3.66),
(3.75) and (3.76) to deduce that

F =0 ({55} {2 €S (nm)
. (1m¢0(m — 1)' + 1m:0)(1m¢n,1(n - m — 2)' + 1m:n—1)
) 2—2@—2b(COA)—n+1—%(a+b) (coB)"_gchQ
(L= gll1 0000 B + L0 Allgl1,00)

(222 A% M ymomao Ly=2(n—m)
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n—1
<ty ( "ol ) (Lso(m — 1)1+ L)
" m=0
(

1m¢n_1(n -—m — 2)' + 1m:n71)

. 2811 ETMB—I —5nL—d / AB~ 1 1
€ @ (l9[7,00 + Ma=2m+21p=2(n—m)>

and thus

N
atd 0-2,1,
(3.86) > Tapeancy” oV gl
a,b=2

< ca® BT L™(|lglf1 00 + AB 7 gll1,00) (2%a7%)".

Assume that o > 2°. By summing up (3.83), (3.84), (3.85), (3.86) we
observe that

(3.87) Z1ab€2Nc0 a+bZHva°b“ Nisor < (@ '+ ca B,
a,b=2

by [0
Z La b€2Nco a®t Z 91,00,

a,b=2
< 2a +ca )BT (llglll 00 + AB7H|gll100) L

The uniform convergence property (3.87) ensures the well-definedness of
V0=21 and the claimed regularity with «. On the assumption o > ¢ we can
conclude from the above inequalities that V=21 € R(r). O

Lemma 3.9 will support us in the derivation of the free energy density. In
order to derive the thermal expectations, on the other hand, we need to add
an artificial term to the input Grassmann polynomials and construct the
double-scale integration process by clarifying how the artificial term affects
the output. Let us fix (p,%), (7,¥) € B x ', which are to represent the
sites where the Cooper pair density is measured. The artificial Grassmann
polynomial V19(X)(v) € A,,.,, V parameterized by the artificial parameter
A = (A1, A2) € C? is defined as follows.

VIO @) = Y <%>m > VN X)yx

me{2,4} Xelm
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with the anti-symmetric kernels Vpr*(A) : I'™ — C (m = 2,4) defined by

Vzl’O(A) (P1p1X151&1, P2p2x25262)

= 81 82 Z Sgn (All (pg(1)7p0(1)7 U(l)750(1))7(ﬁo—(2)7pa(2)7xo‘(2)750(2)))
0'682 ((LP’TL( )1)’(27ﬁ’7‘L(>A{)771))

+ )\2 ((p0(1)1p0(1 Xo(1)s Eo 1)) (po'(2 Po(2),X 0(2)750(2 ))1(/37TL()A()):(771TL($’)))7
=((1,p,rL(%),1),(L,p,7L(X),—1))
V4170(>‘)(ﬁ1P1X151§1aﬁ2p2x252€2753P3X353€37ﬁ4p4x454§4)
h
>\2151 =S2=83=84 Z Sgn

UES4

1((50(1)*90(1) ,X(,(l)150(1)),(?6(2)190(2) ,XG(Q)156(2)),(?5(3)190(3) ,Xa(g)150(3)),(?5(4)1&7(4) ,X(,(4)1§,,(4))) .
=((1,p,rp (%X),1),(2,p,7 (X),—1),(2,7,7 (¥),1),(1,7,7 (3),—1))

Remind us that the map 7y, : I'oo — I' was defined just before the statement
of Theorem 1.3 in Subsection 1.2. We can confirm that

(3.88) V) ()

Z @lﬁrL (i)stﬁrL(fc)s
86[0,,@)}1

2 —
L= @), > Vo)1)
SG[O,ﬁ)h

2 [— —
- ﬁ Z 1/11;3@(;2)51/12,371(ﬁ)s%ﬁm(y)swmm(y)s-
e,

As the second goal of this subsection we construct an analytic continuation
of the A,,., V-valued function

(u, A) — log ( / BVO*1*°(u)(w°+w)+V°*2’°(u)(w0+¢)+V1’°(>\)(w°+w)duco (1/,0))

in a neighborhood of the origin. The mission is seemingly close to that in
[13, Subsection 3.5]. However, the fact that the covariance is independent of
the time variables makes non-trivial differences in analysis. Let us introduce

sets of Ayen
the output of this single-scale integration. Let r,r’ € R-g. We use the

V-valued functions in order to concisely describe properties of
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norm | « |1, on C(D(r) x D(r"),C) and C(D(r) x D{r'), Map(I"™,C))
and the measurement [-, -] ,,» for a coupling between a function belonging

to C(D(r) x D(r’)Q,Map(Im,(C)) and an anti-symmetric function on I2.
The definition of these notions is found in [14, Subsection 4.5]. We define
the subset Q'(r,7’) of Map(D(r) x C2, A_,.,, V) as follows.

f e Q(r,r) if and only if

even

feC(Wx(CQ, /\V)ﬂC“’(D(r)x(CQ, /\v).

even even

e For any u € D(r), A — f(u,A)(¥) : C2 — A_,., V is linear.
e For any (u,A) € D(r) x C? the anti-symmetric kernels f(u, ), :
I — C (m=2,4,---,N) satisfy (3.49) and

N
m
L @ LT Y e o il < L7

m=2

(3.89) 1 fo

We also need a set of A_,., V-valued functions with bi-anti-symmetric
kernels. Let us define the set R'(r, ') as follows.
f e R (r,r) if and only if

feC(Wx(CQ, /\V)ﬂC“’(D(r)X(CQ, /\v).

even even

e Forany u € D(r), A — f(u,\)(¥) : C* = A_,., V is linear.

e There exist f,, € C(D(r) x C?,Map(I? x I9,C)) (p,q =2,4,--- ,N)
such that for any (u,A) € D(r) x C2, p,q € {2,4,--- N} foq(u,A) :
I? x [?7 — C is bi-anti-symmetric, satisfies (3.49), (3.50),

N 1\ P+e
PN = Y e (1) Xl MK Yoy

P,q=2 Xelrr
Yer«

and
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eda +
> af qup,qu,r,r’ <1,

N
ZCO
pq—2
Zc
p,q=2

(3.90)

(3.91) 0P gl < (lgllt 0o + AB™Hlglh,00) L™

for any anti-symmetric function g : I? — C.

