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Dedicated to Professor Takaaki Nishida on the occasion of his 60th birthday

Abstract. This paper is devoted to the analytic semigroup ap-
proach to semilinear parabolic initial boundary value problems arising in
combustion theory which obey a general Arrhenius equation and New-
tonian cooling. We prove a global existence and uniqueness theorem
of positive solutions by using the theory of analytic semigroups in the
topology of uniform convergence. Moreover, we study the asymptotic
stability of maximal and minimal positive solutions when there are mul-
tiple steady-state solutions.

1. Introduction and Results

Let D be a bounded domain of Euclidean space RY, N > 2, with smooth
boundary dD; its closure D = DUJD is an N-dimensional, compact smooth
manifold with boundary. We let

N

N
Au(z) = — Z (9% Z a”(x)g—;(m) + c(x)u(x)
i=1 "

J=1

be a second-order, elliptic differential operator with real coefficients such
that:

(1) a¥(z) € C*(D) with a¥(z) = a’*(x), 1 <i,5 < N, and there exists
a constant ag > 0 such that

N

Z a’(x)&€; > aolé)?, €D, € €RY.
ij=1
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(2) ¢(x) € C®(D) and c(x) > 0 in D.

In this paper we consider the following semilinear parabolic initial
boundary value problem stimulated by solid fuel models in combustion the-
ory: Given a function ug(z) defined in D, find a function u(z,t) in D x[0,T)
such that

(g + A) u=A(14¢eu)™ exp [ﬁ} in D x (0,7),

ot
(1.1) Bu = g—u—i—b(m’)u:O on D x (0,7),
v
u‘t:() = Up in D.

Here:

(I) A > 0 and € > 0 are parameters.

(2) m is a numerical exponent with 0 < m < 1.

(3) b(z') € C*°(OD) and b(z') > 0 on dD.

(4) 0/0v is the conormal derivative associated with the operator A

N
0 o 0
pw = 2 @Gy
7,7=1
where n = (ny,ng,...,ny) is the unit exterior normal to the boundary 0D
(see Figure 1.1).
n
oD Y
Figure 1.1
The nonlinear term
1.2 t):=(1+et)™
(12) o) = (14 et) exp | 1
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describes the temperature dependence of reaction rate for exothermic reac-
tions obeying the Arrhenius equation in circumstances in which heat flow is
purely conductive, and the parameter ¢ is a dimensionless inverse measure
of the Arrhenius activation energy or a dimensionless ambient tempera-
ture. The exponent m is the exponent of the temperature dependence of
the pre-exponential factor in Arrhenius expression; the two cases m = 0 and
m = 1/2 correspond to the simple Arrhenius rate law and the bimolecular
rate law, respectively. The equation

<% +A> u—Af(u) =0 in D x (0,T)
represents heat evolution with reactant consumption ignored, where the
function u(z,t) is a dimensionless temperature excess of a combustible ma-
terial and the parameter A, called the Frank-Kamenetskii parameter in com-
bustion theory, is a dimensionless rate of heat production.

On the other hand, the Robin boundary condition

Bu = g—z +b(zYu =0 on dD x (0,T)

represents the exchange of heat at the surface of the reactant by Newtonian
cooling. The boundary condition B is called the adiabatic condition if
b(z') =0 on OD.

In a reacting material undergoing an exothermic reaction in which reac-
tant consumption is neglected, heat is being produced in accordance with
Arrhenius rate law and Newtonian cooling. Thermal explosions occur when
the reactions produce heat too rapidly for a stable balance between heat
production and heat loss to be preserved. For detailed studies of thermal
explosions, the reader might be referred to Aris [3], Bebernes-Eberly [4],
Boddington-Gray—Wake [6] and Warnatz—Maas—Dibble [24].

This paper will extend substantially the previous work Taira—Umezu
[21].

Our first main result is the following global existence and uniqueness
theorem of positive solutions for the semilinear parabolic problem (1.1):
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THEOREM 1. Letug(x) be an arbitrary non-negative function in C%(D)
which satisfies the boundary condition Bug = 0 on 0D. Then problem (1.1)
has a unique non-negative, global solution

u(z,t) € CH(D x [0,00)) N C*1(D x (0, 00)).

Here CY9(D x [0,00)) denotes the space of continuous functions on D x
[0, 00) which are continuously differentiable with respect to x, and C**(D x
(0,00)) denotes the space of continuously differentiable functions on D x
(0,00), twice with respect to x and once with respect to t.

To study problem (1.1) from the point of view of stability analysis, we
consider the following semilinear elliptic boundary value problem:

v
Av = A(1 m in D
W) v=A1+¢ev)™ exp L +5v} in D,
ov ,
Bv—a—y—i—b(x)fu—o on 0D.

In the simple Arrhenius law case m = 0, problem (1.3) has been studied by
many authors (see Brown-Ibrahim—Shivaji [7], Cohen [8], Cohen-Laetsch
[9], Dancer [10], Pao [12], Parter [13], Tam [22], Wiebers [25], [26] and
Williams-Leggett [27]).
To formulate our existence and multiplicity theorem of positive solutions
of problem (1.3), we introduce a function v(t) by the formula
t t

Y= 5 T Aream epi/aten) 2

It is easy to see that if the parameter € satisfies the condition

(1.4) € > (ﬁ)i

then the function v(t) is increasing for all ¢ > 0. On the other hand, we
find that if the parameter ¢ satisfies the condition

(1.5) 0<e< (M;l——m>27
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then the function v(¢) has a unique local maximum at ¢ = ¢;(¢)

h(e) = 1+ (m—2)e —2(\1/719{;2):; 2(m — 2)e + 1’

and has a unique local minimum at t = to(¢)

L+ (m—2)e+/m2e2+2(m—2)e +1

ta(e) = 2(1 — m)e?

It should be noticed that, by a direct computation, the local maximum
v(t1(e)) is positive near € = 0, while the local minimum v(¢2(¢)) tends to 0
as € | 0. The graph of the function v(¢) is shown in Figure 1.2.

