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Linearization of Quotient Families

By Shigeru Takamura

Abstract. Degeneration of Riemann surfaces is a subject studied
by many researchers from various viewpoints — our viewpoint herein
is the mixture of algebro-geometric one and topological one. In the
present paper, motivated by degenerations of Riemann surfaces, we
take the next step towards working in a wider context: after introduc-
ing the notion of linear quotient family, we show a linear approximation
theorem. Consider a proper submersion between manifolds on which
a Lie group (or a discrete group, a finite group) acts equivariantly and
properly such that every stabilizer is finite. We show that the quotient
of this submersion under the group action is locally orbi-diffeomorphic
to a linear quotient family (Linearization Theorem). This has an ap-
plication to universal families over various moduli spaces (e.g. of Rie-
mann surfaces), enabling us to determine the configuration of singular
fibers in universal families and describe how they crash, simply by
means of linear algebra and group action.

1. Introduction

The aim of this paper is two-fold: first to introduce linear quotient

families and second to show linearization theorem in terms of them. The

notion of linear quotient family is, besides complex geometry, defined in

algebraic geometry, differential topology, and even in topology. It is re-

lated to group actions, representations of groups, subspace arrangements

(e.g. hyperplane arrangements), combinatorics, quotient singularities, vec-

tor bundles, etc. Many important families (e.g. the universal families over

moduli spaces of Riemann surfaces, and the universal families of Abelian

varieties over Shimura varieties) are locally approximated by linear quo-

tient families (Linearization Theorem), where by universal families, we mean

coarse ones (which are different from fine universal families in the sense of
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Grothendieck). The description of complicated families thus reduces to lin-

ear ones, which are very tractable and computable in terms of linear algebra

and group action. This result enables to determine the topological types

of various families, and moreover, brings their “visual description” (as in

Figure 2). Our strategy to describe various families in complex geometry is

divided into two steps: 1. Locally linearly approximate them by linear quo-

tient families. 2. Consider the moduli problem of the complex structures

on linear quotient families (note: a linear quotient family is a priori holo-

morphic such that the complex structures on its generic fibers are all equal,

i.e. “constant moduli”). This paper provides the fundamental notions and

tools for 1. (2. requires the theory of higher-order quotient families and will

be discussed elsewhere).

We begin with motivation. The prototype of a linear quotient family is

a degeneration of Riemann surfaces, which has been intensively studied by

many researchers (see surveys [AsEn], [AsKo]): a degeneration of Riemann

surfaces of genus g is a proper surjective holomorphic map η : M → ∆

from a complex surface M to a disk ∆ := {s ∈ C : |s| < r} (possibly

r = ∞) such that η−1(s) for s �= 0 is a Riemann surface of genus g while

η−1(0) is singular. Here M may be assumed to be smooth by resolving its

singularities.

Example 1.1. Let Y be a Riemann surface and f : Y → Y be a periodic

automorphism of order l, that is, f l = 1. Then F : Y × C → Y × C defined

by (y, t) 	→ (f(y), e−2πi/lt) is also a periodic automorphism of order l, where

the negative sign of the exponent in e−2πi/l is chosen to ensure that the

monodromy of the subsequently-constructed degeneration is f . The cyclic

group of order l generated by F is denoted by Zl. The holomorphic map

Φ : Y × C → C given by Φ(y, t) = tl is Zl-invariant, so a holomorphic map

η := Φ : (Y × C)/Zl → C is defined. Here η−1(s) (s �= 0) is Y (smooth),

while η−1(0) = Y/Zl is singular — non-reduced with multiplicity l.

The monodromy of η measures how the total space (Y ×C)/Zl is twisted

around the singular fiber of η. In the above example, it is f and of finite

order. There is a degeneration with monodromy of infinite order:

Example 1.2. The singular fiber of a Lefschetz fibration over a disk ∆

is a Riemann surface with one node — which results from pinching a simple
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closed curve on a smooth fiber. The monodromy of the Lefschetz fibration

is the right Dehn twist along this curve, and its order is infinite.

Roughly speaking: The degenerations of Riemann surfaces are families

corresponding to cyclic groups. What kind of families correspond to more

general finite groups? This is the starting point of our work. The first step

is the following observation: In Example 1.1, t 	→ e−2πi/lt may be regarded

as a 1-dimensional representation of the cyclic group Zl. The degeneration

of Riemann surfaces thus results from a cyclic group action on a Riemann

surface together with a 1-dimensional representation of the cyclic group.

We ask:

What kind of families correspond to actions and representations

of more general finite groups?

Such families are linear quotient families:

Definition 1.3. Suppose that a finite group G acts on a complex

analytic variety Y (possibly with singularities) holomorphically. Let ρ :

G → GLn(C) be a representation, via which G acts on C
n as t 	→ ρ(g)t,

g ∈ G, accordingly G acts on Y ×C
n as (y, t) 	→ (gy, ρ(g)t). The projection

pr : Y × C
n → C

n, (y, t) 	→ t is then compatible with the G-actions on

Y × C
n and C

n, that is, pr
(
g(y, t)

)
= g pr(y, t). Thus pr descends to a

holomorphic map η := pr : (Y × C
n)/G → C

n/G, which is called a linear

quotient family of Y associated with ρ.

Remark 1.4. Linear quotient families are similarly defined in other

categories — algebro-geometric, smooth, topological: for which Y is an

algebraic variety, a smooth manifold, or a topological space and the G-

action is algebraic, smooth, or continuous. We also point out that the idea

of linearization of degenerations already appeared in the theory of splitting

deformations developed in [Ta1].

We give several methods to construct linear quotient families:

(Co)homological construction Suppose that a finite group G acts

on a complex analytic variety Y . Then G naturally acts on the homology

group Hi(Y,C) and the cohomology group H i(Y,C). We thus obtain rep-

resentations G → GL(Hi(Y,C)) and G → GL(H i(Y,C)), from which we
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obtain linear quotient families:{
homological quotient family (Y ×Hi(Y,C))/G → Hi(Y,C)/G,

cohomological quotient family (Y ×H i(Y,C))/G → H i(Y,C)/G.

Canonical families Suppose that a finite group G acts on a nonsin-

gular algebraic variety Y . Let K := det(Ω1) be the canonical bundle on

Y . Then G naturally acts on H0(Y,K⊗i) (i = 1, 2, . . . ), so a representa-

tion G → GL(H0(Y,K⊗i)) is obtained, accordingly a linear quotient family

ηi : (Y × H0(Y,K⊗i))/G → H0(Y,K⊗i)/G is obtained. If the automor-

phism group Aut(Y ) of Y is finite, then taking it as G, this is called the

ith canonical linear quotient family (or simply canonical family) associated

with the ith canonical representation of Aut(Y ).

Cabling construction Let P be a regular polyhedron. Thickening its

edges yields a real surface Y (the cable surface of P ), on which the polyhedral

group G := Aut(P ) acts. See Figure 1. By Kerckhoff’s theorem, there exists

a complex structure on Y for which the G-action is holomorphic. Now Y is

a Riemann surface on which G acts. To each representation G → GLn(C), a

linear quotient family (Y ×C
n)/G → C

n/G is thus associated. For examples,

see [HiTa1], [HiTa2].

