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Chern Class and Riemann-Roch Theorem for

Cohomology Theory without Homotopy Invariance

By Masanori ASAKURA* and Kanetomo SaTof

with Appendix B by Kei HAGIHARA

Abstract. In this paper, we formulate axioms of certain graded
cohomology theory and define higher Chern class maps following the
method of Gillet [Gil]. We will not include homotopy invariance nor
purity in our axioms. It will turn out that the Riemann-Roch theorem
without denominators holds for our higher Chern classes. We will give
two applications of our Riemann-Roch results in §§11-13.

1. Introduction

In his papers [G1] and [G2], Grothendieck defined Chern classes and
characters

i Ko(X) — CHY(X),  chx: Ko(X) — CH*(X)q

for a smooth variety X over a field k, where Ky(X) (resp. CH!(X)) denotes
the Grothendieck group of vector bundles over X (resp. the Chow groups
of algebraic cycles of codimension ¢ on X modulo rational equivalence).
Concerning the Chern character, he proposed the celebrated Grothendieck-
Riemann-Roch theorem, which asserts that for a proper morphism f:Y —
X of smooth varieties over k, the equality

(1.1.1) chx (fe) - td(Tx) = fi(chy (o) - td(Ty))

holds in CH*(X)q for any a € Ko(X). Here td(T’x) denotes the Todd class
of the tangent bundle T'x of X, and f, (resp. fi) denotes the push-forward
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of Grothendieck groups (resp. Chow rings). One immediately recovers the
classical Riemann-Roch theorem for a smooth complete curve X of genus g
with canonical divisor K:

D) —¥¢(K —D)=deg(D)—g+1 for adivisor D on X,

by considering the case of the structure morphism X — Spec(k).

In [Gil], Gillet introduced certain axioms on graded cohomology theory
(%) on a big Zariski site 6z, including homotopy invariance and purity.
Concerning such cohomology theory, he developed the general framework
of universal Chern classes and characters, which endows with the Chern
classes and characters for higher K-groups

Cij : Kj(X) — H* (X, T(i)),

(1.1.2) ~
chx : Ki(X) — H*(X,(e))q,

where K, (X) denotes the algebraic K-group [Q2] and H*(X, [(e))q denotes
the direct product of the cohomology groups H (X, I'(i)) ® Q for all integers
i and j. He further extended the formula (1.1.1) to this last Chern char-
acter. It is almost forty years since Gillet’s paper [Gil] was published, and
the K-theory of schemes has been much developed by the discovery of the
framework of Al-homotopy theory, e.g. [MV], [R], [KY]. See also Soulé’s
paper [Sou] for Adams Riemann-Roch for higher K-theory, and also the in-
troduction of [Hd] for a beautiful exposition on the history of Riemann-Roch
theorems. In this paper, we give a new result in a different direction, that
is, we extend Gillet’s results partially to graded cohomology theories which
do not satisfy homotopy invariance or purity.

1.1. Setting and results

Let Sch be the category consisting of schemes which are separated,
noetherian, universally catenary and finite-dimensional, and morphisms of
schemes. Let € be a subcategory of Sch satisfying the following two condi-
tions:

(x1) If f Y — X is smooth with X € Ob(®€), then Y € Ob(%) and
f € Mor(€).

(x2) If f Y — X is a regular closed immersion with X,Y € Ob(€), then
f € Mor(€).
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We do not assume that € is closed under fiber products. Let ['(x) =
{l'(n)}nez be a family of cochain complexes of abelian sheaves on the big
Zariski site €z,,. Our axioms of admissible cohomology theory consist mainly
of the following three conditions (see Definition 2.5 below for details):

(1) A morphism o : Gy[—1] — T(1) is given in D(€za). (From this
0, one obtains the first Chern class c1(L) € H?(Xzar, T(1)) of a line
bundle L on X € Ob(€).)

(2) A projective bundle formula for projective bundles in 6.

(3) For a strict closed immersion f : Y, — X, of codimension r of sim-
plicial objects in 6, push-forward morphisms

fro £l ()y, — T+ 7)x, [2r]

are given in D((Xy)zar) and satisfy transitivity, projection formula and
compatibility with the first Chern class. Here D((Xy)zar) denotes the
derived category associated with the additive category of unbounded
complezes of abelian sheaves on (Xy)zar-

The conditions (1)—(2) have been considered both by Gillet [Gil] Definition
1.2 and Beilinson [B] §2.3 (a)—(f). On the other hand, the last condition
(3) has been considered only for regular closed immersions of usual schemes
in those literatures, which we will need to verify the Whitney sum formula
for Chern classes of vector bundles over simplicial schemes, cf. §4 below.
See §3 for fundamental and important examples of admissible cohomology
theories. We will define Chern class and character (1.1.2) for an admissible
cohomology theory ['(x), following the method of Gillet [Gil].

As for the compatibility of the above axioms (1)—(3), the axiom (2) is
compatible with (1) in the sense that the first Chern class of a hyperplane
has been used in formulating (2). The push-forward morphisms in (3) will be
compatible with (1) by assumption. Moreover, we will prove the following
compatibility assuming that [(x) is an admissible cohomology theory, cf.
Corollary 7.7. Let E be a vector bundle of rank 7 on Y € Ob(%) and let
X :=P(E ® 1) be the projective completion of E, cf. (1.3.1). Then for the
zero-section f :Y — X, we have

i) =¢(Q) in H*(Xzar, [(r)),
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where 1 denotes the unity of H%(Yza,, [(0)) and Q denotes the universal
quotient bundle over X. This formula shows a compatibility between the
axioms (2) and (3), and plays an important role in our results on Riemann-
Roch theorems:

THEOREM 1.1 (89, §10). Let ['(x) be an admissible cohomology theory
on B, and let f :' Y — X be a projective morphism in € with both X and Y
regular.

(1) Assume that [ satisfies the assumption (#') in Theorem 10.1 below.
Then the formula (1.1.1) holds for ' (x)-cohomology, i.e., the following
diagram commutes:

f

K.(Y)
chy (=) Utd(Tf)l lChX
~ i~
B (Vaar, T(s))g = H* (Xzar. T ()

Here Tt denotes the virtual tangent bundle of f, cf. §10 below, and
fi denotes the push-forward morphism that will be constructed in §7
below.

(2) Assume that f is a (regular) closed immersion of pure codimension r >
1 and satisfies the assumption (#) in Theorem 9.1 below. Then the
Riemann-Roch theorem without denominators holds for T (x)-
cohomology, i.e., the following diagram commutes for any ¢,j > 0:

f

K;(Y) K;(X)

Pir,Y/X,jl/ lci,j,x
H26=1) 3 (Y, T(i — 1)) —2 H23(Xza0, T(0)),
where P;_,y/x ; denoles a mapping class defined by a universal poly-
nomial P;_,, and universal Chern classes, cf. §9 below.

The Riemann-Roch theorem without denominators was first raised as
a problem in [BGI] Exposé XVI §3, and proved by Jouanolou and Baum-
Fulton-MacPherson for Ky ([Jou] §1, [BFM] Chapter IV §5) and by Gillet
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for the Chern class maps (1.1.2) under the assumption that [(x) satisfies
homotopy invariance and purity ([Gil] Theorem 3.1). Theorem 1.1 (2) re-
moves those assumptions.

1.2. A logarithmic variant

Let X be a regular scheme which belongs to Ob(‘€), and let D be a simple
normal crossing divisor on X whose strata belong to Ob(‘¢) (see Definition
12.1(2)). As an application of Theorem 1.1, we will construct Chern class
maps

cix.p) : Ko(U) — H*((X, D)zar, T(i)) (U:= X\ D)

in §13, where I'(x) = I'(%)'°® denotes an admissible cohomology theory on the
category of log pairs in €, cf. Definitions 12.1 and 12.5 below. If D is empty,
then ¢; (x g) is the i-th Chern class map of X with values in an admissible
cohomology in the sense of §1.1. Following the idea of Somekawa in [Som|]
Chapter II, we construct the map ¢; (x,p) by induction on the number of
irreducible components of D. A key point is to prove the Riemann-Roch
theorem without denominators, analogous to Theorem 1.1 (2), for this new
Chern class map ¢; (x p) to proceed the induction step. We have to note that
a tensor product formula (cf. (L4) in §13) is necessary for this argument.
Because we consider only Ky, one can derive this formula easily from that
for the case D = () and the surjectivity of the map Ky(X) — Ko(U).

1.3. Outline of this paper

This paper is organized as follows. In §2 we will formulate admissible
cohomology theory, whose examples will be explained in §3. We will con-
struct Chern classes of vector bundles, universal Chern class and character,
higher Chern class and character, following the method of Grothendieck
and Gillet in §84-6 below. The section 7 will be devoted to extending push-
forward morphisms to projective morphisms in €, which plays a key role in
our proof of Riemann-Roch theorems. We will give an explicit construction
of Jouanolou’s universal polynomial in §8 for the convenience of the reader.
After those preliminaries, we will prove Riemann-Roch theorems in §§9-10,
and give an application in §11. In §§12-13, we will formulate a logarithmic
variant of admissible cohomology theory and construct a Chern class map
on Ky with values in the admissible cohomology with log poles, which is
another application of the Riemann-Roch theorem in §9. In appendix A, we
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will prove that the motivic complex of Voevodsky satisfies our axioms of the
admissible cohomology theory, under a certain assumption on resolution of
singularity. Our arguments in appendix A rely on the injective model struc-
ture on the category of unbouded complexes (of presheaves with transfers),
and a comparison between the derived category (in the sense of homological
algebra) and the homotopy category in the sense of homotopical algebra.
Appendix B due to Kei Hagihara will provide a detailed proof of this last
comparison, which will also include a comparison between K-injective com-
plexes and injectively fibrant complexes.

1.4. Notation and conventions

In this paper, all schemes are assumed to be separated, noetherian of
finite dimension and universally catenary. Unless indicated otherwise, all
cohomology groups of schemes are taken over the Zariski topology.

For a scheme X, a closed subset Z C X and a cochain complex %* of
abelian sheaves on Xz,, we define the hypercohomology group H' (X, %*)
with support in Z as the i-th cohomology group of the complex I'z(X, $°),
where $° denotes an injectively fibrant resolution of %°, cf. §A.1 below.

A projective morphism f 1Y — X of schemes means a morphism which
factors as follows for some integer n > 0:

yteprLts X,

where ¢ is a closed immersion and p is the natural projection, cf. [Ha3] p.
103. When X is regular, a projective morphism f : Y — X in the sense of
[GD1] 5.5.2 is projective in our sense by the existence of an ample family of
line bundles over X, cf. [BGI] Exposé II Corollaire 2.2.7.1.

For a vector bundle E over a scheme X, we define the projective bundle
P(E) as

(1.3.1) P(E) := Proj(Symg, (€")),

where € denotes the locally free sheaf on X represented by E and €" means
its dual sheaf over Ox. We define the tautological line bundle L*"* over P(F)
as follows:

(13.2) LP = Spec(Syme,,  (0(~1))),
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where O(—1) denotes the Opgy-dual of the twisting sheaf O(1) of Serre. For
a Cartier divisor D on X, the line bundle over X associated to D means the
line bundle

(1.3.3) Spec(Symg,, (0x(=D))),

which represents the invertible sheaf Ox (D) on X.
Let A be the simplex category, whose objects are ordered finite sets

[Pl :={0,1,2,....p}  (p=0)
and whose morphisms are order-preserving maps.
DEFINITION 1.4. Let B be a category.
(1) A simplicial object X, in B is a functor
X, : AP — 3B,

A morphism f : Y, — X, of simplicial objects in B is a natural
transform of such contravariant functors.

