
J. Math. Sci. Univ. Tokyo
28 (2021), 399–556.

Superconducting Phase in the BCS Model with

Imaginary Magnetic Field. III.

Non-Vanishing Free Dispersion Relations

By Yohei Kashima

Abstract. We analyze a class of the BCS model, whose free dis-
persion relation is non-vanishing, under the influence of imaginary
magnetic field at positive temperature. The magnitude of the nega-
tive coupling constant must be small but is allowed to be independent
of the temperature and the imaginary magnetic field. The infinite-
volume limit of the free energy density is characterized. A spontaneous
symmetry breaking and an off-diagonal long range order are proved to
occur only in high temperatures. This is because the gap equation in
this model has a positive solution only if the temperature is higher
than a critical value. The proof is based on a double-scale integration
of the Grassmann integral formulation. In this scheme we integrate
with the infrared covariance first and with the ultra-violet covariance
afterwards, which is opposite to the previous schemes in [Kashima, Y.,
J. Math. Sci. Univ. Tokyo 28 (2021), 1–179], [Kashima, Y., J. Math.
Sci. Univ. Tokyo 28 (2021), 181–398] or [13], [14] in short. As the other
focus, we study geometric properties of the phase boundaries, which
are periodic copies of a closed curve in the two-dimensional space of
the temperature and the real time variable. Here we adopt the real
time variable in place of the temperature times the imaginary mag-
netic field by considering its relevance within contemporary physics
of dynamical phase transition at positive temperature. As the main
result, we show that for any choice of a non-vanishing free dispersion
relation the representative curve of the phase boundaries has only one
local minimum point, or in other words the phase boundaries do not
oscillate with temperature, if and only if the minimum of the magni-
tude of the free dispersion relation over the maximum is larger than

the critical value
√

17− 12
√

2. Overall we use the same notational
conventions as in [13], [14]. So this work is a continuation of these
preceding papers.
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1. Introduction

1.1. Introductory remarks

Since the proposal in 1957 ([2]), the Bardeen-Cooper-Schrieffer (BCS)

model of interacting electrons has been considered as a primal model to

explain superconductivity from a microscopic principle. Apart from the

conventional reduction of its quartic Fermionic interaction to a solvable

quadratic one, we are still unable to make explicit the thermodynamic limit

of the BCS model for full set of physical parameters. It is our longstand-

ing desire to complete the rigorous derivation of the thermodynamics and

acquire fully coherent applications of the BCS model.

It was shown in our previous works [13], [14] that the infinite-volume

limit of the BCS model interacting with imaginary magnetic field can be

rigorously derived. The main difference between these two constructions

lies in properties of the free dispersion relation. In [13] we assumed the

nearest-neighbor hopping and tuned the chemical potential in a way that

the free Fermi surface does not degenerate. On the contrary, in [14] we

considered a class of free dispersion relations which widely cover the ones
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with degenerate but not empty free Fermi surface. Our mission here is

to achieve the same goal for non-vanishing free dispersion relations. We

characterize the infinite-volume limit of the free energy density and the

thermal expectation values of Cooper pair operators. The proof is based

on a multi-scale analysis of the Grassmann integral formulation. As an

illustration, let us summarize the applicability of the main theorems of this

series to the typical free dispersion relation of nearest-neighbor hopping

electron, e(k) = 2
∑d

j=1 cos kj − µ : R
d → R, where d (∈ N) is the spatial

dimension and µ (∈ R) is the chemical potential.

• [13, Theorem 1.3] applies to the case that d is arbitrary and |µ| < 2d.

• [14, Theorem 1.3] applies to the case that d ∈ {3, 4} and |µ| = 2d.

• Theorem 1.3 of the present paper applies to the case that d is arbitrary

and |µ| > 2d.

Qualitative properties of the free dispersion relation around its zero points

deeply affect the possible magnitude of interaction in this approach. There-

fore, characteristics of each paper of this series can be explained in terms

of dependency of the allowed magnitude of the coupling constant on the

temperature and the imaginary magnetic field. In [13] the magnitude of the

coupling constant must be smaller than some power of these parameters.

Though the claimed dependency is most complicated in this series, we can

actually choose the parameters so that they obey the necessary constraint

and the gap equation has a positive solution at the same time. In [14] the

magnitude of the coupling constant can be largely independent of the tem-

perature and the imaginary magnetic field if the temperature is lower than

a certain constant. As the result, we were able to prove phase transitions in

arbitrarily small temperatures for a fixed coupling constant. In this paper

the magnitude of negative coupling constant must be small but is indepen-

dent of the temperature and the imaginary magnetic field. It turns out that

the gap equation has a positive solution only if the temperature is higher

than a critical value. Accordingly, the phase transitions characterized by

spontaneous symmetry breaking (SSB) and off-diagonal long range order

(ODLRO) are proved to occur in the high-temperature regions.

The gapped property of the free dispersion relation is one essential factor

to make it possible to analyze the system independently of the temperature
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and the imaginary magnetic field. However, a direct combination of the

non-vanishing free dispersion relation and the same strategy as the core

part of the multi-scale integrations of [13], [14] does not lead to the desired

result. We can see from the constraints on the coupling constant [13, (1.2)],

[14, (1.18)] that the magnitude of the coupling constant must be arbitrarily

small in high temperatures for some choices of the imaginary magnetic field

in our previous constructions. The extra constraint in high temperatures

stems from a determinant bound on the covariance of the last integration

scale, which is tactically manipulated to be independent of (imaginary) time

variables. This constraint remains regardless of the gapped property of the

free dispersion relation as long as we follow the same strategy as in [13],

[14].

Let us explain this issue more by using formulas in a simple way, as it also

shows a novel aspect of the present construction. As usual, let β (∈ R>0)

denote the inverse temperature. Take an artificial parameter h ∈ 2
βN and

set

[0, β)h :=

{
0,

1

h
,
2

h
, · · · , β − 1

h

}
,

which is a discrete analogue of the interval [0, β). For a finite set S, which

should be considered as a generalization of the product set of the spatial

lattice points and the orbital index, let C : (S×[0, β)h)
2 → C denote the full

covariance of the Grassmann Gaussian integral formulation of our system.

The main object to analyze is the Grassmann Gaussian integral∫
eV (ψ)dµC(ψ)

with a quartic Grassmann polynomial V (ψ), which is as before a correction

term left after extracting the reference Grassmann polynomial. The full

covariance C can be decomposed as follows.

C(Xs, Y t) = e
iπ
β

(s−t)
(C0(Xs, Y t) + C1(Xs, Y t)),(1.1)

(∀X,Y ∈ S, s, t ∈ [0, β)h),

where the covariance C0 : (S× [0, β)h)
2 → C is in particular independent of

the time variables.

C0(Xs, Y t) = C0(X0, Y 0), (∀X,Y ∈ S, s, t ∈ [0, β)h).
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In essence the Matsubara frequency is fixed to be π/β inside C0 and C1 sums

over all the Matsubara frequencies but π/β. Due to the gapped property of

the free dispersion relation and the partition of the Matsubara frequencies,

the covariances C0, C1 satisfy the following bound properties.

|det(C0(Xisi, Yjtj))1≤i,j≤n| ≤ constnβ−n,

|det(C1(Xisi, Yjtj))1≤i,j≤n| ≤ constn,
(∀n ∈ N, Xj , Yj ∈ S, sj , tj ∈ [0, β)h (j = 1, · · · , n)),

sup
(Y,t)∈S×[0,β)h

(
1

h

∑
(X,s)∈S×[0,β)h

(|Ca(Xs, Y t)|+ |Ca(Y t,Xs)|)
)
≤ const,

(∀a ∈ {0, 1}),

where const (∈ R>0) is independent of β and the imaginary magnetic field,

though it may depend on other parameters such as the spatial dimension

or the minimum value of the magnitude of the free dispersion relation. By

(1.1) and a gauge invariance we can transform as follows.∫
eV (ψ)dµC(ψ) =

∫ ∫
eV (ψ0+ψ1)dµC0(ψ

0)dµC1(ψ
1)

=

∫ ∫
eV (ψ0+ψ1)dµC1(ψ

1)dµC0(ψ
0).

At this point we have two ways to proceed, either integrating with C0 first or

with C1 first. Integrating with C1 first is essentially the same strategy as in

the previous papers and the determinant bound on C0 remains to affect the

possible magnitude of the coupling constant at the end. This is the reason

why the coupling constant needed to be small even in high temperatures

in [13], [14]. We can see from the β-dependent determinant bound on C0

claimed above that this is not the way to achieve our goal. Interestingly

we find that the determinant bound on C0 does not affect the magnitude of

the coupling constant at all if we integrate with C0 first and make use of a

vanishing property of the kernel function of V (ψ). Since the other bounds

on C0, C1 listed above are independent of β and the imaginary magnetic

field, this way leads to the goal.

We can apply many of the general estimates established in [13], [14]

and the Grassmann Gaussian integral formulation stated in [14] without

any modification. At the same time we need some modified versions of the
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previous general estimates in order to implement the present double-scale

integration scheme. However, the modification can be done in a systematic

way so that it does not require a widespread reconstruction. Therefore, as

far as it concerns the general estimation of the Grassmann integration, the

present construction should not be longer than the previous ones. More-

over, the conclusive part of the derivation of the infinite-volume limit after

building the general integration regime is essentially parallel to that of the

previous papers. Not to disappoint the readers later, we should clearly men-

tion at this stage that we will only explain which lemmas are necessary to

complete the proof of each claim of the theorem in the final part of our

construction (Subsection 3.4). On the other hand, estimation of the real

covariance needs to be carefully performed so that it does not yield any ex-

tra dependency on the temperature and the imaginary magnetic field in the

resulting theory. In particular the determinant bound on the ultra-violet

covariance C1 requires a complicated application of the useful general deter-

minant bound by de Siqueira Pedra and Salmhofer [20, Theorem 1.3]. The

parts making up the proof of the derivation of the infinite-volume limit are

presented in the second half of the paper, namely Section 3.

As yet we cannot prove a superconducting order characterized by SSB

and ODLRO by this method in the BCS model without imaginary magnetic

field. In this approach we fail to take the coupling constant large enough to

ensure the solvability of the gap equation without the imaginary magnetic

field. The present class of free dispersion relations includes the non-zero

constant ones, with which the Hamiltonian is called the strong coupling

limit of the BCS model. We should remark that a totally different method

based on characterization of equilibrium state on C∗-algebra applies to the

strong coupling limit of the BCS model and proves SSB and ODLRO ([4]).

However, the method is not known to be applicable to the BCS model with

imaginary magnetic field, which is not hermitian, at present.

In the first half of the paper we analyze the free energy density, which

is made explicit by the theorem proved in the second half of the paper, as

a real-valued function of the temperature and the real time variable. Here

let us introduce the free energy density at a formal level for illustrative

purposes. The official definition will be given in the next subsection. Let

H, Sz denote the BCS model Hamiltonian and the z-component of the spin

operator respectively. For θ ∈ R we consider the operator H + iθSz as the
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BCS model interacting with the imaginary magnetic field. The infinite-

volume limit of the free energy density is the following.

lim
L→∞
L∈N

(
− 1

βLd
log(Tr e−β(H+iθSz))

)
,

where the parameter L (∈ N) controls the size of a d-dimensional spatial

lattice. By admitting the explicit form of the limit we study regularity of

the function

(β, t) 
→ lim
L→∞
L∈N

(
− 1

βLd
log(Tr e−βH+itSz)

)
: R>0 × R → R(1.2)

and geometric properties of the subset of R>0×R where this function loses

analyticity. The reason why we study the free energy density as a function

of (β, t) rather than (β, θ) is that functions of the form

(β, t) 
→ lim
L→∞

1

Ld
log

(
Tr e−βH+itSz

Tr e−βH

)
: R>0 × R → R(1.3)

are becoming relevant in contemporary physics of dynamical phase transi-

tion (DPT) at positive temperature ([3], [8], [1], [19], [18] and so on). In

this context the function (1.3) is seen as a finite-temperature version of the

infinite-volume limit of the overlap amplitude

lim
L→∞

1

Ld
log 〈ψ0, e

itSzψ0〉,

where ψ0 is a ground state of H. Since the function

β 
→ lim
L→∞

1

Ld
log(Tr e−βH) : R>0 → R

is real analytic in the weak coupling regime of this paper (see Proposition

2.5 (i)), the regularity of the function (1.3) is equivalent to that of (1.2). In

fact the concept of dynamical quantum phase transition at zero temperature

has become a notable topic of physics ([9], [7], [22]) and it recently reached

a state of experimental confirmation (see e.g. [10], [21], [6]). As the term

indicates, non-analyticity with the real time variable t defines an occur-

rence of DPT both at zero temperature and at positive temperature. DPTs
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at positive temperature have been shown in quantum many-body systems

which can be mapped to Fermionic systems governed by quadratic Hamil-

tonians (see e.g. [3], [8]). To the author’s knowledge, no rigorous result of

DPT in the BCS model at positive temperature has been reported. In this

situation we believe that we should push forward mathematical analysis of

the function (1.2) for possible future physical applications.

It is advantageous that with the present class of free dispersion relations

the characterization of the function (1.2) is justified for any (β, t) ∈ R>0×R

as long as the coupling constant is fixed to be small. The contents of the

first half of this paper, which is Section 2 plus Appendices A, B, are essen-

tially independent of the second half. The readers who want to complete the

proof of the characterization of the function (1.2) can read the second half

first. We prove that the function is C1-class in R>0×R and the second order

derivatives have jump discontinuity across a one-dimensional submanifold

of R>0 × R which we call phase boundaries. Then we focus on describ-

ing geometric properties of the phase boundaries. We find that the phase

boundaries consist of periodic copies of one closed curve (or more precisely

periodic copies of the restriction of one closed curve in R
2 to R>0 ×R) and

the representative curve is axially symmetric with respect to the horizontal

line {(β, 2π) | β ∈ R>0}. Therefore, letting βc denote the critical inverse

temperature, the problem is reduced to an analysis of graph of a function

on (0, βc), which is the lower half of the representative curve. In particular

we focus on determining when the function has only one local minimum

point in (0, βc), or in other words, when the representative curve of the

phase boundaries does not oscillate with temperature. It will turn out that

answers to this question can be expressed in terms of the ratio of the max-

imum and the minimum of the magnitude of the free dispersion relation.

The results are summarized in Theorem 2.19 as the second main result of

this paper.

Overall we keep using the same notational conventions as in [13], [14].

We will often refer the readers to related parts of these papers for the mean-

ing of notations rather than restating them. We provide a supplementary

short list of notations which only contains new notations at the end of the

paper. The readers should refer to the comprehensive lists presented at the

end of [13], [14] for the other notations.

This paper is organized as follows. In the next subsection we state the
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theorem concerning the infinite-volume limit of the BCS model with imag-

inary magnetic field at positive temperature and outline the main results

concerning the analysis of the free energy density and the phase bound-

aries. In Section 2 by admitting the explicit form of the free energy density

we study its regularity and geometric properties of the phase boundaries.

Moreover we analyze the phase boundaries for a couple of specific examples

of the free Hamiltonian. In Section 3 we prove the theorem concerning the

infinite-volume limit in the constructive manner. In Appendix A we prepare

a lemma which is used to study the phase boundaries in Section 2. In Ap-

pendix B we give a formula of a definite integral which we need to analyze

a specific model in Sub-subsection 2.3.2.

1.2. The main results

First let us state our main results on the derivation of the infinite-volume

limit of the free energy density and the thermal expectation values. Let d

(∈ N) denote the spatial dimension. Let {vj}dj=1, {v̂j}dj=1 denote a basis of

R
d, its dual basis respectively. They satisfy that

〈vi, v̂j〉 = δi,j , (∀i, j ∈ {1, · · · , d}),

where 〈·, ·〉 is the canonical inner product of R
d. With L ∈ N the spatial

lattice Γ and the momentum lattice Γ∗ are defined by

Γ :=


d∑

j=1

mjvj

∣∣∣ mj ∈ {0, 1, · · · , L− 1} (j = 1, · · · , d)

 ,
Γ∗ :=


d∑

j=1

m̂jv̂j

∣∣∣ m̂j ∈
{

0,
2π

L
,
4π

L
, · · · , 2π − 2π

L

}
(j = 1, · · · , d)

 .
To formulate the infinite-volume limit of our interest, we use the infinite

sets Γ∞, Γ∗
∞ defined by

Γ∞ :=


d∑

j=1

mjvj

∣∣∣ mj ∈ Z (j = 1, · · · , d)

 ,
Γ∗
∞ :=


d∑

j=1

k̂jv̂j

∣∣∣ k̂j ∈ [0, 2π] (j = 1, · · · , d)

 .
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Let us define a set of matrix-valued functions, which are one-particle

Hamiltonians in momentum space. Using a function belonging to the set, we

will define the free part of our Hamiltonian. For b ∈ N and emin, emax ∈ R>0

with emin ≤ emax we define the subset E(emin, emax) of Map(Rd,Mat(b,C))

as follows. E belongs to E(emin, emax) if and only if

E ∈ C∞(Rd,Mat(b,C)),

E(k) = E(k)∗, (∀k ∈ R
d),(1.4)

E(k + 2πv̂j) = E(k), (∀k ∈ R
d, j ∈ {1, · · · , d}),

E(k) = E(−k), (∀k ∈ R
d),(1.5)

inf
k∈Rd

inf
u∈Cb

with ‖u‖
Cb

=1

‖E(k)u‖Cb = emin(> 0),(1.6)

sup
k∈Rd

‖E(k)‖b×b = emax.

We remark that for n ∈ N Mat(n,C) denotes the set of n × n complex

matrices, ‖·‖n×n denotes the operator norm on Mat(n,C) and ‖·‖Cn denotes

the canonical norm of C
n. Set B := {1, 2, · · · , b}. For E ∈ E(emin, emax) we

define the free Hamiltonian H0 as follows.

H0 :=
1

Ld

∑
(ρ,x),(η,y)∈B×Γ

∑
σ∈{↑,↓}

∑
k∈Γ∗

ei〈x−y,k〉E(k)(ρ, η)ψ∗
ρxσψηyσ,

where ψρxσ (ψ∗
ρxσ) denotes the Fermionic annihilation (creation) operator

for (ρ,x, σ) ∈ B × Γ× {↑, ↓}. It follows from (1.4) that H0 is a self-adjoint

operator on the Fermionic Fock space Ff (L
2(B × Γ × {↑, ↓})). With the

negative coupling constant U (∈ R<0) the interacting part V is defined by

V :=
U

Ld

∑
(ρ,x),(η,y)∈B×Γ

ψ∗
ρx↑ψ

∗
ρx↓ψηy↓ψηy↑.

The whole Hamiltonian H is then defined by H := H0+V. As a common pur-

pose of this series, we study the infinite-volume limit of the many-electron

system governed by H + iθSz (θ ∈ R), where Sz is the z-component of the

spin operator defined by

Sz :=
1

2

∑
(ρ,x)∈B×Γ

(ψ∗
ρx↑ψρx↑ − ψ∗

ρx↓ψρx↓).
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To describe SSB, we need the symmetry breaking external field operator F

defined by

F := γ
∑

(ρ,x)∈B×Γ

(ψ∗
ρx↑ψ

∗
ρx↓ + ψρx↓ψρx↑), (γ ∈ R).

One essential difference from the previous works [13], [14] is the solv-

ability of the gap equation. Let us formulate the gap equation and see

when it is solvable. Take E ∈ E(emin, emax) and define the function gE :

R>0 × R× R → R by

gE(x, t, z)

:= − 2

|U |

+Dd

∫
Γ∗∞

dkTr

(
sinh(x

√
E(k)2 + z2)

(cos(t/2) + cosh(x
√
E(k)2 + z2))

√
E(k)2 + z2

)
,

where

Dd := |det(v̂1, · · · , v̂d)|−1(2π)−d.

As in [14], throughout the paper we admit that for any function f : R\{0} →
C and E ∈ E(emin, emax) the map f(E(·)) : R

d → Mat(b,C) is defined via

the spectral decomposition of E(k) for each k ∈ R
d. We should remark that

because of the property (1.6), f(E(k)) is well-defined for any k ∈ R
d even

if f(x) is not defined at x = 0. Our gap equation is to find ∆ ∈ R≥0 such

that

gE(β, βθ,∆) = 0.

The following lemma can be proved by using the fact that for any ε ∈ [−1, 1]

the function

x 
→ sinhx

(ε+ coshx)x
: (0,∞)→ R(1.7)

is strictly monotone decreasing in the same way as in the proof of [14,

Lemma 1.2].

Lemma 1.1. The following statements hold for any (β, θ) ∈ R>0 × R.

The equation gE(β, βθ,∆) = 0 has a solution ∆ in [0,∞) if and only if

gE(β, βθ, 0) ≥ 0. Moreover, if a solution exists in [0,∞), it is unique.
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The next lemma tells us that if the interaction in the present model

is weak, there is a critical temperature such that the gap equation has a

positive solution if and only if the temperature is higher than the critical

temperature.

Lemma 1.2. Assume that

|U | < 2emin

b
.

Then, there uniquely exists

βc ∈
(

0,
2

emin
tanh−1

(
b|U |
2emin

)]
such that the following statements hold.

(i) For any β ∈ R>0 gE(β, π, 0) < 0.

(ii) For any β ∈ (0, βc) gE(β, 2π, 0) > 0 and thus there exists θ ∈ R such

that the gap equation gE(β, βθ,∆) = 0 has a solution in (0,∞).

(iii) gE(βc, 2π, 0) = 0 and thus there exists θ ∈ R such that gE(βc, βcθ,∆)

= 0 has the solution ∆ = 0.

(iv) For any β ∈ (βc,∞) gE(β, 2π, 0) < 0 and thus for any θ ∈ R the gap

equation gE(β, βθ,∆) = 0 has no solution in [0,∞).

Proof. By the assumption, for any β ∈ R>0

gE(β, π, 0) = − 2

|U | +Dd

∫
Γ∗∞

dkTr

(
tanh(βE(k))

E(k)

)
≤ − 2

|U | +
b

emin
< 0.

Thus (i) holds.

Observe that the function β 
→ gE(β, 2π, 0) : R>0 → R is monotone

decreasing,

lim
β↘0

gE(β, 2π, 0) =∞,

lim
β↗∞

gE(β, 2π, 0) = − 2

|U | +Dd

∫
Γ∗∞

dkTr

(
1

|E(k)|

)
≤ − 2

|U | +
b

emin
< 0.
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Thus, there uniquely exists βc ∈ R>0 such that

gE(β, 2π, 0) > 0, (∀β ∈ (0, βc)),

gE(βc, 2π, 0) = 0,

gE(β, 2π, 0) < 0, (∀β ∈ (βc,∞)).

Moreover,

0 = gE(βc, 2π, 0) ≤ − 2

|U | +
b

tanh(βcemin/2)emin
,

which implies that

βc ≤
2

emin
tanh−1

(
b|U |
2emin

)
.

The claims (ii), (iii), (iv) follow from these properties. �

To shorten formulas, let us introduce the parameterized matrix-valued

functions Gx,y,z : R
d → Mat(b,C) ((x, y, z) ∈ R>0 × R× R) by

Gx,y,z(k) :=
sinh(x

√
E(k)2 + z2)

(cos(xy/2) + cosh(x
√
E(k)2 + z2))

√
E(k)2 + z2

.

Also, for E ∈ E(emin, emax) let us set

cE := sup
k∈Rd

sup
mj∈N∪{0}
(j=1,··· ,d)

∥∥∥∥∥∥
d∏

j=1

∂mj

∂k
mj

j

E(k)

∥∥∥∥∥∥
b×b

1∑ d
j=1 mj≤d+2.(1.8)

For any
∑d

j=1mjvj ∈ Γ∞ there uniquely exists
∑d

j=1m
′
jvj ∈ Γ such that

mj = m′
j (mod L) for any j ∈ {1, · · · , d}. This rule defines the map rL :

Γ∞ → Γ. For any (ρ,x, σ) ∈ B × Γ∞ × {↑, ↓} we identify ψ∗
ρxσ, ψρxσ with

ψ∗
ρrL(x)σ, ψρrL(x)σ respectively. For clarity of the statements of the main

results let us recall a few more notational rules. For a function f : Γ∞ ×
Γ∞ → C and a ∈ C we write lim‖x−y‖

Rd
→∞ f(x,y) = a if for any ε ∈ R>0

there exists δ ∈ R>0 such that for any x,y ∈ Γ∞ satisfying ‖x− y‖Rd > δ,
|f(x,y)− a| < ε. Here ‖ · ‖Rd denotes the Euclidean norm of R

d.
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Theorem 1.3. Let E ∈ E(emin, emax). Let ∆ (∈ R≥0) be the solu-

tion of the gap equation gE(β, βθ,∆) = 0 if gE(β, βθ, 0) ≥ 0. Let ∆ :=

0 if gE(β, βθ, 0) < 0. Then, there exists c′ ∈ (0, 1] depending only on

d, b, (v̂j)
d
j=1, cE such that the following statements hold for any

U ∈
(
−2c′

b
min{emin, e

d+1
min}, 0

)
,

β ∈ R>0, θ ∈ R.

(i) There exists L0 ∈ N such that

Tr e−β(H+iθSz+F) ∈ R>0, (∀L ∈ N with L ≥ L0, γ ∈ [0, 1]).

(ii)

lim
L→∞
L∈N

(
− 1

βLd
log(Tr e−β(H+iθSz))

)

=
∆2

|U | −
Dd

β

∫
Γ∗∞

dkTr log

(
2 cos

(
βθ

2

)
e−βE(k)

+ eβ(
√

E(k)2+∆2−E(k)) + e−β(
√

E(k)2+∆2+E(k))

)
.

(iii)

lim
γ↘0

γ∈(0,1]

lim
L→∞
L∈N

Tr(e−β(H+iθSz+F)ψ∗
ρ̂x̂↑ψ

∗
ρ̂x̂↓)

Tr e−β(H+iθSz+F)

= lim
γ↘0

γ∈(0,1]

lim
L→∞
L∈N

Tr(e−β(H+iθSz+F)ψρ̂x̂↓ψρ̂x̂↑)

Tr e−β(H+iθSz+F)

= −∆Dd

2

∫
Γ∗∞

dkGβ,θ,∆(k)(ρ̂, ρ̂), (∀ρ̂ ∈ B, x̂ ∈ Γ∞).

(iv) If gE(β, βθ, 0) �= 0,

lim
‖x̂−ŷ‖

Rd
→∞

lim
L→∞
L∈N

Tr(e−β(H+iθSz)ψ∗
ρ̂x̂↑ψ

∗
ρ̂x̂↓ψη̂ŷ↓ψη̂ŷ↑)

Tr e−β(H+iθSz)



The BCS Model with Imaginary Magnetic Field. III 413

= ∆2
∏

ρ∈{ρ̂,η̂}

(
Dd

2

∫
Γ∗∞

dkGβ,θ,∆(k)(ρ, ρ)

)
, (∀ρ̂, η̂ ∈ B).

If gE(β, βθ, 0) = 0,

lim
‖x̂−ŷ‖

Rd
→∞

lim sup
L→∞
L∈N

∣∣∣∣∣Tr(e−β(H+iθSz)ψ∗
ρ̂x̂↑ψ

∗
ρ̂x̂↓ψη̂ŷ↓ψη̂ŷ↑)

Tr e−β(H+iθSz)

∣∣∣∣∣ = 0, (∀ρ̂, η̂ ∈ B).

(v)

lim
L→∞
L∈N

1

L2d

∑
(ρ̂,x̂),(η̂,ŷ)∈B×Γ

Tr(e−β(H+iθSz)ψ∗
ρ̂x̂↑ψ

∗
ρ̂x̂↓ψη̂ŷ↓ψη̂ŷ↑)

Tr e−β(H+iθSz)
=

∆2

U2
.

Remark 1.4. We should emphasis that c′ is independent of β, θ. Thus,

once U is fixed, the infinite-volume limits are valid for all (β, θ) ∈ R>0 ×R.

This is a notable difference from [13, Theorem 1.3], [14, Theorem 1.3] where

it is assumed that βθ/2 /∈ π(2Z+1) and U is not independent of (β, θ). Since

|U | < 2c′

b
min{emin, e

d+1
min} ≤

2emin

b
,

Lemma 1.2 ensures that there exists (β, θ) ∈ R>0×R such that gE(β, βθ, 0)

> 0 and ∆ > 0. Thus the claims (iii), (iv) in particular imply the existence

of SSB, ODLRO respectively.

Remark 1.5. The smoothness of k 
→ E(k) is assumed only for sim-

plicity. All the results in this paper can be reconstructed by assuming

that k 
→ E(k) : R
d → Mat(b,C) is continuously differentiable to some

finite degree depending only on the spatial dimension. The symmetry (1.5)

is assumed to adopt [14, Lemma 3.6] as our formulation. More precisely,

we used the symmetry (1.5) to characterize the covariance “C(φ)” in [14,

Lemma 3.5 (ii)]. Since the Grassmann integral formulation [14, Lemma 3.6]

contains the covariance “C(φ)”, accordingly we assume (1.5). The covari-

ance “C(φ)” will be explicitly written in Subsection 3.1 in the same form as

in [14, Lemma 5.1], which was derived from [14, Lemma 3.5 (ii)]. However,

the symmetry (1.5) itself plays no explicit role in this paper.
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Remark 1.6. In [14, Corollary 1.11] we derived the zero-temperature

limit of the free energy density and the thermal expectations. By arguing

in parallel with the proof of [14, Corollary 1.11] presented at the end of [14,

Subsection 5.2] we can derive the zero-temperature limit from Theorem 1.3.

Not to lengthen the paper, let us state the results in an abbreviated form.

There exists c′′ ∈ (0, 1] depending only on d, b, (v̂j)
d
j=1, cE such that for

any

U ∈
(
−2c′′

b
min{emin, e

d+1
min}, 0

)
and θ ∈ R five claims which are same as the claims “(i), (ii), (iii), (iv), (v)”

of [14, Corollary 1.11] without the constraint βθ/2 /∈ π(2Z + 1) hold.

Here we can drop the constraint βθ/2 /∈ π(2Z + 1) as we do not need it

throughout this paper thanks to the assumption (1.6). After the inequality

“(5.72)” in the proof of [14, Corollary 1.11] a spatial decay property of

the infinite-volume, zero-temperature limit of the covariance was proved in

order to study the zero-temperature limit of the 4-point correlation function.

This part can be replaced by the decay property discussed in Remark 3.3

later. The property (1.6) also helps to shorten the derivation of the zero-

temperature limit of the free energy density. Apart from these changes,

the arguments close to the proof of [14, Corollary 1.11] yield the claims.

Again the results imply no superconducting order in the zero-temperature

limit. However, this time the results may not come as a surprise, since

in low temperatures our gap equation has no solution at all as shown in

Lemma 1.2 (iv).

Remark 1.7. Since we do not have any β-dependent constraint on U

in Theorem 1.3, we can also study the infinite-temperature limit β ↘ 0 of

the free energy density and the thermal expectations. If we set ∆ ∈ R≥0

by the same rule as in Theorem 1.3, it follows that for any U ∈ R<0, θ ∈ R

there exists β′c ∈ R>0 such that ∆ = 0 for any β ∈ (0, β′c]. This is because

lim
β↘0

gE(β, βθ, 0) = − 2

|U | < 0.

Let us take U ∈ (−2c′
b min{emin, e

d+1
min}, 0) for the constant c′ introduced in

Theorem 1.3 and fix any θ ∈ R. Considering the above property of ∆, we
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can see from Theorem 1.3 (ii) that

lim
β↘0

lim
L→∞
L∈N

(
− 1

βLd
log(Tr e−β(H+iθSz))

)
= −∞.

Moreover, it is not difficult to modify the proof of [14, Corollary 1.11] to

confirm that three claims which are same as the claims “(iii), (iv), (v)” of

[14, Corollary 1.11] apart from having the notation limβ↘0 in place of

lim
β→∞,β∈R>0

with βθ
2
/∈π(2Z+1)

hold. To prove the analogue of the claim “(iv)”, we need a spatial decay

property of the covariance in the limit L → ∞, β ↘ 0 in particular. We

can explicitly take the limit L → ∞, β ↘ 0 in the characterization [14,

Lemma 5.11] and observe that the covariance is in fact diagonal with the

spatial variables in the limit. Again the results imply no superconducting

order in the limit β ↘ 0.

Theorem 1.3 (ii) gives the exact formula for the function (1.2), provided

|U | is small as required in the theorem. Loss of analyticity of the function

(1.2) with t is considered as an indication of DPT at positive temperature

in contemporary physics (see e.g. [3], [8], [1]), though the function (1.2)

with the BCS model has not been rigorously treated yet, to the author’s

knowledge. As one of the main themes of this paper, we focus on the

following questions.

• At which (β, t) ∈ R>0 × R does the function (1.2) lose analyticity ?

• What is the regularity of the function (1.2) when it is not analytic ?

• What is the shape of the subset of R>0 × R where the function (1.2)

is not analytic ?

We will study these questions in Section 2. Answers to the first and the

second question can be found without much difficulty, since we have already

studied similar questions in [14, Section 2]. After studying these two ques-

tions, we will know that the function (1.2) is C1-class in R>0×R and its 2nd

order derivatives have jump discontinuities across a subset of R>0×R, which
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consists of periodic copies of one closed curve. To answer the last question,

we need constructive arguments. It will turn out that the ratio emin/emax

is the key parameter to classify the shape of the set of our interest. In

particular we will show that the lower half of the representative curve of

the set has only one local minimum point, in other words the representative

curve does not oscillate with the temperature, for any E ∈ E(emin, emax)

if and only if emin/emax is larger than the critical value
√

17− 12
√

2. The

result will be officially stated in Theorem 2.19 as the second theorem of this

paper.

2. Analysis of the Free Energy Density

We assume that |U | < 2emin/b throughout this section so that we can

refer to the results of Lemma 1.2. Let E ∈ E(emin, emax) and let us define

the function ∆ : R>0 × R → R≥0 as follows. Let ∆(β, t) be the solution of

gE(β, t,∆) = 0 if gE(β, t, 0) ≥ 0. Let ∆(β, t) := 0 if gE(β, t, 0) < 0. The

well-definedness of the function ∆(·) is guaranteed by Lemma 1.1. Then we

define the function FE : R>0 × R → R by

FE(β, t)

:=
∆(β, t)2

|U | − Dd

β

∫
Γ∗∞

dkTr log

(
2 cos

(
t

2

)
e−βE(k)

+ eβ(
√

E(k)2+∆(β,t)2−E(k)) + e−β(
√

E(k)2+∆(β,t)2+E(k))

)
.

It follows from Theorem 1.3 (ii) that if U ∈ (−2c′
b min{emin, e

d+1
min}, 0),

FE(β, t) = lim
L→∞
L∈N

(
− 1

βLd
log(Tr e−βH+itSz)

)
, (∀(β, t) ∈ R>0 × R).

Thus the function FE(β, t) can be seen as an extension of the free energy

density with respect to the magnitude of the coupling constant. In this

section we study the regularity of FE with (β, t) and characterize the subset

of R>0 × R where the analyticity is lost. The contents of this section are

independent of Section 3, which is devoted to proving Theorem 1.3. The

readers can read this section separately from Section 3.
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2.1. Phase transitions

The domain R>0 × R can be decomposed as follows. R>0 × R = Q+ �
Q− �Q0, where

Q+ := {(β, t) ∈ R>0 × R | gE(β, t, 0) > 0} ,
Q− := {(β, t) ∈ R>0 × R | gE(β, t, 0) < 0} ,
Q0 := {(β, t) ∈ R>0 × R | gE(β, t, 0) = 0} .

In this subsection we will prove that the function FE is C1-class in R>0×R,

real analytic in Q+ ∪Q− and non-analytic at any point of Q0 as a function

of two variables. More specifically, we will prove that 2nd order derivatives

of FE have jump discontinuity across Q0, which is a sign of 2nd order

phase transition. Also, we will see that Q0 consists of periodic copies of

a restriction of a closed curve in R
2. Let us call the curves making up

Q0 phase boundaries. In fact the regularity of FE can be studied in a

way similar to [14, Section 2]. However, we decide not to omit it, since it

characterizes the nature of the phase transitions.

Let us start by describing universal properties of the phase boundaries,

which hold regardless of emin, emax(∈ R>0). We can deduce from Lemma

1.2 (i),(ii) that for any β ∈ (0, βc) there uniquely exists τ(β) ∈ (π, 2π) such

that gE(β, τ(β), 0) = 0. This rule defines the function τ : (0, βc) → (π, 2π).

The following lemma means little at this point. However, it will support

conclusive parts of our construction later, or more specifically the proofs of

Proposition 2.13 and Proposition 2.23. Also, it will implicitly support the

proof of Proposition 2.16.

Lemma 2.1. Assume that |U | < 2emin/b, y ∈ (−1, 0), β ∈ R>0, E ∈
E(emin, emax) and

− 2

|U | +Dd

∫
Γ∗∞

dkTr

(
sinh(βE(k))

(y + cosh(βE(k)))E(k)

)
= 0.

Then β ∈ (0, βc) and y = cos(τ(β)/2).

Basic properties of the function τ(·) are summarized as follows. For an

open set O of R
n let Cω(O) denote the set of real analytic functions on O.
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Lemma 2.2.

(i)

τ ∈ Cω((0, βc)).

(ii)

lim
β↗βc

τ(β) = lim
β↘0

τ(β) = 2π.

(iii)

lim
β↗βc

dτ

dβ
(β) = +∞, lim

β↘0

dτ

dβ
(β) = −∞.

Remark 2.3. In the proofs of Lemma 2.2, Proposition 2.4, Proposition

2.5 and Proposition 2.10 we will apply the implicit function theorem, the in-

verse function theorem and the identity theorem for real analytic functions.

These theorems are found in e.g. [15, Chapter 1, Chapter 2].

Proof of Lemma 2.2. (i): One can see from the definition that

the function (x, t) 
→ gE(x, t, 0) : R>0 × R → R is real analytic. Since
∂gE
∂t (β, τ(β), 0) �= 0 for all β ∈ (0, βc), the analytic implicit function theo-

rem ensures the claim.

(ii): Suppose that there exists ε ∈ R>0 such that for any δ ∈ R>0 there

exists βδ ∈ (βc − δ, βc) ∩ (0, βc) such that τ(βδ) ≤ 2π − ε. Then for any

δ ∈ R>0

0 = gE(βδ, τ(βδ), 0) ≤ gE(βδ, 2π − ε, 0) ≤ sup
β∈(βc−δ,βc)

gE(β, 2π − ε, 0).

By sending δ ↘ 0, 0 ≤ gE(βc, 2π − ε, 0) < gE(βc, 2π, 0) = 0, which is a

contradiction. Thus limβ↗βc τ(β) = 2π.

Suppose that there exists ε ∈ R>0 such that for any δ ∈ R>0 there exists

βδ ∈ (0, δ) ∩ (0, βc) such that τ(βδ) ≤ 2π − ε. Then for any δ ∈ R>0

0 = gE(βδ, τ(βδ), 0) ≤ sup
β∈(0,δ)

gE(β, 2π − ε, 0).

By sending δ ↘ 0, 0 ≤ gE(0, 2π − ε, 0) = −2/|U | < 0, which is a contradic-

tion. Thus limβ↘0 τ(β) = 2π.
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(iii): For β ∈ (0, βc)

dτ

dβ
(β) = −

∂gE
∂x (β, τ(β), 0)
∂gE
∂t (β, τ(β), 0)

(2.1)

= −
2
∫
Γ∗∞
dkTr

(
1+cos(τ(β)/2) cosh(βE(k))
(cos(τ(β)/2)+cosh(βE(k)))2

)
sin

( τ(β)
2

) ∫
Γ∗∞
dkTr

(
sinh(βE(k))

(cos(τ(β)/2)+cosh(βE(k)))2E(k)

) .
Then by using the result of (ii),

lim
β↗βc

dτ

dβ
(β) = lim

β↗βc

2
∫
Γ∗∞
dkTr

(
1

cosh(βcE(k))−1

)
sin

( τ(β)
2

) ∫
Γ∗∞
dkTr

(
sinh(βcE(k))

(cosh(βcE(k))−1)2E(k)

) =∞.

To study the limit limβ↘0
dτ
dβ (β), let us show that

lim
β↘0

cos(τ(β)/2) + 1

β
=
b|U |
2
.(2.2)

Suppose that there exists ε ∈ R>0 such that

sup
β∈(0,δ)

cos(τ(β)/2) + 1

β
≥ b|U |

2
+ ε, (∀δ ∈ (0, βc)).

Take any δ ∈ (0, βc). Then there exists βδ ∈ (0, δ) such that

cos(τ(βδ)/2) + 1

βδ
≥ b|U |

2
+
ε

2
,

and thus

2

|U | ≤ Dd

∫
Γ∗∞

dkTr

 sinh(βδE(k))(
b|U |
2 + ε

2 + cosh(βδE(k))−1
βδ

)
βδE(k)


≤ 2

b|U |+ εDd

∫
Γ∗∞

dkTr

(
sinh(δE(k))

δE(k)

)
.

By sending δ ↘ 0, 2
|U | ≤

2b
b|U |+ε <

2
|U | , which is a contradiction. Thus for

any ε ∈ R>0 there exists δ ∈ (0, βc) such that

sup
β∈(0,δ)

cos(τ(β)/2) + 1

β
<
b|U |
2

+ ε,
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which implies that

lim sup
β↘0

cos(τ(β)/2) + 1

β
≤ b|U |

2
.

