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Bounded Deformations of (ε, δ)-Log Canonical

Singularities

By Jingjun Han, Jihao Liu and Joaqúın Moraga

Abstract. In this paper we study (ε, δ)-lc singularites, i.e. ε-lc
singularities admitting a δ-plt blow-up. We prove that n-dimensional
(ε, δ)-lc singularities are bounded up to a deformation, and 2-
dimensional (ε, δ)-lc singularities form a bounded family. Further-
more, we give an example which shows that (ε, δ)-lc singularities are
not bounded in higher dimensions, even in the analytic sense.
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1. Introduction

Throughout this paper, we work over an algebraically closed field K of

characteristic zero.

Log canonical singularities (lc singularities for short) are the main class

of singularities of the minimal model program. In many problems of bira-

tional geometry, we are interested in lc singularities whose log discrepancies

are greater than zero. These singularities are called Kawamata log termi-

nal singularities (klt singularities for short), which can be viewed as the

local version of log Fano varieties [Bir18, 3.1]. Indeed, given a klt sin-

gularity x ∈ X, there exists a birational modification π : Y → X which

2010 Mathematics Subject Classification. Primary 14E30; Secondary 14B05.
Key words: Klt singularities, deformations, log discrepancies, bounded families, plt

blow-up.

1



2 Jingjun Han, Jihao Liu and Joaqúın Moraga

extracts a unique divisor E mapping onto x ∈ X. E is a log Fano variety

(c.f. [Sho96, Pro00, Kud01, Xu14]), hence many properties of E, such as

log discrepancies and complements, are reflected on the singularity x ∈ X.

Indeed, the boundedness of ε-lc Fano varieties due to Birkar [Bir19, Bir16]

has implications on the control of invariants of singularities of x ∈ X. More

precisely, for singularities x ∈ X of fixed dimension n whose log discrep-

ancies are ≥ ε and admitting a δ-plt blow-up, the Cartier indices of any

Q-Cartier Weil divisor near x ∈ X and the minimal log discrepancies of X

at x ∈ X are both contained in a finite set which only depends on n, ε and

δ (c.f. [Sho00, Mor18a, Mor18b, HLS19]).

The singularities above will be called n-dimensional (ε, δ)-log canonical

singularities ((ε, δ)-lc singularities for short) in this paper. It is then natural

to ask whether (ε, δ)-lc singularities are contained in a bounded family, even

in the analytic sense. Unfortunately, this question has a negative answer

even in dimension 3, as shown in Example 3.4 below. Nevertheless, we are

able to show that (ε, δ)-singularities are contained in a bounded family up

to deformation, which is the main result of our paper:

Theorem 1.1. Let n be a positive integer, ε and δ two positive real

numbers. Suppose Dn(ε, δ) is the class of n-dimensional Q-Gorenstein (ε, δ)-

lc singularities.

Then Dn(ε, δ) is a bounded family up to a deformation.

The above theorem still hold if we consider pairs (X,B) such that the

coefficients of B are ≥ c for some fixed positive real number c. See Theo-

rem 4.1 for the precise argument.

For (ε, δ)-surface singularities, we can show that they are contained in

an analytically bounded family. More precisely, we have the following:

Corollary 1.2. Suppose we work over the field of complex numbers

C. Let ε, δ be two positive real numbers, and D2(ε, δ) the set of all (ε, δ)-

lc surface singularities. Then there exists a positive real number ε0 and

a positive integer N depending only on ε and δ satisfying the following.

Assume

C2(ε0, N) := {(x ∈ X) ∈ D2(ε0, 0) | x ∈ X is a cone singularity

with isotropies at most N},
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then

(1) C2(ε0, N) is finite,

(2) D2(ε, δ) is analytically bounded, and

(3) any element of D2(ε, δ) degenerates to an element of C2(ε0, N).

This corollary is proved using Theorem 1.1, classic computations for

surface singularities, and the theory of deformation of quasi-homogeneous

surface singularities developed by Schlessinger, Pinkahm, Wahl, etc. (c.f.

[Pin74, Sch73, Wah76]).

As a consequence of Theorem 1.1, we show that any lower-semicon-

tinuous (resp. upper-semicontinuous) invariant of singularities has a lower

bound (resp. upper bound) for (ε, δ)-lc singularities:

Theorem 1.3. Let n be a positive integer, ε and δ two positive real

numbers. Let i be a lower-semicontinuous (resp. upper-semicontinuous)

invariant of klt singularities. Then there exists a constant i0 depending only

on n, ε, δ and i, such that for any n-dimensional (ε, δ)-lc singularity x ∈ X,

i(x ∈ X) ≥ i0 (resp. i(x ∈ X) ≤ i0).

As an immediate corollary, we show that multiplicities of (ε, δ)-lc singu-

larities of fixed dimension are bounded from above:

Corollary 1.4. Let n be a positive integer, ε and δ two positive real

numbers. Then there exists a positive real number m depending only on n, ε

and δ, such that the multiplicity of any n-dimensional (ε, δ)-lc singularity is

at most m.

Moreover, we can control the analytic embedding dimension of n-

dimensional complex (ε, δ)-log canonical singularities.

Corollary 1.5. Let n be a positive integer, ε and δ two positive real

numbers. Then there exists a positive real number e depending only on n, ε

and δ, such that the analytic embedding dimension of any n-dimensional

complex (ε, δ)-lc singularity is at most e.

We give a brief sketch of the proof of Theorem 1.1. Let x ∈ X be an

(ε, δ)-singularity of dimension n, then there exists a δ-plt blow-up π : Y → X
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which extracts a unique divisor E. Motivated by the cone singularity degen-

eration described in [LX16, LX17], which is a special case of the normal cone

deformation [Ful98], we degenerate the singularity x ∈ X to the cone over

E with respect to the Q-polarization induced by the anit-co-normal sheaf

−E|E . This gives us a flat deformation X → A1
K whose fiber over a general

point is isomorphic to X, and whose fiber over the origin is isomorphic to a

cone singularity x0 ∈ X0 in the classic sense of [Dem88].