(2) For a simplicial object X, in % and a morphism « : [p] — [¢] in A, we
often write

o Xy — X, (Xp == Xu([p]))
for X, (a)), which is a morphism in %.

DEerFINITION 1.5. Let X, be a simplicial scheme.

(1) A wector bundle over X, is a morphism f : E, — X, of simplicial
schemes such that f, : £, — X, is a vector bundle for any p > 0 and
such that the commutative diagram

B, T x,
O(E lO{X
E, . X,

induces an isomorphism £, = aX ‘B = E), x x, X4 of vector bundles
over X, for any morphism «a : [p] — [¢] in A (cf. [Gi2] Example 1.1).
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(2) We say that a morphism f : ¥, — X, of simplicial schemes is a closed
immersion if f, : Y, — X, is a closed immersion for each p > 0. We
say that a closed immersion f : Y, — X, is exact, if the diagram

(1.5.1) Y, . x,
vy, I x
p— — p

is cartesian for any morphism « : [p] — [q] in A. We say that a closed
immersion f : Y, — X, is strict if it is exact and f, : Y, — X, is
regular for each p > 0. An effective Cartier divisor X, on Y, is a
strict closed immersion X, — Y, of pure codimension 1.

1.5. Acknowledgements

The authors express their gratitude to Kei Hagihara and Satoshi
Mochizuki for valuable discussions and comments on the subjects of this
paper. Thanks are also due to the referee, whose constructive comments
and suggestions have improved the presentation of this paper.

2. Admissible Cohomology Theory

The aim of this section is to formulate the axioms of admissible coho-
mology theory in Definition 2.5 below.

DEFINITION 2.1 (Graded cohomology theory). Let & be a site, and let
(%) = {T(i) };cz be a family of complexes of abelian sheaves on . We say
that (%) is a graded cohomology theory on &, if it satisfies the following
two conditions (cf. [Gil] Definition 1.1):

(a) T(0) is concentrated in degrees > 0, and the 0-th cohomology sheaf
%°(r'(0)) is a sheaf of commutative rings with unity.

(b) T'(x) is equipped with an associative and commutative product struc-
ture

M) @T(G) — T(i+4) in D(Sh?(F))

compatible with the product structure on %°(I'(0)) stated in (a).
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Now let € be as in §1.1. For a simplicial object X, in 46, there is a
natural restriction functor on the category of abelian sheaves

Ox, : ShiP®(€zar) — Sh*® (X)) zar),

which sends a sheaf & on €z, to the sheaf (U C X)) — F(U) on (X,)zar-
This functor is exact and extends naturally to a triangulated functor on
derived categories

Ox, : D(6zar) — D((Xx)zar)-

DEFINITION 2.2. Let [(x) be a graded cohomology theory on €z, and
let X, be a simplicial object in €. For each ¢ € Z, we define a complex
(i) x, of abelian sheaves on (X,)zar by applying 0x, to the complex I'(7).

We will often omit the indication of the functor fx, in what follows.

DEFINITION 2.3 (First Chern class). Let ['(x) be a graded cohomology
theory on €z,,, and suppose that we are given a morphism

0:0%[-1] — (1) in  D(€za),

where O* means the abelian sheaf on €z, represented by the group scheme
Gm. Let X, be a simplicial object in 6, and let L, be a line bundle over X,.
There is a class [Li] € H'(X4,0%) corresponding to L, (cf. [Gi2] Example
1.1). We define the first Chern class c1(Ly) € H?*(X,, (1)) as the value of
[Ly] under the map

HY(X,,0%) % HY(X,,T(1)).

The first Chern classes are functorial in the following sense:

LEMMA 2.4. Let I'(x) be a graded cohomology theory on €za,, and sup-
pose that we are given a morphism o : 0*[—1] — [ (1) in D(€za). Then
for a morphism [ : Y, — X, of simplicial objects in € and a line bundle L,
over X, we have

(L) = fla(l)  in H2(Y.,T(1)).
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Here f*L, denotes Ly X x, Ys, the inverse image of L, by f.

PROOF. The assertion is obvious, because (1) and ¢ are defined on
the big site €z5,. O

DEFINITION 2.5 (Admissible cohomology theory). We say that a

graded cohomology theory [(x) on €z, is an admissible cohomology theory
on 6, if it satisfies the axioms (1)—(3) below. Compare with [B] §2.3 (a)—(f),
[Gil] Definition 1.2.

(0) For a scheme X € Ob(6) and a dense open subset U of X, the restric-
tion map H°(X,T(0)) — H°(U,T(0)) is injective.

(1) (First Chern class) There exists a morphism

0:0%[-1] — T(1) in D(6za).

(2) (Projective bundle formula) For a scheme X € Ob(€) and a vector
bundle E over X of rank r 4 1, the morphism

ve: @D T —§)x[-24] — Bp.T(D)pm),
7=0
(@)= = Y & UpH(z))
=0

is an isomorphism in D(Xz,,). Here p : P(E) — X denotes the pro-
jective bundle associated with E, cf. (1.3.1), and & € H*(P(E), (1))
denotes the first Chern class of the tautological line bundle, cf. Defini-
tion 2.3. See (1.3.2) for the definition of the tautological line bundle.

(3) (Push-forward for strict closed immersions) For a strict closed im-
mersion [ : Y, — X, of simplicial objects in ¢ of pure codimension r,
there are push-forward morphisms

fie fe r(l)y; — r(Z + ’I“)X* [2’/“] (’L € Z)

in D((X,)zar) which satisfy the following four properties.
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(Consistency with the first Chern class) When r = 1, the push-
forward map

fr H(Y,,T(0)) — H*(X,,T(1))
sends 1 to the first Chern class of the line bundle over X, asso-

ciated with Y, cf. Definition 2.3.

(Projection formula)  The following diagram commutes in
D((X4)zar):

. L . id® f, . L .
Fi)x, ® fF(G)y, —=T(i)x, ®T(j +7)x,[2r]

product
ftoid
. . hi

product £+ )y F(+j+r)x[2r].

(Transitivity) For closed immersions f : Y — X andg: Z — Y
of objects in € of pure codimension r and r’, respectively, the
composite morphism

(f 0 9)l (D)7 = feguT(D)z == fuT (i + 1)y [2r]
T4+ ) x 20+ 1))
agrees with (f o g);.
(Base-change property) Let

Y’CLX’

g’l O lg
yc_f>X

be a diagram in 9 which is cartesian in the category of schemes
and such that f and f’ are strict closed immersions of pure codi-
mension 7. Then the following diagram commutes in D(Xz,,):

Rigo f).T(i)yr — = RguT(i + 1)y [2r]

Rfx (g/”)T Tg"
f* r(z)y F(z + T’)X[QT] .
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REMARK 2.6.

(1)

3.

In [B] and [Gil], the axiom (3) is considered only for usual schemes. In
fact, if I'(x) satisfies homotopy invariance, then we need push-forward
maps only for usual schemes to verify Theorem 4.2 (3) below, cf. [Le]
Part I, Chapter Il §1.3.3.

The axiom (3) implies the weak Gysin property in [Schn] p. 20 for
simplicial schemes.

We need the properties (3c) and (3d) in the axiom (3) only for usual
schemes, to verify Theorem 1.1. A key step is to extend the push-
forward morphisms to those for regular projective morphisms. See §7
below for details.

We do not assume that the push-forward map in the axiom (3) is
an isomorphism, because the projective bundle formula and the full
purity imply the homotopy invariance. Compare with the purity in
the sense of [Gil]| Definition 1.2 (vi).

The axiom (0) is a technical one, but will be useful in our construction

of push-forward morphisms for regular projective morphisms. See the
proof of Lemma 7.5 (1) below.

Examples of Admissible Cohomology Theory

We give several fundamental and important examples of € and I'(x).

The

first four examples satisfy homotopy invariance and purity, while the

others do neither of them.

3.1.

Motivic complex

Let k be a field, and let € be the full subcategory of Sch/k consisting
of schemes which are smooth separated of finite type over k. For i € Z, we
define (i) on €z, as follows:
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where Z(i) = C*(Zy(GLY))[—i] denotes the motivic complex of Suslin-
Voevodsky [SV] Definition 3.1, and C*® denotes the singular complex con-
struction due to Suslin. We will prove that ['(x) is an admissible cohomology
theory in Appendix A below, assuming that k admits the resolution of sin-
gularities in the sense of [SV] Definition 0.1.

3.2. Etale Tate twist

Let n be a positive integer, and let € be the full subcategory of Sch
consisting of regular schemes over Spec(Z[n~]). For i € Z, we define [(4)
on 6z, as follows:

F(i) = Re.pfy! (i >0),
v Ra*(%om(ug(_i),Z/n)) (1 <0),

where pu, denotes the étale sheaf of n-th roots of unity and ¢ : €5 — 6za,
denotes the natural morphism of sites. Obviously [(x) = {I'(i)}iez is a
graded cohomology theory on 6. We define the morphism ¢ in 2.5 (1) by
the connecting morphism associated with the Kummer exact sequence on

Gt
0— (1) — 0 X5 0% —0.

The property 2.5 (2) follows from the homotopy invariance ([AGV] Exposé
XV, Théoreme 2.1) and the relative smooth purity.

We check that [(x) satisfies the axiom 2.5(3), in what follows. Let
f: Y, — X, be a strict closed immersion of pure codimension r of simplicial
schemes in 6. We use Gabber’s refined cycle class [FG] Definition 1.1.2

clx, (Yo) € HY, (X0, T(r)).
By the spectral sequence (cf. [C] Proposition 1I.2)
Y = HY, (X, T(r)) = HE(X.T(r)
and the semi-purity in [FG] §8, we have
HY (X, T(r)) & Ker(dy — df : HY (X0, T(r)) — Hy (X1, T(r))).

By the functoriality in loc. cit. Proposition 1.1.3 and the assumption that
the square (1.5.1) is cartesian, we have

dEkJClXo (Yb) = C|X1 (Yl) = dTCIXo (1/0)7
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and consequently, clx,(Yp) belongs to Ker(d§ — dj). We thus obtain a cycle
class

cx, (Y,) € Hy (X, T(r))

as the element corresponding to clx,(Yp). Since f*I'(i)x, = [(i)y, on
(Y:)zar , the cup product with clx, (Y;) defines the desired push-forward mor-
phism

. * . cl *(K)U_
fis LTy, 2 Lo T(i)x, —
which satisfies the properties 2.5 (3a), (3b). See loc. cit. Proposition 1.2.1
for (3c). The property (3d) follows from loc. cit. Proposition 1.1.3. Thus
(%) is an admissible cohomology theory on 6.

Mi+r)x,[2r] in D((Xs)zar),

3.3. Betti complex

Let € be the full subcategory of Sch/C consisting of schemes which are
smooth separated of finite type over C. Let %,, be the big analytic site
associated with €. Let A be a subring of R with unity. For ¢ € Z, we define
(i) on €z, as follows:

[(i) := Re,((2nV-1)"4),

where ¢ : €., — €z5 denotes the natural morphism of sites. When A = Z,
we define the morphism g = gz in 2.5 (1) as the connecting morphism of the
exponential exact sequence

0—21vV/—1-Z — 022 0% —0.
For a general A, we define 9 = 94 as the composite morphism

0:0%[-1] 2 27V/—1-Z — 2nv/—1 - A.

The axioms 2.5 (2)—(4) can be checked in a similar way as for §3.2.

3.4. Deligne-Beilinson complex
Let € be as in §3.3. Let A be a subring of R with unity. For i € Z, we
define () on €z, as follows:

M) = [ (2) (i = 0),
| Rei((2my/ 1)1 A) (i < 0),
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where [ (i) denotes the Deligne-Beilinson complex on €z,, in the sense of
[EV] Theorem 5.5 and € : €,, — 6za denotes the natural morphism of
sites, cf. §3.3. See loc. cit., Theorem 5.5 (b) and Proposition 8.5 (resp. [Jal]
§3.2) for the axiom 2.5 (1) and (2) (resp. 2.5(3) and (4)).