On the other hand, suppose that there exists ε ∈ R>0 such that

inf
β∈(0,δ)

cos(τ(β)/2) + 1

β
≤ b|U |

2
− ε, (∀δ ∈ (0, βc)).

Take any δ ∈ (0, βc). Then there exists βδ ∈ (0, δ) such that

cos(τ(βδ)/2) + 1

βδ
≤ b|U |

2
− ε

2
,

and thus

2

|U | ≥ Dd

∫
Γ∗∞

dkTr

 sinh(βδE(k))(
b|U |
2 − ε

2 + cosh(βδE(k))−1
βδ

)
βδE(k)


≥ Dd

∫
Γ∗∞

dkTr

(
1

b|U |
2 − ε

2 + cosh(δE(k))−1
δ

)
.

By sending δ ↘ 0, 2
|U | ≥

2b
b|U |−ε >

2
|U | , which is a contradiction. Thus for

any ε ∈ R>0 there exists δ ∈ (0, βc) such that

inf
β∈(0,δ)

cos(τ(β)/2) + 1

β
>
b|U |
2
− ε,

which implies that

liminf
β↘0

cos(τ(β)/2) + 1

β
≥ b|U |

2
.

Therefore, the property (2.2) follows.

By applying (2.2) we can derive that

lim
β↘0

∫
Γ∗∞
dkTr

(
1+cos(τ(β)/2) cosh(βE(k))
(cos(τ(β)/2)+cosh(βE(k)))2

)
∫
Γ∗∞
dkTr

(
sinh(βE(k))

(cos(τ(β)/2)+cosh(βE(k)))2E(k)

) =
b|U |
2
.
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By combining this with (2.1) and the result of (ii) we can deduce the claim

on the limit limβ↘0
dτ
dβ (β). �

By parity, periodicity and Lemma 1.2 the set Q0 is characterized as

follows.

Q0 ={(β, δτ(β) + 4πm) | β ∈ (0, βc), δ ∈ {1,−1}, m ∈ Z}(2.3)

∪ {(βc, 2π + 4πm) | m ∈ Z}.

Set

Q̂0 := {(β, τ(β)), (β, 4π − τ(β)) | β ∈ (0, βc)} ∪ {(0, 2π), (βc, 2π)},

which is a closed curve in R
2 by Lemma 2.2 (ii). We can see that Q0 consists

of periodic copies of Q̂0 ∩ (R>0 × R). This fact motivates us to study the

curve Q̂0 as the representative of the phase boundaries.

Proposition 2.4. Q̂0 is a 1-dimensional real analytic submanifold

of R
2.

Proof. By Lemma 2.2 (i) the maps

β 
→ (β, τ(β)) : (0, βc)→ {(β, τ(β)) | β ∈ (0, βc)},
β 
→ (β, 4π − τ(β)) : (0, βc)→ {(β, 4π − τ(β)) | β ∈ (0, βc)}

are real analytic homeomorphism. Thus it suffices to prove that there exist

open intervals I1, I2, an open neighborhood U1 of (0, 2π), an open neighbor-

hood U2 of (βc, 2π) in R
2 and real analytic homeomorphisms fj : Ij → Uj ∩

Q̂0 (j = 1, 2). We can see that ∂gE
∂x (βc, 2π, 0) < 0. Thus the analytic implicit

function theorem ensures that there exists ε1 ∈ (0, π) and f̂ ∈ Cω((2π −
ε1, 2π + ε1)) such that f̂(2π) = βc, f̂(t) > 0 and gE(f̂(t), t, 0) = 0 for any

t ∈ (2π−ε1, 2π+ε1). Thus, (βc, 2π) ∈ {(f̂(t), t) | t ∈ (2π−ε1, 2π+ε1)} ⊂ Q̂0.

Since Q̂0 is symmetric with respect to the line {(x, 2π) | x ∈ R}, there exists

ε2 ∈ R>0 such that

{(f̂(t), t) | t ∈ (2π − ε1, 2π + ε1)}
= (βc − ε2, βc + ε2)× (2π − ε1, 2π + ε1) ∩ Q̂0.
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If we define the map f2 : (2π − ε1, 2π + ε1) → (βc − ε2, βc + ε2) × (2π −
ε1, 2π+ε1)∩Q̂0 by f2(t) := (f̂(t), t), we see that the claim on (βc, 2π) holds.

Let us prove the claim on (0, 2π). Observe that there exist ε3, ε4 ∈ R>0

such that the function

(x, y) 
→ − 2

|U | +Dd

∫
Γ∗∞

dkTr

(
sinh(xE(k))(

y + cosh(xE(k))−1
x

)
xE(k)

)
is real analytic in (−ε3, ε3)×(b|U |/2−ε4, b|U |/2+ε4). Let φ(x, y) denote this

function. We can check that φ(0, b|U |/2) = 0 and ∂φ
∂y (0, b|U |/2) < 0. Thus

by the analytic implicit function theorem there exist ε5 ∈ (0, ε3) and a real

analytic function η : (−ε5, ε5)→ R>0 such that η(0) = b|U |/2, φ(x, η(x)) =

0, (∀x ∈ (−ε5, ε5)). Then let us define the function ξ : (−ε5, ε5) → R by

ξ(x) := xη(x) − 1. It follows that ξ ∈ Cω((−ε5, ε5)), ξ(0) = −1, dξ
dx(0) =

b|U |/2 > 0. Thus there exists ε6 ∈ (0, ε5) such that ξ(·) is strictly monotone

increasing in (−ε6, ε6) and

− 2

|U | +Dd

∫
Γ∗∞

dkTr

(
sinh(xE(k))

(ξ(x) + cosh(xE(k)))E(k)

)
= 0,

(∀x ∈ (−ε6, ε6)\{0}).

Then by the inverse function theorem there exist ε7 ∈ R>0 and a real

analytic function λ : (−1− ε7,−1+ ε7)→ (−ε6, ε6) such that λ(·) is strictly

monotone increasing, λ(−1) = 0, ξ(λ(y)) = y, (∀y ∈ (−1− ε7,−1 + ε7)). It

follows that

− 2

|U | +Dd

∫
Γ∗∞

dkTr

(
sinh(λ(y)E(k))

(y + cosh(λ(y)E(k)))E(k)

)
= 0,

(∀y ∈ (−1− ε7,−1 + ε7)\{−1}).

We can take ε8 ∈ (0, π) so that cos(t/2) ∈ [−1,−1 + ε7), (∀t ∈ (2π −
ε8, 2π + ε8)). Let us define the function ν : (2π − ε8, 2π + ε8) → R by

ν(t) := λ(cos(t/2)). Observe that ν ∈ Cω((2π − ε8, 2π + ε8)), ν(2π) = 0,

ν(t) > 0, (∀t ∈ (2π − ε8, 2π + ε8)\{2π}), gE(ν(t), t, 0) = 0, (∀t ∈ (2π −
ε8, 2π + ε8)\{2π}). Thus (0, 2π) ∈ {(ν(t), t) | t ∈ (2π − ε8, 2π + ε8)} ⊂ Q̂0.

Since Q̂0 is symmetric with respect to the line {(x, 2π) | x ∈ x ∈ R}, there

exists ε9 ∈ R>0 such that

{(ν(t), t) | t ∈ (2π − ε8, 2π + ε8)} = (−ε9, ε9)× (2π − ε8, 2π + ε8) ∩ Q̂0.
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We can define the map f1 : (2π − ε8, 2π + ε8) → (−ε9, ε9)× (2π − ε8, 2π +

ε8)∩ Q̂0 by f1(t) := (ν(t), t) so that the claim on (0, 2π) holds as well. The

proof is now complete. �

By taking into account the definition of the function ∆(·), Lemma 2.2

and Proposition 2.4 we can schematically draw a β − t phase diagram re-

stricted within the plane R>0 × (0, 4π) as in Figure 1.

✲

✻

0 β

t

βc

π

2π

3π

4π

∆(β, t) = 0

∆(β, t) > 0

Fig. 1. The schematic β − t phase diagram restricted within R>0 × (0, 4π). The curve

corresponds to Q̂0.

Next let us study the regularity of FE(·, ·). In particular let us show

non-analyticity of FE(·, ·) on Q0.

Proposition 2.5. The following statements hold.

(i)

FE |Q+∪Q− ∈ Cω(Q+ ∪Q−), FE ∈ C1(R>0 × R).

(ii) For any (β0, t0) ∈ Q0 lim(β,t)→(β0,t0),(β,t)∈Q+

∂2FE
∂β2 (β, t),

lim(β,t)→(β0,t0),(β,t)∈Q−
∂2FE
∂β2 (β, t) converge to finite values. Moreover,
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if β0 ∈ (0, βc) and dτ
dβ (β0) �= 0 or β0 = βc,

lim
(β,t)→(β0,t0)

(β,t)∈Q+

∂2FE
∂β2

(β, t) < lim
(β,t)→(β0,t0)

(β,t)∈Q−

∂2FE
∂β2

(β, t).

If β0 ∈ (0, βc) and dτ
dβ (β0) = 0,

lim
(β,t)→(β0,t0)

(β,t)∈Q+

∂2FE
∂β2

(β, t) = lim
(β,t)→(β0,t0)

(β,t)∈Q−

∂2FE
∂β2

(β, t).

(iii) For any (β0, t0) ∈ Q0 lim(β,t)→(β0,t0),(β,t)∈Q+

∂2FE
∂t2

(β, t),

lim(β,t)→(β0,t0),(β,t)∈Q−
∂2FE
∂t2

(β, t) converge to finite values. Moreover,

if β0 ∈ (0, βc),

lim
(β,t)→(β0,t0)

(β,t)∈Q+

∂2FE
∂t2

(β, t) < lim
(β,t)→(β0,t0)

(β,t)∈Q−

∂2FE
∂t2

(β, t).

If β0 = βc,

lim
(β,t)→(β0,t0)

(β,t)∈Q+

∂2FE
∂t2

(β, t) = lim
(β,t)→(β0,t0)

(β,t)∈Q−

∂2FE
∂t2

(β, t).

Proof. The claims can be proved in a way similar to the proofs of

“Lemma 2.2”, “Proposition 2.6” of [14]. However, we do not significantly

skip the explanations for the readers’ convenience.

(i): By using the fact that for ε ∈ [−1, 1] the function (1.7) is strictly

monotone decreasing we can check that ∂gE
∂z (β, t,∆(β, t)) < 0 for any (β, t) ∈

Q+. Thus by the analytic implicit function theorem ∆|Q+ ∈ Cω(Q+). Since

∆|Q− ∈ Cω(Q−) trivially, ∆|Q+∪Q− ∈ Cω(Q+ ∪ Q−). Let us prove that

∆ ∈ C(R>0×R). Let (β0, t0) ∈ Q0. Suppose that there exists ε ∈ R>0 such

that for any δ ∈ R>0 there exists (βδ, tδ) ∈ R>0 × R such that ‖(β0, t0) −
(βδ, tδ)‖R2 < δ and ∆(βδ, tδ) ≥ ε. Then,

0 = gE(βδ, tδ,∆(βδ, tδ)) ≤ sup
(β,t)∈R>0×R

with ‖(β,t)−(β0,t0)‖
R2<δ

gE(β, t, ε).
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By sending δ ↘ 0, 0 ≤ gE(β0, t0, ε) < gE(β0, t0, 0) = 0, which is a con-

tradiction. Thus, lim(β,t)→(β0,t0) ∆(β, t) = 0 = ∆(β0, t0). This implies that

∆ ∈ C(R>0×R). It readily follows from the confirmed regularity of ∆ that

FE |Q+∪Q− ∈ Cω(Q+ ∪ Q−), FE ∈ C(R>0 × R). Let us define the function

F̂E : R>0 × R× R → R by

F̂E(x, t, z) :=
z2

|U | −
Dd

x

∫
Γ∗∞

dkTr log

(
cos

(
t

2

)
+ cosh(x

√
E(k)2 + z2)

)
.

(2.4)

Observe that the regularity of the function (β, t) 
→ F̂E(β, t,∆(β, t)) : R>0×
R → R is same as that of FE(β, t). By considering the definition of ∆(β, t)

we can derive that for any (β, t) ∈ Q+ ∪Q−

∂

∂β
F̂E(β, t,∆(β, t)) =

∂F̂E
∂x

(β, t,∆(β, t)),(2.5)

∂

∂t
F̂E(β, t,∆(β, t)) =

∂F̂E
∂t

(β, t,∆(β, t)).

Take any (β0, t0) ∈ Q0. The above equalities imply that

lim
(β,t)→(β0,t0)
(β,t)∈Q+∪Q−

∂

∂β
F̂E(β, t,∆(β, t)) =

∂F̂E
∂x

(β0, t0,∆(β0, t0)),(2.6)

lim
(β,t)→(β0,t0)
(β,t)∈Q+∪Q−

∂

∂t
F̂E(β, t,∆(β, t)) =

∂F̂E
∂t

(β0, t0,∆(β0, t0)).(2.7)

We remark that the function β 
→ gE(β, t0, 0) is real analytic in R>0. Since

lim
β→∞

gE(β, t0, 0) ≤ − 2

|U | +
b

emin
< 0

by assumption, this function is not identically zero. Therefore, there exists

ε ∈ R>0 such that for any β ∈ (β0− ε, β0 + ε)\{β0} gE(β, t0, 0) �= 0. Other-

wise the identity theorem for real analytic functions yields a contradiction.

This means that (β, t0) ∈ Q+ ∪Q− for any β ∈ (β0− ε, β0 + ε)\{β0}. Thus,

it follows from (2.6) that β 
→ F̂E(β, t0,∆(β, t0)) is differentiable at β = β0

and

∂

∂β
F̂E(β, t0,∆(β, t0))

∣∣∣
β=β0

=
∂F̂E
∂x

(β0, t0,∆(β0, t0)).
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By recalling Lemma 2.2 (ii),(iii) and (2.3) we see that there exists ε ∈ R>0

such that (β0, t) ∈ Q+ ∪Q− for any t ∈ (t0 − ε, t0 + ε)\{t0}. Thus by (2.7)

t 
→ F̂E(β0, t,∆(β0, t)) is differentiable at t = t0 and

∂

∂t
F̂E(β0, t,∆(β0, t))

∣∣∣
t=t0

=
∂F̂E
∂t

(β0, t0,∆(β0, t0)).

Since (β, t) 
→ (∂F̂E∂x (β, t,∆(β, t)), ∂F̂E∂t (β, t,∆(β, t))) is continuous in R>0 ×
R, it follows that (β, t) 
→ F̂E(β, t,∆(β, t)) is C1-class in R>0 ×R and so is

FE(·, ·).
(ii): We can derive from (2.5) and the gap equation gE(β, t,∆(β, t)) = 0

((β, t) ∈ Q+) that

∂2

∂β2
F̂E(β, t,∆(β, t)) =

∂2F̂E
∂x2

(β, t,∆(β, t)), (∀(β, t) ∈ Q−),(2.8)

∂2

∂β2
F̂E(β, t,∆(β, t))

=
∂2F̂E
∂x2

(β, t,∆(β, t)) +
∂2F̂E
∂x∂z

(β, t,∆(β, t))
∂∆

∂β
(β, t)

=
∂2F̂E
∂x2

(β, t,∆(β, t))− ∂gE
∂x

(β, t,∆(β, t))∆(β, t)
∂∆

∂β
(β, t)

=
∂2F̂E
∂x2

(β, t,∆(β, t)) + ∆(β, t)

(
∂gE
∂x (β, t,∆(β, t))

)2

∂gE
∂z (β, t,∆(β, t))

,

(∀(β, t) ∈ Q+).

Let us define the function ĝ : R>0 × R× R>0 → R by

ĝ(x, t, z) :=
sinh(xz)

(cos(t/2) + cosh(xz)) z
.

Observe that for (β, t) ∈ Q+

1

∆(β, t)
· ∂gE
∂z

(β, t,∆(β, t))

= Dd

∫
Γ∗∞

dkTr

(
∂ĝ

∂z

(
β, t,

√
E(k)2 + ∆(β, t)2

)
· 1√

E(k)2 + ∆(β, t)2

)
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and

lim
(β,t)→(β0,t0)

(β,t)∈Q+

1

∆(β, t)
· ∂gE
∂z

(β, t,∆(β, t))(2.9)

= Dd

∫
Γ∗∞

dkTr

(
∂ĝ

∂z
(β0, t0, |E(k)|) · 1

|E(k)|

)
< 0.

Here we again used the monotone decreasing property of the function (1.7).

Let us study the term ∂gE
∂x (β0, t0, 0). If β0 ∈ (0, βc),

∂gE
∂x

(β0, t0, 0) =
∂gE
∂x

(β0, τ(β0), 0) = −dτ
dβ

(β0)
∂gE
∂t

(β0, τ(β0), 0).

Since τ(β0) ∈ (0, 2π) and t 
→ gE(β0, t, 0) is strictly monotone increasing in

(0, 2π),

∂gE
∂t

(β0, τ(β0), 0) �= 0.(2.10)

Thus, ∂gE
∂x (β0, t0, 0) = 0 if and only if dτ

dβ (β0) = 0. If β0 = βc, t0 = 2π

(mod 4π). In this case we can directly check that ∂gE
∂x (β0, t0, 0) < 0. We

can conclude the claimed convergent properties by combining the above

properties of ∂gE
∂x (β0, t0, 0) with (2.8), (2.9).

(iii): In the same way as in the proof of (ii) we have that

∂2

∂t2
F̂E(β, t,∆(β, t)) =

∂2F̂E
∂t2

(β, t,∆(β, t)), (∀(β, t) ∈ Q−),

(2.11)

∂2

∂t2
F̂E(β, t,∆(β, t)) =

∂2F̂E
∂t2

(β, t,∆(β, t)) + ∆(β, t)

(
∂gE
∂t (β, t,∆(β, t))

)2

∂gE
∂z (β, t,∆(β, t))

,

(∀(β, t) ∈ Q+).

If β0 ∈ (0, βc), τ(β0) ∈ (0, 2π). By periodicity and (2.10)∣∣∣∣∂gE∂t (β0, t0, 0)

∣∣∣∣ =

∣∣∣∣∂gE∂t (β0, τ(β0), 0)

∣∣∣∣ > 0.
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If β0 = βc, t0 = 2π (mod 4π), and thus ∂gE
∂t (β0, t0, 0) = 0. The claimed

convergent properties follow from (2.9), (2.11) and the above properties of
∂gE
∂t (β0, t0, 0). �

Remark 2.6. For (ρ, η) = (+,−) or (−,+) let us set

Qβ
ρ,η

:=

{
(β0, t0) ∈ Q0

∣∣∣ ∃ε ∈ R>0 s.t.
(β, t0) ∈ Qρ, (∀β ∈ (β0 − ε, β0)),

(β, t0) ∈ Qη, (∀β ∈ (β0, β0 + ε))

}
.

Proposition 2.5 (ii) implies that if (β0, t0) ∈ Qβ
ρ,η satisfies β0 �= βc and

∂τ
∂β (β0) �= 0 or β0 = βc,

lim
β↗β0

∂2FE
∂β2

(β, t0) �= lim
β↘β0

∂2FE
∂β2

(β, t0).

This means that a 2nd order phase transition driven by β occurs at (β, t) =

(β0, t0). Assume that β0 ∈ (0, βc),
dτ
dβ (β0) = 0 and β 
→ τ(β) is monotone

increasing or decreasing in a neighborhood of β0. Then (β0, τ(β0)) ∈ Qβ
+,−

or (β0, τ(β0)) ∈ Qβ
−,+ respectively. In this case Proposition 2.5 (ii) implies

that β 
→ ∂2FE
∂β2 (β, τ(β0)) is continuous at β = β0, even though the trajectory

β 
→ (β, τ(β0)) crosses Q0 at β = β0 from Q+ to Q− or from Q− to Q+. This

interestingly suggests a possibility of higher order phase transition with β

at (β, t) = (β0, τ(β0)). However, as we will see in the following subsections,

the monotonicity of τ(·) is sensitive to individual characteristics of E(·) and

we do not pursue the question whether τ(·) can satisfy the above properties

in this paper. On the other hand, if we set

Qt
ρ,η :=

{
(β0, t0) ∈ Q0

∣∣∣ ∃ε ∈ R>0 s.t.
(β0, t) ∈ Qρ, (∀t ∈ (t0 − ε, t0)),
(β0, t) ∈ Qη, (∀t ∈ (t0, t0 + ε))

}
for (ρ, η) = (+,−) or (−,+), we can see from Lemma 2.2 and (2.3) that

Qt
+,− �Qt

−,+ = {(β0, t0) ∈ Q0 | β0 �= βc}.

Thus by Proposition 2.5 (iii)

lim
t↗t0

∂2FE
∂t2

(β0, t) �= lim
t↘t0

∂2FE
∂t2

(β0, t), (∀(β0, t0) ∈ Qt
+,− ∪Qt

−,+).
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In other words, t 
→ ∂2FE
∂t2

(β, t) has jump discontinuity whenever the trajec-

tory t 
→ (β, t) crosses Q0 from Q+ to Q− or from Q− to Q+. This means

that the phase transitions driven by t in this system are of 2nd order.

Remark 2.7. The free energy density characterized in Theorem 1.3

(ii) corresponds to FE(β, βθ). In [14, Subsection 2.3] we focused on the

properties of the function (β, θ) 
→ FE(β, βθ) : R>0×R → R under different

assumptions on E(·). The reason why we treated the function (β, t) 
→
FE(β, t) here is that it is considered as a dynamical free energy density

studied in today’s physics of DPT. At this point the function FE(β, βθ)

lacks physical interpretation and its phase boundaries are structurally more

complicated to analyze than those of FE(β, t). Nonetheless, it is possible to

study the regularity of (β, θ) 
→ FE(β, βθ) in a manner similar to Proposition

2.5. In this case the set

{(β, θ) ∈ R>0 × R | gE(β, βθ, 0) = 0}

defines the phase boundaries and it can be shown that 2nd order partial

derivatives of the function (β, θ) 
→ FE(β, βθ) have jump discontinuities on

the phase boundaries. However, we do not explicitly present the results for

conciseness of the paper.

2.2. Shape of the phase boundary

In view of the characterization (2.3), we notice that the graph of the

function τ(·) determines the shape of the phase boundaries. So let us study

the profile of τ(·) more deeply. Its universal properties have already been

summarized in Lemma 2.2 and Proposition 2.4. As the next step, we should

try to reveal geometric properties which may vary with details of E(·). It

will turn out that the ratio emin/emax is a prime index to classify the shape

of τ(·). From now on we let c denote a generic positive constant independent

of any parameter. The following proposition tells us when τ(·) : (0, βc)→ R

is strictly downward convex.

Proposition 2.8. There exists e0 ∈ (0, 1) independent of any pa-

rameter such that if emin/emax ≥ e0, for any U ∈ [− emin
sinh(2)b , 0), E ∈

E(emin, emax) and β ∈ (0, βc),

d2τ

dβ2
(β) > 0.
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Proof. First of all let us prepare a few quantitative bounds based on

the assumption

|U | ≤ emin

sinh(2)b
.(2.12)

Observe that 1/ sinh(2) < 2 tanh(1) < 2, which implies that |U | < 2emin/b

and combined with Lemma 1.2 that

βc ≤
2

emin
tanh−1

(
b|U |
2emin

)
<

2

emin
tanh−1(tanh(1)) =

2

emin
.(2.13)

It follows from (2.13) and the equality

gE(β, τ(β), 0) = 0, (β ∈ (0, βc))(2.14)

that

2

|U | ≤
b sinh(βemin)

emin(cos(τ(β)/2) + cosh(βemin))
(2.15)

≤ b sinh(2)

emin(cos(τ(β)/2) + cosh(βemin))
,

or by (2.12)

cos

(
τ(β)

2

)
+ cosh(βemin) ≤ 1

2
,(2.16)

− cos

(
τ(β)

2

)
≥ 1

2
, (∀β ∈ (0, βc)).(2.17)

By differentiating both sides of (2.14) twice and substituting the first

equality of (2.1) we obtain that for any β ∈ (0, βc)

d2τ

dβ2
(β)

(2.18)

=
1(

∂gE
∂t (β, τ(β), 0)

)3

(
2
∂2gE
∂x∂t

(β, τ(β), 0)
∂gE
∂x

(β, τ(β), 0)
∂gE
∂t

(β, τ(β), 0)

− ∂
2gE
∂x2

(β, τ(β), 0)

(
∂gE
∂t

(β, τ(β), 0)

)2
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− ∂
2gE
∂t2

(β, τ(β), 0)

(
∂gE
∂x

(β, τ(β), 0)

)2
)
.

Define the functions f0
β , fxβ , f tβ, fxxβ , fxtβ , f ttβ : R → R by

f0
β(y) := cos

(
τ(β)

2

)
+ cosh(βy),

fxβ (y) := y

(
cos

(
τ(β)

2

)
cosh(βy) + 1

)
,

f tβ(y) :=
1

2
sin

(
τ(β)

2

)
sinh(βy),

fxxβ (y) := y2 sinh(βy)

(
cos2

(
τ(β)

2

)
− cos

(
τ(β)

2

)
cosh(βy)− 2

)
,

fxtβ (y) :=
y

2
sin

(
τ(β)

2

)(
cos

(
τ(β)

2

)
cosh(βy) + 1− sinh2(βy)

)
,

f ttβ (y) :=
1

4
sinh(βy)

(
1 + sin2

(
τ(β)

2

)
+ cos

(
τ(β)

2

)
cosh(βy)

)
.

Then the formula (2.18) can be rewritten as follows. For any β ∈ (0, βc)

d2τ

dβ2
(β) =

1(
∂gE
∂t (β, τ(β), 0)

)3

3∏
j=1

(
Dd

∫
Γ∗∞

dkj

)

·
(

2 Tr

(
fxtβ (|E(k1)|)

|E(k1)|f0
β(E(k1))3

)
Tr

(
fxβ (|E(k2)|)

|E(k2)|f0
β(E(k2))2

)

· Tr

(
f tβ(|E(k3)|)

|E(k3)|f0
β(E(k3))2

)

− Tr

(
fxxβ (|E(k1)|)

|E(k1)|f0
β(E(k1))3

)
Tr

(
f tβ(|E(k2)|)

|E(k2)|f0
β(E(k2))2

)

· Tr

(
f tβ(|E(k3)|)

|E(k3)|f0
β(E(k3))2

)

− Tr

(
f ttβ (|E(k1)|)

|E(k1)|f0
β(E(k1))3

)
Tr

(
fxβ (|E(k2)|)

|E(k2)|f0
β(E(k2))2

)
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· Tr

(
fxβ (|E(k3)|)

|E(k3)|f0
β(E(k3))2

))
.

Let us define the function fβ : R
3 → R by

fβ(y1, y2, y3)

:= 2fxtβ (y1)f
x
β (y2)f

t
β(y3)− fxxβ (y1)f

t
β(y2)f

t
β(y3)− f ttβ (y1)f

x
β (y2)f

x
β (y3).

We can see from above that if

min{fβ(y1, y2, y3) | yj ∈ [emin, emax] (j = 1, 2, 3)} > 0,(2.19)

then d2τ
dβ2 (β) > 0.

Let us prove (2.19). Observe that

fβ(y, y, y)

=
y2

2
sin2

(
τ(β)

2

)
sinh(βy)

(
cos

(
τ(β)

2

)
cosh(βy) + 1

)2

− y
2

4
sin2

(
τ(β)

2

)
sinh3(βy)

(
cos2

(
τ(β)

2

)
+ cos

(
τ(β)

2

)
cosh(βy)

)
− f ttβ (y)fxβ (y)2

= −y
2

4
sinh(βy)

(
cos2

(
τ(β)

2

)
+ cos

(
τ(β)

2

)
cosh(βy)

)
·
(

cos

(
τ(β)

2

)
cosh(βy) + 1

)2

− y
2

4
sin2

(
τ(β)

2

)
sinh3(βy)

(
cos2

(
τ(β)

2

)
+ cos

(
τ(β)

2

)
cosh(βy)

)
= −y

2

4
sinh(βy) cos

(
τ(β)

2

)
f0
β(y)3,

which combined with (2.17) implies that

min
y∈[emin,emax]

fβ(y, y, y) ≥ e2min

8
sinh(βemin)f0

β(emin)3.(2.20)

For a continuous function f : [emin, emax] → R let ‖f‖∞ denote

supy∈[emin,emax] |f(y)| in the following. For any yj ∈ [emin, emax] (j = 1, 2, 3)

|fβ(y1, y1, y1)− fβ(y1, y2, y3)|

(2.21)
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≤ |fβ(y1, y1, y1)− fβ(y1, y2, y1)|+ |fβ(y1, y2, y1)− fβ(y1, y2, y3)|

≤ 2(emax − emin)

(
‖fxtβ ‖∞

(∥∥∥∥ ddyfxβ
∥∥∥∥
∞
‖f tβ‖∞ + ‖fxβ ‖∞

∥∥∥∥ ddyf tβ
∥∥∥∥
∞

)

+ ‖fxxβ ‖∞‖f tβ‖∞
∥∥∥∥ ddyf tβ

∥∥∥∥
∞

+ ‖f ttβ ‖∞‖fxβ ‖∞
∥∥∥∥ ddyfxβ

∥∥∥∥
∞

)
.

To estimate the right-hand side of the above inequality, let us prepare nec-

essary bounds.

‖fxβ ‖∞ ≤ cemaxf
0
β(emax),∥∥∥∥ ddyfxβ

∥∥∥∥
∞
≤ c

(
f0
β(emax) + sinh2(βemax)

)
,

‖f tβ‖∞ ≤ cf0
β(emax)

1
2 sinh(βemax),∥∥∥∥ ddyf tβ

∥∥∥∥
∞
≤ β

∣∣∣∣sin(τ(β)

2

)
f0
β(emax)

∣∣∣∣ + β

∣∣∣∣sin(τ(β)

2

)
cos

(
τ(β)

2

)∣∣∣∣
≤ cβ(f0

β(emax)
3
2 + f0

β(emax)
1
2 ),

‖fxxβ ‖∞ ≤ ce2max sinh(βemax)f
0
β(emax),

‖fxtβ ‖∞ ≤ cemaxf
0
β(emax)

1
2
(
f0
β(emax) + sinh2(βemax)

)
,

‖f ttβ ‖∞ ≤ c sinh(βemax)f
0
β(emax),

which lead to that

‖fxtβ ‖∞
∥∥∥∥ ddyfxβ

∥∥∥∥
∞
‖f tβ‖∞

≤ cemax sinh(βemax)f
0
β(emax)

3 + cemax sinh5(βemax)f
0
β(emax),

‖fxtβ ‖∞‖fxβ ‖∞
∥∥∥∥ ddyf tβ

∥∥∥∥
∞

≤ cemax sinh(βemax)

4∑
j=3

f0
β(emax)

j + cemax sinh3(βemax)

3∑
j=2

f0
β(emax)

j ,

‖fxxβ ‖∞‖f tβ‖∞
∥∥∥∥ ddyf tβ

∥∥∥∥
∞
≤ cemax sinh3(βemax)

3∑
j=2

f0
β(emax)

j ,

‖f ttβ ‖∞‖fxβ ‖∞
∥∥∥∥ ddyfxβ

∥∥∥∥
∞
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≤ cemax sinh(βemax)f
0
β(emax)

3 + cemax sinh3(βemax)f
0
β(emax)

2.

By combining these inequalities with (2.21) we obtain that

|fβ(y1, y1, y1)− fβ(y1, y2, y3)|(2.22)

≤ c(emax − emin)emax sinh(βemax)

·
(

4∑
j=3

f0
β(emax)

j + sinh2(βemax)
3∑

j=2

f0
β(emax)

j

+ sinh4(βemax)f
0
β(emax)

)
.

Let us bound the right-hand side of this inequality by that of (2.20). Let

us prepare a few more inequalities for this purpose. We can use (2.13) to

derive that

sinh(βemax) =

(
sinh(βemax)− sinh(βemin)

sinh(βemin)
+ 1

)
sinh(βemin)

(2.23)

≤
(
β(emax − emin) cosh(βemax)

sinh(βemin)
+ 1

)
sinh(βemin)

≤
((

emax

emin
− 1

)
cosh

(
2emax

emin

)
+ 1

)
sinh(βemin),

f0
β(emax) ≤ cos

(
τ(β)

2

)
+ 1 + (βemax)

2 cosh(βemax)

(2.24)

≤ cos

(
τ(β)

2

)
+ 1 + 2

(
emax

emin

)2

cosh(βemax)(cosh(βemin)− 1)

≤ 2

(
emax

emin

)2

cosh

(
2emax

emin

)
f0
β(emin).

Moreover, by (2.13) and (2.24)

sinh2(βemax) = cosh2(βemax)− 1

(2.25)

≤ (cosh(βemax) + 1)f0
β(emax)
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≤ 2

(
emax

emin

)2

cosh

(
2emax

emin

)(
cosh

(
2emax

emin

)
+ 1

)
f0
β(emin).

Substitution of (2.16), (2.23), (2.24), (2.25) into (2.22) yields the following

inequality. We especially use (2.23) to bound sinh(βemax) in front of the

large parenthesis and (2.25) to bound sinh2(βemax), sinh4(βemax) inside the

large parenthesis.

|fβ(y1, y1, y1)− fβ(y1, y2, y3)|

≤ c
(
emax

emin
− 1

)
emax

emin

((
emax

emin
− 1

)
cosh

(
2emax

emin

)
+ 1

)
·
((

emax

emin

)8 (
cosh

(
2emax

emin

))4

+

(
cosh

(
2emax

emin

)
+ 1

)(
emax

emin

)8 (
cosh

(
2emax

emin

))4

+

(
cosh

(
2emax

emin

)
+ 1

)2 (emax

emin

)6 (
cosh

(
2emax

emin

))3
)

· e2min sinh(βemin)f0
β(emin)3,

(∀yj ∈ [emin, emax] (j = 1, 2, 3)).

We can see that there exists e0 ∈ (0, 1) independent of any parameter such

that if emin/emax ≥ e0,

|fβ(y1, y1, y1)− fβ(y1, y2, y3)| ≤
e2min

16
sinh(βemin)f0

β(emin)3,(2.26)

(∀yj ∈ [emin, emax] (j = 1, 2, 3)).

The inequalities (2.20), (2.26) imply (2.19) and thus the claim holds

true. �

Proposition 2.8 together with Lemma 2.2 means in particular that under

the assumptions of Proposition 2.8 τ(·) has one and only one local minimum

point in (0, βc). We will see that this property does not always hold if

emin/emax is small. To describe the profile of τ(·) in terms of number of

local minimum points, let us make clear the definition.
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Definition 2.9. Let f be a real-valued function on an open interval

(a, b) and c ∈ (a, b). The point c is said to be a local minimum point of f if

there exists ε ∈ R>0 such that f(c) ≤ f(x) for any x ∈ (c− ε, c+ ε).

Our main goal in this section is to give a necessary and sufficient con-

dition for τ(·) to have only one local minimum point for any choice of

E ∈ E(emin, emax). The next proposition gives a sufficient condition.

Proposition 2.10. Assume that emin/emax >
√

17− 12
√

2. Then

there exists U0(b, emin, emax) ∈ (0, emin
sinh(2)b ] depending only on b, emin, emax

such that for any U ∈ [−U0(b, emin, emax), 0) and E ∈ E(emin, emax) τ(·)
has one and only one local minimum point in (0, βc).

Remark 2.11. According to the proof of the proposition,

U0(b, emin, emax) is equal to

c′
e2min
emax

((
emin
emax

)2 − 17 + 12
√

2
)

sinh(2)b cosh2
(
2c′′ emax

emin

)
cosh2

(
c′′ emax

emin

)
with generic constants c′ ∈ (0, 1], c′′ ∈ R>0. More specifically,

U0(b, emin, emax) is given by the right-hand side of (2.40).

Let us prepare an essential part of the proof of Proposition 2.10 sepa-

rately in the next lemma. Define the function u : R>0 × [−1, 1]× R>0 → R

by

u(x, y, z) :=
sinh(xz)

(y + cosh(xz))z
.(2.27)

Lemma 2.12. Assume that
√

17− 12
√

2 < emin/emax < 1. Then there

exists c1 ∈ R>0 independent of any parameter such that for any (x, y) ∈
R>0 × (−1, 0) satisfying

|y + 1|
1− |y + 1| < c1

emin
emax

((
emin
emax

)2 − 17 + 12
√

2
)

cosh2(2x) cosh2(x)

and e1, e2 ∈ R>0 satisfying emax ≥ e1 > e2 ≥ emin,

∂u

∂x

(√
y + 1 · x

e1
, y, e1

)
∂2u

∂x2

(√
y + 1 · x

e1
, y, e2

)
(2.28)
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− ∂
2u

∂x2

(√
y + 1 · x

e1
, y, e1

)
∂u

∂x

(√
y + 1 · x

e1
, y, e2

)
> 0.

Proof. Define the function v : R>0 × (−1, 0)× R>0 → R by

v(x, y, z)

:=
1

x(y + 1)
7
2

(
z sinh(

√
y + 1 · xz)

(
y2 − cosh(

√
y + 1 · xz)y − 2

)
·
(
cosh(

√
y + 1 · x)y + 1

)(
cosh(

√
y + 1 · x) + y

)
− sinh(

√
y + 1 · x)

(
y2 − cosh(

√
y + 1 · x)y − 2

)
·
(
cosh(

√
y + 1 · xz)y + 1

)(
cosh(

√
y + 1 · xz) + y

))
.

Let us observe that for any (x, y) ∈ R>0 × (−1, 0)

(L.H.S of (2.28)) =
e1x(y + 1)

7
2∏2

j=1

(
cosh

(√
y + 1 · x ej

e1

)
+ y

)3 · v(x, y, e2e1
)
.

(2.29)

We can also derive that

v(x, y, z)

(2.30)

= z

(
z +

∞∑
n=1

1

(2n+ 1)!
(y + 1)nz2n+1x2n

)

·
(
y − 2− y

∞∑
n=1

1

(2n)!
(y + 1)n−1z2nx2n

)

·
(

1 + y

∞∑
n=1

1

(2n)!
(y + 1)n−1x2n

)(
1 +

∞∑
n=1

1

(2n)!
(y + 1)n−1x2n

)

−
(

1 +

∞∑
n=1

1

(2n+ 1)!
(y + 1)nx2n

)(
y − 2− y

∞∑
n=1

1

(2n)!
(y + 1)n−1x2n

)
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·
(

1 + y

∞∑
n=1

1

(2n)!
(y + 1)n−1z2nx2n

)

·
(

1 +

∞∑
n=1

1

(2n)!
(y + 1)n−1z2nx2n

)
.

This expansion implies that the function v(·, ·, ·) can be analytically contin-

ued into C
3. By abusing notation we let v(x, y, z) denote the entire function

defined by the right-hand side of (2.30) as well. It follows from the assump-

tion that for any x ∈ R

v

(
x,−1,

e2
e1

)
(2.31)

= 3

(
e2
e1

)2
(

1−
(
e2
e1

)2
)

·
((

x2

2
−

1 +
(
e2
e1

)2
6
(
e2
e1

)2
)2

+
−
(
e2
e1

)4
+ 34

(
e2
e1

)2 − 1

36
(
e2
e1

)4
)

≥
1−

(
e2
e1

)2
12
(
e2
e1

)2
(

17 + 12
√

2−
(
e2
e1

)2
)((

e2
e1

)2

− 17 + 12
√

2

)

≥
(

1− e2
e1

)((
emin

emax

)2

− 17 + 12
√

2

)
> 0.

Also, the Taylor expansion and the Cauchy formula yield that for any x ∈ C,

y ∈ (−1, 0)

v

(
x, y,

e2
e1

)
= v

(
x,−1,

e2
e1

)
+

∞∑
m=1

1

2πi

∮
|ζ+1|=1

dζ
v
(
x, ζ, e2e1

)
(ζ + 1)m+1

(y + 1)m

= v

(
x,−1,

e2
e1

)
+

∞∑
m=1

∞∑
n=1

1

(2πi)2

∮
|ζ+1|=1

dζ

∮
|ξ−1|=1

dξ
v(x, ζ, ξ)

(ζ + 1)m+1(ξ − 1)n+1

· (y + 1)m
(
e2
e1
− 1

)n

.
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In the second equality we used the fact that v(x, y, 1) = 0 for any x, y ∈ C.

Moreover, by considering (2.30) we can see that for any x ∈ R>0, y ∈ (−1, 0)∣∣∣∣∣v
(
x, y,

e2
e1

)
− v

(
x,−1,

e2
e1

) ∣∣∣∣∣
≤ c cosh2(2x) cosh2(x)

∞∑
m=1

|y + 1|m
∞∑
n=1

∣∣∣∣e2e1 − 1

∣∣∣∣n
≤ c cosh2(2x) cosh2(x)

emax

emin

∣∣∣∣e2e1 − 1

∣∣∣∣ |y + 1|
1− |y + 1| ,

which combined with (2.31) implies that for any x ∈ R>0, y ∈ (−1, 0)

v

(
x, y,

e2
e1

)(2.32)

≥
(

1− e2
e1

)
·
((

emin

emax

)2

− 17 + 12
√

2− cemax

emin
cosh2(2x) cosh2(x)

|y + 1|
1− |y + 1|

)
.

We can deduce the claim from (2.29), (2.32). �

In the following we let cosh−1 (: R≥1 → R≥0) denote the inverse function

of cosh |R≥0
: R≥0 → R≥1.

Proof of Proposition 2.10. Let us fix L ∈ N and y ∈ (−1,−1/2].

Define the function FL : R → R by

FL(x) :=
1

Ld

∑
k∈Γ∗

Tr

(
sinh(xE(k))

(y + cosh(xE(k)))E(k)

)
.

