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On a Chern Number Inequality in Dimension 3

By Jheng-Jie Chen

Abstract. We prove c1(X) · c2(X) < c1(X
+) · c2(X+) if X ���

X+ is a 3-fold terminal flip (resp. c1(X) · c2(X) ≤ c1(Y ) · c2(Y ) if
X → Y is a 3-fold elementary contraction contracting a divisor to
a curve), where c1(X) and c2(X) denote the Chern classes. These
provide affirmative answers to two questions by Xie in [Xie].

1. Introduction

In this article, we work over complex number field C.

Based on the works of Mori, Kollár, Reid, Kawamata, Shokurov, and

many others, minimal model conjecture in dimension three was proved (see

[KMM1, M82, M88, KM98]). Further detailed study of three dimensional

elementary birational maps in the minimal model program (MMP) is ex-

pected to be generally useful in three dimensional geometry.

One prominent concern is developing an understanding of Chern num-

bers or Chern classes in the MMP. Recall that c1(X) · c2(X) equals to

24χ(OX) for a smooth 3-fold X. More generally, they are related in [Kaw86]

and [YPG] as follows.

Theorem 1 (Kawamata, Reid). Let X be a normal compact complex

analytic (resp. normal projective) 3-fold with at worst canonical singulari-

ties. Then

χ(OX) =
1

24
c1(X) · c2(X) +

1

24

∑
i

(ri − 1/ri),

where ri is the index for the virtue singularity 1
ri

(1,−1, bi).

The invariant difficulty is known to decrease through a 3-fold termi-

nal flip and an elementary contraction contracting a divisor to a curve.
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Moreover, Chen provided analogous inequalities for the invariant depth in

[CJK15, Proposition 2.1]. Define F (X) :=
∑

i(ri − 1/ri). (Similarly, define

the integer Ξ(X) :=
∑

i ri). In this study, we aim to establish the following

inequalities for F .

Theorem 2. Let f : X → Y be an elementary contraction contract-

ing a divisor to a curve. Then F (X) ≥ F (Y ). Moreover, if the exceptional

divisor of f contains some non-Gorenstein points of X, then F (X) > F (Y ).

Theorem 3. If X ��� X+ is a 3-fold terminal flip, then F (X) >

F (X+).

Note that χ(OX) = χ(OZ) where X is a Q-factorial terminal normal

projective 3-fold and Z is any birational model in the MMP of X. Thus,

the inequality F (X) ≥ F (Y ) is equivalent to the inequality c1(X) · c2(X) ≤
c1(Y ) · c2(Y ) of Chern numbers. This gives positive answers to Problem

3.12 and Problem 3.13 in [Xie].

Elementary contractions contracting a divisor to a non-Gorenstein ter-

minal singularity were completely classified by Kawamata, Hayakawa

and Kawakita in [Kaw96, Haya99, Haya00, Kwk05, Kwk12]. It is not hard

to observe the following weaker version according their explicit classifica-

tions.

Theorem 4 (Kawamata, Hayakawa, Kawakita). Let f : X → Y be a

3-fold elementary contraction contracting a divisor to a point. Then Ξ(X)−
Ξ(Y ) ≥ −2 and F (X) − F (Y ) ≥ −3/2.

Combining Theorem 4 with Theorem 2, Theorem 3 and Xie’s result in

[Xie, Theorem 1.4], we obtain that the second Chern class c2(X) is pseudo-

effective when the Picard number is relatively small (See Corollary 5). No-

tice that the pseudo-effectivity of c2(X) implies the effective non-vanishing

Conjecture for terminal projective threefolds (cf. [Xie, Proposition 4.3]).

Corollary 5. Let X be a Q-factorial terminal projective 3-fold whose

anti-canonical divisor −KX is nef. If the Picard number ρ(X) ≤ 2 +

(2c1(X) · c2(X))/3, then the second Chern class c2(X) is pseudo-effective.

In particular, if X is a Q-factorial Gorenstein terminal projective 3-fold

with −KX nef and ρ(X) ≤ 18, then c2(X) is pseudo-effective.
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Remark 6. During the preparation of this study, Chen Jiang pointed

out that the recent research by Ou [Ou, Corollary 0.5] implies the pseudo-

effectivity of c2. Regardless, we think the comparison of Chern number

c1 · c2 in the MMP is a very interesting question for its own sake. Note that

Cascini and Tasin investigated the difference of c31 via elementary diviso-

rial contractions in [CT, Theorem 1.3]. Then, I think that it is interesting

to consider how 3c1·c2−c31 varies via elementary contractions in dimension 3.

The article is organized as follows. In section 2, we review some basic

results, the classification of non-Gorenstein terminal singularities (Table 1),

and the classification of extremal neighborhoods of Kollár and Mori (Table 2).

In section 3, we establish the inequality F (X) ≥ F (Y ) where f : X → Y is

an analytic elementary contraction contracting a divisor to a curve. In fact,

we use Tables 1 and 2 to determine the possible non-Gorenstein singularities

on Y . For the majority of the cases, we directly derive F (X) ≥ F (Y )

according to the classification. One case requires us to use Mori’s result on

semistable extremal neighborhood in [M02]. In section 4, we prove F (X) >

F (X+) for any analytic 3-fold terminal flip X ��� X+. In some cases,

we are required to apply Mori’s research on semistable flips in [M02] and

Chen-Hacon’s factorization in [CH11, Theorem 3.3]. We prove Theorem 2,

Theorem 3 and Corollary 5 at the end of this article.

2. Preliminaries and Notations

In this section, we recall various notions derived from three dimensional

terminal singularities and some basic properties.

We fix X to be an (algebraic or analytic) normal 3-fold with at worst

terminal singularities. Suppose X ��� Z is a birational map where Z is a

normal variety. Let D be a prime divisor on X. We denote DZ the strict

transform of D on Z. X is called Q-factorial if every Weil divisor D is

Q-Cartier.

