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On a Generalized Brauer Group in Mixed

Characteristic Cases

By Makoto Sakagaito

Abstract. We define a generalization of the Brauer group Hn
B(X)

for an equi-dimensional scheme X and n > 0. In the case where
X is the spectrum of a local ring of a smooth algebra over a dis-
crete valuation ring, Hn

B(X) agrees with the étale motivic cohomology
Hn+1

ét (X,Z(n− 1)). We prove (a part of) the Gersten-type conjecture
for the generalized Brauer group for a local ring of a smooth algebra
over a mixed characteristic discrete valuation ring and an isomorphism
Hn

B (R) � Hn
B (k) for a henselian local ring R of a smooth algebra over

a mixed characteristic discrete valuation ring and the residue field k
of R. As an application, we show local-global principles for Galois
cohomology groups over function fields of smooth curves over a mixed
characteristic excellent henselian discrete valuation ring.

1. Introdution

Let A be a Dedekind ring or field, X a smooth scheme over Spec(A),

Z(n)ét the Bloch’s cycle complex for étale topology and Z/m(n)ét = Z(n)ét⊗
Z/mZ for a positive integer m. Let Db(Xét,Z/mZ) be the derived category

of bounded complexes of étale Z/mZ-sheaves on X.

Then

(i) If l ∈ N is invertible in A, there is a quasi-isomorphism

Z/l(n)ét
∼−→ µ⊗n

l [0]

in Db(Xét,Z/lZ) by ([2, p.774, Theorem 1.2.4], [22]). Here µl is the

sheaf of l-th roots of unity.

(ii) If A is a field of characteristic p > 0, there is a quasi-isomorphism

Z/pr(n)ét
∼−→Wr Ωn

X,log[−n]
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in Db(Xét,Z/p
rZ) for any positive integer r by [2, p.787, §5, (12)].

Here Wr Ωn
X,log is the logarithmic de Rham-Witt sheaf.

Assume that a positive integer m equals l in (i) or pr in (ii). Let R be

a local ring of a smooth algebra over A, k(R) its fraction field and κ(p) the

residue field of p ∈ SpecR. Let n be a positive integer. Suppose that n ≥ N
in the case where A is a field of characteristic p > 0 and [k(R) : k(R)p] = N .

Then the sequence of étale hyper-cohomology groups

0→ Hn+1
ét (R,Z/m(n))→Hn+1

ét (k(R),Z/m(n))(1.1)

→
⊕

p∈SpecR
ht(p)=1

Hn
ét (κ(p),Z/m(n− 1))

is exact by ([2, p.774, Theorem 1.2.(2, 4, 5)], [22]) and [21, p.608, Theorem

5.2].

Since Hi
Zar (R,Z(n)) = 0 for i > n by [2, p.779, Theorem 3.2 b)] and [2,

p.786, Corollary 4.4], we have

Hn+1
ét (R,Z(n)) = Hi

ét (R,Q(n)) = 0

for i > n by [2, p.774, Theorem 1.2.2] and [2, p.781, Proposition 3.6]. Hence

the étale motivic cohomology Hn+2
ét (R,Z(n)) is a torsion group and

Hn+1
ét (R,Z/m(n)) = Ker

(
Hn+2

ét (R,Z(n))
×m−−→ Hn+2

ét (R,Z(n))
)

for any positive integer m. Therefore we can regard the sequence (1.1) as

(a part of) the Gersten type resolution for the étale motivic cohomology.

One of the objectives of this paper is to prove that an improved version

of the sequence (1.1) is exact in the case where A is a discrete valuation

ring of mixed-characteristic (0, p) and m = pr as follows:

Theorem 1.1 (Proposition 3.4 and Theorem 4.6). Let A be a discrete

valuation ring of mixed-characteristic (0, p), R a local ring of a smooth

algebra over A, k(R) the fraction field of R and κ(p) the residue field of

p ∈ SpecR.

Then the sequence

0→ Hn+1
ét (R,Z/pr(n))→Hn+1

ét (k(R),Z/pr(n))′(1.2)

→
⊕

p∈SpecR
ht(p)=1

Hn
ét (κ(p),Z/pr(n− 1))
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is exact for integers n ≥ 0 and r > 0 where

Hn+1
ét (k(R),Z/pr(n))′

= Ker


Hn+1

ét (k(R),Z/pr(n))→
∏

p∈SpecR
ht(p)=1

Hn+1
ét (k(Rp̄),Z/p

r(n))




and Rp̄ is the strictly henselization of Rp.

This paper is organized as follows. In §2 we prove Proposition 2.1 which

is an improved version of the purity theorem of the Bloch’s cycle complex

for étale topology ([2, p.774, Theorem 1.2.1]) by improving the proof of [2,

p.774, Theorem 1.2.1] and prove that the sequence (1.2) is exact in the case

where R is a discrete valuation ring.

In §3 we define a generalization of the Brauer group. We show the reason

why we can regard it as a generalization of the Brauer group (Proposition

3.3) and a relation between it and étale motivic cohomology (Proposition

3.4).

In §4 we prove (a part of) the Gersten-type conjecture for the generalized

Brauer group for a local ring of a smooth algebra over a mixed characteristic

discrete valuation ring (Theorem 4.6). In §5 we prove the rigidity theorem

for étale motivic cohomology for a henselian local ring of a smooth algebra

over a mixed-characteristic discrete valuation ring.

Namely we prove the following theorem:

Theorem 1.2 (Theorem 5.6). Let R be a henselian local ring of a

smooth algebra over a mixed-characteristic discrete valuation ring A and

k the residue field of R.

Then we have an isomorphism

Hn+1
ét (R,Z/m(n))

∼−→ Hn+1
ét (k,Z/m(n))

for any positive integer m.

Theorem 1.2 is proved in the case where m is invertible in A by ([2,

p.774, Theorem 1.2.3], [22]).

Finally we prove the following local-global principle in §6 by applying

Theorem 1.1 and Theorem 1.2.
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Theorem 1.3 (Theorem 6.3). Let A be an excellent henselian discrete

valuation ring of mixed characteristic (0, p) and π a prime element of A.

Let X be a connected proper smooth curve over SpecA, K the fraction field

of X and K(η) the fraction field of the henselization of OX,η.

Then the local-global map

Hn+1
ét

(
K,µ⊗n

m

)
→

∏
η∈X(1)

Hn+1
ét

(
K(η), µ

⊗n
m

)
(1.3)

is injective for integers n ≥ 0 and m = pr where X(1) is the set of points of

codimension 1.

Suppose that X is a regular scheme which is flat of finite type over an

excellent henselian discrete valuation ring A and whose fiber over the closed

point of SpecA is reduced normal crossing divisors on X. Then the local-

global map (1.3) is injective for n ≥ 0 and m which is prime to char(A) (cf.

[6, Theorem 3.3.6], [7, Theorem 1.2] and [18, Theorem 1.2]).

Acknowledgements. The first version of this paper ([17]) was written

in 2013-2016, while the author was staying at Harish-Chandra Research

Institute. He thanks Harish-Chandra Research Institute for the supports

during his study and writing.