There are ej ∈ [emin, emax] (j = 1, 2, · · · , bLd) such that emax ≥ e1 ≥ e2 ≥
· · · ≥ ebLd ≥ emin and

FL(x) =
1

Ld

bLd∑
j=1

u(x, y, ej),
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where u(·) is the function defined in (2.27). Let us prove that

∃x0 ∈
[

1

emax
cosh−1(|y|−1),

1

emin
cosh−1(|y|−1)

]
(2.33)

s.t.

d
dxFL(x) > 0, (∀x ∈ (0, x0)),
d
dxFL(x0) = 0,
d
dxFL(x) < 0, (∀x ∈ (x0,∞)).

We can check by calculation that for any z ∈ R>0

∂u

∂x
(x, y, z) > 0,

(
∀x ∈

(
0,

1

z
cosh−1(|y|−1)

))
,(2.34)

∂u

∂x

(
1

z
cosh−1(|y|−1), y, z

)
= 0,

∂u

∂x
(x, y, z) < 0,

(
∀x ∈

(
1

z
cosh−1(|y|−1),∞

))
,

∂2u

∂x2

(
1

z
cosh−1(|y|−1), y, z

)
< 0.

Thus, if e1 = ebLd , the claim (2.33) holds with x0 = 1
e1

cosh−1(|y|−1). Let

us assume that e1 > ebLd . This obviously implies that emax > emin. We can

deduce from (2.34) that

d

dx
FL(x) > 0,

(
∀x ∈

(
0,

1

e1
cosh−1(|y|−1)

])
,

d

dx
FL(x) < 0,

(
∀x ∈

[
1

ebLd

cosh−1(|y|−1),∞
))

.

Thus there exists x0 ∈ ( 1
e1

cosh−1(|y|−1), 1
e
bLd

cosh−1(|y|−1)) such that
d
dxFL(x0) = 0. Set

cmax := sup
y∈(−1,− 1

2
]

cosh−1(|y|−1)√
y + 1

.(2.35)

By using the equality

cosh−1(|y|−1) = log(|y|−1 +
√
|y|−2 − 1),(2.36)
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one can confirm that 0 < cmax <∞. It follows that∣∣∣∣ ej√
y + 1

x0

∣∣∣∣ ≤ cmax
emax

emin
, (∀j ∈ {1, · · · , bLd}).

Then we can apply Lemma 2.12 to conclude that if

|y + 1| < c1
2
·

emin
emax

((
emin
emax

)2 − 17 + 12
√

2
)

cosh2
(
2cmax

emax
emin

)
cosh2

(
cmax

emax
emin

)(2.37)

and ej > ebLd ,

∂u

∂x
(x0, y, ej)

∂2u

∂x2
(x0, y, ebLd)− ∂

2u

∂x2
(x0, y, ej)

∂u

∂x
(x0, y, ebLd) > 0.

Since e1 > ebLd , this implies that

∂u

∂x
(x0, y, ebLd)

d2

dx2
FL(x0) =

1

Ld

bLd∑
j=1

∂2u

∂x2
(x0, y, ej)

∂u

∂x
(x0, y, ebLd)

<
1

Ld

bLd∑
j=1

∂u

∂x
(x0, y, ej)

∂2u

∂x2
(x0, y, ebLd) =

d

dx
FL(x0)

∂2u

∂x2
(x0, y, ebLd) = 0.

Since x0 ∈ (0, 1
e
bLd

cosh−1(|y|−1)), ∂u
∂x(x0, y, ebLd) > 0 by (2.34). Thus we

obtain that d2

dx2FL(x0) < 0. It follows from the above argument that if

e1 > ebLd and (2.37) holds, the claim (2.33) holds. This can be confirmed

as follows. Suppose that x1, x2 ∈ [ 1
emax

cosh−1(|y|−1), 1
emin

cosh−1(|y|−1)],

x1 < x2 and d
dxFL(xj) = 0 for j = 1, 2. Since the function d

dxFL(·) is

non-constant and real analytic in R>0,

;

{
x ∈ [x1, x2]

∣∣ d

dx
FL(x) = 0

}
<∞.

Thus, there exists x3 ∈ (x1, x2] such that d
dxFL(x3) = 0 and d

dxFL(x) �= 0 for

any x ∈ (x1, x3). Since d2

dx2FL(xj) < 0 for j = 1, 3, there exists x4 ∈ (x1, x3)

such that d
dxFL(x4) = 0, which is a contradiction. Now we can conclude

that under the assumption (2.37) the claim (2.33) holds.

Define the function F∞ : R× (−1, 0)→ R by

F∞(x, y) := Dd

∫
Γ∗∞

dkTr

(
sinh(xE(k))

(y + cosh(xE(k)))E(k)

)
.(2.38)
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Since E ∈ C∞(Rd,Mat(b,C)), for any y ∈ (−1,−1
2 ] d

dxFL(·) converges to
∂F∞
∂x (·, y) locally uniformly as L → ∞. Therefore if y ∈ (−1,−1

2 ] satisfies

(2.37), there exists x̂ ∈ [ 1
emax

cosh−1(|y|−1), 1
emin

cosh−1(|y|−1)] such that

∂F∞
∂x

(x, y) ≥ 0, (∀x ∈ (0, x̂)),(2.39)

∂F∞
∂x

(x̂, y) = 0,

∂F∞
∂x

(x, y) ≤ 0, (∀x ∈ (x̂,∞)).

Let us recall that the assumption (2.12) implies (2.15) and (2.17). If we

assume that

|U | ≤
min

{
1, c12

} e2min
emax

((
emin
emax

)2 − 17 + 12
√

2
)

sinh(2)b cosh2
(
2cmax

emax
emin

)
cosh2

(
cmax

emax
emin

) ,(2.40)

(2.12) holds. Thus, by (2.17) cos(τ(β)/2) ∈ (−1,−1/2] for all β ∈ (0, βc).

Moreover, (2.15) and (2.40) again ensure that (2.37) holds with y =

cos(τ(β)/2) for any β ∈ (0, βc). Let us note that the right-hand side of

(2.40) does not depend on E (∈ E(emin, emax)). These properties combined

with (2.39) imply that on the assumption (2.40) for any E ∈ E(emin, emax),

β ∈ (0, βc) there exists x̃ ∈ R>0 such that

∂gE
∂x

(x, τ(β), 0) ≥ 0, (∀x ∈ (0, x̃)),(2.41)

∂gE
∂x

(x̃, τ(β), 0) = 0,

∂gE
∂x

(x, τ(β), 0) ≤ 0, (∀x ∈ (x̃,∞)).

Finally let us prove that τ(·) has one and only one local minimum point

in (0, βc). Suppose that 0 < β1 < β2 < βc and β1, β2 are local minimum

points. If τ(β1) ≤ τ(β2), there exist β′1, β
′
2, β

′
3 ∈ (0, β2] such that β′1 < β

′
2 <

β′3 and τ(β′1) = τ(β′2) = τ(β′3). If τ(β1) > τ(β2), we can take such β′1, β
′
2,

β′3 from [β1, βc). It follows that gE(β′j , τ(β
′
1), 0) = 0 for all j ∈ {1, 2, 3}. By

(2.41) there exists x̃ ∈ R>0 such that

∂gE
∂x

(x, τ(β′1), 0) ≥ 0, (∀x ∈ (0, x̃)),
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∂gE
∂x

(x̃, τ(β′1), 0) = 0,

∂gE
∂x

(x, τ(β′1), 0) ≤ 0, (∀x ∈ (x̃,∞)).

If x̃ ∈ (0, β′2], the function x 
→ gE(x, τ(β′1), 0) must be identically zero

in [β′2, β
′
3]. Since this function is real analytic in R>0, the identity theorem

ensures that this function is identically zero in R>0, which is a contradiction.

If x̃ ∈ (β′2,∞), this function must be identically zero in [β′1, β
′
2], which also

leads to a contradiction. Therefore, if τ(·) has a local minimum point in

(0, βc), it must be unique. Let us define the function τ̂(·) : [0, βc] → R as

follows. τ̂(x) := 2π for x ∈ {0, βc}, τ̂(x) := τ(x) for x ∈ (0, βc). By Lemma

2.2, τ̂ ∈ C([0, βc]) and τ̂(x) ≤ τ̂(0) = τ̂(βc) for any x ∈ [0, βc]. Thus τ̂(·)
attains its global minimum in (0, βc), which implies that τ(·) has a local

minimum point in (0, βc). The proof is complete. �

Next we will prove that the conclusion of Proposition 2.10 does not

hold if emin/emax ≤
√

17− 12
√

2. We divide the problem into two cases,

emin/emax =
√

17− 12
√

2 or emin/emax <
√

17− 12
√

2. The following

proposition states the result for the case that the equality holds.

Proposition 2.13. Assume that emin/emax =
√

17− 12
√

2. Then for

any d, b ∈ N, basis (v̂j)
d
j=1 of R

d, U0 ∈ (0, 2emin/b) there exist U ∈ [−U0, 0)

and E ∈ E(emin, emax) such that τ(·) has more than one local minimum

points in (0, βc).

Remark 2.14. We should stress that in our proof we construct such

E(∈ E(emin, emax)) depending on U0. On the contrary, we will construct

E(∈ E(emin, emax)) independently of the magnitude of the coupling constant

when we deal with the case emin/emax <
√

17− 12
√

2 in Proposition 2.16.

Let us show a lemma which we need to prove the above proposition. Set

D :=

{
(x, y, z) ∈ R>0 × (−1, 0)× R>0

∣∣∣ x < 1

2z(y + 1)
(cosh−1(|y|−1))2

}
.

(2.42)

Define the function w : D → R by

w(x, y, z) := −(1 + y cosh(
√
y + 1

√
2x))(y + cosh(

√
y + 1

√
2zx))2

(1 + y cosh(
√
y + 1

√
2zx))(y + cosh(

√
y + 1

√
2x))2

.(2.43)
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The necessary lemma concerns properties of the function w. For (x, y, z)

∈ D we can rewrite as follows.

w(x, y, z) = −

(
1 + y

∑∞
m=1

(y+1)m−1

(2m)! 2mxm
)(

1 +
∑∞

n=1
(y+1)n−1

(2n)! 2nznxn
)2

(
1 + y

∑∞
m=1

(y+1)m−1

(2m)! 2mzmxm
)(

1 +
∑∞

n=1
(y+1)n−1

(2n)! 2nxn
)2 .

(2.44)

Define the open set D̃ of C
3 by

D̃ :=

{
(x, y, z) ∈ C

3

∣∣∣∣∣
(2.45)

∣∣∣∣∣1 + y
∞∑

m=1

(y + 1)m−1

(2m)!
2mzmxm

∣∣∣∣∣
∣∣∣∣∣1 +

∞∑
n=1

(y + 1)n−1

(2n)!
2nxn

∣∣∣∣∣
2

> 0

}
.

Then we can define the analytic function w̃ : D̃ → C by the right-hand

side of (2.44). It follows that w̃|D = w. It will often be more convenient

to deal with w̃ than w during our construction. Note that for z ∈ R>0

and x ∈ (0, z−1), (x,−1, z) ∈ D̃. We will particularly use the following

equalities. For z ∈ R>0 and x ∈ (0, z−1)

w̃(x,−1, z) =
(x− 1)(1 + zx)2

(1− zx)(1 + x)2
,

(2.46)

∂w̃

∂x
(x,−1, z) =

3z(1− z)(1 + zx)

(1− zx)2(1 + x)3

(
x2 − z + 1

3z
x+

1

z

)
,

(2.47)

∂w̃

∂y
(x,−1, z) = − x(1 + zx)

6(1− zx)2(x+ 1)3

(2.48)

· ((6 + 3x+ x2)(1− z2x2) + z(x2 − 1)(6 + 3zx+ z2x2)).

To shorten subsequent formulas, let us set a0 := 3+2
√

2, η0 := 17−12
√

2.

Lemma 2.15. There exists y0 ∈ (−1, 0) such that for any y ∈ (−1, y0]

1

2(y + 1)
(cosh−1(|y|−1))2 < a0 <

1

2η0(y + 1)
(cosh−1(|y|−1))2,(2.49)
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0 < w(a0, y, η0) < 1.(2.50)

Moreover, there exist

x1(y) ∈
(

1

2(y + 1)
(cosh−1(|y|−1))2, a0

)
,

x2(y) ∈
(
a0,

1

2η0(y + 1)
(cosh−1(|y|−1))2

)
such that

w(x1(y), y, η0) = w(a0, y, η0) = w(x2(y), y, η0),

w(x, y, η0) > w(a0, y, η0), (∀x ∈ (x1(y), a0)),

w(x, y, η0) < w(a0, y, η0), (∀x ∈ (a0, x2(y))).

Proof. The following equalities are useful.

η2
0 − 34η0 + 1 = 0,(2.51)

a0 =
η0 + 1

6η0
,(2.52)

a0(η0 + 1) = 6,(2.53)

a2
0 =

1

η0
,(2.54)

a2
0 −

η0 + 1

3η0
a0 +

1

η0
= 0.(2.55)

We can deduce from (2.36) that

lim
y↘−1

1

2(y + 1)
(cosh−1(|y|−1))2 = 1 < a0 <

1

η0
(2.56)

= lim
y↘−1

1

2η0(y + 1)
(cosh−1(|y|−1))2.

This implies that there exists ε ∈ R>0 such that (a0, y, η0) ∈ D for any

y ∈ (−1,−1 + ε). Moreover, (a0,−1, η0) ∈ D̃. By multiplying both the

denominator and the numerator of (2.46) by a2
0 and using (2.54) we can

derive that

w̃(a0,−1, η0) =
1

a0
.(2.57)
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Thus, there exists y1 ∈ (−1,−1 + ε) such that for any y ∈ (−1, y1] (2.49)

and (2.50) hold. Also, by (2.47) and (2.55) ∂w̃
∂x (a0,−1, η0) = 0. Next let

us compute ∂2w̃
∂x∂y (a0,−1, η0). The computation can be quite complicated

if we follow a wrong way. Let us present right steps leading to a concise

formula, though this would not be the only approach. Let us decompose

the right-hand side of (2.48) as follows.

∂w̃

∂y
(x,−1, η0) = w1(x)w2(x),

w1(x) := − x(1 + η0x)

6(1− η0x)2(x+ 1)3
,

w2(x) := (6 + 3x+ x2)(1− η2
0x

2) + η0(x
2 − 1)(6 + 3η0x+ η2

0x
2).

Using (2.54), (2.52), (2.53), (2.54) in this order, we obtain that

dw1

dx
(a0) = −1 + (3η0 − 2)a0 + 3η0a

2
0 + 3η2

0a
3
0

6(1− η0a0)3(a0 + 1)4
= − 5 + η0 − 2a0

6(1− η0a0)3(a0 + 1)4

(2.58)

=
1− η0

6(1− η0a0)3(a0 + 1)3
= −w1(a0)

a0
.

By using (2.51) and (2.54) repeatedly

w2(a0) = (1− η0)(46 + 3(1 + η0)a0).(2.59)

By using (2.54) only,

dw2

dx
(a0) = (1− η0)(2(η2

0 + 5η0 + 1)a0 + 3(1 + η0)).

Then by using (2.51) and (2.54) again

a0
dw2

dx
(a0) = (1− η0)(78 + 3(1 + η0)a0).(2.60)

By combining (2.58), (2.59), (2.60) and using (2.54) once

∂2w̃

∂x∂y
(a0,−1, η0) = −w1(a0)

a0

(
w2(a0)− a0

dw2

dx
(a0)

)
= 32(1− η0)

w1(a0)

a0

= − 16(1− η0)2
3(1− η0a0)3(a0 + 1)3

.
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Since ∂2w̃
∂x∂y (a0,−1, η0) < 0, there exists y2 ∈ (−1, y1] such that

∂2w̃

∂x∂y
(a0,−1, η0) + sup

t∈[−1,y1]

∣∣∣∣ ∂3w̃

∂x∂y2
(a0, t, η0)

∣∣∣∣ (y2 + 1) < 0.

Since ∂w̃
∂x (a0,−1, η0) = 0, this estimate ensures that for any y ∈ (−1, y2]

∂w̃

∂x
(a0, y, η0)(2.61)

=
∂2w̃

∂x∂y
(a0,−1, η0)(y + 1) +

∫ y

−1
dt(y − t) ∂

3w̃

∂x∂y2
(a0, t, η0)

≤
(
∂2w̃

∂x∂y
(a0,−1, η0) + sup

t∈[−1,y1]

∣∣∣∣ ∂3w̃

∂x∂y2
(a0, t, η0)

∣∣∣∣ (y2 + 1)

)
(y + 1)

< 0.

Let us fix y ∈ (−1, y2]. Observe that

lim
x↘ 1

2(y+1)
(cosh−1(|y|−1))2

w(x, y, η0) = 0,

lim
x↗ 1

2η0(y+1)
(cosh−1(|y|−1))2

w(x, y, η0) =∞,

which combined with the inequality (2.61) imply the existence of x1(y),

x2(y) with the claimed properties. �

Define the function W : R>0 × (−1, 0)× R>0 × R>0 → R by

W (x, y, z, s) :=
sinh(x)

y + cosh(x)
+ s

sinh(zx)

(y + cosh(zx))z
.(2.62)

We will use this function and the functions w : D → R, w̃ : D̃ → C in the

rest of this section mainly for organizing proofs.

Proof of Proposition 2.13. By Lemma 2.15 there exists y0 ∈
(−1, 0) such that for any y ∈ (−1, y0]

1√
y + 1

cosh−1(|y|−1) <
√

2a0 <
1√

η0(y + 1)
cosh−1(|y|−1),(2.63)
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0 < w(a0, y, η0) < 1.

Observe that by (2.63) and the inequality sinh(x) ≥ x (∀x ∈ R>0),

b

w(a0, y, η0) + 1
W (

√
2a0(y + 1), y,

√
η0, w(a0, y, η0))(2.64)

≥ b cosh−1(|y|−1)

y + cosh(η
− 1

2
0 cosh−1(|y|−1))

for any y ∈ (−1, y0]. Take any U0 ∈ (0, 2emin/b). By using (2.36) one can

check that the right-hand side of (2.64) diverges to +∞ as y ↘ −1. Thus,

there exists y1 ∈ (−1, y0] such that for any y ∈ (−1, y1]

b

w(a0, y, η0) + 1
W (

√
2a0(y + 1), y,

√
η0, w(a0, y, η0)) >

2

U0
.(2.65)

Note that for (x, y, z) ∈ R>0 × (−1, 0) × R>0 satisfying x <
1√

z(y+1)
cosh−1(|y|−1),

∂W

∂x
(
√
y + 1 · x, y,

√
z, s)(2.66)

=
1 + y cosh(

√
z(y + 1) · x)

(y + cosh(
√
z(y + 1) · x))2

(
s− w

(
x2

2
, y, z

))
.

Let us fix y ∈ (−1, y1]. Lemma 2.15 ensures that there exist

x̂1(y) ∈
(

1√
y + 1

cosh−1(|y|−1),
√

2a0

)
,

x̂2(y) ∈
(
√

2a0,
1√

η0(y + 1)
cosh−1(|y|−1)

)

such that

∂W

∂x
(
√
y + 1 · x̂j(y), y,

√
η0, w(a0, y, η0))

=
∂W

∂x
(
√

2a0(y + 1), y,
√
η0, w(a0, y, η0)) = 0, (j = 1, 2),

∂W

∂x
(
√
y + 1 · x, y,√η0, w(a0, y, η0)) < 0, (∀x ∈ (x̂1(y),

√
2a0)),
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∂W

∂x
(
√
y + 1 · x, y,√η0, w(a0, y, η0)) > 0, (∀x ∈ (

√
2a0, x̂2(y))).

These imply that

min
j∈{1,2}

W (
√
y + 1 · x̂j(y), y,

√
η0, w(a0, y, η0))(2.67)

> W (
√

2a0(y + 1), y,
√
η0, w(a0, y, η0)).

By (2.65), (2.67) we can take small δ ∈ R>0 so that

1

w(a0, y, η0) + 1
− δ > 0,

2

U0
< b

(
1

w(a0, y, η0) + 1
− δ

)(2.68)

·W
(√

2a0(y + 1), y,
√
η0,

w(a0, y, η0) + δ(w(a0, y, η0) + 1)

1− δ(w(a0, y, η0) + 1)

)
<

b

w(a0, y, η0) + 1
min

j∈{1,2}
W (

√
y + 1 · x̂j(y), y,

√
η0, w(a0, y, η0)).

Here let us apply Lemma A.1 proved in Appendix A with emin =
√
η0,

emax = 1, s = 1
w(a0,y,η0)+1 − δ, t = 1

w(a0,y,η0)+1 . By substituting the matrix-

valued function E into the function (2.38) and recalling the monotone de-

creasing property of the function (1.7) we observe that for any x ∈ R>0

F∞(x, y)

(2.69)

≥ bs sinh(x)

y + cosh(x)
+ b(t− s) sinh(x)

y + cosh(x)
+ b(1− t) sinh(x

√
η0)

(y + cosh(x
√
η0))

√
η0

=
b

w(a0, y, η0) + 1
W (x, y,

√
η0, w(a0, y, η0)),

F∞(x, y)

≤ bs sinh(x)

y + cosh(x)
+ b(t− s) sinh(x

√
η0)

(y + cosh(x
√
η0))

√
η0

+ b(1− t) sinh(x
√
η0)

(y + cosh(x
√
η0))

√
η0
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= b

(
1

w(a0, y, η0) + 1
− δ

)
·W

(
x, y,

√
η0,

w(a0, y, η0) + δ(w(a0, y, η0) + 1)

1− δ(w(a0, y, η0) + 1)

)
.

By combining these inequalities with (2.68) we have that

F∞(
√

2a0(y + 1), y) < min
j∈{1,2}

F∞(
√
y + 1 · x̂j(y), y),

2

U0
< min

j∈{1,2}
F∞(

√
y + 1 · x̂j(y), y).

This implies that there exists U ∈ [−U0, 0) such that

F∞(
√

2a0(y + 1), y) <
2

|U | < min
j∈{1,2}

F∞(
√
y + 1 · x̂j(y), y).

Therefore, by taking into account the fact F∞(0, y) = 0 we see that there

exist

β1 ∈
(
0,
√
y + 1 · x̂1(y)

)
,

β2 ∈
(√
y + 1 · x̂1(y),

√
2a0(y + 1)

)
,

β3 ∈
(√

2a0(y + 1),
√
y + 1 · x̂2(y)

)
such that −2/|U |+ F∞(βj , y) = 0 for all j ∈ {1, 2, 3}. Moreover, it follows

from Lemma 2.1 that 0 < β1 < β2 < β3 < βc, y = cos(τ(βj)/2) for all

j ∈ {1, 2, 3}, and thus τ(β1) = τ(β2) = τ(β3).

Finally let us prove that there exist β̂1, β̂2 ∈ (0, βc) such that β̂1 < β̂2

and these are local minimum points of τ(·). If τ(β) = τ(β2) (∀β ∈ (β1, β2))

or τ(β) = τ(β2) (∀β ∈ (β2, β3)), such β̂1, β̂2 obviously exist. If there exists

β′ ∈ (β1, β2) such that τ(β′) > τ(β2), since limβ↘0 τ(β) = limβ↗βc τ(β) =

2π > τ(β1) = τ(β2), local minimum points β̂1, β̂2 exist in (0, β′), (β′, βc)
respectively. The same conclusion holds if there exists β′ ∈ (β2, β3) such that

τ(β′) > τ(β2). It remains to study the case that there are β′1 ∈ (β1, β2), β
′
2 ∈

(β2, β3) such that τ(β′j) < τ(β2) for j ∈ {1, 2}. In this case local minimum

points β̂1, β̂2 exist in (β1, β2), (β2, β3) respectively. The proposition has

been proved. �

A stronger conclusion than Proposition 2.13 holds when emin/emax <√
17− 12

√
2.



The BCS Model with Imaginary Magnetic Field. III 451

Proposition 2.16. Assume that emin/emax <
√

17− 12
√

2. Then for

any d, b ∈ N, basis (v̂j)
d
j=1 of R

d there exist E ∈ E(emin, emax) and U0 ∈
(0, 2emin/b) such that for any U ∈ [−U0, 0) τ(·) has more than one local

minimum points in (0, βc).

Remark 2.17. The difference from the conclusion of Proposition 2.13

is that here E (∈ E(emin, emax)) is independent of the choice of small U .

This conclusion implies the conclusion of Proposition 2.13.

Observe that for η ∈ (0, 17 − 12
√

2], (1+η
6η )2 − 1

η ≥ 0. This allows us to

define the real numbers a+(η), a−(η), â(η) by

a+(η) :=
1 + η

6η
+
((1 + η

6η

)2
− 1

η

) 1
2
,(2.70)

a−(η) :=
1 + η

6η
−
((1 + η

6η

)2
− 1

η

) 1
2
,

â(η) := a−(η) +
a+(η)− a−(η)

2
.

Let us summarize basic properties concerning these numbers, which can

be deduced from (2.47), (2.52) and will be used not only in the proof of

Proposition 2.16 but also in Sub-subsection 2.3.1.

Lemma 2.18. If η = 17− 12
√

2 (= η0),

1 < a+(η) = a−(η) = â(η) = a0 = 3 + 2
√

2 < η−1.(2.71)

For any η ∈ (0, 17− 12
√

2)

1 < a−(η) < â(η) < a+(η) < η−1,(2.72)

∂w̃

∂x
(x,−1, η) > 0, (∀x ∈ (0, a−(η))),(2.73)

∂w̃

∂x
(a−(η),−1, η) = 0,

∂w̃

∂x
(x,−1, η) < 0, (∀x ∈ (a−(η), a+(η))),

∂w̃

∂x
(a+(η),−1, η) = 0,
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∂w̃

∂x
(x,−1, η) > 0, (∀x ∈ (a+(η), η−1)),

0 < w̃(a+(η),−1, η) < w̃(â(η),−1, η) < w̃(a−(η),−1, η).(2.74)

Proof of Proposition 2.16. Define the function Ŵ : R>0 × R>0 ×
R>0 → R by

Ŵ (x, z, s) :=
x

1 + x2

2

+ s
x

1 + z2 x2

2

.

Let us observe that for (x, z) ∈ R>0 × R>0 satisfying x <
√

2/z

∂Ŵ

∂x
(x,
√
z, s) =

1− z x2

2

(1 + z x
2

2 )2

(
s− w̃

(
x2

2
,−1, z

))
.

Fix η ∈ (0, 17−12
√

2). On the basis of (2.73) and the facts w̃(1,−1, η) = 0,

limx↗η−1 w̃(x,−1, η) = +∞, we conclude that there exist x1 ∈
(
√

2,
√

2â(η)), x2 ∈ (
√

2â(η),
√

2η−1) such that

∂Ŵ

∂x
(xj ,

√
η, w̃(â(η),−1, η))

=
∂Ŵ

∂x
(
√

2â(η),
√
η, w̃(â(η),−1, η)) = 0, (∀j ∈ {1, 2}),

∂Ŵ

∂x
(x,
√
η, w̃(â(η),−1, η)) < 0, (∀x ∈ (x1,

√
2â(η))),

∂Ŵ

∂x
(x,
√
η, w̃(â(η),−1, η)) > 0, (∀x ∈ (

√
2â(η), x2)).

These imply that

min
j∈{1,2}

Ŵ (xj ,
√
η, w̃(â(η),−1, η)) > Ŵ (

√
2â(η),

√
η, w̃(â(η),−1, η)).

We can choose small δ ∈ R>0 so that

1

w̃(â(η),−1, η) + 1
− δ > 0,

b

w̃(â(η),−1, η) + 1
min

j∈{1,2}
Ŵ (xj ,

√
η, w̃(â(η),−1, η))(2.75)
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> b

(
1

w̃(â(η),−1, η) + 1
− δ

)
· Ŵ

(√
2â(η),

√
η,
w̃(â(η),−1, η) + δ(w̃(â(η),−1, η) + 1)

1− δ(w̃(â(η),−1, η) + 1)

)
.

Here we apply Lemma A.1 with emin =
√
η, emax = 1, s = 1

w̃(â(η),−1,η)+1−δ,
t = 1

w̃(â(η),−1,η)+1 . With the matrix-valued function E we define the function

F̂∞ : R → R by

F̂∞(x) := Dd

∫
Γ∗∞

dkTr

(
x

1 + x2

2 E(k)2

)
.

By arguing in the same way as in (2.69) we can derive from (2.75) that

F̂∞(
√

2â(η)) < minj∈{1,2} F̂∞(xj). Check that limy↘−1
√
y + 1F∞(

√
y + 1 ·

x, y) = F̂∞(x) for all x ∈ R, where F∞(·) is the function defined in (2.38).

Thus, there exists y1(η) ∈ (−1, 0) such that for any y ∈ (−1, y1(η)]

F∞(
√

2â(η)(y + 1), y) < min
j∈{1,2}

F∞(
√
y + 1 · xj , y).(2.76)

By recalling the monotone decreasing property of the function (1.7) we have

that for any y ∈ (−1, y1(η)]

b sinh(
√

2â(η)(y + 1))

y + cosh(
√

2â(η)(y + 1))
≤ F∞(

√
2â(η)(y + 1), y)(2.77)

≤ b sinh(
√

2â(η)(y + 1)η)

(y + cosh(
√

2â(η)(y + 1)η))
√
η
.

Set

U0 := min

{
emin

b
,
(y1(η) + cosh(

√
2â(η)(y1(η) + 1)η))

√
η

b sinh(
√

2â(η)(y1(η) + 1)η)

}
.

It follows that U0 ∈ (0, 2emin/b). Take any U ∈ [−U0, 0). By (2.77)

F∞(
√

2â(η)(y1(η) + 1), y1(η)) <
2

U0
≤ 2

|U | .
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Set

S :=

{
y ∈ (−1, y1(η)]

∣∣∣ F∞(
√

2â(η)(y + 1), y) =
2

|U |

}
.

By considering the fact that the left-hand side of (2.77) diverges to +∞ as

y ↘ −1 we see that S �= ∅. Set y2(η, U) := supS. Then, −1 < y2(η, U) <

y1(η) and by (2.76)

F∞(
√

2â(η)(y2(η, U) + 1), y2(η, U)) =
2

|U |
< min

j∈{1,2}
F∞(

√
y2(η, U) + 1 · xj , y2(η, U)),

F∞(
√

2â(η)(y + 1), y) <
2

|U | , (∀y ∈ (y2(η, U), y1(η)]).

This implies that if we take y3(η, U) ∈ (y2(η, U), y1(η)] sufficiently close to

y2(η, U),

F∞(
√

2â(η)(y3(η, U) + 1), y3(η, U)) <
2

|U |
< min

j∈{1,2}
F∞(

√
y3(η, U) + 1 · xj , y3(η, U)).

Then we only need to repeat the same argument as in the last part of

the proof of Proposition 2.13 to conclude that τ(·) has at least two local

minimum points. �

By combining Proposition 2.10, Proposition 2.13, Proposition 2.16 we

reach the following theorem.

Theorem 2.19. For any d, b ∈ N, basis (v̂j)
d
j=1 of R

d and emin, emax ∈
R>0 satisfying emin ≤ emax the following statements are equivalent to each

other.

(i) There exists U0 ∈ (0, 2emin/b) such that for any U ∈ [−U0, 0) and

E ∈ E(emin, emax) τ(·) has one and only one local minimum point in

(0, βc).

(ii)
emin

emax
>

√
17− 12

√
2.
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Remark 2.20. According to Theorem 1.3, we have to take small U

depending on E ∈ E(emin, emax) in order to justify the derivation of the

infinite-volume limit of the free energy density and the thermal expectations

from the finite-volume lattice Fermion system. The graph {(β, τ(β)) | β ∈
(0, βc)} can be rigorously considered as the representative curve of the phase

boundaries of the phase transition happening in our system only if the

derivation of the infinite-volume limit is justified. Here let us summarize

what we can conclude by combining the results obtained in this section with

the sufficient condition for justifying the derivation.

By Proposition 2.8 for any E ∈ E(emin, emax) with emin/emax ≥ e0
there exists U0 ∈ (0, 2emin/b) such that for any U ∈ [−U0, 0) the derivation

is justified and d2τ
dβ2 (β) > 0 for any β ∈ (0, βc).

By Proposition 2.10 for any E ∈ E(emin, emax) with emin/emax >√
17− 12

√
2 there exists U0 ∈ (0, 2emin/b) such that for any U ∈ [−U0, 0)

the derivation is justified and τ(·) has only one local minimum point in

(0, βc).

By Proposition 2.16 for any emin, emax ∈ R>0 with emin/emax <√
17− 12

√
2 there exist E ∈ E(emin, emax) and U0 ∈ (0, 2emin/b) such that

for any U ∈ [−U0, 0) the derivation is justified and τ(·) has more than one

local minimum points in (0, βc).

However, in Proposition 2.13 we do not have freedom to choose small

U . The coupling constant U was chosen depending on E in the proof and it

is not clear whether for such U the derivation is justified by Theorem 1.3.

Thus, strictly speaking, in the case emin/emax =
√

17− 12
√

2 we cannot

claim that τ(·) has more than one local minimum points while justifying

the derivation.

Remark 2.21. In view of Proposition 2.8, we can propose a problem

to find a necessary and sufficient condition in terms of emin/emax for that

τ(·) is downward convex in (0, βc) for any E ∈ E(emin, emax). However, we

are unable to solve the problem at present.

2.3. Study of specific models

In the proofs of Proposition 2.13 and Proposition 2.16 we constructed

particular examples of E (∈ E(emin, emax)) for which τ(·) has more than

one local minimum points. However, these results do not tell us whether

τ(·) can have more than one local minimum points when we change the
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value emin/emax within a one-particle Hamiltonian explicitly parameterized

by emin, emax, though we know that τ(·) must have only one local minimum

point for small U when emin/emax >
√

17− 12
√

2 by Proposition 2.10. In

this subsection we study this question for the following two models. Let In
denote the n× n unit matrix for n ∈ N.

(1) Let d ∈ N, b ∈ N≥2, b
′ ∈ {1, 2, · · · , b − 1} and (v̂j)

d
j=1 be any basis of

R
d. Let us define Eb ∈ E(emin, emax) by

Eb(k) := ((emax1i≤b′ + emin1i>b′)1i=j)1≤i,j≤b =

(
emaxIb′ 0

0 eminIb−b′

)
,

(k ∈ R
d),

which is a b-orbital model without hopping.

(2) Let d = b = 1 and v̂1 = 1. For t ∈ R≥0, emin ∈ R>0 let us define

E1 ∈ E(emin, 2t + emin) by E1(k) := t(cos k + 1) + emin, (k ∈ R). The

function E1(·) is the dispersion relation of nearest-neighbor hopping free

electron on the 1-dimensional lattice Z.

It will turn out that the uniqueness of local minimum points is sensitive

to the ratios emin/emax, (b − b′)/b′ in the model (1), while the uniqueness

holds for any t ∈ R≥0, emin ∈ R>0 in the model (2).

Remark 2.22. For t, µ ∈ R let us define the function e1 : R →
R by e1(k) := t cos k + µ. The function e1(·) satisfying the condition

infk∈R |e1(k)| > 0 is the most general form of a non-vanishing dispersion

relation of nearest-neighbor hopping free electron on Z. We can check that∫ 2π

0
dk

sinh(βe1(k))

(y + cosh(βe1(k)))e1(k)

=

∫ 2π

0
dk

sinh(β(|t| cos k + |µ|))
(y + cosh(β(|t| cos k + |µ|)))(|t| cos k + |µ|) ,

(∀β ∈ R>0, y ∈ (−1, 0)).

By using the above equality and the fact that infk∈R |e1(k)| > 0 is equivalent

to |µ| > |t| we can reduce the problem with e1(·) to that with E1(·) defined

in (2). This means that the results we will obtain in Sub-subsection 2.3.2

for E1(·) also hold for e1(·) satisfying infk∈R |e1(k)| > 0.
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2.3.1 The multi-orbital model without hopping

Here let us study the profile of τ(·) in the model defined in (1). Our

central question is when τ(·) has only one local minimum point. The answer

is given in the next proposition.

Proposition 2.23. Set the condition (>) as follows.

(>) There exists U0 ∈ (0, 2emin/b) such that for any U ∈ [−U0, 0) τ(·) has

one and only one local minimum point in (0, βc).

Then the following statements hold.

(i) Assume that b−b′
b′ ∈ [3 − 2

√
2,∞). Then for any emin, emax ∈ R>0

with emin ≤ emax (>) holds.

(ii) Assume that b−b′
b′ ∈ (1/8, 3 − 2

√
2). Then there exist e1, e2 ∈

(0,
√

17− 12
√

2) such that e1 < e2 and (>) holds if emin/emax ∈ (e2, 1],

(>) does not hold if emin/emax ∈ (e1, e2], (>) holds if emin/emax ∈
(0, e1].

(iii) Assume that b−b′
b′ ∈ (0, 1/8]. Then there exists e1 ∈ (0,

√
17− 12

√
2)

such that (>) holds if emin/emax ∈ (e1, 1], (>) does not hold if

emin/emax ∈ (0, e1].

Again the proof of this proposition is based on some properties of the

function w defined in (2.43). Let us set two conditions concerning the

function w. Let η ∈ (0, 1), s ∈ R>0.

(i)η,s There exists y0 ∈ (−1, 0) such that for any y ∈ (−1, y0] there exists

x0(y) ∈
(

1

2(y + 1)
(cosh−1(|y|−1))2,

1

2η(y + 1)
(cosh−1(|y|−1))2

)
such that

w(x, y, η) < s,

(
∀x ∈

(
1

2(y + 1)
(cosh−1(|y|−1))2, x0(y)

))
,

w(x0(y), y, η) = s,

w(x, y, η) > s,

(
∀x ∈

(
x0(y),

1

2η(y + 1)
(cosh−1(|y|−1))2

))
.
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(ii)η,s There exists y0 ∈ (−1, 0) such that for any y ∈ (−1, y0] there exist

xj(y) ∈
(

1

2(y + 1)
(cosh−1(|y|−1))2,

1

2η(y + 1)
(cosh−1(|y|−1))2

)
,

(j = 1, 2, 3)

such that x1(y) < x2(y) < x3(y),

w(xj(y), y, η) = s, (∀j ∈ {1, 2, 3}),
w(x, y, η) > s, (∀x ∈ (x1(y), x2(y)),

w(x, y, η) < s, (∀x ∈ (x2(y), x3(y))).

We summarize sufficient conditions for (i)η,s (or (ii)η,s) to hold in the

next lemma. To understand the statements, we should recall the inequalities

(2.74).

Lemma 2.24.

(i) Assume that η = 17− 12
√

2. Then for any s ∈ (0,∞) (i)η,s holds.

(ii) Assume that η ∈ (0, 17 − 12
√

2). Then for any s ∈ [w̃(a−(η),−1, η),

∞) (i)η,s holds. For any s ∈ [w̃(a+(η),−1, η), w̃(a−(η),−1, η)) (ii)η,s
holds. For any s ∈ (0, w̃(a+(η),−1, η)) (i)η,s holds.

Proof. Assume that η ∈ (0, 17 − 12
√

2]. Let us prepare necessary

basic properties related to the function w. The preparation continues until

we prove the claim (2.86). Observe that there exists y0 ∈ (−1, 0) such that

1√
2(y + 1)

cosh−1(|y|−1) > 1, (∀y ∈ (−1, y0]).

This claim can be proved efficiently by proving the equivalent statement

that there exists y0 ∈ (−1, 0) such that |y|−1 > cosh(
√

2(y + 1)) for any

y ∈ (−1, y0]. Moreover, by (2.71), (2.72) there exists y0(η) ∈ (−1, y0] such

that |y|a+(η) > 1 for any y ∈ (−1, y0(η)]. We can see from (2.44) and

the limit in the left-hand side of (2.56) that for any y ∈ (−1, y0(η)], ε ∈
(0, η−1 − a+(η)) and

x ∈
[
η−1 − ε, 1

2η(y + 1)
(cosh−1(|y|−1))2

)
,
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w(x, y, η)

(2.78)

≥ |y|(η−1 − ε)− 1

(1 + yη(η−1 − ε))
(
1 +

∑∞
n=1

(y+1)n−1

(2n)! 2n
(

1
2η(y+1)(cosh−1(|y|−1))2

)n)2 ,

lim
y↘−1

(R.H.S of (2.78)) =
η−1 − ε− 1

ηε(1 + η−1)2
.

Take any s ∈ R>0. Note that there exists ε(s, η) ∈ (0, η−1 − a+(η)) such

that
η−1 − ε(s, η)− 1

ηε(s, η)(1 + η−1)2
≥ 2s.

Then it follows from the above claims that there exists y1(s, η) ∈ (−1, y0(η)]

such that for any y ∈ (−1, y1(s, η)]

1 <
1

2(y + 1)
(cosh−1(|y|−1))2 < a−(η) ≤ a+(η) < η−1 − ε(s, η)(2.79)

<
1

2η(y + 1)
(cosh−1(|y|−1))2

and for any

x ∈
[
η−1 − ε(s, η), 1

2η(y + 1)
(cosh−1(|y|−1))2

)
,

w(x, y, η) > s.(2.80)

Recall (2.45). To justify the subsequent argument, let us check that there

exists δ(s, η) ∈ (0, ε(s, η)) such that

(1− δ(s, η), η−1 − ε(s, η) + δ(s, η))× (−1− δ(s, η),−1 + δ(s, η))× {η}
⊂ D̃.