We show that E has bounded Cartier index on Y via standard arguments

of the minimal model program, which makes us possible to bound isotropies

of the natural K∗-action on X0 and the log discrepancies at x0 ∈ X0. The

cone singularity x0 ∈ X0 appearing as central fibers of the above deforma-

tion, is now bounded according to [Mor18b, Theorem 1]. In particular, we

deduce that n-dimensional (ε, δ)-lc singularities are bounded up to defor-

mation.
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2. Preliminaries

In this section we introduce some definitions and prove some preliminary

results that will be used in the proof of the main theorems. We adopt the

standard notions and conventions in [KM98, HK10, Kol13], and will freely

use them.

2.1. Singularities

In this subsection, we recall the classic definitions of singularities of the

minimal model program and introduce (ε, δ)-lc singularities.

Definition 2.1 (Pairs). A couple (X,D) consists of a normal variety

X and a reduced divisor D on X. A sub-pair (X,B) consists of a normal

quasi-projective variety X and an R-divisor B on X such that KX + B is

R-Cartier. A sub-pair (X,B) is called a pair if B ≥ 0.
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Let (X,B) be a pair, E a prime divisor on X, and D an R-divisor on

X. We define coeffE D to be the multiplicity of E along D. For any divisor

D over X, let π : W → X be a log resolution of (X,B) such that D is a

divisor on W , and suppose that

KW +BW = π∗(KX +B).

The log discrepancy of D on W with respect to (X,B) is defined as 1 −
coeffD BW and is denoted by aD(X,B).

Let ε be a nonnegative real number. We say (X,B) is log canonical

(resp. Kawamata log terminal, ε-log canonical) if aD(X,B) ≥ 0 (resp. > 0,

≥ ε) for every prime divisor D over X. We say (X,B) is purely log terminal

(resp. ε-purely log terminal) if aD(X,B) > 0 (resp. > ε) for any exceptional

prime divisor D over X. For simplicity, we shall write lc (resp. klt, plt)

for log canonical (resp. Kawamata log terminal, purely log terminal) in the

rest of the paper.

Definition 2.2 (δ-plt blow-up). Let δ be a nonnegative real number,

(X,B) an lc pair, and x ∈ X a closed point. A δ-plt blow-up of (X,B) at

x ∈ X is a birational morphism π : Y → X, such that

• π has a unique exceptional divisor E, such that centerXE = {x},

• −E is ample over X, and

• (Y,BY + E) is δ-plt near E.

Here BY is the strict transform of B on Y . A 0-plt blow-up is also called a

plt blow-up.

Definition 2.3. A pair (X,B) is called (ε, δ)-lc at x ∈ X if (X,B) is

ε-lc near x and there exists a δ-plt blow-up of (X,B) at x.

Remark 2.4. Any klt singularity is ε-lc for some positive real number

ε. Moreover, since any klt singularity admits a plt blow-up (c.f. [Sho96,

3.1], [Pro00, 2.9], [Kud01, 1.5], [Xu14, Lemma 1]), any klt singularity admits

a δ-plt blow-up for some positive real number δ. Thus, any klt singularity

is (ε, δ)-lc for some positive real numbers ε and δ.
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2.2. Deformation, families and boundedness

In this section, we recall the definitions of deformations, families and

boundedness. We also prove a proposition on log boundedness for certain

pairs which will be used later.

Definition 2.5. Let (X,B) be a pair. A deformation of X is a flat

morphism X → T such that X0 
 X. A deformation of (X,B) is a flat

morphism X → T and a divisor B ⊂ X , such that:

• the induced morphism B → T is flat,

• (X0,B0) ∼= (X,B), and

• for any t ∈ T , (Xt,Bt) is a pair.

Definition 2.6. A set of couples C is called bounded if there exists a

projective morphism X → S of varieties of finite type and a reduced divisor

D ⊂ X , such that for every element (X,D) ∈ C, there is a closed point

s ∈ S and an isomorphism f : (X,D) 
 (Xs,Ds).

A set of pairs C is called log bounded if

{(X, SuppB) | (X,B) ∈ C}

is a bounded set of couples.

A set of algebraic varieties C is called bounded if

{(X, 0) | X ∈ C}

is a bounded set of couples.

A set of algebraic germs C is called analytically bounded if there exists a

projective morphism X → S of varieties of finite type, such that for every

element (x ∈ X) ∈ C, there is a closed point s ∈ S and a closed point

xs ∈ Xs such that

ÔX,x
∼= ÔXs,xs .

A set of pairs C is called log bounded up to deformation if there exists a

log bounded family C0 such that for every element (X,B) ∈ C there exists

a deformation (X ,B) → A1 and t ∈ A1 such that (Xt,Bt) 
 (X,B) and

(X0,B0) ∈ C0.
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Definition 2.7. A pair (E,∆E) is called log Fano if (E,∆E) is klt

and −(KE +∆E) is an ample Q-divisor. A variety E is called Fano if (E, 0)

is log Fano.

We recall the boundedness of ε-lc log Fano varieties, which was known

as the BAB conjecture and is proved by Birkar:

Theorem 2.8 ([Bir16, Theorem 1.1]). Let n be a positive integer and

ε be a positive real number. Then

{X | dimX = n, (X,∆) is ε-lc log Fano for some ∆}

is bounded.

Proposition 2.9. Let n be a positive integer, ε and c be two positive

real numbers. Let D be the set of n-dimensional pairs (E,∆E), such that

• E is ε-lc log Fano,

• −(KE + ∆E) is pseudoeffective, and

• the non-zero coefficients of ∆E are at least c.

Then D is a log bounded.

Proof. By Theorem 2.8, for any (E,∆E) ∈ D, E is bounded. Thus

there exists a positive real number C, such that for any (E,∆E) ∈ D, there

exists a very ample divisor A on E, such that −KE · An−1 ≤ C. By our

assumptions, we have

Supp(∆E) ·An−1 ≤ ∆E ·An−1

c
≤ −KE ·An−1

c
≤ C

c
.

By [Ale94, Lemma 3.7], (E,∆E) is log bounded. �

2.3. Boundedness of Cartier indices

In this subsection we recall and prove several results on boundedness of

Cartier indices.