0<e< (1/(1++1—m))?

t
v(t) = m

0 tll(s) tQI(E)

Figure 1.2

For technical reasons, we consider the case where ¢(z) > 0 in D (includ-
ing the case where ¢(x) = 0 in D). This makes it possible to develop our
basic machinery with a minimum of bother and the principal ideas can be
presented concretely and explicitly. In fact, it follows from an application
of Taira [19, Lemma 2.7 and Theorem 0] that the linearized problem

16) { Ap=1 in D,

B¢p=0 ondD,
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has a unique positive solution ¢(x) € C°°(D), and further that the first
eigenvalue A1 of the linearized eigenvalue problem

Ap = in D,
(17) { = pp

Be=0 ondD

is strictly positive: Ay > 0.
Our starting point is the following existence theorem of positive solutions
for the semilinear elliptic problem (1.3) due to Taira [20]:

THEOREM 2. (i) Problem (1.3) has at least one positive solution v(\)
for every A > 0.

(i) If the parameter € satisfies condition (1.4), then problem (1.3) has
a unique positive solution v(X) for every A > 0.

(i1i) Assume that the parameter € satisfies condition (1.5).

(i1i-a) Problem (1.3) has a unique positive solution v(\) for all small A
satisfying the condition

1-m
1 1
(18) O<>\<m+1+\/l+2m(1—m) <1+\/1+2m(1—m)>

1
X exp 1+\/1—|—2m(1—m)——] ™2,
£

(iii-b) There exists a constant A > 0, independent of €, such that problem
(1.3) has a unique positive solution v(\) for all large X greater than A.
(iii-c) There exists a positive constant [3, independent of €, such that if

e > 0 15 so small that
v(ta(e)) _ vlti(e))

B [Plloc

then problem (1.3) has at least three distinct positive solutions vi(A), va(\),
v3(A) for all X satisfying the condition

v(t1(e))
B [6lloc
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Here
[¢]loc = max ¢(x).
xeD

The positive solution sets for ¢ > (1/(1 4+ /1 —m)? and for 0 < ¢ <
(1/(1 + v/1—=m))? in Theorem 1 may be represented respectively as in
Figures 1.3 and 1.4.

e>(1/(1+ V1 —m))?

v
v(A)
A
0

Figure 1.3
. 0<e< (1/(1+V1—m))?
0 V) v(t() g

E B

Figure 1.4
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REMARK 1.1. The difficulty in the proof of Theorem 2 is to construct
a suitable pair of super- and sub-solutions of problem (1.3). In fact, a
simple application of the maximum principle shows that the solutions v(\)
of problem (1.3) satisfy the estimates

(1.9) Ap(z) < v(N) < ACpop(x) on D,

where C,, is a positive constant that is the unique solution of the equation
(see Figure 1.5)

(1.10) Cin = (1+ Ae]|@llocCim)™ €=
We remark that estimates (1.9) are an immediate consequence of Lemma

3.1 with u(z,t) := v(A)(z), v(z,t) := A¢(z) and w(z,t) := AC),P(x), just
as in the proof of Claim 3.1.

y=u
y = (14 Xe[[]locz) e

el/e g

o
5

Figure 1.5
By virtue of Theorem 1, we can define two positive numbers p; and pg
by the formulas

pr = inf {g > 0 : problem (1.3) is uniquely solvable for each A\ > pu},
pup =sup {u > 0: problem (1.3) is uniquely solvable for each 0 < A < u}.
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Then certain physical conclusions may be drawn (cf. Bebernes—Eberly [4],
Warnatz—Maas—Dibble [24]). If the system is in a state corresponding to
a point on the lower branch and if A is slowly increased, then the solution
can be expected to change smoothly until the point p; is reached. Rapid
transition to the upper branch will then presumably occur, corresponding
to ignition. A subsequent slow decrease in A is likewise anticipated to
produce a smooth decrease in burning rate until extinction occurs at the
point pp. It should be emphasized that the minimal positive solution v(\)
is continuous for A > p but is not continuous at A = p, while the maximal
positive solution v(A) is continuous for 0 < A < pug but is not continuous
at A = pp. Here we recall that a positive solution w(A) of problem (1.3) is
said to be mazimal if v(\) < ¥(\) on D for any positive solution v(\) of
problem (1.3). Similarly, a positive solution v(\) of problem (1.3) is said to
be minimal if v(\) < v(A\) on D for any positive solution v()) of problem
(1.3).

The situation may be represented schematically by Figure 1.6 (cf.
Boddington-Gray—Robinson [5, Figure 1]).

v 0<e< (1/(1++vV1—-m))?

()
/

VoY

(M),
0 Oz, A
Figure 1.6

The next theorem asserts that the solution curve is asymptotically stable
for all A > 0 if the Arrhenius activation energy FE is so low that ¢ >

(1/(1 + /1 —=m))%
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THEOREM 3. If the parameter € satisfies condition (1.4), then a posi-
tive solution v(\) of problem (1.3) is asymptotically stable for each A > 0;
more precisely, if ug(x) is a non-negative, initial function in C?(D) which
satisfies the boundary condition Bug = 0 on 0D, then the global solution
u(+,t) of problem (1.1) converges uniformly to the steady-state solution v(\)
ast — +00.

The next theorem asserts that the solution curve is asymptotically stable
for A > 0 sufficiently small and sufficiently large if the Arrhenius activation
energy F is so high that 0 < e < (1/(1 + 1 —m))%

THEOREM 4. Let ug(x) be an arbitrary non-negative, initial function
in C%(D) which satisfies the boundary condition Bug = 0 on 0D. If the
parameter € satisfies condition (1.5), then a solution v(\) of problem (1.3)
is asymptotically stable for all 0 < A < pg and for all A > pug.

The situation of Theorems 3 and 4 may be represented schematically by
Figures 1.7 and 1.8, respectively.

e>(1/(1+ V1 —m))?

