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Superconducting Phase in the BCS Model with
Imaginary Magnetic Field. II.
Multi-Scale Infrared Analysis

By Yohei KASHIMA

Abstract. We analyze the reduced BCS model with an imag-
inary magnetic field in a large domain of the temperature and the
imaginary magnetic field. The magnitude of the attractive reduced
BCS interaction is fixed to be small but independent of the tem-
perature and the imaginary magnetic field unless the temperature is
high. We impose a series of conditions on the free dispersion rela-
tion. These conditions are typically satisfied by free electron models
with degenerate Fermi surface. For example, our theory applies to the
model with nearest-neighbor hopping on 3 or 4-dimensional (hyper-
)eubic lattice having degenerate free Fermi surface or the model with
nearest-neighbor hopping on the honeycomb lattice with zero chemi-
cal potential. We prove that a spontaneous U(1)-symmetry breaking
(SSB) and an off-diagonal long range order (ODLRO) occur in many
areas of the parameter space. The SSB and the ODLRO are proved to
occur in low temperatures arbitrarily close to zero in particular. How-
ever, it turns out that the SSB and the ODLRO are not present in
the zero-temperature limit. The proof is based on Grassmann Gaus-
sian integral formulations and a multi-scale infrared analysis of the
formulations. We keep using notations and lemmas of our previous
work [Kashima, Y., J. Math. Sci. Univ. Tokyo 28 (2021), 1-179] im-
plementing the double-scale integration scheme. So the multi-scale
analysis this paper presents is a continuation of the previous work.
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1. Introduction

1.1. Introduction

The Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity ([1])
has been a paradigm of modern physics. The BCS model Hamiltonian
of interacting electrons lies at the core of the theory. A large amount of
knowledge on how to analyze the BCS model have been accumulated. A
history of mathematical development around the BCS model is summarized
in e.g. [2]. However, it is still a fair remark that we have not yet achieved a
consensus on the possibility of completely rigorous, explicit analysis of the
full BCS model. Here we mean a Fermionic Hamiltonian consisting of a
quadratic kinetic term and a quartic interacting term by the BCS model.
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It is necessary to investigate in which parameter region the BCS model can
be rigorously analyzed in order to clarify and increase our understanding of
the model in its original definition as the Fermionic field operator.

To supplement overviews of the literature given in the introduction of
our previous work [12], here let us comment on two of the most studied
mathematical approaches to the theory of the BCS model. Analysis of the
BCS functional has been vigorously developed by the authors of the review
article [7] and their coauthors. The BCS functional is derived from the
Gibbs variational principle as a functional of generalized one-body density
matrices. Above all the derivation is based on an assumption that to char-
acterize equilibrium states it suffices to minimize the pressure functional
over a set of quasi-free states. To my knowledge, the equivalence between
a quasi-free state minimizing the BCS functional and the Gibbs state of
the BCS model has not been proved. This means that we cannot rigorously
relate the superconducting order in terms of the minimizer of the BCS func-
tional to that in the BCS model. At this point it is natural to consider that
the recent papers summarized in [7] feature a well-recognized approach to
the BCS theory, rather than analysis of the BCS model Hamiltonian it-
self. As for the BCS model Hamiltonian, it is known that its eigenstates
can be constructed by using solutions to a system of nonlinear equations
called Richardson’s equations ([17], [18]). Nowadays Richardson’s method
is formulated within the framework of algebraic Bethe ansatz (see e.g. [19],
[20]). Though there are many applications of this approach, Richardson’s
equations in principle need to be solved numerically. It seems that it has
not been applied to rigorously prove existence of superconducting order in
the form of finite-temperature correlation functions in the BCS model.

In our previous work [12] we studied the reduced BCS model, where the
quartic interacting term is a product of the Cooper pair operators, at posi-
tive temperature by extending the external magnetic field to be purely imag-
inary. We reached the conclusion that under the imaginary magnetic field
the BCS model is mathematically analyzable at positive temperatures and
especially the superconducting phase characterized by spontaneous U(1)-
symmetry breaking (SSB) and off-diagonal long range order (ODLRO) can
be proven. Let us remark that the BCS model with the imaginary magnetic
field is not Hermitian and thus it does not a priori define the Gibbs state.
At present it seems that this model is not analyzable within the methods of
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[7], [3] based on the Gibbs variational principle. One serious constraint in
the previous work [12] is that the possible magnitude of the reduced BCS
interaction heavily depends on the imaginary magnetic field and the tem-
perature. In our previous construction, the closer the imaginary magnetic
field is to the critical values or the lower the temperature is, the smaller
the magnitude of the interaction must be. We have already mentioned in
the introduction of [12] that the temperature-dependency of the allowed
magnitude of the interaction should be improved by a multi-scale infrared
integration. In line with this purpose, here we develop a theory where the
magnitude of the interaction is allowed to be largely independent of the
temperature and the imaginary magnetic field.

More precisely, in this paper we consider the reduced BCS model inter-
acting with the imaginary magnetic field at positive temperature and prove
the existence of SSB and ODLRO in the form of the infinite-volume limit
of the thermal expectations over the full Fermionic Fock space under peri-
odic boundary conditions. The magnitude of the attractive interaction must
be small. However, the imaginary magnetic field and the temperature can
take almost every value of a low temperature region of the parameter space
without lowering the magnitude of the interaction. In order to substantially
enlarge the possible parameter region, we need to impose restrictive assump-
tions on the free dispersion relation. Here, unlike in our previous paper, we
construct the theory by assuming a series of conditions on the generalized
free dispersion relation. These conditions are typically satisfied by a free
dispersion relation with degenerate Fermi surface. Examples of the free
Hamiltonian covered by our theory are the free electron model of nearest-
neighbor hopping on 3 or 4-dimensional (hyper-)cubic lattice with a critical
chemical potential or the free electron model of nearest-neighbor hopping
on the honeycomb lattice with zero chemical potential. The free Hamilto-
nians with non-degenerate Fermi surface treated in [12] do not belong to
the model class of this paper. See Remark 1.20 for a mathematical confir-
mation of this fact. As a new observation, we show that for a fixed small
coupling constant and a non-zero imaginary magnetic field the SSB and the
ODLRO occur in arbitrarily low temperatures. However, it turns out that
the SSB and the ODLRO are not present in the zero-temperature, infinite-
volume limit of the thermal expectations. Moreover, the zero-temperature
limit of the free energy density is proved to be equal to that of the free
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electron model, which does not depend on either the coupling constant or
the imaginary magnetic field. In terms of the superconducting order, the
zero-temperature limits derived as a corollary of the main results at positive
temperature seem plain and negative. However, if we think of the fact that
the superconducting order exists in arbitrarily low temperatures, the whole
scenario of the phase transitions in this system is unusual and counterintu-
itive. In Section 2 we study the nature of the phase transitions by focusing
on the free energy density characterized in the main theorem and under a
couple of reasonable additional assumptions on the free dispersion relation
we prove that the phase transitions are of second order.

Though our free Hamiltonian is qualitatively different from that of the
previous work, the basis of our approach is same. We formulate the grand
canonical partition function into a time-continuum limit of finite-dimen-
sional Grassmann Gaussian integration and perform mathematical anal-
ysis of the Grassmann integral formulation. Moreover we apply the key
proposition [12, Proposition 4.16] concerning the uniform convergence of
the Grassmann Gaussian integral having the modified interacting term in
its action in order to deduce the convergence of the finite-volume thermal
expectations to the infinite-volume limits in the final stage of the paper.
While the previous analysis of the Grassmann Gaussian integral formula-
tion was completed only by the double-scale integration, here we implement
a multi-scale infrared integration with the aim of easing the temperature-
dependency of the possible magnitude of the interaction. As in [12], we
deal with the ultra-violet part with large Matsubara frequencies by simply
applying Pedra-Salmhofer’s determinant bound ([16]). Many general tools
for the double-scale integration developed in the previous paper are appli-
cable to our multi-scale integration. We need some more estimation tools
to complete our scheme. We prepare them in accordance with the previous
format of general lemmas. Therefore, from a technical view point of the
constructive Fermionic field theory this work is seen as a continuation of
the previous construction [12].

We should explain exceptional subsets of the parameter space of the
temperature and the imaginary magnetic field where we are unable to con-
struct our theory. If the imaginary magnetic field divided by 2 belongs to
the set of Matsubara frequencies, the free covariance is not well-defined.
This is because in this case the denominator of the free covariance in mo-
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mentum space can be zero. As the free covariance is a central object in
this approach, we have to exclude these points, which only amount to a
1-dimensional submanifold of the 2-dimensional parameter space. We claim
the main results of this paper for the temperature and the imaginary mag-
netic field belonging to the complement of the union of these subsets. Also,
we have to assume a nontrivial dependency of the possible magnitude of the
coupling constant on the temperature and the imaginary magnetic field if
the temperature is high. This constraint stems from a determinant bound of
the full covariance and has no effect if the temperature is low. See Remark
1.7 for details of this constraint.

Taking the zero-temperature limit in interacting many-electron systems
is still a challenging problem of mathematical physics. In the preceding
examples of taking the zero-temperature limit in the systems with spatial
dimension larger than 1 ([6], [5], [10], [11]) not only the degeneracy of the
Fermi surface but also symmetries of the whole Hamiltonian are essential.
In the infrared analysis of the Grassmann Gaussian integral of the correction
term of the reduced BCS interaction, we have an advantage that quadratic
Grassmann polynomials are always bounded by the inverse volume factor,
which is incomparably smaller than any support size of infrared cut-off.
We do not need to use symmetries to keep track of the zero set of the
effective dispersion relation, the kernel of the quadratic Grassmann output,
during the iterative infrared integration process. We only need a priori
information of the infrared properties of the free dispersion relation in order
to ensure that Grassmann polynomials of degree > 4 remain bounded in
the iterative scale-dependent norm estimations. For the above reason the
free Hamiltonian can be chosen much more flexibly in this paper than in the
preceding zero-temperature limit constructions based on multi-scale infrared
integrations. The relative generality of the free Hamiltonian is one novelty
of our low temperature analysis.

Here let us explain more about key ideas of our multi-scale analysis in
order to help the readers proceed to the main technical sections and recog-
nize technical novelties of this paper. Let us allow ourselves to use formulas
informally and simplified notations in the following for illustrative purposes.
As in [12] we begin with the Grassmann Gaussian integral formulation which
has the correction term in its exponent.
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(1.1) / "W duc(),

where the Grassmann polynomial V°(¢) denotes the correction term and C
denotes the full covariance. The full Grassmann integral formulation is offi-
cially presented in Lemma 3.6. By using much simpler notations than those
actually used in the main body of this paper we can write the correction
term V(1) as follows.

Vo) = V) () + V) (@),
L-1n-1

V;O(w) = % Z Z%t%t,

=0 t=0
L—1 n—1

V;)O("?b) = % Z Z <6t,u - %) Emthtgyuwyu'

z,y=0 t,u=0

Here 7y is a real number and L, n are positive integers. We should think of +,
{0,1,---,L—1},{0,1,--- ;n—1} as coupling constant, set of spatial lattice
points, set of values of discretized imaginary time variable, respectively. In
the following we sketch the analysis performed in Subsection 4.3, Subsection
4.4 and Subsection 4.6. A norm of V(1) is bounded by the magnitude of
the coupling constant |y| and the inverse volume factor L~!.

VO < L™

The norm || - || of a Grassmann polynomial is defined by summing its unique
anti-symmetric kernel function over all but one variables. More explicitly,
the above bound is derived as follows. Writing 1,4 1, 14¢,—1 in place of Yyt
14, Tespectively, the unique anti-symmetric kernel function of V2(3) is that

(@, £.€), (50, )) = 5o Bralbeade 1 — S 18¢1)

({0, L =1} x {0,--- ,n—1} x {1,-1})* = C,

and thus

Vol = sup >

(z,t,6)€{0,+ . L—=1}x{0,- ,n—1} x{1,—1} (y,u,¢)€{0,- , L—1}x{0,--- ,n—1}x{1,—1}
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|5 Be bt (Beade 1 — Se-16c,)
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Though its norm cannot be bounded by L~!, the Grassmann polynomial
V(1)) has a particular vanishing property that

(12) [ V) £@dew) =0
for any Grassmann polynomial f(1)) and covariance C: ({0,---, L —1} x
{0,--- ,n —1})? — C satisfying that

(1.3)
C(xt,yu) = C(20,40), (Vo,y € {0,--- ,L—1}, u,t € {0,--- ,n—1}).

In fact the equality (1.2) can be confirmed as follows.

/ V() f () dpi ()

L—1 _
:% Z Z (m - %) / Ga0¥a0byotyo f (¥)dpe () = 0.

,y=0t,u=0

By inserting cut-off functions inside the integral over momentum we can
write the full covariance as a sum of partial covariances. C = Ele”d g,
where lepq € Z<o denotes the final scale of cut-off and Cj is the covariance
containing the cut-off function of [-th scale. We remark that l.,q is inde-
pendent of L and proportional to log 3~ with the inverse temperature 3 if
the temperature is low, i.e. 8 > 1. The multi-scale integration iterates as
follows.

[ ducw) = [ [ &y )i 1 ()
- [ D, C(w)z/ " 1. (0),

where

Vm(¢) _ log </ evm+1(w+¢/)dMCm+1 (w/)> 7 (m =—1,-2,--- 7lend)'
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At each step of the integration we can decompose the Grassmann polynomial
V(1)) into 2 terms. V™ () = V™ (¢) + V" (¢), where the norm of V" (v)
is bounded by L~! and V() satisfies the vanishing property (1.2). We
can manipulate the support of the cut-off functions and perform a gauge

transform so that the final covariance Cj_ ,, which has the most intense

nd?

infrared singularity, satisfies (1.3). Thus, by the property (1.2) we reach
that

l(in
[ Oduetw) = [ e,

The heavy contribution from Cj_ , can be effectively absorbed by the in-
verse volume factor L ™! which bounds the norm of Vlerd(3)). Also, the
factor L™! can be taken smaller than any power of the inverse tempera-
ture or l.,q and thus any extra contribution from these parameters does not
lower the possible magnitude of the coupling constant. This is where we
take best advantage of the mean-field scaling property and the vanishing
property (1.2) that the initial correction term V9(¢)) has. The integration
with the covariances C; (I = 0,—1, -+ ,lepg + 1) is performed in Subsec-
tion 4.4 and the integration with the final covariance Cj_ , is specifically
performed in Subsection 4.6. As the result the formulation (1.1) is proved
to be uniformly bounded with respect to the coupling constant in a good
neighborhood of the origin which is independent of the temperature and the

(¥).

end

imaginary magnetic field. In fact this mechanism was already implemented
at the level of double-scale integration in [12], which did not require mathe-
matical induction with the discrete energy scale. In this paper we implement
this idea based on the classification of Grassmann polynomials inductively
with respect to the scale index of infrared cut-off as described above. We
also have to incorporate various scale-dependent bound properties into the
classification of Grassmann polynomials. The mathematical justification of
the whole inductive procedure is what this paper newly offers in terms of
technical aspects.

Let us comment on key differences between this paper and [15] one by
one, as both concern analysis of Grassmann integral formulations of BCS
type-models. The paper [15] treats a quartic long range interaction which
is derived from the reduced BCS interaction by inserting a Kac potential
into the time integral. The essential goal of [15] is to ensure the solvability
of the BCS gap equation in parameter regions where the correction part
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obtained after extracting the main reference model can be proved to van-
ish in the infinite-volume limit. The analysis of the correction part was
done on the assumption that the parameter x determining the range of the
inserted Kac potential is bounded from above by some negative power of
the coupling constant and the inverse temperature. This assumption does
not affect the solvability of the BCS gap equation, since the gap equation
is independent of the parameter x, and thus the goal was achieved. We
should add that the solvability of the gap equation is also due to that the
free Fermi surface of the model in [15] is non-degenerate. The assumption
on k means that the modified BCS-type interaction depends on tempera-
ture and in particular it approaches to the doubly reduced BCS interaction
which contains a double time integral, rather than to the original reduced
BCS interaction in low temperatures. No multi-scale infrared integration
was performed to improve the temperature-dependency of the interacting
term. Conceptually this paper aims at completing the same story, though
we have the reduced BCS interaction and the imaginary magnetic field from
the beginning. We prove the solvability of a gap equation together with the
fact that the correction part becomes negligible in the infinite-volume limit.
However, we prove the irrelevance of the correction part without assuming
that the interaction is temperature-dependent in low temperatures. In order
to establish the temperature-independence of the interaction, we perform
the multi-scale infrared integration which requires restrictive degeneracy of
the free Fermi surface instead. Our gap equation explicitly depends on the
imaginary magnetic field and thus admits a positive solution regardless of
the degeneracy of the free Fermi surface. In summary, the properties of
quartic interaction, the degeneracy of free Fermi surface and the presence
of imaginary magnetic field are the key differences between [15] and the
present paper. Among them, the temperature-dependency of interaction
is considered as the main difference, since it largely affects the design of
constructive theory of interacting Fermions.

If we face a question about whether SSB and ODLRO in the BCS model
without imaginary magnetic field or in many-electron systems with realistic
short range interaction can be proved by extending this paper’s method,
we realize that there are many essential problems to overcome. This pa-
per’s result implies that as long as the same free Hamiltonian is adopted,
the BCS model without imaginary magnetic field can be analyzed down to
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zero temperature by keeping the magnitude of the coupling constant posi-
tive. However, we cannot prove that the allowed magnitude of the coupling
constant is large enough to ensure the existence of a positive solution to
the BCS gap equation and thus cannot prove SSB and ODLRO, either.
See Remark 1.10 for a more detailed explanation of this issue. Because
of the relatively simple form of the reduced BCS interaction, we can ap-
ply the Hubbard-Stratonovich transformation and reformulate the system
into a hybrid of Grassmann Gaussian integral and Gaussian integral with
a single classical field, where the quartic Grassmann field only appears as
a controllable correction term. It is well known that one can also apply
the Hubbard-Stratonovich transformation to derive a classical system with
many degrees of freedom from the Grassmann integral formulation of a
many-electron model with short range interaction. Since infinitely many
classical fields come into play in the infinite-volume limit in the standard
reformulation of a Hubbard-type short range interaction, it seems at present
that its complete solution is beyond the reach of an immediate extension of
this paper’s methods. Let us remark that equivalence between the minimum
configuration of an effective potential for many classical fields whose num-
ber can be proportional to the number of finite spatial lattice points and
that of an approximate BCS-type potential, which is expressed as a trun-
cated sum over the Matsubara frequencies, for a single classical field was
proved in [13]. However, such a partial equivalence has not led to complete
characterization of the thermodynamic limit of the original many-electron
system with short range interaction, to the author’s knowledge. For these
reasons, possible new contributions of this paper may not be a construction
of necessary steps toward complete solutions of the standard BCS model or
realistic many-electron models with short range interaction, but should be
a positive proposal for studying these models in a non-standard parameter
region of complex plane by means of multi-scale analysis and a construction
of its necessary tools. The proposal should make sense if a structurally rich
phase transition can be proved as a result.

The outline of this paper is as follows. In the rest of this section we
define the model Hamiltonian, state the main theorem concerning the su-
perconducting phase at positive temperature and its corollary about the
zero-temperature limit and present concrete examples of the model. In Sec-
tion 2 we separately analyze the free energy density obtained in the main
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theorem, draw a schematic phase diagram on the plane of the inverse tem-
perature and the imaginary magnetic field and prove that the phase tran-
sitions are of second order. In Section 3 we state the Grassmann Gaussian
integral formulations of the grand canonical partition function. In Section 4
we perform the multi-scale infrared integration by assuming scale-dependent
bound properties of generalized covariances. In Section 5 first we confirm
that the actual covariance introduced as the free 2-point correlation function
can be decomposed into a family of scale-dependent covariances satisfying
the properties required in the general multi-scale analysis of Section 4. Then
we prove the main theorem by applying the results of the general multi-scale
analysis and its corollary. In Appendix A we summarize basic lemmas which
are used to complete the proof of the main theorem in Section 5. In addition,
we present a supplementary list of notations which are newly introduced in
this paper or were introduced in the previous paper [12] with some different
meaning. The list should be used together with that of [12], since many
notations used in this paper are intentionally same or close to those in [12].

1.2. Models and the main results

Let us start by defining our model Hamiltonian. Throughout the paper
the spatial dimension is represented by d. Let vi,va,---, vy be a basis
of R%. Let ¥1,¥2, -+ ,V4 be vectors of R¢ satisfying that (Vi,Vj) = biy
(i,5 € {1,2,--- ,d}), where (-,-) denotes the canonical inner product of R
With L € N(= {1,2,---}) we define the spatial lattice I' and the momentum
lattice I'* as follows.

d
.= ijVJ‘mje{o,1,...,L—1} (j=1,2,---,d) p,
j=1

d 2 4w 2w
I* .= E A-A-‘ n; €0, —, —, -+, 21T — — i=1,2,---.,d
j:1m]V] M { L’ L T L} Y )

In the infinite-volume limit the finite sets I', I'* are replaced by the infinite
sets ', I's defined by

d
FOOI: ijVj‘ijZ(j:LQ,---,d) s
j=1
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d
Dh = hy¥y [ by e fo.2n] =12, )
j=1

We plan to construct our theory by assuming a series of conditions on the
free dispersion relation of the model Hamiltonian. We consider multi-band
Hamiltonians since they can have a variety of free dispersion relations. The
number of sites in the unit cell is denoted by b(€ N). Set B := {1,2,--- ,b}.
A crystalline lattice having b sites per the unit cell is modeled by B x I". We
define our b-band Hamiltonian on the Fermionic Fock space Fy(L*(B x I' x
{1,1}))- As in [12], we focus on the reduced BCS interaction defined by

U * *
V= ﬁ Z @bprwpxiwnylwWT’

(p,x),(n,y)EBXT

where U(€ R.g) is the negative coupling constant. Let us define the map
rr oo — T by

d d
§ : o 2 : /
TL mjvj = mjvj,
j=1 7j=1

where m; € Z, m} € {0,1,---, L — 1}, mj = m/; (mod L) (Vj € {1,2,---,
d}). Throughout the paper we assume periodic boundary conditions so that
for any x € ', 1/1;(;()0 is identified with w/(;;)L (x)o" We define the free Hamil-
tonian by giving a generalized hopping matrix. For n € N let Mat(n, C)
denote the set of all n x n complex matrices. For A € Mat(n, C) let

[Allnxn = sup  [[Av]cn,
veCr
with ||v|lcn=1
where || - ||cr is the norm of C" induced by the canonical Hermitian inner
product. Mat(n,C) is a Banach space with the norm || - ||,xpn. For any

proposition P let 1p := 1 if P is true, 0 otherwise. We assume that the
matrix-valued function £ : R? — Mat(b, C) satisfies the following condi-
tions.

E € C®(R%, Mat(b,C)),
(1.4) E(k) = E(k)*, (Vk € RY),
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E(k+271v;) = E(k), (Vk €R?, j€{1,2,---,d}),
(1.5) E(k) = E(—k), (Vk € R%).

Moreover, there exist a function e : R — R>0 and the constants ¢ € R>q,
njeN(j=1,2,---,d), a € Ry such that

[ ]
(1.6) e(k) < in(f:b |Ek)v|e < ce(k), (Vk € RY),
€
withv||v||@:1
[ ]
(1.7) sup e(k) <c,
keRd
[ ]
e € C(RLR), €2 e C®R%LR),
e(k +27v;) = e(k), (Vk e RY, j€{1,2,---,d}),
[ ]

n 2 d 2—%
(1.8) ( ) <Z v) < c | Ln<an, (Z ) +1on;<n |

d
(V(k1, ko, kq) €RY, ne{0,1,-- ,d+2}, je{1,2,---,d}),

n d -2
i=1 bxb i

(V(kl,kQ,"' 7I%d) eRda n€{1727 7d+2}7 J€{1727 7d})7

(1.9)

(1.10) / dkle(k)gR < cmin{Ra, 1}, (VR € R>0),
I

*
oo
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[ ]
L
(1.11) / dk M= < cin{R*1 1}, (VR € Rsg),
I e(k)
[ ]
(1.12) lim dké = 00.

Furthermore, we assume the following condition.

d

1
(1.13) 2a—1-Y —>0.

n
j=1"

We define the free part of the Hamiltonian by

H0 — % Z Z Z €i<x_y’k>E(k)(pv 77)¢Zx0¢nya-

(p,x),(n,y)eBXT oc{T,|} kel™

By the condition (1.4) Hy is self-adjoint. The Hamiltonian H is defined by
H := Hg + V, which is a self-adjoint operator on Ff(LQ(B x I'x{1,1}))-
Because of the form of the interaction and the generality of the hopping
matrix, we can consider that H represents a class of the reduced BCS model.
As in [12], we analyze the system under the influence of imaginary magnetic
field. Let S, be the z-component of the spin operator, which is defined by

1
SZ = 5 Z ('l/};xTwpr - ¢;x1¢pxl)

(p,x)eBXT

With the parameter (€ R) we add the operator i6S,, which we formally
consider as the interacting term with the imaginary magnetic field, to the
Hamiltonian H and study the existence or non-existence of SSB and ODLRO
in the infinite-volume limit of the thermal averages. To study SSB, we
introduce the symmetry breaking external field F by

F:= vy Z (Q/JZXTw;Xl + wpxlwpr)7 (’Y € R)

(p,x)eBXT
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Since the operator H 4 i0S, + F is not Hermitian, it is nontrivial that the
partition function and the thermal expectations of our interest are real-
valued. We should confirm these basic properties at this stage.

LEMMA 1.1. For any p,n € B, X,y € ',
- i0S » - i0S -
Tre B(H+i6S +F), Tr(e B(H+i6S +F)¢;5<T¢;i<l)’
—B(H+10S.+F) / * *
Tr(e AHFifS.+ )wﬁﬁT¢ﬁﬁl¢ﬁ9lwﬁ$’T) €R

and

Tr(e P00 s e ) = Te(e P00y 14 pse).

ProOOF. Observe that

(1.14) Tr e~ BH=65:4F) _ 7y o—B(H+i6S.+F)

Tr(e—ﬁ(H—iGSz—f—F)O*) _ Tr(e*ﬂ(HHQSZJFF)O),

Tr(e BH-05:4F) ) — Ty (e—AH+i05. 7 0),
(VO € {Upa1¥ps)> Ypxi1Vpxt Yozt Vpsy Vg 1 Vit })-

To derive the third equality, one can use the property (1.5) and the period-
icity of E(-). On the other hand, by using the transforms

("/}pxa7¢;xo) - (Qppx—ay w;xfo%
(¢PXU>¢;XU) - (_i¢px0>i¢;xa)’ ((pvxa U) € B x I' x {T: l})

in this order we can show that
(1.15) Ty e AH+0S:+F) _ y o~ BH=ifS-+F)
Te(e~PHH0S:4F) ) — Ty (e BH-i05:4F) )
(VO € {¥5x1¥3x)> Yaxi¥pxts Vit Vo Vig 1 Vagt })-
The claims follow from (1.14) and (1.15). O

To state the main theorem, let us fix some notational conventions, which
will be used throughout the paper. For k € R let e;(k) (j = 1,2, ,b)



The BCS Model with Imaginary Magnetic Field. 11 197

be the eigenvalues of E(k) satisfying e;(k) > ea(k) > --- > ey(k). With
the projection matrix Pj(k) corresponding to the eigenvalue ej(k) (j =
1,2,---,b) the spectral decomposition of E(k) is that

.
(1.16) Ek) =Y ()P (k).

j=1
For any function f: R — C we define f(F(k)) € Mat(b,C) by

FEX) = flej(k)) (k).
j=1
It is important in our applications that for f € C(R,C) the function k —
Tr f(E(k)) : R? — C is continuous. This is essentially because the roots of
the characteristic polynomial of F(k) continuously depend on k. Rouché’s
theorem ensures this fact.

The statements of our main theorem involve a solution to our gap equa-
tion. Let us confirm the unique solvability of our gap equation, which is
written by the above convention. We admit that for any z € R, y € R,
T+00=00>2, yx00=00,00 F=0and

[ SEEE) Y -
v N+ cosh(BE)ER]) ~ ™

which is consistent with the conditions (1.6), (1.12). In fact (1.6), (1.12)
imply that

dk Tr (

sinh(8|E(k)|) > — 00
(e = 1+ cosh(BE(k)))|E(k)| '

lim dk Tr (

Set

Dd = ’det({fl, ‘727 e 7</d)’_1(27r)_d'

LEMMA 1.2. Let U € Roqg, 8 € Rsg, 0 € R. Then the following state-
ments hold true. The equation

(1.17)

U]
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sinh(8y/E(K)? + A2) )

D /r;o i ((cos(ﬁ@/Q) + cosh(8y/E(k)? + A2))/E(k)? + A2
=0

has a solution A in [0,00) if and only if

2 sinh(8| E(K))) )
——+D / dk Tr ( > 0.
ol (cos(530/2) + cosh(BE(K))) [ E (k)|
Moreover, if a solution exists, it is unique.

*
(oo}

PRrOOF. Observe that the functions

sinh x
€T = (€+COShQL‘){II : [0,00) - R7 (6 € (_L 1])a
sinh x
-_— R
v (=14 coshz)z (0,00) —

are strictly monotone decreasing and converge to 0 as x — oo. See e.g.
[12, Lemma 4.19] for hints of the proof. Thus the left-hand side of (1.17) is
strictly monotone decreasing with A as the map from R>g to RU {oco} and
converges to —2/|U| as A — oo. Moreover, it is continuous with A as a
real-valued function in R>q if cos(360/2) # —1, or in R if cos(860/2) = —1.
Furthermore, by (1.6) and (1.12)

lim [ dkTr (( sinh(6+/E(k)? + A?) )

ANO Jrs, —1 + cosh(8y/E(k)?2 + A2))\/E (k)% + A2

By using these facts we can deduce the claim. [J

For a function f : ' X I'no — C and a € C we write hml\x—ylle—wxs'
f(x,y) = aif for any ¢ € Ry there exists 6 € R such that || f(x,y)—a|lc <
e for any x,y € I's satisfying ||x — y|/ge > 6. Here || - ||[ga denotes the
Euclidean norm of R,

For a sequence (s,);2,,, and an element s of a normed space with the
norm ||| - ||| we write lim,, oo neNsy, = s if for any € € Ry there exists
m € N such that |||s, — s||| < € for any n € N satisfying n > m. The point
of this convention is that we write lim,, o neN s, even if s1,82, -, 8p0-1
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are undefined. We use this convention especially when we consider the
infinite-volume limit L — oc.
Our main result is stated as follows.

THEOREM 1.3. We let A(€ Rxq) be the solution to (1.17) if

g sinh(8|E(k)|)
o P d/p (cos(60/2) +cosh<ﬁE<k>>>|E<k>|) =0
We let A :=0 if

2
——+D/
ol L

Then there exists a positive constant c; depending only on d,b, (Vj)?zl,a,
(nj)?zl,c such that the following statements hold for any 6 € Rsg, 8 € R

satisfying 30/2 ¢ w(2Z + 1) and
2
1))

Tre PHAOS:4F) e R o (VL € N with L > Lo, v € [0,1]).

k' (

*
oo

sinh(B|EQQ))
(con(30/2) + cosh(ﬁE(kD)lE(k)l) <0

k' (

®
o0

% —7m(2m + 1)

(1.18) U € (cl <1g>1 + 15«1 max{62,min
meZ

(i) There exists Ly € N such that

(ii)
(1.19)
Lilzf%o <—% log(Tr e—ﬁ(HHGSz)))
= % - % e dk Tr log (2 cos <%) e BE(K)

4 SWEWFAT-EW) | e—ﬂ(\/E(k)2+A2+E(k))> .
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(iii)
(1.20)
Ty —B(H+i0S.+F) /%

lim lim (e v xTwpxl)
YN0 L—oo Tr e—B(H+i0S.+F)
~€(0,1] LeN

Tr(e—BH+OS+F)
= lim lim r(e .d)pxld)pr)
YN0 L—oo Tr e—B(H+i6S:+F)

ve(0,1] LeN

_ ADy sinh(8/ E (k)% + A?) .

p),

2 /;o (cos(86/2) + cosh(B/E(k)? + A2))\/E(k)? + A2 2
(VpeB, x€Tu).

() If

1
D, sinh(8|E(k)|)
U| # <7 / dk Tr <( (59/2)+cosh(5E(k)))|E(k)|)> 7

(oo}

(1.21)
p g ST s g o)
%= || ga—o0 LL—E%O Tr e—B(H+i6S.)
= A2 H
pe{p.N}

‘ &/ ik sinh(8/E (k)% + A?) (0. 9)
2 Jrs, (cos(80/2) 4 cosh(By/E(k)? + A2))\/EK)Z+ A2 )7
(Vp,7 € B).

If

-1
(D sinh (5| E(K) )
1= ( ) ;odw<<cos<5e/2>+cosh<ﬁE<k>>>|E<k>|)) |

B(H+16S) /%
Tl"( Blkt wpr wpxl wﬂYlwﬁYT)
Ty e—B(H+i6S>)

lim lim sup
ll%x— yan"OO L—oo

LeN

=0, (Vp,ne€B).
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(v)
im — Y Tr(e 0y Vs Yag 1 agt) _ A2
L—oo L2 Tr e—A(H+i05:) =7
LEN (ﬁv*)v(ﬁ?&)EBXF

(vi) There exists 6 € Rsq such that if ming,cz|30/2 —m(2m+1)| < 6, then

2
2,

U] r
and A > 0.

sinh(B|E(K))
(cos(B6/2) 1 cosh(ﬁE(k)))\E(k)\) >0

dkTr(

*
oo

In the rest of the paper except Section 2 we always assume that
0
% ¢ m(2Z + 1).

This is because the free partition function can vanish if 56/2 € ©(2Z + 1)
and thus we are unable to define the free covariance, which is indispensable
for our construction. Only in Section 2 we lift this condition.

For (z,y,2) € Rsg x R x R with 2y/2 ¢ w(2Z + 1) we define the matrix-
valued function G .- : R? — Mat(b,C) by

sinh(z+/E(k)? + 22)
(cos(xy/2) + cosh(z\/E(k)? + 22))/E(k)2 + 22

(1.22)  Guy.(k) =

This notation helps to shorten formulas in subsequent arguments. We can
prove the claim (vi) here. There uniquely exists mg € Z such that 56/(27) €
[2mo, 2mo + 2) and min,,cz|80/2 — 7(2m + 1)| = |30/2 — ©(2mo + 1)|. By
(1.6) and (1.7),

/ dk Tr G g0(k)
r

*
oo

>3 !

I dkcos(ﬂ9/2) + cosh(fce(k))

>5[ dx L
~Jry e99B22e(k)2 41— cos(|80/2 — m(2mo + 1))
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> b dk !
~ max{1,e#° 322} Jr. o e(k)? +[B60/2 — w(2mo + 1)2

By (1.12) there exists 6 € Ry such that if |30/2 — w(2mg + 1)| < 8, the
right-hand side of the above inequality is larger than 2D;1|U|_1. Then
Lemma 1.2 implies that A > 0.

REMARK 1.4. The claim (i) ensures the well-definedness of the free
energy density and the thermal expectations for L € N with L > Ly. By
following the above-mentioned convention we write limz,_. 1eN in Theorem
1.3, though these objects are not defined for L € {1,2,---, Ly — 1}.

REMARK 1.5. For any A € R>g, p € B,

jﬁ KG9 (K)(5,9)

*
[ee]

> D, !'sinh (ﬂ\/sup |E(k)|2,, + A2>

keRd

-1
. (cos(ﬂ@/Q) + cosh <[3\/ks;11gd |E(k)||Z,, + A2>>

—1
-<¢$mnE&may+Aﬂ
keRe

> 0.

From this estimate we can see that the theorem implies the occurrence of
SSB and ODLRO in the case

2
_m + Dd/p dkTrGgg0(k) > 0.

*
[e'e]

REMARK 1.6. If 6 # 0, for any [y, 6 € Ry there exists 5 € [y, 00)
such that 0 < min,,e7|560/2 — 7(2m + 1)| < 6. Thus we can read from the
claim (vi) that if 8 # 0, the SSB and the ODLRO occur in arbitrarily low
temperatures.
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REMARK 1.7. The (-dependency in the case § < 1in (1.18) stems from
a determinant bound on the full covariance, which is essentially governed
by the integral

1 1
(1.23) 5 Jo. ™) + minnez|6/2 — n@m+ 1)/7)

if B < 1. See the proof of Lemma 5.7 (i). In fact a lower bound of the term

-2
1 1
<B/p K0+ minez 62— m(2m + 1)/ﬂ|>

*
(o o]

leads to the 8-dependency in (1.18). If # = 0 (mod 47/[3), the term (1.23)
is bounded by a f-independent constant and the determinant bound on the
full covariance becomes independent of 3 as usual. Thus we can explain
that the nontrivial 8-dependency in (1.18) is caused by the insertion of the
imaginary magnetic field.

REMARK 1.8. For ¢ € C let us define the operator F(¢) by

F(¢) := Z (¢¢;xTwle + awpxlwpr)'

(p,x)eBxT

Take any x € ', p € B, £ € R. It follows from the claim (iii) and the
gauge transform 9% — e‘igw}, vx — eigl/}X (X e BxT x{1,]}) that

Tr(e—ﬁ(H+z‘esz+F(we"5))¢;§ﬂ¢f )

. . x|
K]% nggo Tr e—B(H+i0S.+F(yei€))
v€(0,1] LeN

e_igADd ~ A
— P [ dkGa0a0(6.0)
_ 1 @&

il (eSO sy pag)
N0 L—oo Tr e~ B(H+i0S:+F(yeit))
v€(0,1] LeN

eiEADd

i TN L]
1N

*
oo
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These convergent properties imply that the limit

Tr B(H+i0S+F()) ,/,*
lim lim (e d)prd]pxl)

¢»—0 L—oo T‘I‘e_ﬁ(H+lGSz+F(¢)) ’
¢eC\{0} LeN

Tr(e—BHHIBSAF@) ) 4
lim lim r(e - wp lwp T)
$—0 L—oo Tre_B(H+lesz+F(¢))
¢eC\{0} LeN

do not exist when A > 0. However,

TI'( —B(H+i0S.+F(¢)) w*XTprL)

;E% Lh—r};o Tr e—B(H+i6S.4F(4))
¢eC\{0} | LeN

T —B(H+i0S.+F(¢)) % o%
= lim lim (e , Vpx1Yp T)
$—0 |L—o0 Tr e—B(H+i0S:+F(¢))

¢eC\{0} | LeN

AD .
= Td / ) dkGgg A (k)(p, p)-

REMARK 1.9. The claim (iv) does not imply the convergence of

Tr(e_ﬁ(HHesz)ng Vi iy Pagt)

LIEI;O Tr e—B(H+i6S:)
LeN
in the case
D —1
(1.24) U| = (7‘1 /F dkTrGﬁ7970(k)) .

In fact in this case we cannot prove the convergence of the finite-volume
4-point correlation function as L. — oo. We can prove that the global
maximum point of the function

2

T — 2 | 5Ld Z Trlog (COS <69> + cosh(8+/ E(k)? + x2) >

ol oLt o

ﬁ =7d > Triog (Cos (59> + cosh(BE(k ))> . Rso — R

kel™
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converges to 0 as L. — co. According to the proof of the theorem in Sub-
section 5.2 and Lemma A.2 in Appendix A, we must have more detailed
information about how the maximum point and derivatives of the function
at the maximum point converge as L — oo to complete the proof. We are
unable to extract the necessary information from our assumptions on E(-).
On the contrary, the theorem guarantees the convergence of the thermal
expectations

Tr(e—ﬁ(H—l—i@Sz—&-F)w»:&Tw»f )

PR 7 pX|
Tr e—B(H+i6S-+F) ’
—B(H+16S),/,* *
1 Tr(e-AH+ )l%ﬂwﬁgﬁ/’ﬁylwﬁﬁ)
72d 2 Tr e—B(H+i6S>)
(6,%),(1,9)
eBxTI’

and the free energy density

1 A
~ 3 log(Tr e~ PH+052))
as L — oo as long as (€ Rsg), 0(€ R) satisfies 80/2 ¢ 7(2Z + 1) and U
satisfies (1.18), whether (1.24) holds or not.

REMARK 1.10. As we can see from the claim (vi), the non-zero imagi-
nary magnetic field is crucial to ensure the existence of a positive solution to
the gap equation (1.17) for any small coupling constant and accordingly the
existence of SSB and ODLRO in this regime. One natural question we face
is whether we can prove SSB and ODLRO when the imaginary magnetic
field is switched off. To find an answer to this question, let us examine the
solvability of the gap equation when # = 0. By (1.6), (1.7), (1.11)

/F dk Tr <m> < b/r dk%

Thus, a necessary condition for existence of a positive solution A to (1.17)
with 8 = 0 is that

dk Tr Gﬁ7070 (k) < /
r

< bcmin{c®!,1}.

* *
oo oo

2

(125) vl > Dgbcmin{ca—1 1}’
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We can compute the thermal expectation values for some U independent
of § and 6 as described in (1.18), which is an advantageous result of the
multi-scale integration. However, our multi-scale analysis has no advantage
to make the allowed magnitude of U quantitatively explicit, as we need to
go through a pile of calculations. Whether the necessary condition (1.25)
holds in this regime is highly nontrivial and we cannot give an affirmative
answer to the question at present.

Since the upper bound on |U| does not depend on g if 8 > 1, we can
consider the zero-temperature limit § — oo of the free energy density and
the thermal expectations. It turns out that in the weak coupling region
where our construction is valid the zero-temperature limit does not exhibit
the characteristics of superconductivity.

COROLLARY 1.11. There exists a positive constant ca depending only
on d,b, (‘A’j);‘lzlﬁ a, (nj)?:p
U e (—02,0), 0 e R.