Lemma 2.10 ([PS01, Proposition 6.2]). Let n,m be two positive inte-

gers, (Y,E) a pair of dimension n, such that E is a reduced divisor and

(Y,E) is plt near E. Suppose Y → X is a contraction and x ∈ X a closed

point. Assume that



8 Jingjun Han, Jihao Liu and Joaqúın Moraga

(1) −(KY + E) is big and nef over X, and

(2) there is an m-complement KE + DiffE(0)+ of the R-divisor KE +

DiffE(0) over z.

Then there is an m-complement KY + E + B of KY + E over z such

that DiffE(0)+ = DiffE(B).

In particular, if Y = X and m(KY + E)|E is Cartier near x, then

m(KY + E) is Cartier near x. Furthermore, by Noetherian property, if

m(KY + E)|E is Cartier, then m(KY + E) is Cartier near E.

Lemma 2.11. Let n be a positive integer, ε, δ two positive real numbers.

Then there exists a positive integer m depending only on n, ε and δ satisfying

the following. Assume π : Y → X is a δ-plt blow-up of an n-dimensional

ε-lc singularity x ∈ X that extracts a unique exceptional divisor E. Then

m(KY + E),mE are Cartier near E and mKX is Cartier near x.

Proof. Since all the coefficients of DiffE(0) are of the form l−1
l for

some positive integer l, and since (E,DiffE(0)) is δ-klt by adjunction for-

mula, all the coefficients of DiffE(0) are contained in a finite set of rational

numbers By Proposition 2.9, (E,DiffE(0)) is log bounded, hence there exists

a positive integer m0 such that m0(KE + DiffE(0)) is Cartier. By Lemma

2.10, m0(KY + E) is Cartier near E.

By [Mor18b, Theorem 2] or [HLS19, Corollary 1.10], there exists a

positive integer m1 such that m1KX is Cartier near x. In particular,

m0m1(KY + E) and m0m1(KY + (1 − aE(X, 0))E) are both Cartier near

E. Thus m0m1aE(X, 0)E is Cartier. Since x ∈ X is ε-lc, aE(X, 0) ≥ ε. By

[HLS19, Proposition 4.2], aE(X, 0) is contained in a finite set, thus there

exists an integer m such that m0m1|m and mE is Cartier. In particular,

m(KY + E) is Cartier near E and mKX is Cartier near x. �

2.4. Cone singularities

In this subsection, we recall the definition of cone singularities, and

prove some basic properties regarding isotropies and discrepancies of cone

singularities.

Definition 2.12. A cone singularity is a normal affine algebraic va-

riety X with an effective K∗-action such that X has a unique fixed closed
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point x ∈ X, called the vertex of the action, and any orbit closure of this

K-action contains x. A pair (X,B) is called a cone singularity at x ∈ (X,B)

if x ∈ X is a cone singularity and B is a K-invariant R-divisor.

Definition 2.13. Let x ∈ X be a cone singularity. For any closed

point y �= x contained in X, it is well known that the stabilizer of the torus

action on the orbit K∗
y of y is µd ⊂ K∗

y, i.e. the subgroup of d-th roots of

unit, for some positive integer d. In such case, we say that K acts with

isotropy at y equal to d. If d = 1, then we say that K acts with trivial

isotropies at the point y. We say that x ∈ X has isotropies bounded by N if

for any point y �= x contained in X, the isotropy of the K-action at y is at

most N (see, e.g., [CLS11, 14.1.6]).

The following theorem is a standard theorem of the theory of T-varieties

(see, e.g. [AH06, AHS08, AIP+12]).

Theorem 2.14. Let x ∈ (X,B) be a cone singularity. Then there

exists a projective variety E and an ample Q-Cartier Q-divisor DE on E

such that

X 
 Spec


⊕

k≥0

H0(E, kDE)


 ,

and under this isomorphism x ∈ X corresponds to the maximal ideal

mx :=
⊕
k>0

H0(E, kDE).

Moreover, there exists a a good quotient ρ : X \ {x} → E (in the sense

of [ADHL15, Definition 2.3.1]) for the torus action and an effective R-

divisor BE on E such that B is the closure of ρ∗(BE).

Proof. The isomorphism is proved in [Dem88, 3.5] for some variety

E and an ample Q-divisor DE on E. Since the action of K on X has a

unique fixed point and every orbit closure contains x ∈ X, we conclude that

the weighted monoid of the action is pointed, and hence it is isomorphic to

Z≥0 as the torus action is one-dimensional. In particular, E is projective

over Spec(K). By [ADHL15, Construction 1.6.13], there is a good quotient

ρ : X \ {x} → E. Let BE := ρ∗(B) and the proof is finished. �
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Notation 2.15. Given a cone singularity x ∈ X, we denote X̃ → X

the blow-up at the vertex, FX̃ ⊂ X̃ the exceptional divisor of X̃ → X, and

ρ : X̃ → E the induced good quotient. In Lemma 2.24, we will see that E

is indeed isomorphic to FX̃ in the case of klt cone singularities.

Definition 2.16. Let X be a variety with a torus action embedded

in a projective space PN . There exists an open subset of X on which all

orbits for this action have the same dimension d and degree k. The Chow

quotient of X is the normalization of the closure of the points corresponding

to such orbits in Chowk,d(P
N ). Here, Chowk,d(P

N ) is the Chow variety

parametrizing cycles of dimension d and degree k in PN . The isomorphism

class of the Chow quotient is independent of the chosen embedding (see,

e.g. [BHK15]).

Definition 2.17. Let x ∈ (X,B) be a Q-Gorenstein klt cone singular-

ity, E is the Chow quotient of x ∈ X. Let DE and BE be as in Theorem 2.14.

We may write DE =
∑

Z
pZ
qZ
Z, where the sum runs over all prime divisors

Z on E and gcd(pZ , qZ) = 1. We may define the boundary divisor

∆E :=
∑
Z⊂E

(
1 − 1

qZ

)
Z.

Since each qZ only depends on the cone singularity x ∈ X, ∆E only depends

on the cone singularity x ∈ X.