Every terminal 3-fold singular point P ∈ X is known to be a quotient

of isolated compound Du Val singularity by Reid in [Reid83]. The index

of P ∈ X is the smallest positive integer r such that rKX is Cartier at P .

All singular points of index r ≥ 2 are called non-Gorenstein points and are

classified explicitly by Mori [M85]. Let P ∈ X be given by the equation

φ(x1, x2, x3, x4) = 0 in C4 with action 1
r (a1, a2, a3, a4). If P is not cAx/4,
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up to a permutation of x1, x2, x3, x4, there exists exactly one invariant,

say x4, satisfying wt(x4) ≡ wt(φ) ≡ 0 (mod r) where wt(x1, x2, x3, x4) :=

(a1, a2, a3, a4) and

wt(φ) := min{
4∑

i=1

aili | the monomial xl11 x
l2
2 x

l3
3 x

l4
4 appears in φ }.

If P is of type cAx/4, the action can be assumed to be 1
4(1, 3, 1, 2). The

axial multiplicity am(P ∈ X) is defined (in [M88, 1a.5]) by

am(P ∈ X) := max{ j ∈ N | xj4 divides the polynomial φ(0, 0, 0, x4)}.

We shall use the axial weight aw(P ∈ X) instead which is defined (see

[Haya99]) by

aw(P ∈ X) :=

{
am(P ∈ X) if p ∈ X is not of type cAx/4

(am(P ∈ X) + 1)/2 if p ∈ X is of type cAx/4

Suppose aw(P ∈ X) = k > 0. If P is not cAx/4, then P ∈ X can be locally

deformed into k cyclic quotient points 1
r (a,−a, 1) (See [YPG, Section 6]).

If P is cAx/4, it can be deformed into one cyclic quotient point 1
4(1,−1, 1)

and k− 1 cyclic quotient points 1
2(1, 1, 1). This collection of cyclic quotient

terminal singularities is called the basket of P ∈ X. Define F (P ∈ X)

(resp. Ξ(P ∈ X)) to be the rational number k(r− 1
r ) (resp. kr). Note that

for each non-Gorenstein point P ∈ X, the dual graph ∆(E) of a general

member E ∈ |−KX | in a neighborhood of P is determined by Reid in [YPG,

Section 6]. We list in Table 1 for the classification and numerical invariants

of various types. Note that if P ∈ X is of type cAx/2, then ∆(E) = Dm+2

where m ≥ 2 is an integer which may be different from the axial weight 2.

For a terminal 3-fold X, define

Ξ(X) :=
∑

P∈Sing(X)

Ξ(P ∈ X), F (X) :=
∑

P∈Sing(X)

F (P ∈ X).

A proper birational morphism f : X → Y is called an elementary con-

traction contracting a divisor to a point Q (resp. a curve Γ) if f∗(OX) = OY ,

the exceptional set Exc(f) = F is an irreducible divisor on X, relative Pi-

card number ρ(X/Y ) = 1, and −KX is f -ample such that f(F ) is a point

Q (resp. a curve Γ).
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Similarly, a proper birational morphism f : X → Y is called a flipping

contraction (resp. flopping contraction) if f∗(OX) = OY , Exc(f) is a curve,

ρ(X/Y ) = 1 and −KX is f -ample (resp. f -trivial). In this case, the flip

(resp. a flop) of f is a birational morphism f+ : X+ → Y where X+ is a

terminal 3-fold such that f+
∗(OX+) = OY , Exc(f+) is a curve, ρ(X+/Y ) =

1 and KX+ is f -ample (resp. f+-trivial). f+ is called the flipped contraction

(resp. a flopped contraction). A curve C in the exceptional set Exc(f) is

called a flipping (resp. flopping) curve. A curve C+ in the exceptional set

Exc(f+) is called a flipped (resp. flopped) curve. Note that C (resp. C+)

might be reducible.

We recall some definitions in [KM92, CH11].

Definition 7. An extremal neighborhood is a proper bimeromorphic

morphism f : X ⊃ C → Y  Q satisfying the following properties.

1. X is an analytic 3-fold with at worst terminal singularities.

2. Y is normal and Q is the distinguished point.

3. f−1(Q) = C is isomorphic to P1.

4. KX · C < 0.

Denote by EX ∈ |−KX | a general element in the extremal neighborhood

X ⊃ C and EY := f(EX). Then EX and EY are normal Du Val surfaces and

the restriction f |EX
: EX → EY is a partial resolution by Kollár and Mori

[KM92, Theorem 2.2]. Moreover, they gave the classification of the possible

extremal neighborhoods which we summarize in Table 2 where ∆(EX) and

∆(EY ) are the corresponding dual graphs, µC⊂X := max{index r(P ) | P ∈
C}, and IA, IIA, IC, IIB, III (resp. IA∨, II∨) denote the local structures

of extremal neighborhoods of primitive points (resp. imprimitive points)

(cf. [M88, Appendix A]).

The extremal neighborhood X ⊃ C is called semistable if ∆(EY ) is

A-type. Otherwise, it is called non-semistable. From Table 2, only cases

2.2.1.1 and 2.2.4 are semistable. The extremal neighborhood X ⊃ C is

called isolated if f |X−C : X −C → Y − {Q} is an isomorphism. Otherwise,

it is called divisorial. If f : X → Y is an isolated extremal neighborhood

(i.e., a flipping contraction) and f+ : X+ → Y is the flipped contraction, we

define µC+⊂X+ := max{index r(P+) | P+ ∈ C+}.
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Definition 8. Suppose P ∈ X is a terminal 3-fold singular point with

index r > 1. We say that g : W → X is a w-morphism if it is an elementary

contraction contracting a divisor to the point P with minimal discrepancy

1/r.

2.1. Cartier index

In this subsection, we collect some known results.

Lemma 9. Let f : X → Y be an elementary contraction contracting a

divisor to a curve Γ. If Q ∈ Γ is a non-Gorenstein point of Y with index r,

then X has a singular point of index ri ≥ 2r such that ri is divisible by r.

