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Properties of Minimal Charts and their Applications
VI: The Graph I';, 11 in a Chart T’ of Type (m;2, 3, 2)

By Teruo NAGASE and Akiko SHIMA*

Abstract. Let I' be a chart, and we denote by I',, the union of
all the edges of label m. A chart T is of type (m;2,3,2) if w(l") =7,
U)(Fm n F7n+1) =2, w(FmJ,_l n Fm+2) =3, and w(Fm+2 N Fm+3) =2
where w(@) is the number of white vertices in G. In this paper, we
prove that if there is a minimal chart T' of type (m;2,3,2), then each
of I'y,41 and I’y 42 contains one of three kinds of graphs. In the next
paper, we shall prove that there is no minimal chart of type (m; 2, 3, 2).

1. Introduction

Charts are oriented labeled graphs in a disk (see [1],[5], and see Section 2
for the precise definition of charts). From a chart, we can construct an
oriented closed surface embedded in 4-space R* (see [5, Chapter 14, Chapter
18 and Chapter 23]). A C-move is a local modification between two charts
in a disk (see Section 2 for C-moves). A C-move between two charts induces
an ambient isotopy between oriented closed surfaces corresponding to the
two charts.

We will work in the PL category or smooth category. All submanifolds
are assumed to be locally flat. In [16], we showed that there is no minimal
chart with exactly five vertices (see Section 2 for the precise definition of
minimal charts). Hasegawa proved that there exists a minimal chart with
exactly six white vertices [2]. This chart represents a 2-twist spun trefoil. In
[3] and [15], we investigated minimal charts with exactly four white vertices.
In this paper, we investigate some properties of minimal charts which are
to be used to prove our conjecture on nonexistence of minimal chart with
exactly seven white vertices (see [6],[7], [8],[9], [10], [11], [12]).
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Let I' be a chart. For each label m, we denote by I';, the union of all
the edges of label m.

Now we define a type of a chart: Let I' be a chart with at least one white
vertex, and nj,na, ..., ng integers. The chart I is of type (n1,ng,...,ng) if
there exists a label m of I' satisfying the following three conditions:

(i) Foreach i =1,2,...,k, the chart I' contains exactly n; white vertices
in Ipgio1 N Dy

(ii) If i <0 or ¢ > k, then I';,,1; does not contain any white vertices.

(iii) Both of the two subgraphs I',,, and I',,,1 % contain at least one white
vertex.

If we want to emphasize the label m, then we say that I is of type (m;nq, no,

.,ng). Note that n; > 1 and n; > 1 by the condition (iii). We proved in
[7, Theorem 1.1] that if there exists a minimal n-chart I with exactly seven
white vertices, then I is a chart of type (7),(5,2),(4,3),(3,2,2) or (2,3,2)
(if necessary we change the label ¢ by n—1 for all label ). In [10], we showed
that there is no minimal chart of type (3,2,2). In this paper and [11], we
shall show the following.

THEOREM 1.1 ([11, Theorem 1.1]). There is no minimal chart of type
(2,3,2).

In the future paper [12], we shall show there is no minimal chart of type
(7),(5,2),(4,3). Therefore we shall show that there is no minimal chart
with exactly seven white vertices.

An edge in a chart is called a terminal edge if it has a white vertex and
a black vertex.

In our argument we often construct a chart I'. On the construction of
a chart I', for a white vertex w € I'), for some label m, among the three
edges of T, containing w, if one of the three edges is a terminal edge (see
Fig. 1(a) and (b)), then we remove the terminal edge and put a black dot
at the center of the white vertex as shown in Fig. 1(c). Namely Fig. 1(c)
means Fig. 1(a) or Fig. 1(b). We call the vertex in Fig. 1(c) a BW-vertex
with respect to I';,.

For example, the graph as shown in Fig. 2(a) means one of the four
graphs as shown in Fig. 2(b),(c),(d),(e).
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(a) (b) (c)

Fig. 1. (a),(b) White vertices in terminal edges. (¢) A BW-vertex.

(O 2O
Fig. 2. Graphs with two white vertices.

The three graphs in Fig. 3 are examples of graphs in I';,, for a chart I’
and a label m. We call a 0-curve, an oval, a skew 0-curve the three graphs
as shown in Fig. 3(a),(b),(c) respectively.

Let X be a set in a chart I'. Let

w(X) = the number of white vertices in X.

Let I" be a chart of type (m;2,3,2). Then w(I') = 7,w(l'y, NTpg1) =
2,w(f‘m+1 N Fm+2) = 3,w(I’m+2 N Fm+3) = 2. Thus w(I’m+1) = 5 and
w(T'pa2) = 5. First we shall show the following lemma.

(a) (b) (0)

Fig. 3. (a) A f-curve. (b) An oval. (¢) A skew f-curve.
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LEMMA 1.2. Let T’ be a minimal chart of type (m;2,3,2). Then each
of Uma1 and I'pyqo contains one of nine graphs as shown in Fig. 4, or the
union of a 0-curve and a skew 6-curve, or the union of an oval and a skew
0-curve.

(a) (b) ()

OO0 O-000

Fig. 4. (a),(b),(c) Graphs with three black vertices. (d),(e),(f) Graphs with one black
vertex. (g),(h) Graphs with three black vertices. (i) A graph with one black vertex.

In this paper, the following is the main result.

THEOREM 1.3. If there exists a minimal chart T' of type (m;2,3,2),
then each of I'py1 and Upyyo contains either the union of an oval and a
skew 0-curve, or one of two graphs as shown in Fig. 4(g),(h).

The paper is organized as follows. In Section 2, we define charts and
minimal charts. In Section 3, we investigate connected components of I';,
with five white vertices for a minimal chart I'. We shall show Lemma 1.2.
In Section 4, we shall show that neither '), nor I';, 13 contains a #-curve for
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any minimal chart T' of type (m;2,3,2) (i.e. both of I';;, and I';,+3 contain
ovals) (see Corollary 4.3). In Section 5, we investigate an oval of label m
for a minimal chart I". In Section 6, we investigate white vertices in an
oval of label m for a minimal chart I" of type (m;2,3,2). In Section 7, we
shall show that for any minimal chart I" of type (m;2, 3,2), the graph I';,+1
contains none of the five graphs as shown in Fig. 4(a),(d),(e),(f),(i), and
neither does I';,12. Moreover we shall show that neither I'y, 11 nor I'y 40
contains a f-curve. In Section 8, we consider a minimal chart I' of type
(m;2,3,2) such that Iy, 11 contains either an oval, or one of the four graphs
as shown in Fig. 4(b),(c),(g),(h). We investigate that the chart I' contains
what kind of pseudo charts. In Section 9, we shall show that neither I'),11
nor I';, 42 contains the graph as shown in Fig. 4(c) for any minimal chart
I of type (m;2,3,2). In Section 10, we shall show that neither I';, ;1 nor
I')+2 contains the graph as shown in Fig. 4(b) for any minimal chart T of
type (m;2,3,2). We obtain the main theorem (Theorem 1.3).

2. Preliminaries

In this section, we introduce the definition of charts and its related
words.

Let n be a positive integer. An n-chart (a braid chart of degree n [1]
or a surface braid chart of degree n [5]) is an oriented labeled graph in the
interior of a disk, which may be empty or have closed edges without vertices
satisfying the following four conditions (see Fig. 5):

(i) Every vertex has degree 1, 4, or 6.
(ii) The labels of edges are in {1,2,...,n —1}.

(iii) In a small neighborhood of each vertex of degree 6, there are six short
arcs, three consecutive arcs are oriented inward and the other three
are outward, and these six are labeled 7 and ¢ + 1 alternately for some
1, where the orientation and label of each arc are inherited from the
edge containing the arc.

(iv) For each vertex of degree 4, diagonal edges have the same label and
are oriented coherently, and the labels ¢ and j of the diagonals satisfy
li —j] > 1.
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We call a vertex of degree 1 a black vertez, a vertex of degree 4 a crossing,
and a vertex of degree 6 a white vertex respectively.

Among six short arcs in a small neighborhood of a white vertex, a central
arc of each three consecutive arcs oriented inward (resp. outward) is called
a middle arc at the white vertex (see Fig. 5(c)). For each white vertex v,
there are two middle arcs at v in a small neighborhood of v. An edge is said
to be middle at a white vertex v if it contains a middle arc at v.

Let e be an edge connecting v; and vs. If e is oriented from vy to vs,
then we say that e is oriented outward at vi and inward at vy

(a) (b) (o), J

i ] i i

i
i—ji[>1 li—jl=1

Fig. 5. (a) A black vertex. (b) A crossing. (c¢) A white vertex. Each arc with three
transversal short arcs is a middle arc at the white vertex.

Now C-moves are local modifications of charts as shown in Fig. 6 (cf.
[1], [5] and [17]). Two charts are said to be C-move equivalent if there exists
a finite sequence of C-moves which modifies one of the two charts to the
other.

An edge in a chart is called a free edge if it has two black vertices.

For each chart I', let w(I') and f(I') be the number of white vertices,
and the number of free edges respectively. The pair (w(I'), —f(I")) is called
a complezity of the chart (see [4]). A chart T is called a minimal chart if its
complexity is minimal among the charts C-move equivalent to the chart I’
with respect to the lexicographic order of pairs of integers.

We showed the difference of a chart in a disk and in a 2-sphere (see [6,
Lemma 2.1]). This lemma follows from that there exists a natural one-to-
one correspondence between {charts in 52} /C-moves and {charts in D?}/C-
moves, conjugations ([5, Chapter 23 and Chapter 25]). To make the argu-
ment simple, we assume that the charts lie on the 2-sphere instead of the
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i j
CIR2>< E§<61R3

i
Epty  C--M1 ' i C—I—Mz\\/
Diagram <> 4 i H/\

j

Fig. 6. For the C-III move, the edge with the black vertex is not middle at a white vertex
in the left figure.

disk.