The pair (E,∆E +BE) is called the log Fano quotient of the cone singu-

larity x ∈ (X,B), while the triple (E,DE ;BE) is called the associated triple

of the cone singularity. Notice that the associated triple is well-defined

modulo linear equivalence of DE .

We also call DE the Q-polarization of the cone singularity, and B the

cone over the divisor BE .

We need the following result on Cartier index of the Q-polarization:

Proposition 2.18 ([ADHL15, Proposition 1.3.5.7]). Let x ∈ X be a

cone singularity, y ∈ X\{x} a closed point, and ρ : X \{x} → E the induced

good quotient. Then the isotropy at y equals to the Cartier index of DE at

ρ(y) ∈ E.
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Proof. Replacing E with a suitable affine neighborhood of y we may

assume X is affine. The character group of the orbit of x is isomorphic to

ZDE/ZmDE where m is the smaller positive integer such that f(y) �= 0

for some f ∈ Γ(E,mDE). Thus, the isotropy group at x is isomorphic to

Zm. �

Proposition 2.19. Let x ∈ (X,B) be a Q-Gorenstein klt cone singu-

larity with isotropies bounded by N such that B is a Q-divisor. Assume that

(X,B) is ε-lc at x. Then (E,∆E +BE) is ε/N -log Fano.

Proof. By [PS11, Proposition 3.11], every K-invariant Cartier divisor

on an affine cone singularity is principal. Moreover, from [PS11, Remark

3.7] we know that the field of fractions ofX is isomorphic to K(Y )[M ], where

K(Y ) is the field of fractions of Y and M is the lattice of torus characters.

Hence, we can write

m(KX +B) = divX(fχu),(2.1)

where m is the Cartier index of KX +B, f is a rational function on Y , and

u ∈ M is contained on the weighted monoid of the action of K at x ∈ X.

Pushing-forward equation (2.1) via ρ, we obtain the equation

m(KE + ∆E +BE) = −uDE +H(2.2)

where H = divY (f). In particular, −(KE+∆E+BE) is an ample Q-divisor.

We claim that (E,∆E+BE) is ε/N -lc. Let (E,DE ;BE) be the associated

triple of x ∈ (X,B). For any birational morphism f : W → E, let X̃W be

the relative spectrum of the divisorial sheaf
⊕

k≥0 OW (kf∗(DE)). We have

a commutative diagram

X̃W

f̃ ��

ρW
��

X̃ ��

ρ̃

��

X

ρ
���

�
�

�

W
f �� E

(2.3)

where ρW , f̃ and ρ̃ are induced morphisms. For any prime divisor F on W ,

let wF be the Weil index of f∗DE at F , i.e. the smallest positive integer
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such that wF f
∗DE is a Weil divisor at F . By [PS11, Proposition 3.14]

and [Wat81, Theorem 2.8], we have

aF (E,∆E +BE) =
1

wF
aρ−1

W (F )(X,B).(2.4)

By Proposition 2.18, the divisor NDE is Cartier. Since f∗DE =

f∗(NDE)/N , the Weil index wF of f∗DE at F is at most N . Therefore

wF ≤ N , and the proof is finished. �

Definition 2.20. Let x ∈ (X,B) be a Q-Gorenstein klt cone singu-

larity such that B is a Q-divisor, and let (E,∆E + BE) be its log Fano

quotient. By equation (2.2) there exists a rational number r so that

DE ∼Q −r(KE + ∆E +BE).

We say that r ∈ Q>0 is the Fano angle of x ∈ (X,B) and is denoted by

r(x,X,B). We also define the Fano angle of x ∈ X to be r(x,X, 0). It is

clear that r(x,X,B) ≥ r(x,X, 0) for any klt pair (X,B).

The following proposition shows that the log discrepancy of (X,B) at the

exceptional divisor obtained by blowing-up the vertex of the cone singularity

is the inverse of the Fano angle of the cone singularity.

Proposition 2.21. Let x ∈ (X,B) be a Q-Gorenstein klt cone singu-

larity such that B is a Q-divisor Then we have that

aFX̃
(X,B) =

1

r(x,X,B)
.

Here, FX̃ is the exceptional divisor extracted by blowing-up the vertex x ∈ X.

Proof. By equation (2.1), we can write

m(KX +B) = divX(fχu)

for some positive integer m and some element u ∈ M . By [Wat81, Theorem

2.8] and [PS11, Proposition 3.14], we have that

aFX̃
(X,B) = 1 + coeffFX̃

(
KX̃ +BX̃ − 1

m
divX̃(fχu)

)

= − u

m
=

1

r(x,X,B)
. �
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Proposition 2.22. Let n be a positive integer, r and ε be two positive

real numbers. Then there exists a positive constant ε0, depending only on

ε and r, satisfying the following. For any n-dimensional Q-Gorenstein klt

cone singularity x ∈ (X,B) such that

• x ∈ X has trivial isotropies,

• B is a Q-divisor

• r(x,X,B) ≤ r, and

• the log Fano quotient (E,∆E +BE) of (X,B) is ε-lc,

then x ∈ (X,B) is ε0-lc.

Proof. Let f : W → E be a log resolution of the pair (E,∆E +BE).

Let (E,DE ;BE) be the associated triple of the cone singularity x ∈ (X,B).

By [LS13, Example 2.5], the relative spectrum X̃W of the divisorial sheaf⊕
k≥0 OE′(kf∗(DE)) is log smooth, and there is an induced log resolution

X̃W → X of the pair (X,B). By [PS11, Proposition 3.14] and [Wat81,

Theorem 2.8], we have

ε ≤ aF (E,∆E +BE) = aρ−1
W (F )(X,B),

for every prime divisor F on W .

On the other hand, any divisor on X̃W which is exceptional over X,

has either the form ρ−1
W (F ) for some prime divisor F on W , or is the strict

transform of the unique prime exceptional divisor FX̃ of X̃ → X. Thus, by

Proposition 2.21, we conclude that for any prime divisor F over X we have

that

aF (X,B) ≥ min

{
ε,

1

r

}
.