Figure 1.7
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u 0<e< (1/(1++vV1—m))?
v(A)

T

:0—--;—--\
=)

--<—-0§

0 HE U1

Figure 1.8

The rest of this paper is organized as follows. In Section 2 we present a
brief description of the theory of analytic semigroups which forms a func-
tional analytic background for the proof of main results. This section is
adapted from Henry [11], Pazy [14] and also Taira [18]. The material in
this section is given for completeness, to minimize the necessity of con-
sulting many references. Section 3 is devoted to the proof of Theorem 1.
In the proof of Theorem 1 we make good use of a generation theorem for
analytic semigroups in the topology of uniform convergence. It should be
emphasized that the nonlinear term f(t) is defined only for ¢ > 0. To ap-
ply the theory of analytic semigroups, we modify the function f(¢) as a
continuously differentiable function f(t) on R. However it follows from an
application of the maximum principle that all positive solutions of the new
equation are solutions of the original equation. Hence, this change intro-
duces no extra positive solutions. In Section 4 we prove Theorems 3 and 4,
by using Sattinger’s stability theorem. Namely, if an initial function in the
parabolic problem (1.1) is a super-solution or a sub-solution of the elliptic
problem (1.3), then it can be shown that the time-dependent solution is
monotone in time and converges to a steady-state solution. This monotone
convergence property gives a close relationship between the stability and
the uniqueness property of a steady-state solution. This is a basic tool for
determining the stability property of the maximal and minimal solutions
when there are multiple steady-state solutions. In Section 5 we prove (local)
asymptotic stability theorems for maximal and minimal positive solutions
of problem (1.3) in terms of the size of initial functions wug(z) with respect
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to the function ¢(x). In Appendix we estimate the important constant
in part (iii-c) of Theorem 2 in terms of the function ¢(z).

I am grateful to the referee for many valuable suggestions which im-
proved the presentation of this paper and for informing me of some addi-
tional references. This research was partially supported by Grant-in-Aid for
General Scientific Research (No. 13440041), Ministry of Education, Culture,
Sports, Science and Technology, Japan.

2. Theory of Analytic Semigroups

This section is devoted to a review of standard topic from the theory of
analytic semigroups which forms a functional analytic background for the
proof of Theorem 1 in Section 3. For more leisurely treatments of analytic
semigroups, the reader is referred to Henry [11], Pazy [14] and Yosida [28].

2.1 Generation of analytic semigroups

Let E be a Banach space over the real number field R or the complex
number field C, and let A : E — E be a densely defined, closed linear
operator with domain D(A). Assume that the operator A satisfies the
following two conditions:

Figure 2.1

(1) The resolvent set of A contains the region X as in Figure 2.1.
(2) There exists a constant M > 0 such that the resolvent R(\) =
(A — XI)~! satisfies the estimate

(2.1) IR <
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The next theorem asserts that the operator A generates an analytic
semigroup in some sector containing the positive real axis (see Henry [11],
Pazy [14], Yosida [28]):

THEOREM 2.1. If the operator A satisfies condition (2.1), then it gen-
erates a semigroup U(z) on E which is analytic in some sector A, = {z =
t+is:z#0,|argz| <w} with 0 < w < 7/2, and enjoys the following three
properties:

(a) The operators AU (z) and %(z) are bounded operators on E for each
z € Ay, and satisfy the relation

dau

a(z) =AU(z), ze€A,.

(b) For each 0 < € < w/2, there exist constants My(e) > 0 and M (g) >
0 such that

()] < Moe), =€ AZ,
Ml(E)

[AU(Z)] < ,
||

z € A%,

where
A¥ ={2€C:2#0,|argz| <w—2}.

(c) For each x € E, we have, as z — 0, z € A%,

U(z)r — x in E.

Now, if 0 < a < 1, we can define the negative fractional power (—A)~¢

of —A by the formula

(—A) = /OOO sT(—A+sI)"lds,

and also the positive fractional power (—A)% by the formula

(—A)® = the inverse of (—A)™“.
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The operator (—A)“ is a closed linear, invertible operator with domain
D((=A)*) > D(A).
We let

E, =the space D((—A)“) endowed with
the graph norm || - || of (—A4)%,

where

lzlla = (2] + [ (=A)2]?) 2, 2 € D((—A)%).

Then we have the following assertions (see Taira [18, Proposition 1.17]):

PROPOSITION 2.2. (i) The space E, is a Banach space.
(ii) The graph norm ||z||o is equivalent to the norm ||(—A)%x||.
(113) If 0 < a < 8 < 1, then we have Eg C E, with continuous injection.

Moreover, the next theorem states some useful relationships between the
fractional powers (—A)%, 0 < a < 1, and the semigroup U (t) (see Henry [11,
Theorem 1.4.3], Pazy [14, Chapter 2, Theorem 6.13], Taira [18, Theorem
1.12)):

THEOREM 2.3. Let 0 < a < 1. For allt > 0, we have the following
four assertions:

(a) U(t) : E — D((—A)%).

() U(t)(=A)*x = (=A)*U(t)z, x € D((=A)").

(¢) (=AU < Mot e

(@) |U(t)e — o] < H=2 1o [[(=A)*z|, @ € D((—A)*).
Here 6 > 0 and M, > 0 are constants independent of t.

2.2 The abstract Cauchy problem

Let f(t) be a function defined on an interval [0,T) taking values in F.
First we consider the following linear Cauchy problem: Given zy € F, find
a function u(t) such that

(2.2) dt

{ d—u:Au(t)+f(t), 0<t<T,
u(0) = xo.
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A function u(t) : [0,T7) — E is called a solution of problem (2.2) if it
satisfies the following three conditions:

(1) u(t) € C([0,T); E) N C*((0,T); E) and u(0) = .

(2) u(t) e D(A) forall 0 <t < T.

(3) & = Au(t) + f(t) forall 0 < t < T.
Here C([0,T"); E') denotes the space of continuous functions on [0,7") taking
values in F, and C'((0,T); E) denotes the space of continuously differen-
tiable functions on (0,7) taking values in F, respectively.

The next theorem gives an explicit formula for the solutions of problem
(2.2) (see Taira [18, Theorem 1.15]):

THEOREM 2.4. If the function f(t) is continuous on the interval [0,T),
then a solution u(t) of problem (2.2), if it exists, is given by the formula

(2.3) u(t) = U(t)zo + /O t Ut —s)f(s)ds, 0<t<T.

The next theorem states that the function u(t), defined by formula (2.3),
is a solution of problem (2.2) (see Henry [11, Theorem 3.2.2], Pazy [14,
Chapter 4, Corollary 3.3], Taira [18, Theorem 1.16]):

THEOREM 2.5. Assume that the function f(t) is locally Hélder contin-
uous on (0,T) and satisfies the condition

/ 1£(s)] ds < oo.
0

Then, for every xg € E, the function u(t), defined by formula (2.3), belongs
to the space C([0,T]; E)YNCY((0,T); E), and is a unique solution of problem

(2.2).