We can deduce from (2.48) that supx∈[1,η−1−ε(s,η)]
∂w̃
∂y (x,−1, η) < 0. For

(x, y) ∈ [1, η−1 − ε(s, η)]× (−1,−1 + δ(s, η)/2]

w̃(x, y, η)
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= w̃(x,−1, η) +
∂w̃

∂y
(x,−1, η)(y + 1) +

∫ y

−1
dξ(y − ξ)∂

2w̃

∂y2
(x, ξ, η)

≤ w̃(x,−1, η) + sup
ζ∈[1,η−1−ε(s,η)]

∂w̃

∂y
(ζ,−1, η)(y + 1)

+ sup
ζ∈[1,η−1−ε(s,η)]

ξ∈[−1,−1+δ(s,η)/2]

∣∣∣∣∂2w̃

∂y2
(ζ, ξ, η)

∣∣∣∣ (y + 1)2.

Recall (2.42). These imply that there exists y2(s, η) ∈ (−1, y1(s, η)] such

that [1, η−1 − ε(s, η)]× (−1, y2(s, η)]× {η} ⊂ D and

w(x, y, η) < w̃(x,−1, η), (∀(x, y) ∈ [1, η−1 − ε(s, η)]× (−1, y2(s, η)]).

(2.81)

We will also refer to the basic fact that

w

(
1

2(y + 1)
(cosh−1(|y|−1))2, y, η

)
= 0, (∀y ∈ (−1, y2(s, η)]).(2.82)

Let us define the function w : R
3 → R by

w(x, y, z)

:=

(
1 + y

∞∑
m=1

(y + 1)m−1

(2m)!
2mxm

)(
1 +

∞∑
n=1

(y + 1)n−1

(2n)!
2nznxn

)

·
(
y

∞∑
m=1

m(y + 1)m−1

(2m)!
2mzmxm−1

(
1 +

∞∑
n=1

(y + 1)n−1

(2n)!
2nxn

)

+ 2

(
1 + y

∞∑
m=1

(y + 1)m−1

(2m)!
2mzmxm

) ∞∑
n=1

n(y + 1)n−1

(2n)!
2nxn−1

)

−
(
y

∞∑
m=1

m(y + 1)m−1

(2m)!
2mxm−1

(
1 +

∞∑
n=1

(y + 1)n−1

(2n)!
2nznxn

)

+ 2

(
1 + y

∞∑
m=1

(y + 1)m−1

(2m)!
2mxm

) ∞∑
n=1

n(y + 1)n−1

(2n)!
2nznxn−1

)

·
(

1 + y

∞∑
m=1

(y + 1)m−1

(2m)!
2mzmxm

)(
1 +

∞∑
n=1

(y + 1)n−1

(2n)!
2nxn

)
.
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By differentiating (2.44) we can derive that

∂w

∂x
(x, y, η)

(2.83)

=
1 +

∑∞
n=1

(y+1)n−1

(2n)! 2nηnxn(
1 + y

∑∞
m=1

(y+1)m−1

(2m)! 2mηmxm
)2 (

1 +
∑∞

n=1
(y+1)n−1

(2n)! 2nxn
)3w(x, y, η),

(∀(x, y) ∈ [1, η−1 − ε(s, η)]× (−1, y2(s, η)]).

Let us observe that

w(x,−1, η) = 3η(1− η)(x− a+(η))(x− a−(η)),(2.84)

∂2w

∂x2
(x,−1, η) = 6η(1− η) > 0.

The above inequality implies that there exists y3(s, η) ∈ (−1, y2(s, η)] such

that

∂2w

∂x2
(x, y, η) > 0, (∀(x, y) ∈ [1, η−1 − ε(s, η)]× (−1, y3(s, η)]).(2.85)

Also, by (2.79) and (2.84) w(η−1 − ε(s, η),−1, η) > 0. Thus, there exists

y4(s, η) ∈ (−1, y3(s, η)] such that

w(η−1 − ε(s, η), y, η) > 0, (∀y ∈ (−1, y4(s, η)]).(2.86)

As we have prepared necessary tools, let us start proving the claims of

the lemma case by case.

(i): Assume that η = 17 − 12
√

2. Recall the relation (2.71). Assume

that s ∈ (w̃(a−(η),−1, η),∞). We can deduce from (2.46), (2.47) that

x 
→ w̃(x,−1, η) : [1, η−1)→ R is strictly monotone increasing,(2.87)

w̃(1,−1, η) = 0 and lim
x↗η−1

w̃(x,−1, η) =∞.

Thus there uniquely exists a1 ∈ (a−(η), η−1) such that s = w̃(a1,−1, η). If

a1 ∈ (η−1 − ε(s, η), η−1), by (2.81) and (2.87) w(x, y, η) < s, (∀(x, y) ∈
[1, η−1 − ε(s, η)] × (−1, y2(s, η)]). This contradicts (2.80). Thus, a1 ∈
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(a−(η), η−1 − ε(s, η)]. By (2.81) and (2.87) again w(x, y, η) < s for all

(x, y) ∈ [1, a1] × (−1, y2(s, η)]. This property coupled with (2.80) ensures

that for any y ∈ (−1, y4(s, η)]

∅ �=
{
x ∈

(
1

2(y + 1)
(cosh−1(|y|−1))2,

1

2η(y + 1)
(cosh−1(|y|−1))2

)
(2.88)

∣∣∣ w(x, y, η) = s

}
⊂ [a1, η

−1 − ε(s, η)].

By (2.84) w(x,−1, η) ≥ 3η(1 − η)(a1 − a−(η))2 > 0 for any x ∈ [a1, η
−1 −

ε(s, η)]. Thus there exists y5(s, η) ∈ (−1, y4(s, η)] such that for any (x, y) ∈
[a1, η

−1−ε(s, η)]×(−1, y5(s, η)] w(x, y, η) > 0 and by (2.83) ∂w
∂x (x, y, η) > 0.

This property combined with (2.88) implies that (i)η,s holds.

Assume that s ∈ (0, w̃(a−(η),−1, η)). By (2.87) there uniquely exists

a1 ∈ (1, a−(η)) such that w̃(a1,−1, η) = s. Since w̃(x,−1, η) > s for any

x ∈ [a1 + 1
2(a−(η) − a1), η

−1 − ε(s, η)], there exists y6(s, η) ∈ (−1, y4(s, η)]

such that

w(x, y, η) > s,(2.89) (
∀(x, y) ∈

[
a1 +

1

2
(a−(η)− a1), η

−1 − ε(s, η)
]
× (−1, y6(s, η)]

)
.

By (2.84) w(x,−1, η) > 0 for any x ∈ [1, a1 + 1
2(a−(η) − a1)]. Thus there

exists y7(s, η) ∈ (−1, y6(s, η)] such that for any (x, y) ∈ [1, a1 + 1
2(a−(η) −

a1)] × (−1, y7(s, η)] w(x, y, η) > 0 and thus ∂w
∂x (x, y, η) > 0. This property

together with (2.79), (2.80), (2.82), (2.89) implies that (i)η,s holds.

Assume that s = w̃(a−(η),−1, η). Since η = η0, a−(η) = η0+1
6η0

=

a0 by (2.52), we can apply (2.61) to ensure that there exists y8(s, η) ∈
(−1, y4(s, η)] such that for any y ∈ (−1, y8(s, η)]

∂w
∂x (a−(η), y, η) < 0. This

combined with (2.83) implies that w(a−(η), y, η) < 0 for any y ∈
(−1, y8(s, η)]. Therefore, by (2.85), (2.86) for any y ∈ (−1, y8(s, η)] there

exists x1(y) ∈ (a−(y), η−1 − ε(s, η)) such that

w(x, y, η) < 0, (∀x ∈ [a−(η), x1(y))),

w(x1(y), y, η) = 0,

w(x, y, η) > 0, (∀x ∈ (x1(y), η
−1 − ε(s, η)]),
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or by (2.83)

∂w

∂x
(x, y, η) < 0, (∀x ∈ [a−(η), x1(y))),(2.90)

∂w

∂x
(x1(y), y, η) = 0,

∂w

∂x
(x, y, η) > 0, (∀x ∈ (x1(y), η

−1 − ε(s, η)]).

We can see from (2.81) and (2.87) that

w(x, y, η) < s, (∀(x, y) ∈ [1, a−(η)]× (−1, y8(s, η)]).(2.91)

Considering (2.79), (2.80), (2.90) and (2.91), we can conclude that (i)η,s
holds in this case.

(ii): Assume that η ∈ (0, 17− 12
√

2) and s ∈ [w̃(a−(η),−1, η),∞). The

properties (2.72), (2.73), (2.74) tell us the profile of the function w̃(·,−1, η),

which together with (2.81) implies that

w(x, y, η) < s, (∀(x, y) ∈ [1, a+(η)]× (−1, y2(s, η)]).(2.92)

Since w(a−(η) + (a+(η) − a−(η))/2,−1, η) < 0 by (2.84), there exists

y9(s, η) ∈ (−1, y4(s, η)] such that w(a−(η) + (a+(η) − a−(η))/2, y, η) < 0

for any y ∈ (−1, y9(s, η)]. By taking this property, (2.85) and (2.86) into

account we can prove the following statement. For any y ∈ (−1, y9(s, η)]

there exists x2(y) ∈ (a−(η) + (a+(η)− a−(η))/2, η−1 − ε(s, η)) such that

w(x, y, η) < 0,

(
∀x ∈

(
a−(η) +

1

2
(a+(η)− a−(η)), x2(y)

))
,

w(x2(y), y, η) = 0,

w(x, y, η) > 0, (∀x ∈ (x2(y), η
−1 − ε(s, η)]),

or by (2.83)

∂w

∂x
(x, y, η) < 0,

(
∀x ∈

(
a−(η) +

1

2
(a+(η)− a−(η)), x2(y)

))
,

∂w

∂x
(x2(y), y, η) = 0,

∂w

∂x
(x, y, η) > 0, (∀x ∈ (x2(y), η

−1 − ε(s, η)]).
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By this property, (2.80) and (2.92) for any y ∈ (−1, y9(s, η)] there exists

x3(y) ∈ (a+(η), η−1 − ε(s, η)) such that

w(x, y, η) < s, (∀x ∈ [1, x3(y))),

w(x3(y), y, η) = s,

w(x, y, η) > s,

(
∀x ∈

(
x3(y),

1

2η(y + 1)
(cosh−1(|y|−1))2

))
.

Thus, the property (i)η,s holds.

Assume that s ∈ [w̃(a+(η),−1, η), w̃(a−(η),−1, η)). By (2.81) there

exists y10(s, η) ∈ (−1, y4(s, η)] such that

w(a−(η), y, η) > s > w(a+(η), y, η), (∀y ∈ (−1, y10(s, η)]).(2.93)

Since w(1+(a−(η)−1)/2,−1, η) > 0 and w(a−(η)+(a+(η)−a−(η))/2,−1, η)

< 0 by (2.84), there exists y11(s, η) ∈ (−1, y10(s, η)] such that w(1 +

(a−(η) − 1)/2, y, η) > 0, w(a−(η) + (a+(η) − a−(η))/2, y, η) < 0 for any

y ∈ (−1, y11(s, η)]. This property combined with (2.85), (2.86) implies

the following statement. For any y ∈ (−1, y11(s, η)] there exist x4(y) ∈
(1 + (a−(y)− 1)/2, a−(y) + (a+(y)− a−(y))/2), x5(y) ∈ (a−(y) + (a+(y)−
a−(y))/2, η−1 − ε(s, η)) such that

w(x4(y), y, η) = w(x5(y), y, η) = 0,

w(x, y, η) > 0, (∀x ∈ [1, x4(y))),

w(x, y, η) < 0, (∀x ∈ (x4(y), x5(y))),

w(x, y, η) > 0, (∀x ∈ (x5(y), η
−1 − ε(s, η)]),

or by (2.83)

∂w

∂x
(x4(y), y, η) =

∂w

∂x
(x5(y), y, η) = 0,

∂w

∂x
(x, y, η) > 0, (∀x ∈ [1, x4(y))),

∂w

∂x
(x, y, η) < 0, (∀x ∈ (x4(y), x5(y))),

∂w

∂x
(x, y, η) > 0, (∀x ∈ (x5(y), η

−1 − ε(s, η)]).

By considering these properties we can picture the profile of the function

w(·, y, η). Take any y ∈ (−1, y11(s, η)]. Suppose that s ≥ w(x4(y), y, η).
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Then, by the profile of w(·, y, η) in [1, η−1 − ε(s, η)], if a ∈ [1, η−1 − ε(s, η)]
and w(a, y, η) > s, w(a′, y, η) > s for any a′ ∈ [a, η−1 − ε(s, η)]. This

claim contradicts (2.93). Suppose that s ≤ w(x5(y), y, η). Then, if a ∈
[1, η−1 − ε(s, η)] and w(a, y, η) > s, w(a′, y, η) ≥ s for any a′ ∈ [a, η−1 −
ε(s, η)]. This claim contradicts (2.93) as well. Therefore, w(x4(y), y, η) >

s > w(x5(y), y, η). Moreover, by (2.80), (2.82) and the profile of w(·, y, η),
x4(y) >

1
2(y+1)(cosh−1(|y|−1))2 and there exist

x6(y) ∈
(

1

2(y + 1)
(cosh−1(|y|−1))2, x4(y)

)
,

x7(y) ∈ (x4(y), x5(y)),

x8(y) ∈ (x5(y), η
−1 − ε(s, η))

(
⊂
(
x5(y),

1

2η(y + 1)
(cosh−1(|y|−1))2

))
such that

w(x6(y), y, η) = w(x7(y), y, η) = w(x8(y), y, η) = s,

w(x, y, η) > s, (∀x ∈ (x6(y), x7(y))),

w(x, y, η) < s, (∀x ∈ (x7(y), x8(y))).

This means that (ii)η,s holds.

Finally let us assume that s ∈ (0, w̃(a+(η),−1, η)). We can see from

the profile of w̃(·,−1, η) that there uniquely exists a2 ∈ (1, a−(η)) such

that s = w̃(a2,−1, η). Moreover, there exists a3 ∈ (a2, a−(η)) such that

w̃(x,−1, η) ≥ w̃(a3,−1, η) > s for all x ∈ [a3, η
−1). Thus we can take

y12(s, η) ∈ (−1, y4(s, η)] so that w(x, y, η) > s for any (x, y) ∈ [a3, η
−1 −

ε(s, η)] × (−1, y12(s, η)]. Since w(x,−1, η) ≥ w(a3,−1, η) > 0 for any

x ∈ [1, a3] by (2.84), there exists y13(s, η) ∈ (−1, y12(s, η)] such that for

any (x, y) ∈ [1, a3] × (−1, y13(s, η)] w(x, y, η) > 0, and thus by (2.83)
∂w
∂x (x, y, η) > 0. These combined with (2.79), (2.82) imply that for any

y ∈ (−1, y13(s, η)] a3 >
1

2(y+1)(cosh−1(|y|−1))2 and there exists x9(y) ∈
( 1
2(y+1)(cosh−1(|y|−1))2, a3) such that

w(x, y, η) < s,

(
∀x ∈

(
1

2(y + 1)
(cosh−1(|y|−1))2, x9(y)

))
,

w(x9(y), y, η) = s,

w(x, y, η) > s, (∀x ∈ (x9(y), η
−1 − ε(s, η)]).
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Taking into account (2.80), we conclude that (i)η,s holds. �

By applying Lemma 2.24 we can prove Proposition 2.23.

Proof of Proposition 2.23. Recalling (2.62), we see that

gEb
(x, t, 0) =

b′

emax

(
−2emax

b′|U | +W

(
emaxx, cos

(
t

2

)
,
emin

emax
,
b− b′
b′

))
.

(2.94)

Theorem 2.19 implies that if emin/emax >
√

17− 12
√

2, for any b ∈ N≥2,

b′ ∈ {1, · · · , b− 1} (>) holds. Let us assume that emin/emax ≤
√

17− 12
√

2

in the following. For η = (emin/emax)
2, s = (b − b′)/b′ let us prove the

following statements.

• If the condition (i)η,s holds, (>) holds.

• If the condition (ii)η,s holds, (>) does not hold.

Assume that (i)η,s holds. Then by (2.66) there exists y0 ∈ (−1, 0) such

that for any y ∈ (−1, y0] there exists

x0(y) ∈
(

1

2(y + 1)
(cosh−1(|y|−1))2,

1

2η(y + 1)
(cosh−1(|y|−1))2

)
such that

∂W

∂x
(
√
y + 1 · x, y,√η, s) > 0,(

∀x ∈
(

1√
y + 1

cosh−1(|y|−1),
√

2x0(y)

))
,

∂W

∂x
(
√

2(y + 1)x0(y), y,
√
η, s) = 0,

∂W

∂x
(
√
y + 1 · x, y,√η, s) < 0,(

∀x ∈
(√

2x0(y),
1√

η(y + 1)
cosh−1(|y|−1)

))
.
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Let cos−1 : [−1, 1] → [0, π] denote the inverse function of cos |[0,π]. The

above property and (2.94) ensure that for any t ∈ [2 cos−1 y0, 2π)(⊂ (π, 2π))

there exists

x̂(t) ∈
(

1

emax
cosh−1

(∣∣∣∣cos

(
t

2

)∣∣∣∣−1
)
,

1

emin
cosh−1

(∣∣∣∣cos

(
t

2

)∣∣∣∣−1
))

such that

∂gEb

∂x
(x, t, 0) > 0,

(
∀x ∈

(
1

emax
cosh−1

(∣∣∣∣cos

(
t

2

)∣∣∣∣−1
)
, x̂(t)

))
,

∂gEb

∂x
(x̂(t), t, 0) = 0,

∂gEb

∂x
(x, t, 0) < 0,

(
∀x ∈

(
x̂(t),

1

emin
cosh−1

(∣∣∣∣cos

(
t

2

)∣∣∣∣−1
)))

,

or by taking into account (2.34)

∂gEb

∂x
(x, t, 0) > 0, (∀x ∈ (0, x̂(t))),(2.95)

∂gEb

∂x
(x̂(t), t, 0) = 0,

∂gEb

∂x
(x, t, 0) < 0, (∀x ∈ (x̂(t),∞)).

Suppose that (>) does not hold. Then for any U0 ∈ (0, 2emin/b) there

exists U ∈ [−U0, 0) such that τ(·) has more than one local minimum points

in (0, βc). By (2.15) cos(τ(β)/2) + 1 ≤ sinh(2)b
2emin

U0. Thus if we take U0

sufficiently small, τ(β) ∈ [2 cos−1 y0, 2π) for any β ∈ (0, βc). Now there are

βj ∈ (0, βc) (j = 1, 2, 3) such that β1 < β2 < β3 and τ(β1) = τ(β2) = τ(β3).

Thus, gEb
(βj , τ(β1), 0) = 0 for j ∈ {1, 2, 3}, which implies that there exist

x1 ∈ (β1, β2), x2 ∈ (β2, β3) such that
∂gEb
∂x (xj , τ(β1), 0) = 0 for j ∈ {1, 2}.

This contradicts (2.95) with t = τ(β1). Therefore, (>) must hold.

Assume that (ii)η,s holds. Take any U0 ∈ (0, 2emin/b). The limit in the

left-hand side of (2.56) tells us that there exists ε ∈ R>0 such that(
1√
y + 1

cosh−1(|y|−1),
1√

η(y + 1)
cosh−1(|y|−1)

)
⊂
[
1,

2√
η

]
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for any y ∈ (−1,−1 + ε). Thus,

W (
√
y + 1 · x, y,√η, s) ≥ inf

ξ∈[1, 2√
η
]

sinh(
√
y + 1 · ξ)

y + cosh(
√
y + 1 · ξ) ,(

∀y ∈ (−1,−1 + ε),

x ∈
(

1√
y + 1

cosh−1(|y|−1),
1√

η(y + 1)
cosh−1(|y|−1)

))
.

Since the right-hand side of the above inequality diverges to +∞ as y ↘ −1,

there exists y1 ∈ (−1, 0) such that

W (
√
y + 1 · x, y,√η, s) > 2emax

b′U0
,

(2.96)

(
∀y ∈ (−1, y1], x ∈

(
1√
y + 1

cosh−1(|y|−1),
1√

η(y + 1)
cosh−1(|y|−1)

))
.

By the assumption and (2.66) there exist y ∈ (−1, y1],

xj(y) ∈
(

1

2(y + 1)
(cosh−1(|y|−1))2,

1

2η(y + 1)
(cosh−1(|y|−1))2

)
,

(j = 1, 2, 3)

such that x1(y) < x2(y) < x3(y),

∂W

∂x

(√
2(y + 1)xj(y), y,

√
η, s

)
= 0, (∀j ∈ {1, 2, 3}),

∂W

∂x
(
√
y + 1 · x, y,√η, s) < 0, (∀x ∈ (

√
2x1(y),

√
2x2(y))),

∂W

∂x
(
√
y + 1 · x, y,√η, s) > 0, (∀x ∈ (

√
2x2(y),

√
2x3(y))).

By combining this with (2.96) we have that

min
j∈{1,3}

W
(√

2(y + 1)xj(y), y,
√
η, s

)
> W (

√
2(y + 1)x2(y), y,

√
η, s)
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>
2emax

b′U0
.

Thus, there exists U ∈ [−U0, 0) such that

min
j∈{1,3}

W (
√

2(y + 1)xj(y), y,
√
η, s) >

2emax

b′|U |
> W (

√
2(y + 1)x2(y), y,

√
η, s).

Therefore, there exist

β̂1 ∈
(

0,
1

emax

√
2(y + 1)x1(y)

)
,

β̂2 ∈
(

1

emax

√
2(y + 1)x1(y),

1

emax

√
2(y + 1)x2(y)

)
,

β̂3 ∈
(

1

emax

√
2(y + 1)x2(y),

1

emax

√
2(y + 1)x3(y)

)
such that W (emaxβ̂j , y,

√
η, s) = 2emax

b′|U | for j ∈ {1, 2, 3}, or by (2.94) and

Lemma 2.1

β̂j ∈ (0, βc), cos
(τ(β̂j)

2

)
= y, (∀j ∈ {1, 2, 3}).

Then by repeating the same argument as the final part of the proof of

Proposition 2.13 we can reach the conclusion that τ(·) has more than one

local minimum points. This means that (>) does not hold.

Now we know that it suffices to determine for which (η, s) (i)η,s (or

(ii)η,s) holds. In fact for this purpose we have prepared Lemma 2.24. We

still need more information about how the function w̃(·,−1, η) behaves when

η varies. We can derive from (2.46) that for z ∈ R>0, x ∈ (0, z−1)

∂w̃

∂z
(x,−1, z) =

(x− 1)x(1 + zx)(3− zx)
(x+ 1)2(1− zx)2 .

Then we can see from this equality and (2.72) that for η ∈ (0, 17− 12
√

2),

δ ∈ {+,−}, ∂w̃
∂z (aδ(η),−1, η) > 0. Combination of this inequality and (2.73)

implies that for η ∈ (0, 17− 12
√

2), δ ∈ {+,−}

d

dη
w̃(aδ(η),−1, η) =

∂w̃

∂x
(aδ(η),−1, η)

daδ
dη

(η) +
∂w̃

∂z
(aδ(η),−1, η) > 0.
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By this and (2.73) again we can understand that both the local maximum

and the local minimum of the function x 
→ w̃(x,−1, η) : (0, η−1) → R are

strictly monotone increasing with η ∈ (0, 17− 12
√

2). Moreover, by (2.46),

(2.57), (2.70), (2.71)

lim
η↗17−12

√
2
a+(η) = lim

η↗17−12
√

2
a−(η) = 3 + 2

√
2,

lim
η↗17−12

√
2
w̃(a+(η),−1, η) = lim

η↗17−12
√

2
w̃(a−(η),−1, η) = 3− 2

√
2,

lim
η↘0

a−(η) = 3, lim
η↘0

a+(η) = +∞,

lim
η↘0

w̃(a−(η),−1, η) =
1

8
, lim

η↘0
w̃(a+(η),−1, η) = 0.

In the following we let η = (emin/emax)
2, s = (b− b′)/b′. If emin/emax =√

17− 12
√

2, by Lemma 2.24 (i) for any b ∈ N≥2, b
′ ∈ {1, · · · , b − 1} the

condition (i)η,s holds and thus (>) holds.

Assume that emin/emax ∈ (0,
√

17− 12
√

2). In this situation Lemma

2.24 (ii) is applicable. If b−b′
b′ ∈ [3 − 2

√
2,∞), b−b′

b′ ∈ [w̃(a−(η),−1, η),∞)

and thus (i)η,s holds. Thus (>) holds. If b−b′
b′ ∈ (1/8, 3 − 2

√
2), there exist

e1, e2 ∈ (0,
√

17− 12
√

2) such that e1 < e2,

b− b′
b′

∈ (0, w̃(a+(η),−1, η)) if
emin

emax
∈
(
e2,

√
17− 12

√
2

)
,

b− b′
b′

∈ [w̃(a+(η),−1, η), w̃(a−(η),−1, η)) if
emin

emax
∈ (e1, e2],

b− b′
b′

∈ [w̃(a−(η),−1, η),∞) if
emin

emax
∈ (0, e1],

or

(i)η,s holds and thus (>) holds if
emin

emax
∈
(
e2,

√
17− 12

√
2

)
,

(ii)η,s holds and thus (>) does not hold if
emin

emax
∈ (e1, e2],

(i)η,s holds and thus (>) holds if
emin

emax
∈ (0, e1].

If b−b′
b′ ∈ (0, 1/8], there exists e1 ∈ (0,

√
17− 12

√
2) such that

b− b′
b′

∈ (0, w̃(a+(η),−1, η)) if
emin

emax
∈
(
e1,

√
17− 12

√
2

)
,
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b− b′
b′

∈ [w̃(a+(η),−1, η), w̃(a−(η),−1, η)) if
emin

emax
∈ (0, e1],

or

(i)η,s holds and thus (>) holds if
emin

emax
∈
(
e1,

√
17− 12

√
2

)
,

(ii)η,s holds and thus (>) does not hold if
emin

emax
∈ (0, e1].

These can be summarized as in the statements of the proposition. �

In fact in this model τ(β) can be exactly computed. Remind us that

cos−1 : [−1, 1]→ [0, π] denotes the inverse function of cos |[0,π].

Proposition 2.25. Set

D0 := cosh(βemax) cosh(βemin)− |U |
2

( b′

emax
sinh(βemax) cosh(βemin)

+
b− b′
emin

cosh(βemax) sinh(βemin)
)
,

D1 := cosh(βemax) + cosh(βemin)

− |U |
2

(
b′

emax
sinh(βemax) +

b− b′
emin

sinh(βemin)

)
.

Assume that U ∈ (−2emin/b, 0). Then for any β ∈ (0, βc), D
2
1 − 4D0 > 0,

1
2(−D1 +

√
D2

1 − 4D0) ∈ (−1, 0) and

τ(β) = 2 cos−1

(
−D1 +

√
D2

1 − 4D0

2

)
.

Proof. The statements of Lemma 1.2 (i),(ii) imply the following basic

fact. On the assumption |U | < 2emin/b for any β ∈ (0, βc) there uniquely

exists y ∈ (−1, 0) such that

− 2

|U | + b
′ sinh(βemax)

(y + cosh(βemax))emax
+ (b− b′) sinh(βemin)

(y + cosh(βemin))emin
= 0.

(2.97)
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(a)

(b) (c)

Fig. 2. The graph {(β, τ(β)) | β ∈ (0, βc)} drawn by implementing the exact solution
for b = 8, b′ = 7, U = −1/8, emin = 1 and emax = 6, 7, 9. Picture (a) shows the
graphs for emax = 6, 7, 9. We can see that τ(·) has only one local minimum point
when emax = 6. Picture (b) shows the graph for emax = 7. By magnifying we can see
that τ(·) has two local minimum points. Picture (c) shows the graph for emax = 9.
By magnifying we can see that τ(·) has only one local minimum point.

Moreover, for y ∈ [0,∞) (2.97) does not hold. Observe that y ∈ (−1, 0) and

y solves (2.97) if and only if y ∈ (−1, 0) and y solves y2 + D1y + D0 = 0.

Setting

X1 := cosh(βemax), X2 := cosh(βemin),
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Y1 :=
|U |b′
2emax

sinh(βemax), Y2 :=
|U |(b− b′)

2emin
sinh(βemin),

we can derive that

D2
1 − 4D0 = (X1 −X2 − Y1 + Y2)

2 + 4Y1Y2 > 0.

Set y+ := 1
2(−D1 +

√
D2

1 − 4D0), y− := 1
2(−D1 −

√
D2

1 − 4D0). These are

the roots of y2 +D1y +D0. The unique solution to (2.97) in (−1, 0) must

be one of them. If y+ ≥ 0, (2.97) has a non-negative solution, which is a

contradiction. Thus y+ < 0. If y− > −1, (2.97) has the 2 different solutions

y+, y− ∈ (−1, 0), which is again a contradiction. Thus y− ≤ −1. Therefore

the solution to (2.97) in (−1, 0) must be y+, and thus the claims follow. �

Let b = 8, b′ = 7, emin = 1. In this case b−b′
b′ = 1/7 ∈ (1/8, 3 −

2
√

2). Proposition 2.23 (ii) implies that there exist U ∈ (−2emin/b, 0) (=

(−1/4, 0)) and emax,1, emax,2, emax,3 ∈ (1/
√

17− 12
√

2,∞) (≈ (5.83,∞))

such that emax,1 < emax,2 < emax,3 and for U τ(·) has only one local mini-

mum point if emax = emax,1, τ(·) has more than one local minimum points if

emax = emax,2, τ(·) has only one local minimum point if emax = emax,3. Fig-

ure 2 shows the graph {(β, τ(β)) | β ∈ (0, βc)} for U = −1/8, emax = 6, 7, 9.

In these cases U ∈ (−2emin/b, 0), emax ∈ (1/
√

17− 12
√

2,∞). The fig-

ure demonstrates the properties described above. The graph was drawn by

implementing the exact solution obtained in Proposition 2.25.

2.3.2 The one-dimensional model with nearest-neighbor hopping

As for the model defined in (2), we find a simpler result as follows.

Proposition 2.26. For any t ∈ R≥0, emin ∈ R>0 there exists U0 ∈
(0, 2emin) such that for any U ∈ [−U0, 0) τ(·) has one and only one local

minimum point in (0, βc).

Proof. Let us assume that emin = 1 for the moment. We will see

that the other case can be deduced from this special case. It follows that

emax = 2t+ 1. Define the open set O of R
2 by

O :=

{
(x, y) ∈ R

2
∣∣∣ ∞∑

n=2

x2n

(2n)!
|y + 1|n−1e2nmax < 1 or y > −1

}
.
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We define the function P : O → R as follows.

P (x, y) :=
1

2π

∫ 2π

0
dk

x+
∑∞

n=1
x2n+1

(2n+1)!(y + 1)nE1(k)
2n

1 + x2

2 E1(k)2 +
∑∞

n=2
x2n

(2n)!(y + 1)n−1E1(k)2n
.

The function P is real analytic in O. Let us observe that for (x, y) ∈
R>0 × (−1,∞)

P (x, y) =

√
y + 1

2π

∫ 2π

0
dk

sinh(
√
y + 1 · xE1(k))

(y + cosh(
√
y + 1 · xE1(k)))E1(k)

.(2.98)

We can apply Lemma B.1 proved in Appendix B to derive that for any

x ∈ R

P (x,−1)2

=
e−1
max

(
x2

2

)
(
x2

2 + 1
)(

x2

2 + e−2
max

) ((
x2

2
+ 1

) 1
2
(
x2

2
+ e−2

max

) 1
2

− x
2

2
+ e−1

max

)
.

To facilitate the derivation of the above equality from Lemma B.1, let us add

that we multiplied both the numerator and the denominator of P (x,−1)2

by (
x2

2
+ 1

) 1
2
(
e2max

x2

2
+ 1

) 1
2

− emax
x2

2
− 1

at the beginning. Moreover, setting

P1(x) :=

(
x2

2
+ 1

) 1
2
(
x2

2
+ e−2

max

) 1
2
(

(1 + e−2
max)

x2

2
+ 2e−2

max

)
,

P2(x) := 2(e−2
max + e−1

max + 1)

(
x2

2

)2

+ 4e−2
max

(
x2

2

)
− 2e−3

max,

P3(x) :=
2emax

x

(
x2

2
+ 1

)2 (
x2

2
+ e−2

max

)2

,

we see that for any x ∈ R>0

d

dx
P (x,−1)2 =

P1(x)− P2(x)

P3(x)
.
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If we assume that x̂ ∈ R>0, y ∈ (−1,−1
2 ] and ∂P

∂x (x̂, y) = 0, it follows from

(2.34) that

x̂ ∈
[

1

emax
√
y + 1

cosh−1(|y|−1),
1√
y + 1

cosh−1(|y|−1)

]
,

d

dx
P (x,−1)2

∣∣∣
x=x̂

+
∂

∂x
(P (x, y)2 − P (x,−1)2)

∣∣∣
x=x̂

= 0.

Let us recall the definition (2.35) of cmax. We can also deduce from (2.36)

that if we set

cmin := inf
y∈(−1,− 1

2
]

cosh−1(|y|−1)√
y + 1

,

0 < cmin <∞. Then the above properties lead to that

x̂ ∈
[
cmin

emax
, cmax

]
,

P1(x̂)
2 − P2(x̂)

2 + 2P2(x̂)P3(x̂)
∂

∂x
(P (x, y)2 − P (x,−1)2)

∣∣∣
x=x̂

− P3(x̂)
2

(
∂

∂x
(P (x, y)2 − P (x,−1)2)

∣∣∣
x=x̂

)2

= 0.

Let us define the function Q : R>0 × (−1,∞)→ R by

Q(x, y) :=P1(x)
2 − P2(x)

2 + 2P2(x)P3(x)
∂

∂x
(P (x, y)2 − P (x,−1)2)

− P3(x)
2

(
∂

∂x
(P (x, y)2 − P (x,−1)2)

)2

.

We will prove the following statement.

There exists y0(emax) ∈
(
−1,−1

2

]
depending only on emax such that

(2.99)

if for y ∈ (−1, y0(emax)] a solution to Q(x, y) = 0 exists in

[
cmin

emax
, cmax

]
,

then it is unique.

We can expand P1(x)
2 − P2(x)

2 as follows.

P1(x)
2 − P2(x)

2 =
4∑

j=1

aj(emax)

(
x2

2

)j

,
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where aj(emax) (j = 1, · · · , 4) are real coefficients depending only on emax.

We can check that

a1(emax) > 0, a2(emax) > 0, a4(emax) < 0.(2.100)

We do not need to deal with a3(emax), since the term involving a3(emax)

will be subsequently canceled. Though it is not essential to make explicit,

a2(emax) is computed as follows. a2(emax) = 5e−6
max + 8e−5

max + 6e−4
max +

8e−3
max + 5e−2

max. Assume that (x0, y) ∈ [cmin/emax, cmax] × (−1,−1/2] and

Q(x0, y) = 0. We can derive that

x0
∂Q

∂x
(x0, y)

=

4∑
j=1

2jaj(emax)

(
x2

0

2

)j

+ x0
∂

∂x

(
2P2(x)P3(x)

∂

∂x
(P (x, y)2 − P (x,−1)2)

− P3(x)
2

(
∂

∂x
(P (x, y)2 − P (x,−1)2)

)2
)∣∣∣∣∣

x=x0

=
∑

j∈{1,2,4}
(2j − 6)aj(emax)

(
x2

0

2

)j

− 12P2(x0)P3(x0)
∂

∂x
(P (x, y)2 − P (x,−1)2)

∣∣∣
x=x0

+ 6P3(x0)
2

(
∂

∂x
(P (x, y)2 − P (x,−1)2)

∣∣∣
x=x0

)2

+ x0
∂

∂x

(
2P2(x)P3(x)

∂

∂x
(P (x, y)2 − P (x,−1)2)

− P3(x)
2

(
∂

∂x
(P (x, y)2 − P (x,−1)2)

)2
)∣∣∣∣∣

x=x0

≤ −2a2(emax)

(
c2min

2e2max

)2

+ c sup
x∈[

cmin
emax

,cmax]

(
(1 + cmax)|P2(x)P3(x)|+ (1 + cmax)|P3(x)

2|
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+ cmax

∣∣∣∣dP2

dx
(x)P3(x)

∣∣∣∣ + cmax

∣∣∣∣P2(x)
dP3

dx
(x)

∣∣∣∣ + cmax

∣∣∣∣dP3

dx
(x)P3(x)

∣∣∣∣
)

·

1 +
∑

i,j∈{0,1,2}
11≤i+j≤2 sup

x∈[
cmin
emax

,cmax]

sup
η∈[−1,− 1

2
]

∣∣∣∣∂iP∂xi (x, η)
∂j+1P

∂xj∂y
(x, η)

∣∣∣∣
2

· (y + 1),

where c is a positive constant independent of any parameter. In the

second equality we used the equality Q(x0, y) = 0 to erase the term

a3(emax)(x
2
0/2)3. In the last inequality we took (2.100) into account. The

above inequality implies that there exists y0(emax) ∈ (−1,−1
2 ] depending

only on emax such that if y ∈ (−1, y0(emax)],
∂Q
∂x (x0, y) < 0. We can sum

up the above arguments to conclude that if (x0, y) ∈ [cmin/emax, cmax] ×
(−1, y0(emax)] and Q(x0, y) = 0, then ∂Q

∂x (x0, y) < 0. This ensures that the

claim (2.99) holds true.

If for y ∈ (−1, y0(emax)] x̂ is a solution to ∂P
∂x (x, y) = 0 in R>0, then

x̂ ∈ [cmin/emax, cmax] and Q(x̂, y) = 0 and thus it must be unique by (2.99).

We can deduce from (2.34) that

∂P

∂x
(x, y) > 0,

(
∀x ∈

(
0,

1

emax
√
y + 1

cosh−1(|y|−1)

))
,

∂P

∂x
(x, y) < 0,

(
∀x ∈

(
1√
y + 1

cosh−1(|y|−1),∞
))

,

which means that a solution to ∂P
∂x (x, y) = 0 actually exists in R>0. Thus

we have proved that for any y ∈ (−1, y0(emax)] a solution to ∂P
∂x (x, y) = 0

uniquely exists in R>0. Therefore, by (2.98) for any y ∈ (−1, y0(emax)] there

uniquely exists x̃ ∈ R>0 such that

d

dx

(
1

2π

∫ 2π

0
dk

sinh(xE1(k))

(y + cosh(xE1(k)))E1(k)

) ∣∣∣∣∣
x=x̃

= 0.(2.101)

Now let us lift the condition emin = 1. Since E1(k) = emin( t
emin

(cos k+1)+

1), the above result implies that there exists y0(t/emin) ∈ (−1,−1/2] de-

pending only on t/emin such that for any y ∈ (−1, y0(t/emin)] there uniquely

exists x̃ ∈ R>0 such that (2.101) with this E1 holds. This further implies
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that for any y ∈ [2 cos−1(y0(t/emin)), 2π) there exists x̂(y) ∈ R>0 such that

∂gE1

∂x
(x, y, 0) > 0, (∀x ∈ (0, x̂(y))),

∂gE1

∂x
(x̂(y), y, 0) = 0,

∂gE1

∂x
(x, y, 0) < 0, (∀x ∈ (x̂(y),∞)).

Then by repeating the same proof by contradiction as that after (2.95) in

the proof of Proposition 2.23 we can conclude that the claim holds true. �

Remark 2.27. One natural question is whether the same result holds

for the model in higher spatial dimensions

E(k) = t

 d∑
j=1

cos kj + d

 + emin, (t, emin ∈ R>0, d ∈ N).(2.102)

In the above proof we relied on the exact formula Lemma B.1. Since we

do not have a useful formula of the definite integral for the model (2.102)

with d ≥ 2, we cannot find an answer to this question by this approach at

present.

3. Derivation of the Infinite-Volume Limit

In this section we will prove Theorem 1.3. As in the previous work

[13], [14], the proof is based on multi-scale analysis of Grassmann integral

formulations of the free energy density and the thermal expectations. In

this approach qualitative bound properties of the covariance matrices are

the essential ingredients. This time we decide to prepare them in the first

subsection (Subsection 3.1). The focus of this part is to find optimal up-

per bounds on norms of the covariances with respect to dependency on the

inverse temperature β and the magnitude of the imaginary magnetic field

θ. Then in Subsections 3.2-3.3 we will develop a general double-scale in-

tegration scheme by assuming only generic bounds of the covariances. In

Subsection 3.4 we combine the proved bound properties of the real covari-

ances with the general integration scheme to complete the proof of Theorem

1.3. The index set of the finite-dimensional Grassmann algebra is exactly
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Fig. 3. Dependencies between Subsections 3.1-3.4, results of [13], [14] and [20,
Theorem 1.3].

same as that in [14]. Accordingly, concerning the Grassmann integration,

we can use the same notations as in [14]. We will sometimes refer to the

definitions presented in [14] or [13] instead of restating them in order not to

lengthen the paper. We will also skip proofs of lemmas if they straightfor-

wardly follow from lemmas presented in [13], [14]. To support the readers,

we illustrate the dependencies between the following subsections and the

previous constructions in Figure 3.

One important difference from the previous construction is that here the

parameter θ is allowed to take any real value thanks to the gapped property

of band spectra (1.6), while it could not belong to 2π
β (2Z + 1) in [13], [14].