ASSUMPTION 1. In this paper, all charts are contained in the 2-sphere
S2.

We have the special point in the 2-sphere S2, called the point at infinity,
denoted by co. In this paper, all charts are contained in a disk such that
the disk does not contain the point at infinity oco.

Let T" be a chart, and m a label of I'. A hoop is a closed edge of I' without
vertices (hence without crossings, neither). A ring is a simple closed curve
in 'y, containing a crossing but not containing any white vertices. A hoop
is said to be simple if one of the two complementary domains of the hoop
does not contain any white vertices.
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We can assume that all minimal charts I' satisfy the following four con-
ditions (see [6],[7],[8], [14]):

ASSUMPTION 2. If an edge of I' contains a black vertex, then the edge
is a free edge or a terminal edge. Moreover any terminal edge contains a
middle arc.

ASSUMPTION 3. All free edges and simple hoops in I' are moved into
a small neighborhood Uy of the point at infinity co. Hence we assume that
I' does not contain free edges nor simple hoops, otherwise mentioned.

ASSUMPTION 4. FEach complementary domain of any ring and hoop
must contain at least one white verter.

ASSUMPTION 5. The point at infinity oo is moved in any complemen-
tary domain of I

In this paper for a set X in a space we denote the interior of X, the
boundary of X and the closure of X by IntX, 0X and CI(X) respectively.

3. Connected Components of I'),

In this section, we investigate connected components of I',, with five
white vertices for a minimal chart I'. We shall show Lemma 1.2.

LemMA 3.1 ([10, Lemma 3.1]). In a minimal chart T, for each BW-
vertex in L'y, the two edges of label m containing the BW-vertex are oriented
mward or outward at the BW-vertex simultaneously if each of the two edges
is not a terminal edge (see Fig. 7).

(a) (b)
...—)—@—(_... ...+@+...

Fig. 7. BW-vertices.
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Let I" be a chart, and m a label of I". A loop is a simple closed curve in
'), with exactly one white vertex (possibly with crossings).

LeEMMA 3.2 ([10, Lemma 3.2]). Let I' be a minimal chart, and m a
label of I'. Let G be a connected component of I'y,. Then we have the
following.

(a) If 1 <w(G), then 2 < w(QG).
(b) If 1 < w(G) < 3 and G does not contain any loop, then G is one of
three graphs as shown in Fig. 3.

The following lemma is easily shown. Thus we omit the proof.

LEMMA 3.3. Let G be a 3-regular graph in S*. Then we have the fol-
lowing.

(a) The graph G contains exactly an even number of vertices.

(b) If G has at most four vertices, then G is one of seven graphs as shown
in Fig. 3(a) and Fig. 8.

LEMMA 3.4. LetT' be a minimal chart, and m a label of I'. Let G be a
connected component of T'y,. If w(G) =5 and G has no loop, then G is one
of mine graphs as shown in Fig. 4.

PrOOF. By Assumption 2, each terminal edge is middle at a white
vertex. Thus each white vertex in I',, is contained in at most one terminal
edge of label m. Hence

(1) the graph G is obtained from a simple closed curve or a 3-regular
graph (possibly with loops) by adding BW-vertices.

Now we shall show that G contains at least one black vertex. If not,
then the graph G is a 3-regular graph on S?. By Lemma 3.3(a), the graph
G contains exactly an even number of white vertices. This contradicts the
fact w(G) = 5. Hence G contains at least one black vertex. Thus

(2) G contains at least one BW-vertex.
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(a@ (b) j i
(e) C : : (f)

Fig. 8. (a),(b) Graphs without loops. (c),(d),(e),(f) Graphs with loops.

CrAamM. The graph G is obtained from a 3-regular graph by adding
BW-vertices.

Suppose that all white vertices in G are BW-vertices. Then the graph
G is obtained from a simple closed curve by adding BW-vertices. By
Lemma 3.1, in a minimal chart, for each BW-vertex in I';,, the two edges
of label m containing the BW-vertex are oriented inward or outward at
the BW-vertex simultaneously if each of the two edges is not a terminal
edge. Hence the orientation of edges must change at BW-vertices. Thus G
contains exactly an even number of BW-vertices. This contradicts the fact
w(G) = 5. Hence G contains a white vertex not a BW-vertex. Thus by (1),
Claim holds.

By w(G) = 5, (2) and Claim, the graph G is obtained by adding
BW-vertices from a 3-regular graph with at most four vertices. Hence by
Lemma 3.3(b), the graph G is obtained by adding BW-vertices from one
of seven graphs as shown in Fig. 3(a) and Fig. 8. Since G has no loop
with w(G) = 5, the graph G is not obtained from the graphs as shown in

Fig. 8(e),(f).
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Now the graph G is on the 2-sphere S?. Hence if G is obtained from
the graph as shown in Fig. 3(a), then the graph G is one of three graphs
as shown in Fig. 4(a),(b),(c). If G is obtained from the graph as shown in
Fig. 8(a), then the graph G is one of two graphs as shown in Fig. 4(d),(e).
If G is obtained from the graph as shown in Fig. 8(b), then the graph G is
the graph as shown in Fig. 4(f). If G is obtained from the graph as shown in
Fig. 8(c), then the graph G is one of two graphs as shown in Fig. 4(g),(h).
If G is obtained from the graph as shown in Fig. 8(d), then the graph G is
the graph as shown in Fig. 4(i). Therefore G is one of nine graphs as shown
in Fig. 4. We complete the proof of Lemma 3.4. [J

LEMMA 3.5. LetT be a minimal chart, and m a label of . If w(I'y,) =
5 and Iy, has no loop, then T'y, contains one of the following graphs:

(a) one of nine graphs as shown in Fig. 4, or
(b) the union of a 0-curve and a skew 6-curve, or

(c) the union of an oval and a skew 0-curve.

PrRoOOF. First we shall show that there exist at most two connected
components of I',, with white vertices. Suppose that there exist at least
three connected components G1,Ge,Gs of Ty, with w(G;) > 1 for each
i =1,2,3. Then by Lemma 3.2(a), we have w(G;) > 2 for each i = 1,2, 3.
Thus

5=w(ly) > w(Gy) +w(G2) + w(Gs) > 24242 =6.

This is a contradiction. Hence there exist at most two connected compo-
nents of I',,, with white vertices.

Suppose that there exists a connected component G; of I',, with
w(G1) = 5. Since I'y, has no loop, by Lemma 3.4 the graph G; is one
of nine graphs as shown in Fig. 4.

Suppose that there exists two connected components G, Go of 'y, with
w(G1) > 1,w(Ge2) > 1 and w(G1) +w(G2) = 5. Then by Lemma 3.2(a), we
have w(G1) > 2,w(Gsy) > 2.

Without loss of generality we can assume 2 < w(Gp) < w(G2). Since
w(G1) + w(Ga) = 5, we have w(G1) = 2 and w(G3) = 3. Since 'y, has no
loop, by Lemma 3.2(b) the graph G is a #-curve or an oval, and the graph
G is a skew fO-curve. [J
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LEMMA 3.6 ([9, Theorem 1.1)). There is no loop in any minimal chart
with exactly seven white vertices.

By Lemma 3.5 and Lemma 3.6, we have Lemma 1.2.

4. 0-Curves

In this section we shall show that neither I';,, nor I';, 13 contains a 6-
curve for any minimal chart I" of type (m;2,3,2) (i.e. both of I';;, and 'y, 43
contain ovals) (see Corollary 4.3).

Let I" be a chart, and m a label of I'. Let L be the closure of a connected
component of the set obtained by taking out all the white vertices from T'y,.
If L contains at least one white vertex but does not contain any black vertex,
then L is called an internal edge of label m. Note that an internal edge may
contain a crossing of I'.

Let I' be a chart. Let D be a disk such that

(1) the boundary 0D consists of an internal edge e; of label m and an
internal edge eq of label m + 1, and

(2) any edge containing a white vertex in e; does not intersect the open
disk IntD.

Note that 0D may contain crossings. Let w; and ws be the white vertices
in ey. If the disk D satisfies one of the following conditions, then D is called
a lens of type (m,m + 1) (see Fig. 9):

(i) Neither e; nor ep contains a middle arc.

(ii) One of the two edges e; and ey contains middle arcs at both white
vertices w; and we simultaneously.

LemMA 4.1 ([7, Corollary 1.3]). There is no lens in any minimal chart
with at most seven white vertices.

LEMMA 4.2. Let I' be a minimal chart, and m a label of I'. Suppose
that Ty, contains a 0-curve G. If T' has no lens, and if the two white vertices
in G are contained in Tp,yc for some € € {+1,—1}, then w(Tp4e) > 6.
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(a) (b)

Fig. 9. Lenses.

PROOF. Let wi,wy be the white vertices in G, and e the internal edge
of label m in G middle at w;. Without loss of generality we can assume
that

(1) the edge e is oriented from w; to ws.

Then the other two internal edges in G are oriented from wy to w; (see
Fig. 10(a)). Thus

(2) the edge e is middle at wi,ws.

The f-curve G divides S? into three disks. Let D, Dy be two of the
three disks with D1 N Dy = 9Dy N 0Dy = e. Let e1,es be internal edges
(possibly terminal edges) of label m+-¢ at w; in D1, Ds respectively. Since e
is middle at w; by (2), neither e; nor es is middle at w;. By Assumption 2,
neither e; nor es is a terminal edge. Hence e; and e contain white vertices
different from wq, say ws, wy.

We shall show w3 # wo and wy # ws. If wg = wo, then the edge e;
separates the disk Dy into two disks. One of the two disks contains the edge
e. By (2), the disk is a lens. This contradicts the condition that I" has no
lens. Hence w3 # wo. Similarly we can show wy # ws.

Let €}, e}, be internal edges (possibly terminal edges) of label m + ¢ at
wy in Dy, Do respectively. By using (2), we can show similarly that e, €}
contain white vertices different from wy, say wh, wy.

We shall show that w(I'y, 1. NIntD;) > 2. There are two cases: w3 # wh
and ws = wh.