Notations. Throughout this paper, p will be a fixed prime, unless oth-

erwise stated. For a scheme X, Xét, XNis and XZar denote the category of

étale schemes over X equipped with the étale, Nisnevich and Zariski topol-

ogy, respectively. For t ∈ {ét,Nis,Zar}, SXt denotes the category of sheaves

on Xt. X
(i) denotes the set of points of codimension i and X(i) denotes the

set of points of dimension i. k(X) denotes the ring of rational functions

on X and κ(x) denotes the residue field of x ∈ X. For scheme over Fp,

Ωq
X = Ωq

X/Z denotes the exterior algebra over OX of the sheaf Ω1
X/Z of ab-

solute differentials on X and Ωq
X,log the part of Ωq

X generated étale locally

by local sections of the forms

dx1

x1
∧ · · · ∧ dxq

xq
.
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2. Étale Motivic Cohomology

Let Di = Z[t0, · · · , ti]/(
i∑

j=0

tj − 1), and ∆i = SpecDi be the algebraic i-

simplex. For an equi-dimensional scheme X, let zn(X, i) be the free abelian

group on closed integral subschemes of codimension n of X × ∆i, which

intersect all faces property. Intersecting with faces defines the structure of a

simplicial abelian group, and hence gives a (homological) complex zn(X, ∗).
The complex of sheaves Z(n)t on the site Xt, where t ∈ {ét,Zar}, is

defined as the cohomological complex with zn(−, 2n− i) in degree i. For an

abelian group A we define A(n) to be Z(n)⊗A.

First we show an improved version of the purity theorem of the Bloch’s

cycle complex for étale topology ([2, p.774, Theorem 1.2.1]).

Proposition 2.1. Let A be a regular local ring with dim(A) ≤ 1, X

a scheme which is essentially of finite type over SpecA and i : Y → X a

closed subscheme of codimension c with open complement j : X → X.

Suppose that X is essentially smooth over a regular ring of dimension

at most one. Then we have a quasi-isomorphism

τ≤n+2

(
Z(n− c)ét[−2c]

) ∼−→ τ≤n+2Ri
!Z(n)ét(2.1)

and a quasi-isomorphism

τ≤n+1

(
Z/m(n− c)ét[−2c]

) ∼−→ τ≤n+1Ri
!Z/m(n)ét(2.2)

for any positive integer m.

Proof (cf. The proof of [2, Theorem 1.2.1]). Let Xét
ε−→ XZar be the

canonical map of sites. Then we have a quasi-isomorphism

τ≤n+1ε
∗Rj∗Z(n)Zar

∼−→ τ≤n+1ε
∗Rj∗Rε∗Z(n)ét

∼−→ τ≤n+1Rj∗Z(n)ét(2.3)

by ([2, p.774, Theorem 1.2.2], [22]) (cf. [2, p.787]). Since

Rn+2j∗ (τ≤n+1Rε∗Z(n)ét)→ Rn+2j∗ (Rε∗Z(n)ét)

is injective by a distinguished triangle

· · · → τ≤n+1Rε∗Z(n)ét → Rε∗Z(n)ét → τ≥n+2Rε∗Z(n)ét → · · ·



34 Makoto Sakagaito

and the equation

Rjn+1(τ≥n+2Rε∗Z(n)ét) = 0,

the composite map

ε∗Rn+2j∗Z(n)Zar
∼−→ ε∗Rn+2j∗ (τ≤n+1Rε∗Z(n)ét)

↪→ε∗Rn+2j∗Rε∗Z(n)ét
∼−→ Rn+2j∗Z(n)ét

is injective by ([2, p.774, Theorem 1.2.2], [22]). Moreover we have the map

of distinguished triangles

ε∗Z(n− c)Zar[−2c] −−−→ ε∗i∗Z(n)Zar −−−→ ε∗i∗Rj∗Z(n)Zar� ∥∥∥ �
Ri!Z(n)ét −−−→ i∗Z(n)ét −−−→ i∗Rj∗Z(n)ét.

Hence we have the quasi-isomorphism (2.1) by the five lemma. Moreover the

quasi-isomorphism (2.2) follows from the quasi-isomorphism (2.1). There-

fore the statement follows. �

Remark 2.2. If A is a Dedekind ring and i is the inclusion of one

of the closed fibers, we have the quasi-isomorphisms (2.1) and (2.2) as [2,

p.774, Theorem 1.2.1].

Lemma 2.3. Let F : A → B be a left exact functor between abelian

categories and let A be a Grothendieck category. Then

Rn+1F (τ≤nA
•) = Ker

(
Rn+1F (A•)→ F (Hn+1(A•))

)

for any complex A•.

Proof. If B• is bounded below, there is a convergent spectral sequence

for the hyper-cohomology with

RpF (Hq(B•))⇒ Rp+qF (B•)(2.4)

and

RnF (B•) = RnF (B•).
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So

RnF (τ≥n+1A
•) = RnF (τ≥n+1A

•) = 0,

Rn+1F (τ≥n+1A
•) = Rn+1F (τ≥n+1A

•)
∼−→ F (Hn+1(A•))

for any complex A•. By a distinguished triangle

· · · → τ≤nA
• → A• → τ≥n+1A

• → · · · ,

we have a distinguished triangle

· · · → RF (τ≤nA
•)→ RF (A•)→ RF (τ≥n+1A

•)→ · · · .

Therefore,

Rn+1F (τ≤nA
•) = Ker

(
Rn+1F (A•)→ F (Hn+1(A•))

)
. �

Remark 2.4. Let A• be a bounded below complex. Since the edge

maps of spectral sequence are natural maps, the morphism

Rn+1F (A•)→ Rn+1F (τ≥n+1A
•)

corresponds to the edge map of RpF (Hq(A•))⇒ Rp+qF (A•).

Proposition 2.5. Let A be a discrete valuation ring with the maximal

ideal m the fraction field K and the residue field k. Let j : SpecK → SpecA

be the generic point and Km̄ the maximal unramified extension of K.

Then

Hn+1
ét (SpecA, τ≤nRj∗Z/m(n)) = Hn+1

ét (K,Z/m(n))′

for integers n ≥ 0 and m > 0 where

Hn+1
ét (K,Z/m(n))′

= Ker
(
Hn+1

ét (K,Z/m(n))→ Hn+1
ét (Km̄,Z/m(n))

)
.

Moreover the sequence

0→ Hn+1
ét (A,Z/m(n))→ Hn+1

ét (K,Z/m(n))′(2.5)

→ Hn
ét (k,Z/m(n− 1))
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is exact.

Proof. For each x ∈ SpecA, we choose a geometric point ux : x̄ →
SpecA.

Then

F →
∏

x∈SpecA

(ux)∗(ux)
∗F

is injective for a sheaf F on (SpecA)ét ([12, p.90, III, Remark 1.20 (c)]).

Hence

Hn+1
ét (SpecA, τ≤nRj∗Z/m(n))

= Ker
(
Hn+1

ét (K,Z/m(n))→ Γ
(
SpecA,Rn+1j∗Z/m(n)

))

= Ker
(
Hn+1

ét (K,Z/m(n))→
∏

x∈SpecA

(
Rn+1j∗Z/m(n)

)
x̄

)

= Ker
(
Hn+1

ét (K,Z/m(n))→ Hn+1
ét (Km̄,Z/m(n))

)

by Lemma 2.3.

Let i : Spec k → SpecA the closed immersion. Since we have a distin-

guished triangle

· · · → Z/m(n)ét → τ≤nRj∗Z/m(n)ét → i∗Z/m(n− 1)ét → · · ·

by Proposition 2.1 and [2, p.786, Corollary 4.4], the sequence

Hn
ét (K,Z/m(n))→ Hn−1

ét (k,Z/m(n− 1))→ Hn+1
ét (A,Z/m(n))

→ Hn+1
ét (SpecA, τ≤nRj∗Z/m(n))→ Hn

ét (k,Z/m(n− 1))

is exact.