This affects the allowed value of θ(β) as well. To make clear, we should state

the definition of θ(β) here. For any β ∈ R>0, θ ∈ R there uniquely exists

θ′ ∈ (−2π/β, 2π/β] such that θ = θ′ (mod 4π/β). We define the number

θ(β) ∈ [0, 2π/β] by θ(β) := |θ′|.
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3.1. Properties of covariances

With the artificial parameter h ∈ 2
βN, we set [0, β)h := {0, 1/h, 2/h, · · · ,

β − 1/h} as already stated in Subsection 1.1. Define the sets I0, I by

I0 := {1, 2} × B × Γ× [0, β)h, I := I0 × {1,−1}.

As we have seen in [14, Section 3], our many-electron system is formulated

into the (imaginary) time-continuum limit h→∞ of the Grassmann Gaus-

sian integral, which has the covariance C(φ) : I2
0 → C (φ ∈ C) defined

by

C(φ)(ρρxs, ηηyt)

:=
1

βLd

∑
k∈Γ∗

∑
ω∈Mh

ei〈k,x−y〉+iω(s−t)

· h−1(I2b − e−
i
h
(ω− θ(β)

2
)I2b+

1
h
E(φ)(k))−1((ρ− 1)b+ ρ, (η − 1)b+ η).

Here Mh is the set of the Matsubara frequencies with cut-off{
ω ∈ π

β
(2Z + 1)

∣∣∣ |ω| < πh}
and

E(φ)(k) :=

(
E(k) φIb
φIb −E(k)

)
∈ Mat(2b,C)

for φ ∈ C. In fact C(φ) was originally defined as the free 2-point corre-

lation function in [14, Section 3] and was rewritten in the above form in

[14, Lemma 5.1]. As explained in Remark 1.5, the symmetry (1.5) was used

in the derivation of C(φ). Apart from the necessity to adopt the previous

derivation, we do not use the symmetry (1.5) in this paper. Our double-scale

integration regime is based on the following decomposition of the covariance.

e
−iπ

β
(s−t)

C(φ)(ρρxs, ηηyt) = C0(ρρxs, ηηyt) + C1(ρρxs, ηηyt),(3.1)

((ρ, ρ,x, s), (η, η,y, t) ∈ I0, φ ∈ C),

where the covariances C0, C1 : I2
0 → C are defined by

C0(ρρxs, ηηyt)
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:=
1

βLd

∑
k∈Γ∗

ei〈k,x−y〉

· h−1(I2b − e−
i
h
(π
β
− θ(β)

2
)I2b+

1
h
E(φ)(k)

)−1((ρ− 1)b+ ρ, (η − 1)b+ η),

C1(ρρxs, ηηyt)

:=
1

βLd

∑
k∈Γ∗

∑
ω∈Mh\{πβ }

e
i〈k,x−y〉+i(ω−π

β
)(s−t)

· h−1(I2b − e−
i
h
(ω− θ(β)

2
)I2b+

1
h
E(φ)(k))−1((ρ− 1)b+ ρ, (η − 1)b+ η).

Our aim here is to establish necessary bound properties of C(φ), C0, C1.

The bounds must be so sharp that the resulting multi-scale analysis does not

require any (β, θ)-dependent condition on the coupling constant U . First let

us present bound properties which can be proved by standard arguments. In

the following we use the norms ‖·‖1,∞, ‖·‖′1,∞ defined in [14, Subsection 4.1].

Let 〈·, ·〉Cm denote the canonical inner product of C
m. More precisely, for

u = (u1, · · · , um), v = (v1, · · · , vm) ∈ C
m 〈u,v〉Cm :=

∑m
j=1 ujvj . More-

over, for any f : I2
0 → C let f̃ : I2 → C denote the anti-symmetric extension

of f defined by

f̃((X, ξ), (Y, ζ)) :=
1

2
(1(ξ,ζ)=(1,−1)f(X,Y )− 1(ξ,ζ)=(−1,1)f(Y,X)),(3.2)

(∀X,Y ∈ I0, ξ, ζ ∈ {1,−1}).

From here for any objects α1, · · · , αm we let c(α1, · · · , αm) denote a positive

constant depending only on α1, · · · , αm.

Lemma 3.1. Assume that

h ≥ max{
√
e2max + |φ|2, 1}.(3.3)

Then there exists c(d, b, (v̂j)
d
j=1, cE) ∈ R>0 depending only on d, b, (v̂j)

d
j=1,

cE such that the following statements hold.

(i)

|det(〈ui,wj〉CmC(φ)(Xi, Yj))1≤i,j≤n|(3.4)

≤ (c(d, b, (v̂j)
d
j=1, cE)(1 + β−1e−1

min))n,

(∀m,n ∈ N, ui,wi ∈ C
m with ‖ui‖Cm , ‖wi‖Cm ≤ 1, Xi, Yi ∈ I0

(i = 1, · · · , n)).
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(ii)

|det(〈ui,wj〉CmC0(Xi, Yj))1≤i,j≤n| ≤ (c(d, b, (v̂j)
d
j=1, cE)β−1e−1

min)n,

(∀m,n ∈ N, ui,wi ∈ C
m with ‖ui‖Cm , ‖wi‖Cm ≤ 1, Xi, Yi ∈ I0

(i = 1, · · · , n)).

(iii)

‖C̃0‖1,∞ ≤ c(d, b, (v̂j)
d
j=1, cE) max{e−1

min, e
−d−1
min },

‖C̃0‖′1,∞ ≤ c(d, b, (v̂j)
d
j=1, cE)β−1 max{e−1

min, e
−d−1
min }.

(iv)

‖C̃1‖1,∞ ≤ c(d, b, (v̂j)
d
j=1, cE) max{e−1

min, e
−d−1
min },

‖C̃1‖′1,∞ ≤ c(d, b, (v̂j)
d
j=1, cE)(emin + β−1 + β−1e−1

min + 1)

·max{e−1
min, e

−d−1
min }.

Remark 3.2. The bound (3.4) is not directly used in our multi-scale

integration process, so its dependency on β does not affect the magnitude

of the coupling constant. The upper bounds on ‖C̃0‖′1,∞, ‖C̃1‖′1,∞ depend

on β. However, they are to be multiplied by L−d during the multi-scale

integration and thus do not yield a β-dependent condition on the coupling

constant. Our essential problem is to prevent the β-dependent determinant

bound of C0 from affecting the magnitude of the coupling constant. Solving

this problem is the main novelty of the present double-scale integration

scheme.

Proof of Lemma 3.1. We fix φ ∈ C during the proof. Resulting

bounds will be independent of φ, mainly due to the assumption (3.3). First

of all let us list useful estimates. For (ω,k) ∈ R
d+1, set

B(ω,k) := h(I2b − e−
i
h
(ω− θ(β)

2
)I2b+

1
h
E(φ)(k)).

We should recall the definition (1.8) of cE beforehand.

inf
k∈Rd

inf
u∈C2b

with ‖u‖
C2b=1

‖E(φ)(k)u‖C2b =
√
e2min + |φ|2,(3.5)
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sup
k∈Rd

‖E(φ)(k)‖2b×2b =
√
e2max + |φ|2,(3.6)

‖B(ω,k)−1‖2b×2b ≤ c
(
h2 sin2

(
1

2h

(
ω − θ(β)

2

))
+ e2min

)− 1
2

,(3.7) ∥∥∥∥( ∂

∂ω

)m

B(ω,k)

∥∥∥∥
2b×2b

≤ ch−m+1,(3.8) ∥∥∥∥∥
(
∂

∂k̂j

)m

B

(
ω,

d∑
i=1

k̂iv̂i

)∥∥∥∥∥
2b×2b

≤ c(d, (v̂j)
d
j=1, cE),(3.9)

(∀m ∈ {1, · · · , d+ 2}, j ∈ {1, · · · , d}, ω ∈ R, k, k̂ ∈ R
d).

In the derivation of (3.7), (3.8), (3.9) we use (3.3), (3.5), (3.6). Also, to

derive (3.9), one can repeatedly use the formula

∂

∂kj
e

1
h
E(φ)(k)

=
1

h

∫ 1

0
dse

s
h
E(φ)(k) ∂

∂kj
E(φ)(k)e

1−s
h

E(φ)(k), (j ∈ {1, · · · , d}).

(i): It was proved in [14, Lemma 3.5 (iii)], which is based on the general

determinant bound [20, Theorem 1.3], that

|det(〈ui,wj〉CmC(φ)(Xi, Yj))1≤i,j≤n|

≤
(

24b

Ld

∑
k∈Γ∗

Tr

(
1 + 2 cos

(
βθ(β)

2

)
e−β
√

E(k)2+|φ|2

+ e−2β
√

E(k)2+|φ|2
)− 1

2

)n

,

(∀m,n ∈ N, ui,wi ∈ C
m with ‖ui‖Cm , ‖wi‖Cm ≤ 1, Xi, Yi ∈ I0

(i = 1, · · · , n)).

Observe that

Tr

(
1 + 2 cos

(
βθ(β)

2

)
e−β
√

E(k)2+|φ|2 + e−2β
√

E(k)2+|φ|2
)− 1

2

≤ b(1− e−βemin)−1 ≤ cb(1 + β−1e−1
min).



484 Yohei Kashima

Thus the claimed bound holds.

(ii): Let L2({1, 2} × B × Γ∗ ×Mh) be the Hilbert space whose inner

product is defined by

〈f, g〉L2 :=
1

βLd

∑
K∈{1,2}×B×Γ∗×Mh

f(K)g(K).

We derive the claimed bound by applying the Gram inequality in the Hilbert

space C
m ⊗ L2({1, 2} × B × Γ∗ ×Mh). Let us define the vectors fX , gX ∈

L2({1, 2} × B × Γ∗ ×Mh) (X ∈ I0) by

fρρxs(τ , τ,k, ω) := e−i〈k,x〉1ω=π
β
1(ρ,ρ)=(τ ,τ)e

− 1
2

min,

gρρxs(τ , τ,k, ω)

:= e−i〈k,x〉1ω=π
β
e

1
2
minB

(
π

β
,k

)−1

((τ − 1)b+ τ, (ρ− 1)b+ ρ).

It follows that C0(X,Y ) = 〈fX , gY 〉L2 for any X, Y ∈ I0. We can apply

(3.7) to verify that

‖fX‖2L2 ≤ β−1e−1
min, ‖gX‖2L2 ≤ c(b)β−1e−1

min, (∀X ∈ I0).

Therefore by the Gram inequality

|det(〈ui,wj〉CmC0(Xi, Yj))1≤i,j≤n| ≤
n∏

i=1

‖ui‖Cm‖wi‖Cm‖fXi‖L2‖gYi‖L2

≤ (c(b)β−1e−1
min)n,

(∀m,n ∈ N, ui,wi ∈ C
m with ‖ui‖Cm , ‖wi‖Cm ≤ 1, Xi, Yi ∈ I0

(i = 1, · · · , n)).

(iii): By applying e.g. the formula [12, (C.1)] we can derive the following

inequality.∥∥∥∥∥∥
(
∂

∂k̂j

)n

B

(
ω,

d∑
i=1

k̂iv̂i

)−1
∥∥∥∥∥∥

2b×2b

≤ c(d)
n∑

m=1

m∏
u=1

 n∑
lu=1

 1∑ m
u=1 lu=n
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·
m∏
p=1

∥∥∥∥∥∥B
(
ω,

d∑
i=1

k̂iv̂i

)−1 (
∂

∂k̂j

)lp

B

(
ω,

d∑
i=1

k̂iv̂i

)∥∥∥∥∥∥
2b×2b

·

∥∥∥∥∥∥B
(
ω,

d∑
i=1

k̂iv̂i

)−1
∥∥∥∥∥∥

2b×2b

,

(∀n ∈ {1, · · · , d+ 2}, j ∈ {0, · · · , d}, ω ∈ R, k̂ ∈ R
d),

where ∂
∂k̂0

denotes ∂
∂ω . Combination of this inequality and (3.7), (3.8), (3.9)

yields that

∥∥∥∥∥∥
(
∂

∂k̂j

)n

B

(
ω,

d∑
i=1

k̂iv̂i

)−1
∥∥∥∥∥∥

2b×2b

(3.10)

≤ c(d, (v̂j)
d
j=1, cE)

·
n∑

m=1

(
h2 sin2

(
1

2h

(
ω − θ(β)

2

))
+ e2min

)−m+1
2

(1j=0h
−n+m + 1j≥1),

(∀n ∈ {1, · · · , d+ 2}, j ∈ {0, · · · , d}, ω ∈ R, k̂ ∈ R
d).

By periodicity we can perform integration by parts to derive that for any

x, y ∈ Γ, s, t ∈ [0, β)h, j ∈ {1, · · · , d}(
L

2π
(e−i 2π

L
〈x−y,v̂j〉 − 1)

)d+1

C0(·xs, ·yt)

=
1

βLd

∑
k∈Γ∗

ei〈k,x−y〉

·
d+1∏
m=1

(
L

2π

∫ 2π
L

0
dpm

)(
∂

∂k̂j

)d+1

B

(
π

β
,k + k̂jv̂j

)−1 ∣∣∣
k̂j=

∑ d+1
m=1 pm

.

Substitution of (3.7), (3.10) gives that∣∣∣∣∣
(
L

2π
(e−i 2π

L
〈x−y,v̂j〉 − 1)

)d+1
∣∣∣∣∣ ‖C0(·xs, ·yt)‖2b×2b
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≤ c(d, (v̂j)
d
j=1, cE)β−1

d+1∑
m=1

e−m−1
min

≤ c(d, (v̂j)
d
j=1, cE)β−1 max{e−2

min, e
−d−2
min },

‖C0(·xs, ·yt)‖2b×2b ≤ cβ−1e−1
min,

(∀x,y ∈ Γ, s, t ∈ [0, β)h).

These bounds lead to that

‖C̃0‖1,∞ ≤
∑
x∈Γ

c(d, b, (v̂j)
d
j=1, cE)e−1

min

1 + (max{e−1
min, e

−d−1
min })−1

∑d
j=1 | L2π (ei

2π
L
〈x,v̂j〉 − 1)|d+1

≤ c(d, b, (v̂j)
d
j=1, cE)e−1

min

(∑
x∈Γ

1emin≥1

1 +
∑d

j=1 | L2π (ei
2π
L
〈x,v̂j〉 − 1)|d+1

+
∑
x∈Γ

1emin<1

1 + ed+1
min

∑d
j=1 | L2π (ei

2π
L
〈x,v̂j〉 − 1)|d+1

)
≤ c(d, b, (v̂j)

d
j=1, cE) max{e−1

min, e
−d−1
min }.

The claimed bound on ‖C̃0‖′1,∞ is proved in the same way.

(iv): Let us apply a standard method of slicing the covariance. Let us

take a function χ ∈ C∞(R,R) satisfying that

χ(x) = 1, (∀x ∈ (−∞, 1]),

χ(x) ∈ (0, 1), (∀x ∈ (1, 2)),

χ(x) = 0, (∀x ∈ [2,∞)),

d

dx
χ(x) ≤ 0, (∀x ∈ R).

Set

Nh :=

⌊
log h

log 2

⌋
+ 1, N0 :=

⌊
log(max{emin, β

−1})
log 2

⌋
,

where $x% denotes the largest integer less than or equal to x for x ∈ R. By

(3.3) and the definition of h, h ≥ max{emin, β
−1} and thus N0 < Nh. Then

we define the functions χl ∈ C∞(R) (l = N0, N0 + 1, · · · , Nh) by

χN0(ω) := χ

(
2−N0h

∣∣∣∣sin(ω − θ(β)/2

2h

)∣∣∣∣) ,
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χl(ω) := χ

(
2−lh

∣∣∣∣sin(ω − θ(β)/2

2h

)∣∣∣∣)
− χ

(
2−(l−1)h

∣∣∣∣sin(ω − θ(β)/2

2h

)∣∣∣∣) ,
(l = N0 + 1, · · · , Nh).

These functions behave as follows.

χN0(ω) =


1 if h

∣∣∣sin(ω−θ(β)/2
2h

)∣∣∣ ≤ 2N0 ,

∈ (0, 1) if 2N0 < h
∣∣∣sin(ω−θ(β)/2

2h

)∣∣∣ < 2N0+1,

0 if h
∣∣∣sin(ω−θ(β)/2

2h

)∣∣∣ ≥ 2N0+1,

(3.11)

χl(ω) =


0 if h

∣∣∣sin(ω−θ(β)/2
2h

)∣∣∣ ≤ 2l−1,

∈ (0, 1] if 2l−1 < h
∣∣∣sin(ω−θ(β)/2

2h

)∣∣∣ < 2l+1,

0 if h
∣∣∣sin(ω−θ(β)/2

2h

)∣∣∣ ≥ 2l+1,

(l = N0 + 1, · · · , Nh).

Moreover, there exists c(d, χ) ∈ R>0 depending only on d, χ such that the

following statements hold.

•
Nh∑

l=N0

χl(ω) = 1, (∀ω ∈ R).(3.12)

• ∣∣∣∣( ∂

∂ω

)n

χl(ω)

∣∣∣∣ ≤ c(d, χ)2−nl,(3.13)

(∀n ∈ {1, · · · , d+ 2}, l ∈ {N0, · · · , Nh}, ω ∈ R).

•
1

β
sup
x∈R

∑
ω∈Mh

1χl(ω+x) �=0 ≤ c(d, χ)2l, (∀l ∈ {N0, · · · , Nh}).(3.14)

To prove (3.12), (3.13), we use that

2Nh−1 ≤ h ≤ 2Nh .(3.15)
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To prove (3.14), we use that β−1 ≤ c2N0 . Then let us define the covariances

C ′
l : I2

0 → C (l = N0, N0 + 1, · · · , Nh) by

C ′
l(·xs, ·yt) :=

1

βLd

∑
k∈Γ∗

∑
ω∈Mh

ei〈k,x−y〉+iω(s−t)χl(ω)B(ω,k)−1.

It follows from (3.12) that

Nh∑
l=N0

C ′
l(·xs, ·yt) = C(φ)(·xs, ·yt), (∀x,y ∈ Γ, s, t ∈ [0, β)h).(3.16)

Our strategy is as follows. We first find upper bounds on ‖C̃(φ)‖1,∞,

‖C̃(φ)‖′1,∞ by estimating each C ′
l and summing up them. Then we derive

the claimed bounds on ‖C̃1‖1,∞, ‖C̃1‖′1,∞ by using the relation (3.1) and

the results of (iii). By (3.7), (3.11), (3.14)

‖C ′
l(·xs, ·yt)‖2b×2b ≤ c(d, χ)2l(1l=N0e

−1
min + 1l≥N0+1(2

l + emin)−1),(3.17)

(∀l ∈ {N0, · · · , Nh}, x,y ∈ Γ, s, t ∈ [0, β)h).

Integrating by parts based on periodicity yields that

(
β

2π
(e

−i 2π
β

(s−t) − 1)

)n

C ′
l(·xs, ·yt)

(3.18)

=
1

βLd

∑
k∈Γ∗

∑
ω∈Mh

ei〈k,x−y〉+iω(s−t)

·
n∏

m=1

(
β

2π

∫ 2π
β

0
drm

)(
∂

∂r

)n

χl(r)B(r,k)−1
∣∣∣
r=ω+

∑ n
m=1 rm

,

(
L

2π
(e−i 2π

L
〈x−y,v̂j〉 − 1)

)n

C ′
l(·xs, ·yt)

(3.19)

=
1

βLd

∑
k∈Γ∗

∑
ω∈Mh

ei〈k,x−y〉+iω(s−t)

·
n∏

m=1

(
L

2π

∫ 2π
L

0
dpm

)
χl(ω)

(
∂

∂k̂j

)n

B(ω,k + k̂jv̂j)
−1
∣∣∣
k̂j=

∑ n
m=1 pm

,
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(∀l ∈ {N0, · · · , Nh}, x,y ∈ Γ, s, t ∈ [0, β)h, j ∈ {1, · · · , d},
n ∈ {1, · · · , d+ 2}).

Assume that l ≥ N0 + 1. By (3.7), (3.10), (3.11), (3.13), (3.14) and

(3.18) ∣∣∣∣ β2π (e
−i 2π

β
(s−t) − 1)

∣∣∣∣d+2

‖C ′
l(·xs, ·yt)‖2b×2b(3.20)

≤
d+2∏
m=1

(
β

2π

∫ 2π
β

0
drm

)

· 1

βLd

∑
k∈Γ∗

∑
ω∈Mh

1χl(ω+
∑ n

m=1 rm) �=0

· sup
r∈[−πh,πh]

∥∥∥∥∥
(
∂

∂r

)d+2

χl(r)B(r,k)−1

∥∥∥∥∥
2b×2b

≤ c(d, (v̂j)
d
j=1, cE , χ)2l

·
(

d+1∑
p=0

2−pl
d+2−p∑
m=1

h−(d+2−p)+m(22l + e2min)−
m+1

2

+ 2−(d+2)l(22l + e2min)−
1
2

)
≤ c(d, (v̂j)

d
j=1, cE , χ)2−(d+2)l.

In the last inequality we also used (3.15). On the other hand, by (3.10),

(3.11), (3.14) and (3.19) for j ∈ {1, · · · , d}, n ∈ {1, · · · , d+ 2}∣∣∣∣ L2π (e−i 2π
L
〈x−y,v̂j〉 − 1)

∣∣∣∣n ‖C ′
l(·xs, ·yt)‖2b×2b(3.21)

≤ c(d, (v̂j)
d
j=1, cE , χ)2l

n∑
m=1

(22l + e2min)−
m+1

2

≤ c(d, (v̂j)
d
j=1, cE , χ) max{e−1

min, e
−n
min}.

By combining (3.17), (3.20) and (3.21) for n = d+ 2

‖C ′
l(·xs, ·yt)‖2b×2b
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≤ c(d, (v̂j)
d
j=1, cE , χ)

/(
1 + 2(d+2)l

∣∣∣∣ β2π (e
i 2π
β

(s−t) − 1)

∣∣∣∣d+2

+ (max{e−1
min, e

−d−2
min })−1

d∑
j=1

∣∣∣∣ L2π (ei
2π
L
〈x−y,v̂j〉 − 1)

∣∣∣∣d+2
)
,

(∀x,y ∈ Γ, s, t ∈ [0, β)h),

which together with (3.15) implies that

‖C̃ ′
l‖1,∞ ≤ c(d, b, (v̂j)

d
j=1, cE , χ)2−l(1emin≥1 + 1emin<1e

−d
min)(3.22)

≤ c(d, b, (v̂j)
d
j=1, cE , χ)2−l max{1, e−d

min}.

Also by (3.21) for n = d+ 1

∑
x∈Γ
x�=0

(‖C ′
l(·xs, ·0t)‖2b×2b + ‖C ′

l(·0t, ·xs)‖2b×2b)

(3.23)

≤ c(d, (v̂j)
d
j=1, cE , χ) max{2−l, 2−(d+1)l}

∑
x∈Γ
x�=0

1∑d
j=1 | L2π (ei

2π
L
〈x,v̂j〉 − 1)|d+1

≤ c(d, (v̂j)
d
j=1, cE , χ) max{2−l, 2−(d+1)l}, (∀s, t ∈ [0, β)h).

Let us derive necessary bounds for l = N0. By (3.10), (3.14), (3.19)∣∣∣∣ L2π (e−i 2π
L
〈x−y,v̂j〉 − 1)

∣∣∣∣n ‖C ′
N0

(·xs, ·yt)‖2b×2b(3.24)

≤ c(d, (v̂j)
d
j=1, cE , χ)2N0 max{e−2

min, e
−n−1
min },

(∀x,y ∈ Γ, s, t ∈ [0, β)h, j ∈ {1, · · · , d}, n ∈ {1, · · · , d+ 2}).

Assume that emin ≤ β−1. It follows from (3.17), (3.24) for n = d+ 1 that

‖C ′
N0

(·xs, ·yt)‖2b×2b

≤
c(d, (v̂j)

d
j=1, cE , χ)2N0e−1

min

1 + (max{e−1
min, e

−d−1
min })−1

∑d
j=1 | L2π (ei

2π
L
〈x−y,v̂j〉 − 1)|d+1

,

(∀x,y ∈ Γ, s, t ∈ [0, β)h),
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and thus

‖C̃ ′
N0
‖1,∞ ≤ c(d, b, (v̂j)

d
j=1, cE , χ)β2N0e−1

min(1emin≥1 + 1emin<1e
−d
min)

≤ c(d, b, (v̂j)
d
j=1, cE , χ) max{e−1

min, e
−d−1
min },

where we used that 2N0 ≤ β−1. On the other hand, let us assume that

emin > β
−1. By (3.7), (3.10), (3.13), (3.14) and (3.18)

∣∣∣∣ β2π (e
−i 2π

β
(s−t) − 1)

∣∣∣∣d+2

‖C ′
N0

(·xs, ·yt)‖2b×2b

(3.25)

≤ c(d, (v̂j)
d
j=1, cE , χ)2N0

·

d+1∑
p=0

2−pN0

d+2−p∑
m=1

h−(d+2−p)+me−m−1
min + 2−(d+2)N0e−1

min


≤ c(d, (v̂j)

d
j=1, cE , χ)2N0

d+1∑
p=0

d+2−p∑
m=1

2−N0(d+2−m)e−m−1
min + 2−(d+2)N0e−1

min


≤ c(d, (v̂j)

d
j=1, cE , χ)2−(d+1)N0e−1

min,

(∀x,y ∈ Γ, s, t ∈ [0, β)h).

In the second inequality we used (3.15). In the last inequality we used that

2N0 ≤ emin. By using (3.17), (3.24) for n = d+ 2 and (3.25) we have that

‖C ′
N0

(·xs, ·yt)‖2b×2b

≤ c(d, (v̂j)
d
j=1, cE , χ)2N0e−1

min

/(
1 + 2(d+2)N0

∣∣∣∣ β2π (e
i 2π
β

(s−t) − 1)

∣∣∣∣d+2

+ (max{e−1
min, e

−d−2
min })−1

d∑
j=1

∣∣∣∣ L2π (ei
2π
L
〈x−y,v̂j〉 − 1)

∣∣∣∣d+2
)
,

and thus by using (3.15)

‖C̃ ′
N0
‖1,∞ ≤ c(d, b, (v̂j)

d
j=1, cE , χ)e−1

min(1emin≥1 + 1emin<1e
−d
min)

≤ c(d, b, (v̂j)
d
j=1, cE , χ) max{e−1

min, e
−d−1
min }.
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In both cases we have derived that

‖C̃ ′
N0
‖1,∞ ≤ c(d, b, (v̂j)

d
j=1, cE , χ) max{e−1

min, e
−d−1
min }.(3.26)

Moreover, it follows from (3.24) for n = d+ 1 that∑
x∈Γ
x�=0

(‖C ′
N0

(·xs, ·0t)‖2b×2b + ‖C ′
N0

(·0t, ·xs)‖2b×2b)(3.27)

≤ c(d, (v̂j)
d
j=1, cE , χ)2N0 max{e−2

min, e
−d−2
min }, (∀s, t ∈ [0, β)h).

Let us sum up the above estimates. By (3.16), (3.22) and (3.26)

‖C̃(φ)‖1,∞ ≤
Nh∑

l=N0

‖C̃ ′
l‖1,∞

(3.28)

≤ c(d, b, (v̂j)
d
j=1, cE , χ)(max{e−1

min, e
−d−1
min }+ 2−N0 max{1, e−d

min})
≤ c(d, b, (v̂j)

d
j=1, cE , χ) max{e−1

min, e
−d−1
min }.

Also, we can apply (3.4), (3.16), (3.23) and (3.27) to deduce that

‖C̃(φ)‖′1,∞

(3.29)

≤ c(b) sup
s,t∈[0,β)h

‖C(φ)(·0s, ·0t)‖2b×2b

+ c(b) sup
s,t∈[0,β)h

Nh∑
l=N0

∑
x∈Γ
x�=0

(‖C ′
l(·xs, ·0t)‖2b×2b + ‖C ′

l(·0t, ·xs)‖2b×2b)

≤ c(d, b, (v̂j)
d
j=1, cE , χ)

·

1 + β−1e−1
min + 2N0 max{e−2

min, e
−d−2
min }+

Nh∑
l=N0+1

max{2−l, 2−(d+1)l}


≤ c(d, b, (v̂j)

d
j=1, cE , χ)

· (1 + β−1e−1
min + (emin + β−1) max{e−2

min, e
−d−2
min }+ e−1

min + e−d−1
min )

≤ c(d, b, (v̂j)
d
j=1, cE , χ)(emin + β−1 + β−1e−1

min + 1) max{e−1
min, e

−d−1
min }.
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Observe that by (3.1)

‖C̃1‖1,∞ ≤ ‖C̃(φ)‖1,∞ + ‖C̃0‖1,∞, ‖C̃1‖′1,∞ ≤ ‖C̃(φ)‖′1,∞ + ‖C̃0‖′1,∞.

Then, substitution of (3.28), (3.29) and the results of (iii) yields the claimed

inequalities. �

Remark 3.3. Assume that β ≥ e−1
min. Then it follows from (3.16),

(3.21), (3.24) that

d∑
j=1

∣∣∣∣ L2π (ei
2π
L
〈x−y,v̂j〉 − 1)

∣∣∣∣ ‖C(φ)(·x0, ·y0)‖2b×2b ≤ c(d, (v̂j)
d
j=1, cE , χ)e−1

min,

(∀x,y ∈ Γ, φ ∈ C).

The above inequality holds for any φ ∈ C due to the fact that C(φ)(·x0, ·y0)

is independent of h (see [14, (3.2)]). As explained in Remark 1.6, the above

spatial decay property can be used to study the zero-temperature limit of

the 4-point correlation function.

Lemma 3.1 does not include a determinant bound of C1, which crucially

affects the possible magnitude of the coupling constant in our double-scale

integration scheme. A determinant bound of C1 can be useful only if it is

optimal with respect to the dependency on (β, θ). Let us derive a desirable

bound in the next lemma. Again we will essentially apply not only the gen-

eral bound [20, Theorem 1.3] but the representation techniques presented in

[20, Subsection 4.1] by de Siqueira Pedra and Salmhofer as in our previous

derivation of determinant bound [13, Proposition 4.2]. We should remark

more specifically that the decompositions (3.36), (3.44) below are influenced

by the techniques of [20, Subsection 4.1]. However, the choice of the Hilbert

space, which will be denoted by H, and the construction of necessary vec-

tors belonging to the Hilbert space are much more complicated than the

corresponding parts of the previous papers. The essential idea here is to

replace the sum over Mh\{π/β} by a contour integral plus an extra term

by means of the residue theorem.

Lemma 3.4. Assume that

h ≥
√
e2max + |φ|2 +

1

β
(3π + 2).(3.30)
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Then there exists c(b) ∈ R>0 depending only on b such that

|det(〈ui,wj〉CmC1(Xi, Yj))1≤i,j≤n| ≤ c(b)n,
(∀m,n ∈ N, ui,wi ∈ C

m with ‖ui‖Cm , ‖wi‖Cm ≤ 1, Xi, Yi ∈ I0
(i = 1, · · · , n)).

Proof. Let us fix φ ∈ C throughout the proof. We will need to assume

that h is large depending on φ on several occasions. We will eventually see

that the assumption (3.30) is sufficient. Let σ(E(k)), σ(E(φ)(k)) denote

the set of eigenvalues of E(k), E(φ)(k) respectively. For any k ∈ Γ∗ there

exist eρ(k) ∈ R (ρ = 1, · · · , b) such that e1(k) ≤ e2(k) ≤ · · · ≤ eb(k) and

σ(E(k)) = {eρ(k)}ρ∈B. Set

êρ(k) :=
√
eρ(k)2 + |φ|2

for ρ ∈ B. Observe that σ(E(φ)(k)) = {±êρ(k)}ρ∈B. For any k ∈ Γ∗ there

exists xk ∈ [1/β, 2/β] such that[
xk −

1

2(b+ 1)β
, xk +

1

2(b+ 1)β

)
∩ σ(E(φ)(k)) = ∅.(3.31)

This claim can be proved as follows. Suppose that[
1

β
+

2m+ 1

2(b+ 1)β
,
1

β
+

2m+ 3

2(b+ 1)β

)
∩ σ(E(φ)(k)) �= ∅

for any m ∈ {0, 1, · · · , b}. Since these b+ 1 intervals are disjoint, it implies

that ;σ(E(φ)(k)) ∩ R≥0 ≥ b + 1. However, ;σ(E(φ)(k)) ∩ R≥0 ≤ b, which

is a contradiction. Thus the claim holds with some xk ∈ { 1
β + m+1

(b+1)β}bm=0.

Fix such {xk}k∈Γ∗ . For k ∈ Γ∗ let us set

B(k) :=

{
ρ ∈ B

∣∣∣ êρ(k) ≥ xk +
1

2(b+ 1)β

}
,

P1 := {z ∈ C | |z| = πh},

P2(k) :=

{
x+ i

2π

β

∣∣∣ − xk ≤ x ≤ xk

}
∪
{
xk + iy

∣∣∣ − π

2β
≤ y ≤ 2π

β

}
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∪
{
x− i π

2β

∣∣∣ − xk ≤ x ≤ xk

}
∪
{
−xk + iy

∣∣∣ − π

2β
≤ y ≤ 2π

β

}
.

By the assumption (3.30),
√
x2
k + (2π/β)2 < πh. This implies that P1 ∩

P2(k) = ∅. We consider P1 as a contour oriented counter-clockwise and

P2(k) as a contour oriented clockwise. Let us admit a convention that for

A, B ∈ Mat(b,C) A⊕B denotes the 2b× 2b matrix(
A 0

0 B

)
.

For any k ∈ Γ∗ there exists a 2b× 2b unitary matrix U(k) such that

U(k)∗E(φ)(k)U(k) = (δρ,η êρ(k))1≤ρ,η≤b ⊕ (−δρ,η êρ(k))1≤ρ,η≤b.(3.32)

It follows that

C1(·xs, ·yt)

(3.33)

=
1

Ld

∑
k∈Γ∗

e
i〈k,x−y〉−iπ

β
(s−t)

· U(k)

δρ,η
β

∑
ω∈Mh\{πβ }

eiω(s−t)h−1(1− e− i
h
(ω− θ(β)

2
)+ 1

h
êρ(k))−1


1≤ρ,η≤b

⊕

δρ,η
β

∑
ω∈Mh\{πβ }

eiω(s−t)h−1(1− e− i
h
(ω− θ(β)

2
)− 1

h
êρ(k))−1


1≤ρ,η≤b

U(k)∗,

(∀x,y ∈ Γ, s, t ∈ [0, β)h).

The assumption (3.30) implies that |iθ(β)/2 + δêρ(k)| < πh for any k ∈ Γ∗,
ρ ∈ B, δ ∈ {1,−1}. Based on this fact and the property (3.31), the residue

theorem ensures that for any r ∈ R, k ∈ Γ∗, ρ ∈ B, δ ∈ {1,−1}
1

2πi

∮
P1∪P2(k)

dz
ezr

1 + eβz
h−1(1− e− 1

h
(z−i

θ(β)
2

)+ δ
h
êρ(k))−1(3.34)
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= − 1

β

∑
ω∈Mh\{πβ }

eiωrh−1(1− e− i
h
(ω− θ(β)

2
)+ δ

h
êρ(k))−1

+ 1ρ∈B(k)
e(i

θ(β)
2

+δêρ(k))r

1 + eβ(i
θ(β)

2
+δêρ(k))

.

Let us define the functions C≥
1−1, C

≥
1−2, C

<
1−1, C

<
1−2, C1−1, C1−2 : ({1, 2} ×

B × Γ× [0, β))2 → C as follows.

C≥
1−1(·xs, ·yt)

:=
1

Ld

∑
k∈Γ∗

ei〈k,x−y〉 −1

2πi

·
∮
P1∪P2(k)

dz
ez(s−t)

1 + eβz
h−1(I2b − e−

1
h
(z−i

θ(β)
2

)I2b+
1
h
E(φ)(k))−1,

C≥
1−2(·xs, ·yt)

:=
1

Ld

∑
k∈Γ∗

ei〈k,x−y〉U(k)

δρ,η1ρ∈B(k)e
(i
θ(β)

2
+êρ(k))(s−t)

1 + eβ(i
θ(β)

2
+êρ(k))


1≤ρ,η≤b

⊕

δρ,η1ρ∈B(k)e
(i
θ(β)

2
−êρ(k))(s−t)

1 + eβ(i
θ(β)

2
−êρ(k))


1≤ρ,η≤b

U(k)∗,

C<
1−1(·xs, ·yt)

:=
1

Ld

∑
k∈Γ∗

ei〈k,x−y〉 −1

2πi

·
∮
P1∪P2(k)

dz
ez(s−t+β)

1 + eβz
h−1(I2b − e−

1
h
(z−i

θ(β)
2

)I2b+
1
h
E(φ)(k))−1,

C<
1−2(·xs, ·yt)

:=
1

Ld

∑
k∈Γ∗

ei〈k,x−y〉U(k)

δρ,η1ρ∈B(k)e
(i
θ(β)

2
+êρ(k))(s−t+β)

1 + eβ(i
θ(β)

2
+êρ(k))


1≤ρ,η≤b

⊕

δρ,η1ρ∈B(k)e
(i
θ(β)

2
−êρ(k))(s−t+β)

1 + eβ(i
θ(β)

2
−êρ(k))


1≤ρ,η≤b

U(k)∗,

C1−1(·xs, ·yt) := 1s≥tC
≥
1−1(·xs, ·yt)− 1s<tC

<
1−1(·xs, ·yt),
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C1−2(·xs, ·yt) := 1s≥tC
≥
1−2(·xs, ·yt)− 1s<tC

<
1−2(·xs, ·yt),

(∀x,y ∈ Γ, s, t ∈ [0, β)).

By combining these with (3.32), (3.33), (3.34) we have that

e
iπ
β

(s−t)
C1(·xs, ·yt) = C1−1(·xs, ·yt) + C1−2(·xs, ·yt),(3.35)

(∀x,y ∈ Γ, s, t ∈ [0, β)h).

Let us find suitable determinant bounds of C1−1, C1−2 so that the claimed

determinant bound of C1 can be derived from them.

Let us consider C1−1 first. Let H denote the Hilbert space L2({1, 2} ×
B × Γ∗ × R× [0, 1]× {1, 2, 3, 4, 5}) whose inner product is given by

〈f, g〉H

:=
∑

(τ ,τ)∈{1,2}×B

1

Ld

∑
k∈Γ∗

∫ ∞

−∞
du

∫ 1

0
dv

5∑
j=1

f(τ , τ,k, u, v, j)g(τ , τ,k, u, v, j).

Let us define the vectors faX , gaX ∈ H (X ∈ {1, 2}×B×Γ×R, a ∈ {1,−1})
in the following arguments. For (ρ, ρ,x, s) ∈ {1, 2}×B×Γ×R, a ∈ {1,−1},
(τ , τ,k, u) ∈ {1, 2} × B × Γ∗ × R, z ∈ P1 ∪ P2(k), set

faρρxs(τ , τ,k, u)(z)

:=
1√
2π

1aRe z>0e
−i〈k,x〉−is(a Im z−u)1(τ ,τ)=(ρ,ρ)

1 + e−βaz

|1 + e−βaz| 32

·
√
|Re z|
π

‖h−1(I2b − e−
1
h
(z−i

θ(β)
2

)I2b+
1
h
E(φ)(k))−1‖

1
2
2b×2b

iu+ Re z
,

gaρρxs(τ , τ,k, u)(z)

:=
1√
2πi

1aRe z>0e
−i〈k,x〉−is(a Im z−u) 1

|1 + e−βaz| 12

·
√
|Re z|
π

‖h−1(I2b − e−
1
h
(z−i

θ(β)
2

)I2b+
1
h
E(φ)(k))−1‖−

1
2

2b×2b

iu+ Re z

· h−1(I2b − e−
1
h
(z−i

θ(β)
2

)I2b+
1
h
E(φ)(k))−1((τ − 1)b+ τ, (ρ− 1)b+ ρ).

Then, for (τ , τ,k, u, v, j) ∈ {1, 2} × B × Γ∗ × R× [0, 1]× {1, 2, 3, 4, 5}, set

faρρxs(τ , τ,k, u, v, j)
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:= 1j=1

√
2hπfaρρxs(τ , τ,k, u)(πhe

i2πv)

+ 1j=2

√
2xkf

a
ρρxs(τ , τ,k, u)

(
2xkv − xk + i

2π

β

)
+ 1j=3

√
5π

2β
faρρxs(τ , τ,k, u)

(
xk − i

5π

2β
v + i

2π

β

)
+ 1j=4

√
2xkf

a
ρρxs(τ , τ,k, u)

(
−2xkv + xk − i

π

2β

)
+ 1j=5

√
5π

2β
faρρxs(τ , τ,k, u)

(
−xk + i

5π

2β
v − i π

2β

)
,

gaρρxs(τ , τ,k, u, v, j)

:= 1j=1i
√

2hπei2πvgaρρxs(τ , τ,k, u)(πhe
i2πv)

+ 1j=2

√
2xkg

a
ρρxs(τ , τ,k, u)

(
2xkv − xk + i

2π

β

)
+ 1j=3

(
−i

√
5π

2β

)
gaρρxs(τ , τ,k, u)

(
xk − i

5π

2β
v + i

2π

β

)
+ 1j=4(−

√
2xk)gaρρxs(τ , τ,k, u)

(
−2xkv + xk − i

π

2β

)
+ 1j=5i

√
5π

2β
gaρρxs(τ , τ,k, u)

(
−xk + i

5π

2β
v − i π

2β

)
.