We must prepare a set which can contain the direct descent from V9.
The definition is as below.
f € S(r,r") if and only if

even even

feC( (r) x C2%, AV)OC“( )xcc?,/\v>.

e For any u € D(r), A+ f(u,A)(¢) : C2 — A,,.,, V is linear.

even

e For any (u,A) € D(r) x C? the anti-symmetric kernels f(u, ),
I — C (m=2,4,---,N) satisty (3.49) and

(3.92)

N
m
rr S0l YT e " g < 1.
m=2

Finally we define a set of A
least quadratically.
feW(r,r') if and only if

even, V-valued functions depending on A at

feC( (r) x D(r') /\V)mC“( )xD(r’)2,/\V>.
e For any u € D(r), j € {1,2} f(u,0)(¢) = a%f(u, 0)(¢) = 0.

e For any (u,A) € D(r) x D(r’)2 the anti-symmetric kernels f(u, A)p,
"™ — C (m=2,4,---,N) satisfy (3.49) and



530 Yohei KASHIMA

N
(393) ||f0H1,7“,7"’ S a—1’ Z Co?amem”Lr,r’ S 1.

Let us organize the Grassmann polynomials

(3.94)
i)

-log < / ezV“170(u)(w0+¢)+zv0270(u)(¢°+w)+zvlv°(A)(wow)dﬂco(w0)>

z=0

in the same way as in [13, Subsection 3.5]. The only difference from the
previous work is that here the second superscript of the input polynomials
is 0 and that of the output polynomials is 1. This is in accordance with the

index of the covariances. Define V00, V01L.(") ¢ Map(C, A_,.,, V) (n € N),
V=31 e Map(C x C%, A\,,., V) by
VOO (u) () := VOO (u)(y) + VO 20 (u) (),
n 1
VOO ) () = L Tree((L o mp. ) [[ V0@ )|,
J=1 (VjE{L, -+ n})

VI3 (u, N) () := Tree({1},Co) VIO (A) (! + 1)

wi=0

Apparently V=31 is independent of u. However, by defining as if it depends
on (u,A) we can estimate V1=3! with the norm || - ||1,,~. This saves us
introducing another norm. For n € N> we define yi-1-11(n) y1-1-21,(n)
V1=2L0) Y210 € Map(C x C2, A,,.,, V) as follows.

even

VI1=LL0) (4 \)(y)

1
= =) Tree({ - ,n},Co)
11 ( > VOO +w>)vlv°<x><w“ +O) L
J=1 \b;e{1,2} (Vje{l, n})
135,21,

V2100 () N) (1)
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1 0-20(,, 1
= <E> Z ‘/‘22 X Y)mTree({lv ,TL"—l},CQ)
X, Yer? '
W'+ )x (@ + oY)y
H VO )@ + VN @ )
(VjE{l,-“,n-‘rl})
v 2’1’ ™) (u, A) (1)
1 = 1
0 20
O] 2 <E> 2 Var (WXY)
m=0 ({5,370 {tx}Z1")ES(n,m) X, Yer?
- Tree({s;}4", Co) (W™ + )x
m+1
T QaanVO 22 @@ +9) + Lomn VN @Y )|
Jj=2 (VjG{l,“',m-f—l})
Tree({tr}_} 7 Co) (W + )y
L AV @ + ) + 1=V @ )|
k=2 (Vke{l,- ,n—m})

VAL (1, ) (0)

:anree( - ,n},Co) H( Z T/JJ"‘w))

;€{0,

$i=0
(VjG{l,"' 7"})

e gz
Then, the following equality holds.
(The Grassmann polynomial (3.94))
= VORI @) () + 1n=a VI (1w, ) (9)
+ Lnza (VIR (w, A) (1) + V20 (0, X) ()
+ VIR (X)) + VAL (u, X) ().

We should remark that the above decomposition is essentially same as that

presented in [13, Subsection 3.5]. Assuming their convergence, we set

VOl Z VQ,l,
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VIS ) ) 2= Y VIO ), (9 € (1,2))
n=2
VI, A) () = ivl_l‘“w, N
V=21 (4, A) () = i VIm2L0) (4, ) (1),
n=2
V2, A) (1) = ivu“ﬂ (W, A)(®).

We want to prove that these A_,., V-valued functions are analytic with
(u, A) in a neighborhood of the origin. In particular the analyticity with
u must be ensured independently of A. We have developed the general
estimates (3.52), (3.55), (3.60), (3.61) for this particular purpose.

LEMMA 3.10. There exists ¢ € R independent of any parameter such
that if a > ¢,

yl-bl ¢  (r,r"), yli=21 ¢ R/ (r,7"), yl=31 ¢ S(r,r"), V2l e W(r,r")
with r:= cy2a™ b ' B v/ i= (A+1)"2(B+ 1)1 (B+1) "¢y %a™®.

Proor. We will repeatedly use the following inequalities, which can
be directly derived from the definitions.

(3‘95) ||V2170||1,7’,7” < Qﬂr’7

(3.96) sup [V ' (A)[l1,00 < 277,
AeD()’

(3.97) IV < B

(3.98) sup V0N e < 7.
AeD()’

First let us summarize properties of V=31, By “(4.7)” of [14, Lemma
4.1] (or “(3.15)” of [13, Lemma 3.1]), (3.64), (3.95) and (3.97)

1-3,1 0 1,0 —
(3.99) ”VO ’ ||1,r,r’ < COAHVQL ||1,r,r’ + (COA)2||V47 ‘1,7",7“’ < ca 57




The BCS Model with Imaginary Magnetic Field. 111 533

(3100) V3™l < 1Vl + co AV e < 1+ e A)Br.