Proof. Denote by F the exceptional divisor of f . Let g : W → X

be a resolution of X obtained by successive weighted blowups over singular

points on f−1(Γ). Then we may write

KW = g∗KX +

s∑
i=1

ai
ri
Fi and g∗F = FW +

s∑
i=1

αi

ri
Fi,

where all ai, αi and ri are positive integers. Therefore,

KW = g∗f∗KY + FW +

s∑
i=1

ai + αi

ri
Fi.

Now f ◦ g : W → Y is a resolution of Y . There exists an exceptional

divisor over Y with discrepancy 1
r by [Haya99, Haya00]. Hence for some i,

we have

1

r
=

ai + αi

ri
≥ 2

ri
. �

Lemma 10. If X ��� X+ is a 3-fold terminal flip, then µC⊂X >

µC+⊂X+.

Proof. Let f : X → Y be a flipping contraction and f+ : X+ → Y be

the flipped contraction. Let W be a common resolution of X and X+ and
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g : W → X and g+ : W → X+ be the corresponding morphisms. Then, we

write

KW = g∗KX +
s∑

i=1

ai
ri
Fi = g+∗

KX+ +
s∑

i=1

biFi

where all ai, and ri (resp. bi) are positive integers (resp. rational numbers).

By the negativity lemma, each ai
ri

< bi (cf. [Kol92, Lemma 2.19]).

There exists an exceptional divisor over X+ with discrepancy 1
µC+⊂X+

.

Hence 1
µC+⊂X+

= bi for some i and it follows that

1

µC+⊂X+

= bi >
ai
ri

≥ 1

ri
≥ 1

µC⊂X
. �

From Lemma 9 and Lemma 10, we easily derive the following assertion.

Corollary 11. Let f : X → Y be an elementary contraction contract-

ing a divisor E to a curve Γ. If Γ contains a non-Gorenstein point of Y ,

then E contains at least one non-Gorenstein point (of X) of index greater

than 3. Similarly, if X ��� X+ is a 3-fold terminal flip with µC⊂X = 2,

then X+ has only Gorenstein points on the flipped curves.

The following easy result will be used frequently in our computations.

Lemma 12. Let P ∈ X be a terminal singular point and let D ∈ |−KX |
be an element. Suppose that D is of type En then the general member is of

type Em(m ≤ n), Dm(m < n), or Am(m < n). Similarly, if D is of type

Dn, then the general member is of type Dm(m ≤ n) or Am(m < n). Also,

if D is of type An, then the general member is of type Am(m ≤ n).

Proof. This is the case since corank and Milnor number are semicon-

tinuous. See [GLS, Corollary 2.49, 2.52, 2.54] for details. �

3. Inequalities for Analytic Elementary Contractions Contract-

ing a Divisor to a Curve

In this section, we verify the desired inequalities Ξ(X) ≥ Ξ(Y ) and

F (X) ≥ F (Y ) for every divisorial extremal neighborhood f : X ⊃ C → Y 
Q. The computations base on the classification in Table 2.
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For our purpose, we may assume that Q is a non-Gorenstein point of

index r′ > 1 and axial weight k′. Furthermore, we have the following obser-

vation.

Proposition 13. Let f : X ⊃ C → Y  Q be an extremal neighbor-

hood that contracts a divisor to a curve. Then the point Q cannot be of type

cE/2, cD/3 nor cAx/4.

Proof. Denote by E ∈ | −KY | a general member near Q ∈ Y .

Suppose that Q ∈ Y is of type cE/2. Since the dual graph ∆(E) is of

type E7 by Table 1, it follows from Lemma 12 that the extremal neighbor-

hood must be of type 2.2.1′.3. By Lemma 9, µC⊂X ≥ 4, which is impossible.

Similar argument shows that Q cannot be of type cD/3.

Suppose Q ∈ Y is of type cAx/4. Then ∆(E) is D-type. By Lemma

12 and Table 2, the extremal neighborhood is non-semistable and each non-

Gorenstein point on X has index 2, 4 or an odd integer r ≥ 3. By Lemma

9, the fiber f−1(Q) = C contains a non-Gorenstein point whose index is

greater than 7 and is divisible by 4, which is impossible. �

Proposition 14. Let f : X ⊃ C → Y  Q be an extremal neigh-

borhood that contracts a divisor to a curve. Then Ξ(X) ≥ Ξ(Y ) and

F (X) ≥ F (Y ). Moreover, if C contains a non-Gorenstein point of X,

then F (X) > F (Y ).

Proof. Since f is an isomorphism outside the exceptional divisor, by

abusing of notations, one may assume

Ξ(X) =
∑

P∈C∩Sing(X)

Ξ(P ∈ X) (resp. F (X) =
∑

P∈C∩Sing(X)

F (P ∈ X) ),

and Ξ(Y ) = Ξ(Q ∈ Y ) (resp. F (Y ) = F (Q ∈ Y )). Furthermore, we

may assume that Q ∈ Y is a non-Gorenstein point. From Proposition 13

and Table 1, we divide the proof into three parts according to the types of

Q ∈ Y .

Denote r′ (resp. k′) to be the index (resp. axial weight) of Q ∈ Y .

Case Q ∈ Y is of type cAx/2: By Lemma 9 and Table 1, we have

µX⊃C ≥ 4. In particular, Ξ(X) ≥ 4 = Ξ(Y ) and F (X) > 3 = F (Y ).
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Case Q ∈ Y is of type cD/2: Since the dual graph of a general mem-

ber in | − KY | near Q ∈ Y is of type D2k′ , the extremal neighborhood

is non-semistable. Since µX⊃C ≥ 4, it remains to consider the extremal

neighborhood in the cases 2.2.1.3, 2.2.1′.4, 2.2.2, 2.2.2′, 2.2.3 and 2.2.3′. In

the cases 2.2.1.3 and 2.2.1′.4, we have EX � EY ∈ | −KY | near Q. Since

∆(EX) = ∆(EY ) = D2k+1, by Lemma 12, this gives 2k + 1 ≥ 2k′. Thus,

Ξ(X) = 2k + 2 > 2k′ = Ξ(Y ) and F (X) = (6k + 9)/4 > 3k′/2 = F (Y ). In

the case 2.2.3, we have EX �� EY ∈ | −KY | and m ≥ 3 is odd. By Lemma

12, one sees Ξ(X) = r + 2k ≥ 2k′ = Ξ(Y ) and so

F (X) = r − 1

r
+

3k

2
>

3r

4
+

3k

2
≥ 3k′

2
= F (Y ).