Secondly, we consider the semilinear case. Let F(t,z) be a function
defined on an open subset U of [0,00) X E4, 0 < a < 1, taking values in E.
Given (to,xo) € U, find a function u(t) such that

dt
u(to) = X0.

(2.4) { W Ault) + F(tu(®), to<t<t,
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We assume that F'(t,z) is locally Holder continuous in ¢ and locally Lip-
schitz continuous in x. More precisely, for each point (¢, x) of U, there exist
a neighborhood V of (¢,z) in U, constants L = L(t,z,V) >0and 0 <y <1
such that

(2.5) [ F(s1,91) — F(s2,92)[| < L([s1— 82" + [[y1 — v2lla)
(s51,y1) (52,92) € V.

A function u(t) : [to,t1) — F is called a solution of problem (2.4) if it
satisfies the following three conditions:

(1) u(t) S C([t(),tl); Ea) N Cl((to,tl); E) and u(to) = Xp.
(2) u(t) € D(A) and (t,u(t)) € U for all tg <t < t;.
(3) % = Au(t) + F(t,u(t)) for all tg < t < t;.

Here C([to,t1); Eo) denotes the space of continuous functions on [tg, 1)
taking values in E,, and C!((to,t1); F) denotes the space of continuously
differentiable functions on (g, t1) taking values in E, respectively.

After these preparations, we can state a local existence and uniqueness
theorem for the semilinear Cauchy problem (2.4) (see Henry [11, Theorem
3.3.3], Pazy [14, Chapter 6, Theorem 3.1], Taira [18, Theorem 1.18]):

THEOREM 2.6. Assume that the function F(t,z) satisfies condition
(2.5). Then, for every (tog,xo) € U, there exists a constant t; = t1(tg, zg) >
to such that problem (2.4) has a unique local solution u(t) in the space
Clltostili Ba) N1 € (b0, ): ).

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. To do this, we make
use of the super-sub-solution method (see Pao [12], Sattinger [16]). More
precisely, by constructing a suitable pair of super- and sub-solutions of
problem (1.1) we can show that problem (1.1) has a unique non-negative,
global solution u(z,t) for any non-negative initial function ug(z) € C?(D)
which satisfies the boundary condition Bug = 0 on 9D.



Semilinear Parabolic Problems in Combustion Theory 471

A non-negative function w(x,t) € C19(D x [0,T]) N C*1(D x (0,T)) is
called a super-solution of problem (1.1) if it satisfies the conditions
0 .
54_14 w(z,t) — Af(w) > in D x (0,7),
Bw(z',t) >0 on 0D x [0,T),
(

w(z,0) > up(x) in D.

Similarly, a non-negative function v(z,t) € C*°(D x [0,7]) N C*(D x
(0,T7) is called a sub-solution of problem (1.1) if it satisfies the conditions

<%+A>( H=\(@) <0 inDx(0,T),
<

0 on 8D x [0,T),
v(z,0) < up(zx) in D.

3.1 The comparison principle
We start with the following comparison principle for semilinear parabolic
equations (cf. Amann [2, Lemma 4.4], Sattinger [16, Theorem 2.5.2]):

LEMMA 3.1. Let u(x,t) be a positive solution of the initial boundary
value problem

(; )(,) fw)=0 inDx(0,T),
(1.1) Bu(z',t) = 0 on 0D x [0,T),
u(z,0) = ug(x) in D.

If v(z,t) and w(x,t) are super- and sub-solutions of problem (1.1), respec-
tively, then it follows that

v(z,t) <wu(x,t) <w(x,t) in D x(0,T).

PrROOF. Let
O(x,t) = u(z,t) — w(z,t),
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and assume, to the contrary, that the set

v=A{(x,t) € D x (0,T) : ®(x,t) > 0}
={(z,t) € D x (0,T) : u(x,t) > w(z,t)}

is non-empty.
First we have, by the mean value theorem,

1
<% i A> B(r,1) — A /0 F(Ou(w, t) + (1 — O)w(z, 1)) o - B, 1)
ow

= M(u) = | 57 + Aw(z,t) | = M(f(u) = f(w))
ot

= Af(w) — (%—f + Aw(x,t))

<0 in D x(0,7).

Here we notice that

f’(£>=m€(1+55)“ex[ ¢ }

(14+¢&&)?>™ 1+¢&€

so that

0< f(6) < (m+1+ V1+2m(1 —m)> (1+ V1+2m(1 —m))l_m

X exp E —(1++1+2m(1 —m))] e2m. £>0.

On the other hand, it follows that

B®(2',t) = Bu(2',t) — Bw(z',t) = —Bw(2',t) <0 on dD x (0,T),
®(z,0) <0 in D.

Now we may assume that there exists a point (x(,tg) € 0D x (0,T) such
that

(3.1) d(xy,tp) = sup P(x,t) > 0.
Dx(0,T)
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Thus, applying the boundary point lemma (see [15, Chapter 3, Section 3,
Theorem 7] and Remark (ii)) to our situation we obtain that

0P
(3.2) E(xé,to) > 0.

Hence it follows from assertions (3.1) and (3.2) that

()
B®(x(, ty) = Z—V(xg,tg) + b(x()®(z(, to) > 0, (z(,t0) € OD x (0,T).

However, this contradicts the boundary condition
B®(2',t) <0 on dD x (0,T).
Therefore, we have proved that the set v is empty, that is,
u(z,t) <w(x,t) in D x (0,T).
Similarly, we can prove that
v(z,t) <wu(x,t) in D x(0,T).
The proof of Lemma 3.1 is complete. [

3.3 Generation theorems for analytic semigroups
First we consider the elliptic problem (1.3) in the framework of Sobolev
spaces of LP style. We define the Sobolev space

W?2P(D) =the space of functions v € LP(D) whose derivatives D%v,

|a] <2, in the sense of distributions are in L”(D),

and associate with problem (1.3) an unbounded linear operator A from the
Banach space LP(D) into itself as follows:

(a) The domain of definition D(A) is the space
ov

D(A) = {v € W?P(D) : Bv = 5+ b(z')v = 0} :
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(b) Av = —Av, v € D(A).
Here Av and Bv are taken in the sense of distributions.
Our starting point is the following generation theorem for analytic semi-

groups in the LP topology (see Pazy [14, Chapter 7, Theorem 3.5], Taira
[18, Theorem 2]):

THEOREM 3.2. (i) The resolvent set of A contains the set ¥ = {¢ €
C:Im(¢#0}U{C € R:(>—\} where A1 is the first eigenvalue of the
Robin eigenvalue problem (1.7) (see Figure 3.1 below).