Moreover, using the vectors f1
X , f−1

X , g1
X , g−1

X ∈ H defined above, we define

the vectors f≥X , f<X , g≥X , g<X ∈ H (X ∈ {1, 2} × B × Γ × R) as follows. For

(ρ, ρ,x, s) ∈ {1, 2} × B × Γ× R

f≥ρρxs = f<ρρxs := f1
ρρxs + f−1

ρρx(−s),(3.36)

g≥ρρxs := −g1
ρρx(β+s) − g−1

ρρx(−s), g<ρρxs := −g1
ρρxs − g−1

ρρx(β−s).

By using the formula

e−tD =
D

π

∫ ∞

−∞
du

eitu

u2 +D2
, (∀t ∈ R≥0, D ∈ R>0)(3.37)

one can verify that for any (ρ, ρ,x, s), (η, η,y, t) ∈ {1, 2} × B × Γ× [0, β)

1s≥t〈f≥ρρxs, g
≥
ηηyt〉H = −1s≥t(〈f1

ρρxs, g
1
ηηy(β+t)〉H + 〈f−1

ρρx(−s), g
−1
ηηy(−t)〉H)
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= −1s≥t

∑
(τ ,τ)∈{1,2}×B

1

Ld

∑
k∈Γ∗

∫ ∞

−∞
du

∮
P1∪P2(k)

dz

· (f1
ρρxs(τ , τ,k, u)(z)g

1
ηηy(β+t)(τ , τ,k, u)(z)

+ f−1
ρρx(−s)(τ , τ,k, u)(z)g

−1
ηηy(−t)(τ , τ,k, u)(z))

= 1s≥tC
≥
1−1(ρρxs, ηηyt),

1s<t〈f<ρρxs, g<ηηyt〉H = −1s<t(〈f1
ρρxs, g

1
ηηyt〉H + 〈f−1

ρρx(−s), g
−1
ηηy(β−t)〉H)

= 1s<tC
<
1−1(ρρxs, ηηyt),

and thus

C1−1(ρρxs, ηηyt) = 1s≥t〈f≥ρρxs, g
≥
ηηyt〉H − 1s<t〈f<ρρxs, g<ηηyt〉H.(3.38)

To apply [20, Theorem 1.3], we need to estimate ‖f≥X‖H, ‖g≥X‖H, ‖f<X‖H,

‖g<X‖H, (X ∈ {1, 2} × B × Γ × [0, β)). These can be expanded as follows.

For any (ρ, ρ,x, s) ∈ {1, 2} × B × Γ× [0, β) and A ∈ {f, g}

‖A≥
ρρxs‖2H = ‖A<

ρρxs‖2H(3.39)

=
∑

(τ ,τ)∈{1,2}×B

1

Ld

∑
k∈Γ∗

∫ ∞

−∞
du

∫ 1

0
dv

∑
a∈{1,−1}

·
(

2hπ2|Aa
ρρ00(τ , τ,k, u)(πhe

i2πv)|2

+ 2xk

∣∣∣∣Aa
ρρ00(τ , τ,k, u)

(
2xkv − xk + i

2π

β

)∣∣∣∣2
+

5π

2β

∣∣∣∣Aa
ρρ00(τ , τ,k, u)

(
xk − i

5π

2β
v + i

2π

β

)∣∣∣∣2
+ 2xk

∣∣∣∣Aa
ρρ00(τ , τ,k, u)

(
−2xkv + xk − i

π

2β

)∣∣∣∣2
+

5π

2β

∣∣∣∣Aa
ρρ00(τ , τ,k, u)

(
−xk + i

5π

2β
v − i π

2β

)∣∣∣∣2
)
.

As the next step, let us fix k ∈ Γ∗ and estimate

inf
z∈P1∪P2(k)

|1 + eβz|, inf
z∈P1∪P2(k)

|1 + e−βz|.
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For z ∈ P1 there exists t ∈ [−1, 1] such that

|1 + eβz|2 = 1 + 2 cos(πβh
√

1− t2)eπβht + e2πβht.

There exists m ∈ N such that h = 2m/β. Then there exist n ∈ {0, 1, · · · ,
m − 1}, θ ∈ [0, 2π] such that πβh

√
1− t2 = θ + 2nπ. If θ ∈ [0, π/2] ∪

[3π/2, 2π], |1 + eβz|2 ≥ 1 + e2πβht ≥ 1. If θ ∈ (π/2, 3π/2), (πβht)2 =

(2mπ−θ−2nπ)(2mπ+θ+2nπ) ≥ π2/4, and thus |1+eβz|2 ≥ (1−eπβht)2 ≥
(1− e−π

2 )2. We have proved that

inf
z∈P1

|1 + eβz| = inf
z∈P1

|1 + e−βz| ≥ 1− e−π
2 .

If z ∈ {xk + iy,−xk + iy | − π
2β ≤ y ≤ 2π

β }, min{|1 + eβz|, |1 + e−βz|} ≥
1 − e−βxk ≥ 1 − e−1, where we used that xk ≥ 1/β. If z ∈ {x + i2πβ , x −
i π2β | − xk ≤ x ≤ xk}, min{|1 + eβz|, |1 + e−βz|} ≥ 1. Thus

inf
z∈P2(k)

min{|1 + eβz|, |1 + e−βz|} ≥ 1− e−1.

Now we can see that

inf
z∈P1∪P2(k)

|1 + eaβz| ≥ 1− e−1, (∀a ∈ {1,−1}).(3.40)

We also need to find upper bounds on

sup
z∈P1

‖h−1(I2b − e−
1
h
(z−i

θ(β)
2

)I2b+
1
h
E(φ)(k))−1‖2b×2b,

sup
z∈P2(k)

‖h−1(I2b − e−
1
h
(z−i

θ(β)
2

)I2b+
1
h
E(φ)(k))−1‖2b×2b.

On the assumption (3.30)

sup
z∈P1

sup
α∈σ(E(φ)(k))

∣∣∣∣−1

h

(
z − iθ(β)

2

)
+

1

h
α

∣∣∣∣ ≤ π +
1

h

(
π

β
+
√
e2max + |φ|2

)
≤ 3π

2
,

inf
z∈P1

inf
α∈σ(E(φ)(k))

∣∣∣∣−1

h

(
z − iθ(β)

2

)
+

1

h
α

∣∣∣∣ ≥ π − 1

h

(
π

β
+
√
e2max + |φ|2

)
≥ π

2
,
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which imply that

inf
z∈P1

inf
α∈σ(E(φ)(k))

|1− e− 1
h
(z−i

θ(β)
2

)+ 1
h
α| ≥ inf

z∈C
with π

2
≤|z|≤ 3π

2

|1− ez| > 0,

and thus

sup
z∈P1

‖h−1(I2b − e−
1
h
(z−i

θ(β)
2

)I2b+
1
h
E(φ)(k))−1‖2b×2b ≤ ch−1.(3.41)

On the other hand, since xk ∈ [1/β, 2/β],

sup
z∈P2(k)

sup
α∈σ(E(φ)(k))

∣∣∣∣Re

(
− z
h

+ i
θ(β)

2h
+
α

h

)∣∣∣∣ ≤ 1

h

(
2

β
+
√
e2max + |φ|2

)
,

sup
z∈P2(k)

sup
α∈σ(E(φ)(k))

∣∣∣∣Im(
− z
h

+ i
θ(β)

2h
+
α

h

)∣∣∣∣ ≤ 3π

βh
.

By the assumption (3.30)

sup
z∈P2(k)

sup
α∈σ(E(φ)(k))

∣∣∣∣− zh + i
θ(β)

2h
+
α

h

∣∣∣∣ ≤ 1,

and thus for any z ∈ P2(k), α ∈ σ(E(φ)(k))

|1− e− z
h
+i

θ(β)
2h

+α
h | ≥

(
1−

∞∑
n=2

1

n!

)∣∣∣∣− zh + i
θ(β)

2h
+
α

h

∣∣∣∣ .
Therefore

sup
z∈P2(k)

‖h−1(I2b − e−
1
h
(z−i

θ(β)
2

)I2b+
1
h
E(φ)(k))−1‖2b×2b

(3.42)

≤ c sup
z∈P2(k)

sup
α∈σ(E(φ)(k))

(
|Re z − α|+

∣∣∣∣Im z − θ(β)

2

∣∣∣∣)−1

≤ cmax

{
sup

α∈σ(E(φ)(k))
|xk − α|−1,

∣∣∣∣2πβ − θ(β)

2

∣∣∣∣−1

,

∣∣∣∣ π2β +
θ(β)

2

∣∣∣∣−1
}

≤ c(b)β,
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where we used that

inf
α∈σ(E(φ)(k))

|xk − α| ≥
1

2(b+ 1)β
,

which is ensured by (3.31).

By substituting (3.40), (3.41), (3.42) into (3.39) and using (3.37) and

xk ≤ 2/β (∀k ∈ Γ∗) we observe that for any X ∈ {1, 2}×B×Γ× [0, β) and

A ∈ {f, g}

‖A≥
X‖2H = ‖A<

X‖2H

≤ c(b)

Ld

∑
k∈Γ∗

∫ ∞

−∞
du

∫ 1

0
dv

∑
a∈{1,−1}

·
(
|πh cos(2πv)|1aπh cos(2πv)>0

u2 + (πh cos(2πv))2
+
|2xkv − xk|1a(2xkv−xk)>0

u2 + (2xkv − xk)2
+
xk1axk>0

u2 + x2
k

)
≤ c(b).

Now we can apply the extended Gram inequality [20, Theorem 1.3] in the

representation (3.38) to derive that

|det(〈ui,wj〉CmC1−1(Xi, Yj))1≤i,j≤n| ≤ c(b)n,(3.43)

(∀m,n ∈ N, ui,wi ∈ C
m with ‖ui‖Cm , ‖wi‖Cm ≤ 1, Xi, Yi ∈ I0

(i = 1, · · · , n)).

The readers can refer to [11, Remark 5.2] for a minor necessary modification

of [20, Theorem 1.3] concerning the factor 〈ui,wj〉Cm (i, j = 1, · · · , n), as it

was originally claimed only for m = n in [20, Theorem 1.3].

Let us treat C1−2. In fact the procedure to find a determinant bound

on C1−2 is simpler than that on C1−1. Let Ĥ denote the Hilbert space

L2({1, 2} × B × Γ∗ × R) whose inner product is defined by

〈f, g〉Ĥ :=
∑

(τ ,τ)∈{1,2}×B

1

Ld

∑
k∈Γ∗

∫ ∞

−∞
duf(τ , τ,k, u)g(τ , τ,k, u).

Define the vectors f̂ āX , ĝāX ∈ Ĥ (X ∈ {1, 2} × B × Γ × R, ā ∈ {1, 2}) as

follows.

f̂ āρρxs(τ , τ,k, u)
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:= 1τ=āe
−i〈k,x〉−is((−1)ā+1 θ(β)

2
−u)1τ∈B(k)U(k)((ρ− 1)b+ ρ, (τ − 1)b+ τ)

· 1 + e−β((−1)ā+1i
θ(β)

2
+êτ (k))

|1 + e−β((−1)ā+1i
θ(β)

2
+êτ (k))| 32

√
êτ (k)

π

1

iu+ êτ (k)
,

ĝāρρxs(τ , τ,k, u)

:= 1τ=āe
−i〈k,x〉−is((−1)ā+1 θ(β)

2
−u)1τ∈B(k)U(k)∗((τ − 1)b+ τ, (ρ− 1)b+ ρ)

· 1

|1 + e−β((−1)ā+1i
θ(β)

2
+êτ (k))| 12

√
êτ (k)

π

1

iu+ êτ (k)
.

Then let us define f̂≥X , f̂<X , ĝ≥X , ĝ<X ∈ Ĥ (X ∈ {1, 2} × B × Γ× [0, β)) by

f̂≥ρρxs = f̂<ρρxs := f̂1
ρρxs + f̂2

ρρx(−s),(3.44)

ĝ≥ρρxs := ĝ1
ρρx(β+s) + ĝ2

ρρx(−s), ĝ<ρρxs := ĝ1
ρρxs + ĝ2

ρρx(β−s).

By applying (3.37) repeatedly we can confirm that for any (ρ, ρ,x, s),

(η, η,y, t) ∈ {1, 2} × B × Γ× [0, β)

1s≥t〈f̂≥ρρxs, ĝ
≥
ηηyt〉Ĥ = 1s≥t(〈f̂1

ρρxs, ĝ
1
ηηy(β+t)〉Ĥ + 〈f̂2

ρρx(−s), ĝ
2
ηηy(−t)〉Ĥ)

= 1s≥tC
≥
1−2(ρρxs, ηηyt),

1s<t〈f̂<ρρxs, ĝ<ηηyt〉Ĥ = 1s<t(〈f̂1
ρρxs, ĝ

1
ηηyt〉Ĥ + 〈f̂2

ρρx(−s), ĝ
2
ηηy(β−t)〉Ĥ)

= 1s<tC
<
1−2(ρρxs, ηηyt),

and thus

C1−2(ρρxs, ηηyt) = 1s≥t〈f̂≥ρρxs, ĝ
≥
ηηyt〉Ĥ − 1s<t〈f̂<ρρxs, ĝ<ηηyt〉Ĥ.(3.45)

To estimate the norms of f̂≥X , f̂<X , ĝ≥X , ĝ<X (X ∈ {1, 2} × B × Γ× [0, β)), let

us observe that for k ∈ Γ∗, τ ∈ B(k), ā ∈ {1, 2}

|1 + e−β((−1)ā+1i
θ(β)

2
+êτ (k))|2 ≥ (1− e−βêτ (k))2 ≥ (1− e−1)2,(3.46)

where we used the fact that êτ (k) ≥ xk + 1
2(b+1)β ≥ 1/β. Taking into

account (3.46) and the unitary property of U(k) and using (3.37), we can

derive that for any (ρ, ρ,x, s) ∈ {1, 2} × B × Γ× [0, β) and A ∈ {f, g}

‖Â≥
ρρxs‖2Ĥ = ‖Â<

ρρxs‖2Ĥ = ‖Â1
ρρ00‖2Ĥ + ‖Â2

ρρ00‖2Ĥ
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≤ c

Ld

∑
(τ ,τ)∈{1,2}×B

∑
k∈Γ∗

|U(k)((ρ− 1)b+ ρ, (τ − 1)b+ τ))|2 = c.

With these bounds we can apply [20, Theorem 1.3] in (3.45) and conclude

that

|det(〈ui,wj〉CmC1−2(Xi, Yj))1≤i,j≤n| ≤ cn,(3.47)

(∀m,n ∈ N, ui,wi ∈ C
m with ‖ui‖Cm , ‖wi‖Cm ≤ 1, Xi, Yi ∈ I0

(i = 1, · · · , n)).

Since we have (3.43) and (3.47), we can apply the Cauchy-Binet formula

in a standard way (see e.g. [13, Lemma A.1]) in (3.35) to obtain the claimed

determinant bound. �

3.2. General estimation

Let V denote the complex vector space spanned by the abstract basis

{ψX}X∈I . Then let
∧
V be the Grassmann algebra generated by {ψX}X∈I

and
∧

even V be the subspace of
∧
V spanned by even monomials. These

Grassmann algebras are exactly same as those defined in [14]. The grand

canonical partition function and the thermal expectations are formulated

into a hybrid of Gaussian integral with real variables and Grassmann Gaus-

sian integral over
∧
V in the same way as [14, Lemma 3.6]. As in the pre-

vious papers, the proof of Theorem 1.3 relies on analysis of the Grassmann

Gaussian integral appearing in the hybrid formulation. The aim of this

subsection is to summarize necessary estimates of the output of the Grass-

mann Gaussian integral in a generalized setting. Here we do not introduce

concrete model-dependent Grassmann polynomials or covariances. We only

assume generic properties of Grassmann polynomials and a covariance. The

estimates can be used as tools to analyze the Grassmann integral formula-

tion if the real Grassmann polynomials and the real covariances stemming

from the model are substituted. In fact all the inequalities claimed be-

low are straightforward variants of the results of [13, Subsection 3.2], [14,

Subsection 4.2]. We only provide minimum sketches of the proofs rather

than fully repeat parallel arguments. However, the resulting inequalities

themselves will be stated without omission. We will see that seemingly sub-

tle changes from the previous estimates constitute the essence of the proof

of Theorem 1.3.
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In this subsection we assume that the covariance C : I2
0 → C satisfies

with a constant D ∈ R>0 that

C(ρρxs, ηηyt) = C(ρρx0, ηηy0), (∀(ρ, ρ,x, s), (η, η,y, t) ∈ I0),(3.48)

|det(〈ui,wj〉CmC(Xi, Yj))1≤i,j≤n| ≤ Dn,

(∀m,n ∈ N, ui,wi ∈ C
m with ‖ui‖Cm , ‖wi‖Cm ≤ 1, Xi, Yi ∈ I0

(i = 1, · · · , n)).

A common property satisfied by kernels of Grassmann polynomials in the

following analysis is the invariance

F (Rβ(X + s)) = F (X),

(
∀X ∈ Im, s ∈ 1

h
Z

)
,(3.49)

where F : Im → C. Let us refer to [14, Subsection 4.2] for the definition of

the map Rβ. Also, the meaning of the notation X + s is explained in [13,

Subsection 3.1] in a parallel situation. The property (3.48) implies that its

extension C̃ : I2 → C defined as in (3.2) satisfies (3.49). In the following we

assume that F j(ψ) (j ∈ N), F (ψ) ∈
∧

even V and the anti-symmetric kernels

F j
m : Im → C, Fm : Im → C (m = 2, 4, · · · , N) satisfy (3.49). Here N

denotes 4bβhLd, the cardinality of I. We use these Grassmann polynomials

as input to the tree expansions. As another input, we take G ∈
∧

even V
having the form

G(ψ) =
N∑

p,q=2

1p,q∈2N

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

Gp,q(X,Y)ψXψY

with the bi-anti-symmetric kernels Gp,q : Ip × Iq → C (p, q = 2, 4, · · · , N)

satisfying (3.49) and the vanishing property

∑
(s1,··· ,sp)∈[0,β)ph

Gp,q((ρ1ρ1x1s1ξ1, · · · , ρpρpxpspξp),Y)f(s1, · · · , sp) = 0,

(3.50)

(∀(ρ1, ρ1,x1, ξ1), · · · , (ρp, ρp,xp, ξp) ∈ {1, 2} × B × Γ× {1,−1}, Y ∈ Iq),∑
(t1,··· ,tq)∈[0,β)qh

Gp,q(X, (η1η1y1t1ζ1, · · · , ηqηqyqtqζq))g(t1, · · · , tq) = 0,
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(∀X ∈ Ip, (η1, η1,y1, ζ1), · · · , (ηq, ηq,yq, ζq) ∈ {1, 2} × B × Γ× {1,−1}),

for any f : [0, β)ph → C, g : [0, β)qh → C satisfying that

f(rβ(s1 + s), · · · , rβ(sp + s)) = f(s1, · · · , sp),(
∀(s1, · · · , sp) ∈ [0, β)ph, s ∈

1

h
Z

)
,

g(rβ(s1 + s), · · · , rβ(sq + s)) = g(s1, · · · , sq),(
∀(s1, · · · , sq) ∈ [0, β)qh, s ∈

1

h
Z

)
.

Recall that for any s ∈ 1
hZ, rβ(s) ∈ [0, β)h and rβ(s) = s in 1

hZ/βZ.

The definition of the map rβ : 1
hZ → [0, β)h was originally given in [13,

Subsection 3.2]. We also introduce Gj ∈
∧

even V (j ∈ N), assuming that Gj

has the bi-anti-symmetric kernels Gj
p,q : Ip × Iq → C (p, q = 2, 4, · · · , N)

satisfying (3.49) and (3.50).

For n ∈ N≥2, l ∈ {0, 1, · · · , n} we define A(n,l)(ψ) ∈
∧

even V by

A(n,l)(ψ) := Tree({1, 2, · · · , n}, C)
l∏

j=1

F j(ψj + ψ)

·
n∏

k=l+1

Gk(ψk + ψ)

∣∣∣∣∣ ψi=0
(∀i∈{1,··· ,n})

.

The definition of the operator “Tree({1, · · · , n}, C)” is written in [13, Sub-

section 3.1]. It applies to the present case if we add the set B to the index

set “I” of [13]. In fact the current version of Tree({1, · · · , n}, C) is exactly

same as that used in [14, Subsection 4.2]. In the first lemma we summarize

necessary bound properties of the anti-symmetric kernels of A(n,l)(ψ). Let

us refer to [14, Subsection 4.1] for the definition of the norm ‖ · ‖1.

Lemma 3.5. For any m ∈ {2, 4, · · · , N}, n ∈ N≥2, l ∈ {0, 1, · · · , n}
the anti-symmetric kernel A

(n,l)
m (·) satisfies (3.49). Moreover, the following

inequalities hold for any m ∈ {0, 2, · · · , N}, n ∈ N≥2, l ∈ {0, 1, · · · , n},
l′ ∈ {1, 2, · · · , n}.

‖A(n,l)
m ‖1,∞(3.51)
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≤
(
N

h

)1m=0

(n− 2)!D−n+1−m
2 2−2m‖C̃‖n−1

1,∞

·
l∏

j=1

 N∑
pj=2

23pjD
pj
2 ‖F j

pj‖1,∞

 n∏
k=l+1

 N∑
pk=4

23pkD
pk
2 ‖Gk

pk
‖1,∞


· 1∑ n

j=1 pj−2(n−1)≥m≥2(n−l).

‖A(n,l′)
m ‖1(3.52)

≤ (n− 2)!D−n+1−m
2 2−2m‖C̃‖n−1

1,∞

N∑
p1=2

23p1D
p1
2 ‖F 1

p1
‖1

·
l′∏

j=2

 N∑
pj=2

23pjD
pj
2 ‖F j

pj‖1,∞

 n∏
k=l′+1

 N∑
pk=4

23pkD
pk
2 ‖Gk

pk
‖1,∞


· 1∑ n

j=1 pj−2(n−1)≥m≥2(n−l′).

Proof. The statement concerning the property (3.49) is essentially

implied by [13, Lemma 3.1]. Let us define the map P0 : Im → Im by

P0((ρ1, ρ1,x1, s1, ξ1), · · · , (ρm, ρm,xm, sm, ξm))

:= ((ρ1, ρ1,x1, 0, ξ1), · · · , (ρm, ρm,xm, 0, ξm)),

(∀(ρj , ρj ,xj , sj , ξj) ∈ I (j = 1, · · · ,m)).

Let us use the notation P0 for different m for simplicity. Then by taking

into account anti-symmetry and the time-independent property (3.48) we

observe that for m ∈ {0, 2, · · · , N}, n ∈ N≥2, l ∈ {0, 1, · · · , n}

A(n,l)
m (ψ) = Tree({1, · · · , n}, C)

·
l∏

j=1

(
N∑

nj=2

nj−1∑
mj=0

(
nj
mj

)(
1

h

)nj

·
∑

Xj∈Imj

∑
Yj∈Inj−mj

F j
nj (Yj ,Xj)ψ

j
P0(Yj)

ψXj

)

·
n∏

k=l+1

(
N∑

nk=4

nk−1∑
mk=0

(
nk
mk

)(
1

h

)nk
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·
∑

Xk∈Imk

∑
Yk∈Ink−mk

Gk
nk

(Yk,Xk)ψ
k
P0(Yk)ψXk

)

·
∣∣∣∣∣ ψi=0
(∀i∈{1,··· ,n})

1∑ n
j=1 mj=m.

By the uniqueness of an anti-symmetric kernel, for any X = (X1, · · · , Xnk)

∈ Ink

Gk
nk

(X)

=

N∑
p,q=2

1p,q∈2N1p+q=nk

· 1

nk!

∑
σ∈Snk

sgn(σ)Gk
p,q((Xσ(1), · · · , Xσ(p)), (Xσ(p+1), · · · , Xσ(p+q))),

where Snk is the set of permutations of {1, · · · , nk} and sgn(σ) is the sign

of σ ∈ Snk . If mk ≤ 1, the property (3.50) implies that∑
Yk∈Ink−mk

Gk
nk

(Yk,Xk)ψ
k
P0(Yk) = 0

for any Xk ∈ Imk . Therefore

A(n,l)
m (ψ)

= Tree({1, · · · , n}, C)

·
l∏

j=1

(
N∑

nj=2

nj−1∑
mj=0

(
nj
mj

)(
1

h

)nj ∑
Xj∈Imj

∑
Yj∈Inj−mj

F j
nj (Yj ,Xj)ψ

j
Yj
ψXj

)

·
n∏

k=l+1

(
N∑

nk=4

nk−1∑
mk=0

(
nk
mk

)(
1

h

)nk

·
∑

Xk∈Imk

∑
Yk∈Ink−mk

Gk
nk

(Yk,Xk)ψ
k
Yk
ψXk

)

·
∣∣∣∣∣ ψi=0
(∀i∈{1,··· ,n})

1∑ n
j=1 mj=m≥2(n−l)
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= 1m≥2(n−l)A
(n,l)
m (ψ).

We can apply the inequality “(3.16)” of [13, Lemma 3.1] or “(4.8)” of

[14, Lemma 4.1] to estimate the anti-symmetric kernel of A
(n,l)
m (ψ). Mul-

tiplying the result by 1m≥2(n−l) yields (3.51). Now we have A
(n,l′)
m (ψ) =

1m≥2(n−l′)A
(n,l′)
m (ψ). We can apply “(3.17)” of [13, Lemma 3.1] or “(4.9)” of

[14, Lemma 4.1] to bound ‖A(n,l′)
m ‖1 and multiply the result by 1m≥2(n−l′)

to obtain (3.52). �

Next we consider the Grassmann polynomials B(n)(ψ), B̂(n′)(ψ) ∈∧
even V (n ∈ N, n′ ∈ N≥2) defined as below.

B(n)(ψ) :=
N∑

p,q=2

1p,q∈2N

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

Gp,q(X,Y)Tree({1, · · · , n+ 1}, C)

· (ψ1 + ψ)X(ψ2 + ψ)Y

n+1∏
j=3

Gj(ψj + ψ)

∣∣∣∣∣ ψi=0
(∀i∈{1,··· ,n+1})

,

B̂(n′)(ψ) :=

N∑
p,q=2

1p,q∈2N

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

Gp,q(X,Y)Tree({1, · · · , n′ + 1}, C)

· (ψ1 + ψ)X(ψ2 + ψ)Y

·
n′∏
j=3

Gj(ψj + ψ)F (ψn′+1 + ψ)

∣∣∣∣∣ ψi=0
(∀i∈{1,··· ,n′+1})

.

The anti-symmetric kernels of these polynomials can be estimated as follows.

See [14, Subsection 4.1] for the definition of the measurement [·, ·]1,∞.

Lemma 3.6. For any m ∈ {2, 4, · · · , N}, n ∈ N, n′ ∈ N≥2 the anti-

symmetric kernels B
(n)
m (·), B̂(n′)

m (·) satisfy (3.49). Moreover, the following

inequalities hold for any m ∈ {0, 2, · · · , N}, n ∈ N≥2.

‖B(1)
m ‖1,∞

(3.53)
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≤ D−1−m
2

N∑
p1,p2=2

1p1,p2∈2N22p1+2p2D
p1+p2

2 [Gp1,p2 , C̃]1,∞1p1+p2−2≥m≥2.

‖B(n)
m ‖1,∞ ≤ (n− 1)!D−n−m

2 2−2m‖C̃‖n−1
1,∞

(3.54)

·
N∑

p1,p2=2

1p1,p2∈2N23p1+3p2D
p1+p2

2 [Gp1,p2 , C̃]1,∞

·
n+1∏
j=3

 N∑
pj=4

23pjD
pj
2 ‖Gj

pj‖1,∞

 1∑ n+1
j=1 pj−2n≥m≥2n.

‖B̂(n)
m ‖1 ≤ (n− 1)!D−n−m

2 2−2m‖C̃‖n−1
1,∞

(3.55)

·
N∑

p1,p2=2

1p1,p2∈2N23p1+3p2D
p1+p2

2 [Gp1,p2 , C̃]1,∞

·
n∏

j=3

 N∑
pj=4

23pjD
pj
2 ‖Gj

pj‖1,∞


·

N∑
pn+1=2

23pn+1D
pn+1

2 ‖Fn+1
pn+1

‖11∑ n+1
j=1 pj−2n≥m≥2n−2.

Proof. The first statement of the lemma is essentially proved in [13,

Lemma 3.2]. By the same consideration based on anti-symmetry and the

properties (3.48), (3.50) as in the proof of Lemma 3.5 we can deduce that

for any n ∈ N≥2, m ∈ {0, 2, · · · , N}

B̂(n)
m (ψ)

=
N∑

p1,p2=2

(
1

h

)p1+p2 p1−1∑
m1=0

p2−1∑
m2=0

(
p1
m1

)(
p2
m2

)
·

∑
X1∈Im1

Y1∈Ip1−m1

∑
X2∈Im2

Y2∈Ip2−m2

Gp1,p2((Y1,X1), (Y2,X2))
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· Tree({1, · · · , n+ 1}, C)ψ1
Y1
ψX1ψ

2
Y2
ψX2

·
n∏

j=3

(
N∑

pj=4

(
1

h

)pj pj−1∑
mj=0

(
pj
mj

) ∑
Xj∈Imj

Yj∈Ipj−mj

Gj
pj (Yj ,Xj)ψ

j
Yj
ψXj

)

·
N∑

pn+1=2

(
1

h

)pn+1
pn+1−1∑
mn+1=0

(
pn+1

mn+1

)
·

∑
Xn+1∈Imn+1

Yn+1∈Ipn+1−mn+1

Fpn+1(Yn+1,Xn+1)ψ
n+1
Yn+1

ψXn+1

·
∣∣∣∣∣ ψi=0
(∀i∈{1,··· ,n+1})

1∑ n+1
j=1 mj=m≥2n−2

= 1m≥2n−2B̂
(n)
m (ψ).

In the first equality we took into account the constraints m1 ≥ 1, m2 ≥ 1,

mj ≥ 2 (j = 3, · · · , n). Then we can apply “(3.27)” of [13, Lemma 3.2]

or “(4.14)” of [14, Lemma 4.2] to derive (3.55). In the same way as above

we have that for any m ∈ {0, 2, · · · , N}, n ∈ N≥2 B
(1)
m (ψ) = 1m≥2B

(1)
m (ψ),

B
(n)
m (ψ) = 1m≥2nB

(n)
m (ψ). Then we can apply “(3.24)” of [13, Lemma 3.2] or

“(4.11)” of [14, Lemma 4.2] to derive (3.53) and “(3.26)” of [13, Lemma 3.2]

or “(4.13)” of [14, Lemma 4.2] to derive (3.54). �

Assume that n ∈ N, m ∈ {0, 1, · · · , n− 1},

1 = s1 < s2 < · · · < sm+1 ≤ n, 1 = t1 < t2 < · · · < tn−m ≤ n,
{sj}m+1

j=2 ∪ {tk}n−m
k=2 = {2, 3, · · · , n}, {sj}m+1

j=2 ∩ {tk}n−m
k=2 = ∅.

Finally let us study the Grassmann polynomials E(n)(ψ), Ê(n)(ψ) ∈
∧

even V
defined as follows.

E(n)(ψ) :=

N∑
p,q=2

1p,q∈2N

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

Gp,q(X,Y)

· Tree({sj}m+1
j=1 , C)(ψ1 + ψ)X

m+1∏
j=2

Gsj (ψsj + ψ)

∣∣∣∣∣ ψsj=0
(∀j∈{1,2,··· ,m+1})
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· Tree({tk}n−m
k=1 , C)(ψ1 + ψ)Y

n−m∏
k=2

Gtk(ψtk + ψ)

∣∣∣∣∣ ψtk=0
(∀k∈{1,2,··· ,n−m})

,

Ê(n)(ψ) :=
N∑

p,q=2

1p,q∈2N

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

Gp,q(X,Y)

· Tree({sj}m+1
j=1 , C)(ψ1 + ψ)X

·
m+1∏
j=2

(1sj �=nG
sj (ψsj + ψ) + 1sj=nF (ψsj + ψ))

∣∣∣∣∣ ψsj=0
(∀j∈{1,2,··· ,m+1})

· Tree({tk}n−m
k=1 , C)(ψ1 + ψ)Y

·
n−m∏
k=2

(1tk �=nG
tk(ψtk + ψ) + 1tk=nF (ψtk + ψ))

∣∣∣∣∣ ψtk=0
(∀k∈{1,2,··· ,n−m})

.

These Grassmann polynomials are special examples of those studied in [14,

Lemma 4.4] and also close to those studied in [13, Lemma 3.3]. The prop-

erties we need for later application are summarized in the next lemma. The

definition of the measurement [·, ·]1 is found in [14, Subsection 4.1].

Lemma 3.7. For any n ∈ N, a, b ∈ {2, 4, · · · , N} there exist functions

E
(n)
a,b , Ê

(n)
a,b : Ia×Ib → C such that they are bi-anti-symmetric, satisfy (3.49),

(3.50) and

E(n)(ψ) =

N∑
a,b=2

1a,b∈2N

(
1

h

)a+b ∑
X∈Ia
Y∈Ib

E
(n)
a,b (X,Y)ψXψY,

Ê(n)(ψ) =
N∑

a,b=2

1a,b∈2N

(
1

h

)a+b ∑
X∈Ia
Y∈Ib

Ê
(n)
a,b (X,Y)ψXψY.

Moreover, the following inequalities hold for any a, b ∈ {2, 4, · · · , N}, n ∈
N≥2 and anti-symmetric function g : I2 → C.

‖E(1)
a,b‖1,∞ ≤

N∑
p=a

N∑
q=b

1p,q∈2N

(
p

a

)(
q

b

)
D

1
2
(p+q−a−b)‖Gp,q‖1,∞.

(3.56)
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[E
(1)
a,b , g]1,∞ ≤

N∑
p=a

N∑
q=b

1p,q∈2N

(
p

a

)(
q

b

)
D

1
2
(p+q−a−b)[Gp,q, g]1,∞.

(3.57)

‖E(n)
a,b ‖1,∞

(3.58)

≤ (1m�=0(m− 1)! + 1m=0)(1m�=n−1(n−m− 2)! + 1m=n−1)

· 2−2a−2bD−n+1− 1
2
(a+b)‖C̃‖n−1

1,∞

N∑
p1,q1=2

1p1,q1∈2N23p1+3q1D
p1+q1

2 ‖Gp1,q1‖1,∞

·
m+1∏
j=2

(
N∑

pj=4

23pjD
pj
2 ‖Gsj

pj‖1,∞
)

n−m∏
k=2

(
N∑

qk=4

23qkD
qk
2 ‖Gtk

qk
‖1,∞

)
· 1∑ m+1

j=1 pj−2m≥a≥2m+21
∑ n−m

k=1 qk−2(n−m−1)≥b≥2(n−m).

[E
(n)
a,b , g]1,∞

(3.59)

≤ (1m�=0(m− 1)! + 1m=0)(1m�=n−1(n−m− 2)! + 1m=n−1)

· 2−2a−2bD−n+1− 1
2
(a+b)‖C̃‖n−2

1,∞

·
N∑

p1,q1=2

1p1,q1∈2N23p1+3q1D
p1+q1

2

· ([Gp1,q1 , g]1,∞‖C̃‖1,∞ + [Gp1,q1 , C̃]1,∞‖g‖1,∞)

·
m+1∏
j=2

(
N∑

pj=4

23pjD
pj
2 ‖Gsj

pj‖1,∞
)

n−m∏
k=2

(
N∑

qk=4

23qkD
qk
2 ‖Gtk

qk
‖1,∞

)
· 1∑ m+1

j=1 pj−2m≥a≥2m+21
∑ n−m

k=1 qk−2(n−m−1)≥b≥2(n−m).

‖Ê(n)
a,b ‖1

(3.60)

≤ (1m�=0(m− 1)! + 1m=0)(1m�=n−1(n−m− 2)! + 1m=n−1)

· 2−2a−2bD−n+1− 1
2
(a+b)‖C̃‖n−1

1,∞

N∑
p1,q1=2

1p1,q1∈2N23p1+3q1D
p1+q1

2 ‖Gp1,q1‖1,∞
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·
m+1∏
j=2

(
N∑

pj=2

23pjD
pj
2 (1sj �=n‖Gsj

pj‖1,∞ + 1sj=n‖Fpj‖1)
)

·
n−m∏
k=2

(
N∑

qk=2

23qkD
qk
2 (1tk �=n‖Gtk

qk
‖1,∞ + 1tk=n‖Fqk‖1)

)
· 1∑ m+1

j=1 pj−2m≥a≥2m+2−21
n∈{sj}

m+1
j=2

· 1∑ n−m
k=1 qk−2(n−m−1)≥b≥2(n−m)−21

n∈{tk}
n−m
k=2

.

[Ê
(n)
a,b , g]1

(3.61)

≤ (1m�=0(m− 1)! + 1m=0)(1m�=n−1(n−m− 2)! + 1m=n−1)

· 2−2a−2bD−n+1− 1
2
(a+b)‖C̃‖n−2

1,∞

·
N∑

p1,q1=2

1p1,q1∈2N23p1+3q1D
p1+q1

2

· ([Gp1,q1 , g]1,∞‖C̃‖1,∞ + [Gp1,q1 , C̃]1,∞‖g‖1,∞)

·
m+1∏
j=2

(
N∑

pj=2

23pjD
pj
2 (1sj �=n‖Gsj

pj‖1,∞ + 1sj=n‖Fpj‖1)
)

·
n−m∏
k=2

(
N∑

qk=2

23qkD
qk
2 (1tk �=n‖Gtk

qk
‖1,∞ + 1tk=n‖Fqk‖1)

)
· 1∑ m+1

j=1 pj−2m≥a≥2m+2−21
n∈{sj}

m+1
j=2

· 1∑ n−m
k=1 qk−2(n−m−1)≥b≥2(n−m)−21

n∈{tk}
n−m
k=2

.

Remark 3.8. In fact the inequalities (3.56), (3.57) are same as

“(4.16)”, “(4.18)” of [14, Lemma 4.4] respectively. However, we present

them for convenience in the subsequent application.

Proof. The existence of the bi-anti-symmetric kernels satisfying the

claimed properties is essentially implied by [13, Lemma 3.3]. In fact the

kernels are explicitly given in [14, (4.15)] in a more general setting. To
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make clear, let us present the kernel Ê
(n)
a,b : Ia × Ib → C for n ∈ N, a, b ∈

{2, 4, · · · , N}. For X = (X1, · · · , Xa) ∈ Ia, Y = (Y1, · · · , Yb) ∈ Ib

Ê
(n)
a,b (X,Y)

=
N∑

p1,q1=2

1p1,q1∈2N

p1∑
u1=0

(1m=0 + 1m�=01u1≤p1−1)

(
p1
u1

)

·
q1∑

v1=0

(1m=n−1 + 1m�=n−11v1≤q1−1)

(
q1
v1

)

·
(

1

h

)p1+q1−u1−v1 ∑
W1∈Ip1−u1

∑
Z1∈Iq1−v1

Gp1,q1((W1,X
′
1), (Z1,Y

′
1))

·
m+1∏
j=2

(
1sj �=n

N∑
pj=4

pj−1∑
uj=0

(
pj
uj

)(
1

h

)pj−uj ∑
Wj∈Ipj−uj

G
sj
pj (Wj ,X

′
j)

+ 1sj=n

N∑
pj=2

pj−1∑
uj=0

(
pj
uj

)(
1

h

)pj−uj ∑
Wj∈Ipj−uj

Fpj (Wj ,X
′
j)

)

·
n−m∏
k=2

(
1tk �=n

N∑
qk=4

qk−1∑
vk=0

(
qk
vk

)(
1

h

)qk−vk ∑
Zk∈Iqk−vk

Gtk
qk

(Zk,Y
′
k)

+ 1tk=n

N∑
qk=2

qk−1∑
vk=0

(
qk
vk

)(
1

h

)qk−vk ∑
Zk∈Iqk−vk

Fqk(Zk,Y
′
k)

)

· Tree({sj}m+1
j=1 , C)

m+1∏
j=1

ψ
sj
Wj

∣∣∣∣∣ ψsj=0
(∀j∈{1,··· ,m+1})

· Tree({tk}n−m
k=1 , C)

n−m∏
k=1

ψtk
Zk

∣∣∣∣∣ ψtk=0
(∀k∈{1,··· ,n−m})

· (−1)
∑ m

j=1 uj
∑ m+1

i=j+1(pi−ui)+
∑ n−m−1

k=1 vk
∑ n−m

i=k+1(qi−vi)1∑ m+1
j=1 uj=a1

∑ n−m
k=1 vk=b

· 1

a!b!

∑
σ∈Sa
τ∈Sb

sgn(σ) sgn(τ)1(X′
1,··· ,X′

m+1)=(Xσ(1),··· ,Xσ(a))

· 1(Y′
1,··· ,Y′

n−m)=(Yτ(1),··· ,Yτ(b))
.
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By considering (3.48), (3.50) we can substitute the constraints

u1 ≥ 1, uj ≥ 21sj �=n, (∀j ∈ {2, · · · ,m+ 1}),
v1 ≥ 1, vk ≥ 21tk �=n, (∀k ∈ {2, · · · , n−m}).