Computations in the cases 2.2.2, 2.2.2′ and 2.2.3′ are similar to the above

case 2.2.3 and we omit it.

Case Q ∈ Y is of type cA/r′: If the extremal neighborhood X ⊃ C

contains exactly one non-Gorenstein point, by Lemma 9, the computations

are similar to previous cases and we leave it to the reader. From now on,

we may assume X ⊃ C contains at least two non-Gorenstein points.

Suppose X ⊃ C is the semistable case 2.2.4. The dual graphs are

∆(EX) = Ar1k1−1 + Ar2k2−1,∆(EY ) = Ar1k1+r2k2−1. By Lemma 12, it

follows that Ξ(Y ) = r′k′ ≤ r1k1 + r2k2 = Ξ(X). From [M02, Theorem

4.5] and Lemma 9, one has r′ = gcd(r1, r2) ≤ min{r1, r2} and r1 �= r2. If

k1 + k2 > k′, then

F (Y ) − F (X) < (k1 + k2)

(
r′ − 1

r′

)
− k1

(
r1 −

1

r1

)
− k2

(
r2 −

1

r2

)

= k1

(
r′ − 1

r′
− r1 +

1

r1

)
+ k2

(
r′ − 1

r′
− r2 +

1

r2

)
≤ 0.

We may assume that k1 + k2 ≤ k′. Then k1
r1

+ k2
r2

< k1
r′ + k2

r′ ≤ k′
r′ and

F (Y ) − F (X) = Ξ(Y ) − Ξ(X) +

(
k1

r1
+

k2

r2
− k′

r′

)
< 0.

Finally, we claim that X ⊃ C is neither in the case 2.2.3 nor in the case

2.2.3′. Suppose not. C contains two non-Gorenstein points of indices r and

2 (and probably a Gorenstein point) where r is odd. Note that −KX ·C =

−1/2r by [KM92, (2.12)] and [M07]. Thus, by [M88, Corollary 1.10], the
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extremal neighborhood X ⊃ C is locally primitive. By [M88, Corollary

1.12], 1 < r′ = gcd(r, 2) = 1 gives a contradiction. This completes the proof

of Proposition 14. �

4. Inequalities for Analytic 3-Fold Terminal Flips

In this section, we prove the inequalities Ξ(X) ≥ Ξ(X+) and F (X) >

F (X+) for any analytic 3-fold terminal flip X ��� X+.

We start with the following useful result which can be viewed as an

application of [KM92, Theorem 2.2] (cf. [MP2, Proposition 2.3]).

Theorem 15. Suppose X ⊃ C is an isolated extremal neighborhood

and X ��� X+ is the flip. Let EX ∈ |−KX | be a general element and

EX+ ∈ |−KX+ | be its strict transform. Then EX+ is normal near the

flipped curve and has at worst Du Val singularities. Moreover, if S is the

minimal resolution of EX , then the induced rational map S ��� EX+ is a

morphism.

Proof. Let f : X → Y be a flipping contraction and f+ : X+ → Y be

the flipped contraction of f . By [KM92, Theorem 2.2], the surfaces EX and

EY are normal and have at worst Du Val singularities and the restriction

morphism f |EX
: EX → EY is crepant. By inversion of adjunction, the pair

(X,EX) is canonical. Since the birational map X ��� X+ is (KX + EX)-

flop, the pair (X+, EX+) is canonical. By adjunction, the surface EX+ is

normal and has at worst Du Val singularities.

Because KEX+ = OEX+ is f+|EX+ -trivial, the restriction morphisms

EX → EY and f+|EX+ : EX+ → EY are both crepant. Hence S is also the

minimal resolution of EY . �

The isolated extremal neighborhoods are classified by Kollár and Mori

in Table 3. They are named k1A, cD/3, IIA, IC, kAD, k2A according to

the general element E ∈ |−KX | of X ⊃ C. This classification enables us to

study the non-Gorenstein points on the flipped curve C+ when X ��� X+

is an analytic 3-fold terminal flip.

To simplify the notions, we denote P the non-Gorenstein point (resp.

P1, P2 the non-Gorenstein points) on the flipping curve C with index r and

axial weight k (resp. indices r1, r2 and axial weights k1, k2). We denote P+
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the non-Gorenstein point (resp. P+
1 , P+

2 , ..., P+
n the non-Gorenstein points)

on the flipped curve C+ with index r+ and axial weight k+ (resp. indices

r+
1 , r

+
2 , · · · , r+

n and axial weights k+
1 , k

+
2 , ..., k

+
n ).

Proposition 16. Suppose X ⊃ C is an isolated extremal neighborhood

and C+ is the flipped curve of the flip X ��� X+. Then any point on the

flipped curve C+ ⊂ X+ cannot be of type cE/2, cD/3 nor cAx/4.

Proof. If P+ ∈ C+ ⊂ X+ is of type cE/2 (resp. cD/3), then the dual

graph of a general member of P+ ∈ X+ is of type E7 (resp. E6) by Table

1. The dual graph ∆(EY ) is at worst E6 by Table 3. As C+ corresponds to

one vertex of ∆(EY ), ∆(EX+) is better than ∆(EY ). This contradicts to

Lemma 12.