3.5. Algebraic de Rham complex

Let k be a field, and let € be the full subcategory of Sch/k consisting
of schemes which are smooth separated of finite type over k. For ¢ € Z, we
define (i) on 6z, as the de Rham complex Q:/k over k. We see that [(x)
is an admissible cohomology theory on €, when we define g in 2.5(1) by
logarithmic differentials. See [Ha2] Chapter II §2 for the axioms 2.5 (3).

3.6. Logarithmic Hodge-Witt sheaf

Let p be a prime number, and let € be the full subcategory of Sch
consisting of regular schemes over Spec(F,). Let n be a positive integer.
For i > 0, we define (i) on €z,, as follows:

r(Z) — {(])%E*mlﬂliog[_i] (Z > 0)7
(1 <0),

where I/Vanog denotes the étale subsheaf of the logarithmic part of the
Hodge-Witt sheaf W}, Q" on €, cf. [I1], and € : €¢ — €z, denotes the nat-
ural morphism of sites. Then ['(x) = {I'(7)};cz is an admissible cohomology
theory on 6, which we are going to check. We define the morphism p in
2.5(1) as the logarithmic differential map. See [Gr| Chapter I Théoreme
2.1.11 and [Sh] Theorems 2.1, 2.2 for the axiom (2). To verify the ax-
iom (3), we construct the push-forward map for a strict closed immersion
f Y, — X, of pure codimension r of simplicial schemes in €. For a > 0,

let f,:Y, — X, be the a-th factor of f. Note first that

RIfIT(i+7r)x, =

{0 (j <i+2r)
#(@y,) (G=i+2r)

by loc. cit. Theorem 3.2 and Corollary 3.4, which immediately implies

RfT(i+r)x, =0 for j<i+2r
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We denote the above isomorphism for j = i+ 2r by (f,)1. To show that the
maps (fg)1 for a > 0 give rise to an isomorphism

H(M(i)y,) = R ' TG +1)x,,

it is enough to check that the maps (f,)1 are compatible with the simplicial
structures of X, and Y, . One can easily check this by the local description of
(fa)1 in [Sh] p. 589 and the assumption that the square (1.5.1) is cartesian.
Thus we obtain a morphism

fi: [« r(Z)y* — r(Z + T)X* [27“] in D((X*)Zar)-

The properties (3a)—(3d) follows again from the local description in [Sh]
p. 539

3.7. p-adic étale Tate twist

Let B be a Dedekind ring of mixed characteristics, and put S :=
Spec(B). Let p be a prime number which is not invertible on S, and let €
be the full subcategory of Sch/S consisting of regular schemes X which are
flat of finite type over S and satisfy the following condition:

e Let B’ be the integral closure of B in I'(X,0x). Then for any closed
point x on Spec(B') with ch(x) = p, the fiber X Xspec(py® is a reduced
divisor with normal crossings on X.

Fix a positive integer n. For ¢ € Z, we define
(i) := Re. %, (4),

where ¢ denotes the natural morphism of sites €& — €z, and T, (i) de-
notes the i-th étale Tate twist with Z/p™-coefficients [Sat2] Definition 3.5, a
bounded complex of sheaves on B¢ Then I'(x) = {I'(i)};ez is an admissible
cohomology theory on €. See [Sat2] Theorem 4.1 and Proposition 5.5 for the
axioms 2.5 (2), (3a)—(3c). The property (3d) follows from the construction
of the push-forward morphisms given there and the corresponding property
in §3.2 above.
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4. Chern Class of Vector Bundles

In this section we define Chern classes of vector bundles over simplicial
schemes following the method of Grothendieck and Gillet (cf. [G1] p. 144
Theorem 1, [Gil] Definition 2.10), and prove Theorem 4.2 below. Let € be
as in §1.1, and let [(x) be an admissible cohomology theory on €.

DEFINITION 4.1 (Chern class). For a simplicial object X, in €, we put

2 (X, T()) i= €D H¥(X., T(0),

i>0

which is a commutative ring with unity by the axioms 2.1 (a), (b). For a
vector bundle E, over X,, we define the total Chern class of E,

c(Bx) = (ci(Ex))izo € H* (X, T(*))

as follows. Let E, be of rank r, and let p be the natural projection P(E,) —
X,. Let L2 be the tautological line bundle over P(E,) and put & :=
ci1 (L2t € H*(P(E,),T(1)). There is an isomorphism

P H¥ (X T(@) = B (B(E), T(r),
(4.1.1) =1 )
(bi)izy Z &MU pH(bi)
1=1

by the axiom 2.5(2), cf. [Gil] Lemma 2.4. We define ¢o(E,) := 1 €
H°(X,,T(0)) and define (c1(Ey),c2(Ey),...,c (E,)) as the unique solution
(c1,¢o,...,¢p) to the equation

&+ U )+ +EUPH (1) +pHer) =0
in H*"(P(E,),T(r)). We define c;(E,) := 0 for i > r.
THEOREM 4.2. Let X, be a simplicial object in 6.

(1) (Normalization) We have co(Ey) = 1 and ¢;(E,) = 0 fori > rank(E}).
If E, is a line bundle, then ci(FEy) defined here agrees with the first
Chern class in Definition 2.2(2).
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(Functoriality) For a morphism f :Y, — X, of simplicial objects in
© and a vector bundle E, over X, we have

c(f'Ey) = fﬁC(E*)v
where f*E, denotes E, xx, Y, , the inverse image of E, by f.

(Whitney sum) For a short exact sequence 0 — E. — E, — E! — 0
of vector bundles over Xy, we have

c(Ey) =c(E))Uc(E!) in H*(X,,T(x)).

(Tensor product) For vector bundles E, and E, over X, we have

¢(E, ® E)) =¢(E,) % ¢(E})
in H*(X,,T(x) =7 x {1} x I,
where ¢(E,) denotes the augmented total Chern class (rk(Ey),c(Ey)),

and I denotes the positive part of the graded commutative ring

H?* (X, T(%)):

=@ HY(X,,T(i).

>0

We endowed H2*(X,,T(x)) with the A-ring structure associated with
H?*(X,,T(x)) ([G2] Chapter I§3), and wrote % for its product struc-
ture.

The Chern classes c(Ey) are characterized by the properties (1)—(3).

The properties (1) and (2) immediately follow from the definition of
Chern classes and the functoriality in Remark 2.4. The property (4) follows
from (3) and the splitting principle of vector bundles. The assertion (5) also
follows from the splitting principle of vector bundles. The most important
part of this theorem is the verification of the property (3), which is reduced
to the Lemma 4.3 below, by Grothendieck’s arguments in [G1] Proof of
Théoréeme 1. In this paper, we cannot use the splitting bundle argument

(cf.

[Le] Part I, Chapter II §1.3.3, [ILO] Exposé XVI Proposition 1.5)

because we do not assume homotopy invariance:
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LEMMA 4.3. Let E, be a vector bundle of rank r on X,. Let p :
P(E,) — X, be the projective bundle associated with Ey, and let L¥" be
the tautological line bundle over P(E,). Suppose that we are given a filtra-
tion on E, by subbundles

E.=E’>E!>--.D2E =0  (r:=rank(E,))

such that the quotient E!/E™ is a line bundle for 0 <i <r —1. Then we
have

ﬁ
|
—_

(et (L) + PP (EL/E)) =0 in HY(B(E,),T(r)).

s
Il
o

PROOF. Put F; := p*E, @ L', and let s : P(E,) — F, be the com-
posite morphism

s P(E,) — Abg,) — pPE.@ L™ = F,,

where the central arrow is induced by the canonical inclusion (L82Ut)Y —
p*E,. Put

Fl:=p'El@ LB Gl .= F/FE™ and Vi:=sYF) for 0<i<r.

Note that F/ = G7 = 0 (as vector bundles over P(E,)) and that F~! =
G771 is a line bundle over P(E,). When Xj is a point (and Eq = A’ ), the
degree 0 part of s sends

w:(blibgiu':br) — (bl,bQ,...,br)Q@U

M M
P(Ep) = P(AY,) — Fy,

where v denotes the dual vector of (b, bg,...,b,) € (LF")Y. By this local
description of s, we see the following (where X, is arbitrary):

° Vji is smooth over X; for any i <r —1 and j > 0, and Vi is empty
for any j > 0. In particular, V! is a simplicial object in 6 for each
i=0,1,...,7.
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e For each i = 0,1,...,r — 1, V! is an effective Cartier divisor on
Vil (cf. [GD2], Théoréme 17.12.1), whose associated line bundle is
isomorphic to Gih/*i .

Now the assertion follows from these facts and a similar computations as
in [G1] Proof of Lemma 2. This completes the proof of Lemma 4.3 and
Theorem 4.2. [J

For a simplicial scheme X,, let Ky(X,) be the Grothendieck group of
vector bundles over X,. As an immediate consequence of Theorem 4.2, we
obtain the following corollary:

COROLLARY 4.4. For a simplicial object X, in 6, there exists a unique
map

¢ = (ci)izo : Ko(Xs) — H**(Xs, T (%)),
that satisfies the following four properties:

(1) We have ¢y =1 (constant). If a € Ko(X,) is the class of a line bundle
Ly, then ci(«) agrees with ci(Ly).

(2) The map c is contravariantly functorial for morphisms of simplicial
objects in 6.

(3) For a, 8 € Ko(Xy), we have c(a+ ) = c(a) Uc(f).

(4) For o, 8 € Ko(X,), we have €(a ® ) = ¢(a) % (B) in H>*(X,, [(x)).
Here ¢(a) denotes the augmented total Chern class (rk(a),c(«)), and
rk denotes the virtual rank function.

5. Universal Chern Class and Character

Let the notation be as in §4 and recall our convention on schemes we
fixed in §1.4. We introduce here the following notation:

DEFINITION 5.1. Let Y be a scheme, and let Shu(Yza) (resp.
Shve(Yzar)) be the category of sheaves of sets (resp. sheaves of pointed sets)
on YZar~
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(1) We endow A°PShve(Yzar), the category of simplicial sheaves of pointed
sets on Yz, , with the Brown-Gersten model structure [BG] Theorem
2, whose class of fibrations (resp. weak equivalences, cofibrations) are
defined as that of global fibrations (resp. morphisms which induce
topological weak equivalences on stalks, morphisms which have left
lifting property with respect to all trivial fibrations). We write #o0e(Y")
for its associated homotopy category. We will also use the unpointed
version #o(Y") constructed from A°PShu(Yz,,), the category of simpli-
cial sheaves of sets.

(2) For a cochain complex (%°® d®) of abelian sheaves on Yz, and an
integer j € Z, consider the following complex:

2 L G Ker(dl G G,

which we regard as a chain complex with the most right term placed

in degree 0. Taking the associated simplicial abelian sheaf to this

complex (cf. [GJ] p. 162), we obtain a simplicial abelian sheaf on Yz,
which we denote by H(F*, j).

(3) Let BLQPy be the nerve of the @Q-category associated with the exact
category Py of locally free Oy-modules. We call B, QPy- the K-theory
space of Y. Let B,9%y be the simplicial sheaf of pointed sets on Yz,,
associated with the presheaf

U CY (open) — B,QPy.

The j-th algebraic K-group K;(Y) of Y is mj11(B.QPy) by definition
(Q2]. there is a natural map from K;(Y) to the generalized sheaf
cohomology H771(Y, B,2%y) (see §6 below), which is bijective if ¥’
is regular (cf. [Q2] §7.1, [BG] Theorem 5).