Let ε0 := min{ε, 1
r} and the proof is finished. �

Lemma 2.23. Let x ∈ X and x′ ∈ X ′ be two cone singularities and

φ : X → X ′ a K∗-equivariant cyclic quotient of degree d. If x′ ∈ X has

isotropies at most N , then x ∈ X has isotropies at most dN .



14 Jingjun Han, Jihao Liu and Joaqúın Moraga

Proof. Let y �= x be a closed point that is contained in X and let

y′ := φ(y). Let K∗
y be the orbit of the K-action corresponding to the point

y. The restriction of φ : X → X ′ to K∗
y induces the quotient K∗

y → K∗
y/µe 


K∗
y′ of the torus by the group of e-th roots of unit, where e ≤ d. Thus,

the isotropy at y is at most e times the isotropy at y′, and the proof is

finished. �

Lemma 2.24. Let x ∈ (X,B) be a klt cone singularity and X̃ → X the

blow-up of the vertex with exceptional divisor FX̃ . Then the pair obtained

by adjunct KX̃ + FX̃ +BX̃ to FX̃ is isomorphic to the log Fano quotient of

x ∈ (X,B).

Proof. Let (E,DE ;BE) be the associated triple of x ∈ (X,B) and

(E,∆E+BE) the log Fano quotient. Let x′ ∈ (X ′, B′) be the cone singularity

corresponding to the triple (E,NDE ;BE), where N is the Cartier index of

DE which induces a K-equivariant morphism φ : X → X ′ of degree N . Let

X̃ ′ be the relative spectrum of
⊕

k≥0 OE(kNDE), which is an A1-bundle

over E. Let FX̃′ be the exceptional divisor extracted by the morphism X̃ ′ →
X ′ and ρ′ : X̃ ′ → E the good quotient morphism. We have a commutative

diagram:

E

X̃
φ̃

��

ρ̃
����������

��

X̃ ′

��

ρ′

��

X
φ �� X ′

Let

∆X̃′ := ρ′∗(∆E), BX̃′ := ρ′∗(BE),

then (
X̃ ′, FX̃′ + ∆X̃′ +BX̃′

)
is plt. Indeed, it is a locally trivial A1 bundle over a klt variety, being FX̃′

the zero section. Hence we have that

KX̃ + FX̃ +BX̃ = φ∗(KX̃′ + FX̃′ + ∆X̃′ +BX̃′),
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is also plt. In particular, FX̃ is normal. Since ρ : FX̃ → E is a bijection

between normal varieties, it is an isomorphism. We then have Under this

isomorphism we have that

(KX̃ + FX̃)|FX̃

 KE + ∆E , and BX̃ |FX̃


 BE .

In particular,

(KX̃ + FX̃ +BX̃)|FX̃

 KE + ∆E +BE

and the proof is finished. �

Remark 2.25. By Lemma 2.24, from now on we may identify FX̃ with

E.

Notation 2.26. We denote Cn(ε,N) the set of n-dimensional Q-

Gorenstein ε-lc cone singularities x ∈ (X,B) with isotropies bounded by

N . When ε is a positive real number, according to [Mor18b, Theorem 1],

Cn(ε,N) is bounded.

Corollary 2.27. Let (x ∈ (X,B)) ∈ Cn(ε,N) be a cone singularity.

Then the blow-up of x is an ε/N -plt blow-up.

Proof. By Proposition 2.19, the log Fano quotient (E,∆E + BE) is

ε/N -lc, and by Lemma 2.24,

(KX̃ + FX̃ +BX̃)|FX̃
= KE + ∆E +BE ,

hence it is ε/N -lc. By inversion of adjunction, we conclude that (X̃, FX̃ +

BX̃) is ε/N -lc. �

The following Lemma is the claim in Step 6 of the proof of [Mor18b,

Theorem 1].

Lemma 2.28. Let n and N be two positive integers, and ε be a positive

real number. Let xi ∈ Xi be a sequence of cone singularities contained in

Cn(ε,N). Up to passing to a subsequence, we can find a morphism E → S,

a divisor D on E, and a sequence of closed points si ∈ S, such that

Xi 
 Spec


⊕

k≥0

H0(Esi , kDsi)



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holds for each i.

Lemma 2.29. Let n and N be two positive integers, and ε and c be two

positive real numbers. Then the set of klt pairs (X,B) such that

• X ∈ Cn(ε,N) with vertex x ∈ X

• the coefficients of B are at least c near x, and

• the blow-up of the vertex is a plt blow-up for (X,B),

is log bounded near a neighborhood of x ∈ X.

Proof. By [Ale94, Theorem 3.10], it suffices to show that every se-

quence xi ∈ (Xi, Bi) as in the statement, contains a subsequence which is

log bounded. Let πi : X̃i → Xi be the blow-up of xi. By Lemma 2.27, πi
is an ε/N -plt blow-up and −(KX̃i

+Ei +BX̃i
) is an ample divisor over Xi,

where Ei is the unique exceptional divisor of πi, and BX̃i
) is the strict trans-

form of Bi on X̃i. By Proposition 2.9, the log Fano quotient (Ei,∆Ei +BEi)

is log bounded. By Lemma 2.24, Ei is isomorphic to the Chow quotient of

Xi for the torus action. By Lemma 2.28, we can find a morphism E → S, a

divisor D ⊂ E , and a sequence si ∈ S, such that

Xi 
 Spec


⊕

k≥0

H0(Esi , kDsi)




for each i. Since Ei 
 Esi , there is a boundary divisor BE ⊂ E such that

Supp(BEi) ⊂ Supp(BE,si) for each i, with the identification given by the

above isomorphism. Indeed, the above follows from the log boundedness of

the pairs (Ei,∆Ei +BEi). Let

X := Spec


⊕

k≥0

H0(E/S, kD)




and X̃ the relative spectrum of the divisorial sheaf
⊕

k≥0 OE(kD) over E .