In the semistable cases k1A, k2A, every non-Gorenstein point P+ ∈
C+ ⊂ X+ is of type cA/r+ by Lemma 12. In the non-semistable cases

cD/3, IIA, IC, kAD, every non-Gorenstein point on the flipped curve C+

has index 2 or 3 by [KM92, Theorem 13.17, Theorem 13.18]. Thus C+

cannot contain singular points of type cAx/4. �

Proposition 17. If the extremal neighborhood X ⊃ C is isolated and

X ��� X+ is the flip, then Ξ(X) ≥ Ξ(X+) and F (X) > F (X+).

Proof. Note that X ��� X+ is an isomorphism outside C. For our

purpose, one may assume that X has only Gorenstein singularities outside

C. We divide it into two cases.

We first deal with the non-semistable extremal neighborhoods.

Case cD/3: The dual graphs are ∆(EX) = ∆(EY ) = E6. There are at

most one singular point P+ of index 2 on C+ by [KM92, Theorem 13.17,

Appendix]. Since EX+ is a partial resolution of EY and ∆(EY ) = E6, by

Lemma 12, the dual graph of a general member in | −KX+ | near P+ ∈ X+

is An(n < 6) or Dn(n < 6). By Proposition 16, P+ ∈ X+ is of type cA/2,

cAx/2 or cD/2 of axial weights ≤ 3,= 2, < 3 respectively. It is then easy

to verify the inequalities for Ξ and F .

The computations in the cases IC and kAD are similar.

Case IIA: The dual graphs are ∆(EX) = ∆(EY ) = D2k+1. If C+ contains

only one singular point of higher index, we derive the inequalities as in the

previous cases. We may assume that C+ contains precisely two singular
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points P+
1 , P+

2 with r+
1 = 2 and r+

2 = 3 by [KM92, Theorem 13.17, Ap-

pendix]. By Proposition 16, P+
1 ∈ X+ is one of type cA/2 or cAx/2 or

cD/2 and P+
2 ∈ X+ is of type cA/3. By Theorem 15, the minimal resolu-

tion of EY dominants EX+ and so C+ corresponds to one vertex of ∆(EY ).

By Lemma 12, Ξ(X) = 2k + 2 > 2k+
1 + 3k+

2 = Ξ(X+). Together with the

following claim, we derive F (X) = 6k+9
4 >

3k+
1

2 +
8k+

2
3 = F (X+).

Claim 18. k+
2 = 1.

Proof. Since the flipped curve C+ contains two non-Gorenstein

points, by classification in [KM92, Theorem 7.2, Theorem 13.17, and Ap-

pendix A.2], the extremal neighborhood X ⊃ C  P is in [KM92, Appendix

(A.2.2.1)]. That is,

(X,P ) = (y1, y2, y3, y4;α)/Z4(1, 1, 3, 2; 2) ⊃ C = y1-axis/Z4,

and α = 0 · y4 + y2
3 + g(y1, y2)y2 + · · · ∈ (y2, y3, y4)

where g(y1, y2) is a nonzero linear form in y1, y2 with the condition

α ≡ y1y2 mod (y2, y3, y4)
2.

By a coordinate change, we may assume that α = y2
1 + y2

3 + f(y2, y4) where

y2
2 appears in f(y2, y4). If we put τ -wt(y2) = 1/4, and τ -wt(y4) = 2/4,

then τ -wt(f(y2, y4)) = τ -wt(y2
2) = 1/2. From [CH11, Theorem 3.3], the flip

X ��� X+ can be factored into the diagram

W
h ���������

g

��

W ′

g′

��

X ���������

f
��

��
��

��
��

X+

f+
����

��
��

��

Y

where g is a w-morphism, g′ is an elementary divisorial contraction, and h

is a composition of flips and probably a flop. Denote by G the exceptional

divisor of g. By [Haya99, Theorem 7.4, Theorem 7.9], the w-morphism

g : W → X with center P is actually the weighted blowup with weight

wt(y1, y2, y3, y4) = (
1

4
,
1

4
,
3

4
,
2

4
) or (

5

4
,
1

4
,
3

4
,
2

4
),
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and the non-Gorenstein points (of W ) on G consist of a cyclic quotient

point of index ≤ 5 and at worst a point cD/2. Let k′′ be axial weight of the

singular point cD/2. We have Ξ(X) = Ξ(W ) + 1. Note that singularities

are unchanged under a flop [Kol89, Theorem 2.4]. By Lemma 10, the strict

transform GW ′ contains no non-Gorenstein point (of W ′) of index greater

than 5. Since P+
2 is a point of index 3 in the flipped curve C+, by Lemma

9, the center g′(GW ′) is a point.

Case k′′ < 2: We have 6+2k′′ ≥ Ξ(W )+1 = Ξ(X) > Ξ(X+) = 2k+
1 +3k+

2 .

This gives k+
2 = 1.

Case k′′ ≥ 2: If Wj ��� Wj+1 is a flip which factors through h : W ��� W ′,
then the flipping curve Cj ⊂ Wj contains no point of types cAx/4, cD/3

and cE/2 (resp. cD/2) of Wj by Proposition 16 (resp. by Table 3 and [M07,

Remark 1]). In particular, W is isomorphic to W ′ in an open neighborhood

of the singular point cD/2. If the center g′(GW ′) of g′ has index 3, it must

be P+
2 . From Kawakita’s classification in [Kwk05, Theorem 1.2], g′ is a

weighted blow up and every non-Gorenstein point of W ′ on the exceptional

divisor GW ′ is either a cyclic quotient or cA/3. This is impossible. Thus, we

may assume that the center of g′ has index < 3. Similar to the computations

in the above case cD/3, the inequality for Ξ holds every isolated extremal

neighborhood. In particular, each Ξ(Wj) ≥ Ξ(Wj+1). This gives

5 ≥ Ξ(W ) − 2k′′ ≥ Ξ(W ′) − 2k′′ ≥ Ξ>2(W
′) ≥ Ξ>2(X

+) = 3k+
2 ,

where Ξ>2(X) is temporarily defined by

Ξ>2(X) :=
∑

P∈Sing(X)
index r(P )>2

Ξ(P ∈ X).