Let X be a scheme which belongs to Ob(‘€). We review the construc-
tion of universal Chern classes due to Gillet [Gil] §2 briefly, which will be
complete in 3 steps.

Step 1. Let n be a non-negative integer, and let B,GL,, x be the classi-
fying scheme of GL,, x, the general linear group scheme of degree n over X.



270 Masanori ASAKURA et al.

Applying the construction of Chern classes to the universal rank n bundle
E{™ over B,GL,, x, we obtain Chern classes

ci(E™) € H*(B.Glyx,T(1)) (i >0)

which are called the universal rank n Chern classes. Recall that there is a
canonical map

AXin : Hgi(B*Gme, I'(z)) —_— I\/Ior%o(x)(B*GLn(@X),%(I’(z‘)x, 22))

forn > 1andi > 0, cf. [Gil], p. 221. Here B, GL,(0x) denotes the simplicial
sheaf of groups on X represented by B,GL, x. For ¢ > 0, we define

Cim 1= x,in(Ci(EY™)) € Morgo(x) (Be GLn(0x ), H(T(4)x, 24))

)

One can easily check that c;, for ¢« > 1 is pointed, i.e., defines a morphism
in #o0e(X ). More precisely, we have used here the following well-known fact,
cf. [AGP] Corollary 4.4.7:

PROPOSITION 5.2. Let F* be a cochain complex of abelian sheaves on
Xzar.- Then the canonical map forgetting base points

Morgeo, (x) (€, H(F®, j)) — Morgeo(x) (€x, H(F*, 7))
is injective for any €, € Ob(A°PShve(Xzar)) and j € Z.

Step 2. The data (c;pn)n>1 together with the stability ([Gil] Theorem
1.12, Proposition 1.17) yield a mapping class

oo € Morsan ) (BeGL(Ox), H(T())x,20)) (i > 1),

loc. cit. p. 225. To proceed the construction of universal Chern classes, we
recall here the following fact (compare with [Schl] Warning 2.2.9):

PRrROPOSITION 5.3 (cf. [Gil] Proposition 2.15). There is a functorial
isomorphism

QBOPx ¥ 7 x Zoo B,GL(Ox) in Hos(X).

Here QB,2%x denotes the loop space of B.A%Px (cf. Definition 5.1(3), [GJ]
p. 83), which is a simplicial sheaf of pointed sets on Xza and whose base
point is the constant loop at 0.
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Step 3. Finally we define the i-th universal Chern class C; for ¢ > 1 as
the composite

Ci: QBOPy —— ZxZyB,GL(Ox)
(5.3.1) P2 7. B,GL(Ox)
LelCioe) g ST (i), 20) 2 H(T(0) x, 20)

in #oe(X), where the last isomorphism is obtained from the fact that
simplicial abelian groups are Z-complete [BK] 4.2. For ¢ = 0, we define
Co: QBAPx — H(I'(0)x,0) as the class of the constant map with value 1
in #o(X) (not in Hoe(X)).

We next review the universal augmented total Chern class and the uni-
versal Chern character, which will be useful later.

DEFINITION 5.4 ([Gil] Definition 2.27,2.34). Let X be a scheme which
belongs to Ob(€).

(1) For €, € Ob(A°Shve(Xza)), we define H?*(X,€,;T(i)) (resp.
H(X,€,;Z)) as the mapping class group Morge,, (x (€., H(I(i)x,2i))
(resp. Morgeo, (x)(€x,Z)).

(2) We define the universal augmented total Chern class as
E = (rk, Co, Cl, CQ, e )
€ H(X, QBAPx; Z) x {1} x [ [ B*(X, QB.2Px; (i),

i>1
where rk denotes the class of the rank function Q2B,92%x — Z.

(3) (cf. [G2] Chapter I (1.29)) We define the universal Chern character
as

ch :=rk + n(log<1 + i C>> e [[ (H¥(X, QB92%x; (i) @ Q),
i=1

i>0

where 1 = (7;)i>0 denotes the graded additive endomorphism

ni(z;) == — cxp (2 € H(X, QBAPx;T(1)) ® Q).
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For a morphism f : Y — X in € and ¢ > 1, there is a commutative
diagram in #oe(Y")

#
(5.4.1) F*QBOPx — - QBODy

Ci,Xl lci,y
#

FRH(T6) x, 20) L= H(T(0)y, 20)

by Theorem 4.2 (2) and the construction of C;. One can also check a similar
commutativity for the universal Chern character.

6. Chern Class and Character for Higher K-Theory

Let the notation be as in §4. Let X be a scheme which belongs to Ob(6),
and let Z be a closed subset of X. For a simplicial sheaf of pointed sets
€4 € Ob(A°PShue(Xzar)) and a non-negative integer j > 0, we define

H,(X,%€.) := Morg, (x) (%%, ),

where EPjZ denotes the constant sheaf (of simplicial pointed sets) on Z asso-
ciated with the singular simplicial set of the j-sphere. Note that there is a
canonical isomorphism

(6.0.1) H (X, %(F,0) = H, T (X, F°)

for a cochain complex %* of abelian sheaves on Xz, and ¢ € Z, where the
right hand side means the hypercohomology of #* with support in Z, cf.
[BG] §2 Proposition 2. Let KJZ(X) = K;(X,X \ Z) be the j-th algebraic
K-group of X with support in Z. We define the Chern class map

i K (X) — H7 7 (X, T(0))
as the composite map

K#(X) — H’ (X, QB2%x)

(6

¢ . L (601) .
S HP (X, H(T(i)x, 20)) = HE7I(X,T(i)).

Here C; denotes the universal Chern class (5.3.1). The map Ci),(O,X’ i.e., the
case j = 0 and Z = X agrees with ¢; for X, = X (constant simplicial
scheme) mentioned in Corollary 4.4.
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PROPOSITION 6.1.

(1) CiZJ- is contravariantly functorial in the pair (X, Z), that is, for a mor-
phism f : X' — X in6 and a closed subset Z' C X' with f~1(Z) c Z',
there is a commutative square

f 1
KZ(X) K7 (X')
CiZ,J’,X CiZ,;,X’
fﬁ

%i—j , 2i—j .
HZ J(X’ r(Z)) HZ/ j(X,7 r(Z))
(2) CiZ,j7X is additive for i,7 > 0, and zero for i =0 and j > 0.

ProoF. (1) follows from the commutative diagram (5.4.1). The addi-
tivity assertion of (2) follows from Theorem 4.2 (3) and the arguments in
[Gil] Lemma 2.26. The last assertion follows from the fact that
ng(X, (0)) is zero for j > 0, cf. Definition 2.1 (a). O

REMARK 6.2. To prove Proposition 6.1 (2), we need the framework of
Chern classes of representations [Gil] Definitions 2.1 and 2.10, which we
omit in this paper because one can easily establish it under our setting by
the same arguments as in loc. cit.

DEFINITION 6.3.

(1) We define KZ(X) as the direct sum of KZ(X) with i > 0, and define
H3(X,T(e))q as the direct product of H,(X,[(n)) ® Q with i,n > 0.

(2) We define the Chern character
ch% + KY(X) — Hy (X, T(*))o

as the map induced by the universal Chern character defined in Defi-
nition 5.4 (3). We often write chx for ch¥.

PROPOSITION 6.4.

(1) ch% is contravariantly functorial in the pair (X,Z) in an analogous
sense to Proposition 6.1 (1).
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(2) The Chern character ch% is a ring homomorphism.

PrROOF. (1) the commutative diagram (5.4.1). The assertion (2) fol-
lows from Theorem 4.2 (4), Proposition 6.1 (2) and the arguments in [Gil]
Proposition 2.35. J

7. Push-Forward for Projective Morphisms

Let € and (%) be as in §4. See §1.4 for the definition of projective
morphisms.

DEFINITION 7.1. Let f:Y — X be a projective morphism in €.

(1) By taking a factorization
f:Yyc i Pn s x

with g a closed immersion, we define the relative dimension of f as the
integer m — codim(g). Because we deal with only universally catenary
schemes, this number is independent of the factorization.

(2) We say that f is regular if f has a factorization as above for which
g is a regular closed immersion. A regular projective morphism is a
regular morphism in the sense of [FL] p. 86.

Now let (%) be an admissible cohomology theory on €, and let f : Y —
X be a regular projective morphism in 6. The main aim of this section is
to construct push-forward morphisms in D(Xza,)

(7.1.1) A RETG+r)v[2r] — T@)x  (i€Z)

and prove Theorem 7.2 and Corollary 7.7 below, where r denotes the relative
dimension of f. The results in this section will play key roles in the following
sections. Taking a factorization

frycfopp=pr_t,x
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of f such that ¢ is a regular closed immersion, we are going to define the
push-forward morphism (7.1.1) as the composite

RET(i + r)y[2r] = Rp.Rg.T(i + 1)y [2r]

Rp- (9') Dy

— Bp. (i + m)pm [2m] —T(i)x,

where p; denotes the composite of the isomorphism by the projective bundle
formula and a projection

Py 2 Rp.T (i + m)pm g@ M +7)x[2] — T()x
7=0

We have used the condition (x3) on the category € in §1.1 to verify the
existence of gi.

THEOREM 7.2. Let f:Y — X be a reqular projective morphism in 6.

(1) (Well-definedness) fi does not depend on the choice of a factorization
of f. In particular, we have fi = f3 when f is isomorphic to a natural
projection P} — X.

(2) (Projection formula) The following diagram commutes in D(Xzar):

L id® fi L
Fi)x @ BRETG +r)y2r] = T H)x @ T(j)x

f“@idl W\

product

RET()y @ RETG +r)y[2r] —= RET( + 5 +7)v[2r] T4 )x

(3) (Transitivity)  For another regular projective morphism f': Z — 'Y
in € of relative dimension r', the composite morphism

R(fo f)ulGi+r+1)z2(r +7)] = RERFT(i+ 1+ 1) z[2(r +17)]

I RET( + )y [27] 25 Tli)x

agrees with (f o f');.
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(Base-change property) Let

Yli)X/

ﬁlfla

Y —X

be a commutative diagram in €, where f and f' are reqular projective
morphisms of relative dimension r, and « is a closed immersion. Let
U be an open subset of Y for which the following square is cartesian:

flg—1
ls-1w) X

p=HU)

| = ]

U————>X.

Then for a closed subset Z C'Y contained in U, the diagram

Rl f')uRL 51y (Y, T(i + 7)) [2r] L 0w RE o1 (2 (X, T(3))
ol

.

RERL 7(Y,T(i +))[2r] d

R (7 (X, T(i))

commutes in D(Xzar).

REMARK 7.3.

(1)

Applying Theorem 7.2 to the example in §3.6, we obtain push-forward
morphisms of logarithmic Hodge-Witt sheaves for projective mor-
phisms of regular schemes over [F),, which satisfy the properties listed
above. This result answers the problem raised in [Sh] Remark 5.5 affir-
matively, and we obtain the same compatibility as in loc. cit. Theorem
5.4 for I/VnQ?og with n > 2 as well.

We need the axiom 2.5 (3) only for regular closed immersions of usual
schemes in € to prove Theorem 7.2.
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We first prepare the following lemmas:

LEMMA 7.4. Let R be a local ring and put Y := Spec(R). Let s:Y —
Py be a section of the natural projection Py — Y. Then under a suitable

choice of coordinates, there exists an affine open subset Ay C Py such that
s(Y) C AP.

Proor. Let Ty, 11,...,T, be a set of homogeneous coordinates of P™.
The global sections a; := s*(T;) € I'(Y,s*0(1)) (i = 0,1,...,m) generates
the sheaf s*0(1), cf. [Ha3]II Theorem 7.1(a). Since R is local, we have
s*0(1) = Oy and I'(Y,s*0(1)) = R. Under this identification, the ideal
generated by a;’s is R itself and we have a;, € R* for some ig, again by the
assumption that R is local. Hence s(Y') is contained in the complement of
the hyperplane {7}, = 0}, which is the desired affine open subset. [J

LEMMA 7.5. Let X be an object of €. Let m and n be non-negative
integers, and put P™ := P2, P" :=P% and P™ x P" :=P™ x x P".