Observe that we have a good quotient X̃ → E for the torus action and a

birational contraction X̃ → X . Let B be the push-forward to X of the pull-

back of BE to X̃ . Possibly passing to a subsequence, we have that Xsi 
 Xi
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and Supp(Bi) ⊂ Supp(Bsi) for all i. Therefore, the morphism X → V and

the R-divisor B ⊂ X is a corresponding log bounded family for the log pairs

(Xi, Bi). �

2.5. Deformation to cone singularities

In this subsection, we recall the degeneration of an (ε, δ)-lc singularity

to a lc cone singularity (see, e.g. [LX16, LX17]). Part of the following

proposition is already proved in [LX16, 2.4].

Proposition 2.30. Let π : Y → X be a plt blow-up of the pair (X,B)

at x ∈ X with exceptional divisor E such that mE is Cartier. Then the pair

(X,B) deforms to a pair (X0, B0) and the following properties hold

(1) (X0, B0) is a cone singularity,

(2) there exists a K-equivariant cyclic quotient φ : X0 → X ′
0 of de-

gree m, such that X ′
0 is the cone singularity with associated triple

(E,−mE|E ; 0),

(3) we have φ∗(KX′
0
+ ∆′

0 +B′
0) = KX0 +B0, where ∆′

0 (resp. B′
0) is the

cone over ∆E (resp. BE), and

(4) the blow-up of the vertex of X0 is a plt blow-up for (X0, B0).

Proof. Let v = ordE be the valuation over x ∈ X corresponding to

the exceptional divisor of π. Possibly shrinking X to a neighborhood of x,

we may assume X is affine. Let X = Spec(A), we consider the extended

Rees algebra:

R :=
⊕
k∈Z

ak(v)t
−k ⊂ A[t, t−1],

where ak(v) := {f ∈ R | v(f) ≥ k}. By [Tei03, Proposition 2.3], we know

that R is faithfully flat over K[t], so there is a deformation X → A1 which

central fiber isomorphic to grv(R), and Xt 
 X for all t ∈ A1. Let B ⊂ X
be the strict transform of B × A1 with respect to the birational morphism

X ��� X × A1. Since X ��� X × A1 is equivariant with respect to the

torus action, we conclude that (X ,B) → A1 is a deformation of pairs whose

central fiber (X0, B0) is a cone singularity, proving (1).



18 Jingjun Han, Jihao Liu and Joaqúın Moraga

We write

A = grv(R) =
∑
k≥0

ak(v)/ak+1(v) =
⊕
k≥0

Ak,

and

A(m) =
∑
k≥0

amk(v)/amk+1(v) =
⊕
k≥0

Amk.

For any positive integer k we have an exact sequence

0 → OY (−(mk + 1)E) → OY (−mkE) → OE(−mkE) → 0.

By Grauert-Riemenschneider theorem we know that h1(Y,OY (−mk +

1(E))) = 0, hecenforth

Amk :=
amk(v)

amk+1(v)
=

π∗OY (−mkE)

π∗OY (−(mk + 1)E)

=
H0(Y,OY (−mkE))

H0(Y,OY (−(mk + 1)E))

 H0(E,OE(−mkE|E)).

Since A0 
 K, we conclude that

Spec(A(m)) 
 Spec
(
⊕k≥0H

0(E,OE(−mkE|E))
)
,

proving (2).

The equivariant finite morphism φ : X0 → X ′
0 is induced by the Veronese

embedding A(m) ↪→ A. Henceforth, φ has degree m, and the equality

φ∗(KX′
0
+ ∆′

0 +B′
0) = KX0 +B0,

follows from Hurwitz formula and the definition of log Fano quotient, prov-

ing (3).

Finally, observe that we have an induced finite morphism φ̃ : X̃0 → X̃ ′
0

which induces a commutative diagram

X̃0

φ̃ ��

��

X̃ ′
0

��
X0

φ �� X ′
0



Bounded Deformations of (ε, δ)-LC Singularities 19

where X̃0 → X0 and X̃ ′
0 → X ′

0 are the blow-ups at the vertices x0 ∈ X0

and x′0 ∈ X ′
0, with exceptional divisor F̃0 and F̃ ′

0. Since X̃ ′
0 → E is an

A1-bundle, we know that (
X̃ ′

0, F̃
′
0 + ∆̃′

0 + B̃′
0

)
is plt, where ∆̃′

0 (resp. B̃′
0) is the strict transform of ∆′

0 (resp. B′
0) on X̃ ′

0.

Thus, (X̃0, F̃0 + B̃0) is plt, where B̃0 is the strict transform of B0 on X̃0,

which concludes the proof of the proposition. �

3. Examples

In this section, we give some examples of torus actions with unbounded

isotropies, (ε, δ)-lc singularities such that ε and δ are not tightly related.

Moreover, we construct a sequence of threefold (ε, δ)-lc singularities and

show that they are not bounded even in the analytic sense.

Example 3.1. Given a toric variety X with an action of (K∗)n, we can

take sub-tori K∗ ⊂ (K∗)n which act on X with arbitrarily large isotropy.

In this case, the corresponding GIT quotient will have singularities whose

log discrepancies are not bounded away from zero. For instance, taking a

smooth germ (x1, . . . , xn) and the actions

t · (x1, . . . , xn) = (tk1x1, . . . , t
knxn),

with k1, . . . , kn pairwise coprime numbers, the corresponding quotients are

all possible weighted projective spaces of dimension n − 1. Henceforth, a

fixed germ may admit δ-plt blow-ups with δ arbitrarily small.

Example 3.2. Let Xd be the cone over a rational curve of degree d, i.e.

Xd is the spectrum of ⊕
k≥0

H0(P1,OP1(dH)),

where H is the ample class of a point on P1. Then Xd is lc. Indeed, the

blow-up πd : Yd → Xd of the maximal ideal

mXd
:=

⊕
k>0

H0(P1,OP1(dH)),
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extracts a unique exceptional divisor Ed 
 P1. It is clear that (Yd, Ed) is

log smooth, and we can write

π∗d(KXd
) = KYd

+

(
1 − 2

d

)
Ed.

Henceforth, the algebraic variety Xd is 2/d-lc but not 2/d-klt. In particular,

mld(Xd) =
2

d

converges to 0.