(i)

c such that the following statements hold for any

1
AASB, (VB € Rxy with $0/2 ¢ n(2Z + 1)).
(it)
1 )
: : _ —B(H+i0S:)
g (g es(rre )

with 80 ¢r(2741) LEN

:%AdﬂMﬂ%W@D

*
oo

1
= Jim lm <‘W 1°g<Tf6_BH°>> -
BeRso LeN
(iii)
Tr 67,8(H+iGSZ+F) * 1/”?
lim lim lim ( __ P X1 7P xl)
N0 f—00,06Rs0  L—oo Tr e~ B(H+i05-+F)

VEO1] with B2 ¢r(2Z+1) 1€



The BCS Model with Imaginary Magnetic Field. 11 207

—B(H+i0S,+F
= lim lim tim (O D )
N0 B—oo,BeRsy  L—oo Tr e—B(H+i0S.+F)
vEO0.1] with 82 ¢ (27+1) L€

Tr(e BHFTOSAF) yx %
= lim lim lim ( : prwpxl)
B—00,8€R5 0 YN\O0 L—o0 Tr e—ﬁ(H"rleSz-f—F)

with 82 ¢r(27+1)7€(0,1] LEN

Tr(e P05+ Plusg Ypsy) _

= li li li ‘ _
5—><>Ol7gl€R>o vlg(l) Lg%o Tr e—B(H+i0S.+F) 0,
with 82 ¢r(27+1)7€(0,1] LEN
(Vpe B, xeT'y).
(iv)
Tr(e PHTOS:) % h* ahec b
im limsup  limsup ( p:T ,epsxl iy Vi) =0,
H)A(_S"”Rd_’oo B—00,8€R50 L—oo Tre_ﬁ( +i6S:)
with 82 ¢r(2Z+1) LEN
(Vp,n € B).

(v)

—B(H+16S
lim lim — 3 Tr(e” P05y s Vag 1 Yagt)
B—00,B€Rs0  L—oo L2~ £ Tr e—B(H+i6S.)
with 8 ¢r(2Z+1) LEN (p,%),(1,9)EBXT
=0.

REMARK 1.12. Though it does not show the sign of superconductivity,
it is interesting that the zero-temperature, infinite-volume limit of the free
energy density claimed in (ii) is independent of both the coupling constant
and the imaginary magnetic field.

REMARK 1.13. Among the assumptions listed in the beginning, the
smoothness of E(-), e(-)? is assumed only for simplicity. In fact we only
need to differentiate E(-), e(-)? finite times depending only on the dimen-
sion d. Thus the smoothness condition can be relaxed to be continuous
differentiability of certain degree.

REMARK 1.14. See Remark 4.6 for the specific reason why we need to
assume (1.13). Also, Remark 5.8 explains how we use the condition a > 1.
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1.3. Examples

In order to see the applicability of Theorem 1.3 and Corollary 1.11, we
should examine which model satisfies the required conditions. We let ‘¢’
denote a generic positive constant independent of any parameter not only
in this section but in the rest of the paper. Also, I,, denotes the n x n unit
matrix throughout the paper.

Ezample 1.15 (Nearest-neighbor hopping on the 3 or 4-dimensional
(hyper-)cubic lattice with a critical chemical potential). Let d = 3 or
4 and {Vj}?zl, {f/j}?zl be the canonical basis of R%. In this case I' =
{0,1,--+, L—1}4, T*={0,2%,... ,2r — 22}4 ¥ = [0,2n]%. Let b=1 and
set for k = (ky, ko, -+, kq) € R?

d
E(k) := (=1)"P2) " cosk; — 2d
j=1

with hop € {0,1}. In this case Hy describes free electrons hopping to
nearest-neighbor sites under the chemical potential 2d. The role of the
fixed parameter hop is to implement the negative and positive hopping at
the same time. The applicability of the previous framework to this model
was briefly studied in [12, Remark 1.9]. Define the function e : R? — R by

d
kz.
(9 =4 sin? (5 4 luoper§ ).
j=1

We can check that e(k) = |E(k)| for any k € R%. Tt is clear that (1.6),
(1.7) hold with some c(€ R>1) and e(-) satisfies the required regularity
and the periodicity. Moreover, the conditions (1.8), (1.9) hold with n; = 2
(j = 1,2,---,d) and the conditions (1.10), (1.11) hold with a = d/2 and
some c(€ R>1). By considering that d = 3,4 we can confirm that the
conditions (1.12), (1.13) hold as well.

Ezample 1.16 (Nearest-neighbor hopping on the honeycomb lattice).
Many-Fermion systems on the honeycomb lattice with nearest neighbor
hopping are well studied in a branch of mathematical physics based on
Grassmann integral formulations. See e.g. [6]. Let us confirm that the
free electron model on the honeycomb lattice with zero chemical potential
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AP

Vi

Fig. 1. A portion of the honeycomb lattice linked by the nearest-neighbor hopping.

can be dealt in this framework as the free Hamiltonian. Take the basis
vi = (1,007, vo = (%, @)T of R%2. Then, Vi, Vo are uniquely determined
as follows. v1 = (1, —%)T, Vo = (0, %)T The honeycomb lattice with a
spatial cut-off is identified with the product set {1,2} x . The hopping

matrix is given with momentum variables by

0 14 e7ivik0 4 gmilvald 2
E(k) = < 14 eitvik) | gilvak) 0 o KeR

See Figure 1 for a portion of the honeycomb lattice linked by the nearest-
neighbor hopping.

The eigenvalues of E(k) are (—1)°|1 + Vv 4 gilv2lo| (5 ¢ {0,1}).
Let us set e(k) := |1 + V1K) 4 ¢iv2k)|  The validity of the inequalities
(1.6), (1.7) and the regularity and the periodicity are clear. One can directly
prove that (1.8), (1.9) hold with n; = ny = 1. Observe that e(k) = 0 and
k eI’} if and only if k = %”\71 + %”\72 ork = %’T\A/l + %”\72. By making use
of the expansions

1+ cosx 4 cosy

sinx + siny
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+ Z% (Sin(n) <§7r) (:L’ - §7T> + sin(™ <§ﬂ'> (y - %7‘() ) ,
n=2 "
(z,y € R),

we can prove that there exist constants 61, 82, 63 € R such that for any
ki,ko € [0, 27T],

) ) ) 5 \2 ) 4 \2 1/2
(1.26) 6(k‘1\71 + kQ\A’Q) S (51 min{ ((kl - gﬂ') + <I€2 — §7T> > N

and if 6(];}1\71 + ]%2\72) < b9,
) ) PR e 1/2
(1.27) 6(k1\71 + kQ\Afg) > 03 min{ <</€1 — §7r> + (kg — gﬂ') ) ,
1/2
4 \? 9 \2
((kl — §7T> ‘I— <k‘2 — §7T) ) }

We can apply these properties to prove that the conditions (1.10), (1.11),
(1.12), (1.13) hold witha=2,d =2, n; =ng = 1.

Ezample 1.17 (Hopping on the square littice with additional sites). To
demonstrate the applicability of the multi-band formulation, let us consider
a model on the square lattice with additional lattice points. The basis v, vo
are equal to the canonical basis e1,es of R2. The lattice of our interest is
identified with {1,2,3,4,5,6} x I'. So we are going to construct a 6-band
model. We define the hopping matrix with momentum variables by

2 14eh 14k
) , Eo(k):=| 0 1+4+¢em 1+ e_zj’” ,
1 0 1+ e ik

Eo(k)

0
Bk = < Eg(k)* 0
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V2
5,x + v2)

(3 %)

(4,%)
(6,x — vi (1, x) 6,x

%x T YR+ vi) Vi

{G,X—Vg)

Fig. 2. A portion of the lattice {1,2,3,4,5,6} x I" linked by the hopping.

A portion of the lattice {1,2,3,4,5,6} x I" linked by the hopping is pictured
in Figure 2.

To estimate the modulus of the eigenvalues of E(k), it is efficient to
estimate the eigenvalues of E(k)?. Note that

B Eo(k)Ep(k)* 0
Bl = < 0 Bk Eo() ) ’

det(xfg — E()(k)E{)(k)*) = det(xfg — Eo(k)*E()(k))
=2 — (54 3|1+ ® >+ 2|1 + €*2[%)2?

2
H{6) [ e® P42l e 14| — 14 PP+ 2P ) 2
j=1

9 2
j=1

Moreover, if 232':1 14 €| #£ 0,

v iy det(Eo(k) Eo(k)* (i, 1)1<ij<s
with [|[v]|s=1 1,77l

inf [E®&) Ve > det( Eo (k) Eo(k)*)
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‘ 2
(Z3i 1+ e™p2)
62:?:1’1+€ikj‘2+2‘1+eik1’4+‘1+eik2’4_’1+eik1|2’1+eikz‘2

2 ik
> I il >”l§él+émp
TG 2) (e T 24

det(Eo(k)Eo(k)")

inf \|E(k)2v|]@s < 3 —
. veCt 3 lel det(EO(k)EO(k)*(Za ]))1Si7]§3
with ||V||©3:1 INE

1
§Z|1+€Zk1|2

Therefore, if we define the function e : R> — R by

2
1 L
e(k) == 55 1+,
=1

the condition (1.6) holds with some positive constant c. It is apparent that
e(-) satisfies (1.7) with some c and the required regularity and periodicity.
There is no difficulty to confirm that e(-)?, E(-) satisfy (1.8), (1.9) with
n1 = ny = 1. By using the inequalities

9 2 2 2 2 2 2
(128) = kg =P < [ Do+ <D Nk -,
j=1 j=1 j=1
(Vk e I'L),

we can check that (1.10), (1.11), (1.12), (1.13) hold with a = 2, d = 2,
ng=ng = 1.

Ezample 1.18 (3-dimensional model with nonuniform exponents). Let
us give a 3-dimensional model where the exponents ni, na, ng are not uni-
form. As in Example 1.15, we let {vj}g?:l, {v; }?:1 be the canonical basis
of R3. Set

2
E(k) =e(k) := Zcos kj 424 (cosks + 1)
j=1
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This is the dispersion relation of a one-band free electron model on the
cubic lattice. The required regularity, periodicity, (1.6) and (1.7) are clearly
satisfied by F(-), e(:). By making use of the form

2
(1.29) e(k) =2 sin’ <kﬂ_7r> + 4sin? <k32_7r>,
j=1

one can check that (1.8), (1.9) hold with n; = ny = 2, n3 = 4. Moreover,
for R € R,

R1/2 1
/ dkle(k)gR S C/ dklz 2 L k:4<R < C/ d?“?“/ dk31r2+k§§R
5 [0,1]3 ki 0 0

RL/2 )
< c/ drr(R —r%)1 < cR4,
0

1 12 4 R1/4 o rl,
/ dk e(k)<R < C/ dk L1 kKIHks<R < C/ dk‘3/ dr ;—&-k%iR
s, e(k) 0,13 EzjlkaFké 0 0 e+ k3

R1/4 R )
< c/ dkslog (—4> < cRx*.
0 k3

These calculations lead to the conclusion that (1.10), (1.11) hold with a = 2.
One can similarly confirm that (1.12) holds. Since

o

3

1 1
2 — — _ = —
Jj=1
the condition (1.13) holds as well.

Ezample 1.19 (5-dimensional model whose Fermi surface does not de-
generate into finite points). In the above examples the zero set of e(-)
consists of finite points. Here let us give an example where the zero set
of e() does not degenerate into finite points. Let d = 5 and let {v;}?

Jj=1
{ffj}jzl be the canonical basis of R®. Define E(-) : R> — R by

5
E(Kk) := (cos ki + cos kg)* + Z cosk; + 3
=3
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and set e(k) := F(k). It is possible to make an interpretation of this model
in terms of hopping and chemical potential. We can see from the equality

5
1.30) e(k) = 4cos? kit cos? ki — k2 +2Y sin? kj—m
2 2 2
j=3
that
{keT% | ek) =0}

— {(k:l, ko, , 7, ) k1, ko € [0,27) satisfying

ki + ko € {m, 37} or k1 — ke € {—m, 7} }

It is clear that E(-), e(-) satisfy (1.6), (1.7) and the required regularity and
periodicity. By using the equality

5
. ki —m
e(k) = (cos ki + cos k2)2 +2 Z;SIHQ <JT>
]:

we can check that (1.8), (1.9) hold with n; =2 (j = 1,2,3,4,5). By using
(1.30) and the inequality 2 > sin?6 > %92 (6 € [0, 3]) and changing the
variables we have that for R € (0, 1],

/ dkle(k)gR

< <
- C/[O7%}5 dk126k22k‘2+ Zo k2<R c/[0’1]5 dklk%k%+z?=3k‘?§R

Jj=3"j—=

< cR? dkeydk dksdkydks1
> CR /[OR 1/4 1 2/[07R_1/2]3 3 4 5 k2k2+25. k2<1

b _gk2<
2 2

1
/o drr /[O,R 1/4]2 dlydky k1ko<v1-72

1 RY4\/1=¢2 R1/4 1_ 2
<cR2/ drr? / dky —%+/ dkl‘/ r
0 0 RY/A/T—12 k1
_|_

cR?log(R™ 4+ 1),

1. 1k2k2 Y0 _gk?<R
/ dk (k)SR SC/ dk + j=3
Iz, e(k) [0,1]5 ka:Q—i—ZJ _3 k7
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1k2k2+25 g k2<1
< R / dky iy / dksdkadks S
[O,R*1/4]2 [0’371/2]3 k1k2 Z] =3 k’]

1
<cR [ d dkydks1
= /O T/[07Rl/4]2 LER2 21 ko <V/1—12

< cRlog(R™* +1),

1 1
dk—— <c¢ dk <e.
/g;o e(k) ~ /[0,1]5 K33+ 30 5 k2

Jj=3"j

Since log(R~! + 1) < ¢R~'/® (VR € (0,1]), the inequalities (1.10), (1.11
hold with a = 2. Let us check that the inequality (1.13) holds with a = 2,
d=5n;=2 (j =1,2,3,4,5). Moreover,

)

2 -1
5
1
dkizc/ dk | [ B2k2 4+ k2| +e
/F’So 6(k)2—|—€ [0,1]5 12 ; J
d dkdk
/ ’"/01 ! QW r2)2 &

,’,,
> d dky1dk
- / T/OT_1/2]2 1 2(k2k2 ) ',"4_|_8 —>OO7

as € \, 0. Thus the condition (1.12) holds as well.

In summary, Theorem 1.3 and Corollary 1.11 hold for the Hamiltonian H
whose free part Hy is defined with the hopping matrix E(-) given in Example
1.15 - Example 1.19.

REMARK 1.20. Let us see that the free dispersion relation of nearest-
neighbor hopping electrons on the (hyper-)cubic lattice with non-degenerate
Fermi surface does not satisfy the condition (1.11), which will be essentially
used to prove that |U| can be taken independently of the temperature and
the imaginary magnetic field in low temperature. Most of the necessary
notations are defined in the same way as in Example 1.15, apart from that
now d € N and

Ek) := hoPQZcosk -
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with the chemical potential y € (—2d,2d). This free model was treated
in our previous work [12]. For any R,e € R and a continuous function
e : R? — R satisfying (1.6) we can derive by the coarea formula that

1 1 1 VE(k
/ g <R 2/ I LM<k > Ik \E@)|<rIVE(K)|
- ek)te |E(k)| +¢ ~ 2vd Jrs, |E(k)| + ¢
/ HT ({k e T%, | E(k) =n})
T 2Vd n| +e ’

where H?~! is the d—1 dimensional Hausdorff measure. Set K := $(2d—|pu/),
R’ := min{K, R}. Then we can apply [12, Lemma 4.17] to derive that

1
e(k)<R
dk——
/;O 6(k)+5
d-1 K 1
> £ HEY({kelr | Bk) = /d
> et MOk T | B =) [ de

1 2d — || \?7" R +¢
> gy + Lgss (o 1 .
=V ( d=1F Td>2 <10(d 1)d) e\

Since the right-hand side of the above inequality diverges to co as € \ 0,
the condition (1.11) cannot be satisfied by this model.

2. Phase Transitions

In this section we analyze properties of the free energy density. We focus
on the right-hand side of (1.19) as a function of (3,6) € Ry x R by fixing
U(€ Rp) with small magnitude. Mathematical arguments in this section
are essentially independent of the following sections, which aim at proving
Theorem 1.3 and Corollary 1.11. Our aim here is to describe the nature
of the phase transition happening in the system. The readers who want to
prove Theorem 1.3 and Corollary 1.11 first can skip to Section 3 and come
back to this section afterward. If we think of the right-hand side of (1.19)
alone, we are free to substitute any large coupling constant and a hopping
matrix with different properties. However, we restrict our attention not to
deviate from the configuration where the derivation of (1.19) is justified.
We simply assume that E : RY — Mat(b,C), e : R* — R satisfy the same
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conditions as listed in Subsection 1.2 and |U| is small as described subse-
quently. We need to impose a couple more conditions on the function e(-).
Assume that there exist r,s € Ry, c € R>1 such that 0 <r <1,142r<s

and
(2.1) / dk— L <ca
' e ez Az =

1
e(k)<B -1 p—s
2.2 dk———Mm=—____ > A
(22) /F;Q (e + A2 =C A
(YA, B € (0,1] with0 < A < B <1).

The conditions (2.1), (2.2) are used only in this section and not required to
prove Theorem 1.3 and Corollary 1.11. Moreover, we assume that U(€ R)
satisfies

2

< .
bDy fF;o dkﬁ

(2.3) U]

We will replace the upper bound on |U| by a smaller constant in the follow-
ing.

REMARK 2.1. In fact we do not use the conditions (1.5), (1.8), (1.9),
(1.10), (1.13) in this section. Also, the regularity assumption of E(-), e(-)?
can be relaxed.

2.1. Study of the models

In order to see that the conditions (2.1), (2.2) are reasonable, let us
check that the examples given in Subsection 1.3 satisfy these additional
conditions.

For z € R we let [z] denote the largest integer which does not exceed
x. This notation will be used in the rest of the paper.

In the model given in Example 1.15 with d = 3 the conditions (2.1),
(2.2) hold with r = %, s = g respectively. Since 1 4 2r < s, the required
conditions are fulfilled in this case. In the case d = 4 the condition (2.2)
holds with s = 2. Note that

1 -1
. — < .
(2.4) /F dke(k)2 T S clog(A™" +1)

*
[e3)
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The condition (2.1) holds with e.g. r = 1 and thus 1+ 2r < s in this case
as well.

By using (1.26) we can check that e(-) introduced in Example 1.16 sat-
isfies (2.2) with s = 2. It follows from (1.27) that the function e(-) satisfies
(2.4) and thus (2.1) with r = 2. Therefore, the additional conditions are
met in this example.

By using (1.28) we can confirm without difficulty that e(-) introduced
in Example 1.17 satisfies (2.1) with r = 3 and (2.2) with s = 2 as well.

Let us study with the dispersion relation e(-) defined in Example 1.18.
By using (1.29) and changing variables we have for A, B € (0,1] with 0 <
A < B <1 that

2 -1
dk— < dk 2 ki + k3| +A?

fo g =< fop (2504 +

2 -1
3

2
gcAi/ de [ (DTR2+k3) +1] <edTd,
R3 :
J=1

Lex)<B
k—_
/r;od (c(R)? + A7)

2 2 -2
2 4 9
Z C/[;) 1]3 dk]-z ?:1 k?+k§§B Z kj + k3 + A
) J:1

2 —2

2
-4 Z 2, 14 -
) ]—1

J=1"

Thus the conditions (2.1), (2.2) hold with r = 2, s = LI respectively. Check
that the condition 1 + 2r < s holds as well.

Finally let us consider the function e(-) introduced in Example 1.19. By
(1.30) and change of variables,

2 —1

5
1
dk———— gc/ dk | | K2k2+ Y k2| + A2
/F 6<k)2+A2 [071}5 172 323 J

*
(s3]

S C/ dkldkg/ dk3d/€4dl€5
[0714—1/4]2 [0714—1/2]3
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2 -1
llog(A=1/2)] 5
Lgi ko<1 + Z 1el<k:1k:2§el+1 k‘%k% + Z /{]2 +1
=0 i
2 -1
5
<c / dkydkg Ly, jy<t / dkadkadks | | D> k7| +1
[0,A—1/4]2 - IR =3
llog(A=1/2)]
1
e ; [0,A~1/4]2 dhrdkolet gy, <ot
-2
5
: / dkadkdks | €+ k]
R, j=3

<c / dkydky <t
[0,A—1/4]2

|log( A 1/2
+e ! / dkydkal gy, <ot
0,A—1/4]2 <
UogA .l A~ 1/4 el +1pT
<clog(A™ +1) +¢ l/ / dks
ZA1/4 elkl—l
< cflog(A™ +1))%,
/ e(k )<B
(e(k)2 + A2)2
>c /* dk14(k1+k2 —m)2(k1—k2—7)2+3 25 o (b—m)2<B
5 2 -2
(ki + ko = )2 (k1 — k2 = m)2 + ) (ky —m)* | + A7
Jj=3
> C/[O " dkl(k1+k2)2(k1_k2)2+z ?:3 ka-SB
2 -2

5
(k1 + k)% (k1 — k2)? + Z k? + A?
=3
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J=3"%j =

-2
> cA /[01}5 AL (1 k)2 (g — k)24 k2<1

2 -2
5

(kl + k2)2(k1 — k2)2 + Zk? +1
=3

> cA2.

Thus the inequalities (2.1), (2.2) hold with e.g. r =3, s = 2.
We have seen that in each example of Subsection 1.3 the function e(-)
satisfies the required conditions of this subsection.

2.2. Phase boundaries
Let us define the map g : Ryg x R x R — RU {oo} by

9(,y, 2)
N
U]
; 2.2
_ Dd/ Ik Te sinh(z+/E(k)? + 22?)
s (cos(zy/2) + cosh(z+/E(k)2 + 22))y/E(k)? + 22
if & ¢ m(2Z +1) or z # 0,
oo if F € 7(2Z + 1) and z = 0.

We can check that the function (z,y, z) — g(x,y, z) is C*-class in the open
set

{(«%yaz)ERwXRXR‘%%W(QZ—FD orz;éO}

of R3.

For (3,0) € Rsg x R let A(3,0) be such that A(B3,6) > 0 and
9(8,0,A(6,0)) = 0 if g(8,0,0) > 0, A(B,0) = 0 if ¢g(5,0,0) < 0. This
rule defines the function A : Ryg x R — R>(. The well-definedness of the
function A(-,-) is guaranteed by Lemma 1.2.

The goal of this subsection is to characterize the set {(3,0) € Rsg X
R | A(5,0) > 0}. We will see that this set consists of countable disjoint
subsets. Let us call the boundaries of the disjoint subsets phase boundaries.
Our goal here is equivalent to characterizing the phase boundaries.
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Define the subsets O, O_ of R? by

O+ : ($7y) € R>O x R | g(a?,y,O) > 0}7
O_: x,y

( )€R>0XR|9($ay70)<0}‘

We can see that O, O_ are open subsets of R?.

{
{

LEMMA 2.2.

A€ C(Rso xR), Alo,uo. € C®(04UO_).

PRrROOF. It is trivial that A|p_ € C*°(O_). We have observed that the
functions

sinh
me:(0,00)—)R, (56[_1,1])

are strictly monotone decreasing in the proof of Lemma 1.2. It follows that

0
(2.5) 52 (@9,2) <0, (V(2,9,2) € Rog x R x Rsp).

Thus
20(5,6,M(5,6)) <0, (4(5,0) € O).

By the implicit function theorem we have that Alp, € C*(04), or
Alo,uo. € C*(04 UO-).

Let us prove that A € C'(R-oxR). It is sufficient to prove the continuity
at each point belonging to Rsg x R\O4y UO_. Let (5o, 00) € Rso x R\O1 U
O_. By definition g(5o, 00,0) = 0, A(Bo,00) = 0 and Bobo/2 & 7(2Z + 1).
Suppose that there exists € € R+ such that for any 6 € Ry there exists
(Bs,05) € Rso x R such that ||(Bo, 60) — (8s,0s)|lre < 6 and A(Bs,0s) > €.
Then,

0= g(Bs, 05, A(Bs,05)) < g(Bs,05,¢) < sup 9(8,0,¢).
(ﬂ79)€R>OXR
with [|(8o,00)—(8,0) ||z <6
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By sending 6 to 0 we have that 0 < g(8o, 6o,¢) < g(Bo, 6o,0) = 0, which is a
contradiction. Thus limg g)_(3,,6,) A(8,6) = 0 = A(Bo, ), which implies
that A € C(Rsg x R). O

The next lemma states the existence of critical values of the imaginary
magnetic field in [0, 47 //].

LEMMA 2.3. For any B € Rsq there uniquely exist 6.1 € (0,27/0),
Oc2 € (2m/3,4m/B) such that

g(ﬁaec,lao) = g(ﬁa 96,270) = 07
9(83,6,0) >0, (VOe€ (6.1,0:2)),
9(8,0,0) <0, (V6 € [0,60c,1) U (0c,2, 47/ 5]).

PROOF. One can see from the definition that 6 — ¢(/3,6,0) is strictly
monotone increasing in (0,27/3), strictly monotone decreasing in (27/0,
47 /() and continuous in (0,27 /G)U(27/3,47/3). By the assumption (2.3),

4 2 1
9(8,0,0) =g (ﬂ,?,o> < T +de/F dka) < 0.

Also, by (1.12) limg_o./39(3,0,0) = oco. We can deduce the claim from
these properties. [

*
[ee]

By Lemma 2.3 we can define the functions 6.1 : Rso — (0,27/0),
Oc2:Rso — (27/3,47/0).

For any parameters aq, ag, -« -, ap, we let c(ag, a9, -+, ay,) denote a pos-
itive constant depending only on aq, a9, -, a,. This notational rule will
be used not only in the proof of the next lemma but throughout the rest of
the paper.

LEMMA 2.4. There exist positive constants cs,cq depending only on
b, Dy, c,r,s such that the following statements hold for any U € (—cs3,0).

(1)

ecJ (ﬂ) . z
2 B

< (VB € Rso, j €{1,2}).

o
23’



The BCS Model with Imaginary Magnetic Field. 11 223

(i)
L’Zm - % <o <%> " (B eRu, je{12).
(iii)
90,]?(6) . % < <%> 2 : (Vﬁ c (0, 1]7 j e {1,2})
() Oc; € C*(Rxo) and
db.

(B8) <0, (VBeRs, je{1,2}).

dp

PROOF. (i): Take 8 € Rso, j € {1,2}. Assume that |0, ;(8)/2—7/3| >
7/(26). Then,

) | 2 tanh(5|E(k)|)
0= 9(8,005(6),0) < - ,U,+Dd/r* e ()

2
< ——+ de/ dk—,
U] s e(k)

which contradicts the condition (2.3). Thus the claim holds true.
(i)): By (1.11) and (2.1),

0 = g(8,0e,(3).0)
2 sinh(fe(k))
. rUr 0D /p;o K cos(B0.,(8)/2) + cosh(Be(k)))e (k)

(k)<p-1
_———i—cdeﬁ / dk Le
’U| +|903 )/2_7r/ﬁ|2

b, D dk—
+C( ) d) /1"’;0 6(1{)
+ C(b, Dd,C)

2
< -
U]

+ ¢(b, Dg,c)p <1ec,j (8)/2—m/BI<1

—r

90,j (ﬂ) ™

2 g
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ec,'(ﬂ) T -
Lo, @y/2-n/0>1 | " T 5
2 110058 "
ST + ¢(b, Dy, c) (ﬂ 5 3 + )

To derive the last inequality, we also used that 0 < r < 1. If |U| <
C(b7 dec)_la

1 11058 ="
0< ——+c(b,Dyg,c)p~ |2 2
ST (b,Dg,c)3 5 5
This leads to the result.
(iii): Since g <1,
0=9(8,0.;(8),0)
2 1
< —— +¢(b, Dy, c 1/ dk
o] T Pe e T 100,8)/2 — /B
2 1 [0ey(8) w7
< —— +¢b,D Ll e A
>~ ‘U’ +C( 9 d?c)/B 2 6 )

which implies the result.
(iv): For z € Ry, y € (0,27/z) U (27 /z, 47 /),

20) $2(.5.0)
Dy r sinh(z] E())
= Stesin () /Foo di’T ((cos(a;y/z)+cosh(a;E(k)))2|E(k)|)'
Thus
(2.7) g—z(x,y,O) >0, (Vye(0,2r/z)),
g—z(x,y,()) <0, (Vye (2n/z,47/x)).

Therefore the implicit function theorem ensures that 6. ; € C*°(Rx).
Let us determine the sign of g—g(ﬂ,egl(ﬂ),O), g—i(ﬂ, 0c2(03),0). For x €
R0, y € R with zy/2 ¢ 7(2Z + 1),

28) $2(r.0.0)
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Dy . (xy sinh(z|E(k)|)

= - sin (7) y/réo dk Tr ((cos(xy/Z) + cosh(xE(k)))QE(k”)
cosh(zE(k))(1 + cos(zy/2))
# 0 [ aen <<cOs<a:y/2> T cosh@E(i)))?)

B . cosh(zE(k)) — 1
Da /r it <<cos<xy/2> T cosh(xE(k»)?) |

oo

*
o0

By the result of (i),

(29) 0671(5) sin </806,21(/8)> > ¢ ec,12(ﬂ> . % 7
(2.10) 0.2(3)sin <ﬁ (’C’;(ﬁ)) < o|%2® 7).

Let us consider the case that 8 > 1. By the claim (ii) and 0 < r < 1, if
Ul <

ecJ(ﬂ) _ I l
2 Bl=F=
Then by (2.1), (2.2), (2.8), (2.9), (2.11) and the claim (ii) again

(2.11)

<1, (Vje{1,2}).

s

(g, 01(6)30)
)

e1(8

6
>
> cDa|—5 3

g, @ ((008(69c,1(6>/2)1+ coshwE(k»)?)

o]

90,1(6) ™ 90,1(/6) m

— Dy /F dk Tr (cos(ﬂ (3 )/2)1+ cosh(ﬂE(k))>
I

o\ —2
> ¢(Da;c) 2 3 B . dklea0<p-1 <e(k)2 + 5 B >

—c(b,Dg)p™% [ dk (e( )2+ )

I
1-s —r
> ¢(Dyg,c)37? 9617(6) —% —¢(b,Dg, )2 2| Ven (ﬂ —%
0. 1-s 0. —14s—r

> ¢(Dg,c)B " ’12(5) - % (1 —¢(b, Dg,c)B ’12(@ - % >
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_3 00 1(5) T 1-s _s—1-—2r s—1—r
> C(Dd,C),B ’2 - B <1 —C(b, Dd,C, r, S),B r ’U’ ’ >
ec 1-s s—1—r
> C(Dd, C)ﬁi3 712(5) - % (1 - C(b7 Dy, G S)|U‘ 1 ) :

In the last inequality we used the conditions s — 1 —2r > 0, 8 > 1. Thus if
(b, Dg,c,r,s)|U|71/r < 1,

g_i(ﬁa 90,1(ﬂ))0) > 0.

Similarly by using (2.1), (2.2), (2.10), (2.11), the claim (ii) and the condi-
tions s — 1 —2r > 0, § > 1 we can derive from (2.8) that

dg
%(/67 96,2(/6)7 0)

GC,2(ﬂ) T

1
> 3”° /Fm di <(608(ﬁ00,2(5)/2)+cosh(ﬁE(k)))2)

cosh(BE(K)) (1 + cos(B6.2(5)/2))
D /p ey ((eos<ﬁec,2w>/2> T cosh(ﬁE(k»)?)

ec,Q(ﬁ) T
2) —2

2 p
. /F* dkle(k)gg—l <€(k)2 +
cosh(BE(k))
D /rz;o dilegg<pt Tr (cos(ﬁ9c,2(ﬁ)/2) + COSh(ﬁE(k))>
1+ cos(86.2(5)/2)
+ ¢(Dq) /F* dkle(i)>p-1 Tr (cos(ﬁec,Q(ﬂ)/Q) + COSh(ﬁE(k)))

,8_3

< —cDy

o0

< —C(Dd,C) ﬂig

95,2 (/8) E

2 g

00,2(&) T

2 g
/F dkle(k)gﬁfl (6(1{)2 +

oo

S _C(Dda C)

‘96,2 (ﬁ) 7T
2 8

+ (b, D)2 /F dk (e(k)2 +
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1-s

bea(B) _ 7 (1—c(b,Dd,c,r,s)|U|5‘—1").

2 B
To derive the third inequality, we also used that

S _C(Dd7 C)ﬁ_g

coshx
- cos(B0.2(3)/2) + cosh x

:[0,00) = R

is non-increasing. Thus on the assumption ¢(b, Dy, c,r,s)|U[~1=0/" < 1,
99
or

Next let us assume that 5 < 1. By (2.1), (2.2), (2.8) and (2.9)
99

(ﬁa ‘96,2 (ﬂ), O) < 0.

(67 ec,l(ﬁ)a 0)

oz
Oca(8) 1
el e /pgo dm<<cos<ﬁec,1<m/2>+cosh<ﬂE<k>>>2>
1
P /F;O il <cos<ﬁec,1<ﬁ>/2> T Cosh(ﬁE(k))>
-2
ec,l(ﬁ) ™ -3 2 Gc,l(ﬂ) ™ 2
> e(Da,0) |=5 - 5|0 /Fgodk<e(k) S il )
2 —1
—e(b, D)% [ dk | e(k)?+ Oer(B) _ 7
s 2 B
2 Lig.1(8)/2-m/B1<1
. 1—s GC —r
-(c(Dd,c)ﬁ_3 bt () ’12(5) —% — ¢(b, Dy, )3~ 7’12(@ _% )
+ Ljo.1(8)/2-7/81>1
-3 -2
.<C(Dd,c>ﬁ—3 %10 2 oo, Do |20 2 )
-3 ec,l(ﬁ) ™ s
2 Lo 1 () /2-m/p1<16(Da, )7 | =5 = 3
s—1—r
. (1 — ¢(b, Dy, )3 90’12@ —% )
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_3]0ca(B) w|
+ 1|90,1(ﬁ)/277r//8‘>1c(Dd,C)ﬁ 3 9 — B
0
: (1 — (b, Da,0)3 ’12(5) - % > .
By the claim (ii) and the condition 14 2r <'s,

ec,l(ﬂ) I

s—1—r
i)

Oca(B) m r>

Li6..1(8)/2—m/I<1 (1 —c(b,Dq,c)B

2 B
> 1|9c,1(ﬁ)/2—7r/,6’|§1 (1 - C(b7 Dy, c,r, S)|U|) :

2 Lig.,(8)/2-m/81<1 (1 — (b, Dy, )

Also, by the claim (iii) and the assumption 3 < 1,
ec,l (6) E

2 Y]
1
> 16,.1(8)/2—n/8>1 (1 —¢(b, Dy,c, r75)|U|2> :

)

Lig.1(8)/2—m/8)>1 <1 —c(b,Dq,c)B

Therefore if |U| < ¢(b, Dg,c,r,s),

0 (5,00(9),0) > 0.

Similarly we can derive from (2.1), (2.2), (2.8), (2.10), the claims (ii), (iii)
and the conditions 1 + 2r <'s, # < 1 that

dg
Iz (8,0:2(53),0)

90,2(ﬂ) o T 1
= eba| T | /1“00 et <<cos<ﬁec,z<m/2>+cosh<ﬁE<k>>>2>
cosh(BE(k))
D /roo ety (eos<ﬁec,2<ﬂ>/2> T coshwE(k)))
o\ —2
< —¢(Dgjc) 96’22(@ - % g /r dk (e(k)2 + 00’22(@ - % )
o\ —1
+ ¢(b, Dg,c) 372 . dk (e(k)2+ 96’22(5 ) —% )
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< g o(8)/2-n/p1<16(Da; )37 927(5) - % o
. <1 — (b, Dy, )3 9c,22(ﬂ) -7 ® 1r>
— 19, 2(8)/2-m/81>16(Dats €) B 927(5) _ % -~
. (1 (b Dy ) 9c,22(5) - % >
< Lo z(8)/2-n/811¢(Das )8~ 9‘3’22(5 ) _ % - (1 —c(b, Dy, c,r1,5)|U|)
- 1|0c,z(ﬂ)/2—w/6\>1C(Dd,C)ﬁ*?’ QC%(@ - % h (1 —¢(b, Dy, c,r, s)|U|%)

< 0.
In the last inequality we assumed that |U| < ¢(b, Dg,c,r,s).
Thus we have proved that
9y 9y
(2‘12) a_ﬂj(ﬁ’ 96,1(/8)70) >0, %(/67 9672(5)7 0) <0, (Vﬂ € R>0)'
Now by combining (2.7) with (2.12) we conclude that there exists a
positive constant ¢(b, Dy, c,r,s) such that if |U| < ¢(b, Dg,c,r,s),
0,
db..; @) = — 52 (B, 0c,5(8),0)
- 0
a_?gJ(ﬁa 90,j(ﬁ)7 O)

e <0, (Vje{l,2}, BeRsyy). O

Let us assume that U € (—cs3,0) with the constant c¢3 appearing in
Lemma 2.4. For m € NU {0}, j € {1,2} we define the function 6., :
R>0 — Rxo by

47
Oc,jm () == Ocj(x) + P
By Lemma 2.4 (iv) the continuous function 6, ; ,, : Rso — Rs is monotone
decreasing and thus injective. By the fact that 0 < 6.1(5) < %’r < b.2(8) <

%T and Lemma 2.4 (i),

(2.13)

g < 0e10(8),
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47 2r 4w 7w  Am
—m < bOe1m(B) < —+—m<bOc2m(B) < —+—m, (V3eRs).
§; onm g B oo g B
This implies that the function 0. ;,, is surjective and thus bijective. Let
Be,j,m denote the inverse function of 0. ;.
The phase boundaries are characterized in the next proposition.

PROPOSITION 2.5. Let c3 be the positive constant appearing in Lemma
2.4. Assume that U € (—c3,0). Then the following statements hold.

(i) For any m € NU{0}, = € Rso,

dmm 27 + 4dmm 2 +4mm 4dr(m+ 1)
y 90,2,m(~75) S .
x x x x

96,1’m(l') S ( 5 ;

(ii) For any m € NU{0}, y € R,

dmm 27 4 4mm 2r +4mm 4Am(m +1
/Bc,l,m(y) S ( ) ) ) ﬁc,Q,m(y) € < s ( )> .
Y Y Yy Yy
(iii) Let (B3,0) € Ry x R. The following statements are equivalent to each
other.
(a)

A(B,0) > 0.

(b)
|9’ € U (ec,l,m(ﬁ)vecﬂ,m(ﬁ)) :

meNU{0}

(c) 0 #0 and
/8 € U (ﬁc,l,m(w,)a/BC,Z,m(WD)'

meNU{0}

PrROOF. We have already seen the claim (i) in (2.13). The claim (ii)
follows from the claim (i) and the definition of 8. jm(-) (j = 1,2). Take any
(8,60) € Rsg x R. There uniquely exist m’ € NU {0}, ¢ € [0,47/f3) such
that |0] = 6 + %”m’. Let us confirm the claim (iii). The statement (a) is
equivalent to g(/,6,0) > 0, which is equivalent to 6" € (0.,1(53), .2(5)) since
9(8,0,0) = ¢(8,0',0). The inclusion 6’ € (0.1(3),0.2(0)) is equivalent to
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the statement (b). Thus the equivalence between (a) and (b) is proved.
The equivalence between (b) and (c) can be deduced from the definition of
Bc,j,m(’) (j=12).0

Based on Lemma 2.4 (iv) and Proposition 2.5, we can sketch the 5 — |6
phase diagram as in Figure 3.

10l

fe13(8)

l2r

00,2,2(/8)

Fig. 3. The schematic 8 — |0| phase diagram.

We can understand from Proposition 2.5 that for any fixed § € R\{0} the
system repeatedly enters and exits a superconducting phase where A((3,0) >
0 as 3 varies from 0 to oco. It is notable that there are infinitely many critical
temperatures.
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2.3. The second order phase transitions
Using the function A : Ryp x R — R>(, we define the function F' :
R>0 X R — R by

A(z,y)?
|U|

Dd/
x Jr

F(z,y) :=
dk Trlog (2 coS (%) e~ @Bk

4 (VBT AEY)T-EK) | ,—a E<k>2+A(x,y>2+E<k>)> _

Equally, we can write as follows.

Az, y)*
\U|

_&/
X 1"?;0

log 2
_ blog +Dd/ dk Tr E(K).
T r

*
oo

F({E,y) -

dk Tr log (cos (a;_y) + cosh(z/E(k)? + A(x,y)2)>

Since A(z,y) > 0if zy/2 € m(2Z+1), F is well-defined. Recalling Theorem
1.3 (ii), we see that F'(f3, ) is equal to the free energy density for (3,60,U) €
Rso X R x Roq satisfying 56/2 ¢ w(2Z + 1) and (1.18).

We end this section by proving that the first order derivatives of F'
are globally continuous and the second order derivatives of F' have jump
discontinuities across the phase boundaries. Since these properties hold
in the parameter region where F' is proved to be equal to the free energy
density by Theorem 1.3, we can consider that our many-electron system
shows the second order phase transitions driven by the temperature and
the imaginary magnetic field.

PROPOSITION 2.6. Let c3 be the positive constant appearing in Lemma
2.4 and U € (—c3,0). Then the following statements hold true.

(1)

R.o x R\O; UO_
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= {(8,66cjm(B)) | B €Rso, j€{1,2}, meNU{0}, 6 €{1,-1}}
= {(Be.jm(0),60) | 0 € Rso, j€{1,2}, me NU{0}, 6 € {1,-1}}.

(ii)
Flo,uo. € C®(04+UO-), F e C'(RsxR).