By [2, p.774, Theorem 1.2.2] and [4, Lemma 3.2], the homomorphism

Hn
ét (K,Z/m(n))→ Hn−1

ét (k,Z/m(n− 1))(2.6)

agrees with the homomorphism

KM
n (K)/m→ KM

n−1(k)/m
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which is induced by the symbol map of the Milnor K-group.

Hence the homomorphism (2.6) is surjective and the homomorphism

Hn+1
ét (A,Z/m(n))→ Hn+1

ét (SpecA, τ≤nRj∗Z/m(n))

is injective. Therefore the statement follows. �

Proposition 2.6. Let A be a henselian discrete valuation ring with

the fraction field K and the residue field k. Let j : SpecK → SpecA be the

generic point. Suppose that char(k) = p > 0. Then

Hn+1
ét (SpecA, τ≤n (Rj∗Z/p

r(n)))

= H1
(
Gal(ks/k),K

M
n (Km̄)/pr

)
for integers n ≥ 0 and r > 0. Here ks is the separable closure of k, Km̄

is the maximal unramified extension of K and KM
n (Km̄) is the n-th Milnor

K-group of Km̄.

Proof. Let El,m
2 ⇒ El+m be a spectral sequence. Suppose that

El,m
2 = 0 for l < 0 or m < 0. Then we have a filtration

0 ⊂ F l+m
l+m ⊂ · · · ⊂ F

p+q
1 ⊂ F p+q

0 = Ep+q

such that

F l+m
l /F l+m

l+1 � El,m
∞

and we can define the morphism

Ker
(
En → E0,n

2

)
� Fn

1 � Fn
1 /F

n
2 � E1,n−1

∞ ↪→ E1,n−1
2 .(2.7)

Moreover, the morphism (2.7) is an isomorphism if El,m
2 = 0 for l ≥ 2.

Let i : Spec k → SpecA be the closed immersion. Since k has p-

cohomological dimension at most 1,

Hl
ét (SpecA,Rmj∗Z/p

r(n)) = Hl
ét (Spec k, i∗Rmj∗Z/p

r(n)) = 0

for l ≥ 2 by [2, p.777, The proof of Proposition 2.2 b)] and

Ker
(
Hn+1

ét (SpecK,Z/pr(n))→ Γ
(
SpecA,Rn+1j∗Z/m(n)

))

= H1
ét (SpecA,Rnj∗Z/p

r(n))

= H1
ét (Spec k, i∗Rnj∗Z/p

r(n))
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by the spectral sequence

Hl
ét (SpecA,Rmj∗Z/p

r(n))⇒ Hl+m
ét (K,Z/pr(n))

and [2, p.777, The proof of Proposition 2.2 b)]. Moreover

(i∗Rnj∗Z/p
r(n))m̄ = Hn

ét (SpecKm̄,Z/p
r(n)) = KM

n (Km̄)/pr

by [12, p.88, III, Theorem 1.15] and [1, p.131, Theorem (5.12)]. Here m̄

is a geometric point of SpecA such that κ(m̄) is the separable closure of

k = κ(m) and (i∗Rnj∗Z/pr(n))m̄ is the stalk of i∗Rnj∗Z/pr(n) at m̄. Hence

Ker
(
Hn+1

ét (SpecK,Z/pr(n))→ Γ
(
SpecA,Rn+1j∗Z/m(n)

))

= H1
(
Gal(ks/k),K

M
n (Km̄)/pr

)
.

Therefore the statement follows from Lemma 2.3. �

Let A be a discrete valuation ring with the maximal ideal m and the

fraction field K. Suppose that char(k) = p > 0.

Let j : SpecK → SpecA be the generic point, i : Spec k → SpecA

the closed immersion, ks the separable closure of k and Km̄ the maximal

unramified extension of K.

Then

Hn
ét (SpecA, i∗Z/p

r(n− 1))

= Hn
ét (Spec k,Z/pr(n− 1))

= H1
(
Gal(ks/k),K

M
n−1(ks)/p

r
)

by [4, Theorem 8.5] and [1, p.117, Corollary (2.8)].

Proposition 2.7. Let the notations be same as above. Suppose that

A is a henselian discrete valuation ring. Then the homomorphism

Hn+1
ét (SpecA, τ≤n (Rj∗Z/p

r(n)))→ Hn
ét (SpecA, i∗ (Z/pr(n− 1)))

which is induced by the map

τ≤n (Rj∗Z/p
r(n)ét)→ i∗ (Z/pr(n− 1)ét) [−1]
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agrees with the homomorphism

H1
(
Gal(ks/k),K

M
n (Km̄) /pr

)
→ H1

(
Gal(ks/k),K

M
n−1(ks)/p

r
)

(2.8)

which is induced by the symbol map of the Milnor K-group.

Proof. We have the commutative diagram

Hn+1
ét (K,Z/pr(n))∥∥∥

H1
ét (SpecA,Rnj∗Z/pr(n)) −−−−→ Hn+1

ét (SpecA,Rj∗Z/pr(n))� �
H1

ét

(
SpecA, i∗Rn+1i!Z/pr(n)

)
−−−−→ Hn+1

ét

(
SpecA, i∗Ri!Z/pr(n)[+1]

)
∥∥∥

Hn+2
m (SpecA,Z/pr(n))

(2.9)

where the horizontal maps are given by spectral sequences

Hl
ét (SpecA,Rmj∗Z/p

r(n))⇒ Hl+m
ét (K,Z/pr(n))

and

Hl
ét

(
SpecA, i∗R

mi!Z/pr(n− 1)
)
⇒ Hl+m

m (SpecA,Z/pr(n)) .

Moreover, we have the commutative diagram

ε∗i∗Rj∗Z/pr(n)Zar −−−→ ε∗Z/pr(n− 1)Zar[−1]� �
i∗τ≤n (Rj∗Z/pr(n)ét) −−−→ τ≤n+1

(
Ri!Z/pr(n)ét

)
[+1]

where the vertical maps are quasi-isomorphisms and the homomorphism

(ε∗i∗Hn (Rj∗Z/p
r(n)Zar))m̄→ Hn−1 (ε∗Z/pr(n− 1)Zar)m̄

agrees with the symbol map KM
n (Km̄)/pr → KM

n−1(ks)/p
r by [4, Lemma 3.2].

Therefore the statement follows. �
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Remark 2.8. Let A be a discrete valuation ring with the fraction field

K and the residue field k. Suppose that char(k) = p > 0.

In the case where A is henselian and [k : kp] ≤ n−1, the homomorphism

(2.8) is defined by K.Kato ([9, p.150, §1, (1.3) (ii)]).

In general, the homomorphism

Hn+1
ét (K,Z/pr(n))′ → Hn

ét (k,Z/pr(n− 1))

in the exact sequence (2.5) is the composition of homomorphisms

Hn+1
ét (K,Z/pr(n))′ → Hn+1

ét

(
K̃m,Z/p

r(n)
)′

and (2.8) where K̃m is the henselization of K.

3. Definition of a Generalized Brauer Group

In this section, we define a generalization of the Brauer group.

Let ε : Xét → XZar be the canonical map of sites. Then we define a

generalization of the Brauer group as follows.

Definition 3.1. Let X be an equi-dimensional scheme. Then we de-

fine Hn
B(X) as

Hn
B(X) = Γ

(
X,Rn+1ε∗Z (n− 1)ét

)
.