Fig. 1. The cable surfaces of the tetrahedron and the hexahedron.

Description of fibers

Each fiber η−1(s) of a linear quotient family η : (Y × C
n)/G → C

n/G

(where Y may be singular) is described by the quotient fiber theorem (The-

orem 2.1): Take a lift s̃ ∈ C
n of s ∈ C

n/G and let Hs̃ be its stabilizer for

the G-action on C
n, then η−1(s) = Y/Hs̃. In particular if s = 0 (i.e. s̃ = 0)

then η−1(0) = Y/G, which is called the crystal fiber of η.
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Definition 1.5. For a G-stable (i.e. G-invariant) open neighborhood

B of 0 in C
n, replacing C

n with B in the construction of linear quotient

family yields a family (Y × B)/G → B/G, which is called a crystal fiber

neighborhood of (Y × C
n)/G → C

n/G. (Sometimes it is also called a linear

quotient family.)

Remark 1.6. “Fiber neighborhoods” are more generally defined. Let

f : V → W be a family, that is, a proper flat surjective holomorphic map

between complex analytic varieties V and W . For a point w ∈ W , take

an open neighborhood U and set U ′ := f−1(U). Then the restriction f |U ′ :

U ′ → U is a fiber neighborhood of f : V → W around the fiber X := f−1(w).

Note: The fiber germ of X in f : V → W is the equivalence class of fiber

neighborhoods around X.

Let η : (Y ×C
n)/G → C

n/G be a linear quotient family, say, associated

with a representation ρ : G → GLn(C). To simplify discussion, in what

follows the G-action on Y is assumed to be effective (while that on C
n via

ρ may not be). If Hs̃ = {1}, the fiber η−1(s) = Y is called a pure fiber. If

Hs̃ �= {1}, the fiber η−1(s) = Y/Hs̃ (�= Y ) is called a kaleido fiber (named

after kaleidoscope: in one direction (a slice of the total space (Y ×C
n)/G),

this fiber may be a smooth fiber — the slice is a family of smooth fibers —,

but in another direction, it may be a degenerate fiber). We hesitate to use

the term “singular fiber”, because if Y itself is singular then in general all

fibers of η are singular. We also avoid the term “special fiber” instead of

kaleido fiber, because possibly Hs̃ �= {1} for every s ∈ C
n/G, in which case

all fibers are kaleido fibers (not special at all).

The covering multiplicity of a fiber η−1(s) = Y/Hs̃ is defined as the

covering degree of the quotient map Y → Y/Hs̃, which is equal to the order

|Hs̃|. In drawing the figure of a kaleido fiber, we attach this number on it

(for a pure fiber, this number is always 1). Covering multiplicity is viewed as

a generalization of “algebro-geometric” multiplicity from the viewpoint of a

covering map; note that for a degenerating family of algebraic varieties, the

multiplicity of an irreducible component of a singular fiber is algebraically

defined, while the covering multiplicity is more geometrically defined as

“covering degree”. Note: If n �= 1, the fiber η−1(s) is not of codimension 1

in (Y × C
n)/G, thus not a divisor, and its algebro-geometric multiplicity is

not defined.
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The ‘discriminant’ locus KL := {s ∈ C
n/G : Hs̃ �= {1}} is called the

kaleido locus of η (over which the kaleido fibers lie). Its complementary

domain PD := {s ∈ C
n/G : Hs̃ = {1}} is called the pure domain (over

which the pure fibers lie); possibly PD = ∅ and KL = C
n/G. Note that KL

is obtained by dividing the prekaleido locus K̃L := {t ∈ C
n : Ht �= {1}} by

the G-action on C
n: KL = K̃L/G. By definition, K̃L =

⋃
g∈G\{1} Fix(g),

where the fixed point set Fix(g) of the linear transformation g of C
n is a

vector subspace of C
n, so K̃L is a subspace arrangement and describable by

linear algebra, afterward its quotient KL is describable by the G-action on

K̃L.

Singular loci of linear quotient families

For a linear quotient family η : (Y ×C
n)/G → C

n/G, the singular loci of

its base space C
n/G and total space (Y × C

n)/G are described in terms of

stabilizers: First let P = {Ht}t∈Cn be the set of all nontrivial stabilizers for

the G-action on C
n. For each H ∈ P, the locus of C

n consisting of t ∈ C
n

such that H = Ht (up to conjugation) is called the H-prevein. Its image

under the quotient map C
n → C

n/G is called the H-vein, over which the

same kaleido fibers Y/H lie. By definition,

KL =
⋃
H∈P

H-vein.(1.1)

Now the singular locus of C
n/G consists of quotient singularities, so each

stratum of its singular locus corresponds to some nontrivial stabilizer: If a

nontrivial stabilizer H is not a pseudo-reflection group, then the H-vein is

a singularity of C
n/G, in fact it is isomorphic to the singularity of C

n/H.

If the H-action on C
n is a pseudo-reflection group, then the H-vein is not a

singularity of C
n/G, as C

n/H ∼= C
n by Chevalley–Shephard–Todd theorem

[Che], [Hil] p.77.

Consider next the total space (Y ×C
n)/G. For the G-action on Y ×C

n,

let Q = {K(y,t)}(y,t)∈Y×Cn be the set of all nontrivial stabilizers. For each

K ∈ Q, the locus of Y × C
n consisting of points (y, t) such that K = K(y,t)

(up to conjugation) is called the K-preridge. Its image under the quotient

map Y ×C
n → (Y ×C

n)/G is called the K-ridge. Suppose now that Y is a

complex manifold; then Y ×C
n is also a complex manifold. Recall that any

quotient singularity (a germ of the quotient of a complex manifold under a

finite group action) is isomorphic to the germ of a quotient C
m/F for some
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finite subgroup F of GLm(C) ([BeRi] p.5 Proposition 1.3). Thus: As long

as we are concerned with quotient singularities, a finite group action on a

manifold may be locally regarded as a linear action.

We return to our situation. If the action of K on Y ×C
n is, around the

K-preridge, not a pseudo-reflection group, then the K-ridge is a singularity

of (Y × C
n)/G, which is isomorphic to the singularity of (Y × C

n)/K.

Otherwise the K-ridge is not a singularity of (Y × C
n)/G.

Example 1.7. The plane algebraic curve Y : xy3 + yz3 + zx3 = 0 in

CP
2 is a Riemann surface of genus 3, called the Klein curve. Its automor-

phism group is PSL2(F7) and has an irreducible 3-dimensional representa-

tion PSL2(F7) → GL3(C) to which the associated linear quotient family

η : (Y × C
3)/PSL2(F7) → C

3/PSL2(F7) is as illustrated in Figure 2 (this

family will be described in detail in a joint work with K. Sasaki). Its kaleido

locus in C
3/PSL2(F7) consists of two ‘nontrivial’ veins (Z3- and Z4-veins)

and one ‘trivial’ vein consisting only of 0 (the PSL2(F7)-vein). The singular

Fig. 2. The linear quotient family constructed from the Klein curve: The kaleido fiber
over 0 is called the crystal fiber. The positive integer on a kaleido/crystal fiber indicates
its covering multiplicity (168 is the order of PSL2(F7)). Note: The Z2-ridge lies over
the Z4-vein.
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locus of (Y ×C
3)/PSL2(F7) consists of three ridges: Z2-, Z3-, and Z7-ridges,

where each of the first two is isomorphic to a smooth complex line, while

the last one is a single point.