So k+
2 = 1 and the proof of claim is completed. �

Next, we deal with semistable cases.

Case k1A: The dual graphs are ∆(EX) = ∆(EY ) = Ark−1. Let

P+
1 , P+

2 , ..., P+
n be the non-Gorenstein singularities on C+. By Lemma 12,

they are of types cA/r+
1 , cA/r

+
2 , ..., cA/r

+
n respectively. By Lemma 12 again,

Ξ(X) = rk ≥
∑n

i=1 r
+
i k

+
i = Ξ(X+). From Lemma 10, all r+

i < r.
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Suppose that k >
∑n

i=1 k
+
i . Then

F (X) − F (X+) >

(
n∑

i=1

k+
i

)(
r − 1

r

)
−

n∑
i=1

k+
i

(
r+
i − 1

r+
i

)

=
n∑

i=1

k+
i

(
r − 1

r
− r+

i +
1

r+
i

)
> 0.

Suppose that k ≤
∑n

i=1 k
+
i . Since each r+

i < r, we see that

r+
1 r

+
2 · · · r+

n k ≤ r+
1 r

+
2 · · · r+

n

n∑
i=1

k+
i < rr+

2 r
+
3 · · · r+

n k
+
1 + · · · + r+

1 · · · r+
n−1rk

+
n .

We obtain

F (X) − F (X+) = Ξ(X) − Ξ(X+) −
(
k

r
−

n∑
i=1

k+
i

r+
i

)
> 0.

Case k2A: By Mori’s classification in [M02, Theorem 4.7], the singularities

on C+ consist of two points P+
1 and P+

2 of types cA/r+
1 and cA/r+

2 . We

have ∆(EX) = Ar1k1−1+Ar2k2−1,∆(EY ) = Ar1k1+r2k2−1 and Ξ(X) = r1k1+

r2k2 ≥ r+
1 k

+
1 + r+

2 k
+
2 = Ξ(X+). Then, it follows from Lemma 19 that

r1 ≥ r+
1 , r2 ≥ r+

2 , k1 ≤ k+
1 , and k2 ≤ k+

2 . Furthermore, one sees either

r1 > r+
1 or r2 > r+

2 by Lemma 10. So r+
1 k1 ≤ r1k

+
1 and r+

2 k2 ≤ r2k
+
2 and

F (X) − F (X+) = Ξ(X) − Ξ(X+) −
(
k1

r1
− k+

1

r+
1

+
k2

r2
− k+

2

r+
2

)
> 0.

This completes the proof of Theorem 3. �

In order to give the inequality F (X) > F (X+) in the case k2A, we need

the following key relations of indices and axial weights by using Mori’s study

in [M02]. See also [MP2, (2.3.5)].

Lemma 19. Suppose X ⊃ C is in the case k2A. Let the singular points

on the flipping curve C (resp. flipped curve C+) be of types cA/r1 and cA/r2
with the corresponding axial weights k1 and k2 (resp. cA/r+

1 and cA/r+
2

with the corresponding axial weights k+
1 and k+

2 ). Then, by rearranging the

subindices 1 and 2, we have r1 ≥ r+
1 , r2 ≥ r+

2 , k1 ≤ k+
1 , and k2 ≤ k+

2 .
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Proof. By classification of Mori in [M02, Theorem 4.7], there are

precisely two singularities P+
1 , P+

2 of types cA/r+
1 , cA/r

+
2 on C+. We adopt

the notations in [M02] to prove the inequalities. Put d(i) = mi = ri and

αi = ki for i = 1, 2. From [M02, Definition 3.2], Mori defined the sequences

d(n), e(n) ∈ Z by

d(n + 1) + d(n− 1) = δρnd(n) and

e(n + 1) + e(n− 1) = δρne(n) + δαn−2 − αn−1,2.

From [M02, Definition 3.2, Corollary 4.1, Definition 4.2, Theorem 4.7], there

exists a smallest positive integer k ≥ 3 satisfying the indices m+
1 = d(k −

1) > 0 and m+
2 = −d(k) > 0 and the corresponding axial weights αk−1 +

ρk−1e(k + 1) and αk−2 + ρk−2e(k), respectively. Here α3 = α1(ρ1 − 1),

α4 = α2(ρ2 − 1) and each ρi = ρi+2j , αi = αi+4j for all integers i, j. Note

that e(k), e(k+1) > 0 if k ≥ 4 by [M02, Corollary 3.8]. From [M02, Lemma

3.3.1, Corollary 3.4], it follows that

m+
1 = d(k − 1) < d(k − 3) < · · · < d(1) ( or d(2) ) and

m+
2 = −d(k) = d(k − 2) − δρk−1d(k − 1)

< d(k − 2) < d(k − 4) < · · · < d(2) ( or d(1) ).

Case k ≥ 7: By [M02, Lemma 3.5, Corollary 3.7], we see e(n) ≥ α1 +α2 for

all n ≥ 7. In particular, we have the indices m+
1 = d(k − 1), m+

2 = −d(k)

with the corresponding axial weights αk−1 + ρk−1e(k + 1) ≥ α1 + α2, and

αk−2 + ρk−2e(k) ≥ α1 + α2, respectively.

Case k = 6: By the equality α4 = α2(ρ2 − 1), we may assume that ρ2 = 1.

By [M02, Remark 3.6.1, Corollary 3.8], we have

(δ2ρ2 + ρ1 − 3)δρ1α1 + (δ2ρ1 − 1)α2 = e(6) > 0.

So either δ > 1 or ρ1 > 1. This gives the inequality e(6) ≥ α2. We have

the indices m+
1 = d(5) < d(1), m+

2 = −d(6) < d(2) with the corresponding

axial weights α5 + ρ5e(7) ≥ 2α1 + α2, and α4 + ρ4e(6) ≥ α2, respectively.