Remark 3.2. Let X be an essentially smooth scheme over a Dedekind

domain and m a positive integer. Since

Rnε∗(n− 1)ét � Hn(Z(n− 1)Zar) = 0

by [2, Theorem 1.2.2 and Corollary 4.4] and [22], we have

Hn
B(X)m

def
= Ker

(
Hn

B(X)
×m−−→ Hn

B(X)
)

=Γ (X,Rnε∗Z/m(n− 1)ét)

by a distinguished triangle

· · · → Rε∗Z(n− 1)ét
×m−−→ Rε∗Z(n− 1)ét → Rε∗Z/m(n− 1)ét → · · · .
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Therefore this cohomology group relates to Kato homology (cf. [10, p.160,

(5.3)]).

For the following reason we can regard Hn
B as a generalization of the

Brauer group.

Proposition 3.3. Let X be an essentially smooth scheme over the

spectrum of a Dedekind domain. Then

H1
B(X) = H1

ét (X,Q/Z) and H2
B(X) = Br(X)

where Br(X) is the cohomological Brauer group H2
ét (X,Gm).

Proof. We prove

H2
B(X) = Br(X).(3.1)

Since X is a smooth scheme of finite type over the spectrum of a

Dedekind domain, there is a quasi-isomorphism

Z(1)ét � Gm[−1]

by [3, pp.196–197] and we have the morphism

H3
ét (X,Z(1))→ Γ

(
X,R3ε∗Z(1)ét

)
(3.2)

which is induced by the morphism

τ≤3 (Rε∗Z(1)ét)→ R3ε∗Z(1)ét.

Let x ∈ X(0) and ix : x→ X the closed immersion. Then the morphism

Γ
(
X,R3ε∗Z(1)ét

)
→

∏
x∈X(0)

Γ
(
x, (ix)

∗R3ε∗Z(1)ét
)

is injective and

Γ
(
x, (ix)

∗R3ε∗Z(1)ét
)

= H3
ét (SpecOX,x,Z(1))

by [12, p.88, III, Proposition 1.13]. Hence

Γ
(
X,R3ε∗Z(1)ét

)
⊂

⋂
x∈X(0)

H3
ét (SpecOX,x,Z(1)) .
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On the other hand,

H3
ét (X,Z(1)) =

⋂
x∈X(0)

H3
ét (SpecOX,x,Z(1))

by [16, Remark 7.18]. Therefore we have an injective homomorphism

Γ
(
X,R3ε∗Z(1)ét

)
→ H3

ét (X,Z(1))(3.3)

such that

H3
ét (X,Z(1))

(3.2)−−−→ Γ
(
X,R3ε∗Z(1)ét

) (3.3)−−−→ H3
ét (X,Z(1)) = id

and the morphism (3.2) is an isomorphism. Hence the equation (3.1) follows.

Moreover we can show that

H1
B (X) = H1

ét (X,Q/Z)

as above. Therefore the statement follows. �

In the following case, Hn
B is expressed by étale motivic cohomology.

Proposition 3.4. Let X be an essentially smooth scheme over the

spectrum of a Dedekind domain and Hi
Zar (X,Z(n− 1)) = 0 for i ≥ n+ 1.

Then

Hn
B(X) = Hn+1

ét (X,Z(n− 1)) .(3.4)

Especially, if A is a local ring of smooth algebra over a Dedekind domain

and X = SpecA, then the equation (3.4) holds and

Hn
B(X)m

def
= Ker

(
Hn

B(X)
×m−−→ Hn

B(X)
)

= Hn
ét (X,Z/m(n− 1))(3.5)

for any positive integer m.

Proof. Since the canonical map induces a quasi-isomorphism

Z(n− 1)Zar � τ≤nRε∗Z(n− 1)ét(3.6)
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([2, p.774, Theorem 1.2.2], [22]), we have a distinguished triangle

· · · → Z(n− 1)Zar → τ≤n+1Rε∗Z(n− 1)ét(3.7)

→ Rn+1ε∗Z(n− 1)ét[−(n+ 1)]→ · · · .

Hence the sequence

0→ Hn+1
Zar (X,Z(n− 1))→ Hn+1

ét (X,Z(n− 1))

→ Γ
(
X,Rn+1ε∗Z(n− 1)ét

)
→ Hn+2

Zar (X,Z(n− 1))→ Hn+2
ét (X,Z(n− 1))(3.8)

is exact. Therefore the equation (3.4) holds.

Assume that A is a local ring of a smooth algebra over a Dedekind

domain and X = SpecA. Then

Hi
Zar (X,Z(n− 1)) = 0

for i ≥ n by [2, p.786, Corollary 4.4] and

Hn
ét (X,Z(n− 1)) = Hn

Zar (X,Z(n− 1)) = 0

by the equation (3.6). Therefore the equations (3.4) and (3.5) hold. This

completes the proof. �

Remark 3.5. In general,

Hn+1
ét (X,Z(n− 1))tor �= Γ

(
X,Rn+1ε∗Z(n− 1)ét

)
tor
.

Let K be a field and l a positive integer. Suppose that µl ⊂ K.

Then we have

H5
Zar(P

m
K ,Z(3)) = H1

Zar(SpecK,Z(1)) = K∗

for an integer m ≥ 2 by the relation

Hi
Zar (Pm

K ,Z(n)) =

m⊕
j=0

Hi−2j
Zar (SpecK,Z(n− j)) .

Hence

H5
Zar (Pm

K ,Z(3))tor �= 0.
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Since the sequence

0→H5
Zar (Pm

K ,Z(3))tor → H5
ét (Pm

K ,Z(3))tor

→Γ
(
X,R5ε∗Z(3)ét

)
tor

is exact,

H5
ét (Pm

K ,Z(3))tor �= Γ
(
X,R5ε∗Z(3)

)
tor
.

Proposition 3.6. Let X be an essentially smooth scheme over the

spectrum of a Dedekind domain. Let α : Xét → XNis be the canonical map

of sites. Then

Hn+1
B (X) = Γ

(
X,Rn+2α∗Z(n)ét

)
.

Proof. Let β : XNis → XZar be the canonical map of sites. Since β∗

is exact and

β∗Z(n− 1)Zar = Z(n− 1)Nis,

we have a quasi-isomorphism

Z(n− 1)Nis � τ≤nRα∗Z(n− 1)ét

by ([2, p.774, Theorem 1.2.2], [22]) and the sequence

0→ Hn+1
Nis (X,Z(n− 1))→ Hn+1

ét (X,Z(n− 1))

→ Γ
(
X,Rn+1α∗Z(n− 1)ét

)
→ Hn+2

Nis (X,Z(n− 1))→ Hn+2
ét (X,Z(n− 1))

is exact. Moreover the sequence (3.8) is exact and

Hi
Zar (X,Z(n− 1)) = Hi

Nis (X,Z(n− 1))

for any i by [2, p.781, Proposition 3.6]. Therefore the statement follows

from the five lemma. �
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Proposition 3.7. Let X be an essentially smooth scheme over the

spectrum of a Dedekind domain. Then

Hn+1
B (X) = Γ

(
X,Rn+1ε∗Q/Z(n)ét

)
(3.9)

= Γ
(
X,Rn+1α∗Q/Z(n)ét

)
.(3.10)

Proof. We prove the equation (3.9). The sequence

Rn+1ε∗Q(n)ét → Rn+1ε∗Q/Z(n)ét → Rn+2ε∗Z(n)ét → Rn+2ε∗Q(n)ét

is exact. Thus, the canonical map

Q(n)Zar
∼−→ Rε∗Q(n)ét

is a quasi-isomorphism by [2, p.781, Proposition 3.6], hence

Rn+1ε∗Q(n)ét = Rn+2ε∗Q(n)ét = 0

by [2, p.786, Corollary 4.4]. Therefore we have the equation (3.9). We can

also prove the equation (3.10) as above. �

4. Purity

First we show the exactness of the following sequence in equi-charac-

teristic cases.