(ii) The operator A generates a semigroup e on the space LP(D) which
is analytic in the half-plane {z =t +is : t > 0}.

X
—A, |0
Figure 3.1

Secondly, we consider the elliptic problem (1.3) in the framework of the
Banach space C(D). We introduce a linear operator 2 from C(D) into itself
as follows:

(a) The domain of definition D(2) is the set

D) = {v € C(D): Ave C(D), Bv = g—:j +b(2' v = O} :

(b) 2lv = —Av, v € D().
Here Av and Bv are taken in the sense of distributions.

Then we have the following generation theorem for analytic semigroups
in the topology of uniform convergence (see Taira [17, Theorem 3)):
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THEOREM 3.3. (i) The resolvent set of A contains the set X.

(ii) The operator A generates a contraction semigroup e** on the space
C(D) which is analytic in the half-plane {z =t +is :t > 0}. Moreover, the
operators e are non-negative and contractive on the space C(D):

(3.3) veCD),0<v<1l onD = 0<eMv<1 onD.

It should be noticed that the following two commutative diagrams hold

true for the operators A, 2 and the semigroups e, e®, respectively:

D(A) —2— L?(D)

l

D) —2— C(D)

L7(D) L7(D)

T l

c(D) -2 (D)

By using the operator A, we can formulate problem (1.1) as an abstract
Cauchy problem in LP(D) in the following form:

dt
u|t:0 = Ug.

du
(3.4) {_‘:AW0+AFW@% 0<t<T,

Here u(t) = u(-,t) and F(u) is the Nemytskii operator defined by the for-

mula
Fu(0) = S(ul 1) = 1+ cule )" exp | 00

If 0 < @ < 1, we can define the negative fractional power (—A)~% of —A
by the formula
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and also the positive fractional power (—.A4)“ by the formula

(—A)* = the inverse of (—A)~*.

We let
X =IP(D), p>N,
and
X, =the domain D((—.A)%) endowed with
the graph norm || - ||o of (—A)%,
where

Iolla = (o] + (=)o) "2, v e D(—A)).

It is worth pointing out here that
1407 N
DA CX,CcC™(D), 0<60<2a———1,
p

if we take p > N and (1/2) + (N/2p) < a < 1 (see Henry [11, Theorem
1.6.1], Pazy [14, Chapter 8, Theorem 4.3], Taira [18, Theorem 7.1]):

Our main result is the following global existence and uniqueness theorem
of positive solutions for the semilinear Cauchy problem (3.4):

THEOREM 3.4. Let p > N and (1/2) + (N/2p) < a < 1. For every
non-negative function ug € D(A), the Cauchy problem (3.4) has a unique
non-negative, global solution u(t) € C([0,00); Xy) N CL((0,00); X).

The proof of Theorem 3.4 will be given in the next subsection due to its
length.

END OF PROOF OF THEOREM 1. By using the Schauder theory for lin-
ear parabolic differential equations just as in the proof of Amann [2, Lemma
4.2], we can prove that every solution u(t) € C([0,00); X,) N CL((0, 00); X)
of problem (3.4) belongs to the space

CHO(D x [0,00)) N C*L(D x (0, 00))

if p> N and (1/2) + (N/2p) <a< 1.0
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3.3 Proof of Theorem 3.4
To apply Theorem 2.6 to the semilinear Cauchy problem (3.4), we modify
the nonlinear term f(¢) as follows:

8 (1+e€)™ exp |2z | i €20,
GE [ré<] -

(14+me)é+1 if € <0.
Namely, we retain f(£) in £ > 0 and continue f(§) into £ < 0 by its tangent

line at £ = 0. It is easy to verify that the function f(£) is continuously
differentiable on the whole line R, and satisfies the condition

0< F) < <m+1+\/1+2m(1—m)> <1+\/1+2m(1—m))17m

X exp E —(1++1+2m(1 - m))] e2m  ¢£cR.

Thus we find that Theorem 2.6 holds true for the modified nonlinear term
F(u(t)) = f(u(t)). However, it follows from an application of the compari-
son principle (see the proof of Claim 3.1) that all positive solutions u(z,t)
of the new equation satisfy the estimates

0 <u(z,t) < ACpo(x) on D x[0,T),

and hence they are solutions of the original equation. Therefore, this change
introduces no extra positive solutions and it will be convenient in our later
work. We state once and for all that throughout the remainder of the paper

we are replacing f(€) by f(€).
Now let ug(z) be an element of D(.A) such that

(3.5) ug(x) >0 in D,

and assume, to the contrary, that

There exists a finite time T such that the interval [0,T) is the mazimal
interval of existence of solutions of problem (1.11).

Step 1. First we prove an a priori estimate for the uniform norm of
the solution u(x,t):
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CraiM 3.1. There exists a constant x > 0 such that

(3.6) [u; D)oo < EA[@llc, O0<t<T.

PROOF. Since the functions ug(x) and ¢(x) belong to the domain D(.A),
we can choose a constant kg > 0 such that

0 <wup(x) < no)\el/gqb(a:) on D.
If we let
k = max{ko, Cm },

where Cf, is the unique solution of equation (1.10), then it follows that the
function

w(z) = rAG(a)

is a super-solution of problem (1.1). Indeed, it suffices to note that

0
A

K
A

v

(14 Aef|dloor)™ €/*
> A (14 Xekg(z))™ exp [

\ Akg(x) }
Af(w) in D x (0,T),

1+ Aerg(x)

and that
Bw =kAB¢p=0 ondD x (0,T).

Therefore, applying Lemma 3.1 with v(z, ) := 0 and w(z,t) := w(z) we
obtain that
0 <u(x,t) < kAp(z) on D x[0,T).

This proves that the function u(t) = u(-,t) satisfies the a priori estimate
(3.6). O

Step II.  Secondly, we prove an a priori estimate for the a-norm of the
solution u(t) = u(-,?):



Semilinear Parabolic Problems in Combustion Theory 479

CraM 3.2. There exists a constant C; = C1(ug,T’) > 0 such that

(3.7) lu)la <C1, 0<t<T.