Since V%' = V"%, we can derive from (3.97), (3.100) that

N
(3.101) Z C()%OémHV,-,ll_&lHl,r,r/ < ccpa® (14 cgA)Br' + c2a*Br' < ca™
m=2

One part of the claims of [14, Lemma 4.1] or [13, Lemma 3.1] implies that
the kernels of V131 satisfy (3.49). The linearity with A € C? is clear from
the definition. Therefore we can conclude from (3.99), (3.101) that if a > ¢,
Vvi=sle S(rr).

Next let us consider V1=1=L1(" (n € N5y). One can rewrite the defining
equality as follows.

Vl 1-1,1,(n )(’LL A

(l_l ) Tree((L on). CV N 0

-HV° OICERD H VOO @t )

Then we can apply (3.52), (3.64), (3.65), (3.73), (3.75), (3.95) and (3.97) to
derive that for m € {0,2,4,--- ,N}

(A Ol T

—1 —n+1-25—2m n— z
£cZ<7_1 ) @A) s S aa)ior

p€{2,4}
(200 Ar L) 122G A%r)" M a2 mza(n—)

= -1 - _m_ o P
SCZ(?_l >002A 2272 Z 2% (coA) 2 Br!

1=2 p€{2,4}
- (2%coBrL™ ) N (22 ABbr) T, a0y sms2(nt)-

Therefore,

(3102) Vo TP <o Y 2%(oA)E B (20¢o BrL )
pe{274}
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N
(3.103) > e @™V Iy
m=2

- n—1 3 Loy
SCZ( -1 > > 2(cod)2pr
1=2 pe{2,4}
(25¢oBrL=) 1 (28a?EBbr)" 7 (1 + A7 a? + 1,447 20%)
< cL 4R (A +1)%3r (25¢o Br + 28a2c2 Bbr)" !
< COAilLfd(ngéig)nil.

Next let us study V17172b( (n € Nsp). In this case the main tool
is the inequality (3.55). By combining (3.55) with (3.64), (3.65), (3.66),
(3.75), (3.76), (3.95), (3.97) we observe that for any m € {0,2,4,--- ,N}

V2R

< e(egA) 2272 (o B) H(egA)Pr Lo A(212 2 A%br )2
Z 2% (coA) Br' Lpyon—a>m>an—2
pe{2,4}
< e(coA) 2272 ABrL™Y(2'2c2ABbr)" 2
Z 2% (coA)2 Br'Lppon—1>m>2n—2.

pe{2,4}

Since n > 2, this implies that

1-1-2,1
(3.104) (LA P
Moreover,
(3.105)
N m

Z COQ amHanw_l_Zl’(n) 1,r,r!

m=2

< cc@a’BrL=4(28c2a® Bbr)" 2 Z 2P (coA) 2 Br' (1 + 1y—qA™ta?)

pe{2,4}

< L4283
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By summing up (3.102), (3.103), (3.104), (3.105) and assuming o > 210
we obtain that

[e.°]

N o
m
Z X Z(anl;lil’l’(n)"l,r,r’ + ||Vn117172’1’(n)||1,7",7"’) <ca™'L7%
m=2 n=2

1-1-2,1,(

)+ H‘/O _IOL_d,

Ny ) < ca

These inequalities imply that V=11 is well-defined and

vl“ec< (r) x D(r') /\V)mC“( )xD(r’)2,/\v>.
By the definition V=11 is linear with A € C2. It is implied by Lemma 3.5
and Lemma 3.6 that the kernels of V=1 satisfy (3.49). Thus by assuming
a > ¢ we can conclude from the above inequalities that V1=t € Q'(r, 7).

Next let us analyze V=21 (n € N>p). Lemma 3.7 ensures the exis-
tence of bi-anti-symmetric functions V1 2L(n )( ,A) 1 19 I% — C (n € Ny,
a,be {2,4,--- N}, (u,A) € C x (CQ) such that they satisfy (3.49), (3.50)
and

VI2L0) 4y 2 (v)

N a+
= > lapean <%> STV N (X, Y ey

a,b=2 Xele
Yerb

It is clear from the definition that X +— V=250 (y X) () : C% — Ao V
is linear for any n € N>, u € C. Once the uniform convergence of
S0, VIZ2L0) (4, X) () with (u,X) € D(r) x W2 is proved, the prop-
erties (3.49), (3.50), the linearity with A and the claimed regularity with
(u, X) are automatically satisfied by V'=2!. Let us establish desirable norm
bounds. The inequalities (3.60), (3.64), (3.65), (3.74), (3.75), (3.95), (3.97)
lead to that for any n € N>o, a,b € {2,4,--- ,N}

1-2,1,(n
(3.106) ||V, i/

n—1

S(n—cl)! Z

m=0 ({s; )70 {te )21 €S (nym)
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. (1m¢0(m — 1)! + 1m:0)(1m7ﬁn,1(n —m — 2)! + 1m:n—l)
. 272a72b(60A)7n+17%(a+b)(COB)nflc(ZJAZbT
Z 2P (coA)2 Br' (2'2c2 A%br)" 2
p€{274}

(Legs, yrtiLam—24p>az2mly=2(n—m)

+ 1ne{tk}”*m 1a:2m+212(n,m),4+p2b22(n,m),2)

~(n— 1 (n—1)! Z Z
m=0 ({s; )78 {tx}pZ1")ES (n,m)
(Lo (m — D+ 1o) (Lngn—1(n — m — 2)V + 1pp—p1)
L9202 )~ (atD) S 23 (co A) % Br' (2122 ABbr)" !
pe{2,4}

(Legs, yrttLom—2+4pa>2mlo=2(n—m)

+ Lye i lamamt2lo(nom)—44p2b22(n-m)—2)

Thus
(3. 107)
Z Loseoncg? a V2@,
a,b=2
<c Z 2P (coA)2 Br' (222 ABbr)" 127402 A (1 + ly—ga® A7)

pe{2,4}
< ccdat (14 A)Br' (283’ Bbr)" !
< ca~l(28a3)n 1,
On the other hand, by applying (3.61) instead of (3.60) and (3.66), (3.76)

in addition we observe that for any n € N>9, a,b € {2,4,--- , N} and anti-
symmetric function g : I? — C,

1 2,1,(n
[ ] ’I"’I"

3
,_.