(iii) For any 0 € Rso, 7 € {1,2}, m € NU{0}, 6 € {1,—-1},
. 2 ) 2
limg »3.  .(0) —g;; (8,60), limg 3. ;.. (60) —gﬁi (8,60) converge and

0?F 02F

lim ——(0,60) > lim ,00),

B,/ Be,m(0) OB (8,89) B\Be.m (0) OF2 (8,89)
02F 02F

(B3,60) < (3,60).

500 0) DT NS 0) OF7
(iv) For any B € Rso, 7 € {1,2}, m € NU{0}, § € {1,-1},
limg ~5, ; ,.(8) %QTE([}, 0), limg~ 50, ; ,.(3) %QTE([?, 0) converge and
2 2
0 () 292 (6,6) > N )ng(ﬂ’e)’
2
00 ) 292 (6,0) < N ?329];(
2 2
0t (9) %7(5 O < ) (?37
2 2
0t (d) 275(5 SC RPN 8675

/67 )7
(8,0),

(8,0).

PRrROOF. (i): We can deduce the claim from Lemma 2.3, the definitions
of Ocjm(-), Be,jm(-) and the fact that g(53,6,0) = ¢(8, |0\+%n,0) (Vn € Z).
(ii): Set

D;:{(z,y,z)ewaRxR}%¢W(2Z+1)orz>o},

which is an open set of R?. We define the function F': D — R by

2

F(x,y,2) = = _ Du /* dk Tr log (cos ( 5 ) +Cosh(x\/m)) .

ol
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We can see that

(2.14) F e Cc®(D),
(2.15) (3,0,A(8,0)) € D,

(2.16) F(ﬁ,m:F(ﬁ,e,A(ﬁ,e))—“‘;g2+Dd /F dk Tr E(K),

*
oo

(V(B,0) € Ryo x R).

Combined with Lemma 2.2, the functions (3, 6) — F(8,0,A(3,0)), (3,6) —
F(3,0) are seen to be continuous in Rsy x R and C*°-class in Oy UO_.
Let us prove that F € C'(Rxg x R). For (3,60) € Oy UO_

O (6.0.(5.0)) = ~9(5,0,A(8,0)A(5,0) =0,
and thus
(2.17)
o - oF OF A
oF
= %(ﬁvevA(ﬂve))v
(2.18)

d - oF oOF oA

oF
Note that
(2.19) A(B,0) =0, (¥(8,0) € Rog x R\O,L UO_).

It follows from the global continuity of A(-,-), (2.14), (2.15), (2.19) and the
characterization of R-o x R\O4 U O_ given in (i) that

8m+nF am+nﬁ
I ————(B,0,A(8,0)) = 90
(/6’79);%/70/) axmayn (/67 ) (/67 )) 8xm8y” (/87 ) )7
(8,0) €04 U0 _

(2.20)
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(V(B,60') € Rog x R\O, UO_, m,n € NU{0}).

By (2.17), (2.18), (2.20) we can observe that for any (4',6) € Ry xR\O4+U
O_

1 70 A 6 1. ) 7 7
(00! Oy

OF
= a_x(ﬁlv 0/7 0)

o -
lim — 0, A, lim 0, A(B,
(8.0)—(8.6") 00 F(p (8,0)) = (8.9)—(8'.0") ay (ﬁ (6,9))
(8,0) €04 U0_ (8,0)€e04+U0O_

oF .,
a—y(ﬁaeao)v

which together with the characterization of Rsg x R\O4 U O_ given in (i)
implies that (5,60) — F(3,0,A(5,0)) is partially differentiable in R-g x R
and

55 F0.0.0,0) = 57(5.6.(5.0)),
ST (0.0.8(6,0) = TL(6.0.A(0.0)), (4(5.6) € Rog x ).

Since (8,0) g—f(ﬁ,@,A(/B, 0)), (8,0) — %—Z(B,G,A(ﬁ, 0)) are continuous
in Ryg x R, we can conclude that the function (3,6) — F(ﬁ,@,A(ﬁ,Q))
belongs to C'(R~g x R) and so does the function F'.
(ii): By (2.17), for (8,0) € 04+ UO_
2

(2.21) %F(ﬁ, 0, A(B,0))

= 2O 1,800.0)

= O 5.0.86.0) + E (30,88, 22 (3.0,
In particular for (3,6) € O_
(22 T h6.0.50.0) = 2L 3.0.800.0),
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It follows from the claim (i) and (2.20) that for any 0 € Rso, j € {1,2},
m € NU {0}, 6 € {1,—1}

(2.23) li @(ﬁ 50, A(B,60)) = i @(5 860, A(3,60))
' ﬁ\ﬁi,rfmw) Oz 7 ’ B ﬁ/ﬁffm(e) ox2 7 '
02F
= W(/Bcajzm(e)760’o)'

For (f3,0) € O4 one can derive that

O%F
0x0z

(2.24) (8.0, A(8.0)) = ~A(3,0)52(3.0, A(5.0)).

Also by taking into account (2.5),

oA
ap

_P8,6.0(3,0)
5(8,6,A(8,0))

By combining (2.24) with (2.25) we obtain that

(2.25) (8,0) =

~

0*F
0x0z

oA
a6

(59(3.0,A(3.9)))?

(2.26) 89(6,0,A(8,0))

(8,0, A(8,0)) 5= (8,0) = A(B,0)

Observe that for any (z,y,2) € Ry x R x Ry

(2.27)

_10g
1_
z 8Z(w,y,Z)

= —Ddx/ dk

[e'e]

1
Ty
((cos(xy/Q) + cosh(zy/E(k)? + 22))?(E(k)? + 22)

: (sinh2(:c\/E(k)2 + 22)
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. (cos (%) + cosh(z+/ E(k)? + z2)) >>

< —Dyx / dk
1"*

oo

1
o ((Cos(:ry/Q) + cosh(z/EK)? + 22))2(E(K)? + 22)
sinh(zy/E(k)? +22) )
zy/E(k)? 4 22

(14 cosh(z/ E(k)? + 22)) (

< Dags / dk Tr !
3! 5 cos(zy/2) + cosh(z+/E(k)? + 22)
< 0.
By Proposition 2.5 (ii) for any 6 € Rso, m € NU{0}, 6 € {1,—1}, j € {1,2},
000c.j.m(0)/2 ¢ m(2Z + 1). Thus we can see from Proposition 2.5 (iii), the
global continuity of A(-,-) and (2.27) that

_10g
lim A8, 60 1— .00, A(3,60)),

. (?g
lim A(B,80)7' =2 (8, 80, A(B, 60
8, oz (6) (8,860)7"5~(8, 86, A(§, 66))

converge to negative values. On the other hand, we can see from (2.8), (2.12)
and Proposition 2.5 (i) that for any 0 € Rso, m € NU {0}, § € {1, -1},

. Jg dg
1 (5,60, A(B,60)) = == (Be1.m(9), 0,
90550 03,09) = 2 6,00000.0.0

_ %(/@clm( ) clm(/@c,l,m(e)) 0) > g_i<ﬁcu17m(0)v00,1(ﬁc,1,m(9)),0) >0,

(5,60, A(6,60)) = 2 (o2 (6),0,0

lim _g
ﬂ/ﬁczm( ) Ox

(ﬁc 2 m( ) c,2 m(/Bc 2 m(e)) ) S %(50,2,m(0)7 00,2 (ﬂc,?,m (‘9))7 O) < 0.

It follows from Proposition 2.5 (iii), (2.21), (2.22), (2.23), (2.26) and the
above convergence results that for any 6 € Ry, m € NU{0}, 6 € {1, -1}

2

s
li .60, (3,60
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a2F (g_g(ﬁclm( ) 0 0))2
e 1m (0), 80, NEW
a7 et (000, O A (5.60) 1 22(3, 50, A(3,50))

92F
W(ﬁc,l,m(g)a 697 0)

2

= lim  ——F(3,60,A(3,80)),
B,/ Bet,m(6) O (5 (8,69))

2

9
li
oim S5 F(3,60, A(8,60))

a2 (%9(B.2,m(0),6,0))2
e 2m 60,0) + R
G2 Pezm(£), 66.0) limg 5., ) A3, 60)~192(3,60, A(3, 66))

27
8 (602m( ) 6970)
2

= lim —F(B,80,A(8,80)),
B\Be,2,m(0) O3 (8 (8,6))

which together with the equality (2.16) implies the claim.
(iv): By (2.18), for (3,0) € O4 UO_

2
e e s =22 0060
27 2 7
= S (B.0.803,0) + 5o (5.6, A8,6) 55 (5.6).
For (5,0) € O_
0% . 32

By the claim (i) and (2.20), for any 8 € Rsg, 7 € {1,2}, m € NU {0}

ez im CEGoade - im ZEEeame)
. 5 , U, 5 - 1 s Uy )
O\besm(B3) OY? 0,/00;m(8) Oy?
82F

(57 0c.jm(5),0).

For (,0) € O1 we can derive in the same way as the derivation of (2.26)
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that

O2F oA (52(8,0,A(8,6)))*

By Proposition 2.5 (i) for any 8 € Rso, m € NU {0}, j € {1,2},
BOcim(B)/2 ¢ ©(2Z + 1). Thus we can deduce from Proposition 2.5 (iii),
the global continuity of A(-,-) and (2.27) that

. 109
1 A(B,0)"1Z2(8,0,A(3,0)),
ra™ (8,0)~" 58 (8,0))

. 109
A 127 A
oA 0y 20 5, (50, 4(6.9))

converge to negative values. On the other hand, it follows from (2.6), (2.7)
that

. dg _ 9y _ 9
e\elclm(ﬁ)a—(ﬂ, A(B,0)) = 8y(5,90,1,m(5),0) = 8y(ﬂ,ec,l(ﬂ),()) >0,

dg
0 - 5 95 9 .
dm L S50.80.0) = 505.002(6),0) <0

By Proposition 2.5 (iii), (2.28), (2.29), (2.30), (2.31) and the above con-
vergent properties, for any 8 € R-g, m € NU {0}

. 02
i R(3.0.A(3.6)
62 (%(ﬁaecl(ﬂ) O))
67 c,tm ﬁ 0 + .
a7 e ) O N B.0) 1 22(5.6,M5.0))

27
<2 (.00 (5).0

0?
lim = F 0
=, P (3.0,8(5.0))

2

92 .
li = _F(B,0,A(8,0
o 5 D02 (8,0, A(8,0))

82 (ﬁ(ﬂ, Hc Z(B) ))2
» YV Cyz,M 0
(5 2.m(8),0) + limg 5, (3 A(B,0)- 199(53,0, A(6,9))
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82
a a,2 (/67 c,2,m(/6) 0)

2

- I ~_F(8,0,A(B,0)).
ra ) D02 (8,6, A(6,6))

Now recalling (2.16), we reach the conclusion that

82 82
li 1i
9\9:,?,;(5) 602 (ﬁ7 ) 9/96 1 m(,B) 892 (ﬂ7 0)7
82 82
lim (8,0) < i (3,0), (VB € Rsg).

0,/6c2.m(5) 0O O\0. fl(ﬁ) 06?

Note that for any (5,60) € Ryg x R, A(S3,0) = A(S,—0) and thus

F(ﬁae) :F(/Bv _6)7
(8,0) € OL UO_ if and only if (3,—0) € O+ UO_.

Thus for (8,6) € O+ UO_, &F(3,—9) = 2L (3,0). Therefore

’ 962
2 2 2
9/—&%(@275(5 0= O\ lclfnm( )8092 (5.6) < e/ec.lmw) 202 (6.6)
2
= i) ?9?(5’ ).
2 2 2
exgﬁm(ﬁ)%w 0=, am )8602 (8,0) <\ i o) ?992 (6.6)
82

— 2 (3.9).
A T E (8,9)

The claims have been proved. [

3. Formulation

In this section we derive Grassmann integral formulations of the grand
canonical partition function of the model Hamiltonian. In essence the
derivation can be completed by following [12, Section 2]. In order to sup-
port the readers, we state several lemmas leading to Lemma 3.6 step by step
along the same lines as [12, Section 2]. One should be able to prove Lemma
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3.6 by following the outline given in this section and the proofs presented in
[12, Section 2|. We intend to adopt the notations used to formulate the 1-
band problem in [12, Section 2] as much as possible so that the formulation
procedure can be seen parallel.

Thanks to the next lemma, we can restrict the value of 6 to prove the
main results of this paper.

LEMMA 3.1.  Assume that 0’ € (=27 /3,27 /3] and 0 = 6" (mod 47/[3).
Then

Tr e—,B(H+iesz+F) _ Tre—ﬁ(H+i|¢9’|sz+F)7
Tr(e—B(H—I—iOSZ-i-F)O) _ Tr(e—ﬁ(H—i—iW|Sz—i—F)(1))7
(VO € {¢p1Vps1> Yagl¥asts Ypsi Vo) Vig 1 ¥igt })-

ProoOF. This is essentially same as [12, Lemma 1.2]. By using the fact
that S, commutes with H, F, O and identifying the Fock space with the
direct sum of the eigenspaces of S, we can replace 6 by 6 inside the trace
operations. Then by (1.15) we can replace 6’ by |¢’|. O

In the rest of the paper for 8 € Rsg, 6 € R we let 6(3) denote |0'|,
where ¢ € (—2n/3,27/3] and 0 = ¢ (mod 47 /3). By the assumption
(0/2 ¢ 7(2Z + 1) we have that 6(3) € [0,27/0).

We are going to formulate the normalized partition function

Ty e~ BH+i0(B)S-+F+A)
Tr e—B(Ho+i6(8)S-)

into a time-continuum limit of a finite-dimensional Grassmann Gaussian
integral, where we set

A= A AL 4 XAy,

Al = Yk

A2 = Vst Vs Yy Vi
with the artificial parameters A;, A2 € C and fixed sites (p,x), (1,y) €

B x I'w. The reason why we insert the operator A is that we can simply de-
rive the thermal expectations of our interest by differentiating the partition
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function with the parameters A1, Ao. We can compute the denominator and
check that it is non-zero because of the property 6(3) € [0,27/5).

LEMMA 3.2.

Tr ¢~ AHo+i0(8) H det (1 + 2cos (ﬂ&;ﬁ)) e PEMR) 4 emE(k))

kel™

= ¢ B X ker+ Tr B(k) gbL? H det <COS <%(ﬂ)> + COSh(BE(k))> :

kel

PrOOF. This is a b-band version of [12, Lemma 2.1]. One can
diagonalize Hg + i6(/3)S, with respect to the band index and derive the
result. [

To state the first Grassmann integral formulation, let us introduce the
Grassmann algebra and the covariance. With the parameter h € 2N, set
[0,8)n :={0,1/h,2/h,- — 1/h}, which is a discretization of [0, 3). De-
fine the index sets Jo, be Jo =BxIx{1,]1}x[0,8)n, J = Jox{1,—1}.
Let W be the complex vector space spanned by the abstract basis {¢x } xes.
We let AW denote the Grassmann algebra generated by {¢x}xes. For
X € Jy we also use the notation 9y, 1x in place of Y(x,1)s Y(x,~1) Te-
spectively. We do not restate the definitions and basic properties of finite-
dimensional Grassmann algebra and Grassmann integrations in detail. The
readers should refer to [12, Subsection 2.1] for the summary of them in line
with our purposes or to [4] for more general statements. Let us introduce
the Grassmann polynomials V(v), F(v), Al(y), A%(¥), A(y) (€ AW) for-
mulating the operators V, F, Al, A%, A respectively as follows.

U -
V(w) = m Z Z @Z)prs@Z)pxlsq/JnylswnyTs»

(Pﬂx),(ﬂ’}’)GBXF SG[O,ﬁ)h

F(Zb) = % Z Z (@prsprls + prstprs),

X)EBXT s€[0,08)

h Z ¢m(x TswprL(x Vs>
Pn

2
A ( . Z %m(x Ts"/}prL(x lswnTL lSwTITL ¥)1ss

B)n

Al(z)
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2
AW) =) AN (3).
j=1

The covariance G for the Grassmann Gaussian integral is defined as
the free 2-point correlation function. For (p,x,0,s), (n,y,7,t) € B x ' X

{1,1} x[0,8)
G(pxos,nyTt)

(e PHorOS) (15 i (8) Uy () — Lscttnyr ()10 (5)))
T Tr e*ﬂ(HO+’L’9(B)Sz) ’

where 1/1,(;)0(3) = eS(Ho+i6(,8)Sz)q/)l(,;)ge—s(Ho“"(ﬁ)sz). According to the con-
ventional definition, any covariance for Grassmann Gaussian integral on
AW is a map from J2 to C. If we follow the convention, we should intro-
duce our covariance as the restriction G| 72 However, we call G' covariance
and omit the sign | ;> even when the argument is restricted to J¢ for sim-
plicity.

For r € R+ let D(r) denote the open disk {z € C | |z] < r}.

LEMMA 3.3. For anyr € Ry

Tr e~ B(H+i0(8)S:+F+A)

: —V(®)—F()—A() — =
hli»n;o SEZ /e dpc () Tr e—B(Ho+i0(3)S-) =0
he%N)‘ED(’”)

Here X denotes (A1, \2).
PrROOF. The proof is parallel to that of [12, Lemma 2.2]. [J

The next step is to reformulate the Grassmann Gaussian integral given
in Lemma 3.3 into a hybrid of a Gaussian integral with Grassmann variables
and a Gaussian integral with real variables. Define Vi (v), V_(¢), W(¢) €
AW by

1
|U|2 _
V+(¢) S | Z Z wprswpxlsv
PEL2N (,x)eBxr se[0,8)n
U2

V_ (w) = Z Z "/}pxiswprsn

p2L h(p,X)EBXFSE[Oyﬁ)h

N
Nl
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U

VVW) = m Z Z prTsprlswnyitwnyTt-

(p,%x),(n,y)EBXT 5,t€[0,8)n

LEMMA 3.4.

/ ¢~V ~F)=AW) g, (1))

™

where ¢ = ¢1 +iga, |¢| = ||¢]|c.

_1 / dipy debye—!?P / ¢~V HW) ~F() AWV (01H3Y- () gy ().
RQ

PrROOF. The proof is same as that of [12, Lemma 2.3] based on the

Hubbard-Stratonovich transformation. OJ

As the final step of the formulation, we introduce the index {1,2} and
derive the integral formulation on Grassmann algebra indexed by {1,2}
rather than by the spin {7, |}. The new index sets are defined by

Ip:={1,2} x Bx T x [0,8)n, I:=1Iox{l,—1}.

Let V be the complex vector space spanned by the basis {¢x}xer. We
define the Grassmann polynomials V' (v), W (1)), AL(z)), A%(xp), A(xp) € AV

by

V(%D) = m Z Z mes?ﬂlpxs

(p:x)€BXT s€[0,8)n

U — _
+ m Z Z wlpxs¢2pxs¢2nys"/}1ny57

(0:%),(n,y)EBXI s€[0,6)1

U — —
W(¢) = W Z Z wlpxstpxsmetwlnyta

(p,x),(n,y)EBXT 5,t€[0,8)n

1 —
Al(w) = E Z wlf)rL(f()stﬁ’r‘L(f()sa

SE[O,ﬂ)h

1 _
2 —
A) = 1= )y, Do Prors1pr s

Se[o7ﬂ)h
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1 — _
+ E Z ¢1ﬁ7‘L(§<)s¢2ﬁrL(f()sw?f]'rL(y)swlf]rL(y)m
86[0,,6)]1

(31)  AW) =S NAW).
j=1

Though the final formulation Lemma 3.6 does not explicitly involve any
partition function of a Hamiltonian on the Fock space Fy(L?*({1,2} x B x
I')), the final formulation can be systematically derived by relating such a
partition function to the Grassmann Gaussian integral over A V. To this
end, let us define a free Hamiltonian on Fy(L?({1,2} x B x I)). For any
n € N let I, denote the n x n unit matrix. For ¢ € C, set

Ho(0) = 7 3 3 e0x )

x,yel' kel'*
.<< iy > "D 1, + B(k) ol < Uiy >>
Vi ) oIy i, — E(k) )\ Yoy )7
where \I/g() = (wg)x, wg)x, cee %ZL)T and 95 (Y5x) is the creation (anni-

hilation) operator on Fy(L?({1,2}xBxT)) for p € {1,2}, p € B,x € . The
covariance in the final formulation is equal to the free 2-point correlation
function C(¢) : ({1,2} x B x I'se x [0,3))? — C defined by

C(¢)(ppxs,mmyt)

_ Te(e PO Un (5)mny (1) — Lo<ttiny ()15 (5))
T T‘I'e*ﬁHO((b) ’

where Q/Jé;)x(s) = 65H0(¢)¢22L6_3H0(¢). For x € 'y, we identify 1/1%2( with

%% (x)° The next lemma ensures the well-definedness of C'(¢) and gives its

characterization and determinant bound. For any k € R%, ¢ € C we define
E(¢)(k) € Mat(2b,C) by

_(E® @
B0 = (250 h ).
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LEMMA 3.5.
(i)

Tre P90 = T[] det(1 4 B0 P +8VEMWZHGR)

kel™ 6e{1,—-1}

— o~ 5P0(B)pLI 9bLY H det (cos (%(5)) + cosh(8v/E(k)? + ‘425’2)) .

kel™*

(ii) For any (5,p,%.s), (7,1, ¥, ) € {1,2} x B x T'g x [0, 8),

(3.2)

C(¢)(ppxs, Mmyt)
_ Ld Z ez‘(k7x—y>e(s—t)(i@bb-&-E(qﬁ)(k))
ker
. (15215(]21; 4 PRIt B@ION-1 _ 1 (1 4 e*ﬁ(i@IQbJrE(ﬁf’)(k)))fl)

((P=1b+p, (M —1)b+n).
(i)
| det((wi, vj)cn C(9)(Xi, Y)))1<ij<nl

4
< <2—5 Tr <1 + 2 cos <M> e AV EE)+9I?
L kel
IFRN
+em2VEGTHIAT) 2)

2
412 m ! !
(it i)

(Vm,n € N, u;,v; € C™ with ||wl|cm, ||vi|len <1,
X;, Y, €e{1,2} xBxI'x[0,08) (i=1,2,---,n), ¢ €C).

0B) =

Here (-,-)cm denotes the canonical Hermitian inner product of C™.
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PRrROOF. Let e,(k) (p € B) be the eigenvalues of E(k). Then the eigen-

values of E(¢)(k) are /e,(k)? + |42, —v/ep(k)? + |92 (p € B). There
exists U(¢) € Map(R¢, Mat(2b, C)) such that U(¢)(k) is unitary and

(3.3) U(9)(k)"E(¢)(k)U(9)(k)((p — 1)b+ p, (7 — 1)b+n)
= 1= (172 ep(k)? + o],
(Y(p, p), (1, m) € {1,2} x B, k e RY).
Set a1y p(0) (k) := %2 4 (—1)15=2 /e, (k) + [¢[?. Remark that
Ho(¢)

Then we can see that there is a unitary transform U(¢) on Fp(L?({1,2} x
B x I')) such that

(3.4)  U(D)Ypld (9)"

?)
— % Z Z Z e~ kx—y)

(mm)e{1,2} xByel kel'*
U (@)(®)((p = Db+ p, (7 — )b+ 0)t5,y,
(3.5)  U()Ho(o)U()"

1 .
=z 2. > 2 Y ag,(0) 085y

x,y€l' (p,p)€{1,2} xBkel™*

(i): Since Hp(¢) is diagonalized with respect to the band index in (3.5),
a standard argument yields that

Ty ¢~ BHo(¢) _ H H H(l +€—5a(571)b+p(¢)(k))7

kel pe{1,2} peB

which implies the claim.
(ii): Insertion of (3.4) gives that

(3.6)

C(9)(ppxs,Mmyt)
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:% 3 3 T emilixox)+ilpy-y)

X'y’ €L (3 0), (7 ') {1, 2} x Bk, per*
U(@) (&) ((p—1)b+p, (7 — )b+ p)
(5)( )(( —Do+n, (@ - 1)b+17')
Tr(e~

DHOOUD (15158 10 (8 iy () = Loty (D3 (5)))
Tr e—BU(9)Ho(o)U($)* )

where ~;px(s) = esu(¢)Ho(¢)U(¢)*Q/}g))xe—su(@Hg((p)u(qb)*‘ Since
U(P)Ho(p)U(¢)* is diagonalized with the band index, an argument parallel

to the proof of [8, Lemma B.10] yields that
Te(e UOHOUO (157, (5 (1) — Locetby (D55, 0(5))
Tre /Bu(¢)HO(¢)u(¢)*
1(p p 77 ') Z o HaX —Y') (5= t)a 1)1 (0)(a)

qel™

. 152t . 1s<t
1+ eﬁa(plfl)lprp’(‘i))((ﬂ 1+ G*ﬁa(p/fl)b+p’(¢)(q) )

We should remark that here we have the exponent —i{(q,x’—y’) not i(q, x'—
y’). By substituting this equality into (3.6) and using (3.3) we observe that

¢ (cb)(ﬁpxs myt)
L Z ifkx—y) (=) (i %P Loy + B(6) (K))
L kel
0(8) (ﬁ) 3
: < sot(Iop + PP A E@ D)1y (1, 4 =00 12b+E<¢>(k>>)—1>

(M —=1Db+n,(p—1)b+p).

It follows from (1.4) and (1.5) that E(¢)(k)” = E(¢)(—k), (vk € R?). By
combining this equality with the above characterization of C'(¢) and using
periodicity we obtain (3.2).

(iii): In [12, Proposition 4.1] we stated a version of Pedra-Salmhofer’s
determinant bound [16, Theorem 1.3]. In [12, Appendix A] we gave a short
proof of [12, Proposition 4.1]. By applying [12, Proposition 4.1] we de-
rived the determinant bound [12, Proposition 4.2] which gives the claimed
determinant bound in the case b = 1. Here let us use the proof of [12,
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Proposition 4.2] and [12, Lemma A.1], which is a simple application of
the Cauchy-Binet formula, to derive the claimed determinant bound in
the general case. It follows from (3.2) and (3.3) that for any (p,p,x,s),

7,1, y,t) € {1,2} x B x T'sg x [0, 5)
(3.7) C(6)(poxs, yt) = Y Cp(9)(ppxs,myt),
p'eB

where

Cy () (ppxs,nyt)
Sy Y
L kel™ p'e{1,2}
U (@) () ((p— )b+ p, (7 = 1)b+p)
-U(@) ()" (7' = Db+ p', (71— 1)b +n)

(57D 1y (B)(K) Ls>t B Ls<t '
14 eﬂa(ﬁ/—l)b+p/(d))(k) 1+ efﬁa(pul)bﬂ’((ﬁ)(k)

In the proof of [12, Proposition 4.2] we estimated the determinant bound of
a covariance whose form is close to C,(¢). By following the proof of [12,
Proposition 4.2] straightforwardly we can deduce that

(3.8) [det((ui, vj)om Cp (9)(Xi, Yj))1<i j<nl
4
< <% (1 + 2cos <—ﬂ92(ﬂ)> e AV ey K>+l
kel
(Vm,n € N, u;,v; € C"™ with ||u;||cm, || villcm < 1,
X, Y, €{1,2} x BxI'x[0,8) (i=1,2,---,n), p € C, p € B).

N

ep’(k)2+\¢‘2>_

To support the readers, let us provide a guidance to derive (3.8). By using
vectors of Map({1,2} x B x I' x R, L}(T* x R)) and the inner product of
L*(I'™* x R) we can rewrite the regularized version of C,y(¢) in a form close
to [12, (4.4)]. The vectors satisfy a uniform bound similar to [12, (4.5)].
In this situation we can apply a close variant of [12, Proposition 4.1] to
the regularized version of C,(¢). Then by sending the parameter used to
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regularize C\y(¢) to zero we obtain (3.8). Since we have (3.7) and (3.8), we
can repeatedly apply [12, Lemma A.1] to derive that

(3.9)
| det({ui, vi)om C(0)(Xi, Yj))1<ij<n

24
p'eB kel
1

_1\ 35\ 2n
'<1+2cos (@) By WPHIP | 28 ep,<k)2+l¢|2> 2) ) 7

(Vm,n € N, u;,v; € C™ with ||u||cm, || villcm < 1,
XZ7}/’LE{172}XBXFX [O7ﬁ) (121727 7”)7 ¢€(C)7

which together with Schwarz’ inequality yields the first inequality of the
claim (iii). It is also possible to derive (3.9) by directly applying [16, The-
orem 1.3]. In this case one should decompose C(¢) into a sum of 2b time-
ordered covariances. Note that

1+ 2cos (@) e PVer K2+ 4 =26v/ep(k)*+[of?

) Bo(s
> lo(@)efo.r/a) + Lo(3)c(n/B,2m/8) SN <#>

8208 w\°
= lo@)elon/s) T lo@ew/s2n/p) 3 | —5 )’
which implies the second inequality. [

We finalize our formulation in the next lemma. We should remark that
Lemma 3.3 and Lemma 3.4 will not see any application in the rest of the
paper. We stated these lemmas in the hope that the readers can prove the
next lemma by putting these lemmas together in the same manner as in the
proof of [12, Lemma 2.5]. While it was quartic in [12], here the Grassmann
polynomial A?(¢)) may contain quadratic terms. This is because we assumed
r.(X) # r(¥) in the previous construction and here we need to drop this
assumption in order to study the Cooper pair density as claimed in Theorem
1.3 (v), Corollary 1.11 (v).
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LEMMA 3.6. The following statements hold true for any r € Ryg.
(1)

h—o0
he%N

—3
converges in C(D(r)") as a sequence of function with the variables

(X, ) € W3.

(ii) The C(D(T)Q)—Ualued function

929152 [Tier- det(cos(80(8)/2) + cosh(3/E(K)” + [6?)
[Teer det(cos(30(5)/2) + cosh(BE (k)))

. lim e—V(w)+W(w)—A(¢)dMC(¢)(Qp)

h~>2oo
heEN

(1, ¢2) —e

belongs to L'(R?, C(Wz))
(iii)
Ty e~ BH+i0(B)S+F+A)
Tr e—B(Ho+i6(8)S-)
_pLe
— 7|U| JRe
[ Hier- det(cos(86(8)/2) + cosh(8+/E (k) + [¢]*))
[Ixer- det(cos(86(3)/2) + cosh(BE(k)))

. hlin;o G*V(w)JrW(zﬂ)*A(w)dﬂC(d)) (1),
heZN
Tr(efB(HHe(ﬁ)SerF)Aj)
Tr e*ﬂ(HO+i9(B)Sz)
d d
- d¢1d¢26_%|¢_7|2
m|U| Jre

[xer- det(cos(86(8)/2) + cosh(8/ E(k)* + [¢[?))
[Txer- det(cos(80(3)/2) + cosh(BE(k)))

d
d¢1d¢26_%|¢_7|2
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. lim e‘vaW(wAj(Tﬁ)dMC((ﬁ)(@Z)),

h—o00
he3N

(J=12).

(iv) For any ¢ € C,

lim €_V(w)+W(w)dluc(¢) (¢) S R.

h—o00
he%N

REMARK 3.7. Since we have obtained the ¢-independent determinant
bound in Lemma 3.5 (iii), we can readily prove that the integral with (¢1, ¢2)
and the limit operation h — oo are interchangeable in the claim (iii). How-
ever, since we need to take large h depending on fixed (¢1, ¢2) in the analysis
of C(¢) in Subsection 5.1, taking the limit h — oo after the integration with
(¢1, P2) has no application in this paper.

PrROOF OF LEMMA 3.6. Based on Lemma 3.2, Lemma 3.3, Lemma 3.4
and Lemma 3.5, the claims (i), (ii), (iii) can be proved in the same way as
in the proof of [12, Lemma 2.5]. Note that the locally uniform convergence
with (X, ¢) is claimed in (i), while the convergence was claimed pointwise
with ¢ in [12, Lemma 2.5 (i)]. The uniform convergence property with ¢
can be deduced by making use of the ¢-independent determinant bound
Lemma 3.5 (iii) in arguments parallel to the proof of [12, Lemma 2.5 (i)].
Concerning the form of the Grassmann polynomials V(v), A(t), which
affects details of the forthcoming analysis, we should explain that they stem
from the use of the unitary map U : Fy(L*(BxT'x {1, |})) — F(L*({1,2} x
B x T")) satisfying that

UPr U™ = s UPS U = Popn,  (V(p,x) € BXT)

and thus

(3.10)
uvu™ = ﬁ Z wlpxwlpx - ﬁ Z wlpx"/@nyw?walﬁ)”
(px)EBXT (p,x),(n,y)€BXT
(3.11)

UAU™
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= MY, (5)V2r1(3)
+ 22 (Lo (2= (9) Vi rs 3 V1771 %)
= Vim0 Y2ir s (3) V2 (R V1 (3))-
The right-hand side of (3.10), (3.11) is formulated into V' (v¢), A(%)) respec-
tively.

Let us prove the claim (iv). Define the Grassmann polynomials W (1)),

W_(¢) € AV by

1
1|U|2 _
W“r(w) = ‘l ‘g Z wlpxs¢2pXS7
B2L2h (¢ 9eBxrx[0,8)
1
t|U|2 _
w_ (W = ‘1 ‘ Z ¢2pxs¢1pxs-

1_d
pBzL2h (p,%,8)EBXTX[0,8)1

Since W (v)) = Wi(¢)W_(¢), the Hubbard-Stratonovich transformation
yields that

/ eV g (1)

1 _ B —
- /R derdge / e VWLV ) gy )

where £ = &1 + . See e.g. [12, Lemma 2.3] for the proof. By setting

)

D(b, B,6) := 2** (1 + %

0(8)

2 B

and applying Lemma 3.5 (iii) we obtain that

(3.12) '/ oV (W) +EWL (V) +EW- (¢)dﬂ0(¢) (1)

< lUIbBD(b,6,0)+|Ub* LEBD(b,6,0)>+2[€|U[ /2L ?51/2 D(b,6,0)

Let us define the operators V, W, W_ on Fp(L*({1,2} x B x I')) by

U * U * *
V.= ﬁ Z wlpxwlpx - ﬁ Z wlpwanwawa177Y7

(p,x)eBXT (0:%),(n,y)EBXI
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o=
I
N

-

| |d Z wrpwap)m W_ = ‘ ‘

W= -1
fzL> (p,x)eBXT fzL

[S]IsH

Z ¢;pxw1px-
(p,x)eBxT

N[

In the same way as in the Grassmann integral formulation procedure [12,
Lemma 2.2] or that of [8], [9], [10] we have that for any r € R5

(3.13) hh_{go sup /6—V(¢)+§W+(1/))+£W(w)du0(¢)(¢)
he%NgeD(r)
Tr e—B(Ho(§)+V —i6 W, —i€W_)
o TrefﬁHO(d))
=0.

By (3.12), (3.13) we can apply the dominated convergence theorem to con-
clude that

heZN

1 Ty e~ B(Ho(¢)+V —iEWy —iW_)
— _/ e dege IS re —
T JR2 Tre BHo(¢)

To make clear the dependency on the parameter 6(3), let us write
Hy(0(5), ¢) in place of Hy(¢). Observe that

lim e*V(w)JrW(w)dlu,C(qs) (w)

h—o0
he3N

1 Tr e~ B(Ho(0(8),6)+V —ie W —igW_)*
= —/ derdéae P 2° N CITORDE

T JR2 Tre BHo(0(8),9)

1 Ty e B(Ho(—=0(8),0)+V+iEW +iEW_)
— _/ d, dege 6P 21C R

T JR2 Tr e—BHo(=0(8),)

1 Ty ¢~ B(Ho(—0(8),¢)+V —iE W —iW_)
dé dgse I =5
Tr e_BHO(_e(ﬁ)7¢)

To derive the last equality, we performed the change of variables {; — —¢;
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There is a unitary transform Uy on Fp(L?*({1,2} x B xTI')) satisfying that

Uo1pxUy = =03,  Uotbopxlhy = V1, (V(p,x) € B x T)).

We can check that

UoHo(—0(8), ¢)Us = —i6(B) L + Ho(0(8), ¢),
UVUE =V, UW U =Wy, UW U =W_.

In the derivation of the first equality we used (1.4) and (1.5). By using the
unitary transform U,

lim e_V(¢)+W(T/))dMC(¢) (1/))

hﬂzoo
he5N
1 Ty e—BUo(Ho(—0(8),¢)+V —i€ W —i€W_)Us
= —/ déydéae P ° — o - -
e R2 Tre B 0 0( (ﬁ)v(b)uo
1 Ty e~ BHo(0(8),6)+V —iEW4 —iEW_)
=+ [ dadger R
T JRe Tr e—BHo(6(8),¢)
= hlin;o e—V(¢)+W(w)d'uC(¢) (1),
he3N

which implies the claim. [
4. Multi-Scale Integration

As one can expect from the formulation Lemma 3.6, the proof of the
main theorem is based on analytical control of the Grassmann Gaussian
integral

/ VW@ -AW) g (),

We will achieve our purpose by means of multi-scale integration. In prin-
ciple our analysis is an extension of the double-scale integration performed
in the previous work [12]. We intend to keep using the previous frame-
work as much as possible so that the readers can smoothly connect it to
this extended version. As in the previous construction, after brief introduc-
tions or restatements of necessary notations concerning estimation of kernel
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functions we establish general bounds on Grassmann polynomials. Then by
assuming scale-dependent bound properties of covariances we inductively
construct a multi-scale integration process running from the largest scale
to the smallest scale. In the next section we will confirm that our actual
covariance satisfies the properties assumed in this section.

4.1. Necessary notions

Our multi-scale analysis needs a little more detailed notions of estimat-
ing kernel functions than the double-scale integration required in [12]. In
order to avoid unnecessary repetitions, we use some terminology and nota-
tional convention without presenting the definitions in the following. The
readers should refer to [12, Subsection 3.1] for their meaning. We will not
use any terminology or notational rule which is not defined either in [12,
Subsection 3.1] or in this section and the preceding sections of this paper.
As in the previous paper, we define the norms || f||100, ||f]|1 of a function
f:I"—Chby

n—1
o= s s (1) ¥ ¥ XXV

J€{1,2,--,n} Xo€l Xeli-1YeIn—i

ih=(3) 3 1o

Xeln

For fy € Cwelet || foll1,00 = || foll1 := | fo|- This convention helps to organize
formulas. We define the index set 1°(C I) by

I°:={1,2) x BxT x {0} x {1,-1}.

Since we will frequently make use of bound properties of covariances, we
need to introduce various norms on functions on I?. For an anti-symmetric
function g : I? — C we define the norms ||g|} ., ||g]| as follows.

lglls oo == sup > |g(Xo, X +5)],

Xoel 0
86[07ﬁ)h Xel

lgll = Nlglltoe + (1 + 87 llgl1,00-

We should remark that the definition of the norm || - || is slightly different
from that in [12]. We will also need to evaluate a function on I"™ x I"
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multiplied by another anti-symmetric function on I2. More specifically, for
a function fp, ,, : I x I — C (m,n € N>2) and an anti-symmetric function
g:1? — C we set

[fm,n:g]l,oo
1 m—1
‘= max sup (E) Z Ix;=x,
_ Xoel Xelm
je{1,2,--- ,;m}
1 n
sup - Z ’fm,n(X7Y)||g(%7Yk)| )
Yoel h n
ke{1,2,- n} Yel
1 n—1
o () e
ke{1,2, - m} Yelr
1 m
(s (5) Z el |
Xo€el h Xcm
je{1,2,- m} €
1 m—+n
nmhi=sw (3 3 UK Y0 YD)
j€{1,2,--~,m} Xel™
ke{1,2,- n} Yerr

Since we do not assume that fp,, is bi-anti-symmetric, the forms of
[fm.ns 91,005 [fmns gJ1 are more complex than those introduced in [12, Sub-
section 3.1]. If f, , is bi-anti-symmetric, they become same as before.

[fm,nvg]l,oo

:max{

(1) % (sup ;) X \fm,n«Xo,X>,Y>Hg<mm>\>,

Xoel Yoel

Xe[m—1 Yein
1 n—1 1 m
sup | — sup | - |fm,n(X7(vaY))Hg(Xf)ﬂXl)| )
Y0€I<h> Yg;l X0€I<h) X;m
1 m-+n
s g1 = <5) S o (X, Y) [9(X0, V).
Xel™

Yel™
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Let A,pe, V denote the subspace of /\ V consisting of even polynomials.
Each order term of the expansion of logarithm of a Grassmann Gaussian
integral with respect to the effective interaction can be expressed as a finite
sum over trees. Concerning the tree expansion, we can use the same no-
tations as in [12, Subsection 3.1]. The only difference between the present
setting and the previous setting is the definition of the index sets Iy, I.
By keeping in mind that Iy, I count the band index B in this setting we
can refer to [12, Subsection 3.1] for the meaning of the notations we use in
the following. The tree formula is applied as follows. For any covariance

C:I2 — Cand f/ (1) € Ny V (5 = 1,2, ,n),
4 S TT (o )tos ([ 5 et
n! i 0z;

— %Tree({l,g7 - ,n},C) l_IlfJ(w + w])
j=

2;=0

$i=0

The major part of our analysis is devoted to estimating Grassmann poly-
nomials produced by the operator Tree({1,2,--- ,n},C).

4.2. General estimation

Here we summarize bound properties of Grassmann polynomials pro-
duced by the tree formula. Most of the necessary properties have essentially
been prepared in [12, Subsection 3.2]. However, as we need to apply them
repeatedly in the next subsection, let us present all the necessary inequalities
so that the readers can follow the arguments without disruption.