Case k = 5: We have the indices m+
1 = d(4) < d(2), m+

2 = −d(5) <

d(1) with the corresponding axial weights α4 + ρ4e(6), and α3 + ρ3e(5),

respectively. We see e(6) ≥ α2 as in the case k = 6. So α4 + ρ4e(6) ≥ α2.

From the equality α3 = α1(ρ1 − 1), we may assume that ρ1 = 1. By [M02,
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Corollary 3.8], e(6) > 0. So either δ > 1 or ρ2 > 1. From [M02, Remark

3.6.1], we have

α3 + ρ3e(5) = e(5) = (δ2ρ2 − 1)α1 + δα2 ≥ α1 + δα2 > α1.

Case k = 4: Suppose ρ1 > 1. We have the indices m+
1 = d(3) < d(1),

m+
2 = −d(4) < d(2) with the corresponding axial weights α3 + ρ3e(5) >

α1 + α2, and α2 + ρ2e(4) ≥ α1 + α2, respectively.

Suppose that ρ1 = 1 and e(5) < α1. In this case, we see δ = 1 and

ρ2 = 1. We have the indices m+
1 = d(3) = d(2) − d(1) < d(2), m+

2 =

−d(4) = d(1) with the corresponding axial weights α3 +ρ3e(5) = e(5) = α2,

and α2 + ρ2e(4) = α1 + α2 > α1, respectively.

Case k = 3: We have the indices m+
1 = d(2), m+

2 = −d(3) < d(1) and the

axial weights α2 + ρ2e(4) > α2, α1 + ρ1e(3) = α1, respectively. �

5. Proofs of Theorem 2, 3 and Corollary 5

Proof of Theorem 2. Suppose f : X → Y is an elementary contrac-

tion contracting a divisor a curve Γ (possibly with reducible fibers). Let Q

be a point in Γ and Xq → X be an analytic Q-factorialization of the pair

(X, f−1(Q)) as in [Kaw88, Corollary 4.5’]. Run the MMP from Xq over the

germ (Y,Q) in the analytic category: Xq ��� X ′ where X ′ is a minimal

model over (Y,Q). Since the composition Xq → X → Y has one dimension

fibers, the birational map Xq ��� X ′ is factored into a sequence of flips, ex-

tremal divisorial contractions that contract a divisor to a curve (cf. [MP2,

3.1.2]). The map X ′ → Y is either the identity or a small crepant contrac-

tion. The inequality F (X) ≥ F (Y ) follows from Proposition 14, Proposition

17 and Remark 20. �

Remark 20. If ν : X1 → X2 is a small proper bimeromorphic (resp.

small projective birational) morphism between normal compact complex

analytic (resp. normal projective) 3-folds with only canonical singularites,

then ν∗c2(X1) = c2(X2), c1(X1) · c2(X1) = c1(X2) · c2(X2) and F (X1) =

F (X2) by Theorem 1.

Proof of Theorem 3. The argument is similar to that of Theorem

2. Suppose f : X → Y is a flipping contraction (possibly with reducible

flipping curves) and X ��� X+ is the 3-fold terminal flip in the algebraic
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category. Let Xq → X be an analytic Q-factorization (cf. [Kaw88, Corollary

4.5’]) and run the MMP from Xq over Y in the analytic category. By a finite

sequence of analytic flips, we obtain a minimal model X ′ and a small crepant

morphism X ′ → X+ (cf. [Kaw88, argument of Proposition 8.4] or [MP2,

(3.1.2)]). The inequality F (X) > F (X+) follows from Proposition 17 and

Remark 20. �

Proof of Corollary 5. Researchs by Miyaoka, Kollár, Mori, Tak-

agi, Keel, Matsuki, McKernan and Xie [Miy, KMMT, KMM04, Xie] show

that c2(X) is pseudo-effective unless the numerical dimension ν(−KX) is

2 and the irregularity q(X) is 0. We may assume that X is a Q-factorial

terminal projective 3-fold with −KX nef, ν(−KX) = 2, q(X) = 0 and

ρ(X) ≤ 2 + (2c1(X) · c2(X))/3.

Recall that the conditions −KX nef and ν(−KX) = 2 imply c1(X) ·
c2(X) ≥ 0 by [KMM04, Corollary 6.2]. Run the MMP from X and let X =

X0 ��� X1 ��� X2 ��� · · · ��� Xt be a sequence of elementary divisorial

contractions and flips such that Xt → S is a Mori fiber space. Suppose j is

any nonnegative integer less than t + 1. If ρ(Xj) ≥ 2, we see that c1(Xj) ·
c2(Xj) ≥ 0 by Theorems 2, 3 and 4. If ρ(Xj) = 1, so is ρ(Xt). In particular,

Xt is a Fano 3-fold. We have j = t and c1(Xj).c2(Xj) = c1(Xt).c2(Xt) ≥
0 by [KMMT]. Applying to [Xie, Theorem 1.2], we obtain the pseudo-

effectivity of c2(X). Furthermore, if X is Q-factorial and Gorenstein, then

c1(X).c2(X) = 24χ(OX) = 24 and thus 2 + (2c1(X) · c2(X))/3 = 18. This

completes the proof of Corollary 5. �

Acknowledgements. The author would like to thank Professor Jungkai

Alfred Chen for extensive help and invaluable discussion and suggestions.

He is also grateful to Professors Kollár, Mori and Professor Prokhorov who

kindly remind him of the easier proof of Theorem 15 and information for

Lemma 19. He expresses his gratitude to Professor Kawamata for useful

discussion and comments. He would like to thank the anonymous referees

for helpful comments and modifications. The author was partially supported

by NCTS and MOST of Taiwan.

References

[CJK14] Chen, J. A., Factoring threefold divisorial contractions to points, Ann.