=0 ({s, )71 (a2 )ES (mym)
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. (lm;,go(m — 1)! + lmzo)(lm;gn,l(n —m — 2)! + lm:n—l)
. 272a72b(COA)fn+lf%(a+b) (CDB)anC%AZ
(rL™gllh o0 B + 1L~ o Allgll1,00)

Z 2P (coA)2 Br' (2'2c2 A%br) "2
pe{2,4}

’ (1n€{3j };”:21 Lom—24p>a>2m 1b:2(n—m)

T Licpyrop la=2ms2 Lo(n—m)—44p>b>2(n—m)—2)
< L™ (|1 00 + AB7lgll1.00) - (R-H.S of (3.106)).

Therefore, by the same calculation as in (3.107) we reach that

ath 1-2,1
(3 108) Z 1a7b€2NCO 2 aa+b [VChb ) 7(7'1) , g] 177',7‘/
a,b=2

< eL™(lgl 0 + AB™ lgll100)a™ (2%a7?)"

Assuming o > 2% we deduce from (3.107), (3.108) that

1-2,1,(n
Z 1a b€2NCQ a+bz Hvab ||17"7"’ < ca 7

a,b=2 n=2
+b 1 2,1,(n
§ 1a bGQNCQ E lrr
a,b=2

< L™ (|9l 0 + AB_lllng,oo)a_4-

These inequalities enable us to conclude that if a > ¢, V1= € R/(r,r").
Finally let us treat V5" (n € Ns3). Observe that for any n € Nxo,
(u,A) € C x C?

V2L (u, N) ()
B n—lI n—1I I o ‘
—mZ( )Z( p >T7“€€<{ ook, Co>gv N +9)
I+p
H VO 10 wk_i_w H VO 20 W‘H/J) i

k=l+1 i=l+p+1 (Vje{1,,n})
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We can see from this equality that

vALe e o (@ xC* N\ v),

even

V2’1’(n) (ua O)(d)) - %VZL(H) (ua 0)(¢) =0, (Vj < {1’ 2}’ ue (C)
J

Moreover, Lemma 3.5 guarantees that for any (u,A) € C x C? the kernels
of V2L (y, N)(x) satisfy (3.49). If a wuniform convergence of
S, VLM (y, ) () with (u,A) in a neighborhood of the origin is es-
tablished, then V2!(u,A)(¢)) will have the regularity with (u,A) and the
other properties described above in the domain. Thus it suffices to prove
suitable norm bounds which imply the desired convergence of >~ >° , V21
together with the claimed inequalities. We can combine (3.52) with (3.64),
(3.65), (3.73), (3.75), (3.95), (3.96), (3.97), (3.98) to derive that for any
n ENZQ, m e {0,2,'” ,N}

V2t

1,r,r!

< Ci ( 7 ) nZ_: ( n;l ) (cgA) " H1I=% 272 (¢ B)" !

=2 p=
Z 23p1 (coA) %ﬁr'
p1€{274}
l 5y l+p n
.H< > 237’f+1(c0A)7r/> I @codrL=) T (2"%c5A%r)
j=2 \p;e{2,4} k=Il+1 i=l+p+1
s Ly pj+2n—Al—2p+2>m>2(n—l—p)
n n—I
_m m —1 Pl
<2 me 2 A " " 2391 (coA) 'S B
<emotaty (1)5(70), 5, mrents
= p=0 p1e{2,4}
! % b
. H ( Z 23pj+1002 A%_lBr'> (2GCOBTL_d)p(21203A3b7’)"—l_p
Jj=2 pj6{274}

’ 12 2:1 pj+2n—4l—2p+2>m>2(n—Il—p)’
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It follows that
(3.109)
2,1
Ve
n
<c) ( 7; ) A(A+1)28r (218 (A +1)Br' )1 (28¢o BrL =)
=2
- n
13, =5\l (96 —5\n—I
slz( ) @) )

< 0(2140575)11’
(3.110)

N m
Z e o[Vt
<cZ< >Z<n§l> > 2 (eoa) S o

p1€{2,4}

l Pj .
H ( Z 23pj+1607A%J_lBr’> (ZGCOBTL_d)p( COQQBbT)n l=p
pj€{274}

(14 aA=3)E i P22

gci<7>§é(”;l> ST 2(cgA) B (1 +aATz

=2 p1 6{2)4}

-1
: ( > 93m+les AT 1B (1 +aA—%)m—2> (28¢oBrL=d)P
me{2,4}
(28coa2Bbr)”_l_p
n

<cd < 7 > cgat(A+1)?pr' (2YcGa? (A + 1)Br) !

=2

- (2%coBrL~ +28c0a23br)“*l
< ca?(2Pa™3 + 2675 + 28 73)"
< COA2(216OA_3)n.
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On the assumption a3 > 217, the inequalities (3.109), (3.110) yield that

ZH%, ) ‘lrr’ < ca 107 Z CO mZ”VZ,l, ’17‘7" < ca 4.