Proor. It follows from an application of Theorem 2.4 that the solution
u(t) can be expressed in the form

(3.8) u(t) = T(t)uo + )\/0 T(t — s)F(u(s))ds,

Hence we have, by condition (3.5),
(3.9) u(t) >0, 0<t<T.

Indeed, it suffices to note the following three facts:

(1) The operators T'(t), restricted to C(D), are non-negative and con-
tractive (see assertion (3.3)):

(3.10) veC(D), 0<v<1l = 0<T)w<1.
(2) The nonlinear term F'(u) satisfies the condition
(3.11) u>0 = F(u)>0.

(3) By assertions (3.10) and (3.11), we find from the proof of Theorem
2.6 (the method of successive approximation) that

u >0 = u(t):T(t)u0+)\/tT(t—S)F(u(s))dsZO.
0

By applying the closed operator (—A)% to the both sides of formula
(3.8), we obtain from part (b) of Theorem 2.3 that

(—A)u(t) = (—A)*T(t)uo + A/Ot(—A)O‘T(t — 8)F(u(s))ds
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= T(t)(—A)*ug + A /O (—A)°T(t — s)F(u(s)) ds.

Hence we have, by part (c) of Theorem 2.3, assertion (3.9) and estimate
(3.6),

[u()la < [17(8)(=A)uoll

+ A/ I(—A)°T(t — 5)|| - [|E(u(s))]| ds,
< ugl|a + Ac(@)(1 4 eX&||d]|oc)™ RV /Ot ; _13)()( s

l—a

T
< [luplla + Ac(a) (1 + Ak Blloc)™ €/*T—, 0<t<T.

This proves assertion (3.7). O
Step III.  Furthermore, we need the following estimate:

CrLAaM 3.3. Let t; be sufficiently close to T. Then, for any § € (a, 1)
there exists a constant Cy = Cy(ug,t1,T) > 0 such that

(3.12) ||u(t)||5 < 02, t <t<T.

PrROOF. By formula (3.8), we have, for t; <t < T,

lu(®)ll5 < (= AP~ T(t) (—A) o
A / I(—APT(E — )] - 1 £(u(s)) s

1-8

< o0, 8) g ol + Ac(8) - swp IF(u(s))] - 1
76
< 252 ol + 31+ el e T

This proves Claim 3.3. [J

Step IV. Finally, we can prove the following claim:
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Cram 3.4. The limit limy7 u(t) exists in the space A,.
PROOF. Since we have, for t; <7 <t <T,
t
u(t) —u(r) =Tt —1)u(t) + )x/ T(t—s)F(u(s))ds — u(r)
t
=[Tt—71)—T0)]u(r)+ )\/ T(t — s)F(u(s)) ds,
it follows that
(3.13) Ju(t) = w(T)lla < [(=A)* [T(t —7) = T(0)] u(7)]
+ )\/ I(— ATt — 5)F(uls))]| ds.

However, for « < f <1 and 0 < v < § — a, applying part (d) of Theorem
2.3 we obtain that

Hence we have

(3.14) I(=A)* [Tt —7) = T(0)] u(r)]]
< (A [T = 7) = TO)] (= A - I (=A) ulr)]
< e, By )t = [ lu(T)]]5-

On the other hand, it follows from part (c) of Theorem 2.3 and estimate
(3.6) that

(3.15) / I(—APT(t — 5)F(u(s))]| ds

t
< cla)(1 + exnlol)m e [ s

= A (4 amfley e e - )
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Thus, carrying inequalities (3.14) and (3.15) into the right-hand side of
inequality (3.13) we obtain from estimate (3.12) that, for t; <7 <t < T,

(3.16)  [u(t) —u(r)lla < cla,B,7) - [t = 7|7+ sup_|lu(s)[/g
t1<s<T

T S e
< C(a,ﬂa’Y)Cﬂt - 7_|’Y
c(a)
11—«

+A (14 eXs||p]loc)™ €'/ |t — 717

Therefore, we find from estimate (3.16) that the limit lims7 u(t) exists in
the Banach space X,,. [J

Step V. By Claim 3.4, we can apply Theorem 2.6 to extend the solution
u(t) beyond the maximal time 7T'. This contradiction proves Theorem 3.4. [J

4. Proof of Theorems 3 and 4

In this section we prove Theorems 3 and 4, by using Sattinger’s stability
theorem. The idea of proof is stated as follows. If the initial function wug(x)
in the parabolic problem (1.1) is a super-solution or a sub-solution of the
corresponding elliptic problem (1.3), then it can be shown that the time-
dependent solution u(-,t) is monotone in ¢ and converges to a steady-state
solution v(\). This monotone convergence property gives a close relation-
ship between the stability and the uniqueness property of positive solutions
of the elliptic problem (1.3).

Now we formulate the stability of solutions of problem (1.3) in terms of
super-solutions and sub-solutions.

A non-negative function ¢(z) € C?(D) is called a super-solution of prob-
lem (1.3) if it satisfies the conditions

{ Ap —Af(p) >0 in D,
By >0 on 0D.

Similarly, a non-negative function ¢(z) € C?(D) is called a sub-solution of
problem (1.3) if it satisfies the conditions

A= Af() <0 in D,
{ By <0 on 0D.
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The next theorem is a basic tool for determining the stability property
of the maximal and minimal solutions when there are multiple steady-state
solutions (see Pao [12, Chapter 5, Theorem 4.4], Sattinger [16, Theorem
2.6.2]):

THEOREM 4.1. Let v(x) be a positive solution of problem (1.3) and let
o(z), ¥(x) be respectively sub- and super-solutions of problem (1.3) such
that

P(x) <v(x) < p(x) on D.

Then all solutions u(xz,t) of the parabolic problem (1.1) with initial values
ug € [¢, p| converge uniformly to v(x) ast — 400 if and only if the unique-
ness of positive solutions of the elliptic problem (1.3) holds true in the order
interval

[¥,¢] = {v € C*(D) : 9(x) < v(x) < p(x) on D}.