106 Jheng-Jie Chen

Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 no. 2, (2014), 435–463.
[CJK15] Chen, J. A., Birational maps of 3-folds, Taiwanese J. Math. 19 no. 6,

(2015), 1619–1642.
[CH11] Chen, J. A. and C. D. Hacon, Factoring 3-fold flips and divisorial con-

tractions to curves, J. Reine Angew Math. 657 (2011), 173–197.
[CT] Cascini, P. and L. Tasin, On the Chern numbers of a smooth threefold,

Trans. Amer. Math. Soc. 370 no. 11, (2018), 7923–7958.
[GLS] Greuel, G.-M., Lossen, C. and E. Shustin, Introduction to singulari-

ties and deformations, Springer Monographs in Mathematics, Springer,
Berlin, (2007).

[Haya99] Hayakawa, T., Blowing ups of 3-dimensional terminal singularities,
Publ. Res. Inst. Math. Sci. 35 no. 3, (1999), 515–570.

[Haya00] Hayakawa, T., Blowing ups of 3-dimensional terminal singularities II,
Publ. Res. Inst. Math. Sci. 36 no. 3, (2000), 423–456.

[Kwk05] Kawakita, M., Threefold divisorial contractions to singularities of
higher indices, Duke Math. J. 130 no. 1, (2005), 57–126.

[Kwk12] Kawakita, M., Supplement to classification of threefold divisorial con-
tractions, Nagoya Math. J. 206 (2012), 67–73.

[Kaw86] Kawamata, Y., On the plurigenera of minimal algebraic 3-folds with
K≡0, Math. Ann. 275 no. 4, (1986), 539–546.

[Kaw88] Kawamata, Y., Crepant blowing-up of 3-dimensional canonical singu-
larities and its application to degenerations of surfaces, Ann. Math. (2)
127 no. 1, (1988), 93–163.

[Kaw96] Kawamata, Y., Divisorial contractions to 3-dimensional terminal
quotient singularities. Higher-dimensional complex varieties (Trento,
1994), de Gruyter, Berlin, (1996), 241–246.

[KMM1] Kawamata, Y., Matsuda, K. and K. Matsuki, Introduction to the min-
imal model problem, in Algebraic Geometry Sendai 1985, T. Oda ed.,
Adv. Stud. Pure Math., Kinokuniya, Tokyo, and North-Holland, Am-
sterdam 10, (1987), 283–360.

[KMM04] Keel, S., Matsuki, K. and J. McKernan, Corrections to ”log abundance
theorem for threefolds”, Duke Math. J. 122 no. 3, (2004), 625–630.

[Kol89] Kollár, J., Flops, Nagoya Math. J. 113 (1989), 15–36.
[Kol92] Kollár, J., et al., Flips and abundance for algebraic threefolds. Papers

from the Second Summer Seminar on Algebraic Geometry held at the
University of Utah, Salt Lake City, Utah, August 1991. Astérisque 211
(1992). Société Mathématique de France, Paris, (1992), 1–258.

[KM92] Kollár, J. and S. Mori, Classification of three-dimensional flips, J.
Amer. Math. Soc. 5 no. 3, (1992), 533–703.

[KM98] Kollár, J. and S. Mori, Birational geometry of algebraic varieties. With
the collaboration of C. H. Clemens and A. Corti. Translated from the
1998 Japanese original. Cambridge Tracts in Mathematics, 134, (1998),



On a Chern Number Inequality in Dimension 3 107

Cambridge University Press, Cambridge.
[KMMT] Kollár, J., Miyaoka, Y., Mori, S. and H. Takagi, Boundedness of canon-

ical Q-Fano 3-folds, Proc. Japan Acad. Ser. A Math. Sci. 76 no. 5,
(2000), 73–77.

[Miy] Miyaoka, Y., The Chern classes and Kodaira dimension of a minimal
variety, Adv. Stud. Pure Math. 10, Kinokuniya, Tokyo, (1987), 449–
476.

[M82] Mori, S., Threefolds whose canonical bundles are not numerically ef-
fective, Ann. Math. 116 no. 1, (1982), 133–176.

[M85] Mori, S., 3-dimensional terminal singularities, Nagoya Math. J. 98
(1985), 43–66.

[M88] Mori, S., Flip theorem and the existence of minimal models for 3-folds,
J. Amer. Math. Soc. 1 no. 1, (1988), 117–253.

[M02] Mori, S., On semistable extremal neighborhoods. Higher dimensional
birational geometry (Kyoto 1997), Adv. Stud. Pure Math. 35 (2002),
157–184.

[M07] Mori, S., Errata to: ”Classification of three-dimensional flips”, [J.
Amer. Math. Soc. 5 no. 3, (1992), 533–703] by J. Kollár and Mori,
J. Amer. Math. Soc. 20 no. 1, (2007), 269–271.

[MP1] Mori, S. and Yu. Prokhorov, On Q-conic bundles, Publ. Res. Inst.
Math. Sci. 44 no. 2, (2008), 315–369.

[MP2] Mori, S. and Yu. Prokhorov, On Q-conic bundles. II, Publ. Res. Inst.
Math. Sci. 44 no. 3, (2008), 955–971.

[Ou] Ou, W., On generic nefness of tangent sheaves, arXiv:1703.03175.
[Reid83] Reid, M., Minimal models of canonical threefolds. Algebraic Varieties

and Analytic Varieties (S. Iitaka, ed.), Adv. Stud. Pure Math. 1 (1983),
131–180.

[YPG] Reid, M., Young person’s guide to canonical singularities, Proc. Sym-
pos. Pure Math. 46 (1987), 345–414.

[Xie] Xie, Q., On pseudo-effectivity of the second Chern classes for terminal
threefolds, Asian J. Math. 9 no. 1, (2005), 121–132.

(Received December 23, 2019)
(Revised August 14, 2020)

Department of Mathematics
National Central University
No. 300, Zhongda Rd.
Zhongli District, Taoyuan City 32001
Taiwan
E-mail: jhengjie@math.ncu.edu.tw