Assuming additionally that o > ¢, we can conclude that V21 € W(r,r'). O

Using the results obtained in Lemma 3.9 and Lemma 3.10, we can con-
struct an analytic continuation of the function

(3.111) (u, A) — log (/evo1,0(u)(1/1)—|—v'02,0(u)(q/;)—f—vl,o()\)(w)duco_i_c1 (¢)>

in a neighborhood of the origin. This can be achieved by integrating the
output of the first integration with the covariance C;. We want to keep
the analyticity with the variable u in the same domain as in Lemma 3.9,
Lemma 3.10, while the domain of the artificial variable A can be taken
smaller. We only need estimates previously proved in [13, Subsection 3.2],
[14, Subsection 4.2] for this purpose. We will not use the estimates presented
in Subsection 3.2 in the rest of this paper. However, we need to argue
differently from the previous final integration steps [13, Lemma 3.8|, [14
Lemma 4.10], since here the final covariance C; depends on time variables.
Let

r=cyla b BT = (A+1)2B+1) B+ 1) egta?

as we set in Lemma 3.10. Then let us define the functions Verd:(n) y1-3end .

D) x D)’ — C (n € N) by
Vend,(n) (u7 A)
1
= mTree({l, - ,n},Cp)

n 2 3
11 ( S VO ) (@) + 3 VIR, M) () + VP (u, A)(W))
k=1

7=1 \'m=1
Yi=0
(vie{l,n})
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vimdend(y X) i= Tree({1},Cr) V'3 (u, N) ().

Moreover, we set
(0.]

Verd(u, A) =Y vty x)
n=1

if it converges. By the definition and the division formula of Grassmann
Gaussian integral (see e.g. [5, Proposition 1.21]) one can check that V" is
an analytic continuation of the function (3.111) if it is proved to be analytic
in a neighborhood of the origin. It is obvious that V%173 is actually
independent of the variable v and linear with A € C2. We write as if
it depends on u only for notational consistency. The result is claimed as
follows.

LEMMA 3.11. There exists ¢ € Rsq independent of any parameter such
that if « > ¢, LY > A+ 1, the following statements hold.

[ ]
(3.112) ved ¢ ¢ (D(r) x D(f)2) N C* (D(r) x D()2) .
[ ]
h end —17—d
(3.113) — sup |[V"%u,0)| < (A+1)B L™ “
N
ueD(r)
[ ]
(3.114)
O yenagy, 0) — D yr-send(y 0) < (44 13B+ 1)(8+ 1)BaPL,
N N

(V5 € {1,2}, u e D(r)).
Here

CJZOé_Sb_lB_l,

r =
Pi=2"(h+ )T A+ D) 2B 2B +1) %
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ProOOF. The following inequalities will be often used. For m €
{0,2,--- N}

(3.115) Vi Micor < Y Lprg=mlVig > 1,00
p,qe2N

(3.116) |V~ 21 L < Z 1p+q:m”vpl,q_2’l||1,m"
p,g€2N

The following inequality is essentially same as [13, (3.92)], [14, Lemma 4.9].
(3.117) Vi (u, ) l100 < hell Vi 1,
(Vue D), Ae D), e€[0,1/2], ac {1 -1,1—-2,1— 3,2},
me€{0,2,---,N}).

Cauchy’s integral formula can be used to prove it in the case a = 2. Set
e :=2"Yh+1)"YB +1)7! so that ¢ € (0,1/2]. We can deduce from
“(3.16)” of [13, Lemma 3.1] (or “(4.8)” of [14, Lemma 4.1]), (3.64), (3.65),
(3.68), (3.69), (3.89), (3.90), (3.92), (3.93), (3.115), (3.116), (3.117) and the
assumption o > 23 that for n € N>a, (u,A) € D(r) x D(r’)2

Vet (u, eN)|

N —-n n—
< ECO +1(COB) !

N
P
| (Z 2 (HV,?‘“HLOO,r Lzl V7 e
p=2

+ > VR e e + 1pz4||‘/p12’1(u76>\)||1,oo)>
ac{1-1,1-32}

N

< WB"—1 (280 2(A+1)B1 L7 + 2120 1B7!
+3-2%a7he + 2% he)"

S %B_1(21404_2)n.

In the last inequality we also used that L? > A + 1, he < B~!. Thus, if
a? > 21

oo

Z sup [vend(m) (y, A)| < oo,

n=2 (u,\)eD(r)x D7)’
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which implies (3.112).
To derive (3.113), let us observe that for n € N>1, u € D(r)

(3.118)

Vend,(n) (’LL, 0)

n 2
1 —-m j
= mTree({l, --,n},Cr1) H ( VY ’1(U)(W)> $i=0
j=1 \'m=1 (Vie{l,+n})
= Z < ; ) mTree({l, - ,n},Cp)
=1
l ] n
. HVOfl,l(u)(wj) H V072,1(u)(wk) o
j=1 k=l+1 (Vj€{1,~n})
1 N 1\ Pte 021 1 9
LTl s 1he) 3 (ﬁ) S VO W) (X, Yok vy
A =
n+1 )
IVt L,
Jj=3 (Vje{l,---,n-‘rl})

1 (1) 0-2,1
i Y Y (h) Dwmtesy)

= +1 _ —
m 0({51'};";1 Ate}p=1")€S(n,m) P4 2 xeln

m+1
. Tree({sj};-rjll,cﬁw;(l VO=2 1 () (4p%) %9 =0
j=2 (Vge{1, ,m+1})

n—m

Tree({t =1 COvy [T VO @™,
k=2 (Vke{1,- ,n—m})