4.1 Proof of Theorem 3
Let ug(z) be an arbitrary, non-negative function in the domain D(.A).
Then, just as in the proof of Claim 3.1 we can construct a super-solution
AC¢(x) such that
0 <ugp(z) < AC¢(z) on D,

if we take C' > C,,, where C,, is the unique solution of equation (1.10). It
is clear that the function v (z) = 0 is a sub-solution of problem (1.3).

Therefore, Theorem 3 follows from an application of Theorem 4.1 with
v(z) == v(x), ¥(z) := 0 and ¢(x) := AC¢(x). Indeed, it suffices to note
that the uniqueness of positive solutions of problem (1.3) holds true for
each X\ > 0 if the parameter ¢ satisfies condition (1.4). O

4.2 Proof of Theorem 4

If either 0 < A < pg or A > puy, then, by the comparison principle (see
Lemma 3.1) it follows that a unique positive solution v(x) of problem (1.3)
satisfies the inequalities

0<wv(x) <ACpno(z) on D.

Theorem 4 is an immediate consequence of Theorem 4.1 with v(z) := v(x),
Y(x) =0 and p(z) := ACp, ¢(z). O
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5. Concluding Remarks

The purpose of this section is to study the (local) asymptotic stability
of maximal and minimal positive solutions of problem (1.3) in terms of the
size of initial values ug(x) of problem (1.1) with respect to the solution ¢(x)
of problem (1.6).

5.1 Stability theorems for maximal and minimal positive
solutions

The stability of positive solutions of problem (1.3) with m = 0 was
studied by Wiebers [25]. He considered the linearized eigenvalue problem
at a positive solution v(A) of problem (1.3) with m =0

Bw = w +b(z"Yw=0 on dD,

{ Aw — Af'(v(\))w = pw in D,
Oov

and proved that the first eigenvalue p(v(\)) is positive if v(\) is unique (see
[25, Theorems 2.6 and 2.9]), and further that the first eigenvalues 1 (T(\))
and py(v(\)) are both non-negative (see [25, Corollary 1.4 and Proposition
1.2)).

Our first result asserts the (local) asymptotic stability of minimal posi-
tive solutions of problem (1.3) in the case where A is sufficiently small (see
Pao [12, Chapter 5, Theorem 4.3)):

THEOREM 5. Let 0 < e < (1/(1++/1—m))2. Then the minimal posi-
tive solution v(\) of problem (1.3) is asymptotically stable if A is so small
that

(5.1) 0< <o)
maxz ¢

More precisely, any global solution u(x,t) of problem (1.1) with an initial
value up(x) € D(A), which satisfies the condition

converges uniformly to the minimal steady-state solution v(\) as t — 4o00.
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Secondly, we study the asymptotic stability of maximal positive solutions
of problem (1.3) in the case where X is sufficiently large. To do this, we
notice that

min ¢ > 0.
D

Indeed, it follows from a simple application of the strong maximum principle
and the boundary point lemma (see Taira [19, Lemma 2.7]) that the solution
#(x) of the Robin problem (1.6) is strictly positive on D.

Then we have the following (local) asymptotic stability of maximal pos-
itive solutions of problem (1.3) for A sufficiently large (cf. Pao [12, Chapter

5, Theorem 4.3]):

THEOREM 6. 0 < ¢ < (1/(1+ /1 —m))%. Then the mazimal positive
solution U(X) of problem (1.3) is asymptotically stable if \ is so large that

v(t2(e))

> .
A ming ¢

More precisely, any global solution u(xz,t) of problem (1.1) with an initial
value ug(x) € D(A), which satisfies the condition

ta(e) o
min§¢¢(m) on D,

uo(z) >

converges uniformly to the mazimal steady-state solution T(\) as t — +oo.

Finally, we consider the case where the Arrhenius activation energy is
so high that 0 < ¢ < (1/(1+ /1 —m))? as in part (iii) of Theorem 1. By
combining Theorems 5 and 6, we can obtain the following (local) asymptotic
stability theorem for maximal and minimal positive solutions of problem
(1.3) for A in an interval as in Figure 1.6:

THEOREM 7. Ife >0 is so small that

652) v(ta2(0) _ v(ta(e)

miny ¢  maxp ¢’

then, for each \ such that

v(t2(¢))

v(t1(e))
ming ¢ AS

~ maxp ¢’

<
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any global solution u(x,t) of problem (1.1) with an initial value ug(x) €
D(A), which satisfies the condition

0 <wup(x) <

converges uniformly to the minimal steady-state solution v(\) as t — 4o00.
On the other hand, any global solutions u(x,t) of problem (1.1) with an
initial value ug(x) € D(A), which satisfies the condition

i@ oD,

uo(x) >

converges uniformly to the mazimal steady-state solution T(\) as t — +oo.

0<e< (1/(1+vV1—m))?

t2 (E) ¢

ming ¢

t1(e) )

maxp ¢

o(\)
. uoe |
0 v(ta(e))  v(ta(e))

ming ¢ maxg ¢
Figure 5.1
REMARK 5.1.  For condition (5.2), we notice that (see estimate (A.2)):

v(ta(0) _ v(t2(e)

B 7 ming¢’

The situation of Theorems 5, 6 and 7 may be represented schematically
by Figure 5.1.
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5.2 Proof of Theorem 5
To construct a super-solution of problem (1.3), we let

tl(E)

o) = o 50()
If A\ is so small that
t

(5.1) 0< <)

maxz ¢
then we have

Bo= -1 py_0 onob.
maxz ¢

and also

Ap— M) > ti(e) V(tl(ff))f< ti(e) ¢>

maxp ¢ B maxp ¢° \ maxg ¢

ne |, ! (5s?)

maxz ¢ f(ti(e))

>0 in D,

since the function f(¢) is strictly increasing for all ¢ > 0. This implies that
o(z) is a super-solution of (1.3) if A satisfies condition (5.1). Hence, by
using the super-sub-solution method we can construct a positive solution
v(A) of problem (1.3) such that

fu(e) ¢(z) on D.

<v <
0= = maxgz ¢

Now it should be noticed that the scalar equation, called the Semenov
approximation in combustion theory,

A= All/(t) = )\1—
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has at most one solution in the interval [0,¢1(g)] for 0 < A/\1 < v(t1(e))
(see Figure 5.2).