(Non-linear) quotient families

A linear quotient family is actually a special case of a more general quo-

tient family, which is still a special case of a more general concept “quota” —

defined in many categories (complex analytic, algebraic geometric, topologi-

cal, etc.). We here introduce its “simplified” version. Let Γ be a complex Lie

group, a discrete group, or a finite group. Let ϕ : S → T be a Γ-equivariant

holomorphic map between complex analytic varieties, i.e. ϕ(γs) = γϕ(s)

for any γ ∈ Γ, s ∈ S, such that the Γ-actions on S and T are holomorphic

and proper. Here recall that a Γ-action on a space X is proper if the map

Γ × X → X × X, (γ, x) 	→ (x, γx) is proper (note: for discrete group ac-

tion, properness is equivalent to proper discontinuity, while any finite group

action is proper). Then:

(i) The properness of the Γ-actions on S and T ensures that S/Γ and

T/Γ are complex analytic varieties (Holmann’s theorem [Hol]). In the

special case that Γ is a discrete group, this is due to H. Cartan.

(ii) The Γ-equivariance of ϕ implies that ϕ descends to a holomorphic

map ϕ : S/Γ → T/Γ between complex analytic varieties.

We say that ϕ : S/Γ → T/Γ is a quota (precisely speaking, a quota is not

merely a map but equipped with additional structures (vein, ridge, shelf,

etc.), however we do not go into details; see [Ta3].

Definition 1.8. Let Γ be a complex Lie group, a discrete group, or a

finite group acting on complex analytic varieties S and T holomorphically

and properly. Let ϕ : S → T be a Γ-equivariant holomorphic map.

(1) If ϕ : S → T is a family (i.e. proper, flat and surjective), then the

quota ϕ : S/Γ → T/Γ is called a quotient family. In the special case

that S and T are complex manifolds and ϕ is a proper submersion,

we say that ϕ is a submersive quotient family.

(2) For a submersive quotient family ϕ, if every stabilizer of the Γ-actions

on S and T is finite, then S/Γ and T/Γ are orbifolds, and ϕ is called

an orbi-quotient family.
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Example 1.9. Let Tg be the Teichmüller space of marked Riemann sur-

faces of genus g ≥ 2. Let ϕ : Sg → Tg be the universal (i.e. tautological)

family: for each point [(X,µ)] ∈ Tg, its fiber is a marked Riemann sur-

face (X,µ) (see [Nag] p.322 §5.2.2), where µ is a marking of X, that is, an

orientation-preserving homeomorphism from X to a fixed closed oriented

surface Σg of genus g. The mapping class group Γg acts on both Sg and Tg

holomorphically and properly discontinuously (so, every stabilizer is finite),

and ϕ : Sg → Tg is a Γg-equivariant proper submersion. The orbi-quotient

family ϕ : Sg/Γg → Tg/Γg is nothing but the (coarse) universal family

η : Ug → Mg over the moduli space Mg := Tg/Γg (e.g., see [ACG]). Here

note that the coarse universal family is different from the fine universal

family in the sense of Grothendieck.

Main results

Many submersive quotient families may be locally approximated by lin-

ear ones. To show this, the following plays a key role:

Linearization Lemma (Lemma 3.5). Let ϕ : S/Γ → T/Γ be a sub-

mersive quotient family. For a point o ∈ T , let G := Stabo be its stabilizer

for the Γ-action on T and set X := ϕ−1(o). If G is compact (e.g. finite),

then there exist (i) a G-stable open neighborhood U of o in T and an open

ball B centered at 0 in C
n (n := dimT ) on which G acts linearly and (ii)

G-equivariant diffeomorphisms ϕ−1(U)
∼=−→ X ×B and U

∼=−→ B that make

the following diagram commute:

ϕ−1(U)
G-equiv

∼= ��

ϕ G-equiv

��

X ×B

G-equiv pr
��

U
G-equiv

∼= �� B.

(1.2)

Remark 1.10.

(i) The compactness of G is used in constructing G-invariant Riemannian

metrics on S and T . From these metrics, G-equivariant exponential

maps are defined and used in our construction.
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(ii) By Ehresmann’s fibration theorem, any proper submersion is locally

trivial. The above lemma is considered as a G-equivariant version of

this theorem.

In Linearization Lemma, if G is finite, then from the G-equivariant pro-

jection X × B → B a linear quotient family pr : (X × B)/G → B/G is

defined, and the diagram (1.2) descends to the following commutative dia-

gram:

ϕ−1(U)/G
∼= ��

ϕ
��

(X ×B)/G

pr
��

U/G
∼= �� B/G.

(1.3)

Definition 1.11. The quotient family ϕ : ϕ−1(U)/G → U/G is said

to be orbi-diffeomorphic to the linear quotient family pr : (X × B)/G →
B/G. In this case, ϕ−1(U)/G ∼= (X × B)/G and U/G ∼= B/G are orbi-

diffeomorphisms.

In Linearization Lemma, if moreover every stabilizer of the Γ-action on

T is finite, the compactness condition is satisfied at any point of T and the

following holds:

Linearization Theorem (Theorem 4.3). Any orbi-quotient family

ϕ : S/Γ → T/Γ is locally orbi-diffeomorphic to a linear quotient family:

the local quotient family ϕ : ϕ−1(U)/G → U/G is orbi-diffeomorphic to

the linear quotient family pr : (X × B)/G → B/G such that the orbi-

diffeomorphism between U/G and B/G is biholomorphic.

Comparison. Our linearization is completely different from that in

Kodaira–Spencer theory of deformations of the complex structure of a com-

plex manifold X, for which linearization is given by H1(X,TX) (see [Kod]),

while in our case it is not a vector space but a linear quotient family.
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Application to Riemann surfaces

The following result enables us to describe the universal family over the

moduli space in terms of linear quotient families:

Linearization Theorem of Universal Families (Corollary

4.4). Let Mg be the moduli space of Riemann surfaces of genus g ≥ 2.

Then the universal family Ug → Mg is locally orbi-diffeomorphic to a canon-

ical family: Around [X] ∈ Mg, it is orbi-diffeomorphic to a crystal fiber

neighborhood of the 2-canonical family
(
X × H0(X,K⊗2)

)/
Aut(X) →

H0(X,K⊗2)/Aut(X).

Local linear approximation

Tg H0(X,K⊗2) (∼= H1(X,TX))

Sg → Tg projection X ×H0(X,K⊗2) → H0(X,K⊗2)

Local linear approximation

Mg H0(X,K⊗2)/Aut(X)

Ug → Mg

(
X ×H0(X,K⊗2)

)
/Aut(X) → H0(X,K⊗2)/Aut(X)

Remark 1.12. In the above linearization theorem of universal families,

H0(X,K⊗2) may be replaced with H1(X,TX) via the Serre duality. Note

that in terms of the Kodaira–Spencer theory, the latter is regarded as the

tangent space of Tg at the point corresponding to X (with a marking).