The above transformation is based on the same idea as that behind (3.72).
By the properties (3.49), (3.50) of the kernels of V=21 and (3.63) the
third term in the right-hand side of (3.118) vanishes. Then, combination
of “(3.14)” of [13, Lemma 3.1}, “(3.24)” of [13, Lemma 3.2] (or “(4.6)” of
[14, Lemma 4.1], “(4.11)” of [14, Lemma 4.2]), (3.64), (3.65), (3.66), (3.68),
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(3.70) and the assumption o > 22 yields that

sup |V (u, 0)]
uem

N o
< Ve ™ 000 + 5 Z <o

_001 Z 22p+2qcog VO 2,1 Clhow
P,q=2

N N N

< ﬁa_lAB_lL_d + EOF2(A + 1B L4 cza_‘LAB_lL_d
E -1 —17—d
<c T (A+1)B~ L™ “

On the other hand, for n € N>9 we can use “(3.16)” of [13, Lemma 3.1],
“(3.26)” of [13, Lemma 3.2] (or “(4.8)” of [14, Lemma 4.1], “(4.13)” of [14,
Lemma 4.2]), (3.64), (3.65), (3.66), (3.68), (3.69), (3.70), (3.115) and the
assumptions a > 23, L4 > A + 1 to derive that

sup |V€nd’(”) (u,0)]
D(r)

N ¢ -n n—
i () war
_N l N n—l
. ya
<Z s 11||1<>or) <223p05|%02’1||1,oo,r)
m

=4

N
—|—%C (COBn 1 Z 23p+3q002 [VD 2,1 Cl]loor

p,q=2
n—1

N m
. < Z 23m602 HV79L_271H1,00,7‘
Z ( 7; > Bn—1(26a—2(A + 1)B—1L—d)l<212a—4B—1)n—l
1

+ CEOC_4AB_1L_d(212O[_4)n_1

(A+1)B tL=42Ba" ).
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Therefore, on the assumption a? > 214

o
I Z sup |V (y, 0)| < ca ' (A+1)B~' L7,
n=1u€D(r)

which coupled with the further assumption a > ¢ gives (3.113).
Finally let us prove (3.114). For any u € D(r), j € {1,2}

8 en 8 en.
aTV (Y ,O)—aTvl end(y, 0)

= L Tree({1},C (V' o)) + V2 e (07)
=~ Tree({1}, €V (u,r'e) (")

1
+ FTree({l,Q},Cl)

N

1 p+q _
(Y ek L,
p,q:2 %g?{’; (V_]E{LQ})

where e; := (1,0), ex := (0,1) € R%. To derive the last equality, we
transformed the integral of V!~2! in the same manner as in (3.118) and
erased one part by taking into account the property (3.50) of the kernels of
V1721 and (3.63). Moreover, by “(3.15)” of [13, Lemma 3.1], “(3.25)” of [13,
Lemma 3.2] (or “(4.7)” of [14, Lemma 4.1], “(4.12)” of [14, Lemma 4.2]),
(3.64), (3.65), (3.66), (3.89), (3.91) and the assumption a > 22

0

_Vend,(l) (u’ 0) _ ivl—&end(u’ 0)’

11
(3.119) o, By

1 1 m
1-1,1 m
< pHVo 1m0 + szzco

—1 2p+2 2 1-2,1
_CQ E 2°P qCO ‘/pq Cl]l !
D,g=2

c _ _
<Sa "A+1)L™

Let n € N>o. Based on the properties (3.49), (3.50) of the kernels of V021,
the property (3.49) of the kernels of V1=%! (a = 1,2,3) and (3.63), we can
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transform the defining equality in the same way as above and obtain that
for u e D(r), j € {1,2}

0

ernd,(n) (u, 0)
J
1
= WTTE@({ --,n},C)
3 n 2
Vet uae)(wh [ ] (Z v”’l(u)(wk)) yimd
a=1 k=2 p:1 (VZG{l, 7“’})
1 ~ [ n—-1
:(n——l)'r/z< 1 >Tree({ <+ ,n},Cr)
=2
3 l n
. Z vimely r'e;) () H VOh L (w) (¢F) H VO3 (w)(¢”) =0
a=1 k=2 s=l+1 (Vie{1,- ,n})
1
+ mTT@G({l, e, N + 1}’C1)
N 1\ P4
X () T ks
D,q=2 XelP
Yel4
n 3
0-2,1 k 1—a,l ("L
k=3 a=1 (Vie{1, ,n+1})

In this situation we can apply “(3.17)” of [13, Lemma 3.1], “(3.27)” of [13,
Lemma 3.2] (or “(4.9)” of [14, Lemma 4.1], “(4.14)” of [14, Lemma 4.2]),

(3.64), (3.65), (3.66), (3.68), (3.69), (3.70), (3.89), (3.90), (3.92), (3.115),
(3.116) and the inequalities o > 23, LY > A + 1 to deduce that

‘ ivendv(n) (u, 0) ‘

n

n—1 —n+1 n—1
SFZ< -1 >00n (coB)

N

P
2 (Ve + Lp2allV,
p=2

)



The BCS Model with Imaginary Magnetic Field. 111 547

N -1 N n—l
q m
~ (Z 2%cq ||vq“’1||1,oo,r> ( D 2" ||v722’1||1,oo,r>

q=2 m=4

1
_'_Tc (CoB n 1 Z 23p+3q602 [VO 2,1 Clhho
P,q=2

N n—2
m
: ( Z 2 Hv,z—llul,oo,r)
S
(z 2558 (VA 1 + Losa VA2 e + ||v;—3’1||1,r,w>)

pn-ly-2 n—1 6 -2 —17—d\i—1(012, —4 p—1yn—I
< Z(l_1>2a(A+1)BL) (22a74B71)
+ _Bn72a76AL7 (2120674‘871)7172
C —d(o13, —2
_—I(A—I— DL %2 a™ )",
Thus by assuming that a? > 24 we have that

0 end,(n)
8>\jV (u, O)‘

e}

(3.120) >

n=2

CatA+1) L

’I"

By coupling (3.119) with (3.120) and assuming that o > ¢ once more we
reach (3.114). O

3.4. The infinite-volume limit

Among all the lemmas prepared in this section so far, Lemma 3.1,
Lemma 3.4, Lemma 3.11 are the main necessary tools to prove Theorem
1.3. With these lemmas we can straightforwardly follow the arguments
of [14, Subsection 5.2] to complete the proof of Theorem 1.3. Though we
should not lengthen the paper by repeating the same statements as before,
let us state a few pivotal lemmas for the sake of readability. These are close
to lemmas proved in [13], [14] but are adjusted to the present situation.
Let us recall the definitions of V'(u)(v), W(u)(v) given in the beginning of
[14, Subsection 4.4] and A'(v), A%(v)), A(¢)) given in [14, Section 3]. It is
apparent from (3.67), (3.88) that

VOO () + VOI720w) (v) = =V (u)(v) + W (u) (1),
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VRO (y) = —A().