Here we do not fix details of the covariance. We only assume that the
covariance C : I3 — C satisfies with a constant D(€ R~) that

(4.2) C(R3(X +s)) =C(X), (VX €3, se %Z) :

(4.3) | det({u;, vj) cmC(Xi, Yj))1<ij<n| < D7,
(Vm,n € N, u;,v; € C™ with ||u;||cm, ||viljem <1,
X;, Y e ly (’L =12, ,n))

Here the map Ry : ({1,2} x Bx I x $Z)" — I}/ is defined by

Rﬁ((plv P1,X1, Sl)a Tty (ﬁnapnvxnv Sn))
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= ((ﬁla p17X17T,3<81))7 H) (ﬁn?pnaxna Tﬁ(3n>))a

where for any s € +Z, rg(s) € [0, 8), and rg(s) = s in +Z/BZ. By abusing

the notation we will sometimes consider R as a map from ({1,2} x B xT" x

+7Z x {1,—1})" to I" satisfying the same condition on the time variables.

The precise meaning of the map R should be understood from the context.
As in (4.2) we will often impose the condition

(4.4) F(Ry(X +5)) = F(X), (vx eI se %Z)

on a function F : I™ — C. For j € N let FV(¢)) € A\_,., V be such that its
anti-symmetric kernels FJ, : I™ — C (m = 2,4,--- , N) satisfy (4.4). The
first lemma summarizes bound properties of A™ (y) (€ Ay, V) (n € N)
defined by

AM () := Tree({1,2,--- ,n},C) H FI(7 +4)

Jj=1

$i=0

Recall that the anti-symmetric extension C : I? — C of the covariance C is
defined by

1
(4.5) C(XEY() = 5(Leo=0,nCXY) = Lego=(-11C{, X)),
(X7Y € IOa faC € {17 _1})
Let N denote 4b8hL?, the cardinality of the index set I.

LEmMMA 4.1. For any m € {2,4,--- N}, n € N the anti-symmetric

kernel Aﬁﬁ)(-) satisfies (4.4). Moreover, the following inequalities hold for
any m € {0,2,--- ,N}, n € N>o.

N 1,
N m=0Ap#0
1) < o p r
@) Al ||1,oo_p:m<h) (1)
N
4 AD <Y ( P )

=—m
N\ = 1-T 5 9m ) 5/ n—1
489 AP () -t

p”l'

"ci
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N
3ps P
: H Z 2 pJD 2 HF[g]HLOO 12 ;:1171'_2("_1)27”'

N
(4.9)  JAD |y < (n— 2D F 22 ¢ L N 2 DR |EL |y
p1=2

n N P
30i D3 || I
I D2 D2 e | 12, p—2n-1)2m-
j:2 pj:2

PROOF. These are essentially same as [12, Lemma 3.1].

Next we deal with a Grassmann input with bi-anti-symmetric kernels.
Let functions Fj, ; : IP xI? — C (p,q € {2,4,--- , N}) be bi-anti-symmetric,
satisfy (4.4) and the following property. For any functions f : [0, 5)} — C,
g:[0,8)} — C satisfying

f(ra(s1+s),r5(s2+s), -+ ,r3(sp+5)) = f(s1,82, -+, Sp)

1
(V(sl,SQ,-“ ,8p) € [0,5)2, ERS EZ> )

g(Tﬁ(Sl + 8)7Tﬁ(82 +S)7" : 7Tﬁ(8q + S)) = 9(517527" : qu)

1
<V(81782,' o 73q) € [Oaﬂ)%) s € EZ> )

(4.10)

Z Fpq((Prp1xisi&, - PpppXpspép), Y) f(s1,- -+, sp) =0,
(51, ,8p)€[0,8)]
(VY € Iqa (ﬁj:pﬁxjagj) € {172} X B xT x {17_1} (J = 1727' o ap))7
Z Fpa(X, (Mmy1taiCrs -+ MgngYqtalq))9(tr, -+, tq) =0,
(t1,+ tq)€[0,8)}
(VX € Ip? (ﬁ]a”]:}’j?CJ) € {172} X B xT x {17_1} (j = 1727 to 7Q))

Then let us define the Grassmann polynomials B™ (1) (€ A,,., V) (n € N)
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N 1\ Pt+a
=) 1p7q62N<ﬁ> > Fpg(X,Y)Tree({1,2,-- ,n+1},C)

p,q=2 XelP
Yeld
n+1
1 2 j j
W rx @ oy [[F@ 0|
7=3 (Vje{1,2,- ,;n+1})

The kernels of the Grassmann polynomials B™ (¢) (n € N) are estimated
as follows.

LEMMA 4.2. For any m € {2,4,--- N}, n € N the anti-symmetric
kernel B,(#)(-) satisfies (4.4). Moreover, for any m € {0,2,--- N}, n €
N>,

(4.11)
1BG 11,00
N\ =0 "
< (= D172
<(%)
P1t+p2 5
Z Lpi po €2N22p1+2p2D [Fplypz ,Cl Loolpi+p2—2>m-
p1,p2=2
(4.12)
_m P1+P2 ~.
”Bv(; 1 <D~ ! Z 1P1P2€2N22p1+2p2D [Fp1.p2s Clilp4py—22m-
p1,p2=2
(4 13)
IBS |1,

N m -
(;) (n— )10 F 27 C]3 )

P1 +P2 =

[Fpl,pzvc]l,oo

§ : 3p1+3
1p1 p2€2N2 P1T9P2 )
P1,p2=2

n+1

N
3p; YL || i
. H Z 2°Pi N HF}ngLOO 12 ?illpijnzm'

Jj=3 \p;=2
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(4.14)

1Bl
< (n-1"F 2 mCYp
P1t+p2 =

N
3p1+3
’ E 1p1,p2€2N2 prrepz D [Fplypzvc]l,oo
P1,p2=2

n N o
R R
. H Z 23Pi D HF;ngLOO

pj=2

7=3
N Pt
§ : 3pn+1 n+t n-+1
2 Dz HFpn+1H112;’-L:+11pj—2n2m'
Pny1=2

PROOF. These are essentially proved in [12, Lemma 3.2]. O

REMARK 4.3. In fact the property (4.10) of F,,(-,-) is not used to
prove Lemma 4.2. It is only necessary to characterize kernels of the Grass-
mann polynomial denoted by E(™ (3)) in Lemma 4.4. It is not directly used
to derive estimates of the kernels in Lemma 4.4, either. However, we assume
the property (4.10) of Fj, 4(-,-) throughout this subsection in order not to
complicate the assumptions by unnecessary generalization of the lemmas. It
is important to guarantee that some output polynomials inherit the prop-
erty (4.10) from the input polynomial as claimed in Lemma 4.4, since it
enables us to classify Grassmann polynomials with or without the property
(4.10) during the multi-scale integration process. It turns out that those
with the property (4.10) vanish at the final integration, which is one es-
sential reason why we can construct this many-electron system by keeping
the small coupling constant largely independent of the temperature and the
imaginary magnetic field.

In the next lemma we claim several inequalities which were not proved
n [12, Subsection 3.2]. Using the same input polynomials as in the above
lemmas, we define E™ () (€ A_,.,, V) (n € N) as follows.

N 1\ Pt+a
EM(p) =Y 1MEQN<%> 3 F(X,Y)

p,q=2 Xelp
Yel1
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m+1
- Tree({s; }Tﬁl,C)(wl +)x H F5i(ap% +9p) Vo =0
j=2 (Vi€{1,2,-- ,;m+1})
Tree({ti}i O + )y [ Fo@™+w)|
k=2 (Vke{1,2,-- ,;n—m})

where

m € {0,1,--- ,n—l},

l=s51<s9< <841 <n, 1=t <tea< - <th_m <,

{sj}m+1 U {tk}k ' =12,3,---,n}, {sj}m+1 N {t eyt = 0.
Here, unlike in [12, Lemma 3.3], we present the bi-anti-symmetric kernels
of EM(¢)) beforehand. Let us define functions E(Snb) cI*xI" - C (ne
N, a,b€ {2,4,--- ,N}) by

(4.15) E)(X,Y)

N P1
S w3 (oo + Lol <pe 1) ( P )

U
P1,q1=2 u1=0
q1 q
1
: Z(lm:n—l + 1m;én—11'u1§q1—1) ( v )
v1=0 1

m—|—1 N p]

)T (s ()

=2 \p;=2u;=0 k=2 \qp=2vx=0

f((Pi)1<i<mt1s (W) 1<i<m+1, (€5)1<j<n—m> (Vj)1<j<n—m)
((X/17X/27 Xm+1) (YllaY/27 Y/ ))

. 12 m+1 12 nf'm 1

uj=a Zm+lp 72m>a12" U ar—2(n—m—1)>b

.albl Z sgn(o) sgn(7)1 (X} X X ) =Ko LY Y0 Y =Y
0ES,
TGSb

where the function

Jm((Pi)1<i<mt, (U5)1<i<m+1, (¢)1<j<n—m> (Vj)1<i<n—m)
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m+1 n—m
: HI“J' X HI”’“—NC
7j=1 k=1

is defined by

Im(Pi)1<j<m+1, (Wj)1<j<m+1s (65)1<i<n—m, (V) 1<j<n—m)
((X17X27 T 7Xm+1)a (Y17Y27 Tt 7Yn7m))

1 p1+q1—u1—v1
= <_> Z Z thm((leXl)v (ZhYl))

h
WieIP1—1 Z €] 1

m+l1 1\ Pi— .
11 (ﬁ) > FBI(WX;)

Jj=2 WjEijiuj
n—m 1\ %~V ]
() X mmy
k=2 Zy €T~k
m+1

1
-Tree({s; ;nJE , H Vi =0

“Tree({tx}_1",C) H ¢%€ Yt =0
k=1 (Vke{1,2, n—m})

.(_1)ZT:1UJ'ZZ i)+ I o SIS (g vi)

LEMMA 4.4. For any n € N, a,b € {2,4,--- N}, EC(LT;)) is bi-anti-
symmetric, satisfies (4.4), (4.10) and

N a+
=y 1a,b€2N<%) 3 BN X, Y)uxiy.

ab=2 Xele
Yert
Moreover, the following inequalities hold for any a,b € {2,4,--- ,N}, n €
N>o and anti-symmetric function g : I* — C.
(4.16)

N N
(1) p q 1 —a—b
1B 11,00 < Zzlp,qem< b ) ( ! )D2<P+q V||, o[l 1.00-

p=a q=b
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(4.17)
(1 q L ipta—a—
2l < ZZW?N( ) () prore g
p=a q=b
(4.18)
Sl D q 1
1 1 g—
[Ei,ﬁ,g]l,m < ZZlmegN< u > < b >D2(p+q a b)[Fp,qag]l,oo-
p=a q=b
(4.19)
N N )
<SS en(2) (1) 2
p=a q=b
(4.20)
IESY |11 o0

< (1m;ﬁ0(m - 1)' + 1m:0)(1m7én—1(n —m — 2)‘ + 1mfn_1)

r1+ ql

LgT2em B pontl=glett) HCH Z Lpy qeaN2 P P30 D72 |
P1,q1=2
m+1 N pi n—m N “
LS o i) T (20 irg
j=2 \pj=2 k=2 \ ¢=2
.12';n+1 __2m>alzn m‘lk 2(n m— 1) b
(4. 21)
||E ||1

g2 = (et | e Z Ly e 90 D5 |
P1,q1=2

m-+1 N .
i A S5 S
) H ( Z 2305 D3 (Ls; 2nll Fp? 1,00 + 15jnHFp;H1))

j=2 p;j=2

n—m N v
9k
. H ( Z 234k D3 (ltk?énHF;:HLOO + 1tk:n’F<§:H1)>

k=2 qk:2
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(4.22)
[E((;’Z)ag]l,oo

< (1m;£0(m - 1)' + 1= 0)( m#n— 1(” —m — 2)‘ + 1m:n71)
'2—2a—2bD n+1——(a+b chn 2

N
3p1+3
E , Lpi,q1€2N2 prred

plan:2
p1tay

Dz ([Fpl,qug]l,oo”cul,oo + [FPLQI’C]LOOHQHLOO)

m+1 N v n—m N "
) H <Z 23ij7HFij ) H (Z 23%D7||th:||1,oo>

j=2 \p;j=2 k=2 qr=2

1y m+1p]72m>a122 1 ap—2(n—m—1)>b"
(4.23)
E). gl
< (g~ D!+ L)L = .= )1+ L)
. 2—2a—2bD n+1——(a+b Hc‘

N

3p1+3
E : 1p),q1e2N2 prred
P1,q1=2

r1t+a1
-D

([Fp17Q179] , [Fpl,qlaé]l,oougnl,oo)

m—+1 N o
-~ L Sj S5
: H < Z 2P D2 (Ls;n [ Ep; 1,00 + 15j—nHFp;H1))

J=2 \p;=2
n—m N .
ax
) H (Z 234k D (Lepznl FgE 11, = ))
k=2 \ gpi=2

'1Z§’“§1 -—2m>a12" 7 ap—2(n—m—1)>b

PrROOF. The kernels E(n) (a,b € {2,4,--- ,N}) were essentially given

n [12, (3.41),(3.39)]. The claimed properties of E! b) and the inequalities

(4.16), (4.17), (4.20), (4.21) were essentially proved in [12, Lemma 3.3].
We need to show (4.18), (4.19), (4.22) and (4.23). In fact these inequal-
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ities can be proved in similar ways to the derivations of (4.16), (4.17),
(4.20), (4.21). However, we provide the major part of the proof for com-
pleteness. Let p := (pj)icj<m+1, U = (uj)i<j<m+1, A4 = (¢j)1<j<n—m,
v := (vj)1<j<n—m for simplicity in the following. Since the norm bounds on
EC(LZ)) follow from norm bounds on the function f/(p,u,q,Vv), let us focus
on estimating f/ (p,u,q,Vv).

First let us consider the case n = 1. By using the determinant bound
(4.3) we have for any X; € I*1, Y, € I"! that

‘f'r’rrll(pa u,q, V)(XlaYl)‘

1 p1+q1—u1—v1 l(p1+q1—u1—v1)
<l|7 Z ’thql((Wth):(ZlaY1)>‘D2 )

h
W elP1—u1
Ziel17v1
which implies that
1 —u—
(424) [fgz(pv u, q, V)> g]indea} < D2 (Prta1—ur—v1) [Fp1,q1 ’ g]indexa

for index = ‘1,00’ or index = 1 and any anti-symmetric function g : 12 — C.
Let us consider the case n > 2. Let us take an anti-symmetric function
g : I? — C and estimate [f7(p,u,q,v),g)1. If n € {s; m+1

je1 > We estimate
the right-hand side of the following inequality.

(4.25)

[fr?z(p7 u,q, V)a g]l

1\ Z 5 A o v
< sup (E) Z

k16{1,2,~~~72 Z;Iﬂ ’Uk} XeH;n:JEI Y%

+ sup Z |f77)11(p’ u,q,v)(X,Y)Hg(YO,Ykl)\).

B
For ky € {1,2,---,> 7 " vx} there uniquely exists ky € {1,2,--- ,n —m}
such that Y, is a component of the variable of the function Fj, 4, if kg =1
tro .
or Fq:(? if ko # 1. We consider the vertex t, as the root of the tree T' €
T({tx};_]") and recursively estimate from the younger branches to the root
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tr, along the lines of T'. In this procedure we obtain especially

1 q1
sup <E> Z |Fp1,q1(X7Y)||9(Y0»Y1>‘

Yoel Yera

if ko =1,

1 q1 ~
sup <E> Z | Fpy i (X, Y)[[C(Yo, Y1)

Yoel Yera

if kg # 1. Then we consider the vertex n as the root of S € T({s; };n:'ﬁl) and
recursively estimate from the younger branches to the root n along the lines
of S. In the end we obtain especially [Fp, 41, 9]1.00 if ko = 1, [Fpy.q1,Cl1.00
if kg # 1. In the case n € {t};_]" we follow the other way round. We

estimate the right-hand side of the following inequality.
(4.26)

[fr?z(p7 u, C_[,V),g]l

1\ = 7wt R vk
< s ((5) )3
uj}

. m—+1
{12, 2 5 Yell g2 1%

sup Y IfZ,Z(ILu,q7V)(X7Y)||g(Xo,Xj1)I>-

Xoel
O xer A

For j; € {1,2,--- ,Z;ﬁ;l uj} there uniquely exists jo € {1,2,--- ,m + 1}
such that X is a component of the variable of the function F,, 4, if jo =1
or F;joo if jo # 1. We consider the vertex sj, as the root of the tree S €
T({s; };”jll) and recursively estimate along the lines of S. Then we consider
the vertex n as the root of the tree T' € T({t;}}_7") and recursively estimate
along the lines of T'. By applying the determinant bound (4.3) we have that

for any X; € IV (j =1,2,--- ,m+1), Y, €I (k=1,2,--- ,n—m),
(4.27)

|fr?z(p7 u, qav)((Xla X27 o 7Xm+1)7 (YlaY27 T aYnfm))|
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D>

SeT({s; Y7 T€T({te} i)

1 p1+q1—u1—v1
(3) )3 )3
W, erpr1—u1—d1(5) 7, era1—v1—di(T)
W/ erd1(s) Z! e1d(T)
p1—u1 q1 — v1
(s ) (B ) 1 (W3, W X0, 21,24, Y))
m+1 P— U
1 pj—uy Di— Uj; )
- ((ﬁ) ) ( e )|F§;<wj,w;,xj>r)
j=2 W, eﬁr“'*ds () %
W’eI 5;(5)

_m<<%>q_ ) (ZZ( ) > (zk,zz,Yk>|>

Zkelqkivkidtk (T)
Z/ EIdtk (T>

%(Z nL+1p —Om— ZVVH»I ) %(Z n— '{nqk 2(n m— 1) Zn {nv)

-D
m—+1

| Lin=0 + Lo H A{qu}(C) H wi’i’;
j=1

{p.q}€Ss

Im=n-1+ 1m;£n—1 H A{p7q}(c> H thka
k=1

{p.q}eT

= Ip~ 15 (2 7w+ 2 R0 ) Z Z

SET({SJ}WH) TeT({tx}r—1")

1 p1+q1—u1—v1

(5) > ¥
W erp1—u1—d1(5) z, eya1—v1—di(T)
W’le[d1(5) leeldl(T)

p1—u1 q1 — V1 1
( 01 (9) )( \(T) )D“pl““" Fovr (W1, W X0), (2,21, Y1)
m+1 o

1 p] UJ p_u p_] N

TG £ () rtmwx
Jj=2 W er?i v —ds; (S) J

) - 7ds; (S)
WjEI J
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T\ Qk — Vk LT— /
(R 2 Ny ) P E B Y|
k=2 ’

Zy 1%k~ (1)
Z;CEIdtk (T)

m+1

Im=0+ Lo H Afp,gr(C) H wéjvg
=1

{p.q}€S

n—m
) (1mn1 + lm;énfl H A{p,q}(c) H wtzklk
k=1

{p.a}eT

Recall that for S € T({s; mH), ds;(S) denotes the degree of the vertex s;
in S. See [12, Subsection 3 1] for the definition of the operator Ay, 1(C).
By following the tactics of estimation explained in and after (4.25), (4.26)
we can derive that

(4.28)

[fm(Psu,q,v), gl
e s [ 2.
SeT({s; 370 TET{tr}iZ1™)

(i) oo () oo

'([Fp1,q179]1oo||c [ P1,Q1ac~]1OOHg||1 OO)

m—+1 Dj — Uy | Py Py s
TL{ (s ) doMDF Qomnll B+ Lol o)

j=2

' n—m Qk: — ’Uk | qap "
H (( dy, (T) )dtk(T).D 2 (Liy=nllFg¥ll1 + Loy 2nll Fy ||17OO))'

k=2

In fact the inequality with the term

SUP{[Fp1,g1, 911,00 [[Cll1,00, [Fpi,a1s Clicollgllieo}

in place of

[FPI:QI’C]LOOHQHLOO

[Fp1.ars 9)1,
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can hold. However, we choose to use the above inequality for simplicity.
Also, we took into account the fact that

m+1

H A{zo,q}(c) H w;{f;’ H A~{P7q}(c) H thk;
j=1 k=1

{p.q}€s {p,q}eT

In order to support the readers, let us present an intermediate step
between (4.27) and (4.28). Assume that n € {sj};ﬁ:ﬁl. Take any k; €
{1,2,--- .30 " vg}. In this case m # 0. By following the strategy ex-
plained after (4.25),

create at most H;njl ds; (S)!, TTii=1" d, (T')! terms respectively.

1 Lol vk
(ﬁ) sip S o) (X0, Ko, Xne), V)|

Yol yen nom vk
-19(Yo, Ya, )|
< on—1p=n+1-5 (X 7" u+E 321" og) Z Z
SET({s;}7h") TeT({te}iZ1™)

G, Vit ) (i Jammoter

W, eIP1 —u1—di(S)

W’le[dl(s)
1 q1 / -
| (ﬁ> sup D [ Fpar (Wi, W1, X1), Y) lg (Yo, Yl CI
o€ Yera

1\ % ~
it () 50 3 B (W1, WEX0, Y1166, Y1)
YOGIYEI‘H

: ||g||1,w|!5\l?,;m_2>

m~+1 1\ P54 P — u; b )
J

j=2 Wjelpj—uj—dsj(s)

W’ et (%

/
jGI J

m+1

n—m s a N
T (% 2 )anmro®imha ) | TT 8pm(© IT v,
tk( ) j=1 !

{p.a}€s
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Then by integrating with the variable (X;,Xg, -+, X,,+1) we obtain the

right-hand side of (4.28). By following the strategy explained after (4.26)
we can deal with the case n € {t;}}_]" as well.

Now to restart with (4.28), let us recall the following estimate based on
the well-known theorem on the number of trees with fixed degrees.

M+ |
SGT(%M-&-I) 1:[ (( ) dsj(S)!)

< (1m:O + 1m760( — 1)'2 m— 1)222 (p] uj)

£ (%) e

TeT({tp}yZ) k=1

)

< (Lnmn—1 + Limgn_1(n — m — 2)1270Fm)92 % hi" (@ =),
See [12, (3.20),(3.21)]. By substituting these inequalities and using the
inequality
2" (Lo + Lnzo(m — D127 N (Linmpo1 + Lingn—1(n — m — 2)1277H™)
< (Lm=o + Lmzo(m — DN (Lim=n—1 + lmzn—1(n — m — 2)!)
we obtain that
(4.29)  [frn(p,w,q,v), 9l
< (Tmzo(m — )M+ Lip=o) (Lingn—1(n — m — 2)! + 1p=pn_1)
92X N =2 X o py—nb 1= 5 (8 U X R ) IC)I732

P11+ 111

22 DT ([Fyy g 9)1,00[ICll 100 + [Fprars Cluocllgll1,00)

m+1

’ | | (2 Pj D—Qj (l = H JH H 7jH ))
§;=n }p]' 15j;én }p' ,00

n—m

k.
T @D Qo FfE s + Ll Fftllc0)).
k=2

Let us consider [f;,(p,u,q,V), g]1,0o. To estimate

1\ Z 7w R o1
sup — 1x. =x
o () > g

m+1 yu;
le{LQ’...’Z?L:JEl u;} XGHj:1 I%
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Y()EI

sup Z |f'rT7LL(p7 u7qvv)(X7Y)||g(Y0aYk1)’>7
kre{1,2,-.% 1"y} Yell ;2" Ik

we fix j;1 € {1,2,--- ,Z;-”;ll uj}, ki€ {1,2,--- > 1" vg}. Then there
uniquely exist jo € {1,2,---,m+ 1}, ko € {1,2,--- ,n —m} such that X,

is a component of the variable of the function £}, 4, if jo = 1 or F;jg if jo #1

and Y}, is a component of the variable of the function F},, 4, if kg = 1 or th,fg
if kg # 1. We recursively estimate along the lines of T € T({tx};_]") by
considering the vertex t;, as the root in the first place. Then we recursively
estimate along the lines of S € ']I‘({sj}gn:'ﬁl) by considering the vertex s;, as
the root. On the other hand, we estimate

NS P S o -1
w o ((4) > inew

Yoel n—m v
k1€{1727"'72 Z;Invk} YEH k=1 Ik

sup > e, V)(X,Y)IIQ(XO,XM)
0€ m U
ef1,2, % ;n:+11 uj} Xell j:+11 1Y

)
J:
first and the recursive estimation along the lines of T' € T({tx};_}")
afterwards. Since the procedure is parallel to the estimation of
[f(p,u,q,Vv),g]1, we only state the result.

by performing the recursive estimation along the lines of S € T({s;

(4.30)  [fin(P,1,q,V), )10
< (Lnzo(m — 1)+ Li—o) (Linzn—1(n — m — 2)! 4+ 1iy—p 1)
LR L w2 R vk bl (2T gt i ) G -2
,00

p1tay

- Q2P1T201 7 ([Fplyqug]l,ooHéHl,OO + [FP17Q1’C~]1700H9H1700)
m+1 »j n—m g
. L Sq -
L@ DR o) TT @25 D% Fg|h,00)-
j=2 k=2

Again we overestimated by replacing

SUP{[Fp1a15 911,00 [Cll1,005 [Fpra1s Clicollgll1,00 )
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by their sum for simplicity.
It follows from (4.15) that

(431) [E((Igag]index
N p1

4!
< Z 1P17Q1€2N Z (1m:0 + 1m;é01u1§p1—1) ( U )
P1,q1=2 u1=0 !
q1 q
. Z(lm:n—l + lm;zén—llvlgql—l) ( Ul )
v1=0 1

m+1 N pj—1
SIA DI
" Uj
j=2 \pj=2u;=0
n—m N qp—1

TS (%)) 1 uav). s

k=2 \qr=2v,=0
. 1 m+1, 1 n—m _ 1 m+1 1 n—m
I uy=a X gt op=b" X T pj—2m>a” X 1" qp—2(n—m—1)>b’

where index = ‘1,00" or index = 1. By substituting (4.24) for index =
‘1,00', 1, (4.30), (4.29) into (4.31) we obtain (4.18), (4.19), (4.22), (4.23)
respectively. [J

4.3. Generalized covariances

We construct the general multi-scale integration process by assuming
scale-dependent bound properties of covariances. Here let us list the prop-
erties of the generalized covariances. Assume that Ng < ]\75, Ng, Ng €.
These numbers represent the integration scales. We should think that at
the scale Ng + 1 we perform a single-scale ultra-violet (UV) integration
and from ]\7@ to Nz we perform a multi-scale infrared (IR) integration. Let
co, M € R>1, cena € Ryp. We assume that covariances C; : Ig — C
(l=Ng,Ng+1,--- ,]\75) satisfy the following properties.

e C; (l=Ng+1,N3g+2,---, Ng) satisfy (4.2).

(4.32) Cn, (ppxs,myt) = Cn, (ppx0,7ny0),
(V(p.p.x,8), (W, m,y,t) € Ip).
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[ ]
(4.33) | det((w;, v;)onCi(Xi, Vi) )1<ij<n] < (coM2E o))",
(Ym,n € N, u;,v; € C" with ||u||cm, | villcm < 1,
XY, el (Z =1,2,--- ,n), le {Nﬁ,Ng—}-l,"- ,Ng}).
[ ]

(a-1-x 9, nlj)(l_Ng)

(430 Gl < e (1,11, M +len).

(Vl S {N/B’Nﬁ +1,-- 7Nﬁ})

5 a—1-Y49%  1Y(1—-N
(4.35) 1G] < copa® = a=ra ) Ne)

(VI € {Ns+1,Ng+2,---,Ng}).

Here C; : 1> — C is the anti-symmetric extension of C; defined as in (4.5). In
Subsection 5.1 we will explicitly define these scale-dependent covariances by
decomposing the actual covariance appearing in the formulation Lemma 3.6.

4.4. Multi-scale integration without the artificial term

In the rest of this section we always extend the coupling constant to be
a complex parameter. To distinguish, let u denote the extended coupling
constant and set

V(U)(?ﬁ) = % Z Z wlpxswlpxs

(p,x)eBXT s€[0,8)n

u _
+ Lip Z Z wlpxsd’?pxsw%yswlnys;

(P:X)v(WY)EBXF Se[ovﬁ)h

W(“)@b) = ﬁ Z Z Elpxstl’xsE2nytwlnyt'

(P»X)a(U7Y)€B><F S7t€[076)h

In this subsection we construct a multi-scale integration for the Grassmann
polynomial

log / V@AW @) g, wh |
Zz:ﬁNBHCl
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The well-definedness of this Grassmann polynomial is a priori guaranteed
only for small u. We are going to construct an analytic continuation of this
Grassmann polynomial. Uniform boundedness of the analytically contin-
ued polynomial is important in controlling the integrand of the Gaussian
integrals in the final formulation Lemma 3.6 (iii). In the next subsection
we will perform a multi-scale integration by adding the artificial term A(1))
to the input polynomial. We want to prove the analyticity of Grassmann
polynomials with the variable u as a result of the multi-scale integration in
this subsection. For this purpose it is natural to consider kernels of Grass-

mann polynomials as elements of the Banach space C(D(r), Map(I™,C))
equipped with the norm || - || o, defined by

[f 100 := sup_[If(w)]l1,c0-
ueD(r)

We also let || - ||1,00,» denote the uniform norm of C'(D(r),C) for notational

consistency. Similarly for f € C(D(r),Map(I™,C)) and an anti-symmetric
function g : I? — C we set

[fa g]l,oo,r = Ssup [f(u)ag]l,oo-
weD(r)

More generally, for any domain D of C" and finite-dimensional complex
Banach space B we let C(D, B), C¥(D, B) denote the set of all continuous
maps from D to B, the set of all analytic maps from D to B respectively. In
practice we let B be A_,.,, V or Map(I"™,C), even though we do not always
specify a norm on these complex vector spaces. The finite-dimensionality
implies that every norm is equivalent to each other. Normally, we use ||-|/1,00
or ||-]}1 as a norm of Map(I™, C) and induce a norm of A,
anti-symmetric kernels of a Grassmann polynomial by || - |10 or || -||1. The
readers should understand which norm is being considered from the context.
Observe that once a norm is defined in A,,.,, V, f € C(D, Aopen, V) is equiv-
alent to fo € C(D), f(-)m € C(D,Map(I™,C)) (m = 2,4,---,N), which
is equivalent to fo € C(D), f(-)m(X) € C(D) (X € I"™, m = 2,4,--- ,N),
where f(u)m (m = 2,4,---,N) are anti-symmetric kernels of f(u)(¢) for
u € D. The parallel statements can be made for C¥(D, A,,.,, V). In order
to systematically describe properties of Grassmann data in the multi-scale
integration, we define several subsets of C'(D(r), A,y V)- In the following
we let I € {Ng+1,Nz+2,--- , N5}, 7 € Rug and o € Rs;.

Y by measuring
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We define the set Q(r,1) as follows. f belongs to Q(r,[) if and only if

feC( /\V)ﬂ(]“’( ),/\v).
e For any u € D(r) the anti-symmetric kernels f(u)y, : I"™ — C (m =
2,4,---,N) satisfy (4.4) and
h

(4.36) NonM

(x n L 11)(1—Np) _
b= 2 I foll 1,00, < L4,

Z o Q" MENI | f o < L7

Simply speaking, we use the set Q(r,[) to collect Grassmann data bounded
by the inverse volume factor.
We define the set R(r,[) as follows. f belongs to R(r,!) if and only if

feC(W«), /\v)ncw (D(r), /\v).

even even

e There exist f,, € C(D(r), Map([pxlq C)) (p,q € {2,4,--- ,N})such
that for any v € D(r), p,q € {2,4,--- ,N}, fpq(u) : IP x I7 — C is
bi-anti-symmetric, satisfies (4.4), (4.10),

N 1\ P+e
U w) = Z 1p,q€2N(E> Z qu X Y wxwY

p,g=2 XeIp
Yere
and
(4.37)
M -(Z 4 1n +1)(1-Np) Z C ap+qML+qa(z Ng) L <,
p,q=2
(4.38)
—(Z?

s L 11)(1-Np) a1 N _
M p Z e aPr M PR o) < L),

p,q=2
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for any anti-symmetric function g : I? — C.

In essence the set R(r, 1) will be used to collect Grassmann data having the
vanishing property (4.10).

Let us start explaining the inductive multi-scale integration process by
explicitly defining the initial Grassmann data. Define VO 1N : D(r) —
Map(1?,C) by

(4.39)

0—1,N, _ _
Vy P () (py prx1s1€1, Popaxasalo)

|
= = UL T oy 1) =02 x2,52) T =o=1 (L1 2)=(1,-1) — Ligng)=(-11)):

Then we define V01V ¢ C(D(1), Aeyen V) by
VO—LNﬁ( ) (¥ ( ) Z ot NB X)bx.
Xer?
Let us define VZ?Z_Q’NB : D(r) — Map(I? x I?,C) by
(4.40) V2022N (w)(Pr1p1x181&1, Pop2x252€e, MMy 11 €1, Mamzyatala)

1
. —d2 -1
= _ZUL h 1(p1,X1,81,771,Y1,tl):(p27x2,$277l2,}’2,t2)(h181=t1 -67)

’ Z Sgn((j) Sgn(T)1(ﬁ0(1)7?0‘(2)7ﬁ7’(1)7ﬁ7‘(2)):(1727271)
0,7ESy

1(50’(1)7&‘0’(2) 7<T(1)7<T(2)):(17_1717_1) :

Then we define V0~2Ns ¢ C(D(r), N, V) by

even

VO-25 () (1) 1= (%) S VSV ) (X, Y)gxiy

X, YeI?

Observe that
VO—I,N@ (u) () + VO—QvNB (w) () = =V (u)(¢) + W(u)(¢).

We give VO—LNs 4 Y0-2N5 a9 the initial data to the multi-scale integra-
tion. Using the notations introduced above, let us inductively define V0=,
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V02l e O(D(r), Appen V) (1 = Ng+1,Ng+2,--- , N3) as follows. Assume
that we have VO=bi+l € Q(r, 1+ 1), VO=2+1 € R(r,1+ 1) and

1 p+
VO 2l—|—1 Z 1 qEZN(h) Z VO 2l+1 X Y)waY,
P,q=2 XelP
Yel?
(Vu € D()

with VPOQQZJrl e C(D(r) ), Map(I? x I19,C)) (p,q € {2,4,---,N}) satisfying
the conditions required in R(r,l + 1). Then, let us set for any n € N>,
u € D(r),

VO (u) ()

n
1
(5 etz man

J=1 \a,;e{1,2} ’

n

IV W@ + )
j=1

VOTI20 () ()

a 1\"*e 0—2,+1
= z Lp,geaN h z Voa (u)(X,Y)

pi=0

p,q=2 Xelp
YEr
1
. HTT@@({L 2,---,n+1},C41)
n+1 )
(@ Ox @+ oy [TV @@ )|
j=3 (Vje{1,2, n+1})

VOO () ()
1

n—

N
Z Z 1p,qE2N

0({sg}J b T ES (nm) Pa=2

()7 X vy

XelP
Yeld

Tree({s;}74", Ci1)

?_IH
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m+1
@) [V e+ )|
j=2 (Vje{1,2,-- ,;m+1})

~Tree({tg}_1" Cit1)

W)y [T VO ) (@ + )

k=2

pe=0

where

1:51<32<---<sm+1§n,
B l=ti<to<- - <tph_m<mn,
S(n,m) := ({Sj}?zl? {te}o=1") | {8]}m+1 U {te}rZ _n {7;’ 3,--+,n},

{S]}m+1 N {tk} = 0.

Set
VO ) (p) =y VO WW)(@),  (7=1,2),
n=1
VO 1l ZVO 1 J»
V- 21 Zvo 2,1,(n w) ()

on the assumption that these series converge in A_,.,, V-

Let us see how these Grassmann data are derived during the process. We
give VO~LI+L 4 170=2041 ¢4 the single-scale integration with the covariance
Ci+1. By applying the formula (4.1) we can derive that

1 d\" L3 2 03,041 () (b1
(441) ﬁ <E> log (/@ Zj:lv J ( )(UJ +'¢))ducl+1 (wl))

— y0-1-LL(n) (u) ()

N
1 p+
Py 1p,qe2N(E) S V02 (4)(X, )

Pq=2 XelP

Yeld
1 ﬁ ( )
n! =2 0z

z=0
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1 1 T,z VO 2L ! 1
[ (@ eSO g, ()
z;=0

~1
: </ ex j=2 ZjVO2’”1(U)(¢1+¢)dﬂcl+l(¢1)>
(Vi€{2,3,++,n})

_ VO—l—l,l,(n) (’U/)(w) + V0—1—27l7(n)(u)(¢) + V0—27l7(n)(u)(lp).

We should remark that the above transformation is essentially same as [12,
(3.56)] and is based on the ideas of the earlier papers [15, (3.38)], [14,
(IV.15)]. Also, we should remind us that the logarithm and the inverse of the
even Grassmann polynomials are analytic with z, (zj)?:2 in a neighborhood
of the origin and thus the above transformation is mathematically justified.

Let us explain the rule of the superscripts put on these Grassmann
data. We use the label 0 — 1, 0 — 2 as the 1st superscript of Grassmann
data independent of the artificial parameters A1, As. In the next subsection
we will use the label 1 — j, 2 as the 1st superscript of Grassmann data
depending on Aq, As linearly, at least quadratically respectively. The 2nd
superscript stands for the scale of integration. The Grassmann data with
the 2nd superscript [ is to be integrated with the covariance C;. For example,
V0-Ll is independent of A\, Ao and to be integrated with the covariance C;.
V1=Li+1 s linearly dependent on A1, Ay and to be integrated with C;,; and
SO on.

We can describe properties of these scale-dependent Grassmann data as
follows.

LEMMA 4.5. There exists a positive constant cq4 independent of any
parameter such that if

(4.42)

in{1,2a—1->¢_, L a 4 L41)(Ng—N
mETER ) S az e, Lt > S T

I

then

VObbe Qb eg2at 1),
VOiQ’l S R(b71062a74a l)a (Vl € {Nﬁ’ Nﬁ +1,. ’Nﬁ})
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PROOF. During the proof we often replace a generic positive constant
denoted by ‘¢’ by a larger generic constant still denoted by the same symbol
without commenting on the replacement. It should be understood in the
end that these replacement do not violate the validity of the proof of the
claims. .

We can see from (4.39), (4.40) that VQO_I’N[’(U)(-) is anti-symmetric,

satisfies (4.4), V2?2_2’Nﬁ(u)(~,~) is bi-anti-symmetric, satisfies (4.4), (4.10)

and

0—1,N, _
(4.43) Ve 7 (w100 < [ul L7

0—2,N,
(4.44) Voo ™7 (W)]l1,00 < blul,

0-2,N _
(4.45) Voo 7 (1), gl1eo < [ulL™ g

for any anti-symmetric function g : I 2 _, C. Thus it follows that VO~V ¢
Q(b~teg2a?, Ng), VO=2Ns ¢ R(b~ ey %a™?, Np).

Set r := b*1052a*4. Assume that [ € {Ng,Ng+1,--- ,]\73 — 1} and we
have VO~ € Q(r, §), V027 € R(r,5) (j = I+1,142,-- , N3). Let us show
that VO-1-L1 y0-1=21 1/0-21 g6 well-defined and VO—1-11 4 y0-1-21 ¢
Q(r,1), VO=2L € R(r,1). The following inequalities can be derived from the
definition of Q(r,1 4 1), R(r,1 4+ 1) and the assumptions o > 23, M? > 24,

(4.46)

N
Z 23m(COMa(l+lfN5))%||V79171,l+1||1,oom < COéizLid,
m=2
(4.47)
N A
Z 2mam(COMa(l—N5))%ang—l,l—i-l“LmJ < CM_aL_d,
m=2
(4.48)
al q Y4 Ly+1-N
Z 23m(COMa(l+1—Ng))%HVT(r)L—Zl—i—lHlOor < COé_4M( j=1 "_j+ (41— ﬁ),

m=4

(4.49)

N
_N ptq _
S L gean2 a9 (oM ND) B O 2

DP,q=2
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—2 »d 1)(I+1-N,
< ey P FOIE N,
(4.50)

N ~
Z 2mam(COMa(lfN5)) e
m=4
(4.51)
N

+
Z 1, gean?2 P+3q(c GRS Ng))p q[vo 2,l+1 T
DP,g=2

—2a+(X 4, L4n)(+1-N
L <M (X o1 p; +1( a)’

< ca_4M( +1)(l+1 Ng)

(4.52)
N

2p+2 I—Ng)\ B2 (v ,0-2,1+1
D Lpgean2® 0Pt (g M N5 (V02 gy
DP,g=2

7—d
gl

—2a+(X §_; L+ (I+1-Np)

n;

<cM L™ g,

for any anti-symmetric function g : I2 — C. In the derivation of (4.48),
(4.50) we used the inequality

N

(4.53) ||Vr(r)L_2’l+1Hl,oow < Z 1p,q€2N1p+q:mHV;gq_2’l+lHLOO,T;
DP,g=2

which is based on the uniqueness of anti-symmetric kernel. By using these
inequalities we will prove the claimed bound properties of the Grassmann
data at [-th scale in the following.