If ws # wh, then w(Tyq. NIntDy) > 2.

Suppose wg = wj (see Fig. 10(b)). Let €} be an internal edge (possibly
a terminal edge) of label m + ¢ at ws different from e, €]. By (1) and (2),
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the edge e; is oriented from w; to w3 and the edge €} is oriented from ws
to wy. Thus €Y is not middle at ws. Hence by Assumption 2, the edge e}
is not a terminal edge. Thus the edge €] contains a white vertex different
from ws. Thus w(T'y4e NIntDy) > 2.

Similarly we can show w(I'y,4+- NIntDy) > 2. Finally we have

w(Fm+5) > w(FerE N G) -+ w(Fm+5 N IntDl) -+ w(Fm+5 N Inth)
>24+242=60

Fig. 10. (a) The dark gray region is the disk D1, the light gray region is the disk Ds.
(b) Both of e; and €] contain the white vertex ws.

COROLLARY 4.3. Let T' be a minimal chart of type (m;2,3,2). Then
both of I'y, and U'yy43 contain ovals.

PRrROOF. Since I is of type (m;2,3,2), we have w(I';;,) = 2. Since the
graph I';, does not contain any loop by Lemma 3.6, Lemma 3.2(b) implies
that the graph I',, contains one of the two graphs as shown in Fig. 3(a) and
(b). Hence the graph T, contains a f-curve or an oval. If the graph T,
contains a f-curve, then we have w(I'y,41) > 6 by Lemma 4.2.

On the other hand, since T is of type (m;2,3,2), we have w(I';,4+1) = 5.
This is a contradiction. Thus the graph I';, contains an oval.

Similarly we can show that the graph I';,+3 contains an oval. [J

5. Ovals

In this section we investigate an oval of label m for a minimal chart I'.
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Let I' be a chart, m a label of I', D a disk with 9D C I';,, and k a
positive integer. If 9D contains exactly k white vertices, then D is called a
k-angled disk of T'y,. Note that the boundary D may contain crossings.

LEMMA 5.1. Let I' be a minimal chart, and m a label of I'. Let G be
an oval of label m, and D a 2-angled disk of T, with 0D C G. Let E be a
disk in D whose boundary consists of an internal edge in G and an internal
edge of label m + ¢ (e € {+1,—1}) connecting the two white vertices of G.
If E does not contain the terminal edges in G, then F is a lens of T'.

PROOF. Let e be the internal edge of label m + ¢ in JE. Let vy, v9
be the white vertices in GG, and ej,es the terminal edges at vi,vs in G
respectively. By Assumption 2,

(1) both of the two edges e; and e contain middle arcs.

There are three cases: (i) neither e; nor e is contained in D (see Fig. 11(a)),
(ii) only one of e; and eg is contained in D (see Fig. 11(b)), (iii) both of e;
and eg are contained in D (see Fig. 11(c)).

Case (i). By (1), the edge e is middle at both white vertices v; and vy
simultaneously. Thus the disk F is a lens.

Case (ii). Without loss of generality we can assume that

(2) the edge e; is oriented inward at vj.

Then by (1), the other two internal edges in G are oriented from v; to va.
Thus

(3) the edge ey is oriented outward at vs.

If e; € D (see Fig. 11(b)), then by (1) and (2), the edge e is oriented
from vy to v1. Hence e is oriented outward at vo. On the other hand, by
(1) and (3), the edge e is oriented inward at ve. This is a contradiction.

Similarly if e C D, then we have the same contradiction. Thus Case
(ii) does not occur.

Case (iii). By (1), none of e and the two internal edges in G contain
middle arcs. Thus the disk E is a lens. [J
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Fig. 11. The gray regions are disks E. (a) e1 ¢ D,ea ¢ D. (b) e1 C D,ea ¢ D. (c)
ep C D,€2 Cc D.

Let I" be a chart. Suppose that an object consists of some edges of T,
arcs in edges of I' and arcs around white vertices. Then the object is called
a pseudo chart.

LEMMA 5.2. Let I' be a minimal chart, and m a label of I'. Let G be
an oval of label m. If for some ¢ € {41, —1} there exists a 2-angled disk D
of T'ypve with G N OD two white vertices, then there exists a lens of .

PrROOF. Let C be the simple closed curve in G. Let c¢q,c2,d1,do be
internal edges with ¢; Ucs = C and dy Udy = 0D. Let w be a white
vertex in G. Then there are two cases: (i) The four edges c¢1, co,d;,ds (or
c1,C2,da, dy) lie around the white vertex w in this order (see Fig 12(a)). (ii)
The four edges c1, dy, ca, ds lie around the white vertex w in this order (see
Fig 12(b)).

Case (i). Since G N9ID = C N ID consists of two white vertices, the
union C U 9D separates S? into four disks. Let E,E’ be two of the four
disks such that each boundary consists of an internal edge of label m in G
and an internal edge of label m + ¢ in dD. By the condition of Case (i),
neither E nor E’ contains a terminal edge of label m in G (see Fig 12(a)).
Thus by Lemma 5.1, both of F and E’ are lenses.

Case (ii). Since GNID = C N ID consists of two white vertices, the
union CUJD separates S? into four disks. Let E, E’ be two of the four disks
with ENE" = d;. Then EU E’ is a 2-angled disk of T',;, whose boundary is
contained in G.

If E or E' is a lens, then there exists a lens of T'.

Suppose that neither F nor E’ is a lens. Then by Lemma 5.1,
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(1) each of E and E’ contains a terminal edge in G.

Hence E U E’ contains one of the two pseudo charts as shown in
Fig. 12(c),(d). Then ds ¢ EUE'. Thus dy C C1(S? — (EUE")). Hence the
edge do separates the disk CI(S? — (E U E’)) into two disks. Thus neither
of the two disks contains a terminal edge in G, because F' U E’ contains the
two terminal edges of G by (1). Hence by Lemma 5.1, both of the two disks
are lenses. [

Fig. 12. The light gray region and the dark gray region are E and E’.

LEMMA 5.3. Let T be a chart, and m a label of I'. Let G be an oval of
label m, and vy, vy the white vertices in G. Let D be a 2-angled disk of 'y,
with 0D C G. If D satisfies one of the following two conditions, then T is
not minimal.

(a) The disk D does not contain terminal edges of G, but contains two
internal edges ey, ez of label m+¢€ at vy, vy respectively (e € {+1,—1})
such that e; N ey is a BW-vertex with respect to I'yyie in IntD (see
Fig. 13(a)).

(b) The disk D contains exactly one terminal edge of G, and contains
three internal edges e1,eo,e3 of label m + ¢ at vy,v1,ve Tespectively
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Fig. 13. (a),(c) The gray regions are 2-angled disks not containing terminal edges of G.
(b),(d) The gray regions are 2-angled disks containing one terminal edge of G.

(e € {+1,—1}) such that ey Nes Nes is a white vertex in IntD (see
Fig. 15(b)).

PROOF. Suppose that I' is minimal. Let e, e’ be the terminal edges at
v1,v2 in G respectively. By Assumption 2,
(1) each of the two edges e and ¢’ is middle at a white vertex.
Without loss of generality we can assume that
(2) the edge e is oriented inward at v;.

Then by (1), the other two internal edges in G are oriented from v; to va.
Thus

(3) the edge €’ is oriented outward at vs.

If the disk D satisfies the condition (a), then e; Neg is a BW-vertex with
respect to I'ypye. Let v = €1 Nea. By (2), the edge e is oriented from v
to vz. Thus the edge e; is oriented inward at the BW-vertex vs.

On the other hand, by (3), the edge es is oriented from vs to vy. Thus
the edge es is oriented outward at the BW-vertex vs. Hence for the BW-
vertex vs, the edge e; of label m + ¢ is oriented inward at vz, and the edge
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ez of label m + ¢ is oriented outward at v (see Fig. 13(c)). This contradicts
Lemma 3.1. Thus I' is not minimal.

If the disk D satisfies the condition (b), then e; N ez N ez is a white
vertex. Let v3 = e;NeyNes. By (1) and (2), both of e; and es are oriented
from v3 to v1. Thus

(4) both of e; and ey are oriented outward at vs.

On the other hand, by (3), the edge es is oriented from vs to vy. Thus
the edge es is oriented outward at vs. Hence by (4), the three edges ey, €3, €3
of label m + ¢ are oriented outward at vs (see Fig. 13(d)). This contradicts
the condition (iii) of the definition of charts. Thus I' is not minimal. [J

6. White Vertices in the Graphs I',,

In this section, we investigate white vertices in an oval of label m for a
minimal chart I of type (m;2,3,2).

LEMMA 6.1. Let I' be a minimal chart, and m a label of T'. Let w be
a white vertex in a terminal edge of label m. Let e1,eq be the two edges
of label m at w different from the terminal edge. If w is contained in
a terminal edge of label m + ¢ for some € € {+1,—1}, then both edges
e1,es are contained in the closure of the same connected component of
S? —Toge.

PROOF. Since w is contained in a terminal edge of label m and since
w is contained in a terminal edge of label m + ¢, by Assumption 2 we can
show that in a neighborhood of the vertex w, the chart I' contains the
pseudo chart as shown in Fig. 14. Hence the edges e; and ey of label m are
contained in the closure of the same connected component F of S? — T, ..
Thus we complete the proof of Lemma 6.1. [J

From the above lemma, we have the following lemma;:

LEMMA 6.2. Let I' be a minimal chart, and m a label of I'. Let G be
an oval of label m. If one of the two white vertices in G is a BW-vertex with
respect to I'y,qe for some € € {41, —1}, then the two internal edges in G
are contained in the closure of the same connected component of S? —T .
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Fig. 14. A white vertex w is contained in two terminal edges. The gray region is F.

LEMMA 6.3. Let T be a minimal chart of type (m;2,3,2). Suppose that
'y, contains an oval G. Then we have the following.

