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Bohr-Sommerfeld Quantization Rules Revisited: The

Method of Positive Commutators (Erratum)

By Abdelwaheb Ifa, Hanen Louati and Michel Rouleux

Abstract. We supply some corrections to our previous paper
[IfaLouRo].

0. Introduction

In our paper [IfaLouRo] formulae (3.26) and (3.27) (WKB solutions in

the position representation) have to be corrected at order h. This is irrel-

evant in Sect.3 since calculations leading to Bohr-Sommerfeld quantization

rule are carried over from Fourier representation, and the WKB solution

(in position representation) at the focal point can be recovered by station-

ary phase in Lemma 3.4. However, formula (3.27) has been used in Sect.4

in case the phase function ϕ± is S(t;E) = f−1
0 (E)t . This entails the ex-

pressions (4.6) of the second term for the asymptotics of the semi-classical

action Sh(E) in action-angle coordinates. The fact that S(t;E) is linear in t

simplifies considerably the computation leading in general to the correct for-

mula (3.27). But the direct computation of WKB solutions in the position

representation would also lead to a variant of our proof of Bohr-Sommerfeld

quantization condition [Ifa].

1. Correction to Formulae (3.26) and (3.27)

Away from xE , we use standard WKB theory extending (3.17), with

Ansatz

(3.25) ua±(x) = a±(x;h)eiϕ±(x)/h

We apply stationary phase formula (2.3) at second order in h, i.e. including

operators L0, L1, L2. Omitting indices ± and reference to the turning point
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a = a(E), we look for

a(x;h) = a0(x) + ha1(x) + · · ·

Let β(x;h) = ∂p
∂ξ (x, ϕ

′(x);h) = β0(x)+hβ1(x)+· · ·. The first (homogeneous)

transport equation

β0(x) a′0(x) + (i p1(x, ϕ
′(x)) +

1

2
β′

0(x)) a0(x) = 0

gives the usual half-density

a0(x) = C̃0|β0(x))|−1/2 exp(−i

∫ x

xE

p1(y, ϕ
′(y)

β0(y)
dy)

with a constant C̃0 ∈ R (that we take eventually equal to C0 = 1/
√

2). The

second (inhomogeneous) transport equation gives a1(x) of the form

a1(x) = (C̃1 + D̃1(x))|β0(x))|−1/2 exp(−i

∫ x

xE

p1(y, ϕ
′(y)

β0(y)
dy)

where D̃1 is a complex function, vanishing at x = xE , with

1

C̃0

Re D̃1(x) = −1

2

[
∂ξ(

p1

∂ξp0
)(y, ϕ′(y))

]x
xE

and

1

C̃0

Im D̃1(x) =

∫ x

xE

1

β0

(
−p2 +

1

8

∂4p0

∂y2∂ξ2
+

ϕ′′

12

∂4p0

∂y∂ξ3
− (ϕ′′)2

24

∂4p0

∂ξ4

)
dy

−1

8

∫ x

xE

(β′
0)

2

β3
0

∂2p0

∂ξ2
dy

+
1

6

∫ x

xE

ϕ′′ β
′
0

β2
0

∂3p0

∂ξ3
dy +

∫ x

xE

p1

β2
0

(
∂ξp1 −

p1

2β0

∂2p0

∂ξ2

)
dy +

[ ϕ′′

6β0

∂3p0

∂ξ3

]x
xE

−
[ β′

0

4β2
0

∂2p0

∂ξ2

]x
xE

which is the correct expression for (3.26). Normalization with respect to the

“flux norm” consists as above in computing F a
± = i

h [P, χa]±u± by stationary

phase mod O(h2), making use of the expression of Re D̃±
1 (x). Assuming
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already C̃0, C̃1 to be real, a simple calculation using integration by parts

yields C̃0 = C0 = 1/
√

2, and

C̃1 = C̃1(aE) = − 1

2
√

2
∂ξ(

p1

∂ξp0
)(aE)

As a result, outside any neighborhood of xE , we have

u±(x;h) = |β±
0 (x)|−1/2 exp[iS±(xE , x;h)/h](∗)

× (C̃0 + h C̃1 + h D̃±
1 (x) + O(h2))

with

S±(xE , x;h) = ϕ±(x) − h

∫ x

xE

p1(y, ξ±(y))

β±
0 (y)

dy

which is the correct expression for (3.27), where the term h D̃±
1 (x) was

missing.

Remark. From (∗) we can recover the homology class of general-

ized action as in Proposition 3.3, considering the superposition u(x;h) =

eiπ/4u+(x;h) + e−iπ/4u−(x;h) near a(E). The argument then is similar to

this of Proposition 3.1 and 3.3, see [Ifa].

2. Correction to Semi-Classical Action in Action-Angle Vari-

ables

Here we correct the terms S̃1(E), S̃2(E) given in (4.6). Our compu-

tation made use of the fact that in these coordinates, P is simply the

h-pseudodifferential operator with constant coefficients f(hDt;h), and the

phase S(t, E) = f−1
0 (E)t = τt. WKB solution satisfies

e−iS(t,E)/h (f(hDt;h) − E)(a(t, E;h) eiS(t,E)/h)

= (f(τ ;h) − E) a(t, E;h) +
h

i
∂τf(τ ;h) ∂ta(t, E;h)

−h2

2

∂2f

∂τ2
(τ ;h)

∂2a

∂t2
(t, E;h) + O(h3)

Here f(τ ;h) = f0(τ) + hf1(τ) + · · · is such that P is unitarily equivalent to

f(1
2((hDy)+ y2);h). The amplitudes a0, a1, · · · are determined as before, as
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well as the normalisation constants C0, C1. We provide below all corrections

implied by formula (3.27).

(1) Second formula (4.5) takes the form

a1(t, E) = (C1(E) + itC0S̃2(E)))((f−1
0 )′(E))1/2eitS̃1(E)

(the term β(E) disappears) and it is convenient to write (f−1
0 )′(E) =

1/f ′
0(τ).

(2) Formula (4.6) takes the form

(4.6)

S̃1(E) = −f1(τ)

f ′
0(τ)

S̃2(E) =
1

f ′
0(τ)

(
1

2
(
f2
1

f ′
0

)′(τ) − f2(τ))

(3) In formula (4.7) one has to remove the term hC0β(E).

(4) Formula giving C1(E) after (4.9) takes the form

C1(E) = −1

2
((f ′

0(τ))−1/2(
f1

f ′
0

)′(τ)

Then following the argument given in Sect.4 leads to:

Proposition. In action-angle variables, Bohr-Sommerfeld quantiza-

tion rule takes the form

S0(E) + hS1(E) + h2 S2(E) + O(h4) = 2π nh, n ∈ Z

where S0(E) =
∮
γE

ξ dx is the classical action along γE and

S1(E) = −2π (
f1

f ′
0

)(τ); S2(E) =
2π

f ′
0(τ)

(1

2
(
f2
1

f ′
0

)′(τ) − f2(τ)
)
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Département de Mathématiques
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1091 Tunis, Tunisia
and
Aix Marseille Univ.
Université de Toulon
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