However in the practical computation to describe the 2-canonical family,

H0(X,K⊗2) is advantageous. See Remark 4.5.

Thanks to the quotient fiber theorem, one may describe, by means of

linear algebra and group action, the singular fibers (the kaleido fibers) of a

linear quotient family and the discriminant locus (the kaleido locus) in the

base space. A powerful tool to describe the universal family is thus obtained.

Our subsequent work will apply this to give the explicit description of the

universal family.

Observation. For a linear quotient family of a complex manifold, the

complex structures of pure fibers (in this case, smooth fibers) are identical,

so the image of them under the moduli map is a single point. For the

2-canonical family of a Riemann surface X, it is [X] ∈ Mg. Nevertheless
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the 2-canonical family contains geometric information around [X] in Mg:

without investigating the deformation of the complex structure on X, the

geometric information around [X] is obtained. In some sense, a 2-canonical

family is a stacky object: although its image under the moduli map is a

single point, this point ‘contains’ information on group action (the Aut(X)-

action on X) and representation (the 2-canonical representation of Aut(X))

— these two depend only on the point [X], but carry information around

[X] in Mg.

Acknowledgments. We would like to thank Tadashi Ashikaga for valu-

able discussions and comments. We also would like to thank Ryota Hi-

rakawa, Takayuki Okuda, and Kenjiro Sasaki for fruitful discussions.

2. Quotient Fiber Theorem

Suppose that a finite group G acts on a complex analytic variety Y

(holomorphically). Let η : (Y ×C
n)/G → C

n/G be a linear quotient family

associated with a representation. ρ : G → GLn(C). Each fiber η−1(s) (s ∈
C
n/G) — a set-theoretic fiber (not a scheme-theoretic one) — is determined

by the following:

Theorem 2.1 (Quotient fiber theorem). Let q : C
n → C

n/G be the

quotient map and take a lift s̃ ∈ q−1(s) of s. Let Hs̃ be the stabilizer of s̃

for the G-action on C
n (note Hs̃ (⊂ G) also acts on Y ). Then η−1(s) =

Y/Hs̃.

Remark 2.2. The isomorphism class of Y/Hs̃ does not depend on the

choice of a lift s̃ of s. Indeed if s̃ ′ is another lift, then Hs̃ and Hs̃ ′ are

conjugate in G, accordingly Y/Hs̃ and Y/Hs̃ ′ are biholomorphic.

Proof. Consider the following commutative diagram (q′ and q are

quotient maps):

Y × C
n

q′ ��

pr
��

(Y × C
n)/G

η
��

C
n

q �� Cn/G.

(2.1)
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The commutativity of this diagram implies η−1(s) = q′pr−1q−1(s). Say

that q−1(s) = {s̃1, s̃2, . . . , s̃l}, then pr−1q−1(s) = pr−1(s̃1)�pr−1(s̃2)�· · ·�
pr−1(s̃l) (disjoint union), so

η−1(s) = q′
(
pr−1(s̃1) � pr−1(s̃2) � · · · � pr−1(s̃l)

)
.

Here pr−1(s̃1),pr−1(s̃2), . . . ,pr−1(s̃l) are mapped to each other by the

G-action, hence η−1(s) = q′
(
pr−1(s̃i)

)
, where i may be any of 1, 2, . . . , l.

Since pr−1(s̃i) = Y we have η−1(s) = q′(Y ) = Y/Hs̃i , confirming the asser-

tion. �

Recall that if Hs̃ �= {1}, then η−1(s) = Y/Hs̃ is called a kaleido fiber of

η.

Example 2.3. Where 0 ∈ C
n/G denotes the image of 0 ∈ C

n, η−1(0) =

Y/H0 by the quotient fiber theorem. Here H0 = G, so η−1(0) = Y/G is a

kaleido fiber. This is the most ‘folded’ among the kaleido fibers of η and is

called the crystal fiber of η.

The locus of C
n/G over which kaleido fibers lie is the kaleido locus of

η, denoted by KL. It is the quotient of the prekaleido locus K̃L := {t ∈
C
n : Ht �= {1}} by the G-action on C

n: KL = K̃L/G. By definition,

K̃L =
⋃

g∈G\{1} Fix(g). Here the determination of Fix(g) is simply a matter

of linear algebra. Note that G permutes {Fix(g) : g ∈ G \ {1}}: indeed

h ∈ G maps Fix(g) to Fix(hgh−1). Let Fix(g1),Fix(g2), . . . ,Fix(gl) be rep-

resentatives of the orbits of this action. For each gi, let Lgi denote the

subgroup of G consisting of h that maps Fix(gi) to itself (note Lgi contains

the centralizer Cgi = {h ∈ G : hgih
−1 = gi}). The locus KL is then given

by

KL =
l⋃

i=1
Fix(gi)/Lgi .(2.2)

The determination of KL is thus done simply by linear algebra and group

action.

3. Diagonalization and Linearization of Actions

In this section, unless otherwise mentioned, manifolds and maps are

smooth (i.e. C∞), and group actions are also smooth; complex manifolds
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are regarded as underlying smooth manifolds (but the results obtained here

are later applied to complex analytic category). Γ denotes a Lie group,

a discrete group, or a finite group (note: a discrete/finite group may be

regarded as a 0-dimensional Lie group).

Definition 3.1. Let V be a vector space over R or C. A Γ-action

on a product space X × V is semi-diagonal if it is of the form: for g ∈ Γ,

(x, v) ∈ X × V 	→ (gx, ρx(g)v) ∈ X × V , where ρx : Γ → GL(V ) is a family

of representations depending on x smoothly (i.e. the map Γ×X → GL(V ),

(g, x) 	→ ρx(g) is smooth). If ρx is constant, i.e. independent of x ∈ X,

then the Γ-action on X × V is called diagonal. (More generally for an

arbitrary manifold V , these terms are used for a family of homomorphisms

ρx : Γ → Aut(V ) to the automorphism group of V .)

Note. (i) A semi-diagonal action of Γ amounts to an action of Γ as a

bundle automorphism group on the trivial bundle X × V → X (a bundle

action of Γ). (ii) If the Γ-action on X × V is diagonal, then the projection

pr : X × V → V is Γ-equivariant, thus, if moreover Γ is a finite group, then

a linear quotient family pr : (X × V )/Γ → V/Γ is defined.

Let ϕ : M → N be a Γ-equivariant proper surjective submersion between

(real or complex) manifolds M and N . The subsequent discussion works

for both real and complex manifolds, and we only consider the case that

M and N are complex manifolds (in the case of real manifolds, a tangent

space is a real vector space, and for instance, C
n in Lemma 3.3 should be

replaced with R
n).

Let K ⊂ Γ be the stabilizer of a point o ∈ N , that is, K = {g ∈ Γ :

go = o}. Then K maps ϕ−1(o) to itself (indeed from the Γ-equivariance of

ϕ, for any x ∈ ϕ−1(o) and k ∈ K we have ϕ(kx) = kϕ(x) = ko = o, thus

kx ∈ ϕ−1(o)). Now since Γ acts on M , Γ also acts on the tangent bundle

TM (g ∈ Γ acts as its differential g∗). Since K preserves X := ϕ−1(o), K

preserves the restriction TM |X .