First of all, let us consider VO=1=1L(") By (4.6) and (4.33), for any
m € {0,2,--- ,N}

HVO 1-1,0,(1 ||1oor
1ym=0Ap#0
- Z <%> 0 < p >(C Ma(l+1 N@))
- m
p=m

Then by (4.46) and (4.36) for [ + 1

_ N
(54) VT T e < IVY T e + a7
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d 1 \
< c%a’sz(Z ) n—j+1)(l+17N@)L7d‘

Also by (4.36) for [ + 1 and the assumptions that a > 2, M2 > 24,

N
(4.55) Z am(COMa(lfN,e))%||Vr(r);171,l,(1)‘|17007r

m=2
N N R

< Z Z amQPM_aTm(COMa(l+1_Nﬁ))§HV;DO_LH_IHI,OO,T
m=2p=m
N N A

< T amMTE Y aP (MU Byt
m=2 p=m

<cL™M2

Assume that n € N>o. Observe that

YOI ) ()

g 1
= Z < " > _|TT6€({1727 te 7n}7cl+1)
—\aq)n

q n
3 1 AAmman OOICEER DN | I A (Ol Can |
j=1

It follows from (4.8), (4.33), (4.34) that for any m € {0,2,--- , N}
(4.56) ||Vr(r)zilil’l’(n)||1,00,r

1= N
< (%) ’ on (n _'2)! (COMa(l+17N5))fn+1f%2f2m
n:

. (COM(a—l—Z 4, nij)(l+1—1\7ﬁ))n_1

N N P

_ Py _

. Z 93p1 (COMa(lJrl Ng)) 5 HV;;Ol 1’l+1||1,oo,r
p1=2

n N R o

. — 27 —

H Z 2303 (co MPUH1=Ne) )3 Z ”V;g Sy o
J=2 \p;j=2 6e{1,2}

1y Go1pj—2(n—1)>m
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_ <g> lm=o o-2mtn, % 1y BN~ foy LD Np)(n-1)

N
. Z 23p1 (coMa(lJrlng)) % ||Vp0171,l+1 H Lo
p1=2

n N
. —N P_] -
T[S 2 conr =83 S sty
j=2 pj:2 56{172}

5> jo1pj—2(n—1)>m"

By (4.46), (4.48) and the assumption L¢ > M(Z =1 "LJ'JFI)(]\?[’_]\%)7
1V ™ Mo
< %M_(Z 4, nij+1)(l+1—Nﬁ)(n_1)Ca_2L_d
. (Ca—QL—d I Ca_4M(Z 4, nij+1)(z+1—Ng)>”‘1
< %L_d(cof2)”7

or by assuming that a > ¢,

(n) N
4.57 g A < —Ar
( ) ~ || 0 ||1700>7“ =>c h o

Also, by substituting (4.47), (4.50) and the inequality L% >
M(E ) %J.H)(NVNB)

from (4.56) that

and using the condition aM ~3 > 23 we can derive

N
Z am(COMa(l—Nﬁ))% ”Vrg—l—l,l,(n) ||1,oo,r

m=2

< @21 D= o AN 1N ()

N
CNANEL 10—
. Z 2P1 o1 (co M3 N6)Y 2 Hv;)ol LA o
p1=2
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n—1
N
A DI C e LR W | e [
p=2 6e{1,2}
< ng2n—1) A= jo1 my TDUHLI=NG)(n=1) ) oy g
. <CM_aL_d 4 CM_23+(Z ;’l:l nLj"_l)(l"'l_Nﬁ))n_l

S M_aL_d(COé_Q)n_l,

or by assuming that a > c,
N R 00
(458) Y a™ (MUY vttty < caPMPL
m=2 n=2

Next let us study V0=1=2L("), By (4.11) and (4.33)

Vi 72 W 1o

N 1m=0 N7 m
<(3)" e
N A~
. Z 1, p2€2N22P1+2P2 (COM3(1+1—N5)>

p1,p2=2

0-24+1 5
: [%1,p2 ’ Cl+1]1,oo,r 1p1+p2—22m'

p1+p2
2

Then by (4.35) and (4.51)

(4.59) Ve ™ 2 O oo

< ﬁcalM_a(lH—Ng)ca—zxM(z j=1 2 HD(H1=Np) - _g
~— h

(a-1-x9_, nLj)(lH-N,@)

. C()M 7
N
< cﬁa_‘lL_d.
Also by (4.35), (4.52) and the condition aM~2 > 2,
(4.60)
N

Z am(COMa(l_Nﬁ)) = HVTE)L—l—Q,l,(l) ||1,oo,r

m=2
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< Ca—ZMa (COMa(l+1—Nﬁ))—1

N
2p1+2p2 . p1+p2 a(l—=Ng)y 2122 002141
E Ly, poc2N2 a (coMU=No) ) T2 = V0214 €] s
p1,p2=2

2a+(X ¢

Jj= 1n +1)(l+1 Nﬁ)

< Ca—QMa(COMa(H-l—Nﬁ))—lM L—d

o T f=1 ) (I+1-Np)
<ca ML
Let n € N>o. By substituting (4.33), (4.34) into (4.13) we have that

(4.61)
||Vr9;172’l’(n) 11,00,

1m:O N d
< <%> (CoMa(H—l_Nﬂ))_n_?2_2m(COM(a 1- Z] 1n )(l+1 Nﬂ))

N
\J P1+p
> Ly a2 (o MAFIN) IR VOB ),
p1,p2=2
n+1 N R »;
H Z23pf(coMa(l+1‘N5))7||Vpg.‘2’l+1||1,oo,r 1Zn+1pj_2n>m
j=3 \p;j=4
Then by (4.48), (4.51) and (4.35),
||‘/60_1_27l7(n)||1700’7.
N —a(l+1-N, rd_ I+1-N 1
< ECO_IM a(l+1-Ng)nt(a—1-X 5, - -)(+1-Ng)(n—1)
-cof“M( =17 L 1) (1+1— Nﬁ)
'COM(a—1—z§:1n—1j)(z+1—N5)( _4M( +1)(l+1 Nﬁ))
N
zL_d(ca_él)nv
or by assuming that a > ¢
o0
1,( N _
(4.62) ZHVO 1=2L(n ||1Wgcﬁ s,
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On the other hand, by using (4.50), (4.52), (4.35) and the condition
aM~% > 23 we can deduce from (4.61) that

N
S am (e MPENDYE [P EO

m=2
an—a(l+1-Ng)n+(a—1-X {_; L)(I+1-Ng)(n—1)
J

< c”oz_Q”calM

N
p1+p2 _ ~
Z 1p1,p2€2N2p1+p2ap1+p2(c Ma(l Nﬁ)) [‘/pol,p227l+lycl+1]l7o<>,r
p1,p2=2
N n—1
> 2aP (oM VO
p=4

an—a(l+1—Ng)n+(a—1-2 ¢

i=1n; S)(I+1-Ng)(n—1)

< c"a_zncalM

‘ M—23+(E . %+1)(l+1—N5)

(a—1-24_

=17 —2a+(X 4, L41)(1+1-Np)

)(l+1 Nﬁ) J 1n

Lo M
< L™ ca™2M )",

(CM )n—l

Thus on the assumption a > c,

(4.63) Za coM(=Na)) 5 vao =260y o <ca™ ML

m=2

By combining (4.54), (4.55), (4.57), (4.58), (4.59), (4.60), (4.62), (4.63)
we have that

Do 0—1-10 0-1-2,
5 2 Ve o 1V T )
n=1

d 1 3
< ela szf(E =1 fj+1)(l+1*Nﬂ) n —4)L7d
N 00

T || Vygflfz’l’(n) || 1,00,7“)

m
§ a™ C Mal N@) 72 |V0 1-1,0,(n
m=2 n=1

<eM™L7 4
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The above inequalities imply that if M > ¢ and a > ¢,
VO—l—l,l + V0—1—2,l c Q(T‘, l)

In fact Lemma 4.1, Lemma 4.2 ensure that the anti-symmetric kernels of
VO-1=LL() 4 y/0-1-2L(n) gatisfy (4.4) and thus so do the anti-symmetric
kernels of VO~-1-Li 4 y0=1=21 " The above uniform convergent property
implies the claimed regularity of V0—1-14 —|— VO=1=2! with w € D(r). Recall

d
(Cfo A+ DNV~ NB) aM~2 > 23 to reach

that we have also assumed L% > M~ 7= 7

this conclusion.

Next let us deal with V9=2L(")  The analysis is based on Lemma 4.4.
The lemma ensures the existence of bi-anti-symmetric kernels satisfying
(4.4), (4.10). We can see from (4.15) and the induction hypothesis that
Vo 2 e o(D(r), Map(I® x I*,C)) 0 C(D(r), Map(I* x I",C)) (n €
N, a,b € {2,4,---,N}), which implies that VO~ € C(D(r), A po, V) N
C¥(D(r), Appen V)- We need to establish bound properties of V=24 Tt
follows from (4.16) and (4.33) that for a,b € {2,4,--- ,N}

0—2,0,(1
V.22 O o

N N
p q —Ng)\ 2 —a— _
235 ( P ) < / ) (oM =R s prama-by o201y

p=a g=b

By (4.37) for [ + 1 and the assumption o > 2, M3 > 26,

0—2,1,(

(4.64)  [[Voy e ”1007“
0—2,1+1
S ||V2’2 ||17007T
N N -
+ Z Z 1p+q262p+q(COMa(l+1—Nﬁ))§(p+q—4) HV}Sq_Q’Hl 1,00,
p—2q 2
<M( G=1 7 L 1)(I4+1-Ng) 74(0 Ma(mfz\?g))fz
—|—ca_6M( +1)(l+1 N,@)( 0M3(1+1_Nﬁ))—2
s d 1 V 3
< cM 4 @*1*23“2 i fj+1)(l*Nﬁ)a—4(COMa(l—N5))—2
N

atb, - 0—2,,(1
(4.65) Y lapeanlaspsea® eV Y0 2O
a,b=2
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N

< Z 1a,b€2N1a+b26aa+bM_%(a+b)
a,b=2

N N
—N ptaq —_
. Z Z 2p+q(COMa(l+1 NB))p2q H‘/;o?q 2,141 ||1,00,7“

p=a g=b

< M( i=17; L1 1)(I+1-Np) Z Los262 a+bpr—35(a+b)
a,b=2

< M( =11 L+1)(1+1-Np) Z 92m -2

m=6

< M( ; —+1)(l+1 Ng)—3a

By applying (4.18), (4.38) in place of (4.16), (4.37) respectively and re-
peating a parallel argument to the above argument we can derive on the
assumption a > 2, M? > 26 that

(4.66) m‘);?“”, 1o

<cM il Lo Tl- 2a+(2 - 2 1) (= Ng) —4(00Ma(1_]\7ﬁ))_QL_d”gH’
N
(4.67) 3" lapesnlasszoa® (MN[0 20 gl
a,b=2
d a

for any anti-symmetric function ¢ : I? — C.
Let us take n € N>g. Observe that for any m € {0,1,--- ,n — 1}

(4.68) wmmo:(”_l>.

m

Combination of (4.20), (4.33), (4.34), (4.68) yields that for a,b € {2,4,
N}

0—2,,(n
||Vab ||1007“

SEC)
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. (1m¢0(m — 1)! + lm:())(lm?gn,l(n —m — 2)! + 1m:n_1)
. 2—2a—2b(COMa(l+1—N5))—n-i—l—%(a—l—b) (COM(a—l—Z j:1 nij)(l+1—Nﬁ))n_1

N
3p1+3 I+1-Np)y 21t 2,141

Z 1p;,q1e2N2 Pt % (co MRt ﬁ)) H P1,91 - (B 1,00,r
P1,q1=2

m+1 N R b

. _ 22 _

. H Z 93P; (COMa(l+1 Ng)) 3 ||‘/pg 2,l+1||170071n

Jj=2 \p;j=4

n—m N
X H Z 23qk (COMa(H»lfNB )

k=2 qk:4

’ 12 ;n:'H —2m>a12" " ar—2(n—m—1)>b"

Then by using (4.49), (4.50) and the assumption oM ~% > 23,

N
a ath 0 2.1,(n
(4.69) Y aTP(corrl- No)) 22 vy 11,00,

< eng2n=1) AN R (- D@12 Ly ) (+1-Np) (n-1)

P1+111

+ + a l—N
E 1p17q1€2N2P1 q1 nP1T141 (COM ( B )
P1,q1=2

H P17Q1

n—1

N
Z 2pap(COMa(lfN5))g HV;)072,I+1 || ooy
p=4

LY(1+1-Ng)(n—1)

—a(l-Ng)(n—1)+(@-1-X §_, >

S Cna—Q(n—l)M

B D= Nyn
- M_2a+(2f 15 L) (41— Nﬁ)( a~2M )1

Then on the assumption o > c,

N
a+b l
(4'70) § : a+b(c Ma(l Ng § :H 0 2,1,( )Hl,oo,r
a,b=2 n=2
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—3a+(X ¢y 4D (I+1- Nﬂ)

n;

< ca~ M

Take any anti-symmetric function g : I — C. We can derive from (4.22),
(4.33), (4.34) that for a,b € {2,4,--- ,N}

a:b 79]1,ooyr
1 n—1 n_1
<o (")
m=0
“(Lnzo(m — D!+ Lino) (Lgn—1(n — m — 2)! + 1)
L7 2a=2b (g ppalt = Ng)) n+1—%(a+b)( oM (a-1- 4 L L)1 Nﬁ)) .
N
Z lpl Q1€2N2 p1+3‘h(c Ma(H—l NB))pH—ql
P1,q1=2

_ a-1-2 4, Lyi+1-N
(Ul Tt Sl

+ [Vt @hwug”Lm)

m+1 N A .
. _ Py _
LSS 2% (coda2@H1 =Ny 5 -2,
j=2 \p;j=4
n—m N A
T | X2 22 conrtt N
k=2 qk:4

’ 12 m+1 Dj —2m>a12 r g —2(n—m—1)>b"

Then by using (4.35), (4. 50) (4.52), (4.68), < |lg]|
and the assumptions aM ™~ 3> 23 a > ¢ and repeating a parallel procedure

to (4.69) we obtain that

n=2

N 00
a a atb —2)l,(n
(471) Z +b(c M - NB)) Z[Vvao,b2 ( )ag]l,oo,r
a,b=2

—3a+(X I, Z+D(I+1-N,
< ca 2y I N oy
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Here we can sum up (4.64), (4.65), (4.70) to deduce that

N N o0
_(xa 1 _ S a _
M (Z 3=1n; +1)(l Nﬁ) § aa-l—b(COMa(l—Nﬁ))%b E ||Va0,b 27l7(n)
a,b=2 n=1

<e (MZ T S %“‘33)

1,00,r

2a-1-y4_ L . )
On the assumption M ? I=tn; > ¢ the right-hand side of the above

inequality is less than 1. Because of the assumption (1.13), the condition
2a-1-2 9, L

M =" > ¢ can be realized by taking M large. Similarly, it follows
—1-yd 1
from (4.66), (4.67), (4.71) and the condition MR > ¢ that

N N [e%S)
_ d 1 — N7 a —
M & j=1n; +1)( Nﬁ) § aa-l—b(COMa(l—Ng))Tb § [VO 2,1,(n) , g]l,oo,’r

a,b

for any anti-symmetric function ¢ : I> — C. Thus we conclude that on the

. 2a-1-x 9 L
assumption M ? I=tni > ¢ that

Vo2l e R(r,1).

We needed to assume in total that

2a-1-y ¢ L a d L 41)(Ng—N
MZC, M a Z]Zl nj 267 OCZCMQ, LdZM(ZJ:1 "j+ )( B /6)

for a positive constant ¢ independent of any parameter, in order to conclude
the [-th step. The above assumptions can be summarized as in (4.42).
The induction with [ proves that the claim holds true. [

REMARK 4.6. In the proof of the claim V0=2! € R(r,l) we crucially
used the condition (1.13).
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4.5. Multi-scale integration with the artificial term
In this subsection we construct a multi-scale integration for

log < / e~V WHD U+ -AG+H N gy, c(wl))’
l

x I=Ng+1

where A(1)) is the Grassmann polynomial defined in (3.1). Since the artifi-
cial term A(v)) is parameterized by A = (A1, A2) € C?, the Grassmann data
in this process is parameterized by (u,A). We will classify them in terms
of the degree with A. It is structurally natural to measure kernels of these
Grassmann data by using a variant of the norm || ||; defined as follows. For

f e C(D(r) x D), Map(I™, C)) we set

”f”l,r,r’ = sup Hf(uv )‘)Hl-
(w,N)ED() X D)

Then C(D(r) x D(r’)Z,Map(Im,C)) is a Banach space with the norm || -
|1, Also, to shorten subsequent formulas, we set

Il .fo

1, = sup |f0(u7 A)‘
(u,\)eD(T)x D)

for fo € C(D(r) x D(r’)z,(C). Moreover, we introduce a variant of the

measurement [-,-]; as follows. For f € C(D(r) x D(r’)g,Map(Im x I™,C))
and an anti-symmetric function g : I? — C,

[fa g]l,?“,r’ = sup [f(u7 )‘)7 g]l'
(u,)\)EWXD(T’)2

To describe scale-dependent properties of Grassmann data during the multi-
scale integration process, we introduce sets of A V-valued functions. Let
l € {Ng,Ng+1,--- ,Nﬁ} and r, 7" € Rsg. We define the subset Q'(r,r’,1)
of Map(D(r) x C% A,,., V) as follows. f belongs to Q'(r,7’,1) if and only
if

even

fec*(mxc%/\v)mcw (D(T)X(C2,/\V>.

even even
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e For any u € D(r), A+ f(u,A)(¢) : C2 — A_,., V is linear.

even

e For any (u,A) € D(r) x C? the anti-symmetric kernels f(u, ),
I — C (m=2,4,---,N) satisfy (4.4) and

(4.72) 042Hf0||1,7‘,7" <L

N
Z C()?amM%a(l_Nﬁ)HmeLT,T’ < L_d.

We use the set Q'(r,r’,1) to collect Grassmann data linearly dependent on
A and bounded by L~¢.

The set R'(r,7’,1) is defined as follows. f belongs to R'(r,7’,1) if and
only if

feC( (r) x C2, /\V)ﬂ(]“’( )XCQ,/\V>.

even even

e For any u € D(r), A— f(u,\)(¢): C2— A_ _ V is linear.

even

e There exist f,, € C(D(r )><C2 Map ([P x11,C)) (p,q € {2,4,---, N})
such that for any (u,A) € D(r) x C%, p,q € {2,4,--- ,N}, fpg(u, A)
I? x [?7 — C is bi-anti-symmetric, satisfies (4.4), (4.10),

N 1\P+e
0= Y laen(3) X raln MK Yty

p,g=2 Xelr
Yel?
and
p+q
(4.73) Z pqeance® a2 M0N0 £l <1,
DP,g=2
pta p+q
(4.74) Z 1p,geaNey aptaprtzrad M) [fpar 9 < LT ng”v
DP,q=2

for any anti-symmetric function ¢ : I? — C.
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The role of the set R'(r, 7/, 1) is to collect Grassmann data linearly depending
on A, having bi-anti-symmetric kernels satisfying the property (4.10).

It is also necessary to define a set which can contain descendants of the
artificial term —A(¢). f belongs to S(r,r/,1) if and only if

feC( (r) x C2, /\V)mC‘”( )x@Q,/\v>.

even even

e For any u € D(r), A+ f(u,A)(¢) : C*> — A,,., V is linear.

even

e For any (u,A) € D(r) x C? the anti-symmetric kernels f(u, A)n,
I — C (m=2,4,---,N) satisfy (4.4) and

(475) a2||f0||l,r,r’ < 17
N m
Z CO?OK
m=2

In fact the descendants of —A(v)) are independent of u. Thus the condition
concerning the variable u assumed in S(r,7’,1) is not necessary. However,
by defining the set as above we can avoid introducing another norm.

Finally we define a set of Grassmann data depending on A at least
quadratically. f belongs to W(r,r/,1) if and only if

?’lgl.

feC( (r) x D(r') /\V)mC’“( )xD(r’)2,/\V>.

even even

e For any u € D(r), j € {1,2},

f(u,0)(¢) = (u,0)(¢)) = 0.

8)\

e For any (u,A) € D(r) x D(r’)2 the anti-symmetric kernels f(u, X),
I'"— C (m=2,4,---,N) satisfy (4.4) and
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(4‘76) 2||f0||1rr’ <1

Zco Q™ MEANG)| 1

o<1

In the following we inductively define a family of Grassmann poly-
nomials, which are the scale-dependent input and output of the multi-
scale integration process from Ng to Ng + 1. We admit the results of
Lemma 4.5 stating that VO~1 € Q(b ey 2a™4,1), V02l € R(b~1cy%a™4,1)
(VI € {N3,Ng+1,---,N3}) and define

Vo eC( D(b~lcg2a4) /\v) (I=Ng,Ns+1,---,Np)

even

by VO = VO0-Ll 4 y0-2l" Recalling the definition (3.1), we define
V=8N € O(C?, Agyen V) by

even

VIR () = —AY).

Moreover, set

V1-LNs _ 1-2.N5 . 0, Vb Ng ._ Zvl ]Nﬂ v2Ns ..

Let us assume that [ € {Ng, N3 +1,--- ,Ng — 1} and we have

pi-Li+l o Q' (r,r 14+ 1), yl=2i41 ¢ R'(r,r', 1+ 1),

VIS e St 1+ 1), VETL e W(r o 14 1).
Set LI+ .— Z?:l V1=3+1 By recalling the formula (4.1) we can observe
that
(4.77)

1 /d\" 23 2 RESNS
m (%) log </€ ZJ:O v @ Jrw)d/iCH_l (¢1)>

1 n )
= mTree({l, 2’ U 7n}7cl+1) H VO’ZH(W + w)
j=1

2z=0

=0
(Vje{1,2: m})
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L1 Tree({1},Cy) VT (9! + )

=0

+ 1n22 TT€€<{1, 27 o 7n}7cl+1)

1
(n—1)!
Ll wl 4 3h) H Z VO—aj,lJrl(wj + 1)

Jj=2 aj€{1,2}

$i=0

“15j(0;=1)
1

+ anQMTT%({L 2, ,n}, Cry)

. Vl’H_l(’l/Jl + ¢> H VO—Q,H—l(,l/}j + ’l/]) o

Jj=2 (Vj€{1,2,"',n})
n 2

1 , .

+ mTr€e<{17 27 T >n}7cl+1) H Z VbﬁH_l(w] + ¢) Pi=0
Jj=1 \b;=0 (Vje{1,2,~-,n})
e g

Let us decompose or rename each term of the right-hand side of (4.77) from
top to bottom. In Subsection 4.4 we proved that if we set

1 - :
VO,l’(n) (¢) = HTTGS({l, 27 o ,TL}, CH—l) H VO’ZH(?/}J + 1/’)
! jabe

for n € N>q, then VO(p) = 3700 VOL(M) (). Let us set
VITIEH (@) = Tree({1}, Gy VM (0! + )

$i=0

wi=0’
1-1-2] Y 1 P 1-2,1+1
V) = 3 Lgen(3) X BARY)
P,q=2 Xel?
Yel4

- Tree({1,2},Cri1) (@' + ¥)x (V* + )y

)

w1:w2:0
V1_2_1’l(’l/))
N 1\ Pta
=S () S )
P,q=2 XelP

Yeld
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Tree{1},Cun) (6! + Vx|, Tree({1hCn)0" +0)v],

(4.78)
VIH() = Tree({1},Con)V' (0! 4 9)

wi=0

Then, for the same reason that the transformation (4.41) is valid, the fol-
lowing equality holds.

d -2, _1_ _9_
Elog (/ezvl 2l+1(w1+¢)dﬂcl+1(¢l))' _ i 2J(’¢)+V1 2 17[(1/})-

z=0
Thus it follows that

Tree({1},Cret)VE (0! +0)x o
— Vl_l_l’l(l/)) + V1—1—2,l(w) + V1—2—1,l(w) + V1—3,l(w)‘

Moreover, set for n € N>o,

(4.79)

Vl—l—S,l,(n) (,(/})

1
= mTree({l, 2, tet 7n}7cl+1)

Vl l+1 w + ¢ H Z VO—aj,l—‘rl(wj + 77/)) Wi=0 1Elj(aj:1)7
Jj=2 \a;e{1,2} (Vje{1,2,--,n})
(4.80)

V1—1—4,l,(n) (w)

N
o 1 l P VO 2,1+1 XY
= Z pac2N{ 7 Z )

p,q=2 Xelp
Yeld
. ﬁTree({l, 2, ,n+ 1},Cl+1)(z/;1 + w)x(¢2 + )y

. H V072,l+1(¢j + 1/}) . Vl,l+1(¢n+l + w) i ’
]:3 (VJ€{1721 ,7’L+1})
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(4.81)

Vl 2—2.1, n)( )

n—1

= il Z

m=0 ({s; )70 {te} 2 €S (n,m)

al 1 P 0—-2,1+1
© Y Lpgenn 7 > Ve X Y)

p,q=2 XelP
Yerl1
-Tree({s; 720", Corn) (0 +4)x
m+1
. H (1Sj7énv0—2,l+1 (¢Sj + w) + 1Sj:nvl,l+1(w8j + w))
j=2
-Tree({ti} 1", Cr) (W™ + )y

T Qo VO 2@ 4 00) + Ly VI (07 4 40))

k=2

It follows from the same argument as in (4.41) that

1
mTree({l,z-.- ,n},Ciir)

n

. V1,l+1(¢1 ) H Vo—2,1+1(¢j + 1)

Jj=2

= (n_l o Tree({1,2,--- ,n},Criq)

n—1

. H V072,l+1(¢j + w) . Vl,l+1(¢n + w)

J=1

— V1—1—4,l,(n) (’l/)) + Vl—?—?,l,(n) (w)

Finally we set for n € N>,

(4.82)

VL) ()

%i=0

415 =0

m})

$i=0



The BCS Model with Imaginary Magnetic Field. 11 301

$I=0
(Vje{1,2,- ,n})

n 2
1 . .
= mT?‘ee({l, 2, ,n}Ca1) H Z VbJ’lH("L/JJ + )
j=1

b;=0

e bz

By giving back these Grassmann polynomials to the expansion (4.77) we
see that the following equality holds.

1 d\" 22 il (gl
() (7 )

— VO,Z,(n) (d}) + 1n:1(vl—1—1,l(w) + V1—1—2,l(¢)
PV () £ VI )
+ 1n22(V1—1—3,l,(n) (w) + V1—1—4,l,(n) (¢) + V1—2—2,l,(n) (w)) + V2,l,(n) (w>

z=0

By assuming that these are convergent let us set

(4.83)
V1—1—3,l<,¢) = i V1—1—3,l,(n) (w)j V1_1_47l('[/1) = i V1—1—4,l,(n) (’l/)),
n=2 n=2
VIZER () =y VTR ) V() = ) VA (),
n=2 n=1
4 2
VIS = YV ), V1) = Y VIRy)
=1 i=1

We are going to prove the convergence, regularity and bound properties of
these Grassmann polynomials. Remind us that the data V! is independent
of the artificial parameter X, the data V=7 (j = 1,2, 3) are linear with A
and V2! depends on A at least quadratically. The 2nd superscript [ indicates
that these are to be integrated with the covariance C;.

Set

d 1 <
(4.84) ep = & G=1 ay W —N).
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LEMMA 4.7. Let cq4 be the constant appearing in Lemma 4.5. Then
there ezists a constant c5 € [cq,00) independent of any other parameters
such that if

(4.85)
Mmln{l 2a—1-x ¢

h>2,

a +1)(Ng—N,
Jln >cs, o> cesM3, Ld>M( ]1n )(Ng— ﬂ)’

then
Vil e @'(bteg2at, of Eﬂ[f ‘g1 a1,
-2t ER'(b_lcaQa 4 ,Cs sﬂ ﬁ 1 _2 a0,
=3l ES(bilca a? ,Cs sﬂﬁ 6 1 _2 a4 1),
V2 ewbteg?a™ ,cglhl_Nﬁsgﬁf B eg2a™)),
(VI € {Ng,Ng+1,--- , Ng}).

REMARK 4.8. The radius cgleg’(’_lﬁ_lcfa_‘* of A assumed on V1=11,
Vy1=21 y1=3L amounts to heavy B-dependent bounds on these Grassmann
data. Also, the radius of analyticity of V%! with XA depends not only on
B but on h heavily. While we have to make best efforts to improve (-
dependency of the possible magnitude of the variable u as the main focus of
this paper, the S-dependency of the magnitude of A does not affect our main
results. Therefore we choose to simplify the following inductive estimation
procedure at the expense of (3, h)-dependency of the magnitude of A rather
than to optimize it with some complications.

In the proof of Lemma 4.7 we will use the following lemma.

LEMMA 4.9. Assume that m, p, q € N>o,

fo € C(D(r) x C*) N C¥(D(r) x C?),
ft e C(D(r) x C% Map(I™,C)) N C*(D(r) x C*, Map(I™, C)),
4 € C(D(r) x C*,Map(I” x I1,C)) N C*(D(r) x C*,Map(I* x I9,C)),
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f3 € ¢(D(r) x D)) N C*(D(r) x D(')?),
12 € O(D(r) x D(')",Map(I"™,C)) N C*(D(r) x D(r')?, Map(I™, C)),
A fo(uA):CP—=C, A fLuA)(X):C* = C,
A f;’q(u, A (Y,Z): C* = C are linear and
9 9

2(1,0) = — fo(u,0) =0, f2(u,0)(X) = — £ (u,0)(X) =0,
5(00) = G- 18(,0) =0, [, 0)(X) = 5 £, (1, 0)(X)

(Vue D(r), XeI™ (Y,Z)eI? xI? je{1,2}).
Then,

(486) Hf’lql(uygA)Hl S E”f%’”l,rml’ Hf”-zb(u’ EA)”LOO S thfg”l,r’r/,
[fq(us€X), glt < €lfp g 91
(vue D(r), e D()", e €[0,1/2], j € {1.2}, n e {0,m}).

Here g : I? — C is any anti-symmetric function.

PROOF. These are essentially same as the inequalities [12, (3.91),
(3.92)]. The inequalities (4.86) for j = 1 are trivial because of the linearity.
To prove the inequalities for j = 2, one can use the following equality.

1 g2

2 = — 2f2 (u, 2 —_—
PN ) = g s N (X

27

(Yue D(r), xe D), e €[0,1/2], § € (1/2,1), X € I™). O

PROOF OF LEMMA 4.7. During the proof we often omit the sign of
dependency on the parameter (u, A) to shorten formulas. Since V173! (1)
(I = Ng,Ng+1,--- ,Ng) are defined independently of other polynomials,
we can readily summarize their properties. Since V41_3’l(¢) = X A3()
for any | € {Ng, N3 +1,--- ,Ng},

30, _ _ _
V) (B p1xi 8161, Popaxasabo, Pypsxassts, PapaXasaéa)

Aoh?
= _T181:82:S3:S4 Z sgn(o)

UES4
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’ 1(<ﬁ<7(1)'pa(l)’xo'(l)'50(1))’(50(2)")0(2)”‘0’(2)’50(2))’(56(3)")0(3)’xa(3)’50(3))’<ﬁa(4)’pa(4)’xo'(4)’§<7(4)))7
=((1,p,rp (%),1),(2,p,7[ (%x),—1),(2,7,r,(¥),1), (1,9, (¥),—1))

(Y(p;, 05 %5,85,&) € 1 (j =1,2,3,4)).

Thus
(487) Vi < B, (V€ (NjNs+1,--, Ng)).
Also,
1-3,Ng ,_ _
Vy 7 (P1p1x151€1, Papaxasala)

h
= _§1sl=52 Z sgn(o) (1((55(1),pa(l),Xgu)»55(1))»(50(%,95(2)7xa(2)7§a(2))))‘1
UE& :((varl/(}2)71)7(27PA7TL(§()771))

+ 1((50‘(1) Po(1):%Xa (1) 7£0(1))7(?0‘(2)7po'(2)7xo'(2)7§cr(2)))
:((lvﬁer (ﬁ)vl)v(lvﬁer (*)7_1))

L )=(rr (y»&) )
(V(P5, P55 %j,85,§5) € T (1 = 1,2)).
Thus
(4.88) 1V =20y < 260,
We can see from the definition that for [ € {Ng, Ng +1,--- ,Nﬁ -1}
(4.89)

‘/2173,1(@
_ VQI_S’ZH(”(/J)

()= ()

2
<%) Z V41—3,l+1(X,Y)Tree({l},ClJrl)T/J%( w10>¢x
Yerl?

1-3,N;

=V, ()

()= ((2)
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1 2 e Nﬁ
. (E) Z V41 37NB(X,Y) Z Tree({1},C;) l_o)wx.
Yel? J=I+1 V=

By using (4.33), (4.87), (4.88) and the assumptions ¢y > 1, M > 2,
(4.90)

Ng
_ 1-3,N 4 1-3,N, j—N
V3 < IV g+ I s 3 g0
j=l+1
< ¢fcor’.
Moreover it follows from the definition and (4.89) that
yi-3d
0
_ ‘/61—371-1-1 + TTG@({l},Cl+1)‘/21_37l+1(¢1) i
—|—Tree({l},Cl+1)V41_37l+1(¢1) wl—o
B 1-3,N,
= VI3 L Tree({1},Cn) V2N (1) iz
1\ 2
T hcr, 2 (ﬁ) )
Xel?
4 1\? 1-3,N, S
() () 590 5 reirntl,
Yer? j=l+2 B
-Tree({1},Cry1) 0%
ree({1}, Cr+1)¥x Wl=0
1-3,N,
+ Tree({1},Cr1)Vy NP (01 o
Ny )
1-3,N,
- Z Tree({1},Ck)V5 WY $1=0
k=l+1 -
Ng—l 1 2
+ ]'lSZ\A/',@*Z Z (ﬁ) Z
k=l+1 Xel?

< ) ) <%>2 S v, Y) gﬁj Tree({1LC)0Y] ,

YeI? j=k+1
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~Tree({1}, C )k

$1=0
Np )
1-3,N
£ Tree(().cv; )|
$1=0
k=I+1
Thus by (4.33), (4.87), (4.88) and ¢9 > 1, M > 2,
(4.91)
1-3,
HVO Hl,r,r’
Ng ) Ng—1 N )
<2831 Z COMa(k*Nﬂ)—i—cﬁr’lKNﬁ_Q Z coMF=Ns) Z coM?=Np)
k=1+1 B k=l+1 j=k+1
Ng )
_i_ﬁr/ Z C(%M2a(k—Ng)
k=l+1
< cpcdr.

The inequalities (4.87), (4.90), (4.91) and ¢y > 1, > 1 result in

N
1-3, El -
O‘QHVO ) ||1,r,r’ < CﬁC%OﬂT’, Z 002 O‘mHanz 3,1

m=2

Lo < cﬁcgoflrl.

By definition X — V1=3!(X)(¢)) is linear for any [ € {Ng, N3+ 1,--- , Ng}.
The statement of Lemma 4.1 and the induction with [ ensure that anfg’l :
I'™ — C (m=2,4, | = N3, Ng +1,--- , Nj) satisfy (4.4). Combined with
these basic properties, the above inequalities conclude that there exists a
generic positive constant ¢’ independent of any parameter such that

(4.92)
VITH e S(r,d ey T T G D), (Ve {Ng, Ng+ 1, , Ng})

for any o € R>1, 7 € R5g. Here we also used that eg < 1.
2 4

Let us set 7 := b~ lcg?a™, o' = c’_lﬁflca%ﬁ‘l with the constant ¢/
appearing in (4.92). Let [ € {Ng, Ng+1,---,Ng — 1} and assume that
Vl_lal"!‘l c Q,(T, Egﬁ_l_lrl,l + 1)’ V1—2,l+1 c R/(T, Egﬁ_l_l'l",, l + 1)7
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V2,1+1 c W(T, hl+17]\7/36]ﬁvﬁ_l_1r/, l + 1)

as the induction hypothesis. Note that these inclusion trivially hold for
[l = ]\75 — 1. Check that if M > 2, eg < M~ < % Thus we can apply
the inequalities (4.86) with ¢ = eg. Let us list useful inequalities derived
from the induction hypothesis, (4.86), (4.92) and the conditions M? > 24,
a > 23,

N
(4‘93) Z 23m(COMa(l+lfNﬂ))%||V771L71,l+1|| Rg—t < CEgaizLid,
1’T’€5 r!

3
Il

WE

(4.94) 2™ (o MV VLI < gL,
5 1,1”,56[’ r’
N A
(4.95) D" 2Bm(eodPUHINE |V < eega,
—d l,r,eﬁ r’
N ~
(4.96) D 2" (oM NN TV g < eepM
—t TEg r!
N

3913 I+1—Ng)\ 2te —2,l+1
(4.97) Z 1 qeaN2 p+ q(CoMa( +1 ,6‘)) 2 [‘/pl,q + ,g]l TsNﬂ*lT
P,q=2 T
< cega L7 g],
N

_N ptg _
(4.98) Y 1, 4ean2 2Pt (o M0V B 1) 2’”1,g]mg o
p’q:2 1t

< cegM L™ g]l,

/

!

for any anti-symmetric function ¢ : I? — C.

N

(4.99) 3 23PN B YIS < eega?
1,re r!
m=2 B
N

(4.100) 3 2ma (oM Ne))E Va5 sy, S M,

ooyt e

N
(4.101) > 28 (e NA)) S Hv,?f“n1 N, S cega?,
bl ﬂ

m=2
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N
(4.102) > 2ma™ (oM TN 2 qugvlﬂul Ngt | < cegM ™2
m—2 ,r,aﬂ r

To derive (4.95), (4.96), we used a variant of the inequality (4.53). We can
derive from (4.93), (4.94), (4.95), (4.96), (4.99), (4.100) that

N
(4.103) D 2B (eoMPEN T VLY < eega?,
1,re r!
m=2 B8
N ~
(4.104) > 2ma (oMU T VLY g  SceegM ™
m—2 l,r,sﬁ T

Let us start the analysis of I-th step by studying V!~ By Lemma
4.1 its kernels satisfy (4.4). By (4.7), (4.33), (4.72) for [ + 1, (4.86) and the
conditions a > 2, M? > 24,

(4.105)
yl-1-11 .
H 0 ,r,egﬁ lr’
N
<epllVo L i, Fep ) (oMLY
l,r,sﬁﬁ r! ,TE A d
p=2 B
< 25504_2L_d,
(4.106)
N A~
[—N, n 1-1-1,1
S am (@M I AL
m=2 el
N N
< Z am(COMa(l—Ng))% Z 2p(COMa(l+1—N5))P—2m||Vp1—1,l+1|| Nget
1,re r
m=2 p=m EARAC]

N
<egL™® Y 2MM T < cegM LT
m=2
Next let us consider V!=1=2!, By Lemma 4.2 the kernels of V1=1=2!
satisfy (4.4). By (4.12) and (4.33),

1-1-2, )
VA2, s,
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< (COMa(l-‘rl—Nﬁ))—l—ﬂ
N A~
2 2 +1—N,
> Tppmean2® T (o1
p1>p2_2

p1+p2
2

1-2,1+1 )
[Vpl D2 Cl+1] Ng—1 ,1p1+p2—22m-
e T

Then by using (4.35), (4.97), (4.98) and the condition aM ™2 > 2 we observe
that

—-1-2,
(4.107) VT s,
l,T,aﬁ r’
. d .
< (COMa(Hl—Nﬁ))—1C€Ba_4COM(a—1—Zjzl nlj)(z+1—Nﬁ)L_d

< cepat M (2§ D= Nﬂ)Lfd’

Nﬁ—z

17’76

7,/

N
(4.108) Z ™ (coMU—NeY T ||y i-1=2)
m=2

C(COMa(l+1fNﬂ))flMaaf2
N ~
2p1+2 + [—N,
Z Lp) ppeaN2 P12 o1 P2 (COMa( 5))
p1,p2=2

Vl 2,1+1 Cl 1 P
[plpz +] rsﬁﬁ -

L4 1)(I4+1-Ng)

IN

P1+p2
2

!

d

<cegM =gy a2,
Next let us consider V1=1=3L(n) (n ¢ N>2). By Lemma 4.1 the anti-
symmetric kernels of V17173 satisfy (4.4). Thus if Y00, V1-1=340)
converges, those of V17173 gatisfy (4.4) too. Let us establish bound prop-

erties. Observe that

V1—1—3,l,(n) (w)

n

1
< n—1 ) ﬁTTee({l, 2, 7”}7CZ+1)V1’Z+1(¢1 + )

(]

q=1 e
g+1 n

Vo 1l+1(¢] + 1) H V072,l+1(¢k + ) 0
j=2 k=q+2 (Vj€{1,2,+ n})
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By (4.9), (4.33) and (4.34),
(4.100)

O
1,7, ] !
< (COMa(l+1*Nﬂ))*’ﬂ‘i’l*%272m+n71(COM(ailiz ?:1 nij)(l+17Nﬂ))nfl
N
. Z 23p1(COMa(l+1—Ng ) 2 ||V1 l+1H Nt
p1:2 7T7 8

N
. Z 93p2 (Cojwa(l-i-l—l\fg))%2 H%()Q—l,l-&-l 10,00,

p2=2
n N .
TS 2% (o0 -890) 5 (| v )
i=3 \p;=2

e pi-an-1)zm

Substitution of (4.46), (4.48), (4.103) and the condition Lt >
(1 -+ 1)(Ns—Np)

M "j yields that
TEIBV,B l’f‘

<M -(Z9, > L 1) (14+1-Ng)(n—1)

650[74L7d
. (ca_QL_d + coz_4M(ZJ n; Ay D0+ Nﬁ))

-4, nij+1)(l+171\75)

-2

<egM L~ ca™2)™,

Thus on the assumption a > c,

(4.110) Zy\%l—l—?ﬂ»(n)” oo <calesM (Z oy s A1 (1= Na)L,d
’ B8~ .

T‘Eﬁ r!

Also by using (4.47), (4.50), (4.104) and the assumptions aM~3 > 23,

Lt > M( I=tng a FDWo=N) we obtain from (4.109) that

N
3 (oM N F LB

!
€ T

m=2
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-9, nij+1)(z+171(rﬂ)(nf1)

< CnOZfQ(nfl)Ma(nfl)M 5/3M723L7d
‘ <CM_aL_d N CM—2a+(Z A nij+1)(l+1—1§7ﬁ))”2
d 1 D
< M*a*(zjtl n; +1)(+1 N5)56L7d<ca72)n71‘
Therefore by assuming that o > ¢,
(4.111) Za coM?(=N))3 ZHVl B
ot l,r,eﬁ T
<ea M a—(Z 9, n—+1)(l+1—Nﬁ)€ﬂL_d.