A practical application of Lemma 3.1, Lemma 3.4, Lemma 3.11 results in
the following lemma.

LEMMA 3.12. Set

‘21 : (emzn + ﬂ + /6 ! T_nin + 1) maX{emzn’ e—d—l )

min
—d—1

(&

B _maX{emzn’ min

Then there exist ¢ € Rsqo independent of any parameter and ¢y € R>q
depending only on d, b, (v )] 1, g such that the following statements hold
for any o € R>q, h € 5N, L e N, ¢ € C satisfying that

a > c, e > A+ 1,
(3.121) h > max{y/e2,,. + |o|>, 1} + (31 + 2).

()

e ABAT) BT ’/e_v<u)(w>+w(u)(w>duc(¢)(d,)' < €4b,6’(A+1)B—1,

(Vu € D(éaQa*f’b*lB*l)) :

(ii)
/ e~V (@) () +W (u)(¥) gi (V) dpc(s) (V)
T e V@DV D dpog () / A ($)duo(g) (¥)
<A+ DB+ 1B+ 1)Ea’L ™,
(vj € 11,2}, we D(G2a b 1B1)).

PROOF. We take the generalized covariances Cy, C; to be Cy, C, which
were analyzed in Subsection 3.1, respectively. We can see from Lemma 3.1,
Lemma 3.4 that on the assumption (3.121) ¢y, A, B can be taken to be ¢ Co,
A, B respectively. Accordingly the claims of Lemma 3.11 hold with &, A,
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B in place of ¢y, A, B. By using the relation (3.1) and the gauge transform
Yppxse e_zgﬁswﬁpxsg we can prove that if |u|, || A||c2 are sufficiently small,

Re / eV W@ =AW) gy (15) > 0,

verd(y, \) = log < / VWD @) -AW) g0 (@D)).

For the proof of the above properties let us refer to the proof of [13, Lemma
4.13] or [14, Proposition 5.9] where a similar claim was proved. Then it
follows from (3.112), the identity theorem and continuity that on the as-
sumptions of this lemma,

(3.122)
Vi) _ / VW @AW gy ().

(V(u, ) € D(é5%a—5b-1B-1)

x D2 M (h+ 1)1 (A+1)"2(B+1)"2(3+ 1)—1652(1—5)2).

On the other hand, by the definition and the same gauge transform as above

(3.123) vissent —— [ Awducio(w).

By combining (3.122), (3.123) with (3.113), (3.114) we can derive the
claimed inequalities. [J

The next lemma is essentially based on [13, Proposition 4.16]. The proof
of [14, Proposition 5.10] can be read as a guide to deduce the lemma from
[13, Proposition 4.16].

LEmMMA 3.13. Let fl, B, ¢, ¢o be those introduced in Lemma 3.12. As-
sume that L* > A+ 1 and a > ¢. Then for any non-empty compact set @Q
of C

h—o0
he%N
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lim lim e—V(u)(¢)+W(U)(¢)dMC(¢) (1)

L—00 h—00
LeN he2N

converge in C(Q x D(2-1é5%a=5b=1B=1)) as sequences of functions of the
variable (¢,u). Here we consider C(Q x D(2~1é52a~5b~1B~1)) as the Ba-
nach space with the uniform norm.

Now we can describe how to derive the claims of Theorem 1.3 by fol-
lowing the final part of the proof of [14, Theorem 1.3] presented in [14,
Subsection 5.2].

PrROOF OF THEOREM 1.3. The proof of the claims “(i), (ii), (iii), (iv),
(v)” of [14, Theorem 1.3] straightforwardly applies to prove (i), (ii), (iii),
(iv), (v) of Theorem 1.3 respectively. In the proof of [14, Theorem 1.3] the
basic lemmas “Lemma 3.1”, “Lemma 3.2”, “Lemma 3.6”, “Lemma 5.11” of
[14] were frequently used. We should remark that here the same statements
as these lemmas hold for any § € Rsg, § € R including the case 56/2 €
m(2Z +1). This is because in this paper the free partition function does not
vanish for any 6 € R thanks to the assumption (1.6). Let us fix o € R
satisfying the condition o > ¢ required in Lemma 3.12 and Lemma 3.13. Set
d = 4*165204*5. We see that ¢ € (0,1], it depends only on d, b, (f/j)?zl,
cg and

2d — =
<_T min{emin, €11 O> C D(271éy2a—5b-1B1).
This means that the inequalities and the convergence properties stated in
Lemma 3.12, Lemma 3.13 are applicable to the Grassmann integral formu-
lation with the coupling constant

2 /
U e (TC min{emm,efntrll},()) )

Subsequently, for U belonging to this open interval the claims of Theorem
1.3 can be proved.

Here we only summarize which lemmas are necessary to conclude the
claims of Theorem 1.3 if we straightforwardly follow the proof of [14, Theo-
rem 1.3]. We avoid fully repeating the same arguments as before. The key
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point of translating the proof of [14, Theorem 1.3] into the proof of Theo-
rem 1.3 is to replace “Proposition 5.9 (i),(ii)”, “Proposition 5.10” of [14] by
Lemma 3.12 (i),(ii), Lemma 3.13 respectively. We can prove (i), (iii), (iv),
(v), (ii) in this order as in the proof of [14, Theorem 1.3].