In the sequel, suppose that K is compact. There then exists a K-invariant

Riemannian metric on N (and also on M): First take an arbitrary Rie-

mannian metric 〈 , 〉 on N , then integrating it over K (with respect to

the Haar measure µ of K) gives a K-invariant metric 〈 , 〉N on N , i.e.

〈v, w〉N :=
∫
K〈k∗v, k∗w〉dµ(k) for v, w ∈ TpN . Similarly there exists a K-

invariant Riemannian metric 〈 , 〉M on M . Note that any ε-neighborhood
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U of o in N (with respect to 〈 , 〉N ) is K-stable, i.e. K maps U to itself.

Take sufficiently small ε so that U is a small n-dimensional open ball, where

n := dimN .

Lemma 3.2. ϕ−1(U) is K-stable. (In the extreme case ε = 0, we have

U = o and ϕ−1(U) = X.)

Proof. Let z ∈ ϕ−1(U). From the K-equivariance, ϕ(kz) = kϕ(z)

for any k ∈ K. Here ϕ(z) ∈ U and kU = U , thus ϕ(kz) ∈ U , so kz ∈
ϕ−1(U). �

Now we summarize our cast:

• U is a K-stable open ball centered at a fixed point o of the K-action.

• K preserves both U and ϕ−1(U).

• K preserves X := ϕ−1(o).

With respect to the K-invariant metric 〈 , 〉M , let TM |X ∼= TX ⊕NX

be the orthogonal decomposition of TM |X into the tangent bundle TX of

X and the normal bundle NX of X in M (the orthogonal complements

(TxX)⊥, x ∈ X together form NX). Since the K-action preserves X,

it preserves TM |X and also TX, accordingly it preserves the orthogonal

complement NX of TX in TM |X (because the metric 〈 , 〉M is K-invariant).

The K-action thus preserves the decomposition TM |X ∼= TX ⊕NX.

Semi-diagonalization. The K-action on NX is considered as a lin-

earization of the K-action on ϕ−1(U): the exponential map exp : NX → M

defined from the K-invariant metric 〈 , 〉M is K-equivariant ([BCO] p.36)

(moreover diffeomorphic around the zero section ([Kos] p.44 Theorem 2.2)).

So the K-action on ϕ−1(U) is transformed to a bundle action on NX. Here

NX is trivial: NX = X × C
n, because ϕ−1(U) ∼= X × U by Ehresmann’s

fibration theorem (where U is sufficiently small). The K-action on it, be-

ing a bundle action, is necessarily semi-diagonal, that is, of the form: for

k ∈ K, (x, v) 	→ (kx, ρx(k)v), where ρx is a representation of K depending

on x ∈ X smoothly.

We summarize the above as follows:
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Lemma 3.3. The following hold:

(1) The normal bundle NX of X in M is trivial: NX = X × C
n, where

n = dimN .

(2) The K-action on NX = X × C
n is semi-diagonal.

(3) Via exp : NX → M , a small tubular neighborhood of the zero section

in NX is K-equivariantly diffeomorphic to a tubular neighborhood of

X in ϕ−1(U).

Now by Ehresmann’s fibration theorem, the following diagram commutes

(U is sufficiently small):

ϕ−1(U)
∼= ��

ϕ
����

��
��

��
�

X × U

pr
����

��
��

��
�

U.

(3.1)

(Note: Ehresmann’s fibration theorem is irrelevant to group action, and this

diagram is generally not K-equivariant.)

In what follows, we identify ϕ−1(U) with X × U and ϕ : ϕ−1(U) → U

with the projection pr : X × U → U .

Diagonalization. We now have a semi-diagonal K-action on NX =

X × C
n. Since ϕ : M → N is proper, if necessary shrinking U , we assume

that a tubular neighborhood NX ′ of the zero section in NX is diffeomorphic

to ϕ−1(U) under exp (see Lemma 3.3 (3)):

exp : NX ′ ∼=−→ ϕ−1(U) = X × U.

Note that the (semi-diagonal) K-action on NX preserves NX ′, because K

preserves ϕ−1(U) and exp is K-equivariant. We will make the semi-diagonal

K-action on NX ′ diagonal under some coordinate change.

We begin with preparation. Since ϕ : ϕ−1(U) = X × U → U is a

projection, for u ∈ U we have ϕ−1(u) = X × {u} (‘vertical’ in X × U ; see

Figure 3). On the other hand, the composition ϕ′ := ϕ ◦ exp : NX ′ → U is

generally not a projection: for u ∈ U , the preimage (ϕ′)−1(u) = exp−1(X ×
{u}) is not necessarily vertical in NX ′ ⊂ X×C

n — not of the form X×{v}.
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Fig. 3. (ϕ′)−1(u) is not vertical.

Fig. 4. Leaves.

However composing another diffeomorphism with ϕ′, we will make it into a

projection and moreover make the K-action on NX ′ diagonal.

We introduce notation as in Figure 4:

• On ϕ−1(U) = X×U : For each x ∈ X, set Hx := {x}×U (a horizontal

leaf) and for each u ∈ U , set Vu := X × {u} (a vertical leaf).

• On NX ′ (⊂ X × C
n): For each x ∈ X, set H ′

x := ({x} × C
n) ∩ NX ′

(a horizontal leaf) and for each u ∈ U , set V ′
u := exp−1(Vu) (not

necessarily a vertical leaf).

Besides, for each x ∈ X consider a leaf Lx := exp(H ′
x) in X × U . Here

note that X is a compact manifold (because ϕ : M → N is a proper submer-

sion). We claim that we may take a sufficiently small tubular neighborhood

of X in ϕ−1(U) = X ×U such that Lx intersects transversally each vertical

leaf Vu at one point (where u is close to o, i.e. Vu is close to X = X ×{o}).
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To see this, note first that since exp : TN |X → N is the identity map on

X, around each p ∈ X it ‘preserves’ the decomposition of TpN into the

horizontal and vertical subspaces. Consequently the leaf Lp is transversal

to Vo. Since “transversality” is an open condition, Lp is transversal to any

Vu (at one point) for u close to o, say, in an open ball Op centered at p

in ϕ−1(U). Consider an open cover X ⊂
⋃

p∈X Op. As X is compact, this

admits a finite subcover, say X ⊂
⋃l

i=1 Opi . Set r := dist
(
X, ∂(

⋃l
i=1 Opi)

)
,

the distance between X and the boundary ∂(
⋃l

i=1 Opi) of
⋃l

i=1 Opi , that

is, the infimum of the distances between the points of X and ∂(
⋃l

i=1 Opi)

(note that r > 0 and that since both X and ∂(
⋃l

i=1 Opi) are compact, “in-

fimum” is actually “minimum”). For a positive number ε such that ε < r,

the ε-tubular neighborhood of X in ϕ−1(U) is contained in this finite open

cover and satisfies the desired property (note: if X is non-compact, this is

generally not the case, as possibly dist
(
X, ∂(

⋃
p∈X Op)

)
= 0 — the radius

of Op may approach 0 as p ∈ X goes to an ‘infinity’ of X). We denote the

ε-tubular neighborhood by P . See Figure 5.

Fig. 5.