Next let us deal with V1=1=45() (n € Nsy). By Lemma 4.2 its anti-
symmetric kernels satisfy (4.4). Thus it suffices to prove the convergence
of Y, V1-1-4L(") in order to prove that the kernels of V1=1=%! satisfy
(4.4) as well. By (4.14), (4.33) and (4.34), for m € {0,2,--- , N},

(4.112)

VA

!
e T

< (COMa(l+1—N5))—n—%2—2m(COM(a 1- Z;i 1hny S (11— Nﬁ)) -1

N
P1+p2
Z 1p1,p262N23p1+3p2(C Ma(lH Nﬁ)) [V}JO1 p22l+1 Cl+1]1,oo,r
p1,p2=2
n
H Z 23pJ C Ma(l—H Ng) ) 3 HVO 2l+1|| Loor
: p]_4

Z 2%Pnt1 (¢ WEGeSs N[-})

Pnt1=2

1 l-l—lH

N 1 n+1 .
g lr’ ijlpj—Qan

Then by substituting (4.35), (4.48), (4.51), (4.103) we observe that
H‘/Ol—l—ll,l,(n) ”

N !
B~
e r!

< Mfa(zﬂng)f(Ej:lnij+1)(z+171\7ﬁ)(n71) *4M( +1)(I+1— NB)
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(a-1-S ) 2)(1+1-N) () 2HD+-Rp)\,

M
-4,

( a M ) 265047

1 N
n—j-l—l)(l—l—l—Nﬁ)

<M egL ™% (ca™ )",

Thus on the assumption « > c,

—(x I+1-N,
(4.113) ZHV114,1, I . gca‘ﬁM( 31n+1)(+1 g) L‘d.

TEg r!

Also by using (4.35), (4.50), (4.52), (4.104) and the assumption oM ~3 > 23
we can derive from (4.112) that

N
Y (oMU T VAR

m=2 T'Eﬁ r!
< Ca,QnManfa(z+1ng)n+(af1fz 4 %)(ZH,NB)(“,D
.M—2a+(zj L L1y (41— Nﬁ)L_d
(a—1—2 4, %)(l-i—l—Nﬂ)( M—2a+(z 4, nLj+1)(z+1—Nﬁ))n_2€ﬁM_a

< ]\4’a (Z] 1n; +1)(l+1 Nﬁ) BLfd(Ca72M7a)n7

or on the assumption o > ¢,
(I-N 4,1
(4.114) Zoz coM2(=Na)y 3 val =) I o
m=2 1 e

—(Z9, " +1)(z+1 Ng)

<ca M’ 5L_d.

Let us sum up (4.105), (4.106), (4.107), (4.108), (4.110), (4.111), (4.113),
(4.114).

(4.115)

1-1-1,
Vo

,,J

o+ V17172l +Z 1 1-3,1,(n) -
‘1#,8;\% lr’ H 0 HJ;B l, H ‘|17r78g5 l

1 1—-4,1,(
+ZH ’1 Aﬁflrl

7”55
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(x4 1 _N
<ec (1 L a M (X =1 p tD0H Nﬂ)) eﬁa_2L_d,
(4.116)
N ~
Z Oém(CoMa(l_Nﬁ))? (HVT}L_I_IJH Nﬁ l ,_’_ HVI 1— QZH oy
m=2 L, €5 17“,65 T
o0
F VAT l,+2uv1 el )
n=2 Lres n—2 Lreg™ v
a— (29, n—+1)(l+1—N5)

<ce(M24a2M " )es L.

Recalling (4.84), one can see that under the assumptions a > ¢, M > ¢ the
right-hand side of (4. 115) (4.116) is less than a=2L~% L% respectively.
By setting V171 .= Z], V1=1=5l we conclude that

vi=hle 9/(r, sgfﬁ ).

Recall that we have also assumed that aM ™3 > 23, Lt >
(ZJ 1 =+ 1) (Ng—Np)

n

to reach this conclusion.

Let us study V=271, By Lemma 4.4 there exist VlfQ*l’l € Map(D(r)x
C2, Map(I*xI°,C)) (a,b = 2,4,--- ,N) such that for any (u, ) € D(r)xC?,
Val’b_z_l’l(u A) 1% x Ib — C is bi- antl symmetric and satisfies (4.4), (4.10)
and

a+b
VI )W) = 3 1 sen(3) X VTN Yy
a,b=2 Xel
Yert

Moreover it follows from the definition and the induction hypothesis that

yi=2- “eC( (r) x C2, /\V)mC“( )><<c?,/\v>
and A — VI727L(y X)(¢) : C% +— A_,., V is linear for any u € D(r).
Let us establish bound properties. By (4.17) and (4.33), for any a,b €
{2)47"' aN}v

1-2—-1,1
”Va7b ’ H Nﬂ*l

!
e T
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N N
= ZZ 1p,q62N< P ) ( lq) ) (COMa(l+1—N6))%(p+q—a—b)
p=a g=b a
i lHll
Nﬁ 1 /-
7 7 B
Then by using (4.73) for [ + 1, (4.86) and the conditions o > 2, M? > 24
we have that

Vs

atb _9_
(4.117) Z Lo peane® P (co M2 N6)) %3 [
a,b=2 T
Z LabeaNM ™ EN atleg
a,b=2
N N
0D Lpgean oI R
p=a q—=b lrsﬁ
N
< lapean2tPM “Tragy < M2
a,b=2

Based on (4.19), (4.33), (4.74) for | + 1, (4.86) and the conditions a > 2,
M? > 2% an argument parallel to the above shows that

(4.118)
N

> Lapeana (e )%
a,b=2

atb 1211
Vap ™ 0] wyr, S eM #egL™g]),

17‘65

for any anti-symmetric function g : I?> — C.
Next let us consider V1=2-2L(n) (5 ¢ N>2). Lemma 4.4 ensures that

V1-2-2L() can be written with bi-anti-symmetric kernels V1 2 2’l’(n)

Map(D(r) x C?, Map(I® x I°,C)) (a,b = 2,4,--- ,N) and for any (u,\) €
D(r)xC? a,b € {2,4,--- N} the kernel V,, >~ 2’l’(’”(u, ) satisfies (4.4) and
(4.10). Moreover we can deduce from (4. 15) and the induction hypothesis
that

1-2-2.1,(n)
a,b

€ C(D(r) x C? Map(I® x I°,C)) N C*(D(r) x C2, Map(I® x I°,C))
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and X > V17272000 (4 N) () : C2 — A, V is linear for any u € D(r).
These properties must hold true for V1=272¢ once Yo, yi-2-24(0) g
proved to be uniformly convergent. By using (4.21), (4.33), (4.34) we obtain
that

a,b Ng-1

/
,THE T
B

n_l,Z 2

m= 0({SJ}Ttlr{tk}Z;lm)es(nvm)

: (lm;«éO(m - 1)' + 1m=0)(1m7ﬁn—1(n - - 2)‘ + Ln=n— 1)
3 -y ¢ I+1-N,
_272a72b(COMa(l+lfN,g)) ntl—1 (a+b)( 0M(a i=1n; S+ @)) 1
N Y P1t+4
_ 1 1
> Ly e (PN B 02ty
P1,q1=2
m+1 N . o
11 (Z 29 (co M1 ) 3
j=2 \p;=2

- !
. <lsj7énH S o, o Vplj’ +1H Mgt ,> )
7 7 ﬁ

sj=nll
n—m N .
1 (Z 2501 (e M1 %

qr=2
) <1tk#n|“/q?€_2’l+lul,ooﬂ" + 1tk:nHVqlk’l+1|| Nt ) )
7 7 6

12m+1p 72m>a122 Tk —2(n—m—1)>b"

Then by (4.49), (4.50), (4.68), (4.104) and the assumption oM ~3 > 23,

(4.119)
N st
z L peaNa® P (oM =No)) 5y 22y
abe lrsﬁ r!

—a(l+1-Np)(n—1)+(a-1-2 9_, n—j)(l+171\7ﬁ)(n71)

< Cna72(n71)Ma(nfl)M
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n—1
“(n—1)! Z Z
m=0 ({s;}m, {tx}p={")ES(n,m)

. (1m¢0(m — 1)! + 1m:0)(1m¢n_1(n —m — 2)! + 1m:n—1)
N

Z 1p17Q1€2N2p1+q10‘p1+q1(COMa(liNﬁ))pﬁql | p17q1l+1|| 1,00,r
P1,q1=2
m+1 N . .
. H ( Z 23 oPi (o M2U—N8)) 5
Jj=2 \p;=2
'<1Sj75nHVpg_2’l+l|| oor+1s] n”vl l+1H Nﬁ l >>
Lreg

n—m R
. ( Z 9k Ik (COMa(l—Nﬂ))qu

k=2 qr= =2

) <1tk7ﬁn“/q(,)€_2’l+lulyoom + 1tk:nH‘/;]t7l+1H N@ l’r") )

775

< a,2(n,1)Ma(n—1) =9, n—+1)(l+1—]\75)(n—1)
—2a+(X 9, " L1 (1+1-Ng) .\,

(eM
< (ca M) legM 2,

)" regM

Thus on the assumption a > c,

N
atb 1 2-2.1,
(41200 3" Lopeoma®(eo(-N0) § v, (n )”1 S,
a,b=2 n=2 e

< ca_QM_QaEQ.

On the other hand, one can apply (4.23), (4.33), (4.34) to derive that for
any anti-symmetric function g : I? — C,

[V1—2—2,l,(n)7 ]

a,b Ng—1

1,r,.€ﬁ r

m=0 ({5, YT {tx } 2 )ES (mym)

!
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. (1m¢0(m — 1)! + lm:())(lm?gn,l(n —m — 2)! + 1m:n_1)
(a-1-x 9, nij)(z+1_Nﬁ)

)n—2

) 2—2a—2b(COMa(l+1—N5))—n+1—%(a-l—b) (coM

N
3p1+3 I+1-N
E : 1, g ean2’Ptt e (co M1 No)y
P1,q1=2

- (m‘l,q% gl opcoM

r1t+a1
2
(a=1-3 1, 2)(1+1-Np)

I e Cz+1]1,oo7ngHLoo>

m—+1 N . o
. H <Z 23pj(COMa(l+1—NB))TJ

,]:2 Dj =2

: <1sﬂén|| pji7 ,00, j = Vl l+1” Nﬁ l ))
7 ? B

sj=nllV}
n—m N R
X H ( Z 23qk (COMa(H*lfNﬁ))q?k

=2
’ <1tk7’5n||vq?c_2’l+1||170077“ + 1tk:n||v;11k’l+1” Nﬁ l ) >
7 7 B

s jaary pj—szalz nIT g —2(n—m—1)>b"

Then by substituting (4.35), (4.50), (4.52), (4.68), ( 04), using the in-
< |lg|| and the assumption M ~2 > 23 and computing in a

parallel way fo (4.119) one reaches that

atb o 1-2-2]
Z Lo peane COMa(l NB)) 2 [V (n),g] Ryt
’ 1,re r!
a,b=2 B
< (ca M) legM 2L lg,
or on the assumption a > ¢,
= l
1-2-21,
(4.121) Z Lopearna™ (e N5 NV g
a,b=2 n=2 P T

< 6&72M72365L7ng||.
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Here let us combine (4.117), (4.118) with (4.120), (4.121) respectively
to derive that

N
(4122) ) Lpeana®(coMPND) S
a,b=2

1-2-10) 1-2-21,(n) )
~ (nva,b i Z % ||nglr,>
<M 4 a2M 2)eg,

(4.123) Z 1o peana® 0 (co M2y 55
a,b=2

1-2-1]1 1 2—2,1,(n
: [Vab y g Ng—1 + E 7 ] Ng—l
’ r! 1, TEg r!

TEB

<ce(M ™ +a2M #)egL™ d||g||.

If we assume that M > ¢, the right-hand side of (4.122), (4.123) is less than
1, L7%|g|| respectively. By setting V172! := V17211 4 §~00  y71-2-21(n)
we conclude that

VI=2l e R (el 1),

Remind us that we have also assumed o > ¢, aM —3 > 23 on the way to
this result.

It remains to analyze V5™ (n € N5;). It can be seen from the defini-
tion, the induction hypothesis and the conditions h > 1, eg < 1 that

(4.124)
V2’l’()€C(()XD(th5NBl/ Av>

even

new (D(r) x D(h\~Noe] No~t ) 2, A\ v)

even
0

0

V2L (4, 0) (1) = V2 (u,0)(1p) =0, (V5 € {1,2}, u € D()).

For (u,A) € D(r) x D(hl*NBEg’rlr’) Lemma 4.1 implies that the anti-

symmetric kernels of V2h() (u, X)(¢) satisfy (4.4). If S°0° V26 is uni-
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formly convergent, then V2! and its kernels automatically satisfy the prop-
erties (4.124), (4.4). By (4.7) and (4.33), for any m € {0,2,--- , N},

V27l)(1) R o
VEEOL gy e

N

p a(l+1—Ng)
< 8
__Zm(m) (coM )

y (4.76) for [ + 1, (4.86) and the conditions h > 1, M? > 2% a > 2,

lN Ngl,'
ﬁﬁ

2’l’(1)
4.125 V o N
( ) H 0 ”1,7‘,hl_Nﬁaﬁﬁ_lr’

WE

< S (coMAH1-N0))h s|v2 l+1|| oy Nt cega”?,
p=0 v
N .
m a(l—Np)\ 2 (11,2,4,(1) .
(4.126) Z ™ (coM )2 Vi lehl—NgaN@_lr/
m—2 [L) B
N N
< D0 A M ST P (M I
m=2 p=m - ﬁ

N
<eg Z 2MN[TEM < cegM 2.
m=2

Let n € N>o. Takeb; € {0,1,2} (j = 1,2,--- ,n) satisfying 37, b; > 2.
Set

1 2:6(n), ()5, (¥)

1 ‘ ; j
= HTree({l, 2, ,n}Ca1) H VbJ’H_l(wJ +9)

=0
i=1

(Vj€{1727"' ’n})

There exists o € S, such that b,y # 0. It follows from the definition of
the tree expansion (4.1) that

V27l7( )7(b )] l(d))

1 n | '
= HTTGG({L 27 T 7n}7cl—|—1) H be’(i)’lJrl (wj 4 w)

j=1

YI=0
(Vje{1,2,-- ,n})
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We can apply (4.9), (4.33), (4.34) and (4.86) to derive that for any m €
{0,2,--- ,N}

2,1,(n),(b;)™
(4127) ||Vm = 1|| l Nﬁ Nﬁ l/
]
< (coMa”“*Nﬁ)) “nt1=3 g-2m g @S S )Ny
N ) 2
pP1
' Z 207 (e 1) 2| Val’lHH WK Na=t
pP1= (11:1 7 B
n
(35 ooy
=2 \p;=2

, aj,lJrl X
<||VP]' l+171\76€Ng*lr,
a;j=1 B

Asn p2-1zm

Here we used the condition A > 2 to apply (4.86) with ¢ = 1/h. Since
V24 s the sum of Vb G over possible (b; )] 15

(4.128) VR e < 3™ (RH. S of (4.127)).
1,7k Bsﬁﬂ !

We need to use the following inequalities which are derived from (4.46),

(4.47), (4.48), (4.50) and the assumption L > M( I=tng AR Ne),

(4.129)
N

Z 23m(c WelGels Ng) )2 ||V0l+1H1oor < Cang( i=1h; L1 (+1-Np)
m=2

(4.130)
N

S 2mam (e MANDYE VO, < ep T i DN

m=2

)

By inserting (4.101), (4.103), (4.129) into (4.128) and recalling (4.84), h > 1
and [+ 1 — Ng < 0 we have that

27l7(n)
[

B
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<M -9, > L 1) (11— Ng) (n— 1)5501*2
I+1-N n-l
. <ca_2M( ay TOHL=NG) + csgoz_2>
< ag(cofz)",
or by assuming that a > c,
2., _
(4.131) ZHV ”>|| e < espa

Also by combining (4.102), (4.104), (4.130) with (4.128), using the condition
aM™2>23 h>1,1+1— NB < 0 and recalling (4.84) we see that

N
(oo MRNa)Y 5 (1772:6(0) o

mZQoz (co )2 [[Vin Hl,r,hl*Nﬂagﬂdw

< Ca_Q(n_l)Ma(n_n_(z 4, L+1)(z+1_Nﬁ)(n_1)€ﬁM_a

—at (T LD (+1-N n-l
) (cM & 5 nj F+1=Np) + cagM_a>
<epM 2 (ca”?)" T,

or by the condition o > ¢,

(4.132) Za (coM?(=N0)) ZHVQJ’("

m=2

By summing up (4.125), (4.126), (4.131), (4.132) we obtain that

N, N §C€ﬂMiaa72
Bsﬁ r!

77 _2
(4.133) ZHVO 17 s 51 < cega?,

(4.134) Za co MU Nﬂ ZHVQ’I’ iy N l/< cegM 2.
s

Under the assumption M > ¢, the right-hand side of (4.133), (4.134) be-
comes less than a2, 1 respectively. Thus by setting V2! := Yo Y 2k(n)
we conclude that o

V2 e Wr, ii=Nogl 7Tl ),
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In the [-th step we needed the conditions

MZC, (IZCM%, LdZM(EJ 1n; +1)(N5 Nﬂ)’ h>9

for a positive constant ¢ independent of any parameter. Since we have
admitted the results of Lemma 4.5, we have to combine the above conditions
with the conditions (4.42). All the conditions are summarized as in (4.85).
The induction with [ ensures that the claim holds true. [

4.6. The final integration
Here we study properties of an analytic continuation of the function

(1, A) = log ( / eV WWHWW)-AW) gy, («,Z))).

by I=Ng G

Since we have constructed an analytic continuation of the Grassmann poly-
nomial

log / V@B @@+ =AW+ gy @h |
ZlﬁNﬂ+1C

we can use it as the input to the single-scale integration with the covariance
Cnj- Since the constant c5 is not less than ¢4, we can deduce from Lemma
4.5, Lemma 4.7 that under the assumptions of Lemma 4.7,

(4.135)  VOTLNe € Qb7 eg%a™t, Ny),
V02N € R(b71eg?a™, Np),
V1I-LNs ¢ Qb g2t o5t NB Nﬁﬁ a~4, N3),
V1-2.Ns o R’(b‘1c52a 4 cglagﬁ Nﬁﬁ—1c—2a—47Nﬂ)7
V1-3.Ns ¢ S(b‘lcaza 4 Cglggﬁ Nﬁﬁ 1 72 4,Ng),
VAN e Wb ey2a? ,05_1hNﬂ*Nﬂsgﬂ_Nﬁﬂflcfa*‘l,Ng).

Set

2 4 s 13 Ng—Ng Ns—Ng o1 2 _4
i=c5 h'F 55/6 B eyt
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Then let us define the functions V4™ : D(r) x D(f’)2 — C (n € N>qp),
y1-3end D(f)2 — C by

Vend,(n)

1
= HTTQG({I, 2, 7n}7CN5)

n 2

3
H ZVQ—p,Nﬁ(W‘) + ZVl—ILNg(,L/}j) + V2,N5(,¢j)

Jj=1 \p=1 q=1

yl-3end . Tree({1}, CNﬁ)Vl_?)’Nﬂ (wl)

pi=o0

W1=0

We set Vend .= Yoy vend(n) if it converges. We conclude this section by
summarizing properties of V" in a convenient way for applications in the
next section.

LEMMA 4.10. Let c5 be the constant appearing in Lemma 4.7. Then
there exists a constant cg € [c5,00) independent of any other parameters
such that if

: d 1
min{l,2a-1-¥ %, At s co o> CﬁM%
= Cg, = )

(a+2 9, nij+1)(z\7ﬁ—1vﬁ)
M

(4.136) M
LY > (Copa + 1)M h>2,

the following statements hold true.

()

S - - 2
vend e <D(b_lc(;2a_4) X D(cgIL_thH*Nﬁflagﬁ_Nﬁﬁ_1c52a_4) )
nee (D(b_lcO_Qa_4) x D(cglL_thﬁ_Nﬁ_legﬂNﬁﬁ_lca2a_4)2> .
(ii)

h d 1 V—
— sup [Verd(u,0)| < cg(1 + N_l)oz_2M(Z]:1 oy TOWNG=No) p—a.

u€D(b=1cya4)
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(iii) For j € {1,2}

sup
u€D(b~1cy%a—4)

< 6665 Bﬁc (042 _I'CendMa(Nﬁ_NB)) L—¢

9 end

0 1-3,end

PROOF. The claims can be proved in the same way as the proof of [12,
Lemma 3.8]. However, we provide a sketch of the proof for completeness of
the paper. Observe that for any c¢g € [c5,00) the conditions (4.136) imply
(4.85). It follows from the property (4.32) and the property (4.10) of the
kernels of VO=2Ns V1=2Ns that for any z € C

9 0—j,N 3 1—k,N, 2,N
/ezzj:lv SR CORED ) S e (O e e U )ducNB(w)

_ / VTNV I @)V N @)V W) g ()
B

Thus by recalling the formula (4.1),
(4.137) yendm)
1
= —T?“ee({1,27 o, n},Cng)

n

H VO 1,Ng w] Vl_l’Nﬁ(wj)

J=1

FVIT @)+ VEN) |
(VjE{LZ,'" ’n})

We can use (4.7), (4.9), (4.33), (4.34), (4.36), (4.72), (4.75), (4.76), (4.86)
with ¢ = h~1L74(< 1/2) and the condition « > 23 to derive that
||Vend,(1)||1,r,h*1L*df

0—1,N, 1 5N,
<o Plleor +RTLTE YT IV s
5e{1-1,1-3,2}

N
+ Z (coMPNo—No)y'3
m=2
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N - 0-1,N 1 5N,
-(EIIVm roor + 7L 3D [V “nw)
se{1-1,1-3,2}

=¢ <%Q_2M_(z sy O h—lL—don)

d 1 N
< ch YN 4 Do 20 =t o PN p—a
| yend(m) | 1,r,h—1L—dp

N

< (COMa(Nﬁ*Nﬁ))*nJrl(Cocend)nfl Z 23p1 (COMa(NngB))

p1=2
N Ofl,NB —17—d 6,N5
Ao Pl +hTILTE D0 Ve s
N A~
| <Z21”p<coMa<Nﬁ—Nﬁ>>g

§€{1-1,1-3,2}
p=2

n—1
0—1,N, _ 8,N,
-(M Moo + L7 D> % ﬂ||1,r,f>>

se{1-1,1-3,2}

P1
2

end h

< ch YN + 1)a~2L 4 (ceonga2M~2(Ns=Np) [ ~dyn-1

< M2 (Na=Na)(n=1) n=1( =2} (ﬁLdJr hlLd> 7 —d(n-1)

for n € N>9, or under the assumptions of the lemma,

(Z§o1 i +D(Np—Np)

h -
N DAVt peipar < (14 N"Ha M L.
n=1
This implies the claims (i), (ii).
To prove the claim (iii), let us set

_ 1 Ng—Ng 1 —2 _
r::c515ﬂ5 B 1co2a 4

Recalling (4.135), we see that

1
(4.138) %V‘S’Nﬁ (u,0) = %vévNﬁ (u,7e;),
J
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(Vje{1,2}, 6 €{1—-1,1-3}, ue D(r)),

where e1, ey are the canonical basis of C2. We can deduce from (4.7), (4.9),
(4.33), (4.34), (4.36), (4.72), (4.75), (4.137), (4.138) and the assumptions of
the lemma that for j € {1,2}, u € D(r)

‘ ivend(u7 0) _ i‘/’l*&@”d(u? 0)‘

O\ O
1 1-1,Ng(, = 1
< = Tree({1},Cn,)V (u,7e;) (1) o
—i—li ! Tree({1,2 n},Cny,)
7 < (TL — 1)' ) 4y ) »y U Ng

Y VPN (uTe)) (W)

6e{1-1,1-3}
n
: H VO?LNB (u)(wk) wkzo
k=2 (Vke{1,2,-- ,n})
1 1-1,N al Y I=1L,N,
< - <||Vo PP+ > (oM MNe Ny 5 v, B”Lm)
r m=2
1 & q
—a(Ng—Ng)(n—1) n—1
+%ZM =N = e
n=2
N G 1-1,N 1-3,N
— Pl -4 ]
) z 2%P1 (¢ M2 (N8 N,@)) 2 (Ve " Pl + Ve 7 P i)
P1=2
N A n—1
3 2P (oM Ne =N By
p=2
c c = V
< Sa2L70 4 202 Y (eeenaa 2M 2NN [y
r r n=2
<< <oz_2 + Q_4CendM_a(N’6_Nﬂ)) L
T

Thus the claim holds true. OJ
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5. Proof of the Theorem

In this section we complete the proof of Theorem 1.3 and Corollary 1.11.
Since we have developed the multi-scale integration scheme in the previous
section and we plan to apply the convergence result [12, Proposition 4.16],
we have the main general tools at hand. We need to confirm that our actual
covariance appearing in the formulation Lemma 3.6 can be decomposed into
a family of covariances which fit in our framework. The way to complete
the proof of Theorem 1.3 after the confirmation is essentially parallel to the
proof of [12, Theorem 1.3]. Proving Corollary 1.11 requires some additional
arguments which we provide in the end of this section.

From here we assume that

(5.1) h > max{2,c}.

Since we send h to infinity first, we can assume that A is larger than any
other parameter. As we proceed, we will replace (5.1) by stricter conditions.

5.1. Decomposition of the covariance

Let us decompose the covariance characterized in (3.2) into a sum of
scale-dependent covariances. We begin with discretizing the time-variables.
Let My, denote the set of Matsubara frequency with cut-off

{we %(2Z+1) ‘ ] <7rh}.

LEMMA 5.1. For any (ﬁa Py X, 8); (ﬁanaY7t) S {172} x B xT x [Ovﬁ)h;
¢cC,

C(¢)(ppxs,mmyt)

_ Ld Y eifhxoyhtists
ﬂL kel™ weMy,

Y (I — e R @D FE@MN L (5 )b 1 p, (7 — 1)b + 7).
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PROOF. According to [8, Lemma C.3],

1s>0 ls<o > 1 e
68A < = - - 5 o )
o Them) T 5 2 i o)

(Vs e{-B,-B+1/h,---, =1/}, AeC\i(r/B)(2Z +1)).

ws

By diagonalizing E(¢)(k) in (3.2) by a unitary matrix and substituting this
formula we can derive the claimed equality. [

Next let us introduce a cut-off function. Let x be a real-valued function
on R satisfying the following properties.

C=(R),
X(fL‘) =1, (Vo € (—00,8/5]),
x(x) € (0,1),  (Va € (8/5,2)),
x(x) =0, (V& € [2,00)),

g-()ga (¥z € R).

Using the function y, we construct scale-dependent cut-off functions. We
use the parameter M € R>y to control the support size of the cut-off func-
tions. Here we give explicit definitions of the numbers Ng, Ng introduced
in Subsection 4.3. Let

. rogu/ﬁ)

Ng = 15<1(Ng + 1).

Moreover, set

log(h)
Ny, = 2.
h LogMJ *

Then by (5.1) and the condition A > 1/ implied by h € %N,

N5<N5<Nh,
(5.2) M7t < MY < g
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Set A(B,M) := 3~ 'M~No. Tt follows that 1 < A(B,M) < M. With
the function e(-) : R? — R we define the functions x; : R™! — R (I =
N67Nﬁ+17 7Nh) by

X, (w, k) = x (M—N@Aw, M>-1\/ h? sin? (%) + e<k>2> :
xi(w, k) := x (MlA(ﬁ,]W)l\/h2 sin? (#) + e(k)2>

- X (M_(Z_I)A(,B, M)_l\/h2 sin? (%) + e(k)2> :

((w,k) ERxRY 1€ {Ng+1,Ng+2,---,Np}).

Keeping in mind that 24(8, M)M'~t < 3A(B, M)M', we observe that

(5-3)  xn;(w. k)
. 2.2 (w—n/B 2 8 N,
1 if \/h sin (—% )—l—e(k) < SA(B,M)M™s,

€ (0,1) if %A(ﬁ, M))MNs < \/h2 sin? (“’;2”) + e(k)?
< 24(8, M)Ms,

0 if \/h2 sin? (”‘2’;/5) +e(k)2 > 2A(8, M)MNs,
xi(w, k)
0 if \/h2 sin? (“"2’,;“) +e(k)? < SA(B, M)M'!,
_ ) €(0,1] if BA(B, M)M'T! < \/h2 sin? (‘”;7,;/") + e(k)?
< 2A(3, MM,
0 if \/h2 sin? (“;—’}g/ﬁ) +e(k)? > 24(3, M)M!,

(V(w, k) €R 1€ {Ng+1,Ng+2,---,Np}).

Basic properties of x; are summarized as follows.



330 Yohei KASHIMA

LEMMA 5.2. Assume that

min{M?3Ns 1}

(5.4) L>

Then there exists a positive constant ¢ depending only on d, M, x, c, a,
({fj);l:l such that the following statements hold.

(i)
Xi GCOO(Rd+1)7 (VZG {N57Nﬁ+1a"' ,Nh})-
(it)
Nh
z Xl(ka) = 1a (V(w,k) € ]RdJrl)'
I=Npg
(iii)
o\" 75 Ang—nl
% Xi W’ijvj <cM™,
j=1
o \" 4.
<8I§:~> Xt |w, > kv || < é(lisoM ™ + 1M M),
Q j=1
(Vne{l,2,---,d+2}, ie{1,2,--,d}, (w,ky, - kq) € R,
le {Nﬁ,Nﬁ—l—l,ﬂ- ,Nh}).
(iv)
1 sup Z 1¢ < M
P ert o5, X j=n xi(wk)#0 =
1

281D > Y Ly wrakap)£o0 < M min{M, 1},

L
p ;gﬁﬁker*weAAh

(VZ € {Nﬂ,ng +1,--- 7Nh})‘
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(v)
Xy (w, k) =0,  (Vw e Mp\{r/B}, k € RY).

(vi) Letl € {Ng+1,Ng+2,--- , N}, (w, k) € R If

8A(5,M)Ml*1 < \/h2 sin? (M) + e(k)2,

5 2h

then

(5.5) \/<w - @)2 +e(k)? > <§ - g) A3, MM > 0.

Especially if x;(w,k) # 0, (5.5) holds.

Let us prepare a useful inequality beforehand.

LEMMA 5.3. Let f € CY(RY,C) satisfy

0

sup sup
je{1,2,,d} keRd

Then the following inequality holds.

Dy |
r

< L7 '27d®>  sup  |[Vi|ge  sup  sup
Z€{17277d} 36{172’7d} keRd

Apf(p) ~ 73 > ()

s kel*

0

— f(k)|.
109
PrOOF. Observe that

2 d
dkl/ dko - - - dkqf kv
/0 [0,27]d-1 ]z; 7
L—-1

d

27 2T .

— f E /['0 ) ]d,1 de s dk’df fm1V1 + E kJV] ‘
0 i

mi= 7j=2
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L-1 2%(7711-1—1) k1
S / dkl / dk‘g te dkd/ dq1
27Tm1 [0,27‘(‘]‘171 Q%ml

d
9, . .
' a—qlf Qv1+ E kjv;

=2

<L7'2m)™'d  sup  |[Villge  sup  sup
ie{1,2,- d} je{1,2,,d} keRd

a% (k)‘.

By repeating this type of estimate d times we have that

kel

d . 2w d
/[O’Mddkf ;kjvy —<f> > fk)

< L7'@em)™d®  sup  |[Villgpe  sup  sup
i€{1,2,+,d} j€{1,2, ,d} keRd

a%- (k)‘.

By combining this inequality with the equality

d
1 / .

—— dkf | D kv, =D/ dpf(p
(27.‘.)d [0,27] = VAN d . ( )

we obtain the result. OJ

ProoOF oF LEMMA 5.2. (i): The claim follows from the assumptions
e? € C®(RY), x € C*(R) and that x(-) is constant in a neighborhood of
the origin.

(ii): By (1.7) and the assumption (5.1), for any (w,k) € R9*!

\/h2 sin? <w_272/5> +e(k)2 <V2h < §A(ﬂ, MM,

Thus

Np,

> xiw.k) =x (M_NhA(ﬁ, M)‘l\/h2 sin <%> +e(k)2> =1.

I=Ng
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(iii): We use the following formula. See e.g. [10, Lemma C.1] for the
proof. Let 1, s be open sets of R. Let f; € C*(Q;,R) (j = 1,2) and
fl(Ql) C Q9. Then for g € 21, n € N,

r=x0

_ Z n! (m) (f1(x0) H Z %fl(lj)(xo) 12;’;llj=n.

j=1 \lj=1 7"

(5.6 (%) Pafi(@))

Take | € Z satisfying | < Nj,. Define the function g : R“1 — R by

g(w, k) := h?sin (“’_”/ﬂ> e(k)>.

Since g is continuous, g~!(((BA(B, M)M")?, (2A(B, M)M")?)) is an open
set of R4T!. Assume that (w, k) € ¢ (((%A(ﬂ,M)MZ)Q, (2A(B, M)M"H)?)).
Take any i € {1,2,---,d}, n € {1,2,---.,d + 2}; Let us estimate
( ‘Zl)”\/g(w,k)\, \(%)”\/g(w,k)\ where k = Z?:l kiv;. Since h™1 <
M—Nh+2 < M_l+2,

a\" 1(2—n)

Then by applying (5.6) we have that
(5.7)

n

(%) g(w,k>‘3c<d,M>§an” WIS M) g

m=1 j=1 \l;=1

< e(d, M)M!A=),

Note that by (1.8)

o\" 12— 1)
< . ng .
‘(% ) g(w,k)‘ < ¢(M,c) (1n§2mM 4 1n>2n1)

)

Thus we can apply (5.6) to derive that

) vz

(58) ‘ (5;1
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< e(d, M) Y PG

—:

m=1 Jj=1
- 123
Z lljSQHiM N+ 1lj>2nz- 12 ?7':1 lj=n
lj=1
n m n
< c(d,M,c) Z M2AG— H Z " lj=n
m=1 J=1 \l;=1

. <1l>oM2ml_"_il + 1l<01\4l(2m_n7)_Z j=1 1zj>znil(2—n—1i)>

n
<l M,0) D M (11 g 1t )

m=1

< ¢(d, M, c) (1,>0M( LN Vel )

Moreover we can use (5.6), (5.7), (5.8) to deduce that

() xortagan Vo)

< ¢(d, M, x) ZM mlH Z R S

j—l
< e(d, M, x)M ™™,

) MAG, M)

.
ZM—MH Z<11>0M( 1M 4”) Iy, =n

=1
_L _ny
< c(d, M, x, ) (1120M " LM
On the other hand,
if (w,k) € R N\gH(((BA(B, M)M')?, (2A(3, M)M")?)),

(a%)nx(MlA(ﬂ,M)l 9(w,k))
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- (a?; )nx(M"AW:M)‘l 9(w.k)) =

i
Thus by summing up,

(5.9)

a\" _ _ _—
<(9l%> x | M7tAB, M) |g w,ijvj

_L _n
S C(d, M7 X5 C) (1ZZOM K 1l<0M nil) )
(V(w, ky,- - kg) e R e {1,2,---,d}, ne{l,2,---,d+2}).
This implies the claimed results.

(iv): By (5.2), the inequality A(3, M) < M and the support property
of x(-),
1 1 l
5 Sup > ety xwrz = 5 % Vwor/gi<amaner < c(M)M,
h weMp

which is the first inequality. Note that by (5.3), the support property of
() A(B,M) < M and Lemma 5.3

6Ld Z Z 1Xl(w+:ck+p

kel™ weMy,

< Ldz > x@ ' MTAB, M) g(w + 2k + p))

kel weM,,

SDd Z/ dkx (27" M A8, M) /g(w + z,k + p))

UJEM}

+3 3 |Pa / diex (27 M A, M) g+ ok p)

wGM

dz 2 MTAB, M) g(w+ 2,k +p))
kel™*
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1
(d Dda( )] 1)ﬁ ZA:/[ 1h|sin(%(w—%+m))\§22Ml+1
weMp

. </* dk]‘e(k+p)§22Ml+1

+L7' sup sup
je{1,2, d} (w k)eRd+1

a%])c(?_l]\flz‘l(ﬂ,M)_1 g(ka))D-

Moreover by using (1.10), (5.2), (5.4) and a simple variant of (5.9) having
272¢(-) in place of g(-) we have that

5 dz Z 1 1(w+z . k+p)#

kel™ weMy,
Ng
d, M Dy, (¥ M M 1y 4 L7t M "
C( ; » X» 6 d, (Vj)] 1,4 ) (H’lln{ }+ jE{Ill;l;J?S,d} ]>
c(d, M, x, ¢, Dy, (V;)—y,a) M min{ M 1},

which is the second inequality.
(v): Take any w € Mp\{n/B}, k € RL Tt follows from the inequality
|sinz| > 2|z|, (z € [-Z, Z]) and the definition of A(8, M) that

. (w—7/B
— )| > 2.
sin ( T )‘ >
Then we can deduce the claim from (5.3).
(vi): By the assumption, the definition of A(3, M) and the triangle
inequality of the norm || - ||rz,

MNoA(B, M)/ g(w, k) > Bh

AB, MM < \/g( (
2 3
g(g (w_@) +e<k>2> .

< ((w— @)2—%6(@2)5 +%

|
N
&
|
=k
N———
[N}
_|_
2
x
no
N——
V]

T 0(B)
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< ((w - @)2 + e(k)2> L gA(ﬂ, MM,

which implies the result. [

REMARK 5.4. In fact we set up the support of the function y in order
that we can explicitly prove Lemma 5.2 (v),(vi).

We fix ¢ € C in the following unless otherwise stated. Using the cut-
off functions x; (I = Ng,Ng+ 1,---,Np), let us define the covariances
Cltlg — C (l:Nﬁ,Ng—i-l,-'- , Np) by

Ci(ppxs, nyt)
1 ; _ T (
=g 2 2 TR K

kel™ weMy,

; -1
pL (I% _ e_ﬁ(w—@)fzbﬁfﬂ(@(k)) (p—1b+p,(m—1)b+n).

By Lemma 5.1 and Lemma 5.2 (ii),

Np
(5.10) >° Cilppxs,yt) = e 5 C(¢) (ppxs, iyt
I=Njg
(V(ﬁ, Py X, 5)7 (ﬁ7 Yy, t) S IO)

We collect basic properties of Cj in the next lemma. During the proof and in
subsequent arguments we will need to consider a function on ({1,2} x B)? as
a 2bx 2b matrix and measure the function by using the norm ||-||2px 2. Let us
set the rule for this identification. For any j € {1,2,---,2b} there uniquely
exists (p, p) € {1,2} x B such that j = (p—1)b+ p. This defines the bijection
¢ :{1,2,--+,2b} — {1,2} x B. We identify a function f : ({1,2} x B)? — C
with the 2b x 2b matrix (f(¢(i),¢(j)))1<ij<2s- We will apply this rule
to C)(-xs,-yt) : ({1,2} x B)? — C for fixed (x,s),(y,t) € T x [0,8), in
particular.

LEMMA 5.5. Assume that

(5.11) h > max {2,c, sup HE(qﬁ)(k)szxzb} ;

keRd
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min{M3Ns 1} ’

(5.12) L > max{

- nj|T g - iy 0 _
maXje (1o, ap M~V |5 — B 4|z O
min{M@DNs 1, |% - @rl}

Then there exists a positive constant ¢ depending only on d, b, (flj);»lzl, a,
(nj)?zl, ¢, M, x such that the following statements hold true.

(i)
(5.13)  [det((ui, vj)on Ci(Xs, Yi))1<ij<n

< (e(hiNﬁ min{ M3 1}

1 n
+ Li=n, 8" min {M(a—l)Nﬁ7 1, % _ 9(25) })) 7
Ng—1
(5.14) det | (us, vj)com Z Cp(X:,Y;)
p=Ng 1<4,5<n
Ny 9(8) " "
< Ne T
< (cM mln{l, 5 5 ’

(Vm,n € N, u;,v; € C"™ with ||u;||cm, ||villcm < 1,
Xi,ifi e Iy (’i: 1,2,--- ,n), l e {Nﬂ,Ng‘i‘l,"' ,Nh}).

(i)

~ . _ —1->x4 Ly
(5.15) 1Cyl|1,00 §C<1120M Ly LM T )>

(Vl S {Ng—Fl,Ng—i—Q,'-- ,Nh}),
— d _ 1

- LG T 0B
: o < E|= — —2 2 _ 24 ,
(5.16) 1CN, 1,00 < € 5 jl;[l 1+ 5"
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(iii)

A —1-xd L
(5.17) [|Gil < ¢ (1120 F 1o njﬂ) |

(VlE{Ng—i—l,Ng—FQ,--' , Ni}).

Np Ny
(5.18) > Gyl <e sup > Cylpp0sé,mote)| + 1 |
p:l/ (ﬁ,ms,ﬁ),(ﬁm,t,() p:l/

€{1,2}xBx[0,8), x{1,—1}
(Vl, € {Nﬁ—l-l,Nﬂ—}—Z,'-- ;Nh}mZEO)-

REMARK 5.6. Here we need to assume that h is large depending on
¢ as stated in (5.11). This is a notable difference from [12, Lemma 4.10]
where we had no condition depending on ¢. We assume the ¢-dependent
condition (5.11) in order to simplify the proof of the lemma. We can see
from Lemma 3.6 (iii) that this condition does not affect our goal since we
take the limit h — oo before the integration with ¢ in the final formulation.