(a) IfT'y41 contains one of the three graphs as shown in Fig. 4(a),(b),(c),
then either G contains two BW-vertices with respect to I'yyy1, or G
does not contain any BW-vertex with respect to I'p41.

(b) IfT'yyy1 contains one of the three graphs as shown in Fig. 4(d),(e),(f),
then G does not contain any BW-vertex with respect to I'yyi1.

(¢) If T'yuy1 contains the union of a O-curve and a skew 0-curve, then
G does not contain any BW-vertex with respect to I'yyyr1. Moreover
the two white vertices in G are contained in the 0-curve or the skew
0-curve simultaneously.

(d) If T'yyy1 contains the union of an oval and a skew O-curve, then ei-
ther G contains two BW-vertices with respect to I'yy11, or G does not
contain any BW-vertex with respect to I'ypy1.

PROOF. Let e1, es be the internal edges of label m in G.

Statement (a). The graph I',,;1 contains exactly three BW-vertices
with respect to I'y,41, say wi, wa, ws. Let wy, ws be the other white vertices
in ['y,41. It suffices to prove that if G contains one of BW-vertices wi, wo, ws,
then G contains two of wy, ws, ws.

If G contains one of BW-vertices w1, wo, w3, then by Lemma 6.2 there
exists a connected component F of S? — T', 41 with ey Uey C CI(F) (see
Fig. 15(a)). Thus
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(1) for each white vertex w in G, there exist two edges of label m at w
contained in CI(F).

On the other hand, by the condition of Lemma 6.3(a), for each white
vertex w; (i = 4,5) there exists at most one edge label m at w; in CI(F)
(see Fig. 15(a)). Hence by (1), the oval G does not contain w4 nor ws. Thus
G contains two of BW-vertices wy, we, w3. Hence Statement (a) holds.

Statement (b). The graph I';,,+1 contains exactly one BW-vertex with
respect to I'y,11, say wi. Let wg, ws, wy, ws be the other white vertices in
Tonsi.

Suppose that G contains the BW-vertex w;. Then by Lemma 6.2 there
exists a connected component F of S? — I, 41 with e; Uey C CI(F) (see
Fig. 15(b)). Thus for each white vertex in the oval G, there exist two edges of
label m at the vertex in CI(F'). However, by the condition of Lemma 6.3(b),
for each white vertex w; (i = 2,3,4,5) there exists at most one edge of label
m at w; in CI(F). This is a contradiction. Hence the oval G does not
contain the vertex w;. Hence Statement (b) holds.

Statement (c). Let wy, ws be the white vertices of the #-curve in T’ 4 1.
Let w3 be the BW-vertex of the skew 6-curve with respect to I';,+1, and
wy, ws the other white vertices of the skew #-curve.

By a similar way of the proof of Statement (b), we can show that
the oval G does not contain the BW-vertex ws. Thus G contains two of
w1, W2, W4, Ws.

Suppose that the oval G contains one of the white vertices wi, ws, and
one of the white vertices wy, ws. Without loss of generality we can assume
w1y, wyq € G. Then

(2) the two edges e; and e of label m connect the vertices w; and wy.

Now, the #-curve in I',,11 separates S? into three disks. One contains
the skew f-curve in I'),11, say F. Hence the vertex w, in the skew #-curve
is contained in F. Thus by (2), we have e; Uea C F. Hence in F there
exist two edges of label m at wy. However, since wy is a white vertex of the
O-curve in Ty, 11, there exists at most one edge of label m at w; in F (see
Fig. 15(c)). This is a contradiction. Hence wy, w2 € G or wa, ws € G. Thus
Statement (c) holds.

Similarly we can show Statement (d). O
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Fig. 15. The gray regions are F. (a) The graph as shown in Fig. 4(b) with ws € G. (b)
The graph as shown in Fig. 4(d) with w1 € G. (c) The skew f-curve of label m + 1 is
contained in F.

7. The Graphs I';,,,;; and T'),42

In this section, we shall show that for any minimal chart I' of type
(m;2,3,2), the graph T',,41 contains none of the five graphs as shown in
Fig. 4(a),(d),(e),(f),(i), and neither does T',,4+2. Moreover we shall show
that neither I';,+1 nor I'y,12 contains a #-curve.

LEMMA 7.1. Let G be one of 12 graphs as shown in Fig. 3 and Fig. 4.
If for any minimal chart T' of type (m;2,3,2), the graph I'yy1 does not
contain the graph G, then the graph 'y, 1o does not contain the graph G.

PrRoOOF. Suppose that the graph I'),11 does not contain the graph G
for any minimal chart T' of type (m;2,3,2).

If there exists a minimal chart I" of type (m;2,3,2) with I}, ., D G,
then let I be the chart obtained from I by changing labels --- ,m,m +
I,m+2,m+3,---into--- . m+3,m+2,m+1,m,---, respectively. Then
I'” is a chart of type (m;2,3,2) with I/ .| D G. Hence I'" is not minimal.
Thus I is C-move equivalent to a chart whose complexity is less than the
complexity of I'”. Hence by using the above C-moves, the chart I is also
C-move equivalent to a chart whose complexity is less than the complexity
IV. Thus I is not minimal. This is a contradiction. Hence if I is a minimal
chart of type (m;2,3,2), then I',  , 2 G. O

m

LEMMA 7.2. LetT be a minimal chart of type (m;2,3,2). Then neither
L1 nor Tigo contains the graph as shown in Fig. 4(a).
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PROOF. Suppose that I'y, 11 contains the graph as shown in Fig. 4(a).
We use the notations as shown in Fig. 16(a) where ws, wq, ws are BW-
vertices. By Corollary 4.3, the graph I'), contains an oval G. Thus by
Lemma 6.3(a), there are three cases: (i) wi,wy € G, (ii) ws,wy € G or
wy,ws € G (see Fig. 16(b)), (iil) w3, ws € G (see Fig. 16(c)).

Case (i). Since there exist two internal edges of label m + 1 connecting
w1 and wo, there exists a 2-angled disk D of I'y,4+1 with wq,ws € dD. Thus
wi,wy € GNAID. Hence by Lemma 5.2, there exists a lens of I'. This
contradicts Lemma 4.1. Hence Case (i) does not occur.

Case (ii). By Lemma 6.2, the two internal edges e, e5 of label m in G
are contained in the closure of the same connected component F of S? —
I'yp+1. Thus the curve e; Ueg bounds a 2-angled disk of Iy, in CI(F'), say D.
Hence CI(S? — D) is also a 2-angled disk of I',,, and by Lemma 5.1 the disk
CI(5% — D) contains a lens (see Fig. 16(b)). This contradicts Lemma 4.1.
Thus Case (ii) does not occur.

Case (iii). Let ej, ez be the two internal edges of label m in G. Let
es, es be the internal edges of label m+1 at ws, ws containing w,4 respectively
(see Fig. 16(c)).

By Lemma 6.2, the two edges e, es are contained in the closure of the
same connected component F of S2—T',,11 (see Fig. 16(c)). Without loss of
generality we can assume that the terminal edge of label m at ws is oriented
inward at ws. By Assumption 2, the terminal edge is middle at ws. Thus

(1) the edge e3 is oriented inward at ws,

and the two edges eq, es are oriented from ws to ws. Hence the edge es
is oriented outward at ws (see Fig 16(d)). Thus es is oriented inward at
the BW-vertex wy. However by (1) the edge es is oriented outward at the
BW-vertex wy. This contradicts Lemma 3.1. Hence Case (iii) does not
occur.

Therefore I';;,+1 does not contain the graph as shown in Fig. 4(a). By
Lemma 7.1, we can show that I';,, 12 does not contain the graph as shown
in Fig. 4(a). O

LEMMA 7.3. LetT be a minimal chart of type (m;2,3,2). Then neither
L1 nor Tygo contains the graph as shown in Fig. 4(d).

PROOF. Suppose that I'y, 41 contains the graph as shown in Fig. 4(d).
We use the notations as shown in Fig. 17(a) where w; is a BW-vertex. By
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Fig. 16. (a) wi,ws,- - ,ws are white vertices. (b) ws,ws € G. (¢),(d) w3, ws € G.

Corollary 4.3, the graph I';,, contains an oval G. Thus by Lemma 6.3(b),
there are four cases: (i) wa, w3 € G (see Fig. 17(b)), (ii) we,ws € G or
wsz, ws € G, (iii) we,ws € G or w3, ws € G (see Fig. 17(c)), (iv) wg, ws € G
(see Fig. 17(d)).

Case (i). By Lemma 5.3(a), the chart I is not minimal. This is a
contradiction. Hence Case (i) does not occur.

Case (ii). By Lemma 5.2, there exists a lens of I". This contradicts
Lemma 4.1. Hence Case (ii) does not occur.

Case (iii). By Lemma 5.3(b), the chart I' is not minimal. This is a
contradiction. Hence Case (iii) does not occur.

Case (iv). By Lemma 5.1, there exists a lens of I This contradicts
Lemma 4.1. Hence Case (iv) does not occur.

Therefore I';,41 does not contain the graph as shown in Fig. 4(d). By
Lemma 7.1, we can show that I';, 12 does not contain the graph as shown

Fig. 17. (a) wi,ws, -+ ,ws are white vertices. (b) we, w3z € G. (¢) wa2,ws € G. (d)
wq, ws € G.
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in Fig. 4(d). O

LEMMA 7.4. LetT be a minimal chart of type (m;2,3,2). Then neither
[py1 nor Tigo contains the graph as shown in Fig. 4(e).

PROOF. Suppose that T, 41 contains the graph as shown in Fig. 4(e).
We use the notations as shown in Fig. 18(a) where w; is a BW-vertex. By
Corollary 4.3, the graph I';, contains an oval G. Thus by Lemma 6.3(b),
there are four cases: (i) we,ws € G (see Fig. 18(b),(c),(d)), (ii) wa, ws € G
or ws,ws € G (see Fig. 18(e)), (iil) we, ws € G or w3, ws € G (see Fig. 18(f)),
(iv) wq, ws € G.