Moreover, by using the fact that a, b must be even we have that

Ê
(n)
a,b (X,Y) = 1a≥2m+2−21

n∈{sj}
m+1
j=2

1b≥2(n−m)−21
n∈{tk}

n−m
k=2

Ê
(n)
a,b (X,Y),

and thus

‖Ê(n)
a,b ‖1 = 1a≥2m+2−21

n∈{sj}
m+1
j=2

1b≥2(n−m)−21
n∈{tk}

n−m
k=2

‖Ê(n)
a,b ‖1,

[Ê
(n)
a,b , g]1 = 1a≥2m+2−21

n∈{sj}
m+1
j=2

1b≥2(n−m)−21
n∈{tk}

n−m
k=2

[Ê
(n)
a,b , g]1

for any anti-symmetric function g : I2 → C. Then we can apply “(3.37)” of

[13, Lemma 3.3] (or “(4.21)” of [14, Lemma 4.4]), “(4.23)” of [14, Lemma

4.4] to obtain (3.60), (3.61) respectively. By the same consideration based

on (3.48), (3.50) and the parity of a, b we see that

‖E(n)
a,b ‖1,∞ = 1a≥2m+21b≥2(n−m)‖E(n)

a,b ‖1,∞,

[E
(n)
a,b , g]1,∞ = 1a≥2m+21b≥2(n−m)[E

(n)
a,b , g]1,∞

for any anti-symmetric function g : I2 → C. Then combination with

“(3.36)” of [13, Lemma 3.3] (or “(4.20)” of [14, Lemma 4.4]), “(4.22)” of

[14, Lemma 4.4] leads to (3.58), (3.59) respectively. �

3.3. Double-scale integration

In this subsection we construct a double-scale integration scheme based

on some general properties of a couple of covariances. With c0 ∈ R≥1, A,

B ∈ R>0 the covariances C0, C1 : I2
0 → C are assumed to satisfy the following

conditions.

•

C0(ρρxs, ηηyt) = C0(ρρx0, ηηy0), (∀(ρ, ρ,x, s), (η, η,y, t) ∈ I0).(3.62)

•

C1(Rβ(X + s)) = C1(X),

(
∀X ∈ I2

0 , s ∈
1

h
Z

)
.(3.63)
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•

|det(〈ui,wj〉CmCa(Xi, Yj))1≤i,j≤n| ≤ (c0(1a=0A+ 1a=1))
n,(3.64)

(∀m,n ∈ N, ui,wi ∈ C
m with ‖ui‖Cm , ‖wi‖Cm ≤ 1, Xi, Yi ∈ I0

(i = 1, · · · , n), a ∈ {0, 1}).

•

‖C̃a‖1,∞ ≤ c0B, (∀a ∈ {0, 1}).(3.65)

•

‖C̃a‖′1,∞ ≤ c0A, (∀a ∈ {0, 1}).(3.66)

We should think of them as generalizations of the covariances C0, C1 in-

troduced in Subsection 3.1. It is efficient to define the covariances by ab-

stracting the dependency on the physical parameters at this stage. On

the contrary, we explicitly define the input Grassmann polynomials to the

double-scale integration process as follows.

V 0−1,0(u)(ψ) :=

(
1

h

)2 ∑
X∈I2

V 0−1,0
2 (u)(X)ψX,

V 0−2,0(u)(ψ) :=

(
1

h

)4 ∑
X,Y∈I2

V 0−2,0
2,2 (u)(X,Y)ψXψY,

where the anti-symmetric kernel V 0−1,0
2 (u) : I2 → C and the bi-anti-

symmetric kernel V 0−2,0
2,2 (u) : I2 × I2 → C are defined by

V 0−1,0
2 (u)(ρ1ρ1x1s1ξ1, ρ2ρ2x2s2ξ2)

:= −1

2
uL−dh1(ρ1,ρ1,x1,s1)=(ρ2,ρ2,x2,s2)1ρ1=1(1(ξ1,ξ2)=(1,−1) − 1(ξ1,ξ2)=(−1,1)),

V 0−2,0
2,2 (u)(ρ1ρ1x1s1ξ1, ρ2ρ2x2s2ξ2, η1η1y1t1ζ1, η2η2y2t2ζ2)

:= −1

4
uL−dh2(h1s1=t1 − β−1)1(ρ1,x1,s1,η1,y1,t1)=(ρ2,x2,s2,η2,y2,t2)

·
∑

σ,τ∈S2

sgn(σ) sgn(τ)1(ρσ(1),ρσ(2),ητ(1),ητ(2))=(1,2,2,1)

· 1(ξσ(1),ξσ(2),ζτ(1),ζτ(2))=(1,−1,1,−1).
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Here u is a complex parameter and should be considered as an extension

of the coupling constant U . Though the definitions seem complicated, they

can be simply rewritten as follows.

V 0−1,0(u)(ψ) = − u

Ldh

∑
(ρ,x)∈B×Γ

∑
s∈[0,β)h

ψ1ρxsψ1ρxs,

V 0−2,0(u)(ψ) = − u

Ldh

∑
(ρ,x),(η,y)∈B×Γ

∑
s∈[0,β)h

ψ1ρxsψ2ρxsψ2ηysψ1ηys

(3.67)

+
u

βLdh2

∑
(ρ,x),(η,y)∈B×Γ

∑
s,t∈[0,β)h

ψ1ρxsψ2ρxsψ2ηytψ1ηyt.

We adopt [14, Lemma 3.6] as the formulation of our system. We can see from

(3.67) and [14, Lemma 3.6] that the Grassmann polynomial V 0−1,0(U)(ψ)+

V 0−2,0(U)(ψ) appears in the Grassmann integral formulation as the effective

interaction. Our first goal in this subsection is to construct an analytic

continuation of the
∧

even V-valued function

u 
→ log

(∫
eV

0−1,0(u)(ψ0+ψ)+V 0−2,0(u)(ψ0+ψ)dµC0(ψ
0)

)
in a neighborhood of the origin. Let us remark that we integrate with

the time-independent covariance C0 as the first step, while the integration

with the time-independent covariance was performed in the last step of the

multi-scale integrations in [13], [14]. The determinant bound on C0 is the

main problematic contribution from the sliced covariances, while the ‖·‖1,∞-

norm bound on the time-independent covariance was so in [13], [14]. We

integrate with the covariance C0 first in order to remove the main burden

on the possible magnitude of u. The output of the integration with C0 will

be integrated with C1 in the second step.

It will help us to organize our analysis if we prepare some sets of
∧

even V-

valued functions in advance. For r ∈ R>0, set D(r) := {z ∈ C | |z| < r}.
In the following α denotes a parameter belonging to R≥1. Admitting the

convention concerning choice of a norm of
∧

even V explained in the begin-

ning of [14, Subsection 4.4], for any domain D of C
n we let C(D,

∧
even V),

Cω(D,
∧

even V) denote the set of continuous maps from D to
∧

even V, the

set of analytic maps from D to
∧

even V respectively. Let us also refer to the
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beginning of [14, Subsection 4.4] for the definitions of the norm ‖ · ‖1,∞,r

of C(D(r),C) and C(D(r),Map(Im,C)) and the measurement [·, ·]1,∞,r for

a coupling between a function belonging to C(D(r),Map(Im,C)) and an

anti-symmetric function on I2. For r ∈ R>0 we define the subsets Q(r),

R(r) of Map(D(r),
∧

even V) as follows.

f ∈ Q(r) if and only if

•
f ∈ C

(
D(r),

∧
even

V
)
∩ Cω

(
D(r),

∧
even

V
)
.

• For any u ∈ D(r) the anti-symmetric kernels f(u)m : Im → C (m =

2, 4, · · · , N) satisfy (3.49) and

h

N
‖f0‖1,∞,r ≤ α−1AB−1L−d,(3.68)

N∑
m=2

c
m
2
0 α

m‖fm‖1,∞,r ≤ (A+ 1)B−1L−d.

f ∈ R(r) if and only if

•
f ∈ C

(
D(r),

∧
even

V
)
∩ Cω

(
D(r),

∧
even

V
)
.

• There exist fp,q ∈ C(D(r),Map(Ip×Iq,C)) (p, q ∈ {2, 4, · · · , N}) such

that for any u ∈ D(r), p, q ∈ {2, 4, · · · , N} fp,q(u) : Ip × Iq → C is

bi-anti-symmetric, satisfies (3.49), (3.50),

f(u)(ψ) =

N∑
p,q=2

1p,q∈2N

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

fp,q(u)(X,Y)ψXψY

and

N∑
p,q=2

c
p+q
2

0 αp+q‖fp,q‖1,∞,r ≤ B−1,(3.69)

N∑
p,q=2

c
p+q
2

0 αp+q[fp,q, g]1,∞,r ≤ B−1(‖g‖′1,∞ +AB−1‖g‖1,∞)L−d(3.70)
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for any anti-symmetric function g : I2 → C.

Next we arrange the Grassmann polynomials

1

n!

(
d

dz

)n

log

(∫
ezV

0−1,0(u)(ψ0+ψ)+zV 0−2,0(u)(ψ0+ψ)dµC0(ψ
0)

)∣∣∣∣∣
z=0

(3.71)

(n ∈ N) in the same way as in [13, Subsection 3.4]. One apparent difference

is that here we have the covariance C0 rather than C1. The difference in the

index of the covariances results in the difference in the second superscript of

the Grassmann polynomials. Let us remark that here the input polynomials

have 0 and the output polynomials have 1 in the second superscript. In [13,

Subsection 3.4] the Grassmann polynomials had the opposite numbers in

the second superscript. For n ∈ N we define V 0−1−1,1,(n), V 0−1−2,1,(n),

V 0−2,1,(n) ∈ Map(C,
∧

even V) as follows.

V 0−1−1,1,(n)(u)(ψ)

:=
1

n!
Tree({1, · · · , n}, C0)

n∏
j=1

( ∑
bj∈{1,2}

V 0−bj ,0(u)(ψj + ψ)

)∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n})

· 1∃j(bj=1),

V 0−1−2,1,(n)(u)(ψ)

:=

(
1

h

)4 ∑
X,Y∈I2

V 0−2,0
2,2 (u)(X,Y)

1

n!
Tree({1, · · · , n+ 1}, C0)

· (ψ1 + ψ)X(ψ2 + ψ)Y

n+1∏
j=3

V 0−2,0(u)(ψj + ψ)

∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n+1})

,

V 0−2,1,(n)(u)(ψ)

:=
1

n!

n−1∑
m=0

∑
({sj}m+1

j=1 ,{tk}n−m
k=1 )∈S(n,m)

(
1

h

)4 ∑
X,Y∈I2

V 0−2,0
2,2 (u)(X,Y)

· Tree({sj}m+1
j=1 , C0)(ψ

s1 + ψ)X

m+1∏
j=2

V 0−2,0(u)(ψsj + ψ)

∣∣∣∣∣ ψsj=0
(∀j∈{1,··· ,m+1})

· Tree({tk}n−m
k=1 , C0)(ψ

t1 + ψ)Y

n−m∏
k=2

V 0−2,0(u)(ψtk + ψ)

∣∣∣∣∣ ψtk=0
(∀k∈{1,··· ,n−m})

,
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where

S(n,m)

:=

({sj}m+1
j=1 , {tk}n−m

k=1 )

∣∣∣∣∣
1 = s1 < s2 < · · · < sm+1 ≤ n,
1 = t1 < t2 < · · · < tn−m ≤ n,
{sj}m+1

j=2 ∪ {tk}n−m
k=2 = {2, 3, · · · , n},

{sj}m+1
j=2 ∩ {tk}n−m

k=2 = ∅.

 .
The following equality is structurally same as [13, (3.56)], [14, (4.41)] and

originates from [17, (3.38)], [16, (IV.15)].

(The Grassmann polynomial (3.71))(3.72)

= V 0−1−1,1,(n)(u)(ψ) + V 0−1−2,1,(n)(u)(ψ) + V 0−2,1,(n)(u)(ψ).

Moreover, we set

V 0−1−j,1(u)(ψ) :=
∞∑
n=1

V 0−1−j,1,(n)(u)(ψ), (j = 1, 2),

V 0−1,1(u)(ψ) :=

2∑
j=1

V 0−1−j,1(u)(ψ),

V 0−2,1(u)(ψ) :=
∞∑
n=1

V 0−2,1,(n)(u)(ψ),

if they converge in
∧

even V. Bearing in mind that the constant A will be

β-dependent in practice, we want to prove the analyticity of u 
→ V 0−1,1(u),

u 
→ V 0−2,1(u) in an A-independent neighborhood of the origin. The ma-

chinery which essentially enables us to achieve this goal is the general es-

timations summarized in Subsection 3.2. They are applicable in the proof

below, mainly because V 0−1,0
2 (u) : I2 → C, V 0−2,0

2,2 (u) : I2 × I2 → C satisfy

(3.49), V 0−2,0
2,2 (u)(·) satisfies (3.50) and the covariance C0 satisfies (3.62).

Lemma 3.9. There exists c ∈ R>0 independent of any parameter such

that if α ≥ c,

V 0−1,1 ∈ Q(c−2
0 α−5b−1B−1), V 0−2,1 ∈ R(c−2

0 α−5b−1B−1).
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Proof. We set r := c−2
0 α−5b−1B−1. Let us begin by listing necessary

bounds on the input. It follows from the definitions that

‖V 0−1,0
2 ‖1,∞,r ≤ rL−d,(3.73)

‖V 0−2,0
2,2 ‖1,∞,r ≤ br,(3.74)

‖V 0−2,0
4 ‖1,∞,r ≤ ‖V 0−2,0

2,2 ‖1,∞,r ≤ br,(3.75)

[V 0−2,0
2,2 , g]1,∞,r ≤ rL−d(‖g‖′1,∞ + β−1‖g‖1,∞) ≤ 2rL−d‖g‖′1,∞.(3.76)

First let us consider V 0−1−1,1,(n). By “(3.14)” of [13, Lemma 3.1] or

“(4.6)” of [14, Lemma 4.1], (3.64) and (3.73), for m ∈ {0, 2, · · · , N}

‖V 0−1−1,1,(1)
m ‖1,∞,r ≤

(
N

h

)1m=0

(c0A)
2−m

2 rL−d1m≤2

≤
(
N

h

)1m=0

c
−m

2
0 A1−m

2 α−5B−1L−d1m≤2,

where we also used that c−1
0 ≤ 1. Moreover, by (3.51), (3.64), (3.65), (3.73)

and (3.75) for any n ∈ N≥2, m ∈ {0, 2, · · · , N}

‖V 0−1−1,1,(n)
m ‖1,∞,r ≤

(
N

h

)1m=0 n∑
l=1

(
n

l

)
(c0A)−n+1−m

2 2−2m(c0B)n−1

· (26c0ArL
−d)l(212c20A

2br)n−l12(n−l)+2≥m≥2(n−l).

Here we remark that when m = 0, only the term with l = n remains in the

right-hand side of the above inequality. It follows that

‖V 0−1−1,1,(1)
0 ‖1,∞,r ≤

N

h
AB−1L−dα−5,(3.77)

‖V 0−1−1,1,(n)
0 ‖1,∞,r ≤

N

h
A−n+1Bn−1(26c0ArL

−d)n(3.78)

≤ N

h
AB−1L−d(26α−5)n,

N∑
m=2

c
m
2
0 α

m‖V 0−1−1,1,(1)
m ‖1,∞,r ≤ c0α2rL−d ≤ α−3B−1L−d,(3.79)

N∑
m=2

c
m
2
0 α

m‖V 0−1−1,1,(n)
m ‖1,∞,r(3.80)
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≤ c
n∑
l=1

(
n

l

)
A−n+1Bn−1(26c0ArL

−d)l(212c20A
2br)n−l

· 2−4(n−l)A−(n−l)α2(n−l)(1 +A−1α2)

≤ cAB−1(1 +A−1α2)

n∑
l=1

(
n

l

)
(26c0BrL

−d)l(28c20Bα
2br)n−l

≤ cAB−1(1 +A−1α2)

n∑
l=1

(
n

l

)
(26α−5L−d)l(28α−3)n−l

≤ cB−1(A+ α2)L−d(29α−3)n.

Next let us study V 0−1−2,1,(n). We can apply (3.53), (3.64), (3.66), (3.76)

to derive that for m ∈ {0, 2, · · · , N}

‖V 0−1−2,1,(1)
m ‖1,∞,r ≤ c(c0A)−2(c0A)2rL−dc0A1m=2

≤ cc−1
0 α−5AB−1L−d1m=2.

For n ∈ N≥2 we use (3.54) instead of (3.53) and (3.75) together with (3.76)

to derive that

‖V 0−1−2,1,(n)
m ‖1,∞,r

≤ c(c0A)−n−m
2 2−2m(c0B)n−1(c0A)2rL−dc0A(212(c0A)2br)n−11m=2n

≤ cc−
m
2

0 AB−1L−d(28α−5)n1m=2n.

Thus

N∑
m=2

c
m
2
0 α

m‖V 0−1−2,1,(1)
m ‖1,∞,r ≤ cα−3AB−1L−d,(3.81)

N∑
m=2

c
m
2
0 α

m‖V 0−1−2,1,(n)
m ‖1,∞,r ≤ cAB−1L−d(28α−3)n.(3.82)

Assume that α3 ≥ 210. Then by (3.77), (3.78), (3.79), (3.80), (3.81) and

(3.82)

h

N

∞∑
n=1

‖V 0−1−1,1,(n)
0 ‖1,∞,r ≤ cα−5AB−1L−d,
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N∑
m=2

c
m
2
0 α

m
∞∑
n=1

(‖V 0−1−1,1,(n)
m ‖1,∞,r + ‖V 0−1−2,1,(n)

m ‖1,∞,r)

≤ cα−3(A+ 1)B−1L−d.

These uniform convergent properties imply the well-definedness of V 0−1,1

and the claimed regularity with u. It follows from the statements of [13,

Lemma 3.1] (or [14, Lemma 4.1]), Lemma 3.5, Lemma 3.6 that the kernels

of V 0−1,1 satisfy (3.49). Moreover, the above inequalities ensure that if

α ≥ c, V 0−1,1 satisfies (3.68). Therefore, V 0−1,1 ∈ Q(r) on the assumption

α ≥ c.
Let us treat V 0−2,1,(n). By Lemma 3.7 (or more originally by [13,

Lemma 3.3], [14, Lemma 4.4]) there are bi-anti-symmetric functions

V
0−2,1,(n)
a,b (u) : Ia × Ib → C (n ∈ N, a, b ∈ {2, 4, · · · , N}, u ∈ C) satis-

fying (3.49), (3.50) such that

V 0−2,1,(n)(u)(ψ) =

N∑
a,b=2

1a,b∈2N

(
1

h

)a+b ∑
X∈Ia
Y∈Ib

V
0−2,1,(n)
a,b (u)(X,Y)ψXψY,

(∀n ∈ N, u ∈ C).

By (3.56) and (3.74), for a, b ∈ {2, 4, · · · , N}

‖V 0−2,1,(1)
a,b ‖1,∞,r ≤ ‖V 0−2,0

a,b ‖1,∞,r1a=b=2 ≤ c−2
0 α−5B−11a=b=2,

and thus

N∑
a,b=2

1a,b∈2Nc
a+b
2

0 αa+b‖V 0−2,1,(1)
a,b ‖1,∞,r ≤ α−1B−1.(3.83)

For n ∈ N≥2, a, b ∈ {2, 4, · · · , N} the inequalities (3.58), (3.64), (3.65),

(3.74) and (3.75) yield that

‖V 0−2,1,(n)
a,b ‖1,∞,r

≤ 1

n!

n−1∑
m=0

∑
({sj}m+1

j=1 ,{tk}n−m
k=1 )∈S(n,m)

· (1m�=0(m− 1)! + 1m=0)(1m�=n−1(n−m− 2)! + 1m=n−1)
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· 2−2a−2b(c0A)−n+1− 1
2
(a+b)(c0B)n−1(212c20A

2br)n1a=2m+21b=2(n−m)

=
1

n!

n−1∑
m=0

(
n− 1

m

)
(1m�=0(m− 1)! + 1m=0)

· (1m�=n−1(n−m− 2)! + 1m=n−1)

· 28n−4c
−a+b

2
0 B−1α−5n1a=2m+21b=2(n−m).

Therefore,

N∑
a,b=2

1a,b∈2Nc
a+b
2

0 αa+b‖V 0−2,1,(n)
a,b ‖1,∞,r ≤ cα2B−1(28α−3)n.(3.84)

On the other hand, let us take an anti-symmetric function g : I2 → C. By

(3.57) and (3.76), for any a, b ∈ {2, 4, · · · , N}

[V
0−2,1,(1)
a,b , g]1,∞,r ≤ [V 0−2,0

2,2 , g]1,∞,r1a=b=2

≤ 2c−2
0 α−5B−1L−d‖g‖′1,∞1a=b=2.

Thus

N∑
a,b=2

1a,b∈2Nc
a+b
2

0 αa+b[V
0−2,1,(1)
a,b , g]1,∞,r ≤ 2α−1B−1L−d‖g‖′1,∞.(3.85)

For n ∈ N≥2, a, b ∈ {2, 4, · · · , N} we can apply (3.59), (3.64), (3.65), (3.66),

(3.75) and (3.76) to deduce that

[V
0−2,1,(n)
a,b , g]1,∞,r

≤ c

n!

n−1∑
m=0

∑
({sj}m+1

j=1 ,{tk}n−m
k=1 )∈S(n,m)

· (1m�=0(m− 1)! + 1m=0)(1m�=n−1(n−m− 2)! + 1m=n−1)

· 2−2a−2b(c0A)−n+1− 1
2
(a+b)(c0B)n−2c20A

2

· (rL−d‖g‖′1,∞c0B + rL−dc0A‖g‖1,∞)

· (212c20A
2br)n−11a=2m+21b=2(n−m)
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≤ c

n!

n−1∑
m=0

(
n− 1

m

)
(1m�=0(m− 1)! + 1m=0)

· (1m�=n−1(n−m− 2)! + 1m=n−1)

· 28nc
−a+b

2
0 B−1α−5nL−d(‖g‖′1,∞ +AB−1‖g‖1,∞)1a=2m+21b=2(n−m),

and thus

N∑
a,b=2

1a,b∈2Nc
a+b
2

0 αa+b[V
0−2,1,(n)
a,b , g]1,∞,r(3.86)

≤ cα2B−1L−d(‖g‖′1,∞ +AB−1‖g‖1,∞)(28α−3)n.

Assume that α3 ≥ 29. By summing up (3.83), (3.84), (3.85), (3.86) we

observe that

N∑
a,b=2

1a,b∈2Nc
a+b
2

0 αa+b
∞∑
n=1

‖V 0−2,1,(n)
a,b ‖1,∞,r ≤ (α−1 + cα−4)B−1,(3.87)

N∑
a,b=2

1a,b∈2Nc
a+b
2

0 αa+b
∞∑
n=1

[V
0−2,1,(n)
a,b , g]1,∞,r

≤ (2α−1 + cα−4)B−1(‖g‖′1,∞ +AB−1‖g‖1,∞)L−d.

The uniform convergence property (3.87) ensures the well-definedness of

V 0−2,1 and the claimed regularity with u. On the assumption α ≥ c we can

conclude from the above inequalities that V 0−2,1 ∈ R(r). �

Lemma 3.9 will support us in the derivation of the free energy density. In

order to derive the thermal expectations, on the other hand, we need to add

an artificial term to the input Grassmann polynomials and construct the

double-scale integration process by clarifying how the artificial term affects

the output. Let us fix (ρ̂, x̂), (η̂, ŷ) ∈ B × Γ∞, which are to represent the

sites where the Cooper pair density is measured. The artificial Grassmann

polynomial V 1,0(λ)(ψ) ∈
∧

even V parameterized by the artificial parameter

λ = (λ1, λ2) ∈ C
2 is defined as follows.

V 1,0(λ)(ψ) :=
∑

m∈{2,4}

(
1

h

)m ∑
X∈Im

V 1,0
m (λ)(X)ψX
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with the anti-symmetric kernels V 1,0
m (λ) : Im → C (m = 2, 4) defined by

V 1,0
2 (λ)(ρ1ρ1x1s1ξ1, ρ2ρ2x2s2ξ2)

:= −h
2
1s1=s2

∑
σ∈S2

sgn(σ)
(
λ11((ρσ(1),ρσ(1),xσ(1),ξσ(1)),(ρσ(2),ρσ(2),xσ(2),ξσ(2)))

=((1,ρ̂,rL(x̂),1),(2,ρ̂,rL(x̂),−1))

+ λ21((ρσ(1),ρσ(1),xσ(1),ξσ(1)),(ρσ(2),ρσ(2),xσ(2),ξσ(2)))

=((1,ρ̂,rL(x̂),1),(1,ρ̂,rL(x̂),−1))

1(ρ̂,rL(x̂))=(η̂,rL(ŷ))

)
,

V 1,0
4 (λ)(ρ1ρ1x1s1ξ1, ρ2ρ2x2s2ξ2, ρ3ρ3x3s3ξ3, ρ4ρ4x4s4ξ4)

:= −h
3

4!
λ21s1=s2=s3=s4

∑
σ∈S4

sgn(σ)

· 1((ρσ(1),ρσ(1),xσ(1),ξσ(1)),(ρσ(2),ρσ(2),xσ(2),ξσ(2)),(ρσ(3),ρσ(3),xσ(3),ξσ(3)),(ρσ(4),ρσ(4),xσ(4),ξσ(4)))

=((1,ρ̂,rL(x̂),1),(2,ρ̂,rL(x̂),−1),(2,η̂,rL(ŷ),1),(1,η̂,rL(ŷ),−1))

.

Remind us that the map rL : Γ∞ → Γ was defined just before the statement

of Theorem 1.3 in Subsection 1.2. We can confirm that

V 1,0(λ)(ψ)(3.88)

= −λ1

h

∑
s∈[0,β)h

ψ1ρ̂rL(x̂)sψ2ρ̂rL(x̂)s

− 1(ρ̂,rL(x̂))=(η̂,rL(ŷ))
λ2

h

∑
s∈[0,β)h

ψ1ρ̂rL(x̂)sψ1ρ̂rL(x̂)s

− λ2

h

∑
s∈[0,β)h

ψ1ρ̂rL(x̂)sψ2ρ̂rL(x̂)sψ2η̂rL(ŷ)sψ1η̂rL(ŷ)s.

As the second goal of this subsection we construct an analytic continuation

of the
∧

even V-valued function

(u,λ) 
→ log

(∫
eV

0−1,0(u)(ψ0+ψ)+V 0−2,0(u)(ψ0+ψ)+V 1,0(λ)(ψ0+ψ)dµC0(ψ
0)

)

in a neighborhood of the origin. The mission is seemingly close to that in

[13, Subsection 3.5]. However, the fact that the covariance is independent of

the time variables makes non-trivial differences in analysis. Let us introduce

sets of
∧

even V-valued functions in order to concisely describe properties of

the output of this single-scale integration. Let r, r′ ∈ R>0. We use the
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norm ‖ · ‖1,r,r′ on C(D(r) × D(r′)
2
,C) and C(D(r) × D(r′)

2
,Map(Im,C))

and the measurement [·, ·]1,r,r′ for a coupling between a function belonging

to C(D(r) × D(r′)
2
,Map(Im,C)) and an anti-symmetric function on I2.

The definition of these notions is found in [14, Subsection 4.5]. We define

the subset Q′(r, r′) of Map(D(r)× C
2,
∧

even V) as follows.

f ∈ Q′(r, r′) if and only if

•

f ∈ C
(
D(r)× C

2,
∧
even

V
)
∩ Cω

(
D(r)× C

2,
∧
even

V
)
.

• For any u ∈ D(r), λ 
→ f(u,λ)(ψ) : C
2 →

∧
even V is linear.

• For any (u,λ) ∈ D(r) × C
2 the anti-symmetric kernels f(u,λ)m :

Im → C (m = 2, 4, · · · , N) satisfy (3.49) and

‖f0‖1,r,r′ ≤ α−1L−d,
N∑

m=2

c
m
2
0 α

m‖fm‖1,r,r′ ≤ L−d.(3.89)

We also need a set of
∧

even V-valued functions with bi-anti-symmetric

kernels. Let us define the set R′(r, r′) as follows.

f ∈ R′(r, r′) if and only if

•

f ∈ C
(
D(r)× C

2,
∧
even

V
)
∩ Cω

(
D(r)× C

2,
∧
even

V
)
.

• For any u ∈ D(r), λ 
→ f(u,λ)(ψ) : C
2 →

∧
even V is linear.

• There exist fp,q ∈ C(D(r)× C
2,Map(Ip × Iq,C)) (p, q = 2, 4, · · · , N)

such that for any (u,λ) ∈ D(r) × C
2, p, q ∈ {2, 4, · · · , N} fp,q(u,λ) :

Ip × Iq → C is bi-anti-symmetric, satisfies (3.49), (3.50),

f(u,λ)(ψ) =

N∑
p,q=2

1p,q∈2N

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

fp,q(u,λ)(X,Y)ψXψY

and
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N∑
p,q=2

c
p+q
2

0 αp+q‖fp,q‖1,r,r′ ≤ 1,(3.90)

N∑
p,q=2

c
p+q
2

0 αp+q[fp,q, g]1,r,r′ ≤ (‖g‖′1,∞ +AB−1‖g‖1,∞)L−d(3.91)

for any anti-symmetric function g : I2 → C.

We must prepare a set which can contain the direct descent from V 1,0.

The definition is as below.

f ∈ S(r, r′) if and only if

•

f ∈ C
(
D(r)× C

2,
∧
even

V
)
∩ Cω

(
D(r)× C

2,
∧
even

V
)
.

• For any u ∈ D(r), λ 
→ f(u,λ)(ψ) : C
2 →

∧
even V is linear.

• For any (u,λ) ∈ D(r) × C
2 the anti-symmetric kernels f(u,λ)m :

Im → C (m = 2, 4, · · · , N) satisfy (3.49) and

‖f0‖1,r,r′ ≤ α−1,

N∑
m=2

c
m
2
0 α

m‖fm‖1,r,r′ ≤ 1.(3.92)

Finally we define a set of
∧

even V-valued functions depending on λ at

least quadratically.

f ∈ W(r, r′) if and only if

•

f ∈ C
(
D(r)×D(r′)

2
,
∧
even

V
)
∩ Cω

(
D(r)×D(r′)2,

∧
even

V
)
.

• For any u ∈ D(r), j ∈ {1, 2} f(u,0)(ψ) = ∂
∂λj
f(u,0)(ψ) = 0.

• For any (u,λ) ∈ D(r) × D(r′)
2

the anti-symmetric kernels f(u,λ)m
: Im → C (m = 2, 4, · · · , N) satisfy (3.49) and
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‖f0‖1,r,r′ ≤ α−1,

N∑
m=2

c
m
2
0 α

m‖fm‖1,r,r′ ≤ 1.(3.93)

Let us organize the Grassmann polynomials

1

n!

(
d

dz

)n

(3.94)

· log

(∫
ezV

0−1,0(u)(ψ0+ψ)+zV 0−2,0(u)(ψ0+ψ)+zV 1,0(λ)(ψ0+ψ)dµC0(ψ
0)

)∣∣∣∣∣
z=0

in the same way as in [13, Subsection 3.5]. The only difference from the

previous work is that here the second superscript of the input polynomials

is 0 and that of the output polynomials is 1. This is in accordance with the

index of the covariances. Define V 0,0, V 0,1,(n) ∈ Map(C,
∧

even V) (n ∈ N),

V 1−3,1 ∈ Map(C× C
2,
∧

even V) by

V 0,0(u)(ψ) := V 0−1,0(u)(ψ) + V 0−2,0(u)(ψ),

V 0,1,(n)(u)(ψ) :=
1

n!
Tree({1, · · · , n}, C0)

n∏
j=1

V 0,0(u)(ψj + ψ)

∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n})

,

V 1−3,1(u,λ)(ψ) := Tree({1}, C0)V
1,0(λ)(ψ1 + ψ)

∣∣∣
ψ1=0

.

Apparently V 1−3,1 is independent of u. However, by defining as if it depends

on (u,λ) we can estimate V 1−3,1 with the norm ‖ · ‖1,r,r′ . This saves us

introducing another norm. For n ∈ N≥2 we define V 1−1−1,1,(n), V 1−1−2,1,(n),

V 1−2,1,(n), V 2,1,(n) ∈ Map(C× C
2,
∧

even V) as follows.

V 1−1−1,1,(n)(u,λ)(ψ)

:=
1

(n− 1)!
Tree({1, · · · , n}, C0)

·
n−1∏
j=1

( ∑
bj∈{1,2}

V 0−bj ,0(u)(ψj + ψ)

)
V 1,0(λ)(ψn + ψ)

∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n})

· 1∃j(bj=1),

V 1−1−2,1,(n)(u,λ)(ψ)
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:=

(
1

h

)4 ∑
X,Y∈I2

V 0−2,0
2,2 (u)(X,Y)

1

(n− 1)!
Tree({1, · · · , n+ 1}, C0)

· (ψ1 + ψ)X(ψ2 + ψ)Y

·
n∏

j=3

V 0−2,0(u)(ψj + ψ)V 1,0(λ)(ψn+1 + ψ)

∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n+1})

,

V 1−2,1,(n)(u,λ)(ψ)

:=
1

(n− 1)!

n−1∑
m=0

∑
({sj}m+1

j=1 ,{tk}n−m
k=1 )∈S(n,m)

(
1

h

)4 ∑
X,Y∈I2

V 0−2,0
2,2 (u)(X,Y)

· Tree({sj}m+1
j=1 , C0)(ψ

s1 + ψ)X

·
m+1∏
j=2

(1sj �=nV
0−2,0(u)(ψsj + ψ) + 1sj=nV

1,0(λ)(ψsj + ψ))

∣∣∣∣∣ ψsj=0
(∀j∈{1,··· ,m+1})

· Tree({tk}n−m
k=1 , C0)(ψ

t1 + ψ)Y

·
n−m∏
k=2

(1tk �=nV
0−2,0(u)(ψtk + ψ) + 1tk=nV

1,0(λ)(ψtk + ψ))

∣∣∣∣∣ ψtk=0
(∀k∈{1,··· ,n−m})

,

V 2,1,(n)(u,λ)(ψ)

:=
1

n!
Tree({1, · · · , n}, C0)

n∏
j=1

( ∑
bj∈{0,1}

V bj ,0(ψj + ψ)

)∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n})

· 1∑ n
j=1 bj≥2.

Then, the following equality holds.

(The Grassmann polynomial (3.94))

= V 0,1,(n)(u)(ψ) + 1n=1V
1−3,1(u,λ)(ψ)

+ 1n≥2(V
1−1−1,1,(n)(u,λ)(ψ) + V 1−1−2,1,(n)(u,λ)(ψ)

+ V 1−2,1,(n)(u,λ)(ψ) + V 2,1,(n)(u,λ)(ψ)).

We should remark that the above decomposition is essentially same as that

presented in [13, Subsection 3.5]. Assuming their convergence, we set

V 0,1(u)(ψ) :=

∞∑
n=1

V 0,1,(n)(u)(ψ),
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V 1−1−j,1(u,λ)(ψ) :=
∞∑
n=2

V 1−1−j,1,(n)(u,λ)(ψ), (∀j ∈ {1, 2}),

V 1−1,1(u,λ)(ψ) :=

2∑
j=1

V 1−1−j,1(u,λ)(ψ),

V 1−2,1(u,λ)(ψ) :=
∞∑
n=2

V 1−2,1,(n)(u,λ)(ψ),

V 2,1(u,λ)(ψ) :=
∞∑
n=2

V 2,1,(n)(u,λ)(ψ).

We want to prove that these
∧

even V-valued functions are analytic with

(u,λ) in a neighborhood of the origin. In particular the analyticity with

u must be ensured independently of A. We have developed the general

estimates (3.52), (3.55), (3.60), (3.61) for this particular purpose.

Lemma 3.10. There exists c ∈ R>0 independent of any parameter such

that if α ≥ c,

V 1−1,1 ∈ Q′(r, r′), V 1−2,1 ∈ R′(r, r′), V 1−3,1 ∈ S(r, r′), V 2,1 ∈ W(r, r′)

with r := c−2
0 α−5b−1B−1, r′ := (A+ 1)−2(B + 1)−1(β + 1)−1c−2

0 α−5.

Proof. We will repeatedly use the following inequalities, which can

be directly derived from the definitions.

‖V 1,0
2 ‖1,r,r′ ≤ 2βr′,(3.95)

sup
λ∈D(r′)

2

‖V 1,0
2 (λ)‖1,∞ ≤ 2r′,(3.96)

‖V 1,0
4 ‖1,r,r′ ≤ βr′,(3.97)

sup
λ∈D(r′)

2

‖V 1,0
4 (λ)‖1,∞ ≤ r′.(3.98)

First let us summarize properties of V 1−3,1. By “(4.7)” of [14, Lemma

4.1] (or “(3.15)” of [13, Lemma 3.1]), (3.64), (3.95) and (3.97)

‖V 1−3,1
0 ‖1,r,r′ ≤ c0A‖V 1,0

2 ‖1,r,r′ + (c0A)2‖V 1,0
4 ‖1,r,r′ ≤ cα−5,(3.99)
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‖V 1−3,1
2 ‖1,r,r′ ≤ ‖V 1,0

2 ‖1,r,r′ + cc0A‖V 1,0
4 ‖1,r,r′ ≤ c(1 + c0A)βr′.(3.100)

Since V 1−3,1
4 = V 1,0

4 , we can derive from (3.97), (3.100) that

N∑
m=2

c
m
2
0 α

m‖V 1−3,1
m ‖1,r,r′ ≤ cc0α2(1 + c0A)βr′ + c20α

4βr′ ≤ cα−1.(3.101)

One part of the claims of [14, Lemma 4.1] or [13, Lemma 3.1] implies that

the kernels of V 1−3,1 satisfy (3.49). The linearity with λ ∈ C
2 is clear from

the definition. Therefore we can conclude from (3.99), (3.101) that if α ≥ c,
V 1−3,1 ∈ S(r, r′).

Next let us consider V 1−1−1,1,(n) (n ∈ N≥2). One can rewrite the defining

equality as follows.

V 1−1−1,1,(n)(u,λ)(ψ)

=
1

(n− 1)!

n∑
l=2

(
n− 1

l − 1

)
Tree({1, · · · , n}, C0)V

1,0(λ)(ψ1 + ψ)

·
l∏

j=2

V 0−1,0(u)(ψj + ψ)

n∏
k=l+1

V 0−2,0(u)(ψk + ψ)

∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n})

.

Then we can apply (3.52), (3.64), (3.65), (3.73), (3.75), (3.95) and (3.97) to

derive that for m ∈ {0, 2, 4, · · · , N}

‖V 1−1−1,1,(n)
m ‖1,r,r′

≤ c
n∑
l=2

(
n− 1

l − 1

)
(c0A)−n+1−m

2 2−2m(c0B)n−1
∑

p∈{2,4}
23p(c0A)

p
2βr′

· (26c0ArL
−d)l−1(212c20A

2br)n−l1p+2(n−l)≥m≥2(n−l)

≤ c
n∑
l=2

(
n− 1

l − 1

)
c
−m

2
0 A−m

2 2−2m
∑

p∈{2,4}
23p(c0A)

p
2βr′

· (26c0BrL
−d)l−1(212c20ABbr)

n−l1p+2(n−l)≥m≥2(n−l).

Therefore,

‖V 1−1−1,1,(n)
0 ‖1,r,r′ ≤ c

∑
p∈{2,4}

23p(c0A)
p
2βr′(26c0BrL

−d)n−1(3.102)
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≤ cL−d(26α−5)n,

N∑
m=2

c
m
2
0 α

m‖V 1−1−1,1,(n)
m ‖1,r,r′(3.103)

≤ c
n∑
l=2

(
n− 1

l − 1

) ∑
p∈{2,4}

23p(c0A)
p
2βr′

· (26c0BrL
−d)l−1(28α2c20Bbr)

n−l(1 +A−1α2 + 1p=4A
−2α4)

≤ cL−dc20α
4(A+ 1)2βr′(26c0Br + 28α2c20Bbr)

n−1

≤ cα−1L−d(29α−3)n−1.

Next let us study V 1−1−2,l,(n) (n ∈ N≥2). In this case the main tool

is the inequality (3.55). By combining (3.55) with (3.64), (3.65), (3.66),

(3.75), (3.76), (3.95), (3.97) we observe that for any m ∈ {0, 2, 4, · · · , N}

‖V 1−1−2,1,(n)
m ‖1,r,r′

≤ c(c0A)−n−m
2 2−2m(c0B)n−1(c0A)2rL−dc0A(212c20A

2br)n−2

·
∑

p∈{2,4}
23p(c0A)

p
2βr′1p+2n−4≥m≥2n−2

≤ c(c0A)−
m
2 2−2mc20ABrL

−d(212c20ABbr)
n−2

·
∑

p∈{2,4}
23p(c0A)

p
2βr′1p+2n−4≥m≥2n−2.

Since n ≥ 2, this implies that

‖V 1−1−2,1,(n)
0 ‖1,r,r′ = 0.(3.104)

Moreover,

N∑
m=2

c
m
2
0 α

m‖V 1−1−2,1,(n)
m ‖1,r,r′

(3.105)

≤ cc20α2BrL−d(28c20α
2Bbr)n−2

∑
p∈{2,4}

23p(c0A)
p
2βr′(1 + 1p=4A

−1α2)

≤ cL−d(28α−3)n.
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By summing up (3.102), (3.103), (3.104), (3.105) and assuming α3 ≥ 210

we obtain that
∞∑
n=2

(‖V 1−1−1,1,(n)
0 ‖1,r,r′ + ‖V 1−1−2,1,(n)

0 ‖1,r,r′) ≤ cα−10L−d,

N∑
m=2

c
m
2
0 α

m
∞∑
n=2

(‖V 1−1−1,1,(n)
m ‖1,r,r′ + ‖V 1−1−2,1,(n)

m ‖1,r,r′) ≤ cα−4L−d.

These inequalities imply that V 1−1,1 is well-defined and

V 1−1,1 ∈ C
(
D(r)×D(r′)

2
,
∧
even

V
)
∩ Cω

(
D(r)×D(r′)2,

∧
even

V
)
.