In the tubular neighborhood Q := exp−1(P ) of X in NX ′,

(∗) V ′
u intersects each H ′

x transversally at one point.

For simplicity, rewrite Q as NX ′. We construct a diffeomorphism defined

on NX ′ that ‘straightens’ the leaves V ′
u (u ∈ U) in NX ′. First fix x0 ∈ X.

From (∗), we may define a projection Π : NX ′ → H ′
x0

by transforming

points of NX ′ to points of H ′
x0

along the leaves V ′
u as illustrated in Figure 6.

Write Π : p = (x, y) 	→ p′ = (x0, π(p)). Set NX ′′ := X ×H ′
x0

and define a

diffeomorphism ψ : NX ′ → NX ′′ by ψ : p = (x, y) 	→ q = (x, π(p)), which

straightens the leaves V ′
u as illustrated in Figure 7.
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Fig. 6. The projection of p along H ′
x0

.

Fig. 7. Straightening.

The composition of the diffeomorphism ψ−1 : NX ′′ → NX ′ with ϕ′ :=

ϕ◦exp : NX ′ → U yields a projection Φ := ϕ′ ◦ψ−1 : NX ′′ = X×Hx0 → U

(note that each fiber is straight — vertical). Here Φ may not be surjective,

in which case shrinking U we assume U = Hx0 , so Φ : NX ′′ = X × U → U

(surjective).

Consider now the K-action on NX ′′ induced via ψ from the K-action on

NX ′. Since exp : NX ′ → U is K-equivariant, the map Φ : NX ′′ → U is K-

equivariant. Note also that the K-action on NX ′′ is semi-diagonal (because

ψ maps each horizontal leaf to another and the K-action on NX ′ (⊂ X×C
n)

is semi-diagonal). Write this action as

(x, u) 	−→ (kx, ρx(k)u), k ∈ K, (x, u) ∈ X × U,

where ρx is a representation of K depending on x ∈ X. Actually the K-

equivariance of Φ : NX ′′ → U implies that ρx does not depend on x. In

fact, from Φ(k(x, u)) = kΦ(x, u) we have Φ
(
kx, ρx(k)u

)
= kΦ(x, u), that is,
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ρx(k)u = ku (recall Φ is a projection). Thus ρx is independent of x, and

this K-action is diagonal. We summarize these results as follows:

Lemma 3.4 (Diagonalization lemma). Let Γ be a Lie group and ϕ :

M → N be a Γ-equivariant proper surjective submersion. Suppose that the

stabilizer K of a point o ∈ N is compact. Then there exist (i) a K-stable

open neighborhood U of o in N and (ii) a K-equivariant diffeomorphism

ϕ−1(U)
∼=−→ X × U (where X := ϕ−1(o) and the K-action on X × U is

diagonal) such that the following diagram commutes:

ϕ−1(U)
∼= ��

ϕ
����

��
��

��
�

X × U

pr
����

��
��

��
�

U.

(3.2)

(Note: K may be replaced with any compact subgroup of G fixing o.)

Linearization. The map exp : ToU → U is a local diffeomorphism

around o, and under this correspondence, the K-action on U becomes a

linear K-action on the vector space ToU (the isotropy representation of

K). For a sufficiently small open neighborhood B of the origin in ToU , if

necessary shrinking U we may assume that exp : B
∼=−→ U (diffeomorphic).

Lemma 3.4 is then refined as follows:

Lemma 3.5 (Linearization lemma). Let Γ be a Lie group and ϕ : M →
N be a Γ-equivariant proper surjective submersion. Suppose that the sta-

bilizer K of a point o ∈ N is compact. Then there exist (i) a K-stable

open neighborhood U of o in N and an open ball B centered at the origin

in C
n (n := dimN) on which K acts linearly and (ii) K-equivariant diffeo-

morphisms U
∼=−→ B and ϕ−1(U)

∼=−→ X × B (where X := ϕ−1(o) and the

K-action on X×B is diagonal) such that the following diagram commutes:

ϕ−1(U)
∼= ��

ϕ
��

X ×B

pr
��

U
∼= �� B.

(3.3)

(Note: K may be replaced with any compact subgroup of G fixing o.)
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Holomorphic linearization

We next consider the complex analytic case: M and N are complex

manifolds, Γ is a complex Lie group acting on them holomorphically, and ϕ

is holomorphic. Note that if a stabilizer K is compact, K is rarely a complex

Lie group: Any compact complex Lie group of dim ≥ 1 is necessarily a

complex torus (Picard’s theorem). Except for this special case, K is a real

Lie group (its action on N cannot be holomorphic but merely smooth) or

a finite group (its action on N is holomorphic). In the sequel, we consider

the finite case. K is then denoted by G.

We shall show that after a holomorphic coordinate change, the G-action

on U becomes linear. Note first that the exponential map cannot be used:

recall that in the smooth case (M,N are smooth manifolds), we used a G-

equivariant exp : ToU → U made from a G-invariant metric on U , however

this is generally not holomorphic (even if the G-invariant metric is Kähler).

The construction without using a G-invariant metric and its associated ex-

ponential map proceeds as follows: Take a G-stable open neighborhood U

of o in N (note: since G is finite, we may take such a neighborhood without

using a G-invariant metric, indeed for an arbitrary open neighborhood W

of o in N , set U :=
⋂

g∈G gW ). We identify U with a coordinate chart and

regard U ⊂ C
n, where o corresponds to the origin. We may then identify the

tangent space ToU at o with C
n, so that U ⊂ ToU = C

n. Now for h ∈ G, let

h∗ : ToU → ToU denote the induced linear map. Consider the composition

h−1
∗ ◦ h : U

h−→ U
h−1
∗−→ C

n and then their average, i.e. the holomorphic

map F : U → C
n defined by F (x) := 1

|G|
∑
h∈G

h−1
∗ ◦ h(x), where the division

by |G| ensures that the Jacobian matrix Jo of F at o is the identity matrix

(indeed for any v ∈ ToU , we have dFo(v) = 1
|G|

∑
h∈G

v = 1
|G| |G|v = v). Since

Jo is invertible, F is biholomorphic around o ∈ U . If necessary shrinking U

we assume that F : U → B := F (U) is biholomorphic.

Lemma 3.6. The biholomorphic map F : U → B is G-equivariant: for

any g ∈ G, the following diagram commutes.

U
g ��

F ∼=
��

U

F∼=
��

B
g∗ �� B.
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Proof. It suffices to show Fg = g∗F , that is, g−1
∗ Fg = F . This is

confirmed as follows:

g−1
∗ Fg(x) =

1

|G|g
−1
∗

∑
h∈G

h−1
∗ ◦ hg(x) =

1

|G|
∑
h∈G

g−1
∗ h−1

∗ ◦ hg(x)

=
1

|G|
∑
h∈G

(h∗g∗)
−1 ◦ (hg)(x) = F (x). �

Lemma 3.6 means that in the new coordinate chart B of U , the G-action

becomes linear (g acts as a linear map g∗).

Definition 3.7. By abuse of terminology, the G-action on B is called

the isotropy representation of G.