Case (i). Around the white vertex ws, there are three internal edges of
label m + 1. Let e, e, e3 be the three internal edges of label m + 1 at wo
containing wi, ws, wy, respectively (see Fig. 18(a)). Let D be the 2-angled
disk of I';, not containing the terminal edge of label m at ws. Then there
are three cases: e1 C Doreys CD ores C D.

If e; C D (see Fig. 18(b)), then by Lemma 5.3(a) the chart I' is not
minimal. This is a contradiction. If e; C D (see Fig. 18(c)), then by
Lemma 5.1 there exists a lens of I'. This contradicts Lemma 4.1. If e3 C D
(see Fig. 18(d)), then by Lemma 5.1 there exists a lens in C1(S? — D). This
contradicts Lemma 4.1. Hence Case (i) does not occur.

Case (ii). By Lemma 5.1, there exists a lens of I'. This contradicts
Lemma 4.1. Hence Case (ii) does not occur.

Case (iii). By Lemma 5.3(b), the chart I' is not minimal. This is a
contradiction. Hence Case (iii) does not occur.

Case (iv). By Lemma 5.2, there exists a lens of I'. This contradicts
Lemma 4.1. Hence Case (iv) does not occur.

Therefore I'y, 41 does not contain the graph as shown in Fig. 4(e). By
Lemma 7.1, we can show that I';, 12 does not contain the graph as shown
in Fig. 4(e). O

LEMMA 7.5. LetT be a minimal chart of type (m;2,3,2). Then neither
L1 nor Tigo contains the graph as shown in Fig. 4(f).

PROOF. Suppose that I';,11 contains the graph as shown in Fig. 4(f).
We use the notations as shown in Fig. 19(a) where w; is a BW-vertex. By

Corollary 4.3, the graph I'y, contains an oval G. There are two cases: (i)
wy € G or ws € G, (ii) wy & G and ws € G.
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Fig. 18. (a) w1, w2, - ,ws are white vertices. (b), (c¢), (d) ws,ws € G, the gray regions
are 2-angled disks of I';;, not containing the terminal edges of G. (e) wz,ws € G. (f)
wa, Ws € G.

Case (i). If wy € G, then by Lemma 6.3(b) the oval G contains one of
wa, w3, ws. Thus there exists an internal edge of label m + 1 connecting the
two white vertices of G (see Fig. 19(b)). Hence by Lemma 5.1, there exists
a lens of I'. This contradicts Lemma 4.1.

If ws € G, then we have the same contradiction. Hence Case (i) does
not occur.

Case (ii). By Lemma 6.3(b), we have we, w3 € G (see Fig. 19(c)). By
Lemma 5.3(a), the chart I' is not minimal. This is a contradiction. Hence
Case (ii) does not occur.

Therefore I'), 41 does not contain the graph as shown in Fig. 4(f). By
Lemma 7.1, we can show that I',, 12 does not contain the graph as shown
in Fig. 4(f). O

LEMMA 7.6. LetT' be a minimal chart of type (m;2,3,2). Then neither
[yt1 nor Tygo contains the graph as shown in Fig. 4(3).

PROOF. Suppose that I';,+1 contains the graph as shown in Fig. 4(i).
We use the notations as shown in Fig. 20(a) where w; is a BW-vertex.
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Fig. 19. (a) wi, w2, ,ws are white vertices. (b) w2, ws € G. (¢) w2, ws € G.

By Corollary 4.3, the graph I'y, contains an oval G. There are four cases:
(i) G contains the BW-vertex w; (see Fig. 20(b),(c)), (ii) we,ws € G (see
Fig. 20(d)), (iii) w3, ws € G or w3, ws € G (see Fig. 20(e)), (iv) wa, ws € G.

Case (i). Let ej, e2 be the internal edges in G, and F}, F» the connected
components of S — T, 11 with wy € CI(Fy) N CI(F,) and wz ¢ CI(F}) (see
Fig. 20(a)).

We shall show that e; Uey C CI(Fy). By Lemma 6.2, we have e; Ueg C
Cl(Fy) or e; Uey C Cl(Fy). If e; Uey C CI(Fy), then in CI(F}) there exist
two edges of label m at we. However, since ws is a white vertex as shown in
Fig. 20(a), there exists at most one edge of label m at we in CI(Fy). This
is a contradiction. Hence e; U ey C Cl(F3).

Thus there are two cases: wi, w2 € G or wi, w3 € G. If w1, ws € G (see
Fig. 20(b)), then by Lemma 5.1 there exists a lens of I'. This contradicts
Lemma 4.1. If wy, w3 € G (see Fig. 20(c)), then by Lemma 5.3(b) the chart
' is not minimal. This is a contradiction. Hence Case (i) does not occur.

Case (ii) and Case (iii). By Lemma 5.1, there exists a lens of I". This
contradicts Lemma 4.1. Hence Case (ii) and Case (iii) do not occur.

Case (iv). By Lemma 5.2, there exists a lens of I". This contradicts
Lemma 4.1. Hence Case (iv) does not occur.

Therefore Ty, +1 does not contain the graph as shown in Fig. 4(i). By
Lemma 7.1, we can show that I';, 12 does not contain the graph as shown
in Fig. 4(i). O

LEMMA 7.7. LetT be a minimal chart of type (m;2,3,2). Then neither
Lype1 nor TUypyo contains a 0-curve.
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(c)

Fig. 20. (a) wi, w2, - ,ws are white vertices, the gray region is Fi. (b) w1, w2 € G. (c)
wi,ws € G. (d) we,ws € G. (&) ws,ws € G.

PRrROOF. Suppose that I';,+1 contains a §-curve G;. By Lemma 1.2, the
graph I';, 11 contains a skew f-curve Go. Let wi,wo be the white vertices
in G1. Let w3 be the BW-vertex in G9, and wy, ws the other white vertices
in GQ.

By Corollary 4.3, the graph I',, contains an oval G. Thus by
Lemma 6.3(c), there are two cases: wi,ws € G, or wy,ws € G. For both
cases, there exist two internal edges of label m + 1 connecting the two white
vertices in GG. Hence there exists a 2-angled disk D of 'y, with G N 9D
two white vertices. Thus by Lemma 5.2; there exists a lens of I'. This
contradicts Lemma 4.1. Therefore I'),4+1 does not contain a #-curve.

By Lemma 7.1, we can show that I';, 12 does not contain a #-curve. [

By using Lemma 1.2 and lemmata in this section, we obtain the following
corollary:

COROLLARY 7.8. If there exists a minimal chart T' of type (m;2,3,2),
then each of U'py1 and Tpyyo contains either the union of an oval and a
skew 6-curve, or one of four graphs as shown in Fig. 4(b),(c),(g),(h).

8. RO-Families of Pseudo Charts

In this section, we consider a minimal chart I' of type (m;2,3,2) such
that I',, 11 contains either an oval, or one of the four graphs as shown in
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Fig. 4(b),(c),(g),(h). We investigate that the chart I' contains what kind of
pseudo charts.

Let T" be a chart, D a disk, and G a pseudo chart with G C D.
Let » : D — D be a reflection of D, and G* the pseudo chart obtained
from G by changing the orientations of all of the edges. Then the set
{G,G*,r(G),r(G*)} is called the RO-family of the pseudo chart G.

In our argument, we often need a name for an unnamed edge by using
a given edge and a given white vertex. For the convenience, we use the
following naming: Let €', e;, ¢’ be three consecutive edges containing a white
vertex w;. Here, the two edges e’ and €” are unnamed edges. There are six
arcs in a neighborhood U of the white vertex wj. If the three arcs ¢’ N U,
e; NU, €' NU lie anticlockwise around the white vertex w; in this order,
then ¢’ and e” are denoted by a;; and b;; respectively (see Fig. 21). There
is a possibility a;; = b;; if they are contained in a loop.

Fig. 21. The three edges aij, €, b;; are consecutive edges around the white vertex w;.

LEMMA 8.1. Let T' be a minimal chart of type (m;2,3,2). If T'py1
contains the graph as shown in Fig. 4(c), then I' contains one of the RO-
family of the pseudo chart as shown in Fig. 22(a).

PROOF. Suppose that I',, 41 contains the graph as shown in Fig. 4(c).
We use the notations as shown in Fig. 22(b) where wi, wy, ws are BW-
vertices. By Corollary 4.3, the graph I'), contains an oval G. Thus by
Lemma 6.3(a), there are two cases: (i) wq,ws € G (see Fig. 22(c)), (ii) the
oval G contains two of BW-vertices wy, wa, ws.

Case (i). By Lemma 5.3(a), the chart I' is not minimal. This is a
contradiction. Hence Case (i) does not occur.

Case (ii). Without loss of generality we can assume w;,ws € G. Let
es be the terminal edge of label m+1 at ws. Let €/, ¢} be the internal edges
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Fig. 22. (a) A pseudo chart containing the graph as shown in Fig. 4(c). The light gray
region is D1, and the dark gray region is Ds. (b) wi, w2, -+ ,ws are white vertices.
(c) wa,ws € G.

of label m + 1 at w; containing wy, ws respectively (see Fig. 22(b)).

Now, the graph in I';,; 1 as shown in Fig. 4(c) separates S? into three
disks. One of the three disks contains internal edges of label m in G, say
D1. One of the three disks contains the terminal edge es, say Do. The last
one is denoted by Ds3. By Assumption 5, we can assume that the disk D3
contains the point at infinity oo.

If necessary we change the orientation of all the edges of I', we can
assume that the terminal edge of label m at w; is oriented inward at w;.
Then by Assumption 2

(1) the two edges €], €} are oriented inward at w;.