Proposition 4.1. Let k be a field and X an essentially smooth scheme

over Spec k. Suppose that X is an integral quasi-compact scheme.

Then the sequence

0→ Hn+1
B (X)→Ker


Hn+2

ét (k(X),Z(n))→
∏

x∈X(1)

Hn+2
ét (k(OX,x̄),Z(n))




→
⊕

x∈X(1)

Hn+1
ét (κ(x),Z(n− 1))(4.1)

is exact.

Proof. Let g : Spec k(X)→ X be the generic point.
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Since Rn+1ε∗Z/m(n) is the Zariski sheaf on X associated to the presheaf

U �→ Hn+1
ét (U,Z/m(n))

for any positive integer m, we have homomorphisms

Rn+1ε∗Z/m(n)→ g∗
(
Hn+1

ét (k(X),Z/m(n))
)

and

g∗
(
Hn+1

ét (k(X),Z/m(n))
)′ → ⊕

x∈X(1)

(ix)∗
(
Hn+1

ét (κ(x),Z/m(n))
)
.

Here

g∗
(
Hn+1

ét (k(X),Z/m(n))
)′

= Ker


g∗ (Hn+1

ét (k(X),Z/m(n))
)
→

∏
x∈X(1)

(ix)∗
(
Hn+1

ét (k(OX,x),Z/m(n))
) .

Then it suffices to show that the sequence

0→ Rn+1ε∗Z/m(n)→g∗
(
Hn+1

ét (k(X),Z/m(n))
)′

→
∏

x∈X(1)

(ix)∗
(
Hn+1

ét (k(OX,x),Z/m(n))
)

is exact. Hence it suffices to show that the sequence (4.1) is exact in the

case where X is the spectrum of a local ring of a smooth algebra over k.

If m ∈ k∗, then there is a quasi-isomorphism

Z/m(n)ét
∼−→ µ⊗n

m [0]

in Db(Xét,Z/mZ) by [5, Theorem 1.5]. Here µl is the sheaf of l-th roots of

unity.

On the other hand, if k has characteristic p, then there is a quasi-

isomorphism

Z/pr(n)ét
∼−→Wr Ωn

X,log[−n]

in Db(Xét,Z/p
rZ) for any positive integer r by [2, p.787, §5, (12)]. Here

Wr Ωn
X,log is the logarithmic de Rham-Witt sheaf.
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Therefore the statement follows from [13, 5.2. Theorem C] and (Propo-

sition 2.5, [21, p.600, Theorem 4.1]). �

In the following, we consider Hn
B(X) in the case where X has mixed-

characteristic.

Theorem 4.2. Let A be a discrete valuation ring of mixed-character-

istic, R a local ring of a smooth algebra over A and K the quotient field of

R.

Then the homomorphism

Hn+2
ét (R,Z(n))→ Hn+2

ét (K,Z(n))

is injective.

Proof. Let Y → SpecR be the inclusion of the closed fiber with open

complement j : U → SpecR. Then Y is the spectrum of a local ring of

smooth algebra over a field and

Hn
ét (Y,Z(n− 1)) = Hn

Zar (Y,Z(n− 1))

by ([2, p.774, Theorem 1.2.2], [22]). Moreover

Hn
Zar (Y,Z(n− 1)) = 0

by [2, p.779, Theorem 3.2] and [2, p.786, Corollary 4.4]. Hence

Hn+2
Y (Rét,Z(n)) = Hn

ét (Y,Z(n− 1)) = 0

by Proposition 2.1. Therefore the homomorphism

Hn+2
ét (R,Z(n))→ Hn+2

ét (U,Z(n))

is injective.

On the other hand,

Hi
Zar (U,Z(n)) = 0

for i ≥ n+ 2 by [2, p.779, Theorem 3.2] and [2, p.786, Corollary 4.4].
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Hence

Hn+2
ét (U,Z(n)) = Hn+1

B (U)

by Proposition 3.4 and the homomorphism

Hn+1
B (U)→ Hn+2

ét (K,Z(n))

is injective by Proposition 4.1. Therefore the statement follows. �

Corollary 4.3. Let A be a Dedekind domain of mixed-characteristic

and X an essentially smooth scheme over SpecA.

Then

Hn+1
B (X) =

⋂
x∈X(0)

Hn+1
B (SpecOX,x) .

Proof. Let j : XK → X be the inclusion of the generic fiber and

ia : Xa → X the closed embedding of the fiber of X over a ∈ (SpecA)(1).

Then we have a distinguished triangle

· · · →
⊕

a∈(SpecA)(1)

ia∗Ri
!
a

(
Rn+1ε∗Z/m(n)

)
→ Rn+1ε∗Z/m(n)

→ Rj∗j
∗ (Rn+1ε∗Z/m(n)

)
→ · · ·

by [2, p.778, Lemma 2.4]. On the other hand,

(
j∗j

∗ (Rn+1Z/m(n)
))

x
= Γ

(
(SpecOX,x)K ,R

n+1ε∗Z/m(n)
)

by [12, p.88, III, Proposition 1.13] and the homomorphism

Rn+1ε∗Z/m(n)→ j∗j
∗ (Rn+1ε∗Z/m(n)

)

is injective by Theorem 4.2. Moreover, the homomorphism

Γ
(
X, ia∗R

1i!a
(
Rn+1ε∗Z/m(n)

))
→

∏
x∈X(0)

H1
(OX,x)a

(
OX,x,R

n+1ε∗Z/m(n)
)
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is injective where (OX,x)a = OX,x ⊗A A/a. Hence the sequence

0→ Hn+1
B (X)→ Hn+1

B (XK)→
∏

x∈X(0)

a∈(SpecA)(0)

H1
(OX,x)a

(
OX,x,R

n+1ε∗Z/m(n)
)

is exact and

Hn+1
B (XK) =

⋂
x∈(XK)(0)

Hn+1
B (SpecOXK ,x)

by Proposition 4.1. Therefore the statement follows. �

Lemma 4.4. Let A be a discrete valuation ring of mixed-characteristic,

R a local ring of a smooth algebra over A and X = SpecR. Let i : Z → X

be a regular closed subscheme of codimension 2 with open complement j :

U → X. Suppose that char(Z) = p > 0.

Then

Hi
Zar (U,Z(n)) = 0

for i ≥ n+ 2 and

Hn
B (U) = Hn+1

ét (U,Z(n− 1))(4.2)

Proof. Let Z = SpecR′. Then R′ is a local ring of a regular ring

of finite type over a field. By Quillen’s method (cf.[15, §7, The proof of

Theorem 5.11]),

R′ = lim
→
R′

i

where R′
i is a local ring of a smooth algebra over Fp and the maps R′

i → R′
j

are flat. Hence

Hi
Zar (Z,Z(n)) = 0(4.3)

for i ≥ n+ 1 by [2, p.786, Corollary 4.4]. Therefore

Hi
Zar (U,Z(n)) = 0
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by [2, p.779, Theorem 3.2] and we have the equation (4.2) by Proposition

3.4. This completes the proof. �

Proposition 4.5. With the notations of Lemma 4.4, we have

Hn
B (X) = Hn

B (U) .