Now — in the complex analytic case — the assumption of Lemma 3.5 is

modified as follows: Γ is a complex Lie group, ϕ : M → N is a Γ-equivariant

proper holomorphic surjective submersion between complex manifolds such

that the Γ-actions on M and N are holomorphic. Then by Lemma 3.6 the

following holds:

Lemma 3.8 (Holomorphic linearization lemma). In the complex ana-

lytic case, if the stabilizer of o is finite, the diffeomorphism U → B in

Lemma 3.5 may be taken to be a biholomorphic map.

Alternative approach for diagonalizing semi-diagonal actions

The set Hom(G,GLn(C)) of homomorphisms from a finite group G to

GLn(C) forms an algebraic variety: Say G is generated by g1, g2, . . . , gl
with relations ri(g1, g2, . . . , gl) = 1, i = 1, 2, . . . , k. Then Hom(G,GLn(C))

is identified with an algebraic variety V in GLn(C)×· · ·×GLn(C) (l times)

defined by ri(X1, . . . , Xl) = I, i = 1, 2, . . . , k, under the correspondence

ρ ∈ Hom(G,GLn(C)) 	→ (ρ(g1), . . . , ρ(gl)) ∈ V . The representation variety

R(G,GLn(C)) is the quotient of Hom(G,GLn(C)) by the conjugation action

of GLn(C).

Recall that the number of irreducible representations of a finite group

is finite. Let µ1, µ2, . . . , µl be the irreducible representations of G, then any

representaton µ of G is expressed as µ = µm1
1 ⊕ µm2

2 ⊕ · · · ⊕ µml
l (up to

conjugation), where mi are nonnegative integers. Consequently the number
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of representations of G to GLn(C) (for fixed n) is finite up to conjugation,

that is, R(G,GLn(C)) is a finite set, or the number of GLn(C)-orbits in

Hom(G,GLn(C)) is finite.

We turn to a semi-diagonal G-action on X × C
n given by (x, v) 	→

(gx, ρx(g)v), where ρx depends on x ∈ X smoothly (or holomorphically in

the complex analytic case — “smooth” below is also replaced with “holo-

morphic”). Consider a smooth map

f : X → Hom(G,GLn(C)), x 	→ ρx,(3.4)

and the composite map f := q ◦ f : X → R(G,GLn(C)), where q :

Hom(G,GLn(C)) → R(G,GLn(C)) is the quotient map. Suppose that X

is connected, then the image f(X), and also f(X), is connected. Here

R(G,GLn(C)) consists of a finite number of points, so f(X) is necessarily

one of these points. Namely f(X) is contained in a single GLn(C)-orbit.

Thus fixing a base point x0 ∈ X, for each ρx there exists Ax ∈ GLn(C) such

that ρx = Axρx0A
−1
x . Here the choice of Ax for each x is not unique (for any

B ∈ GLn(C) such that ρx0 = Bρx0B
−1, we have ρx = (AxB)ρx0(AxB)−1).

As explained in Remark 3.9 below, we may choose Ax for each x ∈ X such

that the map α : X → GLn(C), x 	→ Ax is smooth and locally single-valued

— but may not be globally single-valued on X. If it is globally single-valued

on X, then a coordinate change (x, v) 	→ (x,Axv) of X ×C
n is defined, and

under which the semi-diagonal G-action (x, v) 	→ (gx, ρx(g)v) becomes a

diagonal action (x, v) 	→ (gx, ρx0(g)v). Since this is not always the case, we

adopted another method for diagonalization, which also works for compact

groups.

Remark 3.9. Since f(X) is contained in a single GLn(C)-orbit, the

GLn(C)-action on f(X) is transitive. Let S be the subgroup of GLn(C)

consisting of A ∈ GLn(C) such that Aρx0A
−1 ∈ f(X) and let H be the

subgroup of S consisting of A ∈ GLn(C) such that Aρx0A
−1 = ρx0 . Then

f(X) = S/H, and a principal H-bundle H → S → S/H = f(X) is obtained.

Consider its pullback H → f∗S → X via f . Since f∗S → X is a fiber

bundle, around each point of X it admits a local section, accordingly we

may take the map α : X → GLn(C), x 	→ Ax as locally a single-valued

smooth map (globally α may not be single-valued). If α is globally single-

valued on X, then it is regarded as a section of f∗S → X. However this
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bundle may not have a section, in which case such a single-valued map does

not exist.

4. Application

Let ϕ : M → N be a Γ-equivariant proper surjective submersion between

manifolds such that the Γ-actions on M and N are proper; so ϕ : M/Γ →
N/Γ is a submersive quotient family. Suppose that the stabilizer G of a

point o ∈ N is finite. Taking a sufficiently small G-stable neighborhood

U of o in N , the inclusions ϕ−1(U) ↪→ M and U ↪→ N induce embeddings

ϕ−1(U)/G ↪→ M/Γ and U/G ↪→ N/Γ, and the following diagram commutes:

ϕ−1(U)/G
� � ��

ϕ
��

M/Γ

ϕ
��

U/G � � �� N/Γ.

(4.1)

The quotient family ϕ : ϕ−1(U)/G → U/G is thus a subfamily of ϕ :

M/Γ → N/Γ around o ∈ N/Γ.

Now applying Lemma 3.5 to the case that K is a finite group, we obtain

the following (below, K is denoted by G):

Proposition 4.1 (Linearization). Let ϕ : M → N be a Γ-equivariant

proper surjective submersion between manifolds such that the Γ-actions on

M and N are proper. If the stabilizer G of a point o ∈ N is finite, there

exist a G-stable neighborhood U of o in N and an n-dimensional open ball

B centered at 0 in C
n (n := dimN) on which G acts linearly such that

the local quotient family ϕ : ϕ−1(U)/G → U/G is orbi-diffeomorphic to the

linear quotient family pr : (X ×B)/G → B/G, where X := ϕ−1(o). (Note:

For “orbi-diffeomorphic”, see Definition 1.11.)

In the complex analytic case, the assumption of Proposition 4.1 is mod-

ified as follows: Γ is a complex Lie group, ϕ : M → N is a Γ-equivariant

proper holomorphic surjective submersion between complex manifolds such

that the holomorphic Γ-actions on M and N are proper. Then both ϕ :

ϕ−1(U)/G → U/G and pr : (X × B)/G → B/G are holomorphic maps

between complex analytic varieties. Moreover by Lemma 3.8 the following

holds:
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Proposition 4.2 (Holomorphic linearization). In the complex ana-

lytic case, the orbi-diffeomorphism between U/G and B/G in Proposition

4.1 may be taken to be a biholomorphic map.

Quotient as orbifold. Let Γ be a Lie group acting on a smooth

manifold M properly such that the stabilizer of every point of M is finite (in

the extreme case, Γ itself is a finite group or a discrete group acting properly

discontinuously). Then M/Γ is an orbifold, which is shown by using slice

theorem.

Descent to orbi-map. Let Γ be a Lie group acting on smooth mani-

folds M and N properly such that the stabilizer of every point of M and N

is finite. Let ϕ : M → N be a Γ-equivariant map. Then it descends to an

orbi-map ϕ : M/Γ → N/Γ between orbifolds M/Γ and N/Γ. If moreover ϕ

is a proper surjective submersion, ϕ : M/Γ → N/Γ is called an orbi-quotient

family.