PROOF OF LEMMA 5.5. Let € [-mh,7h], k € R% 6§ € {1,-1}
and e,(k) be an eigenvalue of E(k). By the condition (5.11), h >

ep(k)2 +[42. Also, |4 (z — @)] < Stapg < 3% By using these
inequalities and (1.6),

(5.19)
[ (1= e he R0 ’

> 12 (1- efwepwwz)? 4 Ah2e— Ve RPHOR 2 (% (:,; ~ @))

2
—1)2

2
21 femorrarsnl (1 — €
L e wEap<n

. (e—Q(ep<k)2 +1¢|%) + 4h%e ™ sin? <% <x B @)»

> (e(k)2 + ¢ + (:c - @)7 .
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It follows from this inequality and (1.9) that
(5.20)

th <I2b N efi(xf@ﬂzbJr%E(@(k))_l

2bx2b

SC((x—9%9)2+e&P+4¢P> ,

k) € [—mh,wh] x R satisfying (z — 0(3)/2)? + e(k)? # 0),

(z,
5.21)
B d T
( i ) (Z kz"z) <c ( n<n; € (Z > + 1nj<n) )
2bx2b =
(V(kr

)ERd n€{12 ’d+2}7j6{1a277d})

N

(

The following inequality will also be useful.

(5.22) ‘M_QQ%Zth<w—WM)

9 °h , (Vw EMh).

(i): Set the Hilbert space H by H := L*({1,2} x B x I'* x Mj). The
inner product (-,-),, of H is defined by

=5 > TR, (faeh).

Ke{1,2}xBxI'* x My,

We are going to apply Gram’s inequality. Let us define féf, ng, [5. 9% €H
(X €Iy, L€ {Ng,Ng+1,---,Ny}) by

fﬁ&pxs (ﬁ? 777 k7 CL))
_ efz'(k,x) —is(w— % )

N

Ng—1
1
1§€{Nﬁ:Nﬂ+17”'7Nh}X£(w7k)2 + 1§=> Z Xj(ka)
J=Ng

9 9 i
L@p=mm) ((w - @) +e(k)® + W) ,
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s (71,71, K, )

_ e—z’(k,x)—is(w—%)

Nsg—1 2
1
Lee Ny Nyt 1, N3 Xe (@, K)2 + 1ems | D xj(w, k)

i=Ng
. ((w _ @)2 T e(k)? + W) %

Y (1 — e F R EOW) T (G- 1)b 4, (5~ )b+ p),
(&€ {Ng,Ng+1,--- ,Np,>}).
Observe that
Ng—1
<fX>gY> =C(X,Y), <f)>(791>/>71 = zj; Cp(X,Y),
p=Ng

(VX,Y €Iy, L € {Ng,Ng+1,--- N, }).

It follows from Lemma 5.2 (iv),(v), (5.3), (5.20), (5.22) that for any X € Iy,
le {Ng—i—l,Ng—i—Q,'“ s N},

(5.23)

1503 gk 13, < e(d, M, x, c,a, (;)%_) min{ M, 1},

1% 130 gy 13
) 1
< 7 o X YeA(E, ) <k>><(g—@) +e<k>2+\¢\2> ,
kel

175113 llox 1%

<c(d, M,x,c,a, () MNﬁ 7d > <<_ - @) +e(k)® + ’¢’2>

kel

N

By (1.7), (1.8), (1.11), the support property of x, A(8, M) < M, (5.9), the
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assumption (5.12) and Lemma 5.3,

(5.24)

S X A, A1) ) ((%—@) +e<k>2+r¢r2)

kel™

[SIES

D=

2
< Da [ (01 (5, 30) () ((% IO e+ |¢|2>

*
oo

+ c(d, (f/j)?zl)L_l sup  sup
j€{1)2’ 7d} keRd

|2 (X(M_N‘*A(ﬁ, M)~ e(k))

ak;
- ((% R r«sr?)_E)‘

. _ T 00
< ¢(Dy) mm{/r* dkle(k)§2MNﬁ+1€(k) U (5)

oo

N
)

0(8)

+ C(dv M7 X, G, (‘Af ')d )L_l

_Ns
. < max M nj E — @
j€{1’27 7d}

-1

m_ 909
B2

3 2

<c(d, M, x,c, (v )j 1,Dg,a )min{M(a_l)Nﬁ,l, Ll

I6] 2
1 Z_MQ (k)2 2
Ldker*<(ﬁ . ) ek +|¢|>

<ou [ a((5-1) e )

+eld, (9)) L7

o ((x 0B . . p)
je(12 dy keRe | OF; ((3_T> +e(k)” + |9 )

4

(SIS

D=

sup sup
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< c(d, Dy, c, (¥5)9= 1)(min{1,%_@ }+L1%_@ >
T 0(8)

C(d, de G, (‘A’J)?Zl) min {17

y

We can apply Gram’s inequality in the Hilbert space C™ ® H together with
(5.23), (5.24) to derive the claimed bounds.

(ii): By Lemma 5.2 (i),(vi) and (5.19) the matrix-valued functions

8 2

i -1
($, k) = Xl(mv k) (IZb - e_ﬁ(x_@ﬂ?b'*'%fj((ﬁ)(k)) : Rd+1 - Mat(Qb,C),
(l:Ng+1,Nﬁ+2,~' ,Nh)

are well-defined and C°°-class. Indeed, the matrix-valued function with [ is
identically zero in the open set

(5.25)
{ z,k) € R ‘ \/h2s1 _77//6> +e(k)? < §A(5,M)Ml‘1}.

By Lemma 5.2 (vi), (5.19) and the periodicity, for (z,k) € R*! satisfying

\/h2 sin? (%) Fe()2 > SAQB MM,

i 2b
)det <I2b - 6_%(%0—@”%“]%)(1{))‘ = <c <§ - g) A(B, M)MH> > 0.

This implies that at any point belonging to the complement of the set (5.25)

the matrix (Iy — e h(””7m)12"+%E(¢’)(k))_1 is well-defined and infinitely

differentiable. Thus the claim follows. For any w € M, w — 6(5)/2 # 0
(mod 27h) and thus the matrix-valued function

1
k — xn,(w, k) (IQb O N E(¢)(k)) : RY — Mat(2b, C)
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is well-defined and C'*°-class. By keeping these basic facts in mind and using
the periodicity we can derive that for n € N, j € {1,2,--- ,d},

(5.26)
< O (56 1>>n Ci(xs,yt)

2

_ % Sy pilkx—y)+i(w=5)(s—1) ﬁ

kel weMy, m=1

e

-1

g ! - _i(p_090B) 1
’ (E) Xl(ra k)h 1 (IZb_ e h( B) )I2b+,11E(¢)(k))

9

T:W+Z :anl Tm
(l S {Ng—f—l,Ng—i—Q,"- ,Nh}),
(5.27)

L o . "
<%<el%<’*w> - 1>> Ci(xs, yt)

1 i(kx—y)+i(w—Z)(s— - L 2%
:WZ Z ot {kx—y)Fi(w—F)( t)H<%/O dpm>

kel weMy, m=1

a\" .
N Hw, k + kv
(81@) Xl( J ])

ol (I% — o =TV I £ B(9) (kethy V) )

)

I%j:Z %:1pm
(l/ € {N/B7N/B =+ 17 e 7Nh})'
For (w,k) € R™! set

B(w,k) :==h (12b _ e—%w—@mw%mw(k)) _

Observe that

(5.28)
a\" .
(6]%) B(w, k)

n m n

<cd) Y [T 2 ) er, 1

2bx2b
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m a lP
: H B(w7 k)il < B(wv k) ||B(wa k)71||2b><2b7
i Ok;
2bx2b
(Vne{1,2,---,d+2}, we [~wh,wh], (ki,---,kq) € R? satisfying
(w—0(8)/2)* +e(k)* #0, j€{0,1,--- ,d}),

where we set k := 2?21 kv, 9/0ky := 8/dw. This inequality follows
from e.g. the formula [10, (C.1)]. By using the assumption h >
supyerd || E(¢)(K)||2px26 and (5.20) we can derive from (5.28) that

(5.29) H <%>nB(w,k)_1

n
<e(d) Y B k) lghkh
2bx2b m=1

_m+1

n 2 2
gc<d>2hm"<(w@) +e<k)2+|¢|2) ,

m=1

(Vn e {1,2,--- ,d+2}, w € [-7wh,7h], k € R? satisfying
(w—0(8)/2)* + e(k)* # 0).
On the other hand, it follows from the inequality

s t
<@> < <@> , (Vke RY, s,t € R>¢ satisfying t < s)

c c
and (5.21) that
-

o\ i
(5.30) H(%) E(¢) (;kv>

d
g C(C) 1n§nj6 (Z 1%7,‘72> + 1nj<n )
i=1
(V(ky,--- k) € RY, myn e {1,2,--,d+ 2} satisfying m < n,
je{1,2,---,d}).

Let us admit that k = Z;l:l kivj, (ki,--- ,kq) € R? in the following argu-
ments. By using (5.30), the assumption (5.11) and the formula

2bx2b

1
9 e _ 1 / dsei P00 g4 (1) 7 B0
5k‘j h 0 8/@
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repeatedly we obtain that

‘ < aA > B(w, k)
Ok; 2bx2b

a m
<e(de) ) ( al%,) E(¢)(k)
J
10-2) =1 cnd(1-2)

< eld;) <<w— @)Ze(k)% W)z J "

(Vje{1,2,---,d}, ne{l,2,--- ,d+2}).

1_n
< ¢(d,c) (1n§nje(k) v+ 1nj<n)
2bx2b

By substituting this inequality and (5.20) into (5.28) we have that

(5.31)

Ok; 2b%2b

oSS (z)

lu=1

: ((w— @)2 +e(k)” + |¢\2>

n m n
=c(do) > T | 2 | o=
l_%j+zzw:11nj<lp%(lp

.((w_@>2+e(k)2+\¢\2>_2 B

= C(d7 C) H (Z) 12 o ilu=n

lu=1

~H AT P (G E) 1, <t 5 (1)
_1)

m lp 1
b pzl(llpﬁnj Tj+1"j<lp 2)

-((w—@>2+e(k>2+\¢\2>_%_ :

(Vne{1,2,--- ,d+2}, we [-7h,wh], k € R? satisfying
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(w - 9(5)/2)2 + 6(1{)2 7é 0, € {1727 U 7d})

By using Lemma 5.2 (iii),(iv),(vi), (5.20), (5.29) we can derive from
(5.26) that for I € {Ng+1,Ng+2,---,Np}

(5.32)
d+2
H % A 1>) Ci(xs, 1)

S EEPI) DN

kel* weMy,
re[—mh,mh]

a d+2
() B
peR?

< e(d, M, x. .2, ()4 M' min{Ar?", 1}

2bx2b

sup

2bx2b

-1
sup (_> Xl(rv p)‘ a.. B(?", p)
OTG[—Tl'h wh] or (97‘ 2% 2b
peR?

< e(d, M, x,¢,a, (V)= )M' min{M?, 1}

d+1 m
0
: (Z sup <‘(6—> Xz(?%p)‘
— 0r€[—7rh7rh] T
Rd

pE

u+1

+ sup

d+2—m 2 —2
S e (- 00Y o))
u=1

re[—mh,mh]

(2)™ xl<r,p>‘ (( IOV e+ W)_% )
peR?

< e(d, M, x,c,a, (V)= )M" min{M?, 1}

d+1 d+2—m
. (Z M—ml Z hu—(d+2—m)M—(u+1)l +M_(d+2)l_l>

< e(d, M, x,c,a, (V)= )M" min{M?, 1}
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d+1
i (Z Mfmle(dJrBfm)l +M(d+3)l>
m=0

< c(d, M, x,c,a, (v;) ) M~ D min{ M2 1},

where we also used that h > M™»~2. By combining Lemma 5.2 (iii),(iv),
(vi), (5.20), (5.31) with (5.27) we deduce that for | € {Ng + 1,Ng +
2, ,Nph,ne{l,2,---,d+ 2},

(5.33)
L - 270 v "
_(672T<X*y:v]'> — 1)> Cl('xsa yt)
H <27r 2bx2b
1
< R sup E g Ly (wk+p)#0
pER? y - weMyp,
8 n
. sup ( k ) xi(w, k) B(w, k)™
wkee-/ﬁgdh ] 2bx2b

<c(d, M, x,c,a, ({zj);l:l)Ml min{ M, [}

8 n
(81;3) Xl(wv k)

| B(w, k)™ fl2x20

nil m n—m
0 0
+ Z sup _ ) xi(w, k) H(—A ) B((,u,k)_1 )
m=0¢ Eefﬁgdh Ok; Ok; 2bx2b

n—1 n—-m k n—m
(L1 _t
: (1;20 (M TR <1m:0+1m21M w) I
k=1

u=1 \l,=

1 k ! 1
Ly ok M2l(_5_Z p=1(lip<n; ij—i_l”jdp 5»)
_ 4y ly=n—m
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1_n— k 1!
L L 1nj<zp2<:;1>>)>

<e(d,M,x,c,a, (A-)? M lmin{Mal,l}
1y _L 11
: <1120< AR Z ( =0+ L1 M %‘) e an)>
+1l<0< +1)Z+ZM it 2"7)>>

_L _n
c(d, M, x,c,a, (¥;)4_) min{ M 1} <1l20M "+ 1eoM nﬁ).

Here we estimated for all n € {1,2,---,d + 2} not only for n = d + 2
so that we can use the result to prove Lemma 5.7 (ii) later. Moreover by
combining Lemma 5.2 (iii),(v), (5.20), (5.31) with (5.27) and using that
M—Ns < MB < TM|G — @rl we have that

(5.34)

L 27 d+1
(st E v - 1) oy (xs. 1)

2bx2b

. 5 d+1 .
™ T
<seml(or) e (502 (50
2bx2b
d+1
c(d) 9 (z ) T _0@|"
=78 (félzgd (812,3) walg) s~ 2

a2 6

keRd
m=0 2bx2b

< e(d, M, x, .2, (¥5)]1)87"

_Ns _d+l
-((hvﬁzoM Yo+ Ing<oM B)

d Ny
B _mp
+ z < m=0 + Lm>1 <1N6>0M N4 IN,<oM T B>>
m=0

-1

m_ 009

8 2
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k=1 u=1 ly=1

d+1-m k d+1—m
) Z H ( Z )lzﬁllude

1 T 0(5) 7172]5:1(1%6";‘%“"]-«;7)
|m/B—6(83)/2[>1 3" 2
™ 9(5) _1_d+r1'j_m+ZI;:1 1”j<lp(%_1)
+ Lix/8-0(8) /21<1 B e
< c(d, M, x,c,a,(¥;)f—)B "
_d+1 _
. 1+ T 0B T 003) L
ﬁ 2 ﬁ 2
d T _ 0B
D)
T 08|
' <1I7r/ﬁ0(ﬁ)/2>1 32
0@
*+ Ln/a-0(0)/21<1 |5~ 5
1\ d+1
. Sm e T 68)| ™
< d 1|7 T
< eld, Myxo 02, (vi)j=)B 7 |5 — =5 5y

By summing up (5.13) for n = 1, (5.32), (5.33), (5.34) we reach that for
le {Ng+1,N3g+2,---  Np},x,y €', s,t €[0,05)n,

(5.35)

[C1(-xs,yt)l26x2
< ¢(d, M, x,¢,a, (¥)f=1) (Liz0 + LicoM®)

d+2
. <1 4 a2 2& (ei%’f(s—t) 3 1>

™

: + 42\ | L, .2« 5
+ Z (1l20Mnj + 1[<0M "j > %(@7’%<X_Y7Vj> _ 1)

J=1

d2\ !
)
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||CN5('X87 'yt)HQbXQb

C(da M7X7C737 (‘A’j)?ZI)ﬁ_l ,8 2

d - N d+1\ 1
: (1 +> (1 +|= - ’) ) .
j=1 b

These inequalities together with the fact h > M™ =2 imply the claimed
bounds.
(iii): By (5.2) and (5.35), for l € {Ng+1,Ng+2,--- , Np},

-1

m_ 009

i(&%’*(xfy,\?j) ~1)

0(B)
2 2

||C'l|| < c(d, M, x,c,a, ({zj)d

=1 b)

I
. <1z20 + LicoM T =iy

d 1y
+ (1 + M"s) <1z>0]\4_l+11<ol\/f(a e 1”ﬂ)>)

. —1-x4_ Ly
C(da M? X, G, a, (Vj)?:la b) (1l>0 + 1l<0M(a =t nj) ) ’

which is (5.17). Note that by (5.2) and (5.35), for any I" € {Ng+ 1, Ng +

, N} N Zso,

Ny, ~ hoo
> Cpf <4b sup >~ Cy(pp0sé, mot¢)
p:l/ (pvpvsvf)v(ﬁﬂ%tvC) p:l/

{1 2} xBx[0,8)nx{1,—1}

c,a, |V d
+ZZ c(d, M, x, ¢,3, (Vj)j-1,0)

j=D
= l,xip Z] 1My|2 (e L<XV]>_1)’d+2

Np,
+e(d, M, x,c,a, (V)1 b) (1 + MNo) Y " MP
p=l
Np
< 4b sup > Co(pp0st, oK)
(ﬁ7p7s7§)7(ﬁ7777t?<) p:l/

€{1,2}xBx[0,8)n x{1,—1}
+ C(d, M)X7C7 (nj)?:17 a, ( )] 1 b)(]- + (1 + MNﬂ)Mil/%
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which gives (5.18). O

Using the covariances C; (I = Ng, Ng+1,---, Nj), we define the covari-
ances C; (I = Ng,Ng+1,---,Ng) as follows.

Np
= Z Cl7
I=N
Cl = Cl, (VlG{Nﬁ,Nﬁ-i—l,-" ,Ng—l}).

The claim (i) of the next lemma states that the covariances C; (I = N, Ng+
1,--- ,Ng) satisfy the conditions assumed in Subsection 4.3. The claim (ii)
of the lemma will be used to prove Corollary 1.11 (iv) in the next subsection.

LEMMA 5.7. Assume that (5.11), (5.12) hold. Then there exists a con-
stant ¢(€ R>1) depending only on d, b, (Vv )J 1 a, (nj);izl, c, M, x such
that the following statements hold true.

(i) C (1= Ng+1,Ng+2,---,Ng) satisfy (4.2) and Cn, satisfies (4.32).

Moreover C; (I = Ng,Ng + 1,---,Ng) satisfy (4.33), (4.34), (4.35)
with

1 d _1
T 0B 0(8)| ™
Cend = ﬁ 2 1;[ 2
(it)
d L Nﬁ
Z 2— Tﬂ' X— y7VJ> — 1‘ Z Cl(‘X87 yt) S 67
=" I=Np+1 2 2b

(Vx,y €T, s,t €10,08)n).

PROOF. (i): The claim concerning (4.2) is clear. Lemma 5.2 (v) ensures
that Cy, satisfies (4.32). Let us derive the determinant bound on C . Let
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us improve the second inequality in Lemma 3.5 (iii). For any z € R>q,

(5.36) <1 +2cos (%@) e P 4 20" E
e (-8 2)')
oo (-2 ) )

Thus by (1.6), (1.11), (5.12) and Lemma 5.3,

N[

% Yo (1 +2cos <%@) e BVEMWPHIP | 6—25\/E<k)2+|¢|2>

kel

C -1 s 2
< (bég Z ((E‘@) +6(k)2> +c(b)

kel™

1 LI C) AR
<Dt [ ((6 D)+ <k>>

-3

N

1
2

Then by this inequality, Lemma 3.5 (iii) and (5.10),

(5.37)
Np,
det ((ui,vj>cm Z CZ(XZ,Y}))
I=Np 1<i,j<n
-1 n
< <c(d, (¥5)f-1,¢,b) (ﬂlmin{l, %— @ }+ 1)) :

(Ym,n € N, u;,v; e C" (i =1,2,--- ,n) with ||w||cm, [[villcm < 1,
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Xi,Y;‘ e Iy (Z =1,2,--- ,n))
We can apply [12, Lemma A.1], which is based on the Cauchy-Binet formula,
together with (5.14), (5.37), the equality CNB = Zl]ihNﬂ Cy— Zl]\f]\?ﬂl C} and
the inequality M™s < MB~! 4+ 1 to derive the claim determinant bound
on CNﬁ' If Ng+1 < Ng—1, then Ng = 0. Thus the claimed determinant
bound on C; (I = Ng+1,Ng+2,--- ,Ng — 1) follows from (5.13). If 5 > 1,
Nz < 0= Ng. Thus by (5.2)

-1 )
ﬁfl min{M(al)Nﬁ 1 %_ M } < ﬁ*lM(afl)N/g < M1+a(Nﬂ—Nﬂ)
5 Lo 9 S < .
g <1,
-1
I} 1min{M(a N 1, %_@ }

-1
} Ma+a(N57]\75)‘

Thus the claimed determinant bound on Cy, follows from (5.13).
Note that Ng > 0 (V3 > 0). Thus by (5.15),

Np, o)
) ) R
ICx, oo < D G <Y M < 26
V =0

The inclusion | € {Ng+1,Ng+2,--- ,]\75 — 1} implies that ]\75 =0 and
| < —1. Thus by (5.15) the claimed bound on ||Cj||1,0c holds true for I €
{Ng+1,Ng+2,--- ,Ng}. The claimed bound on HCNNBHLOO follows from
(5.16). For the same reason as above (5.17) gives the claimed bound on ||C||
for 1 € {Ng+1,N5+2,---,Ng—1}. Since NﬂE{Nﬁ—Fl , N} 0 Zso,
we can derive the claimed bound on ||C (5 18) with the
determinant bound on Cy Ny for n = 1.

(ii): By (5.33) for n = 1 and the inequality a > 1/n; (j = 1,2,--- ,d)
implied by the original assumptions a > 1,n; > 1 (j =1,2,---,d),

L, N
Z 2— Tﬂ X—= yv]> — 1‘ Z Cl('xs, yt)

2bx2b
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which is the claimed bound. [J

REMARK 5.8. We use the condition a > 1 to prove Lemma 5.7 (ii),
which will be used only to prove Corollary 1.11 (iv).

Since we have confirmed that the real covariance derived from the free
Hamiltonian can be decomposed into a family of covariances satisfying the
desired properties, we can apply the general result Lemma 4.10 to analyze
the Grassmann Gaussian integral appearing in the formulation Lemma 3.6.

PROPOSITION 5.9. Let cg be the positive constant appearing in Lemma
4.10. Let ¢y, Cena be those set in Lemma 5.7 (). Fiz M, o € R>q satisfying

min{1,2a—1-> 9_ 1

M i=tnj >cg, a>cgMz.

Then the following statements hold for any h € %N, L € N satisfying (5.11)
and

(5.38)

N 7N .
LSy L) (Np—Np) MaXjeqi,. ap MM
min{M?3Ns 1} ’

_ . 0 _ 0 _
maxje(1,z,..qp M No/i |5 — LA -1 |z 003
min{ M@ DNs 1,7 — 43|13 '

L> max{(cend + 1)§M

(1)
d 1 Ng—
6—8065,3(1_2]\4(2 J=1 75 +DUE—Ng) < ‘/e—V(U)(¢)+W(u)(¢)duC(¢)(¢)’

< Seebfa—?M" j=1 7 TOFp=Np)
S e

)

(Vu € D(b~1cy2a4)).
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(i1)
[ e*V(U)(wHW(U)(WAj(¢)dﬂc(¢) (1) ‘
[ e V@@ @O dpgg () / AT (W)dpc) ()

sup
u€D(b~1cya—4)

< c6sg’5_N'Bﬁc(2) (a2 + cendMa(Nﬁ_Nﬁ)) L~ (vje{1,2}).

PROOF. Observe that under the condition of this proposition the
claims of Lemma 4.10 and Lemma 5.7 hold true. By the definition and
(5.10),

Ns
(5.39) S Culppxs,myt) = ¢ FCTC(¢) (oxs, yt),
I=Ng
(V(p,p,x,5), (7M,n,y,t) € Io).

Thus by the gauge transform v;,xs¢c — efﬁi%swﬁpxsg,

/ e VEWHTW@-AD) gy (1)

_ /ev(u)(w)+W(U)(w)A(¢)duz ny L (0).
1=Ng “1

Thus the function V¢ studied in Lemma 4.10 coincides with the function

(1, A) > log < / e VOV -AWD) gy (¢)>

if |ul, ||Al|c2 are sufficiently small. This claim can be confirmed by an
elementary argument close to a part of the proof of [12, Lemma 4.13] or
the proof of [10, Proposition 6.4 (3)]. However, we provide a sketch for
the readers’ convenience. With the constant ¢ appearing in Lemma 4.10,

set 1 = b lcg?a™t, ! = cg1L‘thﬁ—Nﬂ—legﬁ_Nﬁﬁ_lcaza_‘l. For | €
(N5, Ng+1,--+ , Ng} we define V! € C(D(r) x D7), Auyery V)NC¥(D(r) %
D)2, Aopen V) by V= Z?:l VO0-il +Z?:1 V1=l 4 V2l By Lemma 4.5
and Lemma 4.7,

N
Z ||Vrln||1,r,r” S C(ﬂa Ld7 h7 (nj);'lzla b? M7 a)a_Qa

m=0



The BCS Model with Imaginary Magnetic Field. 11 357

(Vl € {N57N,3 +1,--- 7Nﬂ})

This together with (4.33) implies that there exists a positive constant
(B, L% h, (nj)?zl,b,M,a,co) such that if a« > (8, L%, (nj)?zl,b,M,
a, ),

(5.40) Re / AV W) g0 (1) > 0,

(Vz € D@2), (w,A) € D(r) x D7), 1 € {Ng,Ng+1,--- , Ns}).

Let us fix such a large a. Then for any (u, X) € D(r) ><D(r”)2, l € {Ng, N3+
1,---,Ng}

z — log

( / ezvl(u,)\)(¢+¢1)ducl (¢1)> ,
o (/ Vs (“’)‘)(deCNB (TZJ)>

are analytic in D(2). Then by definition,

(5.41)
1 /d\" SV 1
Vl(u, A (Y) = Z — <E> » log </6 VL (u,X) (w4 )d/iClH(ZDl))
n=1 -
= log /ev”l(“’)‘)(wwl)ducm (wl)) 7
(5.42)
=1 /d\" N
v = Y ()| o ([N e, )

n
N
=k%</?VﬁWMwwm%om),

(V(u, A) € D(r) x D7), 1 € {Ng,Ng+1,-- , N5 —1}).

By (5.40) for [ = Ng,

Je N e (w)

Nﬁ—l
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b}
://ev B(u,)\)(w+¢1+¢2)ducNﬁ (¢2)ducNﬁ_l(¢l)

N u 1
_ /ev B (u, ) (Y41 )d“%ﬁ_ﬁ%ﬁwl)’

(Y(u, A) € D(r) x D)").

Here we used the fact that e°8/(¥) = f(y) (Vf € AV with Refy > 0)
(see e.g. [9, Lemma C.2]) and the division formula of Grassmann Gaussian
integral (see e.g. [4, Proposition I.21]). Assume that | € {Ng + 2, Ng +
3, ,Ng} and

(5.43

) N
/evl 1(“’)‘)(w+w1)ducl,1(¢l) = /eV 5(“’)‘)(¢+wl)dﬂzw Cv(i/’l)’
j=1—1%J

(Y(u, \) € D) x D).

Then by using (5.41), (5.40), (5.43) in this order,
1—-2 u 2
[N e 02)
-1 u 1 2
= //eV () (o 4 )dﬂcl,l(wl)dﬂcl,Q(wz)

N
_ / VPN gy (@,
Z]‘:172cj

(V(u, X) € D(r) x D{r")°).
Thus by induction with [ we have that

N N
/ VPN e, () = / VNG gy ),

z J:Nﬁ CJ

(V(u, A) € D() x D)),

By combining this equality with (5.42) we obtain that

N
Vend(u, A) — 10g (/ 6V ﬁ(u,A)(wl)du 1_\7,8 c(d]l)) ,

% 2ng Ci

(V(u, A) € D(r) x DY),
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which implies the claim.
By the identity theorem and continuity,

(5.44)

/ o=V (W) )+ W (1) (1)~ A(¥) (1) = Vi)

dpc(g)

- - - 2
<V(u, A) € D(b~1cy2a) x D(cglL—thﬁ*Nﬁ*152[57]\[55_1052@_4) > .

By Lemma 4.10 (ii),

d 1 o
(5.45) sup  [Verd(u, 0)] < Segbfa2p = TN,
u€D(b=1cy%a—4)

Then the claim (i) follows from (5.44) and (5.45). By the same gauge trans-
form as above and the division formula of Grassmann Gaussian integral,

_/A(w)duc(@(@b) = —/A(w)du N5 (1/]) — V1—3,end'

% Ly, Ci

Then Lemma 4.10 (iii) and (5.44) ensure the claim (ii). O

5.2. Proof of the main results

Let us move toward the proofs of Theorem 1.3 and Corollary 1.11. In
order to prove the existence of the limit L — oo claimed in Theorem 1.3,
we use the following proposition.

PRrROPOSITION 5.10. Assume that M, o satisfy the same conditions as
in Proposition 5.9 and L (€ N) satisfies (5.38). Then for any non-empty
compact set  of C

lim [ e V@EHW@E g (),

h—o00
he3N

LeN heZN

converge in C(Q ><D(2*1b*1662a*4)) as sequences of function of the variable

(¢, u).
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PROOF. In essence the claim can be proved in the same way as the
proof of [12, Proposition 4.16]. Our model depends on the band index p € B,
while the model in [12] does not. However, the band index makes no essential
difference to prove the claim. We have to comment on one notable difference
from the situation of [12, Proposition 4.16]. Here we do not know whether
the function

o log < / e VO W) gy (Mw))

is analytic in D(b~'cy2a~*), while we knew the analyticity of the function in
the domain of interest in [12, Proposition 4.16]. In the following we outline
the proof of the proposition without using the above-mentioned analyticity.

For ¢ € C we define the function G(¢) : ({1,2} x Bx 's x [0,8))*> — C
by

G(6)(ppxs, Tyt) == ¢ 5 C(¢) (Bpxs, Tyt).

It follows from the gauge transform that

VD@ g0 ()

—

_ / V@@ g o (), (Vu, ¢ € C).

Forn e N, ¢ € @, set

1 d\" —V(u u
an,L,h(¢) = (%) log (/6 V(u) () +W( )(w)dﬂg(¢)(¢)> '

n!

u=0

We consider ay, 1, as a function of ¢ on (). The major part of the proof
of [12, Proposition 4.16] was devoted to proving the uniform convergence of
the function denoted by the same symbol ‘o, 1 5’. Despite the presence of
the band index, the essentially same argument as the corresponding part of
the proof of [12, Proposition 4.16] shows that for any n € N

lim an,rp, lim lim o, pp
h—o0 ” L—00 h—00 7’

2 2
heEN LeN heEN
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converge in C(Q). In place of [12, (4.50)], here we need to use a spatial
decay property of G(¢) such as
C(d7 /67 97 b7 E? Q)

d i 2T (N )
Lt 30y g (€7F ) — 1))+t

(vx,y €T, 5,1 €10,8), $ €Q)
with a positive constant ¢(d, 3,60,b, E, Q) depending only on d, 3, 0, b, E,
Q. The above inequality can be directly derived from (3.2). Let V%(¢) be

the function studied in Lemma 4.10. Here we indicate that it depends on
the variable ¢. Set r := bilca2of4. Take any h € %N satisfying

(5.46) 1G(0) (x5, -yt) [ 26x26 <

(5.47) h > max {Zc, sup sup ||E(¢)(k)||2b><2b} -
P€Q keRd

Since
Vend(g) (u, 0) = log ( / e-V<u><¢>+W<“><¢>dug<¢>w))

for small u (see the proof of Proposition 5.9 for this claim) and u —
vend(4)(u, 0) is analytic in D(r),

(5.48)  VU$)(u,0) =Y anra(@)u”, (Vue D(r/2)),

1 I{ Vend(g)(z,0)
n = - dz————————=  (V ,1)).
an,Ln () 271 J) oyt ) (Ve € (0,1))

Here we should remark that the condition (5.11) was replaced by (5.47). By
(5.45),

(Z o1+ (N—Np)

8cebBa2 M
5.49 n <
(5.49) Zlelg!oc La(9)] < (15 oym2nm
for h € %N satisfying (5.47) and L € N satisfying (5.38). By the convergent

properties of o, 1,1, (5.48), (5.49) and the dominated convergence theorem
in IY(N,C(Q x D(r/2))) we conclude that

hm Vend()(70)7 hm hm vend()(70)
h—oo —00 h—00
he%N LeN he%N
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converge in C(Q X D(%)) Then the equality (5.44) implies the claim. O

Here let us characterize the covariance with zero time-variable so that
it can be used to compute the thermal expectations of our interest.

LEMMA 5.11. For anyx,y €T, p€ B, p,7j € {1,2} with p # 7,
(5.50)

C(¢)(p-x0,p-y0)

— 1 7“’(x_y7k>
=5 2 c

kel
| < e 1 cosh(3y/BR) + [97)
cos(30(3)/2) + cosh(B+/E (k)2 + |¢]?)
. (~1)7sinh(5/E(K) + 9P E(k) )
(cos(80(8)/2) + cosh(B/E(k)? + [92)/E(K)? + [ )

C(¢)(p-x0,7 - y0)
~1

- 2Ld( (7.7)=(1,2) </5+1 =21 9)
. Z 6i(X—y,k) sinh(ﬁ E(k)Q + |¢|2)
kel (cos(B6(8)/2) + cosh(Bv/EX)? + |6[2)VEK)? + [¢2
(5.51)

|C(#)(pp00,77p00)|

> || sinh (6\/8111) 1B )] + ¢!2>
keRd

(2( (ﬁ( >+c08h (ﬁ\/sup |E(k bebJr\(b!?)))_l
: (ﬁg@ IE®)[2,, + |¢\2>

PRrROOF. For any A € Mat(2,C), B € Mat(b,C) let us define A ® B €
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Mat(2b, C) by

Ao B < A(L1)B A(1,2)B ) |

A(2,1)B A(2,2)B

Fix k € R?, ¢ € C. Using the notations used in the spectral decomposition
(1.16), let us set

Bow=( 9% ) G-tz

and observe that
b/
E(¢)(k) =) Ej(¢)(k) ® P;(k).
j=1

Then it follows from (3.2) that

(5.52)

C(9)(ppx0,71y0)
b/

_ % Z ei(k,x—y) Z

kel'* J=1

. -1
(fo+ P EEEO0N) T Py (k)(7~ )b+ p, (7 1+ 1).

The following equalities are essentially same as what we computed in [12,
Lemma 4.20]. For 5,7 € {1,2} with p # 7,

(5.53) <12 n eﬂ(i@m@(@(k)))*l 5.2)

5" 4 cosh(By/e;(K)% + [0
2(cos(B6(B)/2) + cosh(Br/e; (k)% + []2))
. (—1)? sinh(8y/e; ()2 + [8[2)¢; (k)
2(cos(30(8)/2) + cosh(By/e; ()% + [0)/e; (k)2 + [0

( L+ eﬁ(i@m&(w(k)))‘l 5,7)
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~(Lpm=0.29 + Lpm=(21)®) sinh 5m
2(cos(30(3)/2) + cosh( ﬁ\/ej T 1 10P) /e (02 + 9P

By combining (5.52) with (5.53) we can derive (5.50).
Note that
1C(¢)(pp00, ﬁpOO)\
\¢>\ 5 Z sinh(8/¢;(k)? +[¢[*)
rer- 5=1 (cos(B0(8)/2) + cosh(B/e; (k)* + [¢]%)) /e (K)? + [
- Pj(k)(p, p)-

Then the inequality (5.51) follows from that Pj(k)(p,p) > O,
SV, Pi(k)(p,p) = 1 and the fact that

sinh z
- (cos(B6(5)/2) + coshz)x

:[0,00) = R

is strictly monotone decreasing. See e.g. [12, Lemma 4.19] for the proof of
this fact. O

By admitting general lemmas proved in Appendix A we can prove The-
orem 1.3 here.

PRrROOF oF THEOREM 1.3. On the whole, the structure of the proof is
parallel to the proof of [12, Theorem 1.3]. However, we should keep in mind
that in the present case the parameter h must be taken large depending
on ¢ and for this reason we cannot change the order of the limit operation
h — oo and the integral with the variable ¢, while they were interchangeable
in the proof of [12, Theorem 1.3].

Note that
™ 0B8)| . |0 (2m +1)
E‘T‘—iﬁlé% R ‘
If o<1,
-1
ﬂ_lmin{l, %—@ }zw_l.
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By using these properties,

(gl )

> 1551272 + 1g<1 (1 + 7) 2 4% max {1,

™ _608)

I} 2

T 0(8)

3 2

)

g —7m(2m+1)

meZ

2
= 155127 2+ 1gq (1 +m) 72 max{ﬁ2,min } )
Thus by recalling the definition of ¢y stated in Lemma 5.7 we see that there

exists ¢ € (0, 1] depending only on d, b, (f/j)?zl, a, (nj)?zl, c, M, x, a such

that
2
}) < 2_1b_lca2a_4.

In the following we always assume that U € Ry and
| }>

so that the claims of Proposition 5.9, Proposition 5.10 hold with this U
and h € %N, L € N satisfying (5.11), (5.38). By Lemma 3.6 (i) and
Proposition 5.9 (i), for any ¢ € C, L € N satisfying (5.38) and u €
(27 ey 2am 27 b g Pa ]

iy % —m(2m+1)

d (1521 + 15«1 max {ﬁQ, min
m

6
Ul < <1ﬁ>1 + 15<1 max {ﬁ2,mi% % —7m(2m+1)

me

. — B P ?:1 AL +1)(Ng—Ng)
hli)ngo e V(U)(w)+W(u)(¢)duc(¢) ()| > e 8cebBa2 M j
he%N

By Lemma 3.6 (iv) and Proposition 5.10, the real-valued function

h—o00
heZN

=27 e tat 27 g %a Y = R
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is continuous. Since this function takes 1 at © = 0, we conclude that

(€ §o1 75 +D(N5—Ng)

(5:54)  lim eV OPWE dpg g () = emdestPoa M
heZN

for any ¢ € C and L € N satisfying (5.38). Therefore we see from Lemma
3.1, Lemma 3.2 and Lemma 3.6 (iii) that the claim (i) holds.

Let us prove the claim (iii). Assume that v € (0,1]. Let us define the
functions F : R? - R, F, : R? - R by

F(x)
= _]—(1]|((x1 —)? + z3)
/* dk Tr log (cos (ﬂef ) + cosh <g E(k)? + Hx||§@>>
N & dkmog (cos (/692( ) + cosh (ﬁE(k))) ,
Fr(x)
= (@ =)+ 03)
+ % k;* Trlog <cos (%m) + cosh (g E(k)? + ||xu§2)>
- 5 kg* Trlog <cos (5 02(5 )> + cosh (ﬂE(k))) .

Let us recall the definition (1.22) of the matrix-valued function G, .(-).
By making use of the monotone decreasing property of the function

sinh z
- (cos(B8(5)/2) + coshz)x

:[0,00) = R

we can prove that there uniquely exist a(y) € (A, 00), ar(y) € (0,00) such
that

2 27y
(5.55) a(y) | =g + Da / dk Tr Gg.08),001) (K) | = — 1770
U] rs, U
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2 1 2y
ar(7) <—m +7d kg* Tr G,@’,Q(ﬁ),aL('y)(k)> =7

5.56 i = A.
(5.56) Tim, a(7)
~v€(0,1]

Set ar, := (ar(7),0), a := (a(y),0). By computing Hessians one can check

that ay, a are the unique global maximum point of F7,, F' respectively.
Let us define the functions gy, uy r, : R?2 - C by

gr(x) == hlim o V() +W ()
he %OI%

U1,L (X) = lim e—V(?Z))—l—W(L/))Al (¢)dMC(z1+m:2) (w)

h—o00
he 3N

d:uC(:Bl—H':BQ) (w)a

It follows from Lemma 3.6 (i) that g1, u1 , € C(R?). Moreover by Propo-
sition 5.9 (i),(ii) and the determinant bound Lemma 3.5 (iii),

sup sup |gr(x)| < oo, sup sup |ug,z(x)| < oo.
LeN xeR2 LeN xeR?
satisfying (538) satisfying (538)

Furthermore by Proposition 5.10 and Proposition 5.9 (ii) there exists g €
C(R?) such that g7, converges to g locally uniformly as L — oo (L € N) and
if we set

ui (1, x2) := Bg(x1, x2) ngIolo C(x1 + 122)(1p00,2p00), (z1,22 € R),
LeN

uy,, converges to u; locally uniformly as L — oo (L € N). Also, let us
remark that by Proposition 5.9 (i), g(a) # 0. We can check that the as-
sumptions of Lemma A.1 are satisfied. We can apply the lemma to ensure
that

d X a hm —>OOC a 1A00’2A00
(5.57) lim Jre dxePP L0y 1 (x) _ fg(a) L2gs (a(7))(1p00,2p00)
e Jre dxe? TN g (x) 9(a)
=3 lim C(a(7))(1500,2500).
TN
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By Lemma 5.11,

. ) . a(y)D .
(5:58) Jim Cla()(1900,2000) = "2 [ kG500 ()5 ).

LeN °©

By combining (5.56), (5.57), (5.58), Lemma 3.1 with Lemma 3.6 (iii) we
have that

. Tr(e_B(H+iGSZ+F)A1) a(y)Dy .
(5:59) Jim — e =~y / dkG g 0(8),a(7) (k) (D, D),
LeN I
) ) T\I.(ef,@(HJriHSfFF)Al) ADd L
B e o (e R /F dkGip.0.21)(7: P)-
v€(0,1] LeN >

This concludes the proof of the claim (iii).
Let us show the claim (iv). Define the functions f : R — R, f, : R - R

f(z)
2?2 Dy 30(3)

= T + 5 e dk Trlog (cos (T) + cosh (6 E(k)% + x2>>
0(5)

_ %/P dk Tr log (cos (T) + cosh (ﬁE(k))) ,
fi(x)
:L: —’x—;’ + 1d Z Trlog <cos <%@) + cosh (ﬁW))

L kel

L > o (cos (P42) 4 com 309)).