Proof. We have

Hn
B (U) =

⋂
x∈U(0)

Hn
B (OU,x)

by Corollary 4.3.

Let l be a positive integer which is prime to char(Z) = p > 0. Suppose

that µl ⊂ A. Then

Hn
B (OU,x)l

(
def
= Ker

(
Hn

B (OU,x)
×l−→ Hn

B (OU,x)
))

=
⋂

y∈U(1)

Hn
B (OU,y)l


=

⋂
y∈U(1)

Ker
(
Hn

B (OU,y)
×l−→ Hn

B (OU,y)
)

for x ∈ U(0) by [2, p.774, Theorem 1.2.(2, 4, 5)] and [22].

On the other hand, we have

Hn
B (X)l =

⋂
x∈X(1)

Hn
B (OX,x)l

by [2, p.774, Theorem 1.2.(2, 4, 5)] and [22].

Since X(1) = U (1), we have

Hn
B (X)l = Hn

B (U)l .(4.4)

Even if that is the case where µl �⊂ A, we can show the equation (4.4) by a

standard norm argument.

Therefore it is sufficient to prove that

Hn
B (X)p = Hn

B (U)p
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in the case where A has mixed-characteristic (0, p).

Assume that A is a discrete valuation of mixed-characteristic (0, p).

Then we have quasi-isomorphisms

τ≤n+1

(
Z(n− 3)Zét[−4]

) ∼−→ τ≤n+1Ri
!Z(n− 1)Xét

by Proposition 2.1 and

Z/p(n− 3)Zét[−4]
∼−→ τ≤n+1Ri

!Z/p(n− 1)Xét

by [19, p.540, Theorem 4.4.7] and [20, p.187, Remark 3.7].

Since the sequence

Hn−3
ét (Z,Z(n− 3))

×p−→ Hn−3
ét (Z,Z(n− 3))→ Hn−3

ét (Z,Z/p(n− 3))→ 0

is exact by ([2, p.774, Theorem 1.2.2], [22]) and the equation (4.3), the
sequence

Hn+1
Z (Xét,Z(n− 1))

×p−−→ Hn+1
Z (Xét,Z(n− 1))→ Hn+1

Z (Xét,Z/p(n− 1))→ 0

is exact and we have

Hn+2
Z (Xét,Z(n− 1))p = 0.

Therefore we have

Hn+1
ét (X,Z(n− 1))p = Hn+1

ét (U,Z(n− 1))p

and the statement follows from Lemma 4.4 and Proposition 3.4. �

Theorem 4.6. Let A be a Dedekind domain of mixed-characteristic

and X an essentially smooth scheme over SpecA.

Then

Hn
B (X) =

⋂
x∈X(1)

Hn
B (OX,x)(4.5)

and the sequence

0→ Hn
B (X)→ Ker

(
Hn

B (k (X))→
∏

x∈X(1)

Hn
B (k (OX,x̄))

)
(4.6)

→
⊕

x∈X(1)

Hn−1
B (κ(x))
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is exact.

Proof. By Proposition 2.5, it suffices to prove the equation (4.5). We

shall show the equation (4.5) by induction on dim(X). In the case where

dim(X) = 1, we can prove the equations (4.5) and (4.6) by Proposition 2.5

and Corollary 4.3.

Assume that the equation (4.5) holds in the case where dim(X) ≤ a− 1.

Suppose that dim(X) = a.

Let x ∈ X(0) and ix : Zx → SpecOX,x a regular closed subscheme of

codimension 2 with open complement jx : Ux → SpecOX,x. Then we have

Hn
B (OX,x) = Hn

B (Ux)

by Proposition 4.5. Since (SpecOX,x)
(1) = U

(1)
x and dim(Ux) = dim(X)− 1,

we have

Hn
B (Ux) =

⋂
y∈X(1)

x∈ ¯{y}

Hn
B (OX,y)

by induction hypothesis. Therefore the equation (4.5) follows from Corollary

4.3 and the sequence (4.6) is exact by Proposition 2.5. This completes the

proof. �

Corollary 4.7. Let R be a henselian local ring of a smooth algebra

over a discrete valuation ring of mixed-characteristic (0, p). Then the se-

quence

0→ Hn+1
ét (R,Z/pr(n))→Hn+1

ét (k(R),Z/pr(n))′

→
⊕

p∈SpecR
ht(p)=1

Hn
ét (κ(p),Z/pr(n− 1))

is exact for integers n ≥ 0 and r > 0 where

Hn+1
ét (k(R),Z/pr(n))′

= Ker


Hn+1

ét (k(R),Z/pr(n))→
∏

p∈SpecR
ht(p)=1

Hn+1
ét (k(Rp̄),Z/p

r(n))



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and Rp̄ is the strictly henselization of Rp.

Proof. Let A be a regular local ring with dim(A) ≤ 1 and

R′ = lim→
i∈I
Ai

where Ai are A-algebras essentially of finite type over A and the maps

Ai → Aj are étale.

Then we have

Hn
B(R′) = lim→

i∈I
Hn

B(Ai)

by [12, pp.88–89, III, Lemma 1.16]. Therefore the statement follows from

Theorem 4.6 and Proposition 3.4. �

5. Étale Motivic Cohomology of Henselian Regular Local Rings

5.1. The equi-characteristic case

The objective of this subsection is to prove Theorem 1.2 in the case where

R is a henselian local ring of a smooth algebra over a field of characteristic

p > 0 (Theorem 5.3).

Lemma 5.1. Let A be a regular local ring over Fp. Let t be a regular

element of A, n = (t) and B = A/n. Then we have an exact sequence

0→ (nΩi
A + dΩi−1

A )/dΩi−1
A → Ωi

A/dΩ
i−1
A

ḡi−→ Ωi
B/dΩ

i−1
B → 0

where the homomorphism ḡi is induced by the natural homomorphism gi :

Ωi
A −→ Ωi

B.

Proof. A can be written as a filtering inductive limit lim→
λ

Aλ of finitely

generated smooth algebras over Fp by Popescu’s theorem ([14]). Let nλ be

an ideal (t) of Aλ and Bλ = Aλ/(t). Then we may assume that Bλ is

0-smooth over Fp.

By [11, p.194, Theorem 25.2], we have a split exact sequence

0→ nλ/n
2
λ

δ1−→ ΩAλ
⊗Aλ

Bλ
α1−→ ΩBλ

→ 0
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where the maps are given by

δ1 (ā) = da⊗ 1

and

α1(db⊗ c̄) = c̄db̄

for a ∈ nλ and b, c ∈ Aλ. Let γ1 be a section of α1. Then we have

γ1(c̄db̄)− db⊗ c̄ ∈ Im(δ1)

for b, c ∈ Aλ. Therefore we have an exact sequence

0→ nλ/n
2
λ ⊗Bλ

Ωi−1
Bλ

δi−→ Ωi
Aλ
⊗Aλ

Bλ
αi−→ Ωi

Bλ
→ 0

by [11, p.284, Theorem C.2]. Here

δi
(
ā⊗ (db̄1 ∧ · · · ∧ db̄i−1)

)
= (da ∧ db1 ∧ · · · ∧ dbi−1)⊗ 1̄

for a ∈ nλ, b1, · · · , bi−1 ∈ Aλ and

αi

(
(dc1 ∧ · · · ∧ dci)⊗ f̄

)
= f̄dc̄1 ∧ · · · ∧ dc̄i

for c1, · · · , ci, f ∈ Aλ. Hence the sequence

0→ n/n2 ⊗B Ωi−1
B

δi−→ Ωi
A ⊗A B

αi−→ Ωi
B → 0(5.1)

is exact.