(1) Let p : P™ — X be the natural projection, and let s : X — P™ be a
section of p. Then the composite morphism in D(Xzar)

F(i)x =5 Rp,T(i + m)pm[2m] =5 T(i) x

agrees with the identity morphism of T(i)x for each i € Z. Here s
denotes the push-forward morphism in Definition 2.5(3).

(2) Put N :=mn+m+n. Letp : P* — X and q : PV :=P¥ — X be the

natural projections. Let 1 : P™ x P* < PN be the Segre embedding,
and let w : P™ x P — P™ be the first projection. Then the diagram

R(p X )T (i +m + 1) pmspe [20m + n)] —> Rg.[(i + N)px [2N]

”l lqﬂ

Rp.T (i + m)pm [2m)] & M(i)x

is commutative in D(Xza,) for each i € Z.
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(3) Let g: Y — X be a regular closed immersion of codimension c in €.
Let py : P — Y be the natural projection, and let ¢’ : PJF — P™(=
P'¢) be the regular closed immersion induced by g. Then the diagram

Rp.(g()

g« Rpy T (i + m)pr[2m] Rp. T (i +m + c)pm[2(m + ¢)]

p”l lpn

9T @)y z MG+ c¢)x[2¢]

commutes in D(Xza) for each i € Z.

(4) Let Y € Ob(€) be a scheme which is projective over X, and let g :
Y < P and h : Y — P" be regqular closed immersions over X. Let
p: Y — P x P" be the closed immersion induced by g and h. Then
@ is a reqular closed immersion, and the diagram

Rm« (1
9.T(0)y (e RraT(i + 1 + ¢)pmypn [2(n + )]

[(i + c)pm[2(]

commutes in D((P™)zar) for each i € Z. Here ¢ denotes codim(g), and
7w P x P — P™ denotes the first projection.

PrROOF OF LEMMA 7.5. (1) We first show that
(7.5.1) () =1 in HO(X,F(0)),

where 1 means the unity of H°(X,T(0)). Replacing X with an affine dense
open subset if necessary, we may assume that s : X — P is given by the ho-
mogeneous coordinate (1:ay: ... :a,) with a; := s*(T;/Ty) € I'(X,0x) un-
der a suitable choice of projective coordinates (Tp: 77 : ... :1;,) with s(X) C
{Ty # 0} = A", cf. Definition 2.5 (0), Lemma 7.4. Let £ € H*(P™,T(1)) be
the first Chern class of the tautological line bundle over P™. In order to
show (7.5.1), it is enough to check

(7.5.2) s(1)=¢™ in H*™(E™, [ (m)).
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If m = 1, we have s(1) = £ by Definition 2.5 (3a). For m > 2, we have
s1(1) = €™ by Definition 2.5 (3 ) (3¢) and induction on m. Thus we obtain
(7.5.1).
Lemma 7.5 (1) follows from (7.5.1) and the following commutative dia-
gram in D(Xza):

) id®si(1) L
FO)x ———=T(i)x @ Rp.[(m)pn[2m]

T

Rp.T (i +m)pm[2m] P M)x,

where the arrow (%) is p* ® id followed by product. The left triangle com-
mutes by the projection formula in Definition 2.5 (3b). On the other hand,
the right triangle commutes as well because the projective bundle formula
in Definition 2.5 (2) is compatible with the multiplication by I'(x)x. This
completes the proof of Lemma 7.5 (1).

(2) Let s : X — P™ and s : X — P" be the zero sections. Let { €
H2(P™, T (1)) (vesp. n € H*(P", (1)), ¢ € H*(PY¥,T(1))) be the first Chern
class of the tautological line bundle over P™ (resp. P*, PV). Let 0 : X —
P™ x P" be the morphism induced by s and s’. By similar arguments as in
the proof of (7.5.2), we see that

o(1) =€ ur(n®) in BT X P T(m+n)),
(Yoop(1)=¢V in H*N(PY,T(N)),

where 7’ denotes the second projection P x P" — P". By these facts and
Definition 2.5 (3c), we obtain

(7.5.3) (™) Ut () = ¢V in HPN (PN, T(N)).
On the other hand, if 0 <7 <m and 0 < j < n with i4+j > 0, then we have

(7.5.4)  (xH(Em Ut ("))
= VT UG a0) + VT U () + -+ ¢ (an i)

in H2N==)(PN (N —i — j)), for some a = a;j, € H*(X,T(k)) (k =
0,1,...,N — i — j) by the projective bundle formula in Definition 2.5 (2).
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One can easily deduce the assertion of Lemma 7.5 (2) from (7.5.3), (7.5.4)
and the projection formula in Definition 2.5 (3b).

(3) By the axioms in Definition 2.5 (3), the following diagram commutes
in D(Xzar)i

Rp.(g))

g« Rpy T (i + m)pp [2m] Rp T (i +m + c)pm[2(m + ¢)]

l

DLy 9-T(i +5)v[24] 2 Py T(i+j+0)x20( + ),

l

where the vertical isomorphisms follow from the projective bundle formula.
The assertion follows from this fact.

(4) The first assertion follows from [BGI] Exposé VIII Corollaire 1.3. As
for the second assertion, replacing P with X, we may assume that m = 0
and that Y is a closed subscheme of X via g. Then decomposing ¢(= h) as
Y — Py — P%, we see that the assertion is reduced to the results in (1)
and (3), by the transitivity in Definition 2.5 (3¢). O

Proor orF THEOREM 7.2. We write P™ for the projective space P'¢
over X for simplicity.

, o h
(1) Suppose we are given two factorizations Y P L X andY &

Pt 2 X of f. There is a commutative diagram in €

Yy CE s pm o pr Y prntman

S,

pm X,

where ¢ denotes the closed immersion induced by g and h, and ¥ denotes the
Segre embedding. The right vertical arrow ¢ denotes the natural projection.
Note that ¢ and v are both regular by [BGI] Exposé VII Corollaire 1.3
and [GD2] Théoreme 17.12.1, respectively. By Lemma 7.5(2), (4) and the
axioms in Definition 2.5 (3), we have

ps © Rp.(91) = qg 0 Rgu((p o o)1) - RET(i 4 7)y[2r] — T(i)x,

which implies the assertion.
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(2) Fix a factorization Y < P L X of f. The projection formula holds
for g by the axiom in Definition 2.5 (3b), and holds for p as well because
the isomorphism of the projective bundle formula is compatible with the
multiplication by ['(x)x, cf. Definition 2.5(2). The assertion follows from
these facts. )

(3) Taking factorizations f :Y P 2 X and fz & opn 7 Y, one
can easily deduce the assertion from Lemma 7.5(3), (4). The details are
left to the reader.

(4) Fix a factorization Y’ L pm L X of f. There are cartesian squares

p=HU) P X’
o2 ek
U H\U pm X,

where the horizontal arrows of the left square are (locally closed) immer-
sions. The assertion holds for the right square and a closed subset W C P™
by the definition of push-forward morphisms. On the other hand, the asser-
tion holds for the left square and a closed subset Z C Y contained in U by
excision and the base-change property in Definition 2.5 (3d). The assertion
for f follows from these facts and the transitivity established in (3). O

COROLLARY 7.6. LetY € Ob(€) be a scheme which admits an ample
family of invertible sheaves, and let w: E — 'Y be a vector bundle of rank r+
1. Let p: P(E) — Y be the projective bundle associated with E, cf. (1.3.1),
which is projective in our sense by the assumption on Y. Then for each
i € Z, the map py = Rp.T(i + r)pgy[2r] — [(i)y agrees with the composite
of the isomorphism by the projective bundle formula and a projection

Py 2 Rpi T (i + 7r)pgyl2r] = @ Fi+j)y[25]] — T@)y in D(Yzar)-

PrROOF. By a standard hyper-covering argument, we may assume that
E = AU Then the assertion follows from Theorem 7.2 (1). O

COROLLARY 7.7. LetY € Ob(€) be a scheme which admits an ample
family of invertible sheaves, and let w : E — Y be a vector bundle of rank
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r. Letp: X :=P(E®1) — Y be the projective completion of E, where 1
denotes the trivial line bundle over Y. Let f :' Y — X be the zero section of
p, and let Q be the universal quotient bundle p*(E®1)/(L*?")Y on X. Then
the Gysin map f, sends the unity 1 € H(Y,T(0)) to ¢, (Q) € H*" (X, T (r)).

PROOF. Let ¢ := ci(L?) € H?(X,T(1)) be the first Chern class of
the tautological line bundle over X, and let io : P(E) - P(E® 1) = X be
the infinite hyperplane. The projective bundle formula in the axiom 2.5 (2)
(for both X and P(F)) and the functoriality mentioned in Remark 2.4 imply
that the kernel of the pull-back map

ihe : HY (X, T(r)) — HY(B(E), T (r))
is generated, over H(Y,T(0)), by the element
(7.7.1) &+ Upla(BE) + &2 Upler(E) + - + per(E) = ¢ (Q),

where we have used Theorem 4.2 (2), (3) for X, = X to obtain the last
equality. On the other hand, we have zgo o fi = 0, because fi factors through
HZ(X,T(r)) and it factors through H?" (X \Y,T(r)). Therefore fi(1)

belongs to Ker(igo) and we have

fil) =a-c.(Q) for some a € H(Y,[(0)).

It remains to check a = 1. By the transitivity in Theorem 7.2(3), this
claim is further reduced to showing pi(c,(Q)) = 1. Finally this last equality
follows from (7.7.1), Theorem 7.2 (2) and Corollary 7.6 for E& 1 over Y. [

8. Construction of a Universal Polynomial

For an indeterminate x, we define
Z[z]° = {f(z) € Q[z]| f(m) € Z for any m € Z}.

Let n and r be integers with n > 0 and r > 1. In this section, we construct
a universal polynomial

Pn,r(toatb .. ,tn;ul,u2, . ,’LLT) € Z[to]o[tl, A ,tn;ul,UQ, . ,UT]

in an explicit way by modifying the polynomial of Fulton-Lang considered
in [FL] Chapter II §4. Our polynomial P, , agrees with the polynomial
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considered in [G2] Chapter I Proposition 1.5 and [Jou] §1, up to signs of
u;’s with j odd. We will also provide Propositions 8.1 and 8.4 below con-
cerning elementary properties of some power series related to this universal
polynomial, which will be useful later in Theorem 9.1 below.

We start with indeterminates @ = (a1,a2,...,a,), b = (b1,b2,...,b;)
and a power series

For(a,b): HH H (1+a¢—bk1—bkz_..._bkj>(—1)j’

=1 j=0 k1<---<k;j

which has constant term 1 and is symmetric in aq,as9,...,a, and also in
bi,b2,...,b,. It is well-known that F,.(a,b) — 1 is divisible by biby---b
(cf. [FL] p. 44). We mention here a property of the power series g,(b) :=
Fi1,(0,b). Let s; be the i-th elementary symmetric expression in

<

bi,ba, ..., b, and let G,(t1,t2,...,t,) be the power series satisfying

gr(b) =1+, Gp(s1,52,...,5).

PROPOSITION 8.1. Let € and (%) be as in §4, and let 7 : E — X be
a vector bundle of rank r with X € Ob(€). Put

A4(EY):=1—[EV]+[NEY] =+ (-1)'[N"EY] € Ko(X).