0<e<(1/(1++1—m))?

t
v(t) = m

You /.\

0 tll(s) tQ (6)

Figure 5.2

A similar assertion holds true for problem (1.3). In fact, we have the
following uniqueness result for problem (1.3) (cf. the proof of Taira [19,
Theorem 5)):

LEMMA 5.1. Let0 < e < (1/(1++/1—m))% Then problem (1.3) has
at most one positive solution in the order interval

0,t1(¢)] = {v € C*(D) : 0 < w(z) < ti(e) on D}

for A > 0.
PROOF. Assume that v;(z), i = 1, 2, are two positive solutions of
problem (1.3)
AU,’ = )\f(vz) in D,
{ Buv; = Ovi +b(z")v; =0 on dD
ov

which satisfy the conditions

0 <wvi(x), va(z) < ti(e) on D.
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Then we have, by Green’s formula,

(5.3) /\/D <M — M) (v — v3) dx

U1 (%]
o A’Ul AUZ 2 2
= /D < i s > ( 1 ’U2) dl‘
N N
8 ) 8v1
= — v R d
/D;afﬂi jz:;a (x)ax] vy dx

N 0 N ov v?
2| (v
+/ Zaxi Za (z )Gw <vg)dx
D5 = J
61}1 81}1 81}1 v%
/ Z &UZ- 8% / Z 3113@ 3% (Ul d
7.] 1 ’L =1

ovy (v3
/aDa—u“d”/aDau( >d”

61}2 Ova 51}2 v%
/ Z &UZ Ox; dr / Z &B@ 3% <U2 d

t,j=1
Ova Ovy (Vi
— —Zv9 d d
/8D ov 0+/8D ov ( 2> ”

where do is the surface element of dD. However, we find that the four
integrals over 0D in the last equality of formula (5.3) vanish, since the
solutions v (x) and va(z) satisfy the boundary conditions

87)1

1 1 0
ov _
S (b(m’)) = <0> on 0D.
2
ov
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Therefore, it follows from formula (5.3) that

)\/ (f(“l) _ f(v2)> (U% _ v%) d
D U1 U2
N
s 81}1 V2 8@1 82}1 V2 (9’[)1
= v - = B
/D Z ¢ ({E) (8:51 (% 81:1) <8:13J U1 8217]) dm

i,j=1

N
. Ovy  v1 Ovg Ova 11 Ovg
z] = __4 _ _-_ =
+ /D Z @ (ZL‘) (831:, () 8:@) (695] (%) 89@) dZB
> 0.

i.j=1

This implies that vi(z) = ve(z) on D, since the function f(t)/t is strictly
decreasing for all 0 < t < t1(e).
The proof of Lemma 5.1 is complete. [

Lemma 5.1 asserts that the positive solution ¥(x) is unique in the order

interval
@,M@¢y
maxz ¢

so that it is minimal. Therefore, it follows from an application of Theorem
4.1 with v(z) = v(z), ¥(x) := 0 and ¢(z) = (t1(¢)/ maxy ¢)P(x) that the
minimal positive solution v(x) = v(z) is asymptotically stable.

The proof of Theorem 5 is now complete. []

5.3 Proof of Theorem 6

The proof is essentially the same as that of Theorem 5. Indeed, it suffices
to verify the following (see Figure 5.1):

(a) The function (t2(g)/ miny ¢)¢p(x) is a sub-solution of problem (1.3)
for every A > v(ta(e))/ ming ¢.

(b) The function AC'¢(x) is a super-solution of problem (1.3) if C' > C,,.

(c) There exists at most one positive solution v(z) € C?(D) of problem
(1.3) in the order interval

2 gaco|. ez
ming ¢

Therefore, Theorem 6 follows from an application of Theorem 4.1 with

v(z) :=0(x), Y(x) := (t2(e)/ ming ¢)¢(z) and ¢(z) == ACo(z). O
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Appendix: Estimate of the Constant (3

In this appendix we estimate the constant 3 in part (iii-c) of Theorem
2 in terms of the function ¢(x).

First we make the precise definition of the constant 3 in Theorem 1 (see
Wiebers [26]). For a relatively compact subdomain © of D with smooth
boundary, we consider the following linear boundary value problem:

Aw = xq in D,
Al
(A1) {Bw:g—w+b(x’)w:() on 0D.
v

Here xq(z) is the characteristic function of Q2 in D. It is known (see Agmon—
Douglis—Nirenberg [1], Taylor [23]) that problem (A.1) is uniquely solvable
in the framework of LP spaces. Moreover, we can show that the solution
waq(r) belongs to C1(D) and is positive everywhere in D. Then the constant
0 is defined by the formula

B = sup inf wq(x).
QeD TEQ

The next lemma gives an estimate for the constant 3 in terms of the
function ¢(z):

LEMMA A.1. The constant 3 can be estimated as

(A.2) min ¢ < < max ¢.
D D

PrOOF. If ¢1(z) is the eigenfunction corresponding to the first eigen-
value \; of problem (1.7) and if maxp 1 = 1, then it follows from Wiebers
[25, Lemma 5.1] that

A1

ming @1

! <>\1§l§
B

A min g1 < <
D maxp ¢

Hence we have only to prove that

(A.3) 4 > min ¢.
D
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To do this, we choose a sequence {€2;} of relatively compact subdomains
of D, with smooth boundary, such that €; T D as j — oo. If wq,(z)
is a unique solution of problem (A.1) with  := Q;, then it follows from
an application of LP theory of linear elliptic boundary value problems (see
Taira [18, Theorem 1]) that

we,(z) — ¢(z) in C(D) as j — oo
if p> N.

Now, since wq,(z) and ¢(x) are both strictly positive on D, we obtain
that

; = Supq. L = Supgq. X = Supp X0, )
(A.4) lanj wQ, 7 we, 7 we, wQ;
1 I 1
ming¢ infpg SUPp @

However, it is easy to verify that

so that

£y

sup

— sSup— as j — oQ.
D wWq; D ¢

In view of formulas (A.4), this implies that

(A.5) infwg, — min¢g as j — oo.
Qj J D

Therefore, the desired inequality (A.3) follows from assertion (A.5), since
we have
= sup inf wq > infwq,. O
g Q@% Q Q 7
Ezample A.1. 1If ¢(z) is a positive constant ¢ and b(z') = 0 on 9D,
then we find from assertion (A.2) that 8 =1/c, since ¢(x) = 1/cin D (see
Wiebers [26, Theorem 5.4]).
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