On the other hand, we have

Ker (αi) = Im (δi) ⊂
(
dΩi−1

A + nΩi
A

)
/nΩi

A

by the sequence (5.1). So we have

Ker (gi) ⊂ dΩi−1
A + nΩi

A.

Since

dΩi−1
B = Im

(
dΩi−1

A → Ωi
A

gi−→ Ωi
B

)
,
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we have

Ker (ḡi) ⊂
(
dΩi−1

A + nΩi
A

)
/dΩi−1

A .

Therefore the statement follows. �

Lemma 5.2. Let A be a regular local ring and X = SpecA. Suppose

that char(A) = p > 0. Then

Hj
ét

(
X,ZΩi

X

)
= Hj

ét

(
X, dΩi

X

)
= 0

for all j, i > 0. Here ZΩi
X = Ker

(
d : Ωi

X → Ωi+1
X

)
.

Proof. ZΩi
X and dΩi

X are locally free OX -modules after twisting with

Frobenius. Hence we have

Hj
Zar

(
X,ZΩi

X

)
= Hj

Zar

(
X, dΩi

X

)
= 0

for all j > 0 by [12, p.103, III, Lemma 2.15]. On the other hand,

Γ(U,ZΩi
X ⊗OX

U) = ZΩi
U and Γ(U, dΩi

X ⊗OX
U) = dΩi

U

for U/X étale by [12, p.48, II, Proposition 1.3] and [21, p.574, Proposition

2.5]. Therefore we have

Hj
ét

(
X,ZΩi

X

)
= Hj

ét

(
X, dΩi

X

)
= 0

by [12, p.114, III, Remark 3.8]. This completes the proof. �

Theorem 5.3. Let A be a henselian regular local ring over Fp and k

the residue field of A. Then the homomorphism

H1
ét

(
SpecA,Ωi

A,log

)
→ H1

ét

(
Spec k,Ωi

k,log

)
(5.2)

is an isomorphism.

Suppose that A is a henselian local of smooth algebra over a field of

characteristic p > 0. Then we have an isomorphism

Hi+1
ét (A,Z/p(i))

∼−→ Hi+1
ét (k,Z/p(i))

by the isomorphism (5.2) and [2, p.787, §5, (12)].
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Proof. Let t a regular element of A and B = A/(t). Then it suffices

to show that the homomorphism

H1
ét

(
SpecA,Ωi

A,log

)
→ H1

ét

(
SpecB,Ωi

B,log

)
(5.3)

is an isomorphism.

We have the following commutative diagram.

Ker(gi)→ (nΩi
A + dΩi−1

A )/dΩi−1
A� �

Ωi
A

1−F−−−−−−→ Ωi
A/dΩ

i−1
A −→ H1

ét

(
SpecA,Ωi

A,log

)
→ 0

gi

� � �
Ωi

B
1−F−−−−−−→ Ωi

B/dΩ
i−1
B −→ H1

ét

(
SpecB,Ωi

B,log

)
�
0

(5.4)

where F is the homomorphism which is induced by the Frobenius operator

and n = (t).

Then the horizontal arrows in (5.4) are exact by [21, p.576, Proposition

2.8] and Lemma 5.2. Moreover the vertical arrow in (5.4) is exact by Lemma

5.1.

If the upper homomorphism in (5.4) is surjective, we can show that

the homomorphism (5.3) is injective by chasing diagram (5.4). We have

surjective homomorphism

A⊗ (A∗)⊗i → Ωi
A

a⊗ b1 ⊗ · · · ⊗ bi �→ a
db1
b1
∧ · · · ∧ dbi

bi

by [1, p.122, Lemma (4.2)] and

F

(
a
db1
b1
∧ · · · ∧ dbi

bi

)
= ap

db1
b1
∧ · · · ∧ dbi

bi
.

Since

nΩi
A ⊂ Ker(gi),
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it suffices to show that for any a ∈ n there exists a b ∈ n such that

bp − b = a.(5.5)

By the definition of Henselian, there exists a b ∈ A \ A∗ such that b is

a solution of the equation (5.5) and b + 1, · · · , b + p − 1 ∈ A∗ are also

solutions of the equation (5.5). Hence b ∈ n by the equation (5.5). Therefore

the homomorphism (5.3) is injective. Moreover the homomorphism (5.3) is

surjective by the diagram (5.4). This completes the proof. �

5.2. The mixed-characteristic case

In this subsection we show Theorem 1.2 in the case where R is mixed-

characteristic (Theorem 5.6).

Let A be a mixed-characteristic henselian discrete valuation ring, K its

fraction field and π a prime element of A.

We consider the following diagram of schemes.

X⊗A K
j−−−→ X

i←−−− Y = X⊗A A/(π)� � �
SpecK −−−→ SpecA ←−−− SpecA/(π)

where the vertical arrows are smooth.

Suppose that char(A/(π)) = p > 0. Then the filtration Um Mn
r of

Mn
r = i∗Rnj∗µ

⊗n
pr

is defined and the structure of Mn
r is studied in [1].

In particular, the structure of Mn
1 is as follows.

Theorem 5.4 ([1, p.112, Corollary (1.4.1)]). Let e be the absolute

ramification index of K and e′ = ep
p−1 .

Then the sheaf Mn
1 has the following structure.

(i)

Mn
1 /U1 Mn

1 � Ωn
Y,log ⊕ Ωn−1

Y,log.

(ii) If 1 ≤ m < e′ and m is prime to p,

Um Mn
1 /Um+1 Mn

1 � Ωn−1
Y .
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(iii) If 1 ≤ m < e′ and p|m,

Um Mn
1 /Um+1 Mn

1 �Bn−1
1 ⊕Bn−2

1

where

Bq
1 = Image

(
d : Ωq−1

Y → Ωq
Y

)

for an integer q.

(iv) For m ≥ e′,

Um Mn
1 = 0.

[8, p.548, Corollary 1.7] and [20, pp.184–185, Theorem 3.3] are the im-

proved versions of Theorem 5.4.

As an application, we have the following lemma.

Lemma 5.5. Let R be a henselian local ring of a smooth scheme over

a mixed-characteristic discrete valuation ring A and π a prime element of

A.

Then we have

Hq
ét

(
R/(π),U1 Mn

1

)
= 0

for q ≥ 1.

Proof. We may assume that A is a henselian discrete valuation ring.

Let q ≥ 1. Since R/(π) is a henselian local ring and char(R/(π)) > 0, we

have

Hq
ét

(
R/(π),Bn−1

1

)
= Hq

ét

(
R/(π),Bn−2

1

)
= 0

by Lemma 5.2. Moreover

Hq
ét

(
R/(π),Ωn−1

R/(π)

)
= 0

by [12, p.103, III, Lemma 2.15] and [12, p.114, III, Remark 3.8]. Therefore

the statement follows from Theorem 5.4. �
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We prove Theorem 1.2 by computing the cohomology group

Hn+1
ét

(
R/(π), i∗τ≤nRj∗µ

⊗n
p

)
as follows.