Since wy,wy € T'yy N g1, ws, wy,ws € Iy and since TN is of type
(m;2,3,2), we have ws, wg,ws € Iy N T, Let ey, e5 be the internal
edges (possibly terminal edges) of label m + 2 at wy, w5 in Dy respectively.
Then by (1), the two edges ey, e5 are oriented inward at wy, ws respectively.
Thus I' contains the pseudo chart as shown in Fig. 22(a). O

LEMMA 8.2. Let T' be a minimal chart of type (m;2,3,2). If Ty
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Fig. 23. Pseudo charts containing the graph as shown in Fig. 4(b). The gray regions are
the disk Dj.

contains the graph as shown in Fig. 4(b), then I' contains one of the RO-
families of the two pseudo charts as shown in Fig. 23.

PROOF. Suppose that I, 41 contains the graph as shown in Fig. 4(b).
We use the notations as shown in Fig. 24(a) where wi, w2, w3 are BW-
vertices. By Corollary 4.3, the graph I'), contains an oval G. Thus by
Lemma 6.3(a), there are three cases: (i) ws,ws € G (see Fig. 24(b),(c),(d)),
(ii) wi, w2 € G or wy,ws € G, (see Fig. 24(e)), (iii) wa, w3 € G (see
Fig. 24(f)).

Case (i). Let ¢/, ¢” € be the internal edges of label m + 1 at w4 con-
taining wy, wa, ws, respectively (see Fig. 24(a)). Let D be the 2-angled disk
of I';, not containing the terminal edge of label m at wy. There are three
cases: € C Dore” C Dore” CD.

If ¢ C D (see Fig. 24(b)), then by Lemma 5.3(a) the chart I' is not
minimal. This is a contradiction. If ¢’ C D (see Fig. 24(c)), then by
Lemma 5.1 there exists a lens in CI(S? — D). This contradicts Lemma 4.1.
If & C D (see Fig. 24(d)), then by Lemma 5.1 there exists a lens in D.
This contradicts Lemma 4.1. Hence Case (i) does not occur.

Case (ii). Without loss of generality we can assume that wi, w2 € G.
Let eq, e be the internal edges of label m in G.

Now, the graph in I',,;1 as shown in Fig. 4(b) separates S? into three
disks. One of the three disks contains both of e; and es.
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Moreover, since wy,ws € I'yyy N Tyg1, ws, wy, ws € I'y1 and since TN is
of type (m;2,3,2), we have ws, wy,ws € I'yp1 Ny, Hence the chart T’
contains the pseudo chart as shown in Fig. 24(e). We use the notations as
shown in Fig. 24(e), where €], e/ are internal edges of label m + 1 at wy,
e, €4 are internal edges of label m + 1 at wo containing ws, w4 respectively,
e5 is an internal edge of label m + 1 connecting ws, ws.

Without loss of generality we can assume that the terminal edge of label
m at w is oriented inward at wy. Thus by Assumption 2, the two edges
e}, €] are oriented inward at wi, and the two edges e; and ey are oriented
from w; to we. Hence the two edges €}, €} are oriented outward at wy. Thus
the edge €}, is oriented from wo to the BW-vertex ws. Hence by Lemma 3.1
the edge eg is oriented from ws to ws. Moreover, we have the orientation
of other edges. Thus I' contains one of the two pseudo charts as shown in
Fig. 23.

Case (iii). By Lemma 6.2, the two internal edges ej, ez of label m
in G are contained in the closure of the same connected component F' of
S% — Tyy1 (see Fig. 24(f)). Thus the curve e; U e bounds a 2-angled disk

Fig. 24. (a) w1, ws, - ,ws are white vertices. (b),(c),(d) wa,ws € G. (e) w1, w2 € G.
(f) wa, w3 € G.



Properties of Minimal Charts and their Applications VI 141

of Iy, in CI(F), say D. Hence CI(S* — D) is also a 2-angled disk of T,
and by Lemma 5.1 the disk C1(S%? — D) contains a lens. This contradicts
Lemma 4.1. Hence Case (iii) does not occur.

Therefore I' contains one of the RO-families of the two pseudo charts as
shown in Fig. 23. O

The following lemma is not used in the this paper, but is used in the
next paper [11].

LEMMA 8.3. Let I' be a minimal chart of type (m;2,3,2). If Tyt
contain an oval, then ' contains one of the RO-families of the two pseudo
charts as shown in Fig. 25(a) and (b).

Fig. 25. (a),(b) Pseudo charts containing a skew f-curve and an oval of label m + 1. (c)
The skew #-curve of label m + 1. (d) The gray region is the disk D.

Proor. By Corollary 4.3, the graph I, contains an oval G. Since
I',,+1 contain an oval, by Lemma 1.2 the graph I',, 41 contains a skew 6-
curve. Let wi,ws, w3 be the white vertices in the skew 6-curve such that
wy is a BW-vertex with respect to 'y, 1. Let wy, w5 be the white vertices
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in the oval of label m + 1. Then w4, ws are BW-vertices with respect to
I')y+1. Hence by Lemma 6.3(d), there are three cases: (i) wi,wsq € G or
wy,ws € G, (i) we, w3 € G, (iil) wy, ws € G.

Case (ii) and Case (iii). By Lemma 5.2, there exists a lens of I'. This
contradicts Lemma 4.1. Hence Case (ii) and Case (iii) do not occur.

Case (i). Without loss of generality we can assume wi,wy € G. Since
wy,wy € Ty N g1, we,ws € Ty and since T is of type (m;2,3,2), we
have wa, ws € I'y11 Nypo (see Fig. 25(c)). We use the notations as shown
in Fig. 25(c), where e is the terminal edge of label m + 1 at wy, €], ¢/ are
internal edges of label m + 1 at wy, and €, €} are internal edges of label
m + 1 connecting wo and ws.

Without loss of generality, we can assume that

(1) the terminal edge e is oriented outward at w.

Since the terminal edge e is middle at w; by Assumption 2, the two edges
e}, €] are oriented inward at wy. If necessary we reflect the chart I', we can
assume that the edge €, is oriented from ws to ws. Looking at edges around
wa, the edge €} is oriented from w3 to we. Hence we have the orientation
of the other edges of label m 4 2. Let eq, eo be the internal edges of label
m in G. Then by (1) the edges ej, ez is oriented from w; to wy. Hence I'
contains the pseudo chart as shown in Fig. 25(d).

Let D be the 2-angled disk of T',,, with 0D > wi,ws and D Z ws (see
Fig. 25(d)). Let e4 be the terminal edge of label m at wy. There are two
cases: e4 & D or ey C D. If eg ¢ D, then the chart I" contains the pseudo
chart as shown in Fig. 25(a). If e4 C D, then the chart I" contains the pseudo
chart as shown in Fig. 25(b). Therefore I' contains one of the RO-families
of the two pseudo charts as shown in Fig. 25(a),(b). O

The following lemma is not used in the this paper, but is used in the
next paper [11].

LEMMA 84. Let I' be a minimal chart of type (m;2,3,2). If T'py1
contains the graph as shown in Fig. 4(g), then I' contains one of the RO-
families of the two pseudo charts as shown in Fig. 26(a),(b).

PROOF. Suppose that I', 41 contains the graph as shown in Fig. 4(g).
We use the notations as shown in Fig. 26(c) where wi,wy, ws are BW-
vertices. By Corollary 4.3, the graph I';,, contains an oval G. There are seven
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Fig. 26. (a),(b) Pseudo charts containing the graph as shown in Fig. 4(g). (c)
wy,ws, -+ ,ws are white vertices. (d) wi,ws € G. (e) we, w3 € G. (f) ws,ws € G.
(8) wa,ws € G.

cases: (i) w1,w € G, (ii) w1, ws € G (see Fig. 26(d)), (iii) wi,ws € G or
wi,ws € G (see Fig. 26(a)), (iv) we, w3 € G (see Fig. 26(e)), (v) wa,wy € G
or wy, ws € G (see Fig. 26(b)), (vi) w3, ws € G or ws, ws € G (see Fig. 26(f)),
(vii) wy,ws € G (see Fig. 26(g)).

Case (i). By Lemma 5.2, there exists a lens of I'. This contradicts
Lemma 4.1. Hence Case (i) does not occur.

Case (ii). By Lemma 5.3(b), the chart I' is not minimal. This is a
contradiction. Thus Case (ii) does not occur.

Case (iii). We use the notations as shown in Fig. 26(c) where €},
are two internal edges at w;i, es is the internal edge connecting we and ws,
e}, e} are two internal edges at wy, and ef is the internal edge connecting
ws and ws.

If necessary we reflect the chart, we can assume that wy,ws € G. If
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necessary we change the orientation of all the edges, we can assume that
the two edges €], €] are oriented from w; to we. Then the edge ey is oriented
from ws to ws, and the two internal edges of label m in G are oriented from
w4 to wy. Thus the two edges €, €] are oriented inward at wy. Hence the
edge € is oriented from ws to wy. Since ws is a BW-vertex with respect to
[yt1, by Lemma 3.1 the edge ef is oriented from ws to ws. Moreover we
have the orientation of the other edges.

Since wi,wy € I'yy N g1, we, w3 € I'yp1 and since ' is of type
(m;2,3,2), we have wy, wg € I'yyy1 Ny 42. Therefore I' contains the pseudo
chart as shown in Fig. 26(a).

Case (iv). By Lemma 5.1, there exists a lens. This contradicts
Lemma 4.1. Thus Case (iv) does not occur.

Case (v). If necessary we reflect the chart, we can assume that wq, wy €
G. If necessary we change the orientation of all the edges, we can assume
that the two internal edges €],e] of label m + 1 at w; are oriented from
wy to wy. By a similar way as Case (iii), we can show that I" contains the
pseudo chart as shown in Fig. 26(b).

Case (vi). By Lemma 6.2, the two internal edges ej, ey of label m
in G are contained in the closure of the same connected component F' of
S2 — I['ypy1. Thus the curve e; U es bounds a 2-angled disk D of '), with
ws € D (see Fig. 26(f)), and the disk D contains a lens by Lemma 5.1. This
contradicts Lemma 4.1. Thus Case (vi) does not occur.