By the definition V 1−1,1 is linear with λ ∈ C
2. It is implied by Lemma 3.5

and Lemma 3.6 that the kernels of V 1−1,1 satisfy (3.49). Thus by assuming

α ≥ c we can conclude from the above inequalities that V 1−1,1 ∈ Q′(r, r′).
Next let us analyze V 1−2,1,(n) (n ∈ N≥2). Lemma 3.7 ensures the exis-

tence of bi-anti-symmetric functions V
1−2,1,(n)
a,b (u,λ) : Ia×Ib → C (n ∈ N≥2,

a, b ∈ {2, 4, · · · , N}, (u,λ) ∈ C × C
2) such that they satisfy (3.49), (3.50)

and

V 1−2,1,(n)(u,λ)(ψ)

=

N∑
a,b=2

1a,b∈2N

(
1

h

)a+b ∑
X∈Ia
Y∈Ib

V
1−2,1,(n)
a,b (u,λ)(X,Y)ψXψY.

It is clear from the definition that λ 
→ V 1−2,1,(n)(u,λ)(ψ) : C
2 →

∧
even V

is linear for any n ∈ N≥2, u ∈ C. Once the uniform convergence of∑∞
n=2 V

1−2,1,(n)(u,λ)(ψ) with (u,λ) ∈ D(r) × D(r′)
2

is proved, the prop-

erties (3.49), (3.50), the linearity with λ and the claimed regularity with

(u,λ) are automatically satisfied by V 1−2,1. Let us establish desirable norm

bounds. The inequalities (3.60), (3.64), (3.65), (3.74), (3.75), (3.95), (3.97)

lead to that for any n ∈ N≥2, a, b ∈ {2, 4, · · · , N}

‖V 1−2,1,(n)
a,b ‖1,r,r′(3.106)

≤ c

(n− 1)!

n−1∑
m=0

∑
({sj}m+1

j=1 ,{tk}n−m
k=1 )∈S(n,m)
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· (1m�=0(m− 1)! + 1m=0)(1m�=n−1(n−m− 2)! + 1m=n−1)

· 2−2a−2b(c0A)−n+1− 1
2
(a+b)(c0B)n−1c20A

2br

·
∑

p∈{2,4}
23p(c0A)

p
2βr′(212c20A

2br)n−2

·
(
1n∈{sj}m+1

j=2
12m−2+p≥a≥2m1b=2(n−m)

+ 1n∈{tk}n−m
k=2

1a=2m+212(n−m)−4+p≥b≥2(n−m)−2

)
≤ c

(n− 1)!

n−1∑
m=0

∑
({sj}m+1

j=1 ,{tk}n−m
k=1 )∈S(n,m)

· (1m�=0(m− 1)! + 1m=0)(1m�=n−1(n−m− 2)! + 1m=n−1)

· 2−2a−2b(c0A)−
1
2
(a+b)

∑
p∈{2,4}

23p(c0A)
p
2βr′(212c20ABbr)

n−1

·
(
1n∈{sj}m+1

j=2
12m−2+p≥a≥2m1b=2(n−m)

+ 1n∈{tk}n−m
k=2

1a=2m+212(n−m)−4+p≥b≥2(n−m)−2

)
.

Thus

N∑
a,b=2

1a,b∈2Nc
a+b
2

0 αa+b‖V 1−2,1,(n)
a,b ‖1,r,r′

(3.107)

≤ c
∑

p∈{2,4}
23p(c0A)

p
2βr′(212c20ABbr)

n−12−4nα2nA−n(1 + 1p=4α
2A−1)

≤ cc20α4(1 +A)βr′(28c20α
2Bbr)n−1

≤ cα−1(28α−3)n−1.

On the other hand, by applying (3.61) instead of (3.60) and (3.66), (3.76)

in addition we observe that for any n ∈ N≥2, a, b ∈ {2, 4, · · · , N} and anti-

symmetric function g : I2 → C,

[V
1−2,1,(n)
a,b , g]1,r,r′

≤ c

(n− 1)!

n−1∑
m=0

∑
({sj}m+1

j=1 ,{tk}n−m
k=1 )∈S(n,m)
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· (1m�=0(m− 1)! + 1m=0)(1m�=n−1(n−m− 2)! + 1m=n−1)

· 2−2a−2b(c0A)−n+1− 1
2
(a+b)(c0B)n−2c20A

2

· (rL−d‖g‖′1,∞c0B + rL−dc0A‖g‖1,∞)

·
∑

p∈{2,4}
23p(c0A)

p
2βr′(212c20A

2br)n−2

·
(
1n∈{sj}m+1

j=2
12m−2+p≥a≥2m1b=2(n−m)

+ 1n∈{tk}n−m
k=2

1a=2m+212(n−m)−4+p≥b≥2(n−m)−2

)
≤ cL−d(‖g‖′1,∞ +AB−1‖g‖1,∞) · (R.H.S of (3.106)).

Therefore, by the same calculation as in (3.107) we reach that

N∑
a,b=2

1a,b∈2Nc
a+b
2

0 αa+b[V
1−2,1,(n)
a,b , g]1,r,r′(3.108)

≤ cL−d(‖g‖′1,∞ +AB−1‖g‖1,∞)α−1(28α−3)n−1.

Assuming α3 ≥ 29, we deduce from (3.107), (3.108) that

N∑
a,b=2

1a,b∈2Nc
a+b
2

0 αa+b
∞∑
n=2

‖V 1−2,1,(n)
a,b ‖1,r,r′ ≤ cα−4,

N∑
a,b=2

1a,b∈2Nc
a+b
2

0 αa+b
∞∑
n=2

[V
1−2,1,(n)
a,b , g]1,r,r′

≤ cL−d(‖g‖′1,∞ +AB−1‖g‖1,∞)α−4.

These inequalities enable us to conclude that if α ≥ c, V 1−2,1 ∈ R′(r, r′).
Finally let us treat V 2,1,(n) (n ∈ N≥2). Observe that for any n ∈ N≥2,

(u,λ) ∈ C× C
2

V 2,1,(n)(u,λ)(ψ)

=
1

n!

n∑
l=2

(
n

l

) n−l∑
p=0

(
n− l
p

)
Tree({1, · · · , n}, C0)

l∏
j=1

V 1,0(λ)(ψj + ψ)

·
l+p∏

k=l+1

V 0−1,0(u)(ψk + ψ)
n∏

i=l+p+1

V 0−2,0(u)(ψi + ψ)

∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n})

.
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We can see from this equality that

V 2,1,(n) ∈ Cω

(
C× C

2,
∧
even

V
)
,

V 2,1,(n)(u,0)(ψ) =
∂

∂λj
V 2,1,(n)(u,0)(ψ) = 0, (∀j ∈ {1, 2}, u ∈ C).

Moreover, Lemma 3.5 guarantees that for any (u,λ) ∈ C × C
2 the kernels

of V 2,1,(n)(u,λ)(ψ) satisfy (3.49). If a uniform convergence of∑∞
n=2 V

2,1,(n)(u,λ)(ψ) with (u,λ) in a neighborhood of the origin is es-

tablished, then V 2,1(u,λ)(ψ) will have the regularity with (u,λ) and the

other properties described above in the domain. Thus it suffices to prove

suitable norm bounds which imply the desired convergence of
∑∞

n=2 V
2,1,(n)

together with the claimed inequalities. We can combine (3.52) with (3.64),

(3.65), (3.73), (3.75), (3.95), (3.96), (3.97), (3.98) to derive that for any

n ∈ N≥2, m ∈ {0, 2, · · · , N}

‖V 2,1,(n)
m ‖1,r,r′

≤ c
n∑
l=2

(
n

l

) n−l∑
p=0

(
n− l
p

)
(c0A)−n+1−m

2 2−2m(c0B)n−1

·
∑

p1∈{2,4}
23p1(c0A)

p1
2 βr′

·
l∏

j=2

( ∑
pj∈{2,4}

23pj+1(c0A)
pj
2 r′

)
l+p∏

k=l+1

(26c0ArL
−d)

n∏
i=l+p+1

(212c20A
2br)

· 1∑ l
j=1 pj+2n−4l−2p+2≥m≥2(n−l−p)

≤ c2−2mc
−m

2
0 A−m

2

n∑
l=2

(
n

l

) n−l∑
p=0

(
n− l
p

) ∑
p1∈{2,4}

23p1(c0A)
p1
2 βr′

·
l∏

j=2

( ∑
pj∈{2,4}

23pj+1c
pj
2

0 A
pj
2
−1Br′

)
(26c0BrL

−d)p(212c20ABbr)
n−l−p

· 1∑ l
j=1 pj+2n−4l−2p+2≥m≥2(n−l−p).
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It follows that

‖V 2,1,(n)
0 ‖1,r,r′

(3.109)

≤ c
n∑
l=2

(
n

l

)
c20(A+ 1)2βr′(213c20(A+ 1)Br′)l−1(26c0BrL

−d)n−l

≤ c
n∑
l=2

(
n

l

)
(213α−5)l(26α−5)n−l

≤ c(214α−5)n,

N∑
m=2

c
m
2
0 α

m‖V 2,1,(n)
m ‖1,r,r′

(3.110)

≤ c
n∑
l=2

(
n

l

) n−l∑
p=0

(
n− l
p

) ∑
p1∈{2,4}

23p1(c0A)
p1
2 βr′

·
l∏

j=2

( ∑
pj∈{2,4}

23pj+1c
pj
2

0 A
pj
2
−1Br′

)
(26c0BrL

−d)p(28c20α
2Bbr)n−l−p

· (1 + αA− 1
2 )

∑ l
j=1 pj−2l+2

≤ c
n∑
l=2

(
n

l

) n−l∑
p=0

(
n− l
p

) ∑
p1∈{2,4}

23p1(c0A)
p1
2 βr′(1 + αA− 1

2 )p1

·
( ∑

m∈{2,4}
23m+1c

m
2
0 A

m
2
−1Br′(1 + αA− 1

2 )m−2

)l−1

(26c0BrL
−d)p

· (28c20α
2Bbr)n−l−p

≤ c
n∑
l=2

(
n

l

)
c20α

4(A+ 1)2βr′(215c20α
2(A+ 1)Br′)l−1

· (26c0BrL
−d + 28c20α

2Bbr)n−l

≤ cα2(215α−3 + 26α−5 + 28α−3)n

≤ cα2(216α−3)n.
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On the assumption α3 ≥ 217, the inequalities (3.109), (3.110) yield that

∞∑
n=2

‖V 2,1,(n)
0 ‖1,r,r′ ≤ cα−10,

N∑
m=2

c
m
2
0 α

m
∞∑
n=2

‖V 2,1,(n)
m ‖1,r,r′ ≤ cα−4.

Assuming additionally that α ≥ c, we can conclude that V 2,1 ∈ W(r, r′). �

Using the results obtained in Lemma 3.9 and Lemma 3.10, we can con-

struct an analytic continuation of the function

(u,λ) 
→ log

(∫
eV

0−1,0(u)(ψ)+V 0−2,0(u)(ψ)+V 1,0(λ)(ψ)dµC0+C1(ψ)

)
(3.111)

in a neighborhood of the origin. This can be achieved by integrating the

output of the first integration with the covariance C1. We want to keep

the analyticity with the variable u in the same domain as in Lemma 3.9,

Lemma 3.10, while the domain of the artificial variable λ can be taken

smaller. We only need estimates previously proved in [13, Subsection 3.2],

[14, Subsection 4.2] for this purpose. We will not use the estimates presented

in Subsection 3.2 in the rest of this paper. However, we need to argue

differently from the previous final integration steps [13, Lemma 3.8], [14,

Lemma 4.10], since here the final covariance C1 depends on time variables.

Let

r = c−2
0 α−5b−1B−1, r′ = (A+ 1)−2(B + 1)−1(β + 1)−1c−2

0 α−5

as we set in Lemma 3.10. Then let us define the functions V end,(n), V 1−3,end :

D(r)×D(r′)
2 → C (n ∈ N) by

V end,(n)(u,λ)

:=
1

n!
Tree({1, · · · , n}, C1)

·
n∏

j=1

(
2∑

m=1

V 0−m,1(u)(ψj) +

3∑
k=1

V 1−k,1(u,λ)(ψj) + V 2,1(u,λ)(ψj)

)

·
∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n})

,
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V 1−3,end(u,λ) := Tree({1}, C1)V
1−3,1(u,λ)(ψ1).

Moreover, we set

V end(u,λ) :=

∞∑
n=1

V end,(n)(u,λ)

if it converges. By the definition and the division formula of Grassmann

Gaussian integral (see e.g. [5, Proposition I.21]) one can check that V end is

an analytic continuation of the function (3.111) if it is proved to be analytic

in a neighborhood of the origin. It is obvious that V end,1−3 is actually

independent of the variable u and linear with λ ∈ C
2. We write as if

it depends on u only for notational consistency. The result is claimed as

follows.

Lemma 3.11. There exists c ∈ R>0 independent of any parameter such

that if α ≥ c, Ld ≥ A+ 1, the following statements hold.

•

V end ∈ C
(
D(r)×D(r̂)

2
)
∩ Cω

(
D(r)×D(r̂)2

)
.(3.112)

•

h

N
sup

u∈D(r)

|V end(u,0)| ≤ (A+ 1)B−1L−d.(3.113)

•

∣∣∣∣ ∂∂λj V end(u,0)− ∂

∂λj
V 1−3,end(u,0)

∣∣∣∣ ≤ (A+ 1)3(B + 1)(β + 1)c20α
5L−d,

(3.114)

(∀j ∈ {1, 2}, u ∈ D(r)).

Here

r = c−2
0 α−5b−1B−1,

r̂ := 2−1(h+ 1)−1(A+ 1)−2(B + 1)−2(β + 1)−1c−2
0 α−5.
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Proof. The following inequalities will be often used. For m ∈
{0, 2, · · · , N}

‖V 0−2,1
m ‖1,∞,r ≤

∑
p,q∈2N

1p+q=m‖V 0−2,1
p,q ‖1,∞,r,(3.115)

‖V 1−2,1
m ‖1,r,r′ ≤

∑
p,q∈2N

1p+q=m‖V 1−2,1
p,q ‖1,r,r′ .(3.116)

The following inequality is essentially same as [13, (3.92)], [14, Lemma 4.9].

‖V a,1
m (u, ελ)‖1,∞ ≤ hε‖V a,1

m ‖1,r,r′ ,(3.117)

(∀u ∈ D(r), λ ∈ D(r′)
2
, ε ∈ [0, 1/2], a ∈ {1− 1, 1− 2, 1− 3, 2},

m ∈ {0, 2, · · · , N}).
Cauchy’s integral formula can be used to prove it in the case a = 2. Set

ε := 2−1(h + 1)−1(B + 1)−1 so that ε ∈ (0, 1/2]. We can deduce from

“(3.16)” of [13, Lemma 3.1] (or “(4.8)” of [14, Lemma 4.1]), (3.64), (3.65),

(3.68), (3.69), (3.89), (3.90), (3.92), (3.93), (3.115), (3.116), (3.117) and the

assumption α ≥ 23 that for n ∈ N≥2, (u,λ) ∈ D(r)×D(r′)
2

|V end,(n)(u, ελ)|

≤ N

h
c−n+1
0 (c0B)n−1

·
(

N∑
p=2

23pc
p
2
0

(
‖V 0−1,1

p ‖1,∞,r + 1p≥4‖V 0−2,1
p ‖1,∞,r

+
∑

a∈{1−1,1−3,2}
‖V a,1

p (u, ελ)‖1,∞ + 1p≥4‖V 1−2,1
p (u, ελ)‖1,∞

))n

≤ N

h
Bn−1

(
26α−2(A+ 1)B−1L−d + 212α−4B−1

+ 3 · 26α−2hε+ 212α−4hε
)n

≤ N

h
B−1(214α−2)n.

In the last inequality we also used that Ld ≥ A + 1, hε ≤ B−1. Thus, if

α2 ≥ 215,
∞∑
n=2

sup
(u,λ)∈D(r)×D(r̂)

2

|V end,(n)(u,λ)| <∞,
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which implies (3.112).

To derive (3.113), let us observe that for n ∈ N≥1, u ∈ D(r)

V end,(n)(u,0)

(3.118)

=
1

n!
Tree({1, · · · , n}, C1)

n∏
j=1

(
2∑

m=1

V 0−m,1(u)(ψj)

)∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n})

=

n∑
l=1

(
n

l

)
1

n!
Tree({1, · · · , n}, C1)

·
l∏

j=1

V 0−1,1(u)(ψj)
n∏

k=l+1

V 0−2,1(u)(ψk)

∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n})

+
1

n!
Tree({1, · · · , n+ 1}, C1)

N∑
p,q=2

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

V 0−2,1
p,q (u)(X,Y)ψ1

Xψ
2
Y

·
n+1∏
j=3

V 0−2,1(u)(ψj)

∣∣∣∣∣ ψj=0
(∀j∈{1,··· ,n+1})

+
1

n!

n−1∑
m=0

∑
({sj}m+1

j=1 ,{tk}n−m
k=1 )∈S(n,m)

N∑
p,q=2

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

V 0−2,1
p,q (u)(X,Y)

· Tree({sj}m+1
j=1 , C1)ψ

s1
X

m+1∏
j=2

V 0−2,1(u)(ψsj )

∣∣∣∣∣ ψsj=0
(∀j∈{1,··· ,m+1})

· Tree({tk}n−m
k=1 , C1)ψ

t1
Y

n−m∏
k=2

V 0−2,1(u)(ψtk)

∣∣∣∣∣ ψtk=0
(∀k∈{1,··· ,n−m})

.

The above transformation is based on the same idea as that behind (3.72).

By the properties (3.49), (3.50) of the kernels of V 0−2,1 and (3.63) the

third term in the right-hand side of (3.118) vanishes. Then, combination

of “(3.14)” of [13, Lemma 3.1], “(3.24)” of [13, Lemma 3.2] (or “(4.6)” of

[14, Lemma 4.1], “(4.11)” of [14, Lemma 4.2]), (3.64), (3.65), (3.66), (3.68),
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(3.70) and the assumption α ≥ 22 yields that

sup
u∈D(r)

|V end,(1)(u,0)|

≤ ‖V 0−1,1
0 ‖1,∞,r +

N

h

N∑
m=2

c
m
2
0 ‖V 0−1,1

m ‖1,∞,r

+
N

h
c−1
0

N∑
p,q=2

22p+2qc
p+q
2

0 [V 0−2,1
p,q , C̃1]1,∞,r

≤ N

h
α−1AB−1L−d +

N

h
α−2(A+ 1)B−1L−d + c

N

h
α−4AB−1L−d

≤ cN
h
α−1(A+ 1)B−1L−d.

On the other hand, for n ∈ N≥2 we can use “(3.16)” of [13, Lemma 3.1],

“(3.26)” of [13, Lemma 3.2] (or “(4.8)” of [14, Lemma 4.1], “(4.13)” of [14,

Lemma 4.2]), (3.64), (3.65), (3.66), (3.68), (3.69), (3.70), (3.115) and the

assumptions α ≥ 23, Ld ≥ A+ 1 to derive that

sup
u∈D(r)

|V end,(n)(u,0)|

≤ N

h

n∑
l=1

(
n

l

)
c−n+1
0 (c0B)n−1

·
(

N∑
m=2

23mc
m
2
0 ‖V 0−1,1

m ‖1,∞,r

)l( N∑
p=4

23pc
p
2
0 ‖V 0−2,1

p ‖1,∞,r

)n−l

+
N

h
c−n
0 (c0B)n−1

N∑
p,q=2

23p+3qc
p+q
2

0 [V 0−2,1
p,q , C̃1]1,∞,r

·
(

N∑
m=4

23mc
m
2
0 ‖V 0−2,1

m ‖1,∞,r

)n−1

≤ N

h

n∑
l=1

(
n

l

)
Bn−1(26α−2(A+ 1)B−1L−d)l(212α−4B−1)n−l

+ c
N

h
α−4AB−1L−d(212α−4)n−1

≤ cN
h

(A+ 1)B−1L−d(213α−2)n.
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Therefore, on the assumption α2 ≥ 214

h

N

∞∑
n=1

sup
u∈D(r)

|V end,(n)(u,0)| ≤ cα−1(A+ 1)B−1L−d,

which coupled with the further assumption α ≥ c gives (3.113).

Finally let us prove (3.114). For any u ∈ D(r), j ∈ {1, 2}
∂

∂λj
V end,(1)(u,0)− ∂

∂λj
V 1−3,end(u,0)

=
1

r′
Tree({1}, C1)(V

1−1,1(u, r′ej)(ψ
1) + V 1−2,1(u, r′ej)(ψ

1))

=
1

r′
Tree({1}, C1)V

1−1,1(u, r′ej)(ψ
1)

+
1

r′
Tree({1, 2}, C1)

·
N∑

p,q=2

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

V 1−2,1
p,q (u, r′ej)(X,Y)ψ1

Xψ
2
Y

∣∣∣∣∣ ψj=0
(∀j∈{1,2})

,

where e1 := (1, 0), e2 := (0, 1) ∈ R
2. To derive the last equality, we

transformed the integral of V 1−2,1 in the same manner as in (3.118) and

erased one part by taking into account the property (3.50) of the kernels of

V 1−2,1 and (3.63). Moreover, by “(3.15)” of [13, Lemma 3.1], “(3.25)” of [13,

Lemma 3.2] (or “(4.7)” of [14, Lemma 4.1], “(4.12)” of [14, Lemma 4.2]),

(3.64), (3.65), (3.66), (3.89), (3.91) and the assumption α ≥ 22∣∣∣∣ ∂∂λj V end,(1)(u,0)− ∂

∂λj
V 1−3,end(u,0)

∣∣∣∣(3.119)

≤ 1

r′
‖V 1−1,1

0 ‖1,r,r′ +
1

r′

N∑
m=2

c
m
2
0 ‖V 1−1,1

m ‖1,r,r′

+
1

r′
c−1
0

N∑
p,q=2

22p+2qc
p+q
2

0 [V 1−2,1
p,q , C̃1]1,r,r′

≤ c

r′
α−1(A+ 1)L−d.

Let n ∈ N≥2. Based on the properties (3.49), (3.50) of the kernels of V 0−2,1,

the property (3.49) of the kernels of V 1−a,1 (a = 1, 2, 3) and (3.63), we can
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transform the defining equality in the same way as above and obtain that

for u ∈ D(r), j ∈ {1, 2}

∂

∂λj
V end,(n)(u,0)

=
1

(n− 1)!r′
Tree({1, · · · , n}, C1)

·
3∑

a=1

V 1−a,1(u, r′ej)(ψ
1)

n∏
k=2

(
2∑

p=1

V 0−p,1(u)(ψk)

)∣∣∣∣∣ ψi=0
(∀i∈{1,··· ,n})

=
1

(n− 1)!r′

n∑
l=2

(
n− 1

l − 1

)
Tree({1, · · · , n}, C1)

·
3∑

a=1

V 1−a,1(u, r′ej)(ψ
1)

l∏
k=2

V 0−1,1(u)(ψk)
n∏

s=l+1

V 0−2,1(u)(ψs)

∣∣∣∣∣ ψi=0
(∀i∈{1,··· ,n})

+
1

(n− 1)!r′
Tree({1, · · · , n+ 1}, C1)

·
N∑

p,q=2

(
1

h

)p+q ∑
X∈Ip
Y∈Iq

V 0−2,1
p,q (u)(X,Y)ψ1

Xψ
2
Y

·
n∏

k=3

V 0−2,1(u)(ψk)

3∑
a=1

V 1−a,1(u, r′ej)(ψ
n+1)

∣∣∣∣∣ ψi=0
(∀i∈{1,··· ,n+1})

.

In this situation we can apply “(3.17)” of [13, Lemma 3.1], “(3.27)” of [13,

Lemma 3.2] (or “(4.9)” of [14, Lemma 4.1], “(4.14)” of [14, Lemma 4.2]),

(3.64), (3.65), (3.66), (3.68), (3.69), (3.70), (3.89), (3.90), (3.92), (3.115),

(3.116) and the inequalities α ≥ 23, Ld ≥ A+ 1 to deduce that∣∣∣∣ ∂∂λj V end,(n)(u,0)

∣∣∣∣
≤ 1

r′

n∑
l=2

(
n− 1

l − 1

)
c−n+1
0 (c0B)n−1

·
N∑
p=2

23pc
p
2
0 (‖V 1−1,1

p ‖1,r,r′ + 1p≥4‖V 1−2,1
p ‖1,r,r′ + ‖V 1−3,1

p ‖1,r,r′)
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·
(

N∑
q=2

23qc
q
2
0 ‖V 0−1,1

q ‖1,∞,r

)l−1( N∑
m=4

23mc
m
2
0 ‖V 0−2,1

m ‖1,∞,r

)n−l

+
1

r′
c−n
0 (c0B)n−1

N∑
p,q=2

23p+3qc
p+q
2

0 [V 0−2,1
p,q , C̃1]1,∞,r

·
(

N∑
m=4

23mc
m
2
0 ‖V 0−2,1

m ‖1,∞,r

)n−2

·
(

N∑
s=2

23sc
s
2
0 (‖V 1−1,1

s ‖1,r,r′ + 1s≥4‖V 1−2,1
s ‖1,r,r′ + ‖V 1−3,1

s ‖1,r,r′)
)

≤ c

r′
Bn−1α−2

n∑
l=2

(
n− 1

l − 1

)
(26α−2(A+ 1)B−1L−d)l−1(212α−4B−1)n−l

+
c

r′
Bn−2α−6AL−d(212α−4B−1)n−2

≤ c

r′
(A+ 1)L−d(213α−2)n.

Thus by assuming that α2 ≥ 214 we have that

∞∑
n=2

∣∣∣∣ ∂∂λj V end,(n)(u,0)

∣∣∣∣ ≤ c

r′
α−4(A+ 1)L−d.(3.120)

By coupling (3.119) with (3.120) and assuming that α ≥ c once more we

reach (3.114). �

3.4. The infinite-volume limit

Among all the lemmas prepared in this section so far, Lemma 3.1,

Lemma 3.4, Lemma 3.11 are the main necessary tools to prove Theorem

1.3. With these lemmas we can straightforwardly follow the arguments

of [14, Subsection 5.2] to complete the proof of Theorem 1.3. Though we

should not lengthen the paper by repeating the same statements as before,

let us state a few pivotal lemmas for the sake of readability. These are close

to lemmas proved in [13], [14] but are adjusted to the present situation.

Let us recall the definitions of V (u)(ψ), W (u)(ψ) given in the beginning of

[14, Subsection 4.4] and A1(ψ), A2(ψ), A(ψ) given in [14, Section 3]. It is

apparent from (3.67), (3.88) that

V 0−1,0(u)(ψ) + V 0−2,0(u)(ψ) = −V (u)(ψ) +W (u)(ψ),
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V 1,0(λ)(ψ) = −A(ψ).

A practical application of Lemma 3.1, Lemma 3.4, Lemma 3.11 results in

the following lemma.

Lemma 3.12. Set

Â := (emin + β−1 + β−1e−1
min + 1) max{e−1

min, e
−d−1
min },

B̂ := max{e−1
min, e

−d−1
min }.

Then there exist c ∈ R>0 independent of any parameter and ĉ0 ∈ R≥1

depending only on d, b, (v̂j)
d
j=1, cE such that the following statements hold

for any α ∈ R≥1, h ∈ 2
βN, L ∈ N, φ ∈ C satisfying that

α ≥ c, Ld ≥ Â+ 1,

h ≥ max{
√
e2max + |φ|2, 1}+

1

β
(3π + 2).(3.121)

(i)

e−4bβ(Â+1)B̂−1 ≤
∣∣∣∣∫ e−V (u)(ψ)+W (u)(ψ)dµC(φ)(ψ)

∣∣∣∣ ≤ e4bβ(Â+1)B̂−1
,(

∀u ∈ D(ĉ−2
0 α−5b−1B̂−1)

)
.

(ii) ∣∣∣∣∣
∫
e−V (u)(ψ)+W (u)(ψ)Aj(ψ)dµC(φ)(ψ)∫
e−V (u)(ψ)+W (u)(ψ)dµC(φ)(ψ)

−
∫
Aj(ψ)dµC(φ)(ψ)

∣∣∣∣∣
≤ (Â+ 1)3(B̂ + 1)(β + 1)ĉ20α

5L−d,(
∀j ∈ {1, 2}, u ∈ D(ĉ−2

0 α−5b−1B̂−1)
)
.

Proof. We take the generalized covariances C0, C1 to be C0, C1, which

were analyzed in Subsection 3.1, respectively. We can see from Lemma 3.1,

Lemma 3.4 that on the assumption (3.121) c0, A, B can be taken to be ĉ0,

Â, B̂ respectively. Accordingly the claims of Lemma 3.11 hold with ĉ0, Â,
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B̂ in place of c0, A, B. By using the relation (3.1) and the gauge transform

ψρρxsξ 
→ e
−iξ π

β
s
ψρρxsξ we can prove that if |u|, ‖λ‖C2 are sufficiently small,

Re

∫
e−V (u)(ψ)+W (u)(ψ)−A(ψ)dµC(φ)(ψ) > 0,

V end(u,λ) = log

(∫
e−V (u)(ψ)+W (u)(ψ)−A(ψ)dµC(φ)(ψ)

)
.

For the proof of the above properties let us refer to the proof of [13, Lemma

4.13] or [14, Proposition 5.9] where a similar claim was proved. Then it

follows from (3.112), the identity theorem and continuity that on the as-

sumptions of this lemma

eV
end(u,λ) =

∫
e−V (u)(ψ)+W (u)(ψ)−A(ψ)dµC(φ)(ψ),

(3.122)

(
∀(u,λ) ∈ D(ĉ−2

0 α−5b−1B̂−1)

×D(2−1(h+ 1)−1(Â+ 1)−2(B̂ + 1)−2(β + 1)−1ĉ−2
0 α−5)

2)
.

On the other hand, by the definition and the same gauge transform as above

V 1−3,end = −
∫
A(ψ)dµC(φ)(ψ).(3.123)

By combining (3.122), (3.123) with (3.113), (3.114) we can derive the

claimed inequalities. �

The next lemma is essentially based on [13, Proposition 4.16]. The proof

of [14, Proposition 5.10] can be read as a guide to deduce the lemma from

[13, Proposition 4.16].

Lemma 3.13. Let Â, B̂, c, ĉ0 be those introduced in Lemma 3.12. As-

sume that Ld ≥ Â + 1 and α ≥ c. Then for any non-empty compact set Q

of C

lim
h→∞
h∈ 2

β
N

∫
e−V (u)(ψ)+W (u)(ψ)dµC(φ)(ψ),
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lim
L→∞
L∈N

lim
h→∞
h∈ 2

β
N

∫
e−V (u)(ψ)+W (u)(ψ)dµC(φ)(ψ)

converge in C(Q×D(2−1ĉ−2
0 α−5b−1B̂−1)) as sequences of functions of the

variable (φ, u). Here we consider C(Q×D(2−1ĉ−2
0 α−5b−1B̂−1)) as the Ba-

nach space with the uniform norm.

Now we can describe how to derive the claims of Theorem 1.3 by fol-

lowing the final part of the proof of [14, Theorem 1.3] presented in [14,

Subsection 5.2].

Proof of Theorem 1.3. The proof of the claims “(i), (ii), (iii), (iv),

(v)” of [14, Theorem 1.3] straightforwardly applies to prove (i), (ii), (iii),

(iv), (v) of Theorem 1.3 respectively. In the proof of [14, Theorem 1.3] the

basic lemmas “Lemma 3.1”, “Lemma 3.2”, “Lemma 3.6”, “Lemma 5.11” of

[14] were frequently used. We should remark that here the same statements

as these lemmas hold for any β ∈ R>0, θ ∈ R including the case βθ/2 ∈
π(2Z+1). This is because in this paper the free partition function does not

vanish for any θ ∈ R thanks to the assumption (1.6). Let us fix α ∈ R≥1

satisfying the condition α ≥ c required in Lemma 3.12 and Lemma 3.13. Set

c′ := 4−1ĉ−2
0 α−5. We see that c′ ∈ (0, 1], it depends only on d, b, (v̂j)

d
j=1,

cE and (
−2c′

b
min{emin, e

d+1
min}, 0

)
⊂ D(2−1ĉ−2

0 α−5b−1B̂−1).

This means that the inequalities and the convergence properties stated in

Lemma 3.12, Lemma 3.13 are applicable to the Grassmann integral formu-

lation with the coupling constant

U ∈
(
−2c′

b
min{emin, e

d+1
min}, 0

)
.

Subsequently, for U belonging to this open interval the claims of Theorem

1.3 can be proved.

Here we only summarize which lemmas are necessary to conclude the

claims of Theorem 1.3 if we straightforwardly follow the proof of [14, Theo-

rem 1.3]. We avoid fully repeating the same arguments as before. The key
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point of translating the proof of [14, Theorem 1.3] into the proof of Theo-

rem 1.3 is to replace “Proposition 5.9 (i),(ii)”, “Proposition 5.10” of [14] by

Lemma 3.12 (i),(ii), Lemma 3.13 respectively. We can prove (i), (iii), (iv),

(v), (ii) in this order as in the proof of [14, Theorem 1.3].

(i): “Lemma 3.1”, “Lemma 3.2”, “Lemma 3.6 (i),(iii),(iv)” of [14],

Lemma 3.12 (i) and Lemma 3.13 of this paper.

(iii): “Lemma 3.1”, “Lemma 3.6 (i),(iii)”, “Lemma 5.11”, “Lemma A.1”

of [14], Lemma 3.1 (i), Lemma 3.12 (i),(ii) and Lemma 3.13 of this paper.

(iv), (v): “Lemma 3.1”, “Lemma 3.6 (i),(iii)”, “Lemma 5.11”, “Lemma

A.2”, “Lemma A.3” of [14], Lemma 3.1 (i), Lemma 3.12 (i),(ii) and Lemma

3.13 of this paper.

(ii): “Lemma 3.1”, “Lemma 3.2”, “Lemma 3.6 (iii)”, “Lemma A.4” of

[14]. �

Appendix A. A Special Matrix-Valued Function

Here we construct a matrix-valued function, which is used to prove that

the function τ(·) can have more than one local minimum points in Subsec-

tion 2.2.

Lemma A.1. For any d, b ∈ N, basis (v̂j)
d
j=1 of R

d, s, t ∈ R>0 satisfy-

ing 0 < s < t < 1, emax, emin ∈ R>0 satisfying 0 < emin < emax there exists

E ∈ E(emin, emax) such that

Dd|{k ∈ Γ∗
∞ | Tr |E(k)| = bemax}| = s,

Dd|{k ∈ Γ∗
∞ | Tr |E(k)| = bemin}| = 1− t,

where |S| denotes the Lebesgue measure of a measurable set S (⊂ R
d).

Proof. By a standard procedure one can construct a function φ (∈
C∞(R)) satisfying that

φ(x) = (emax − emin)
1
d if |x− π| ≤ πs 1

d ,

φ(x) = 0 if |x− π| ≥ πt 1
d ,

φ(x) ∈ (0, (emax − emin)
1
d ) if πs

1
d < |x− π| < πt 1

d ,

φ(π + x) = φ(π − x), (∀x ∈ R).(A.1)
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Let us define the function Φ (∈ C∞(Rd)) by Φ(x1, · · · , xd) :=
∏d

j=1 φ(xj)+

emin. Observe that

Φ(x1, · · · , xd) = emax if |xj − π| ≤ πs
1
d (∀j ∈ {1, · · · , d}),

Φ(x1, · · · , xd) = emin if ∃j ∈ {1, · · · , d} s.t. |xj − π| ≥ πt
1
d ,

Φ(x1, · · · , xd) ∈ (emin, emax) otherwise.

Then let us define the matrix-valued function Ê : Γ∗
∞ → Mat(b,C) by

Ê(k) := Φ((v̂1, · · · , v̂d)
−1k)Ib (k ∈ Γ∗

∞). We can periodically extend Ê to

be a map from R
d to Mat(b,C). If E denotes the extension, it follows that

E ∈ E(emin, emax). Let us confirm the property (1.5). The other properties

are obvious. Take k ∈ R
d. There exist k̂j ∈ [0, 2π), mj ∈ Z (j = 1, · · · , d)

such that k =
∑d

j=1(k̂j + 2πmj)v̂j . By the periodicity and (A.1),

E(−k) = E

 d∑
j=1

(2π − k̂j)v̂j

 = Φ(2π − k̂1, · · · , 2π − k̂d)Ib

= Φ(k̂1, · · · , k̂d)Ib = E(k).

Moreover, we can verify that

Dd|{k ∈ Γ∗
∞ | Tr |E(k)| = bemax}|

= Dd|{k ∈ Γ∗
∞ | (v̂1, · · · , v̂d)

−1k ∈ [π − πs 1
d , π + πs

1
d ]d}| = s,

Dd|{k ∈ Γ∗
∞ | Tr |E(k)| = bemin}|

= Dd|{k ∈ Γ∗
∞ | (v̂1, · · · , v̂d)

−1k ∈ [0, 2π]d\(π − πt 1
d , π + πt

1
d )d}|

= 1− t. �

Appendix B. A Definite Integral Formula

Here we derive an explicit formula of a definite integral, which is used

in the proof of Proposition 2.26.

Lemma B.1. For x, t ∈ R≥0

1

2π

∫ 2π

0
dk

1

1 + x(t(cos k + 1) + 1)2
(B.1)
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=
(
((2t+ 1)2x+ 1)

1
2 + (x+ 1)

1
2

)
·
/(√

2(x+ 1)
1
2 ((2t+ 1)2x+ 1)

1
2

·
(
(x+ 1)

1
2 ((2t+ 1)2x+ 1)

1
2 + (2t+ 1)x+ 1

) 1
2

)
.

Proof. When x = 0 or t = 0, the equality obviously holds. Let us

assume that x > 0, t > 0. One can prove by applying the residue theorem

that ∫ ∞

0
ds

1

s2 + reiθ
=
π

2
r−

1
2 e−i θ

2 , (∀r ∈ R>0, θ ∈ (0, π)).(B.2)

By introducing a new variable s by s = tan(k/2) we observe that

(L.H.S of (B.1))

=
2

πxt2

∫ ∞

0
ds(1 + s2)−1

((
2

1 + s2
+

1

t

)2

+
1

xt2

)−1

=
1

iπ

(
(x

1
2 − i)−1

∫ ∞

0
ds

(
s2 +

(2t+ 1)x+ 1

x+ 1
+

2x
1
2 t

x+ 1
i

)−1

− (x
1
2 + i)−1

∫ ∞

0
ds

(
s2 +

(2t+ 1)x+ 1

x+ 1
− 2x

1
2 t

x+ 1
i

)−1)
.

Here we can apply (B.2) with

r =

(
(2t+ 1)2x+ 1

x+ 1

) 1
2

, θ = tan−1

(
2tx

1
2

(2t+ 1)x+ 1

) (
∈
(
0,
π

2

))
to derive that

(L.H.S of (B.1)) =
1

iπ

(
(x

1
2 − i)−1π

2
r−

1
2 e−i θ

2 − (x
1
2 + i)−1π

2
r−

1
2 ei

θ
2

)
=

cos
(
θ
2

) (
1− x 1

2 tan
(
θ
2

))
((2t+ 1)2x+ 1)

1
4 (x+ 1)

3
4

.
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Substitution of the equalities

tan

(
θ

2

)
=

1

2tx
1
2

(
(x+ 1)

1
2 ((2t+ 1)2x+ 1)

1
2 − ((2t+ 1)x+ 1)

)
,

cos

(
θ

2

)
=

(
(x+ 1)

1
2 ((2t+ 1)2x+ 1)

1
2 + (2t+ 1)x+ 1

) 1
2

√
2(x+ 1)

1
4 ((2t+ 1)2x+ 1)

1
4

leads to the right-hand side of (B.1). �

Supplementary List of Notations

Notation Description Reference

emin minimum of magnitude of free disper-

sion relation

Subsection 1.2

emax maximum of magnitude of free disper-

sion relation

Subsection 1.2

E(emin, emax) set of matrix-valued functions Subsection 1.2

gE(·) real-valued function on R>0 × R× R Subsection 1.2

βc critical inverse temperature Lemma 1.2

cE positive constant depending only on

E(·)
(1.8)

References

[1] Abeling, N. O. and S. Kehrein, Quantum quench dynamics in the transverse
field Ising model at nonzero temperatures, Phys. Rev. B 93 (2016), 104302.

[2] Bardeen, J., Cooper, L. N. and J. R. Schrieffer, Theory of superconductivity,
Phys. Rev. 108 (1957), 1175–1204.

[3] Bhattacharya, U., Bandyopadhyay, S. and A. Dutta, Mixed state dynamical
quantum phase transitions, Phys. Rev. B 96 (2017), 180303(R).

[4] Bru, J.-B. and W. de Siqueira Pedra, Effect of a locally repulsive interaction
on s-wave superconductors, Rev. Math. Phys. 22 (2010), 233–303.

[5] Feldman, J., Knörrer, H. and E. Trubowitz, Fermionic functional integrals
and the renormalization group, CRM monograph series No. 16, American
Mathematical Society, Providence, R.I., 2002.



The BCS Model with Imaginary Magnetic Field. III 555
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[16] Lesniewski, A., Effective action for the Yukawa2 quantum field theory, Com-
mun. Math. Phys. 108 (1987), 437–467.

[17] Mastropietro, V., Mass generation in a fermionic model with finite range
time dependent interactions, Commun. Math. Phys. 269 (2007), 401–424.
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