Then in the complete cohomology ring H2*(X, T (%)) 1= [Liso H?(X,T(7)),
we have

811 D (A a(EY) =14c(B) UG (c1(E), ca(E),. ... cr(E)).

i>0

ProOF. The assertion follows from Theorem 4.2(3) for X, = X
and [FL] Chapter II Proposition 4.1 for e = 1, the trivial line bundle
over X. [J

We next consider a power series
Jnr(a,b) :=F,(a,b)- g (b)",

which is symmetric in ay,ao,...,a, and in by, bo, ..., b, as well.
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LEMMA 8.2.
(1) Jnr(a,b) —1 is divisible by byby - - - by..

et o; be the j-th elementary symmetric expression in ai,as,...,an.
2) Let o be the j-th el t tre on 1
Then we have

1401402+ +0y) %8 (b) =y ,(a,b),
where * denotes the product of power series in the sense of |G2] Chap-

ter I §3 (1.16)—(1.17bis) defined by regarding a; and b; as of degree
1.

ProoF. (1) follows from the fact that F,,(a,b) — 1 and g,(b) — 1 are
both divisible by b1bs - - - b,. The assertion (2) follows from the definition of
the *-product. [

DEFINITION 8.3. Let hy,,(to,a,b) be the homogeneous component of
degree n + r, with respect to a and b, of the power series

Jnr(a,b) g (b) =F,,(a,b)-g.(b)°~" € Z[ty]*[a, b],

where t( is of degree 0, and (1 4+ )Y means the binary power series

: -1 -1 -2
Z (i{)m%:1+y.x+7y(y2 )'x2+y(y ?))'(y )~m3—|----
i>0 ’

€ Z[y|® [].

By Lemma 8.2 (1), hy (o, @, b) is divisible by biby - - - b,. Finally, we define
the desired polynomial P, , as that satisfying

Sp+ Pn77’(t0)0'170-27 -e+,0n;81,82,..., ST‘) = hﬂlﬂ’(t(%av b)u

where 0 is as in Lemma 8.2 (2), and s; denotes the j-th elementary symmet-
ric expression in by, be,...,b,. Note that P, ,(to,t1,...,tn;u1,u2,. .., uy)
is weighted homogeneous of degree n, provided that ¢; and u; are of
degree j.
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PROPOSITION 8.4. Consider a series 1+ 71 + 1o+ - =14+> ., T,
and suppose that 7; and u; are of degree j. Then we have

(1+uT-G,«(u1,...,ur))t°-{(1+7’1+7'2+-~-)*(1+uT-GT(u1,...,uT))}
= 1+urz P?’L—T,T(t077-17'"7Tn—T;u1)"'7uT‘)

n>r

Here x denotes the product considered in Lemma 8.2(2). Consequently,
the weighted homogeneous component of degree n of the left hand side is
Up - Ppeyrr(to, 71, o Tneri U1, . .., uy) (resp. zero) for n > r (resp. for 1 <
n<r).

PRrROOF. The assertion is a consequence of Lemma 8.2. The details are
straight-forward and left to the reader. [

9. Riemann-Roch Theorem without Denominators

Let € and I'(x) be as in §4, and let %R be the direct sum of K (I'(7), 2¢) with
i > 0, which is a commutative graded ring object with unity in #oe(€zar)
by the functoriality of ¥(—,2i) and the assumption that ['(x) is a graded
cohomology theory, cf. Definition 2.1. For Z € Ob(%€), let Rz be the re-
striction of R onto Zz,,, which is a commutative graded ring object with
unity in #Hoe(Zzar)-

Let f: Y — X be a regular closed immersion of codimension r which
belongs to 6. Using the universal polynomial P, , constructed in §8, we
define

Buy/x 1= Pny(rk, C1, Co, .., Gt (Nyyx)s c2(Nyyx)s - -+, & (NVyyx)
€ Morgeo, (v) (2B:2Py, (T (n)y, 2n))

if n > 0. Here ¢;(Ny,x) € H*(Y,I(i)) denotes the i-th Chern class of the
normal bundle Ny,x, and we have taken the polynomial of Chern classes
with respect to the ring structure on Ry. See Definition 5.4 (2) and (5.3.1)
for rk and C;, respectively. Note that F,y,x is well-defined, because the
rank function has integral values. We define F, y,x as zero if n < 0. The
main aim of this section is to prove a local version of Riemann-Roch theorem
without denominators:
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THEOREM 9.1. Let f : Y — X be as above, and assume that X and
Y are both reqular and that' Y has pure codimension v > 1 on X. Assume
further the following condition:

(#) The blow-up of X x P! := X X Spec(Z) PY along Y x {oo} belongs to

Mor(€).
Then the following diagram commutes in Hoe(Y') for any i > 1:
QOBOPy ——L—— RF'QB,OPy
Pir,y/xl lC}fX::Rf’(Ci)

KT — )y, 200 — 1)) —2> RFH(T(0)x, 20),

where the upper horizontal arrow denotes the canonical isomorphism due to

Quillen ([Q2] §7).

REMARK 9.2. Theorem 9.1 is a generalization of a theorem of Gillet
[Gil] Theorem 3.1. However, we have to note that his proof relies on an
incorrect formula CY(0y) = ji(A_1C(N)) under the notation in loc. cit.
Compare with (9.2.3) and (9.2.4) below.

PrOOF. We prove Theorem 9.1 in two steps by revising Gillet’s argu-
ments in [Gil] §3.

Step 1. Assume that f is isomorphic to the zero section of the projec-
tive completion 7 : P(E @ 1) — Y of a vector bundle £ — Y of rank r,
where 1 denotes the trivial line bundle over Y. In this step we prove that
the following diagram commutes in #oe(Y):

(9.2.1) QBOPy — T Rr.QBOPy

Pi—r,Y/Xl lcz‘,x

H(T(i — 1)y, 20 — ) —L = R, (T (i) x, 20),

which is weaker than the theorem. For Z € Ob(€), let R be as we defined
in the beginning of this section. Let Rz* be the product of H(I(7)z,2i)
with ¢ > 1, and put

Az =7 x {1} x Rz € Ob(A%®Shue(Zzar)),
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which we endow with the ring structure associated with Rz to obtain a ring
object in #oe(Z) (|G2] Chapter I §3). There is a commutative diagram in
Hoe(Y)

(922) QBOPy — ™ > Rr,QBOPy — R Ax
x l?'f*(h‘) l?*cx(f*(lK))
R, QB,OPy — X Rr Ax

where 1k denotes the unity of Ko(Y'), and % (resp. o) denotes the product
structure on Ax (resp. QB 9%Px, cf. [Gil] (2.31)). See Definition 5.4 (2) for
Cx. The square commutes by Theorem 4.2 (4) and loc. cit. Lemma 2.32.
The triangle commutes by the projection formula for K-theory, cf. [TT]
Proposition 3.17. Let us remind here the following formulas:

(9.2.3) flg) =2(QY)  in Ko(X),
([FL] Chapter V Lemma 6.2)
(9.2.4) (D) = (Q) in H*(X,T(r)), (Corollary 7.7)

where @ denotes the universal quotient bundle 7*(E®1)/(L*?")Y on X and
1 denotes the unity of H°(Y,(0)). We have used the fact that a regular
(noetherian and separated) scheme admits an ample family of invertible
sheaves [BGI] Exposé I Corollaire 2.2.7.1, in applying Corollary 7.7. By
(9.2.2) and (9.2.3), C; x o f« agrees with the composite

. C * Cx (A_1(QY
QB.OPy > R, QBOPy — > R, Ay ——XO1O@D) pr 4y

P R (T (i) x, 24)
where pr; denotes the natural projection. Hence we have
Cix o fu=pr o (Cx x Cx(Aa(QY)) o 7
Noting that rk(A_1(Q")) = 0, we have
Cx % Cx(A1(Q))
= (rk, Cx) % (0,Cx(A-1(Q")))
(rk, Cx(A—1(QY)™ U {Cx * Cx(A_1(Q"))}) (definition of %)
<rk, 14 (Q U Piyy(rk, Cx; Q)) (Prop. 8.1, 8.4)

j=>r
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where Cx denotes the total Chern class 1 + 2j>1 Cjx, and we put

Pj—r,r(rka CX; Q) = Bj—r,r(rky CLXa B Cj—r,X; C1 (Q)7 s 7CT<Q))
€ Morgeo, (x)(2B2Px, H(T(j —7)x,2(j —1))).

Thus we have

Cix © fx = (¢ (Q) U By (rk, Cx; Q)) o 7

= (fillp) U Py r(rk, Cx; Q) o * (by (9.2.4))
= fio f*B_,,(rk,Cx; Q) o ff o x* (the axiom 2.5 (3b))
= fiocF_,y/x ((5.4.1), Q= Ny/x)

and the diagram (9.2.1) commutes.

Step 2. We prove the theorem using the result of Step 1 and defor-
mation to normal bundle. Let ¢ : Spec(Z) — P4 =: P! be a morphism of
schemes, and consider the following commutative diagram of schemes:

hi=fxid

RN

v yuplc oMo xxpl — 22 ot

\iiﬂ\lt Z th i SpeI(tZ).

f

Here o denotes the blow-up of X x P! along Y x {co}, which is projective in
our sense because X x P! is regular and admits an ample family of invertible
sheaves. Note also that g is a morphism in € by assumption. The arrow & is
a closed immersion induced by h, where we have used the fact that ¥ x {oo}
is an effective Cartier divisor on Y x P!. The vertical arrows are morphisms
induced by t. The arrow & (resp. g;) is the base-change of £ (resp. ). Note
that we have
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where X denotes the blow-up of X along Y. In particular, & (resp. o) is
identical to f (resp. idx) when ¢t # oco. As for the case t = oo, it is well-
known that P(Ny,x @ 1) meets X along the infinite hyperplane P(Ny, x)
and that £, factors through the zero section

s:Y — ]P)(Ny/X D 1) = Poo (S(Y) m]P)(Ny/X) = @)

(see e.g. [FL] Chapter IV §5). Let g be the restriction of g to Poo. We will
prove the equality of morphisms

(9.2.5) Clxofi=goCp, os.: QBAPy — RfFI(T(i)x, 2i)
in #o0e(Y), where the right hand side means the composite morphism
QB,9%y % Rs'QBAPp. < Rs'H(T(i)p.,2i) -2 RFH(T()y, 20).

We first check that (9.2.5) implies the theorem. Indeed, we have

Cxofi=goClp, os. (by (9.2.5))
=gosiob .ymp, (by (9.2.1))
=fioh ,y/x (Theorem 7.2 (3), Ny, x = Nyyp,,)

as claimed.

We prove (9.2.5) in what follows. Noting that M belongs to Ob(‘€¢) by
the assumption (#), consider composite morphisms

a:QBOPy i & REQBOPY Ylﬂj REH(T (), 20)
2 ROH(T(3) o1, 20),
B, :QBOPy T Bp, QBOPy S Rp RRH(T(i) x p, 20)
it RF'H(T (i) x, 20).
One can easily check that

BOZCZXOf* and ﬁoo:glocz,/]?ooos*
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by the functoriality of Chern class maps (cf. Proposition 6.1 (1)) and the
base-change property in Theorem 7.2 (4). Moreover, we have gb(ﬁ) = (bﬁoo, ie.,
8o = Boo- Indeed, we have

Rp RR'H(T () x 1, 20) = @) RFH(T(i— 4)x,2(i — 5))
j=0,1

by the projective bundle formula, cf. the axiom 2.5 (2), and the pull-back
of the tautological line bundle over X x P! onto X x (P!~ {t}) is trivial
for any t € P!(Z), which imply that both qﬁg and ¢%, agree with the natural
projection. Thus we have

CZXof*:ﬂozﬁOO:g'oCZPOOOS*g
which completes the proof of the theorem. [

COROLLARY 9.3. Under the setting of Theorem 9.1, the diagram
fx
K;(Y) = K} (X)

Pz'r.,Y/X,jl lcz%x

HEII (Y, DG = 1) = B (X, T(0)

is commutative for any i > 1 and j > 0, where P;_,.y/x ; denotes the
composite map

P rv/x (6‘&1)

K (Y) HA(Y,H (T~ )y, 26— 7)) = HA=)=3(Y, (i - r)).