*
oo

We let Ap (€ [0,00)) be the solution to

2 1

(5.60) T T I D TrGgopa, (k) =0,
kel™

if

2 1
—m + ﬁ Z Tr Gﬁ’g(ﬁ)’o(k) > 0.
kel™
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We let Ay, :=0if

2 1
*m + ﬁ Z Tr Gﬁﬁ(ﬁ)p(k) < 0.
kel

The well-definedness of Ay is guaranteed by the parallel consideration to

Lemma 1.2. Note that A, Ay are the unique maximum point of f|r.,,

fLIRs, respectively. -
First let us consider the case that

-1
D
(5.61) U| # (761 /F dkTrGﬂ,g(,g),o(k)> .
It follows that
2 1
_m + ﬁ Z TI'GB,G(ﬁ),O(k) 7£ 0

kel

for sufficiently large L € N. Moreover, %(A) <0. fA=0 AL =0

for sufficiently large L € N. Let us define the functions vy, : R — C,
ugr : R — C by

27
vr(z) ::/ d¢ lim e_V(¢)+W(¢)duC(xe¢g)(w)
0

h—o00
he%N

27
- / dégr(xcos&, xsiné),
0

2
ws,p () == / de tim | e VEEWE A2 e e ().
0

h—o00
he3N

By Lemma 3.6 (i), v, uar, € C(R). By Lemma 3.5 (iii), Proposition 5.9
(i),(ii) and Proposition 5.10, for any r € R

sup sup |vg(z)] < oo, sup sup |ug, 1. (x)] < oo,
LeN zeR LeN zeR
satisfying (538) satisfying (538)
s
lim sup |vp(z) —/ dég(xcos&, xsing)| =0,
LL_E)IO\IO z€[—7r,T] 0
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lim sup

LL_G)I%TO z€[—r,7]

2
_5/ dég xcosg,a:smf)( (5%) (ny)Lhm C(ze')(1p00, 1500)
LeN

. C(ze®)(1p%0,17y0)  C(ze')(1500,2500)
— lim det £\ (o . €N (o I =0.
LL—>I<<IO C(ze')(2700,1700) C(xze™)(27y0,2px0)

€

ua, ()

Also, note that by (5.54)
2w
/ dég(Acosg, Asing) >0
0

Moreover by changing variables we can see that

/ d¢1d¢2€ﬁLde(|¢|)gL(¢1,¢2) :/ dwxeﬂLde(x)vL@%
RQ

0
/ by dpoePL 119D Tim [ e VOV 22(0)duc ()
R IR
:/ dmxeﬁLde(I)uzL(m).
0
In this situation we can apply Lemma A.2. As the result,

Y duwe g y () e vt (B

Lo I dexeSlifi@yp(z)  lmp_evn(A)
LeN

2
_ﬁ/ d€g(Acosé, Asmf)( (p3)=(09) | hm C(Ae®)(1500,1500)
LeN
( C(Ae)(1p%0, 1750)  C(Aei)(1500, 2500) ))

L—oo
LeN

2w
. </ dfg(Acosf,Asinf))
0

=P (1(@&):@&) Jim C(A)(1900,1500)
LeN

-1
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ot det [ C1A)(15%0,1750) - C(A)(1500,2400)
C(A)(2700,1700)  C(A)(27y0,2px0) ) |-

L—oo

LeN

We derived the last equality by recalling Lemma 5.11. Therefore by Lemma
3.1 and Lemma 3.6 (iii),

Tr(e—BH+i0S.)
(5.62) lim L A2)

L—oo Tre A(H+i0S:)
LeN

LeN
C(A)(1p%0,17y0) C(A)(1500,2500)
C(A)(2700,1700)  C(A)(27y0,2px0) )

— lim det<
L—oo
LeN

By using the fact that for any compact set K of C and (p,p), (77,n) €

{1,2} x B

(5.63) lim  sup | lim C(¢)(ppx0,7ny0)| =0
Ix—yllga—0o0 ek LL_éIO\IO

and recalling Lemma 5.11 we observe that

Tr(ePHFOS) )
lim lim Hois
I5~3lipa—oo L—go  Tre=lH+05:)

= Llim C(A)(l[)OO, 2;300)C(A)(27700, 17700) = (R. H. S of (1.21)).
LeN

We can show the property (5.63) by establishing a decay bound such as

(5.46).
Let us assume that
D -1
d
(5.64) U] = (7 /F dk”[&"Gﬁye(ﬁ)’O(k)> |

In this case we apply Lemma A.3 to prove the claim. By (5.54) v;, € C(R,R)
and
(5.65) inf in]%vL(a:) > 0.

LeN ze
satisfying (538)
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Let us define the function uz r, : R — C by

u3,1.(2) =B (5.0, (3))=(5.r () C () (1900, 1500)

C(x)(1p%0,173y0) C(z)(1500,2500)
_Met( C(2)(2700,1700)  C(z) (2730, 2p%0) >

We can see from (5.50) that

[ 22 0)dicen @) = wslo). (e R).
We have to prove that there exists ng € 2N such that
drf dref
20 = 1.2.... -1
dxm (O) 07 (vn € { ) &y » 0 })7 dxno

We define the function ¢ in a neighborhood of the origin by

(5.66) (0) < 0.

q(2)
o ;]2’ 4 Da Dy dkTr log (cos (@) + i g:;'(E(k)? + zQ)n>
n=0 '
— % / dk Trlog (cos (%) +cosh(ﬁE(k))> .

Since cos(6(5)/2) > —1, g is analytic in a neighborhood of the origin.
Moreover ¢(z) = f(z) if x € R. Since 0 = f(0) > f(z) (Vo € R\{0}), ¢
is not identically 0. Thus there exists ng € N such that ¢(™)(0) # 0 and
q(z) = >0, %q(”) (0)z™ in a neighborhood of the origin. Thus f(™0)(0) # 0
and f(z) =320 L (0)z" for any z € R close to 0. Since f takes the

n=ng n!
maximum value 0 at 2 = 0, ng must be even and f(")(0) < 0. Therefore
the claim (5.66) holds true. We can check that all the other conditions
required in Lemma A.3 are satisfied by the functions fr, f, vr, uz . Thus
the lemma ensures that

. I dmxeﬁLde(m)vL(x)u&L(x)
lim sup | ™ dwweP P ey, (2) < hm u3,1,(0)] .
LR 0 L Py

Moreover by Lemma 3.1, Lemma 3.6 (iii), Proposition 5.9 (i),(ii) and (5.65),

Tr( B(H+i0S )Ag)
Tr e—B(H+i0S:)

(5.67) lim sup
L—oo
LeN
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0 1rpeBL L ()
< 1 lim sup fooo e , uz,.()
B | I daae T (2)
< 1 lim sup Jo- dxxeﬂLde(“)vL(x)u&L(x)
Th | T daae P (@)
Lps=tg) Him C(0)(1p00,1500)

— lim C(0)(15%0, 1i50)C(0)(27750, 2%0)|.
Ler
Then we can apply (5.63) to conclude the claimed convergent property.
Let us prove the claim (v). First let us consider the case that (5.61)

holds. Define the function vy, : R — C by

U47L($)
1 o —V()+W () 42
= ﬁ 3 Z A d€ hlLIgo e ) ( )A (w)duc’(a:e’5)(¢)
(p,%),(H,y)EBXT he 2N

By Lemma 3.6 (i), us,;, € C(R). Moreover by Lemma 3.5 (iii), Proposition
5.9 (i),(ii), Proposition 5.10 and Lemma 5.11, for any r € R

sup sup\u4 L(z)| < oo,
LeN zeR
satisfying (538)

lim sup |ugr(x)
LLEI%IO x€[—r,r]
1 21
Y| et [ 2@ eostasing)
($,%),(7,5)eBXT he 2N
= [)7
lim su
LL_éIO\IO 326[—]2,7“]
1 2m 5 .
m X e [ @@ eost.asing)
(p,%),(7,3)eBXT he3N
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_W(%/r

Here we can apply Lemma A.2 to derive that

2m
dkTI‘G579(5)7I(k)> / dfg(.’L’COSf,l‘Sing)‘ =0.
0

*
o0

Joo dazePL L@y, | (z) B iy o0 tia,1(A)

hm , — LeN
oo .
LL_éIO\IO fO dx:reﬂL fL(I)'UL(;[;) thL_G)IO\]o UL(A)

2
BA?
dkTrGﬂ,ow),A(k)) U2

ot (%

which combined with Lemma 3.1, Lemma 3.6 (iii) ensures the claimed result

*
[ee]

in this case.
Next let us assume that (5.64) holds. Define the function usf, : R — C

us5,L(%) = o3 > lim [ A%()dpca) ()-

h— o0
(p:%),(7,3)EBXT he 2N
Then by Lemma 3.5 (iii) and Lemma 5.11, for any r € Rsq

sup sup |us,1,(x)| < oo,
LeNzeR

D
lim sup |usz(z) — B2? <7d/

L—oo pel—ry]

2
dk Tr Gﬁﬁ(ﬁ)@(k)) =0.
LeN

oo

Thus by Lemma A.3

) foo dxzePlifL @)y, (x)us,(x) .
fim sup ; = deweP T @ ()| i us,2(0)) =0,
LZI%]O 0 L LeN

which together with Lemma 3.1, Lemma 3.6 (iii), Proposition 5.9 (i),(ii)
and (5.65) gives that

=0.

1 Z Tr(e AHFOS)A)

LeN (bR ()eBxr L C
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This implies the claim in this case as well.
Finally let us prove the claim (ii). Whether (5.61) holds or not, we can
readily apply Lemma A.4 to derive that

1 o0
(5.68) LIEI;O Td log (/0 d:cz:eﬁLde(x)vL(a:)> = Bf(A).
LeN

On the other hand, by Lemma 3.1, Lemma 3.6 (iii) and Lemma 3.2

1 oo
(5.69) lim Td log (/ dxzeﬁLde(I)vL(m)>
0

L—o0

LeN

1 7|U| Tr ¢~ A(H+0S:)
= lim — log

Lo LA ﬁLd Tre—,B(HoJriGSZ)
LeN
1 .
_ 1 —B(H+i60S.
= Jim 75 log(Tr e~ 41+%5))
LeN

— Dd/ dk Trlog <1 + 2 cos <g> e PPk 4 e_zﬁE(k)> .
%

By coupling (5.68) with (5.69) we obtain the claimed equality.
Since the claim (vi) has been proved right after the statement of Theorem
1.3, the proof of the theorem is complete. []

In the rest of this section we prove Corollary 1.11.

PrROOF OF COROLLARY 1.11. Let ¢; be the constant introduced in
Theorem 1.3. Let us assume that

) 2(cosh(1) — 1)
U — —— .0
< ( i {cl’ cosh(1)Dgbc |’
in the following.

(i): Assume that there exists 8 € R>; with 56/2 ¢ 7(2Z + 1) such that
A >1/3. Then by (1.11),

1 -1 1
D kT KkN<|1l1— —— D k——
o, TGl >—< cosh<1>) o o)

1 \7! i
<|{1- Dgbc.
- < cosh(l)) abe

*
oo
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Thus
2(cosh(1) — 1)

Ul >
vl = cosh(1)Dgbc ’

which contradicts the assumption. Thus the claim (i) holds with

— 2(cosh(1) — 1)
2T Y "cosh(1)Dgbe [

(v): The claim follows from Theorem 1.3 (v) and the claim (i) of this
corollary.
(ii): Let 8 > 1. Observe that

(R. H. S of (1.19))

— ’A_Uj — Dy /F dk Tr(v/E(k)?2 + A2 — E(k))

™

*
oo

- Tr log (1 —+ 2 cos <%@> e_ﬁ\/E(k)Q-f—AQ + e—Qﬁ‘ /E(k)2+A2> .
By a calculation similar to (5.36)

> blog (cmin {l,ﬁz (e(k)2 + <@ - %)2) }) . (Vk € RY).

dk Trlog <1 + 2cos <%@> e BV E(k)2+A2 I o201 /E(k)2+A2) ‘

o (e (425

1+10g,6+/réo dk (e(k)2+ (@ - %>2>

Thus
7
B Jrs,

C(Ddab)
3 (1 +/r dk

c(Da, b) (

IN
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+/cm dk <e(k)2+ <@ - %>2>_%>

< ¢Da,b,c) (1 + log B).

- p
In the last inequality we used (1.11). Then by using the claim (i) of this
corollary we can deduce the first convergent property. The second conver-
gent property can be derived from Lemma 3.2 and the same calculation as
above.

(iii): Observe that the modulus of the right-hand side of (1.20) is less
than or equal to A/|U|. Thus it is clear from the claim (i) of this corollary
that the expectation value converges to zero if we take the limit § — oo after
sending v to 0. Let us prove the claims concerning the limit v X\, 0 after
sending 3 — oo. Recall the equality (5.55). To make clear the dependency

on 3, let us write a(f3,v) instead of a(y). Let us define the function f :
Ry x [-1,1] x Ry — R by

f(z,y,2)

sinh(z+/E(k)? + 22)
“Duf, o <<y + cosh(ay/E0? + ) VB + ) )
2y

+
Ul

For any (z,y) € Ry x [—1, 1] there uniquely exists z(z,y) € Rso such that
f(x,y,2(z,y)) = 0. Set

2
U]

sinh(z\/E(k)? 4 22)
+ Dy /F;o dk Tr <(y—|—cosh(l‘\/E(k)2 + 22))\/E(k)2 + 22) < O},

The set S is an open set of R? and f € C°°(S). If (z,y) € Rxg x (—1,1)
and f(z,y,z(x,y)) = 0, then (x,y,z(z,y)) € S. Observe that for any

S = {(m,y,z) €Roo x (—1,1) x Rsg ‘ —
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(w,y,2) € S Gh(w.y.2) <0, G(z,y,2
(=1,1)

z) < 0. Thus by the implicit function
theorem, z(-, ) C*®(Rsg % an

1)) and
0z 8f(

_g@yz(@y)

9 2@) <0, (V(z,y) € Rygx (—1,1)).

Fix z € Ryg. Since y — z(z,y) : (—1,1) — R<( is monotone decreasing
and bounded from below, lim, » z(x,y) exists in R>o. We can take the
limit y 1 in the equality f(z,y, 2(z,y)) = 0. Then by the uniqueness of
the solution to the equation f(z,1,z) = 0, limy ~ z(z,y) = z(x,1). Since
lim, o SUpye(_11] f(2,9,2) = —00, y = z(z,y) : (=1,1) — Rxp is bounded
from above. Thus lim,\ _; z(x,y) exists in R>¢. Since lim, 1 2z(z,y) >
z(x,1) > 0, we can take the limit y \, —1 in the equality f(x,y, z(z,y)) =0
and by the uniqueness of the solution we conclude that lim,\ 1 2(z,y) =
z(x,—1). Thus we have proved that

(5.70) 0<z(z,1) <z2(z,y) < z(zx,—1), (¥Y(z,y) € Ryo x [-1,1)).
For 6 € {1, -1}, set

2
Ul

sinh(z+v/E(k)? 4 22)
+ Dd/’ﬁ.o dk Tr ((5+cosh(a:\/E(k)2 + 22))/E(k)? + Z2> < 0}.

The set Ss is an open set of R, f(-,6,-) € C*®(Ss) and (x, 2(z,8)) € Ss for
any = € Ryg, 6 € {1, —1}. Bearing in mind the fact that the functions

Ss 1= {($7z) € Ryo X Ryo ‘ -

sinh x sinh x
— R R — R R
fEH—l—i—coshalc >0 R T 1+ coshz >0~

are strictly monotone decreasing, strictly monotone increasing respectively,
we see that g—i(x,—l,z(z,—l)) <0, %($, 1,z(z,1)) > 0, (Vx € Rsp). As
we considered in the proof of Lemma 1.2, the functions

sinh x
II—)W:R>O—>R, (66{1,—1})
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are strictly monotone decreasing. Based on this fact, we can also verify that
g];(;v 6,2(x,0)) < 0, (VY € Rsg, 6 € {1,—1}). Therefore by the implicit
function theorem, z(-,6) € C*°(Rs¢) (6 =1,—1) and

920 1y — 5,1, 2(x, 1)

Oz ™" L@ 1,2(2,0)) ~

0z 9 (2, -1, 2(x,—1))
iz, —1) =Gz T <0, (Vz€Rso),
8$<x ) gﬁ(x, —1,2(z,—1)) (¥ € R>0)

which implies that the functions x — z(z,1) : Rsg — Rsg,  — z(z,—1) :
R-¢ — Ry are strictly monotone increasing, strictly monotone decreasing
respectively. Then by the boundedness (5.70) we see that lim, . z(z, 1),
limy o0 z(z, —1) converge in Rsg. Set 2o0(0) := limy o0 2(x,8) for 6 €
{1, —1}. We can take the limit x — oo in the equality f(z,d, z(z,6)) =0 to
derive that

2

(5.71)  2oo(6) <_W+Dd/ dkTr<\/E 1+ZOO 5)2>>:_\%

for 6 € {1,—1}. Since the solution to this equation is unique in R~q, we
have that zo0(1) = 2oo(—1). We can read from (5.70) that

(0.1) < = (B.cos (P47 ) ) = a50) < (5, -1,
(V3 € Reg with 80/2 ¢ 7(2Z + 1)).

Thus it follows that a(3,y) converges to the unique positive solution of the
equation (5.71) as  — oo with § € Ry satisfying 56/2 ¢ 7(2Z + 1). Set
aco () == 1limy_ _ 5er o with 89 ¢ r(a741) a(B,7v). We can derive from (5.71),
(1.6) and (1.11) that

2’y 2
o) (=i + Date).
ol = ]
which combined with the inequality |U| < 2/(Dgbc) implies that

lim a =0.
Ty (7)
~v€(0,1]
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It follows from (5.59) that

TI'( (H+z€Sz+F)A1)
lim lim
B—o0,B€Rsg L—oo Tre —B(H+46S.+F)
with 22 ¢m(2741) LeN
Dy 1 o
- _a d ).
00(7) \/E P )2(0 1)

Then by recalling (1.11) and sending 7 to 0 we reach the claimed equality.
(iv): By Lemma 5.11, (5.62), (5.67) and (1.17)

TI‘( B(H+16S:,) w* 1/1 w w )
. px1 x| Py L YayT
(5.72) hinjolip Tr e~ A(H+i6S:)
LeN
2
< Lpi=(g) | im C(A)(1500,1500)| + 5

LeN

+ | lim C(A)(15%0, 1750)C/(A) (2750, 2%0)
LRy

Let us prove that

lim sup lim C(A)(-x0,-y0)
B—00,8€R50 LLZIO\IO
with 22 ¢m(2Z:+1) 2bx2b

decays as ||x — ¥||ge — oo. The (-dependent bound of the form (5.46) has
no use here. Remind us the relation (5.39). We have seen a f-independent

decay property of Zl]\f Not1 C; in Lemma 5.7 (ii). Let us establish a spatial
decay property of

lim sup lim lim [|Cn,(A)(-x0, -y0)]2px2b-
o0, fER>y  LraRo ;LHQOI%
with 2% ex(2Z+1) €

Take any j € {1,2,--- ,d}, x,y € I'. Assume that (5.11) with ¢ = A and
(5.12) hold so that we can use Lemma 5.2 and inequalities established in
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the proof of Lemma 5.5. By (5.27) for I’ = Ng, (5.20), (5.31) and Lemma
5.2 (iii),(v)

L ~ o
oo (€7 T ) 1)C, (A) (0, -y0)

C(dv M7 X, G, a, (‘A/j)(]izl)

= 3Id sup > Ly (5 k+p)20

pERd kel
_Ds
N

2bx 2b

W (I — e~ % (B 8Dt 1 E(A) (kp) y -1

2bx2b

L1y, — e R t E B Gerp)) 1 )
kj 2bx2b
S C<da M7 X, ¢, a, (‘7]>(]1:1)

1
2

1 T 0(8)\° 2 . A2
.(Esgﬂgdkg*((E—T) +e(k +p) +A)

In the last inequality we also used (5.2) and the assumption 5 > 1. By (5.3)
and the support property of x(-)

Lyn, (5 ktp)z0 = X2 MY A(B, M) e(k + p)).

By substituting this inequality and using periodicity and (1.11), for any
X,y € I'o

[ =y, 9;)] lim T [Co, (A) (%0, y0) 2
LeN he%N

) 1
< e(d, M,X,C,a,(Vj);ll)(/F* dkm

+% dkx (27 M N5 A(B, M) e(k))
I3
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(G2 s )

< C(da Ma X,G,a, (‘}J);lzl)

1

1 0(3)\> T
. (1 + E - dk]—e(k)§4ﬁ*1 <<% — @) + 6(1{)2 + A2> )

In the second inequality we also used the support property of x(-) and
recalled the definition of A((3,M). By the claim (i) of this corollary, if
e(k) < 487t and Bis large, (7/B8—0(8)/2)*+e(k)?+A% < (72 +17)372 < 1.
Thus by the condition n; > 1 and Lemma 1.2,

|(x —y, V)] lim sup lim lim [|Cn,(A)(-x0,-y0)25x2p

B—00,86Rso  L—20 h—o0

2
with 22 en(2Z+1) LeN hezN

<c(d, M, x,c,a,(¥;)%;)  limsup

ﬁ_’OOaBER>O
with 2% em(2Z:+1)

1 0(8)\> -
. (1 + B - dkle(k)§4ﬂ—1 ((% — @) + 6(k)2 + AQ) )

<e(d, M, x,c,a, (f/j)?zl) 1+  limsup / dk Tr Gz 9 a (k)
B—0o0,8eR50 T
with %GTI’(2Z+1)

. 1
< C(d7 M,X,C,a, (Vj);‘l:l) (1 + m) :

To make clear, let us remark that the inequality

2
dkTr G k) <

*
oo

ensured by Lemma 1.2 and the definition of A was used. By combining the
above inequality with Lemma 5.7 (ii) and recalling (5.39) we have that for
any X,y € '

|(x —y,v;)| limsup lim C'(A)(-x0,-y0)
= 00, fERSy || LR
with %Gﬂ(?Z—Fl) 2bx2b
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Mb<>3b,<ﬁ1mﬂfm( %O.

Now coming back to (5.72) and using the claim (i) of this corollary again,
we conclude that

S2) /%
TI‘( Ao ¢pr1/’px¢wnyiwnyT)
Tr e—B(H+i6S)

lim lim sup lim sup
lI%— YH]Rd_’OO B—00,8eRx0 L—oo
with 20 ¢r(2241) LEN

1 2
< e(d,b, (¥5)§=1,2, (nj)f=1, ¢, M, x) <1+W>

> s

J=1

-2

[I%— YHRd—")O

=0.0

Appendix A. General Lemmas for the Infinite-Volume Limit

Here we state general lemmas which we use to take the infinite-volume
limit of the thermal expectations and the free energy density of our many-
electron systems. We use these lemmas in the proof of Theorem 1.3 in
Subsection 5.2. The first lemma enables us to take the infinite-volume limit
of the thermal expectation of the Cooper pair operator.

LEMMA A.1. Let f, f € C](R%,R), g1, g, ur, u € C(R%,C) (L € N).
Assume that the following conditions hold.

(i) For any non-empty compact set Q of R?

oiti oiti
Al lim su — f(x)| =0,
(A1) LLz%oxeg 8m18:r2fL( ) - al‘718$j2f( )

(Vi,7 € NU{0} satisfying i +j < 2),
i sup [gr () — g(x)| = 0. Jlim sup fuz(x) — u()| = 0.
LL—>oo xE 0 xeQ

eN LeN
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(i)

sup sup |ur(x)| < oo, sup sup |g5(x)| < oo.
LeNxcR2 LeNxecR2

(iii) There exist R, ¢ € Rso such that
(A.2) fr(x) < —c||x||pz, (Vx € R? with ||x||gz > R, L € N).

(iv) There exist ap,a € R? (L € N) such that

(A.3) fular) > fu(x), (vx e R*\{ar}, L €N),
(A4) f(a) > f(x), (vx e R*\{a}),
(A.5) H(f)(a) <0,

g(a) # 0.

Here H(f)(x) denotes the Hessian of f.
Then

i Sz X O0u(0)  u(a)
Lo Jo dxeP g (x)  g(a)

PRrROOF. The proof below is essentially a digest of the part concerning
SSB of the proof of [12, Theorem 1.3]. By basic arguments based on the
assumptions one can prove the following properties.

(A.6) Llim a; = a.

LeN

e There exist 6 € Ry, Ly € N such that for any L € N with L > Ly,
(A.7)
1
fo(x) = fr(ar) + / di(1 —t)(x —ar, H(fL)(t(x —ar) +ar)(x —ar)),
0

(VX & Bé(aL)),
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(A.8)
H(fu)(t0x ~ an) +ar) < JH((@),  (vx € Bafa), ¢ € [0,1]).
(A.9)

Jo(x) = fr(ar) < sup  (f(y) - f(a)) <0, (vx € R*\Bs(ar)).

yER\Bs /2 (a)

DN | =

Here B,(b) denotes {x € R? | [[x — b||gz < 7} for b € R?, r € R~g. In
fact by using (A.1) with i = j =0, (A.2), (A.3), (A.4) we can prove (A.6).
Taylor’s theorem gives (A.7) for any 6 € Ryg and L € N. Then by (A.1)
with (7, 7) satisfying i + 7 = 2, (A.5), (A.6) and the continuity of the 2nd
order derivatives of f we can prove (A.8) with some ¢ and any L € N
satisfying L > Ly for some L. For the fixed ¢ the property (A.6) ensures
that |[a—ar||ge < 6/2 for any L € N satisfying L > Ly, if we take Ly larger
if necessary. This implies that R*\Bs(ar) C R?\Bs/s(a). Then for the fixed
0, by taking Lo larger if necessary we can apply (A.1) with i+ 75 =0, (A.2),
(A.4), (A.6) and the continuity of f to prove (A.9).
For any L € N with L > Ly,

/R ] dxe 11 g (x)

_ eLde(aL)L—d(/ dxele dt(1—t)<x,H(fL)(tL—%x+aL)x>gL(L—gx+aL)

B 4 (0)
L2s

R*\Bs(aL)

It follows from the assumptions, the properties listed above and the domi-
nated convergence theorem that

lim / dxelo dt(l—t)<x,H(fL)(tL—%lx+aL)x>gL(L—gX +ar)
L—o0 B 4 (0)

LeN L%s
R*\Bjs(ar)

ZMM/‘wé@ﬂm@m#Q
R2
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The numerator can be dealt in the same way. As the result,

i Jre dxel” L)y L(x)  u(a) [pe dxe
im =
L—>oo fR2 dxeL fL( ) L(X) a fRQ dxe

Next let us prove a lemma which is used to prove the existence of the
infinite-volume limit of the correlation function in the case that the physical
parameters are not on the phase boundary.

LEMMA A.2. Let fr, f € C?3(R,R), g1, g, ur, u € C(R,C) (L € N).
Assume that the following conditions hold.

(i) For anyr € Ry

di
lim sup () — —f(x)| =0, (Vie{0,1,2}),
L_’OOwE[ 7,7 dx’
LeN
lim sup |ug(z) —wu(z)]=0, lim sup |[gr(z)—g(z)| =0.
LL_E)IO\TOQZE[ 7] LL_éIO\TOxe[ 7]

(i)

sup sup |ur(x)| < oo, sup sup\gL( )| < oo.
LeNzeR LeNzeR

(iii) There exist R, ¢ € Rso such that

fo(z) < —clz|, (Vz € R with || > R, L € N).

(iv) There exist ar,,a € R>g (L € N) such that
frlar) > fr(z), (Vo € Rxo\{ar}, L €N),
fla) > f(x), (Vo € Rxo\{a}),
%fL(aL) = O, (VL S N),

d2
720 <0, g(a) #0.

Moreover if a = 0, there exists Lo € N such that ap, =0 (VL € N with
L>1L).
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Then

(A.10) o oo dwee It up (@) u(a)

i o e g, (2) gl

PrRoOOF. The following argument is a generalization of the part con-
cerning ODLRO of the proof of [12, Theorem 1.3]. The assumptions imply

the following statements.

lim a;, = a.
L—oo
LeN

e There exist 6 € R, L1 € N such that for any L € N with L > L,

1 2
o) = o) + [t =05 TE 0o = )+ ) - an?

(Vz € [ar, — 6,ar, + 9]),

d?fr 1d%f
P — —_ < P .
A2 (t(x —ar) +ar) < 3 da2 (a) <0, (Vzx€lar—96,arL+0], te€]0,1]),

fle) = fula) <3 s () - f(@) <0,

yeR>0\[a—§,a+5]

(Vz € R>o\[ar — 6, a1, + ¢]).
Then let us observe that for L € N satisfying L > 1,50l1 +
1a:() max{Lo, Ll},

> d

/ dzae™ 1@ gp (z)

0

— L%fr(ar)

d
26

L
L2 / d:l?(L_%x + aL)efo1 dt(1-1) 2 (1L S atag)a?
7L% min{ar,6}

. gL(L_%JI + aL)

+ / dxxeLd(fL(m)_fL(aL))gL(x)
Rxo\[ar—6,ar+4]
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_ _L%fr(ar) —4d —d
=e (La>0L™2 + 1o—oL ™)

Lés ;
: / dx(1gs0(L™ 22 4+ ar,) + la=ox)

—L% min{ay,,6}
1 (), r—49
elo A=) f1 (tL QeraL)ngL(Lf%x +ar)

+(lasol +Lomo L) [
Rxo\[ar—6,a1,+6]

dxxeLd(fL(I)_fL(aL))gL(x)) .

By using the above properties we can take the limit L — oo as follows.

L%s .
lim / dx(lgso(L™ 22 4+ ar) + 14—ox)
Ii—él%o —L2 min{ar,,6}

@) -4
. efol dt(1-t)f;™ (tL 2:r+aL):rsz(L—%l:L, + aL)

- (LaoLé + 1asg LY /

daxel’ (L (w)*fL(aL))gL (z)
Rzo\[aL—&QL-i-(s]

= la>0ag(a) / daezf™ @7 11,_9(a) / dre3 @ 4 )
0

—00
The numerator can be decomposed and sent to the limit in the same way.
Consequently,
- dzzel 1@y ()
lim

TR Jo© dzaet Lt gy (z)

ARSI " drre @ @
= | lg>oau(a) dxe? + 1a=ou(a) dxze?
—00 0

-1
| <1a>0a9(a)/ drez /@ 1a:09(a)/ dl’xe%f@)(a)x2>
0

We need to estimate the correlation function in the case that the physical
parameters are on the phase boundary. We need the next lemma for the
purpose.
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LEMMA A.3. Let ng € 2N, fL, f S CnO(R,R), gr € C(R,R), ur,,
u € C(R,C) (L € N). Assume that the following conditions hold.

(i) For any r € Ry

. d"” d"
nglgoxes[lil:r] T fo@) = f(@)| =0, (Vn€{0,1,---,mo}),
LeN ’

lim sup |ur(z)—u(z)|=0.
LL_€>IO\IO z€[—r,r]

(i)

sup sup |ur(x)| < oo, supsuplgr(z)| < co.
LeNzeR LeNzeR

(iii) There exist R, ¢ € Rsg such that
fo(x) < —clz|, (Vz € R with |x| > R, L €N).
(iv) There exist ar,,a € R>g (L € N) such that

fL(CLL) > fL($), (VLL’ (S Rzo\{aL}, L e N),
fla) > f(z), (Vo €Rxo\{a}),

ﬂf(a) =0, (Vne{l,2,---,ng—1}),

dz™
dre
o f(a) <0.
(v)
12k jekorte) > 0
Then
® Jxxelfr(@)
lim sup Jo Ofxe y gr(@)ur (@) < sup |u(x)|.
Loco | Jo dwzet gy (x) zel0,a)

LeN
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PROOF. Since f(")(a) < 0 and £("0)(-) is continuous, there exists &y €
R<g such that

(A.11) o) (z) < ZfM0)(a),  (Va € [a— b, a+ b))

Wl N

Take any ¢ € (0,60). By using the assumptions and (A.11) we can prove
the following statements.

lim a; = a.
L—oo
LeN

e There exists Lg € N such that for any L € N with L > Ly,

no—1

fule) = Y i )~ an)"
n=0

1 _ \no—1
" / dt%fﬁ“(t(x —ap) +ag)(w—ag)™,
(Vz € [ar — 6,ar, + 96]),

£t —ar) +ar) < %f(n())(a) <0, (Vz€lag —bar +6], t €[0,1]),

fol@) — folan) <+ swp (f(y)— f(@) <0,

yeR>o\[a— 5 ,a+2]

(V.CE S Rzo\[aL — 6, ar, + 6])

lim fi"(ar) = fM(@) =0, (Vn€{1,2, ng—1}).
Tef?

Let us observe that

(A.12)

/ dzae L@y, (x)gr(x)
0

_ eLde(aL)L_%
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Lm0 § 4
: / " dx(L "ox +ap)
—L™0 min{ar,6}

ng—1 1 (1- )d (n) n 1 1 no—1 £(no) 7ni n
_ezn 1 L I (ap)x™+/, dtm(l—t) 0L f "0 (tL ™0 xtar)z™0

_d -
cup(L "z +ap)gr(L "z +ar)
4 Lo / dzzel" L@ =)y (), (z) |.
RZO\[U«L*(S,QL+6]

By decomposing the denominator in the same way as above we can derive
that

fooo dxxeLde(z)gL(:v)uL (x)
Jo° dwzel @) gy (2)

L7 s .
< / dx(L ™z +ag)

—L™0 min{ar,6}

d
S HLTRO N ) I di gy (1070 MO (L o avag )0

_d _a
“Jup,(L mx+ap)|gr(L m™x+ar)

Iy / drae @=L |y (2)]gy (2)
R>o\lar—b,ar+4]

Lm0 s 4
- / " de(L "0z +ap)
—L™0 min{ay,6}

1— d_
‘eZ 2011 1L( no f(n (ap)z n_,’_f‘ dt 1)'(1 t)no— 1f(n0)(tL "0 ztag )z

—1
_d
cgp(L mox + aL)>

< sup J|up(x)]
z€[0,6+ar]

+ <L2%62”0 1 L |f(n)( L)|6n
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dzze™" @ =fLan) |y (z) |gL($)>

/R>o\[aL —6,ar,+6]
d

Lmos n —d
| </ dzze’o oy (=)0 1 £ (¢L” M0 aap )am0
0

—1
_d
g, (L "oz + aL)>

< sup  Jur(z)|
z€[0,6+ay]

1
+ sup sup |ur(x)gr(z)] (inf inf gL(as)>
LeNzeR LeNzeR

d
rl

£ e B ) e / dpael @)= frlar))
R>o\larL—6,ar+9]

o —1
L™ 6 i 4
‘ ( / d.%‘xejol dt ("01*1)! (1_t)n071f1(4n0)(ﬂ/ 0 r+aL)1‘n0>
0

Then by using the properties listed in the beginning of the proof we can
deduce that

. Jo? drwet Fr@ g (w)u (x) .
h},n up | = [ dwwelfi@) gy () = Lh—>n;o 21;1; oz ()
TR 0 Ten 2€[0,26+d]

= sup |u(z)].
x€[0,26+a]

The arbitrariness of ¢ implies the result. [

Finally let us show a lemma which ensures the convergence of the free
energy density in the infinite-volume limit when it is applied in practice.

LEMMA A.4. Letng € 2N, fr, f € C"™(R,R), gr € C(R,R), (L € N).
Assume that these functions satisfy the same conditions as in Lemma A.S.
Then

lim % log </0 dxxeLde(x)gL(lU)) = f(a).

L—oo
LeN
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PROOF. Since the assumptions are same, we can transform the integral
inside the logarithm in the same way as in the proof of Lemma A.3. We use
the following equality close to (A.12). For ¢ € {1,—1}

/ dx:veLde(x)gL (z)
0

_ 1 el n(an)te X 10 YA (a8

Lo s ,
. / " dx(L mox+ar)
—L™0 min{ay,6}

n d n n
STt Lm0 ) (ap)en—el £ (ap) 67)

-e n=1 Tn!

_d
efol dt (1=t)m0=1£{"0) (41,7 70 z4ay, )"0

1
(ng—1)!

_d
~gr(L ™z +ar)

d
+ Lno / drx
R>o\lar—6,ar+9]

ez L i (g L)|6”+Ld(fL(:r)—fL(aL))gL(:C)),

By taking € = 1 this implies that

(A.13)

n=
1 L™ 6 4
+ alog / d da(L ™75 + ay)
L —L™0 min{ar,6}
Jq dt

_d
. J0 UG A=D"0 T FMO (LT 0 wag Jamo

_d
gL(L nox + aL)

+/ dxxeLd(fL(J?)—fL(aL))gL(:E)
Rxo\lar—6,a1,+6]
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no—1

< )+ Y 17 )"

n=1
1
+ = log | (6 + ar)supsup gr(y)
L LeNyeR

d

Lm0é n _d

. / de’o gm0 O (LT M0 et )am0
d

—L™0§

+ sup sup gr,(y)

/ dazel (L@ =frar)) |
LeNyeR R>o\lar—6,ar+4]

On the other hand, by taking ¢ = —1

(A.14)
= log /OO d:U:z:eLde(m)gL(x)
L 0
no—1 1 ( ) 1 24
> frlar) = ) m|an (ar)[6”™ + 75 log(L ™)
n=1
—I—ilo inf inf gz (y)
14 %8\ LenyerdtY

d
Lm0 6§ . 4
' / drwe’ di gy (1m0~ £ (kL M0 iL"+aL):L"nO>
0

By using the properties listed in the beginning of the proof of Lemma A.3
we can show that both the right-hand side of (A.13) and that of (A.14)
converge to f(a) as L — oco. O
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Supplementary List of Notations

Parameters and constants
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Notation Description Reference
b number of sites in unit cell Subsection 1.2
C positive constant (> 1) appearing in | Subsection 1.2
bounds on E(-) and e(+)
n; positive numbers (€ N) appearing in | (1.8), (1.9)
(j=1,---,d) | bounds on derivatives of e(-)? and E(-)
a positive constant (> 1) appearing in | (1.10), (1.11)
bounds on integrals of e(+)
Dy | det(V1, Vo, -, vq)| 7t (2m) ¢ Subsection 1.2
0(B) projection of € to [0, %”) beginning of
Section 3
N 4bBhL?, cardinality of I beginning of
Subsection 4.2
]\75 largest scale in IR integration Subsection 4.3
and beginning of
Subsection 5.1
Ng smallest scale in IR integration Subsection 4.3
and beginning of
Subsection 5.1
M parameter to control support size of cut-off | Subsection 4.3
Co positive constant (> 1) appearing in | Subsection 4.3
bounds on scale-dependent covariances
Cend positive constant appearing in ||-||1,cc-norm | (4.34)
bound of covariance of scale Ng
Sets and spaces
Notation Description Reference
r {ijl m;v; | m; € {0,1,---,L — 1}, | Subsection 1.2
(] =12, 7d>}
r* {Z?Zl m;v; | iy € {0,238, 2r — 22} | Subsection 1.2
(] = 1a27"' ’d)}
I's {Z?Zl m;v; | m; €Z (j=1,2,---,d)} Subsection 1.2
r* {Z?Zl kivj | k;j € [0,27] Subsection 1.2
(.7 = 1527"' ad)}
B {1,2,---,b} Subsection 1.2

Mat(n, C)

set of n X n complex matrices

Subsection 1.2
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Iy {1,2} x BxT x [0,08)s

I IO X {1, —1}

vV complex vector space spanned by
{1/’X }X el

AV Grassmann algebra generated by
{Ux}xer

I° {1,2} x Bx T x {0} x {1,-1}

Neven V subspace of AV consisting of even poly-
nomials

C(D,A\.,e, V) | set of continuous maps from D to A_,,, V

C¥(D, Nopern, V) | set of analytic maps from D to A_,., V

Functions and maps

Section 3
Section 3
Section 3

Section 3

Subsection 4.1
Subsection 4.1

Subsection 4.4
Subsection 4.4

Notation Description Reference
v % Z(p,x),(n,y)EBXF w;xTw;xinYlwﬂ}’T Subsection 1.2
rr map from 'y, to T Subsection 1.2
E(") map from R to Mat(b, C), Subsection 1.2
hopping matrix in momentum space
e(") non-negative function on R? Subsection 1.2
Ho # Z(p,x),(n,y)eBxF Zae{m} Y ker+ Subsection 1.2
€ VI B(K) (p, M)V Uy o
S: 3 Z(pm)&BXF(dJZXTd)pr — P Yox1) Subsection 1.2
F V2 (p)eBxT Wt Vx| T Yox1Ypx1) Subsection 1.2
Gay,-(*) map from R? to Mat(b,C) parameterized | (1.22)
by z,y, z
C(o)(") function on ({1,2} x B x I's, x [0,))? Section 3
parameterized by ¢, full covariance
E(9)(+) map from R? to Mat(2b, C) parameterized | Section 3
by ¢
Rs map from ({1,2} x Bx T x +Z)" to I} beginning of
or from ({1,2} x Bx T x +7Z x {1,—1})" | Subsection 4.2
to I™

Other notations

Notation | Description | Reference
\Z] basis of R? Subsection 1.2
(] - 17 : 7d)

V; dual basis of {Vj}?:l

Subsection 1.2
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(] =1 7d)
I, n X n unit matrix beginning of
Subsection 1.3
V() polynomial of AV consisting of quadratic | Section 3
part and quartic part
W () quartic polynomial of AV Section 3
Al () quadratic polynomial of AV Section 3
A2(¥) polynomial of AV consisting of quadratic | Section 3
part and quartic part
A(¥) AL () + Ap A2 () (3.1)
V(u) () same as V' (1), apart from having beginning of
u(€ C) in place of U Subsection 4.4
W (u) (%) same as W (1), apart from having beginning of
u(€ C) in place of U Subsection 4.4
o SUD, ey L (1), 91 beginning of
Subsection 4.4
[y 1, SUD (,, \)e D)D) [f(u, ), g1 beginning of
Subsection 4.5
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