Example 3.3. Consider the surface singularities An. Although they are

canonical singularities, we show that any plt blow-up of an An singularity

is a δ-plt blow-up with δ < 2/n.

Let πn : Yn → An be a plt blow-up, En the unique divisor extracted by

πn, then

KEn + ∆En := (KYn + En)|En .

Since En isomorphic to P1 and the dual graph of An is a chain of n vertices,

we have that

∆En = (1 − 1/a){0} + (1 − 1/b){∞}

where a, b ∈ N and a + b ≥ n + 1, with equality if and only if En is an

exceptional divisor of the minimal resolution. In particular, one of a, b ≥ n
2 ,

hence (En,∆En) is not 2
n -klt. By inversion of adjunction, πn is not a 2

n -plt

blow-up.

Now, we turn to give an example of an unbounded sequence of (ε, δ)-lc

singularities. This example shows that the statement of Corollary 1.2 does

not hold in higher dimensions.

Example 3.4. Consider the A3 singularity {x2 + y2 + z3 = 0} ⊂ A3,

and the non-equisingular deformation of the A3 singularity:

X0 := {x2 + y2 + z3 + z2w = 0} ⊂ A4.

Observe that X0 is a cone singularity with the action given by

t · (x, y, z, w) = (t3x, t3y, t2z, t2w).
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Since the restriction of X0 to w = 0 and w �= 0 are both klt varieties, by

the inversion of adjunction, X0 is klt.

Thus, X0 is ε-lc for some ε positive real number. We will consider the

following sequence of deformations of X0:

Xn := {x2 + y2 + z3 + z2w + twn = 0} ⊂ A5 → A1
t ,

where n ≥ 4. Observe that Xn,0 
 X0 for all n. The above deformations are

equisingular in the sense of [Wah76]. Moreover, no two such deformations

are equivalent (see, e.g. [Har10, Theorem 9.2]). By Proposition 2.27, we

know that the blow-up π0 : Y0 → X0 of the vertex of X0 is a δ-plt blow-up

for some δ > 0. We denote the exceptional divisor of π0 by E0. Let Yn → A1
t

be the flat deformation induced by blowing-up the ideal 〈x, y, z, w〉 of Xn.

Then, we have that KYn + En is a Q-Cartier divisor. Indeed, En is Cartier

by construction and Yn is Gorenstein since it has complete itersection sin-

gularities. Observe that

(KYn + En)|Y0 = KY0 + E0,

therefore (KYn + En)|Yt is δ-plt for t general. Thus, Xn,t is (ε, δ)-lc for

t general. We claim that the sequence Xn,t is not analytically bounded.

Indeed, Xn,t is an isolated hypersurface threefold singularity, hence we can

compute its Tjurina number:

Tju(Xn,t) = dimKK[x, y, z, w]/〈IXn,t , JacXn,t〉 = n+ 2,

which forms a diverging sequence. Thus, Xn,t does not belong to an analyt-

ically bounded family by the upper semicontinuity of the Tjurina numbers.

4. Bounded Deformations for (ε, δ)-LC Singularities

In this section, we prove that (ε, δ)-lc singularities of fixed dimension

are bounded up to a deformation. We give a more general statement which

shows the log boundedness of (ε, δ)-lc pairs of fixed dimension.

Theorem 4.1. Let n be a positive integer, ε, δ and c three positive real

numbers. Then the set of singularities x ∈ (X,B) such that

• X is n-dimensional Q-Gorenstein at x ∈ X,
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• (X,B) is (ε, δ)-lc at x ∈ X, and

• the coefficients of B are at least c

forms a log bounded family up to deformation.

Proof. We use notation in Proposition 2.30. Let (X,B) be a pair

and x ∈ X as above. First we show that we may assume B is a Q-divisor:

indeed, by continuity of log discrepancies, we may find a Q-divisor B′ on X,

such that SuppB′ ⊃ SuppB, all the coefficients of B are at least 1
2c, such

that (X,B′) is (1
2ε,

1
2δ)-lc at x. Possibly replacing B by B′, c, ε, δ by 1

2c,
1
2ε

and 1
2δ respectively, we may assume that B is a Q-divisor.

Let π : Y → X be a δ-plt blow-up of (X,B) at x and E the unique

exceptional divisor of π. Since X is Q-Gorenstein at x, π is also a δ-plt

blow-up of x ∈ X. Moreover, X is ε-lc at x.

By Lemma 2.10 and Lemma 2.11, there exists a positive integer m de-

pending only on n, ε and δ, such that mE is Cartier. By (1) of Propo-

sition 2.30, we know that there exists a flat morphism: X → K and a

divisor B ⊂ X such that for every t ∈ K∗ we have (Xt,Bt) 
 (X,B) and

(X0, B0) := (X0,B0) is a cone singularity with vertex x0.

First, we claim that the cone singularities x0 ∈ X0 belong to a bounded

family. By (2) of Proposition 2.30, we have a K∗-equivariant finite quotient

X0 → X ′
0 of degree m, such that there is an isomorphism

X ′
0 
 Spec


⊕

k≥0

H0(E, k(−mE|E))


 .

Since −mE|E is a Cartier divisor the K∗-action on X ′
0 has trivial isotropies

(see, e.g. [ADHL15, Proposition 1.3.5.7]) away from the vertex. The log

Fano quotient of (X ′
0,∆

′
0) is isomorphic to (E,∆E) which has δ-lc singu-

larities. On the other hand, by [Mor18a, Theorem 1] and [Mor18a, Lemma

2.20], we know that we can write

KY + (1 − aE(X, 0))E = π∗KX ,

where the rational number a := 1 − aE(X, 0) belongs to a finite set which

only depend on n, ε and δ. Thus, we have the Q-linear equivalence

−mE|E ∼Q − m

1 − a
(KE + ∆E),
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which implies that the Fano angle of x′0 ∈ X ′
0 is bounded by a constant only

depending on m and a. Since the rational numbers m and a only depend

on n, ε and δ, we conclude that the Fano angle of x′0 ∈ X ′
0 is bounded

by a constant which only depends on n, ε and δ. By Proposition 2.22, we

conclude that x′0 ∈ X ′
0 is ε0-lc, for some positive constant ε0 which only

depends on n, ε and δ. Thus, by Lemma 2.23 and (3) of Proposition 2.30,

we conclude that the isotropies of x0 ∈ X0 have an upper bound m and its

log discrepancies have a lower bound ε0. By [Mor18b, Theorem 1], x0 ∈ X0

belongs to a bounded family.