10. Grothendieck-Riemann-Roch Theorem

Let € and (%) be as in §4. In this section, we prove Theorem 10.1
below. Let f : Y — X be a projective morphism in €, and suppose that
X and Y are regular. See Definition 6.3 for K.(Y') and IA{*(Y, M(e))Q- By
taking a factorization

with g a closed immersion, we define the virtual tangent bundle Ty of f as

Ty = [g"Tp/x] — [Ny/p] € Ko(Y),
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which is independent of the factorization of f, cf. [FL] Chapter V Propo-
sition 7.1. Note that the relative dimension defined in §7 is exactly the
virtual rank of Tt. We further define the Todd class td(Ty) € IA-]*(Y, M(e))Q
as td(Ty) := td(g*Tp;x ) /td(Ny,p), which is independent of the factorization
of f as well.

THEOREM 10.1. Let f : Y — X be a projective morphism in € with
both X and Y regular. Assume the following condition:

(#) f:Y — X is isomorphic to a projective space over X, or there exists a
decomposition Y — P'¢ — X of f such that the blow-up of P'¢ x x IP)}(
along Y x {oo} belongs to Mor(€).

Then the diagram

K(Y) —L2— g™ (x)

chy()Utd(Tf)l lchg(m

~ i 2y
H*(Y, T (o)) — Hjy) (X, T(e))a
is commutative, that is, for o € K.(Y) we have

chit" (fra) = filchy (@) Utd(Ty)) in Hy)(X,T(e)).
Here fi denotes the push-forward morphism constructed in §7.

PrROOF. When Y is a projective space over X, then the assertion fol-
lows from the projective bundle formula (the axiom 2.5(2)) and the argu-
ments in [FL] Chapter I Theorem 2.2 (see also loc. cit. Chapter V Theorem
7.3). Hence by loc. cit. Chapter I Theorem 1.1 and the same arguments as
in Step 2 of the proof of Theorem 9.1 (we need the assumption (#') here),
we have only to check the commutativity of the diagram

fa

(10.1.1) K.(Y) K.(X)
Chy(*)Utd(Tf) chx

H*(Y,T(e))0 s Bx, (o))
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assuming that X = P(E @ 1), the projective completion of a vector bundle
E — Y of rank r and that f is isomorphic to the zero section of 7 : P(E &
1) —» Y. Let @ be the universal quotient bundle over X. Then we have

ch(f.(1k)) = ch(A-1(Q")) (by (9.2.4))
= (Q)Utd(Q)! ([FL] Chapter I Proposition 5.3)
= A(1p U ffd(@)7) ((9.2.3), the axiom 2.5 (3b))
= fi(td(T¥)) (fHQ) = [Ny)x] = —Ty)

in H*(X, [(e))@- Therefore the diagram (10.1.1) commutes by the argu-
ments in loc. cit. Chapter II Theorem 1.2 and the projection formula for
K-theory and ['(x)-cohomology. [J

11. Computation via 1-Extension

As an application of the Riemann-Roch theorem without denominators,
we compute Chern classes using 1-extensions.

Let € be as in §3.3. Let X € Ob(6) be a proper smooth variety over C
and let Z C X be a reduced closed subscheme of pure codimension r > 0.
Let 'p(*) be the Betti complex with A = Q (cf. §3.3) and let [g(x) be the
Deligne-Beilinson complex with A = Q (cf. §3.4), which are both admissible
cohomology theories on €. We are concerned with the Chern class maps

CneY KY (X) — HY (X, Th(i)),
CY KY(X) — HY (X, T (i),

where Y is either Z or X. We assume that j > 1 for simplicity (see Remark
11.3 below for the case j = 0), and put

= Coker(H, HZI- 1(X (i) — H* 7YX, (i))).

We are going to compute the composite map

c2.z o o
oyt KZ(X) 5 HY 79(X, Ty (i) — H* (X, Ty (i)

[0

= Hom prs) (@, RT(X, Ts(i))[1])
Extins(Q, B~ (X, T5(i))) — Extius(Q, V)

>
[123
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in terms of the Chern class map of a regular dense open subset of Z, where
MHS denotes the category of rational mixed Hodge structures and ax =
ax,x denotes the canonical isomorphism given in the following lemma. The
isomorphism 7 is obtained from the fact that 2-extensions are trivial in MHS
and the assumption that j > 1.

LeEMMA 11.1. Let X — Spec(C) be as before, and let T be a closed
subscheme of X. Then for integers i,7 > 0, there exists a canonical isomor-
phism

ax,r : Hp(X, Ty(i)) = Hom pms) (Q, RIr (X, Ta(i))[j])

fitting into a commutative diagram

HI(X, Ty (3)) HI(X, Tg(i))

ax, T

Hom pmns) (Q, RIr (X, T5(@))[j]) — Hom puns) (Q, RI'(X, Tp(4))[4])-

| ex=ox, X

PRrROOF. For an open subset U C X, let Q(i)g x  be the Deligne-
Beilinson complex of U on the analytic site Xy, cf. [EV] Definition 2.6. By
the definition of [g(7), there is a natural homomorphism of complexes

Bx,v : RI'(Xan, Q(i)a,x,v) — RI'(Uzar, [9(7)),

which is a quasi-isomorphism by loc. cit. Lemma 2.8. Let MHM(X) be the
category of mixed Hodge modules on X, cf. [Sa]. For M = (M, F*, Kq) €
Ob(MHM(X)), we define a complex ' of abelian sheaves on X, as

MT := Cone(Kg[—dimX] & F'DRx (M) — DRx (M))[-1],

where DRx (M) and F°DRx (M) denote the complexes (on X,,) with the
most left term placed in degree 0

DRx(M): M — M®@Qx — -+ — M®Q% — -,
FDRx(M): F'M — F"'M@Q% — - — FFIM@Q% — -,
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respectively. Because the assignment H — HT is exact, this induces a
functor

(=) : D’ (MHM(X)) — D(Xan).

Note also that for an open immersion v : U <— X there is a natural quasi-
isomorphism of complexes (on Xap)

Qo xv 2 (RLQM)),

where Q(i)y denotes the Hodge module associated to the constant sheaf
(2mv/—1)!Q on Usy. There is a diagram of quasi-isomorphisms of complexes

RI(Uzar, Ta (i) gj— RI(Xan, Q(i)ar x.07) 25 R (Xan, (R, Q(0)0)).

Considering this diagram for U = X and X \.T', we obtain an isomorphism
vx1 : ROp(Xzar, Ta(1)) 2 RT(Xan, (RO'Q(i)x)T)  in  D(Ab),
where ¢ denotes the closed immersion 7" < X. Finally we define ax r as

the composite

HL (X740, T (7)) "2 HY (X, (RO'Q()x))

= HomD(MHM(X))(@X, R¢'@(Z)X[Q])
HomD(MHS) (Q, RFT(Xana Q(Z)X) [Q])a

I

which obviously fits into the commutative diagram in the lemma. [

We return to the setting of the beginning of this section. Let £z be an
element of K’(Z), and put

xz = C7e % (fu(€2)) € Hy (X, (1)),

where f, denotes the isomorphism K’;(Z) = KjZ (X). There is a localization
exact sequence of rational Betti cohomology

(11.1.1) 0>V — HY (X \ 2,Tp(i)) > HE (X, T(i)
(X, (),
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where ¢ (resp. ¢) denotes the connecting map (resp. the canonical map). By
the assumption that j > 1, we have «(xz) = 0. Hence pulling-back this
exact sequence by yz, that is, considering the fiber product in MHS

E:={(z,a) € HY 7YX \ Z,Tp(1)) x Q‘é(az) =a-xz},

we obtain a short exact sequence of rational mixed Hodge structures

Pra

0—V —F—=0Q—0,

which we denote by 1z. The following results computing C% (€7) have been
used in recent joint papers of Otsubo and the first author [AO1], [AO2]:

THEOREM 11.2.  Assume that i,j > 1 (see Remark 11.3 below for the
case j = 0). Then

(1) The map g%z”j in (M) sends f.(§z) € KJZ(X) to the class of nz, up to
the sign (—1)7.

(2) Let Zgng be the singular locus of Z, and put Z° = Z \ Zsng and

X° = X N\ Zsing. Assume further that 2i — j < 2(r +1). Then the
sequence of Betti cohomology

(11.21) 00—V — H2 91X < Z,Tp(i)) -5 B27(X°, Ts(i))
is exact, where 8’ is the composite of § in (11.1.1) and a natural re-

striction map. Moreover, nz is isomorphic to the pull-back of this
exact sequence by the element

9(Piy, 70 x0(E20)) € Hyo ' (X°, T(i)),

where g denotes the regular closed immersion Z° — X° and £zo de-
notes the restriction of {7 to Kj(Z°) = K;(Z°). See §9 for Pi_, zo/xo.

PrROOF. (1) Put m := 2i — j for simplicity, and consider the following
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big diagram:

al

K7 (X)

D, Z . o)
G l ® lcm‘

HP (X, Ta(i)) =

ax.z

? (ii) ?

a3

Hom puns) (Q, RI'z(X,, I's(7))[m]) —————— Hompuns)(Q, RI'(X, [5(i))[m])

G ]2 (iii) 0

(")

Hom pwirs) (Q, (T<m RIz(X, Tp(i))')[m]) ——> Hompquis) (Q, (T<m—1 RI(X, T5(i)))[m])

canl (iv) lcan

Homums (Q, Im(6)) = Extinns(Q, V).

Here 7<;, RI'z(X, (7)) denotes the complex
Cone(7<m RIz(X, Tp(i)) — HZ (X, Tp(i))/Im(6)[~m])[-1],

The arrows a1, ao are canonical maps, and ag is induced by the canonical
morphism

T: RI7(X,Tp(i)) — RI(X, T(i)).

The arrow a4 denotes the morphism induced by 7, and a5 denotes the con-
necting map associated with the short exact sequence in MHS

0— V — H™ (X < Z,T5(1)) - Im(§) — 0.

The squares (i) and (iii) commute obviously, and the square (ii) commutes
by the construction of ax,z and ax = ax,x in Lemma 11.1. The square
(iv) commutes up to the sign (—1)™, cf. [Ja2] Lemma 9.5. The isomorphism
(%) (resp. (")) in the left (resp. right) column follows from the fact that the
Hodge (0, 0)-part of H7 (X, '5(4)) lies in Im(8) (resp. the Hodge (0,0)-part
of H™(X,p(7)) is zero). Finally, the composite of the left vertical columns
sends f.(£z) to xz, and the composite of the right vertical columns agrees
with the map Qg?j in question. The assertion follows from these facts.

(2) Since we have HZ;;(X, [3(7)) = 0 by the assumption on i and j,
the restriction map

HY (X, Tp(i)) — Hys 7 (X°, Tp(i))
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is injective, which implies the first assertion. The second assertion follows
from Corollary 9.3 for Betti cohomology. [

REMARK 11.3. As for the case j = 0, one can easily modify the
above arguments to obtain similar results for {7 € K\(Z) satistying
Cro%(f(62)) = 0 in H*(X, [p(3)).

12. Admissible Cohomology Theory with Log Poles

Let 6 be as in §4, let €™8 be the full subcategory of 6 consisting of
regular schemes. In this section we formulate a logarithmic variant of ad-
missible cohomology theory, for which we will consider Chern class maps in
the next section. We first fix the following terminology:

DEFINITION 12.1.