Case (vii). By the similar way of Case (vi), there exists a lens. This
contradicts Lemma 4.1. Thus Case (vii) does not occur.

Therefore I' contains one of the RO-families of the two pseudo charts as
shown in Fig. 26(a),(b). O

The following lemma is not used in the this paper, but is used in the
next paper [11].

LEMMA 8.5. Let I' be a minimal chart of type (m;2,3,2). If Tyt
contains the graph as shown in Fig. 4(h), then T' contains one of the RO-
families of the two pseudo charts as shown in Fig. 27(a), (b).

PROOF. Suppose that I, 11 contains the graph as shown in Fig. 4(h).
We use the notations as shown in Fig. 27(c) where wi,ws, ws are BW-
vertices, €], €] are two internal edges at w1, €}, is the internal edge connecting
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Fig. 27. (a),(b) Pseudo charts containing the graph as shown in Fig. 4(h). (c)
w1, wa, - ,ws are white vertices. (d) wi,ws € G. (e) w2, w3 € G. (f) wa,ws € G.

wy and ws, €} is the internal edge connecting ws and wy, €5, er are two
internal edges at ws.

By Corollary 4.3, the graph I';,, contains an oval G. There are six cases:
(i) wi, w2 € G or ws,wy € G, (i) wy, w3 € G or ws, ws € G (see Fig. 27(a)),
(iii) wi,wy € G or ws,wy € G (see Fig. 27(b)), (iv) wi,ws € G (see
Fig. 27(d)), (v) w2, w3 € G or wg, w3 € G (see Fig. 27(e)), (vi) wa,wy € G
(see Fig. 27(f)).

Case (i). By Lemma 5.2, there exists a lens of I'. This contradicts
Lemma 4.1. Hence Case (i) does not occur.

Case (ii). If necessary we reflect the chart, we can assume that wy, ws €
G. By Assumption 2, a neighborhood of w3 contains the pseudo chart as
shown in Fig. 14.

If necessary we change the orientation of all the edges, we can assume

that the two edges €], €] are oriented from w; to wy. Then the two internal
edges of label m in G are oriented from w3 to wy, and the two edges €, €}
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are oriented inward at ws. Thus the edge €} is oriented outward at wj.
Hence by Lemma 3.1, the two edges ef, e are oriented from ws to ws. Thus
we have the orientation of the other edges.

Since wi, w3 € I'yy N g1, wo,wy € T'yg1 and since ' is of type
(m;2,3,2), we have wa, wy € I'yp1NTy42. Therefore I' contains the pseudo
chart as shown in Fig. 27(a).

Case (iii). If necessary we reflect the chart, we can assume that
wi,wys € G. If necessary we change the orientation of all the edges, we
can assume that the two edges €/, e] are oriented from w; to wy. By a
similar way as Case (ii), we can show that I' contains the pseudo chart as
shown in Fig. 27(b).

Case (iv). If necessary we change the orientation of all the edges, we
can assume that the two edges €, e/ are oriented from wy to wy. Then

(1) the edge € is oriented from ws to ws (i.e. the edge €} is oriented
inward at ws), and

the two internal edges of label m in G are oriented from ws to wyi. Thus the
two edges e}, el are oriented from wy to ws. Hence the edge €} is oriented
from w3 to wy. Thus the edge € is oriented outward at w3 (see Fig. 27(d)).
However by (1) and Lemma 3.1 we have a contradiction, because ws is a
BW-vertex with respect to I'y,41. Thus Case (iv) does not occur.

Case (v). Without loss of generality we can assume wq,ws € G. If
necessary we reflect the chart, by Assumption 2 (see Fig. 14) the chart T’
contains the pseudo chart as shown in Fig. 27(e). Hence by Lemma 5.1,
there exists a lens. This contradicts Lemma 4.1. Thus Case (v) does not
occur.

Case (vi). By Lemma 5.3(a), the chart I" is not minimal. This is a
contradiction. Thus Case (vi) does not occur.

Therefore I' contains one of the RO-families of the two pseudo charts as
shown in Fig. 27(a),(b). O

9. I0-Calculation

In this section, we shall show that neither I';,41 nor 'y, 42 contains the
graph as shown in Fig. 4(c) for any minimal chart I of type (m;2, 3, 2).

Let I' be a chart, and v a vertex. Let o be a short arc of I in a small
neighborhood of v such that v is an endpoint of «. If the arc « is oriented
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to v, then « is called an inward arc, and otherwise « is called an outward
arc.

Let T" be an n-chart. Let F' be a closed domain with 0F C I'j,_q UT';, U
[ky1 for some label k of T', where I’y = () and T, = (). By Condition (iii) for
charts, in a small neighborhood of each white vertex, there are three inward
arcs and three outward arcs. Also in a small neighborhood of each black
vertex, there exists only one inward arc or one outward arc. We often use
the following fact, when we fix (inward or outward) arcs near white vertices
and black vertices:

(%) The number of inward arcs contained in F'NT'y is equal to the number
of outward arcs in FFNTy.

When we use this fact, we say that we use [0-Calculation with respect to
I'y in F. For example, in a minimal chart I', consider the pseudo chart as
shown in Fig. 28 where

(1) F is a 4-angled disk of T'y_1,

(2) v1,v2,v3,v4 are white vertices in OF with vy € T'x,_o NT'x_; and
V2, 03,04 € L'y N T,

(3) e is a terminal edge of label k — 2 at vy,
(4) e is a terminal edge of label k£ — 1 oriented inward at vs,

(5) for i = 2,4, the edge e; of label k is oriented inward at v;.

Then we can show that w(I’ N IntF) > 1. Suppose w(I' N IntF) = 0. By
Assumption 2, the terminal edge eg contains a middle arc. Thus

(6) neither of edges ass, bss of label k is middle at vz (by Assumption 2,
neither of them is a terminal edge).

Hence by (4),
(7) both of edges ass, bz of label k are oriented inward at vs.

If both of e3 and ey are terminal edges of label k, then by (5), (6), (7) the
number of inward arcs in F'NI'; is four, but the number of outward arcs in
F NT} is two. This contradicts the fact (x). Similarly if one of e3 and ey is
not a terminal edge of label k, then we have the same contradiction. Thus
w(l'NIntF) > 1. Instead of the above argument, we just say that
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Fig. 28. The gray region is the disk F'.

we have w(I' N IntF") > 1 by 10-Calculation with respect to 'y, in F.

LeEMMA 9.1 ([6, Lemma 5.4|). If a minimal chart T' contains the
pseudo chart as shown in Fig. 29, then the interior of the disk D* contains
at least one white vertex, where D* is the disk with the boundary ezUe;Ue*.

LEMMA 9.2. LetT be a minimal chart of type (m;2,3,2). Then neither
[ypt1 nor Tygo contains the graph as shown in Fig. 4(c).

PROOF. Suppose that T',, 41 contains the graph as shown in Fig. 4(c).
By Lemma 8.1, the chart I' contains one of the RO-family of the pseudo
chart as shown in Fig. 22(a). We use the notations as shown in Fig. 22(a)

Fig. 29. The gray region is the disk D*. The label of the edge e is m, and ¢ € {41, —1}.
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where e1, es are the internal edges of label m with e; Ney 3 wy, wo, e3 is the
terminal edge of label m + 1 at w3, and

(1) the two internal edges ey, e5 (possibly terminal edges) of label m + 2
are oriented inward at wy, ws, respectively.

Now, the graph in I',,, ;1 as shown in Fig. 4(c) separates S? into three
disks. One of them contains e;, say Di, and one of them contains the
terminal edge es3, say Ds.

Cramm 1. w(I'NIntD;) > 2 and w(I’ N IntDy) = 0.

PrRoOOF OF CrAIM 1. The curve e Ueg separates the disk D4 into three
disks. One of them contains wy, say D}, and one of them contains ws, say
DY. Apply Lemma 9.1 considering as D* = D} and wj = w4, we have
w(l' N IntD]) > 1. Similarly we can show that w(I' N IntDY) > 1. Since
Dy D DU DY and IntD} NIntD} = ), we have w(I' N IntD;) > 2.

Since I is of type (m;2,3,2), we have w(I') = 7 and w(I'y,+1) = 5. Thus

7=w(l) > w(lms1) +w(TNIntD;) +w('NIntDy) > 542+ w(I'NIntDs).

Hence w(I' N IntDy) = 0. Thus Claim 1 holds. OJ
CLAIM 2. The terminal edge eg is oriented outward at ws.

ProOOF OF CLAIM 2. Suppose that eg is oriented inward at ws. Con-
sidering as F' = Dy and kK = m + 2 in the example of 10-Calculation in
Section 9, the condition (1) implies that we have w(I' N IntDy) > 1. This
contradicts the second equation of Claim 1. Hence the terminal edge es is
oriented outward at ws. Thus Claim 2 holds. [J

Let ass, bsz be the internal edges of label m + 2 at ws in Do such that
ass, es, by lie anticlockwise around ws in this order (see Fig. 22(a)). By
Assumption 2,

(2) the terminal edge es is middle at ws.

CLAIM 3. a3 = e5 and bgz = e4.
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PrROOF OF CLAIM 3. By (2) and Assumption 2, neither ass nor bss is
a terminal edge. Moreover, by Claim 2, both of as3 and b33 are oriented

outward at ws. Thus by the second equation of Claim 1, we have asz = e5
and b33 = e4. Hence Claim 3 holds. [J

Finally we shall show that there exists a lens of I". Let €5 be the internal
edge of label m + 1 with e} > w3, wy (see Fig. 22(a)). By (2), neither e§ nor
b33 is middle at ws.

By (2) and Claim 2, the terminal edge e3 is oriented outward at wz and
middle at w3. Hence by Claim 3, the edge b33 = e4 is oriented from w3 to wy
and eg is oriented from w4 to ws. Thus neither eg nor bss is middle at wy.
Hence the curve eg U b3z bounds a lens in Dy. This contradicts Lemma 4.1.
Therefore I'y, 41 does not contain the graph as shown in Fig. 4(c).