(i): “Lemma 3.17, “Lemma 3.2”, “Lemma 3.6 (i),(iii),(iv)” of [14],
Lemma 3.12 (i) and Lemma 3.13 of this paper.

(iii): “Lemma 3.17, “Lemma 3.6 (i),(iii)”, “Lemma 5.11”7, “Lemma A.1”
of [14], Lemma 3.1 (i), Lemma 3.12 (i),(ii) and Lemma 3.13 of this paper.

(iv), (v): “Lemma 3.17, “Lemma 3.6 (i),(iii)”, “Lemma 5.11”7, “Lemma
A.2”, “Lemma A.3” of [14], Lemma 3.1 (i), Lemma 3.12 (i),(ii) and Lemma
3.13 of this paper.

(ii): “Lemma 3.17, “Lemma 3.2”, “Lemma 3.6 (iii)”, “Lemma A.4” of
[14]. O

Appendix A. A Special Matrix-Valued Function

Here we construct a matrix-valued function, which is used to prove that
the function 7(-) can have more than one local minimum points in Subsec-
tion 2.2.

LEMMA A.1. For anyd, b € N, basis (‘A’j)?zl of R, s,t € Rug satisfy-
mg 0 <s<t<l,emaz, €min € Rag satisfying 0 < emin < €mas there exists
E € E(emins €maz) such that

Dal{k € T*. | Tt |E(K)| = bemas}| = 5,
Dal{k € T*, | Tt |E(K)| = bemin}| =1 -,

where |S| denotes the Lebesque measure of a measurable set S (C R?).

PrROOF. By a standard procedure one can construct a function ¢ (€
C*(R)) satisfying that

$(x) = (emaz — emin) @ if |& — 7| < s,

o(x) =01if |x — x| > 7Tt§7

d(x) € (0, (emaz — emin)d) if 781 < |z — 7| < w4,
(A1) o(r+x)=d(r —x), (VzeR).
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Let us define the function ® (€ C®(R%)) by ®(z1,--- ,x4) := H;lzl o(x;)+
emin- Observe that

D1, 7q) = €man if |7 — 7| <msa (Vj € {1, ,d}),
O(z1,  ,7q) = emin if 3j € {1,-++ ,d} s.t. |vj — 7| > wta,

O(x1, -+ ,24) € (Emin, €maz) Otherwise.

Then let us define the matrix-valued function E : I, — Mat(b,C) by
E(k) := ®((¥1,---,V4) k), (k € [*,). We can periodically extend E to
be a map from R? to Mat (b, C). If E denotes the extension, it follows that
E € E(emin, €maz)- Let us confirm the property (1.5). The other properties
are obvious. Take k € R?. There exist l%j €[0,2m), mjy €Z (j =1,---,d)
such that k = Z?Zl(l%j + 2mm;)Vv;. By the periodicity and (A.1),

d
ZQW— = &2 — ki, -, 21 — ka) I

= (p(kh e 7kd)Ib = E(k)
Moreover, we can verify that

Dal{k € I'5, | Tr|E(k)| = bemaa }|

= Dy{k € T%, | (1, - ,Vg) 'k € [ — w5, 7+ wsi]4}| = s,
Dal{k € T, | Tr|E(k)| = bemin}|

= Dy{k e T% | (¥1, - ,va) 'k € [0,20)\(r — wtd, 7+ wta)?}]
—1-t.0

Appendix B. A Definite Integral Formula

Here we derive an explicit formula of a definite integral, which is used
in the proof of Proposition 2.26.

LEMMA B.1. Forz, t € R>g

1 [ 1
B.1 — d
(B-1) 27 Jo 1+ z(t(cosk + 1)+ 1)2
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- (((Qt—l— 12z +1)2 + (z + 1)%)
-/(\/5(954r 1)3((2t + 1)%z +1)3

@+ D32+ 122 +1)7 + (2t + 1)z + 1)

D=

).

Proor. When x = 0 or t = 0, the equality obviously holds. Let us
assume that x > 0, ¢ > 0. One can prove by applying the residue theorem
that

(B2) / dSm = gr_%e_’g, (VT S }R>07 0 e (0,71'))
0

By introducing a new variable s by s = tan(k/2) we observe that

(L.H.S of (B.1))

2 [ 2 1n\? 1\
== ds(1 + ¢2)71 2 4z —
oz J, ES) <<1+82+t> +1:t2>
1 -1
1 o0 2t +1 1 23t
= — (:U%—z')_l/ ds 82+( + Dz + + v i
1T 0 x+1 fE‘i‘].

~1
1o [ o (2t+1x+1 203t
— (22 +1) ds| s*+ - i .

Here we can apply (B.2) with

1 1
(@t +1)%z+1)2 1 23 7r
T_( v+ 1 o=t e e (6(0’2>)

to derive that

(L.H.S of (B.1)) = % ((a;% — i)_lgr_%e_ig - (a:% + i)_lgr_%ei%>

B cos (g) (1 — 23 tan (g))

(@t 122+ Die+1)i
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Substitution of the equalities

w ()

(3)-

2tx%

((x +1)2((2t+1)%z 4+ 1)2 — (2t + 1)z + 1)) ,

(e +1)2((2t + 1% +1)7 + (2t + D)o + 1)%

V2(z + 1)1((2t +1)22 + 1)1

leads to the right-hand side of (B.1). O

Supplementary List of Notations

Notation Description Reference

Emin minimum of magnitude of free disper- | Subsection 1.2
sion relation

Cmaz maximum of magnitude of free disper- | Subsection 1.2

8(€mina emax)

9e(*) real-valued function on Ry x R x R Subsection 1.2
O critical inverse temperature Lemma 1.2
CE positive constant depending only on | (1.8)
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