Theorem 4.3 (Linearization theorem). Any orbi-quotient family ϕ :

M/Γ → N/Γ is locally orbi-diffeomorphic to a linear quotient family as in

Proposition 4.1 (and in the complex analytic case, the orbi-diffeomorphism

between the base spaces may be taken to be a biholomorphic map by Propo-

sition 4.2 ).

Theorem 4.3 enables one to describe, in terms of linear quotient families,

many important families, e.g. the (coarse) universal families of Abelian va-

rieties over Shimura varieties and the (coarse) universal families over moduli

spaces of Riemann surfaces. We here apply our result to the latter families.

Let Tg be the Teichmüller space of marked Riemann surfaces of genus g ≥ 2

and let ϕ : Sg → Tg be the universal (i.e. tautological) family: for each

point [(X,µ)] ∈ Tg, its fiber is a marked Riemann surface (X,µ), where µ

is a marking of X. The mapping class group Γg acts on both Sg and Tg

properly discontinuously, and ϕ : Sg → Tg is Γg-equivariant. The quotient

ϕ : Sg/Γg → Tg/Γg is the universal family η : Ug → Mg over the moduli

space Mg := Tg/Γg. Now the stabilizer of every point of Tg for the Γg-action

is finite (as this action is properly discontinuous): for a point [(X,µ)] ∈ Tg,

its stabilizer is given by Aut(X), which linearly acts on the tangent space of
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Tg at [(X,µ)] (the isotropy representation). Here Tg around [(X,µ)] is iden-

tified with the Kuranishi space of X, and by the Kodaira–Spencer theory,

its tangent space at [(X,µ)] is given by H1(X,TX).

In what follows, we identify H1(X,TX) with the vector space

H0(X,K⊗2) of holomorphic quadratic differentials via the Serre duality,

where K is the canonical bundle on X; alternatively in terms of the Bers em-

bedding of Tg into H0(X,K⊗2) as a ball around the origin (e.g., see [Nag]),

the tangent space of Tg at [(X,µ)] is naturally identified with H0(X,K⊗2).

(For the reason why we use H0(X,K⊗2) rather than H1(X,TX), see Re-

mark 4.5 below.) We now apply the linearization theorem to ϕ : Sg/Γg →
Tg/Γg, obtaining the following result:

Corollary 4.4 (Linearization theorem of universal families). Let X

be a Riemann surface of genus g ≥ 2. Then the (coarse) universal family

ϕ : Ug → Mg around [X] is orbi-diffeomorphic to a crystal fiber neighborhood

of the 2-canonical family(
X ×H0(X,K⊗2)

)
/Aut(X) → H0(X,K⊗2)/Aut(X)

such that the orbi-diffeomorphism between the base spaces is biholomorphic.

Remark 4.5. The advantages to using H0(X,K⊗2) instead of

H1(X,TX) lie in the facts that sections are easier to treat than 1-cocyles,

and moreover, in the practical computation to describe the Aut(X)-action

with respect to some basis (this description is needed for describing the

2-canonical family), it is easier to find a basis of H0(X,K⊗2) than that of

H1(X,TX), as we may use Max Noether’s theorem: for a nonhyperellip-

tic curve X, the natural map Sym2H0(X,K) → H0(X,K⊗2) is surjective

(see [ACGH] p.117); thus for a basis α1, α2, . . . , αg of H0(X,K), a basis of

H0(X,K⊗2) may be taken from {αiαj}1≤i≤j≤g.

The Kuranishi space of X is realized as an open neighborhood of the

origin in H0(X,K⊗2) such that the origin corresponds to the complex struc-

ture of X. The automorphism group Aut(X) acts on the Kuranishi space

(which is the restriction of the linear action of Aut(X) on H0(X,K⊗2) in-

duced from the action of Aut(X) on X). The quotient of the Kuranshi space

under the Aut(X)-action is an open neighborhood of the image of the origin

in H0(X,K⊗2)/Aut(X); this quotient is regarded as an open neighborhood
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of [X] in the moduli space Mg. In fact, Mg is obtained by patching such

quotients (see [ACG]). This construction fits the following consequence of

Corollary 4.4:

Corollary 4.6. The (coarse) universal family Ug → Mg over the

moduli space Mg of Riemann surfaces of genus g ≥ 2 is topologically obtained

by patching crystal fiber neighborhoods of the 2-canonical families
(
X ×

H0(X,K⊗2)
)
/Aut(X) → H0(X,K⊗2)/Aut(X). Here in the resulting fam-

ily obtained by patching, while the total space is merely orbi-diffeomorphic

to Ug, the base space is biholomorphic to Mg.

Remark 4.7. For the automorphism groups of Riemann surfaces, see

the survey [BCG], and for the characters of their representations, see [Br].

We point out that while for the case g ≥ 3 the kaleido fibers of the

2-canonical family η :
(
X ×H0(X,K⊗2)

)/
Aut(X) → H0(X,K⊗2)/Aut(X)

coincide with its special (or singular) fibers, for the case g = 2 the situation is

slightly different. In the former case, the action of Aut(X) on H0(X,K⊗2) is

effective, and the genus of a fiber η−1(s) = X/Hs̃ (where Hs̃ is the stabilizer

of s̃ ∈ H0(X,K⊗2) for the Aut(X)-action; see Theorem 2.1) is strictly less

than g precisely when s lies in the kaleido locus of η. In the latter case,

the action of Aut(X) on H0(X,K⊗2) is not effective: any Riemann surface

of genus 2 is hyperelliptic, having a hyperelliptic involution ι, which acts

on H0(X,K⊗2) trivially (in fact as an element of the mapping class group,

ι fixes all points of the Teichmüller space T2). The non-effectivity of the

action of Aut(X) on H0(X,K⊗2) implies that all fibers of η are kaleido, that

is, the kaleido locus is the whole of H0(X,K⊗2)/Aut(X), and a generic fiber

is not X but a projective line X/〈ι〉 of covering multiplicity 2.

It is however possible to turn a generic fiber into a pure fiber by “re-

duction” replacing the Aut(X)-action on H0(X,K⊗2) with the Aut(X)/〈ι〉-
action on H0(X,K⊗2) (which is effective) while replacing the Aut(X)-action

on X with the Aut(X)/〈ι〉-action on X/〈ι〉. The resulting linear quotient

family η′ :
(
(X/〈ι〉) × H0(X,K⊗2)

)/
Aut(X)/〈ι〉 → H0(X,K⊗2)

/
Aut(X)/

〈ι〉 has the same base space as that of η :
(
X × H0(X,K⊗2)

)/
Aut(X) →

H0(X,K⊗2)/Aut(X) (as 〈ι〉 acts trivially on H0(X,K⊗2)), and a fiber

(η′)−1(s) over any point s coincides with η−1(s) (as, by the quotient fiber

theorem, η−1(s) = X/Hs̃ = X/〈ι〉
/
Hs̃/〈ι〉 = (η′)−1(s)). However the cov-

ering multiplicity of (η′)−1(s) becomes the half of that of η−1(s) (divided
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by the order of ι). In particular for a generic fiber X/〈ι〉 of η′, its covering

multiplicity is 1, thus it is a pure fiber. See [Ta2] for the general theory of

reduction.
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