Theorem 5.6. Let R be a henselian local ring of a smooth scheme over

a mixed-characteristic discrete valuation ring A and k the residue field of

R.

Then we have an isomorphism

Hn+1
ét (R,Z/m(n))

∼−→ Hn+1
ét (k,Z/m(n))

for any positive integer m.

Proof. Let π be a prime element of A and i : SpecR/(π) → SpecR

the closed subscheme with open complement j : SpecR[π−1]→ SpecR.

Then the restriction map

Hn+1
ét (R,Z/m(n))

∼−→ Hn+1
ét (R/(π), i∗Z/m(n))

is an isomorphism by [2, p.777, The proof of Proposition 2.2.b)]. Therefore

it suffices to show that the homomorphism

Hn+1
ét (R/(π), i∗Z/m(n))→ Hn+1

ét (R/(π),Z/m(n))(5.6)

is an isomorphism in the case where m = char(k) = p > 0 by Theorem 5.3.

We consider the cohomology group Hn+1
ét

(
R/(π), i∗τ≤nRj∗µ⊗n

p

)
.

We have the spectral sequence

Hs
ét

(
R/(π),Ht

(
i∗τ≤nRj∗µ

⊗n
p

))
⇒ Rs+tΓét

(
i∗τ≤nRj∗µ

⊗n
p

)
(5.7)

and

Rn+1Γét

(
i∗τ≤nRj∗µ

⊗n
p

)
= Hn+1

ét

(
R/(π), i∗τ≤nRj∗µ

⊗n
p

)
where R∗Γét is the right hyper-derived functor of the global sections functor

Γét from S(SpecR/(π))ét
.

Since p-cohomological dimension of k is at most 1,

Hs
ét

(
R/(π), i∗Rtj∗µ

⊗n
p

)
= 0(5.8)
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for s ≥ 2 by [2, p.777, The proof of Proposition 2.2.b)]. Hence we have

Hn+1
ét

(
R/(π), τ≤n

(
i∗Rj∗µ

⊗n
p

))
= H1

ét

(
R/(π), i∗Rnj∗µ

⊗n
p

)

by the spectral sequence (5.7) and

H1
ét

(
R/(π), i∗Rnj∗µ

⊗n
p

)
= H1

ét

(
R/(π),Mn

1 /U1 Mn
1

)

by Lemma 5.5. Therefore we have

Hn+1
ét

(
R/(π), τ≤n

(
i∗Rj∗µ

⊗n
p

))
= Hn+1

ét (R/(π),Z/p(n))⊕Hn
ét (R/(π),Z/p(n− 1))(5.9)

by Theorem 5.4 (i). On the other hand, the homomorphism

Hn
ét

(
R/(π), i∗τ≤nRj∗µ

⊗n
p

)
→ H0

ét

(
R/(π), i∗Rnj∗µ

⊗n
p

)

is surjective by the spectral sequence (5.7) and the equation (5.8). Moreover

the homomorphism

H0
ét

(
R/(π), i∗Rnj∗µ

⊗n
p

)
→ H0

ét

(
R/(π),Mn

1 /U1 Mn
1

)

is surjective by Lemma 5.5. Therefore the homomorphism

Hn
ét

(
R/(π), i∗τ≤nRj∗µ

⊗n
p

)
→ Hn−1

ét (R/(π),Z/p(n− 1))

is surjective and the sequence

0→ Hn+1
ét (R/(π), i∗Z/p(n))→ Hn+1

ét

(
R/(π), i∗τ≤nRj∗µ

⊗n
p

)
→ Hn

ét (R/(π),Z/p(n− 1))→ 0(5.10)

is exact by the distinguished triangle

· · · → i∗Z/p(n)ét → i∗τ≤nRj∗Z/p(n)ét → Z/p(n)ét → · · · .

Therefore the homomorphism (5.6) is an isomorphism by (5.9) and (5.10).

This completes the proof. �



A Generalized Brauer Group 61

6. Local-Global Principle

Proposition 6.1. Let A be a discrete valuation ring of mixed charac-

teristic (0, p) and π a prime element of A. Let R be a henselian local ring

of a smooth algebra over A. Then the map

Hn+1
ét

(
k(R), µ⊗n

pr
)

(6.1)

→ Hn+1
ét

(
k( ˜R(π)), µ

⊗n
pr

)
⊕

⊕
p∈(SpecR)(1)\(π)

Hn+2
p

(
(R̃p)ét, µ

⊗n
pr

)

is injective where R̃p is the henselization of R at p.

Proof. By Theorem 4.6, it suffices to show that the homomorphism

Hn+1
ét (R,Z/pr(n))→ Hn+1

ét

(
˜R(π),Z/p

r(n)
)

(6.2)

is injective.

We consider the commutative diagram

Hn+1
ét (R,Z/pr(n))

(6.2)−−−→ Hn+1
ét

(
˜R(π),Z/p

r(n)
)

� �
Hn+1

ét (R/(π),Z/pr(n)) −−−→ Hn+1
ét

(
˜R(π)/(π),Z/p

r(n)
)
.

(6.3)

Then the left map in the diagram (6.3) is an isomorphism by Theorem 5.6.

Moreover the lower map in the diagram (6.3) is injective by Theorem 4.2

and R(π)/(π) = ˜R(π)/(π). Therefore the homomorphism (6.2) is injective.

This completes the proof. �

We review the K-theoretic fact before we prove the main result of this

section (Theorem 6.3).

For a field F and an integer n ≥ 1, KM
n (F ) denotes the n-th Milnor

K-group of F . Then we have the following fact:

Lemma 6.2 (cf.[7, Lemma 2.1]). Let v1, · · · , vs be a finite collection of

independent discrete valuations on a field F of characteristic 0. Denote by



62 Makoto Sakagaito

Fi the henselization of F at vi for each i. Let r ≥ 1 be an integer. Then for

every n ≥ 1, the natural map

KM
n (F )/r →

⊕
i

KM
n (Fi)/r

is surjective.

Proof. Since the sequence

KM
n (F )/r

×r′−−→ KM
n (F )/rr′ → KM

n (F )/r′ → 0

is exact, it suffices to show the statement in the case where r is a prime

number p.

Let

Um
Fi

= {x ∈ Fi, vi(1− x) ≥ m}

for m ≥ 1. If

UN
Fi
⊂ (F ∗

i )p

for any i and sufficient large N , we can show the statement by the weak

approximation property.

Let κ(vi) be the residue field of vi. In the case where (char(κ(vi)), p) = 1,

we have

U1
Fi
⊂ (F ∗

i )p.

In the case where char(κ(vi)) = p, we have

Um
Fi
⊂ (F ∗

i )p

for m > vi(p)·p
p−1 (cf. [1, p.124, Lemma (5.1)]). This completes the proof. �

Theorem 6.3. Let A be an excellent henselian discrete valuation ring

of mixed characteristic (0, p) and π a prime element of A. Let X be a

connected proper smooth curve over SpecA, K the fraction field of X and

K(η) the fraction field of the henselization of OX,η.
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Then

Hn
ét(K,µ

⊗(n−1)
pr )

→
⊕

η∈Y (0)

Hn
ét(K(η), µ

⊗(n−1)
pr )⊕

⊕
x∈X(1)\Y (0)

Hn−1
ét (κ(x), µ

⊗(n−2)
pr )

is injective for n ≥ 2.

Proof. The proof of the statement is same as [7, Theorem 2.5]. The

statement follows from Proposition 6.1 and Lemma 6.2. �
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