Finally, we prove that the pairs (X0, B0) are log bounded on a neigh-

borhood of x0 ∈ X0. By [Sho92, Corollary 3.10] we know that there exists

a constant c0, only depending on c and δ, such that the coefficients of B0

are at least c0. By (4) of Proposition 2.30, we know that the blow-up of the

vertex x0 ∈ X0 is a plt blow-up for the pair (X0, B0). Therefore, we can

apply Lemma 2.29 to conclude that the pairs (X0, B0) are log bounded on

a neighborhood of the vertex x0 ∈ (X0, B0). �

Now, we turn to prove a more general version of Theorem 1.3, which

consider pairs whose boundary has coefficients on a finite set of rational

numbers.

Theorem 4.2. Let n be a positive integer number, ε and δ two positive

real numbers, and R a finite set of real numbers. Let i be a lower semicon-

tinuous (resp. upper semicontinuous) invariant of klt singularities. Then

there exists a constant i0, only depending on n, ε, δ,R and i such that for

every n-dimensional (ε, δ)-lc singularity x ∈ (X,B), with the coefficients of

B belonging to R, we have i(x ∈ (X,B)) ≥ i0 (resp. i(x ∈ (X,B)) ≤ i0).

Proof. Assume i is a lower-semicontinuous invariant of klt singulari-

ties.

Denote by C the set of n-dimensional (ε, δ)-lc pairs x ∈ (X,B) such that

the coefficients of B are contained in R. By Theorem 4.1, there exists a log

bounded family C0 of cone singularities x0 ∈ (X0, B0), such that for every

element (X,B) ∈ C there is a deformation of pairs (X ,B) → A1, such that

(Xt,Bt) 
 (X,B) for any t �= 0, and (X0,SuppB0) 
 (X0, SuppB0). In the

following, we may assume (X0,B0) 
 (X0, B0) since the coefficients of B0

belong to a finite set. Moreover, the coefficients of B0 belong to a finite set
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which only depends on δ and R. By lower-semicontinuity we have that:

i(x ∈ (X,B)) = i(xt ∈ (Xt,Bt)) ≥ i(x0 ∈ (X0,B0)) = i(x0 ∈ (X0, B0)).

Moreover, since x0 ∈ (X0, B0) belongs to a log bounded family, we deduce

that there exists i0 so that i(x0 ∈ (X0, B0)) ≥ i0 for all cone singularities in

C0.

Since the family C0 only depends on n, ε, δ and c, we conclude that i0
only depends on n, ε, δ, c and i, concluding the proof.

Replacing i by −i, we obtain the statement for upper-semicontinuous

invariants. �

Proof of Corollary 1.4. The proof follows from Theorem 1.3 and

the upper semicontinuity of the multiplicity (see, e.g. [Ben71]). �

Proof of Corollary 1.5. The proof follows from Theorem 1.3 and

[Fis76, Proposition 0.35]). �

5. Boundedness of (ε, δ)-LC Surface Singularities

In this section, we work over the field of complex numbers C. We recall

a result regarding deformations of surface singularities:

Definition 5.1. A deformation X → T of a singularity x ∈ X, over

a finite dimensional local C-algebra, is said to be versal if any other given

deformation of X0 over a finite dimensional local C-algebra can be obtained

by base change from X → T .

We need the following result by Schlessinger and Pinkham:

Theorem 5.2 ([Sch73, Pin74]). Let x ∈ X be an isloated singularity.

Then x ∈ X admits an algebraic versal deformation. Moreover, if x ∈ X

admits a C-action, then X → T is C-equivariant.

Proof of Corollary 1.2. First we prove (1). By Theorem 2.14, for

each x0 ∈ X0 in C2(ε0, N), there is an isomorphism

X0 
 Spec


⊕

k≥0

H0(P1,OP1(kD))



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where D is an ample Q-divisor on P1. By Proposition 2.18, the Cartier

index of D is ≤ N . Thus, the denominators of {D} are bounded by N . By

Proposition 2.19, we know that the Fano quotient (P1,∆) of x0 ∈ X0 has

at most three fractional coefficients on ∆. Henceforth, D has at most three

fractional coefficients as well. Thus, up to an isomorphism on P1 and linear

equivalence of D, we may assume that

D =
a0

N
{0} +

a1

N
{1} +

a∞
N

{∞},

where a0 and a1 are contained in Z ∩ [0, N ] and a∞ is an integer. We

claim that there are finitely many possible values for a∞. Indeed, since the

singularity x0 ∈ X0 is ε0-lc, by Proposition 2.21, its Fano angle is at most

1/ε0. Therefore,

a∞ ≤ 2N

ε0
− (a0 + a1).

On the other hand, D is an ample Q-divisor so a∞ > −(a0 + a1). Thus, we

conclude that there are finitely many possible values for a∞ as

a∞ ∈ Z ∩
(
−(a0 + a1),

2N

ε0
− (a0 + a1)

]
.

which proves (1).

By Theorem 4.1, for ε and δ positive real numbers, (ε, δ)-lc surface sin-

gularities are bounded up to deformation, and the central fibers of such

deformations are surface cone singularities which belong to a bounded fam-

ily. Henceforth, there exists ε0 and N , depending only on ε and δ, such that

an (ε, δ)-lc singularity degenerates to a cone singularity in C2(ε0, N), which

proves (3).

Finally, for each singularity x0 ∈ X0 belonging to C2(ε0, N), by Theo-

rem 5.2, there exists a space of versal deformations of X0, which we will

denote by X (X0) → S(X0). Thus, the morphism of schemes of finite type

∐
X0∈C2(ε0,N)

X (X0) → S(X0),

is an analytic bounding family for complex (ε, δ)-lc surface singularities. �
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