By Lemma 7.1, we can show that I',,12 does not contain the graph as
shown in Fig. 4(c). We complete the proof of Lemma 9.2. [J

10. Shifting Lemma
In this section we shall show that neither I',, 1 nor I';,, 42 contains the

graph as shown in Fig. 4(b) for any minimal chart T of type (m;2,3,2).
Thus by Corollary 7.8 and Lemma 9.2, we obtain the main theorem.

LEMMA 10.1. Let T’ be a chart of type (m;2,3,2). If I' contains the
pseudo chart as shown in Fig. 23(a), then I' is not minimal.

PROOF. Suppose that I" is minimal. We use the notations as shown in
Fig. 23(a). Here ey, ey are internal edges of label m, and e, eg, ass, bsg are
internal edges (possibly terminal edges) of label m + 2 such that

(1) €ff, el are oriented inward at wa, ws, respectively,
(2) ass, bss are oriented outward at ws.

Moreover none of eff, e, ass, bss are middle at ws,ws or ws. Thus by As-
sumption 2,

(3) none of €], eZ, as3, bsg are terminal edges.
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Now, the graph T',, 41 contains the graph as shown in Fig. 4(b). The
graph in I',,, 11 separates S? into three disks. One of them contains the edges
e1 and eg of label m, say D1, and one of them contains the edge €, say Ds.
Moreover, the curve e; U eo separates the disk D; into three disks. One of
them contains wy, say D}. Apply Lemma 9.1 considering as D* = D} and
w3 = wy, we have

(4) w('NIntD}) > 1.

There are three cases: (i) w(I' NIntDy) =0, (i) w(I' N IntDg) = 1, (iii)
w(I' NIntDg) > 2.

Case (i). By using (1), (2) and (3), we have ass = €} and b3z = €.
Thus the curve bss U €5 bounds a lens in Dy. This contradicts Lemma 4.1.
Hence Case (i) does not occur.

Case (ii). Let v be the white vertex in IntDs. Since the five white
vertices wy,we, - ,ws are in I'y,41 and T' is of type (m;2,3,2), we have
v € I'jpy2 NThts. Thus by using (1),(2) and (3), we have a contradiction
by 10-Calculation with respect to I';,49 in Dy. Hence Case (ii) does not
occur.

Case (iii). Since I' is of type (m;2,3,2), we have w(I') = 7 and
w(lym41) = 5. Thus by (4) and the condition w(I' N IntDs) > 2 of this

case,
7=wl) > wlp) +wNIntD)) +w( NIntDy) >5+1+2=8.

This is a contradiction. Hence Case (iii) does not occur.
Therefore the three cases do not occur. Hence I' is not minimal. [

Let I' and IV be C-move equivalent charts. Suppose that a pseudo chart
X of ' is also a pseudo chart of I'. Then we say that I' is modified to I by
C-moves keeping X fized. In Fig. 30, we give examples of C-moves keeping
pseudo charts fixed.

Let I" be a chart. Let a be an arc in an edge of I';,,, and w a white vertex
with w ¢ a. Suppose that there exists an arc 3 in I" such that its end points
are the white vertex w and an interior point p of the arc a. Then we say
that the white vertex w connects with the point p of o by the arc (.

Let a be a simple arc, and p,q points in . We denote by a[p, q| the
subarc of o whose endpoints are p and q.
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C-1-R4
C-1-R4

Fig. 30. C-moves keeping thicken figures fixed.

LeEMMA 10.2 ([6, Lemma 4.2]). (Shifting Lemma) LetT be a chart and
a an arc in an edge of I'y,. Let w be a white vertex of I'y N I'y, where
h =k+ee e {+1,—1}. Suppose that the white vertex w connects with a
point r of the arc a by an arc in an edge e of I',. Suppose that one of the
following two conditions is satisfied:

(1) h>k>m.
(2) h<k<m.

Then for any neighborhood V' of the arc e[w,r| we can shift the white vertex
w to e—e[w,r| along the edge e by C-I-R2 moves, C-I-R3 moves and C-I-R/
moves in V keeping U Titic fized (see Fig. 31).

1<0

PROPOSITION 10.3.  LetI' be a minimal chart of type (m;2,3,2). Then
neither Uy, 11 nor Tyqo contains the graph as shown in Fig. 4(b).

2 K43 o (c) ke2 Kke3!|
L k ke LI¢
), /T — —
rJ NG
k=2 k3 k-2

Fig. 31. k> m and € = +1.
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PROOF. Suppose that I, 11 contains the graph as shown in Fig. 4(b).
By Lemma 8.2 and Lemma 10.1, the chart I' contains one of the RO-family
of the pseudo chart as shown in Fig. 23(b). We use the notations as shown
in Fig. 23(b). Here, €1, e2 are internal edges of label m, and €, ef, e¥, ass, b33
are internal edges (possibly terminal edges) of label m + 2 such that

(1) €ff, el are oriented inward at wa, ws respectively,
(2) ek, ags, bag are oriented outward at ws, w3, w3 respectively.

Moreover, none of €}, 7, as3, bzz are middle at w3z, wy or ws. Thus by As-
sumption 2,

(3) none of €}, ef, ass, bsz are terminal edges.

Now, the graph I',, 41 contains the graph as shown in Fig. 4(b). The
graph in I',, ;1 separates S? into three disks. Omne of them contains the
edges e; and eg, say Di, and one of them contains the edge €], say Ds.
Moreover, the curve e; U ey separates the disk D; into three disks. One of
them contains wy, say D}. Apply Lemma 9.1 considering as D* = D/ and
w3 = wy, we have

(4) w(' NIntD}) > 1.
Cram 1. w(TNIntD;) > 1 and w(I’ N IntDg) > 1.

PRrROOF OF CLAIM 1. By (4) and D} C Dy, we have w(I'NIntD;) > 1.
By (3), neither €] nor ef is a terminal edge. Since ejf, el are oriented
inward at wy,ws respectively by (1), we have w(I' N IntDg) > 1 by I0-

Calculation with respect to I'y, 42 in Dy. O
Cram 2. w(l'NIntD;) =1 and w(I' NIntD}) = 1.

PrROOF OF CLAIM 2. Suppose that w(I' N IntD;) > 2. Since I' is of
type (m;2,3,2), we have w(I') = 7 and w(I'y,4+1) = 5. Thus by the second
inequality of Claim 1

7=wl)>wlm+1) +w@NIntD;) + w(I NIntDy) >5+2+1=38.

This is a contradiction. Thus w(I'NIntD;) < 1. Hence by the first inequality
of Claim 1, we have w(I' N IntD;) = 1.
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Thus by (4) and D} C D;, we have w(I' N IntD}) = 1. Hence Claim 2
holds. OJ

Let wg be the white vertex in IntD}. Since the five white vertices
wy,ws, -+ ,ws are in I'y, 11 and T is of type (m;2,3,2), we have

(5) we € I'my2 N Dipts.

CLAIM 3. as33 D wg or bgg O wg.

PRrROOF OF CLAIM 3. First we shall show that ass = €} or ass > wg.
By (3), the edge ass is not a terminal edge. Moreover, by (2), we have
asz # €5 and agg # bzz. Thus by Claim 2, we have as3 = €/ or azs > we.

Similarly we can show that bzs = €}y or bsg > we.

If ags # wg and bss F wg, then aszz = eﬁl and b3z = eﬁl. This is a
contradiction. Therefore azs > wg or b3z O wg. Thus Claim 3 holds. [J

If ag3 © wg, let e = ags, otherwise let e = b33.

Cramm 4. We can move the white vertex wg from the disk D] to the
outside of Dj.

PROOF OF CLAIM 4. Since the edge e connects the vertex wg in Int D]
and the vertex ws in the outside of D}, the edge e intersects the boundary
0D]. Let x be the point in the edge e with e[wg,x] N D] = z. Since the
edge e is of label m+ 2 and since 9D} consists of the edge e; of label m and
two internal edges of label m + 1, we have

elwg, ¥] Nep = ewg,x] NOD] = .

Thus by (5), the white vertex wg € I'yy 2 N I'yyq3 connects with the point
x in the edge e; of label m by the arc e[wg, x| of label m + 2. Hence by
Shifting Lemma (Lemma 10.2), we can shift the white vertex wg by C-I-
R2 moves, C-I-R3 moves and C-I-R4 moves in a neighborhood of the arc
elwg, x| keeping U I'yio4i fixed. Thus we can shift the white vertex wg
i<0

to the outside of D] by C-moves keeping 0D fixed. Therefore Claim 4
holds. [
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By Claim 2 and Claim 4, we have w(I' N IntD}) = 0. However we

have a contradiction by Lemma 9.1 considering as D* = D} and wj = wa.
Therefore I'y, 11 does not contain the graph as shown in Fig. 4(b).

By Lemma 7.1, we can show that I',,12 does not contain the graph as

shown in Fig. 4(b). We complete the proof of Proposition 10.3. [J

By Corollary 7.8, Lemma 9.2 and Proposition 10.3, we have the main

theorem (Theorem 1.3).
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List of terminologies

k-angled disk
BW-vertex
C-move equivalent pl14

chart

complexity
free edge

hoop

internal edge

inward

inward arc
I0-Calculation pl47
keeping X fixed pl51

lens
loop

middle arc

pl23
pl10

pll13
plld
plld
plld
p120
pll4
pld7

p120
pll7
plld

List of notations

'
w(X)
Int X
0X
CU(X)
aij,bij

alp, q|

pl10
plll
pl16
pll6
pll6
pl137
plbl

middle at v

minimal chart

outward

outward arc

oval

point at infinity oo
pseudo chart

ring

RO-family

simple hoop

skew #-curve

terminal edge

type (ma Ny, N2, 7nk)
w connects with p by an arc §
f-curve

pll4
pll4
pll4
pl47
plll
pllb
pl24
plld
pl137
plld
plll
pl10
pl10
pl51
plll
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