(1) A log pairis a pair (X, D) of a regular scheme X and a simple nor-
mal crossing divisor D on X which may be empty. A morphism
f:(Y,E) — (X, D) of log pairs is a morphism of schemes f:Y — X
which satisfies f~1(D) C E as closed subsets of Y. A closed immer-
sion f: (Y, E) — (X, D) of log pairs is a (regular) closed immersion
f:X —Y with f~1(D) = E as closed subschemes of Y.

(2) A log pair in € is a log pair (X, D) such that X belongs to Ob(€"#)
and such that D is empty or satisfies the following condition (*):

(%) Let Dy, Da,..., D, be the irreducible components of D. Then the
n-fold intersection D;, N D;, N...ND;, is transversal and belongs
to Ob(6"™#), for any 1 < n < a and any n-tuple (i1,i2,...,1,)
with 1 <i1 <9<+ <1, <a.

A morphism of log pairs in € is a morphism f : (Y, E) — (X, D) of
log pairs such that (X, D) and (Y, D) are log pairs in € and such that
the underlying morphism f : Y — X belongs to Mor(6).

(3) We define ‘6'°g, the category of log pairs in 6, to be the category whose
objects are log pairs in € and whose morphisms are those of log pairs
in 6.
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(4) An open subset of a log pair (X, D) is a log pair of the form (U, DNU),
where U is an open subset of X.

(5) An open covering of a log pair (X, D) is a family {(X;, D;) }icr of open
subsets of (X, D) satisfying |Jer X; = X.

(6) (Big Zariski site) We endow the category @'°® with Zariski topology in
such a way that a covering of a given object (X, D) is an open covering
{(X;, D) }ier of (X, D). We denote the resulting site by (€'°8)z,,.

(7) (Small Zariski site) For a log pair (X, D) in €, let Ouv/(X, D) be
the category of open subsets of (X,D). We endow the category
Ouv/(X, D) with Zariski topology in such a way that a covering of
a given object (U,D NU) is an open covering {(U;, D N U;)}ier of
(U,DNU). We denote the resulting site by (X, D)za,.

We mention here some elementary facts, which will be used freely in
what follows.

LEMMA 12.2. Let (X, D) be a log pair in €, and let U be an open subset
of X. Then:

(1) The pair (U,DNU) is a log pair in 6.
(2) The natural morphism (U, D NU) — (X, D) is a morphism in €'°.

(3) The natural morphism (X,D) — (X,0) induces an equivalence
(XvD)Zar = Xzar-

(4) There is a natural functor
Ox.p) : ShP°((€'°8)zar) — Sh™((X, D)zar)

induced by the restriction of topology.

PrRoOOF. (1) and (2) follows from our assumption (1) in §1.1 on the
category €. (3) is straight-forward and left to the reader. (4) follows from
(1). 0O

We further fix the following terminology on simplicial schemes:
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DEFINITION 12.3.

(1) A simplicial log pair in € is a simplicial object in @8, A morphism
[ (Y, Ey) — (Xs, Dy) of simplicial log pairs in € is a morphism of
simplicial objects in €'°®.

(2) A closed immersion f : (Yi, Ex) — (X, Dy) of simplicial log pairs
in @ is a morphism of simplicial log pairs in € such that the p-th
factor f, : (Yp, Ep) — (Xp, D)) is a closed immersion in the sense of
Definition 12.1 (1) for each p > 1.

(3) We say that a closed immersion f : (Y, Ey) — (X, D,) of simplicial
log pairs in € is strict, if the underlying closed immersion Y, — X, is
strict (i.e., exact) in the sense of Definition 1.5 (2).

(4) (Zariski site) For a simplicial log pair (X, Dy ) in €, let Ouv/(X,, Dy)
be the category whose object is an open subset (U, D,NU) of (X, D))
for some p, and whose morphism is a commutative square in @los

(V,D,NV)—— (U, D,NT)

| l

(Xg, Dyg) (Xp, Dp)

(X%, Dx)

for some morphism « : [p] — [¢] in A.

We endow the category Ouv/(X,, D,) with Zariski topology in such a
way that a covering of a given object (U, D, NU) — (X, Dp) is an
open covering {(U;, D;) }icr of (U, D, NU). We denote the resulting
site by (Xx, Dy)zar-

The following lemma is a simplicial analogue of Lemma 12.2 (3) and (4),
whose proofs are left to the reader:

LEMMA 12.4. Let (X,, Dy) be a simplicial log pair in 6.

(1) The natural morphism (X, D) — (X4, 0) induces an equivalence
(X*, D*)Zar = (X*)Zar~

(2) There is a mnatural functor O, p,) : ShPP((€'°8)z,,) —
ShiPP((X,, Dy)zar) induced by the restriction of topology.
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We now formulate a logarithmic version of admissible cohomology the-

ory.

DEFINITION 12.5.  An admissible cohomology theory on @' isa graded
cohomology theory [(x)°8 = {I(i)'€},cz on (%log)z;\r satisfying the
following axioms. For a simplicial log pair (X, D,) in €, we denote
Q(X*’D*)(I'(i)'og) by [(i)x,,p,), which we often regard as complexes of
abelian sheaves on (X, )zar.

(0)

(1)

For a log pair (X, D) € Ob(%'°8) and a dense open subset U of X, the
restriction map H%(Xzar, ['(0)(x,py) = H°(Uzar, F(0)(x,p)) is injective.
There exists a morphism

0°% : G/°8[—1] — [(1)'°® in  D((€"°8)zy),
where Go® denotes the sheaf on (€'°8)z, defined as Gi8(X, D) :=
0" (X \ D).

For a scheme X € Ob(%™®) and a vector bundle E on X, the com-

plexes [(i)x := F(i)(X,w) and r(i)]p(E) = r(i)(P(E)yg)) (i € Z) satisfy
the projective bundle formula in the sense of Definition 2.5 (2).

For a strict closed immersion f : (Y;, Ey) — (X, D,) of simplicial log
pairs in € of codimension r, there are push-forward morphisms

fie BT () v ey — T +7)(x.,p,)[27] (ieZ)

in D((X,)zar) which satisfy the properties analogous to (3a)—(3d) in
Definition 2.5 (3).

Let (X, D) be a log pair in %€, and let Y be an irreducible component
of D. Put D' := D\Y (Zariski closure in X) and F :=Y N D', and
let

f:(Y,E) —(X,D), j:(X,D)—(X,D),

be the natural morphisms in %'°6. Then there exists a distinguished
triangle

1 . n .
£ = Dy [<2] —L T (x.0) —= T(0) (x.0)

s T (= 1) x,pn[-1]
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in D(Xz,,) for any i € Z.

Ezample 12.6. For € and ['(x) is as in §§3.2-3.4, let G(7) be the Gode-
ment resolution of '(7) on €z,,. Then the assignment

(X, D) € Ob(€"8) — j.Gi)xp (i €2)

defines an admissible cohomology theory I'(x)'°8 on (GIOg, where j denotes the
open immersion X \ D — X. For € as in §§3.5-3.7, we have an admissible
cohomology theory T'(x)°8 on €'°€ as follows.

(1)

For € as in §3.5, we define I'(x)'%€ on €'°€ as

0% (logD) (i >0)

"Dexn) = {o (i <0),

which is an admissible cohomology theory on %'°8.

For € as in §3.6 and a positive integer n, we define '(x)'°8 on €'°8 as

fGixp=i]  (i20)

"Dexn) = {o (i <0),

where e denotes the natural morphism of sites Xg& — Xz and
G(i)EX py denotes the Godement resolution of the étale sheaf

T*W}Qf‘X\Dbg with 7 : X ~\~ D — X the natural open immersion.

Then I'(x)'°8 is an admissible cohomology theory on %'°¢. The axiom
12.5 (4) follows from the purity theorem in [Sh] Theorem 3.2.

For € as in §3.7 and a positive integer n, we define ()% on €'°8 as

r(i)(X,D) = €*G(i)ZX,D) (Z S Z),

where ¢ denotes the natural morphism of sites Xg — Xzar, and
Gn(i)(x,p) denotes the Godement resolution of the i-th étale Tate
twist T(i)(x,p) with log poles along D ([Sat2] Corollary 3.9). Then
[(%)'°8 is an admissible cohomology theory on €'°8. The axiom 12.5 (4)
is a variant of loc. cit. Theorem 3.12.
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In the rest of this section, let [(x)'°8 be an admissible cohomology theory
on 6'°8. The following fact is obvious:

LEMMA 12.7.  We regard the category €"8 as a full subcategory €'°® by
sending a scheme X € Ob(€"®) to the log pair (X,0). Then the restriction
of T(%)'°8 onto (€"8)z., is an admissible cohomology theory on ™8 in the
sense of Definition 2.5.

The following proposition gives a logarithmic variant of the projective
bundle formula in Definition 2.5 (2).

PROPOSITION 12.8. Let '(x)'°8 be an admissible cohomology theory on
@8, Let (X, D) be a log pair in €, and let E be a vector bundle over X of
rank v+ 1. Let m : P(E) — X be the projective bundle associated with E,
and let D' be the divisor 7=1(D) on P(E). Let

p: (P(E),D') = (X,D)  (resp. 3: (P(E),D")) — (P(E),0))

be the morphism of log pairs induced by w (resp. the natural morphism of
log pairs). Then we have

vr: @ Tl = 5)x.0)[~24] = Bp.T (@) (). 00);
=0

(@5)j=0 — Y BHE) Up*(xy)

j=0

in D(Xzar), where & € H*(P(E),T(1)) := H*(P(E)zar. (1) (p(r)0)) denotes
the first Chern class of the tautological line bundle over P(E).

PrOOF. Note that p and 3 are morphisms in €'°® by the assumption
(*1) in §1.1 on the category €. If D = (), then the assertion follows from the
axiom 12.5(2). One can easily deduce the general case from this case using
the axioms 12.5 (3), (4). The details are left to the reader as an exercise. [

We end this section with a logarithmic variant of Theorem 7.2, which will
be used in the next section. We say that a morphism f : (Y, E) — (X, D)
of log pairs is projective, if the underlying morphism f : Y — X is (regular)
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projective (cf. §1.4, Definition 7.1(2)) and we have f~1(D) = E as closed
subschemes of Y. We define the relative dimension of a projective morphism
f:(Y,E) — (X, D) as that of the underlying morphism ¥ — X.

ProPOSITION 12.9. Let f: (Y, E) — (X, D) be a projective morphism
in €'°. Then

(1) f has a factorization
f: (Y, B) s (PR, PR) —— (X, D)

such that g is a closed immersion in "¢ and such that p is the mor-
phism induced by the projection P¥ — X. Furthermore, p is a mor-
phism in €'°8.

(2) For a decomposition of f as in (1), we define fi as the composite
morphism in D(Xzar)

fii RET (i 4 1)(v,m)[27]

- Rp.Rg.T(i +7)(v,p)[2r]
Rp.«(gr)
_—

Rp, [ (i + m)py pm)[2m]

= DLy Tl +m—j)x,p2(m—J)]
(Proposition 12.8)

projection
_—

M(@)x,0) >

where r denotes the relative dimension of f. Then fi does not depend
on the decomposition of f, and satisfies the properties analogous to
those in Theorem 7.2(2) —(4).

ProOOF. (1) The underlying morphism Y — X factors through a (reg-
ular) closed immersion g followed by the projection p as

yolopp o x,

both of which belongs to Mor(‘€) by the assumptions (*;) and (*2) on € in
§1.1. The assertions follow from this fact.

(2) One can easily check the assertions by similar arguments as for §7
and by endowing the projective spaces P’ with the inverse image of D C X
as log poles. [
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13. Chern Class for Cohomology Theory with Log Poles

The notation remains as in the previous section, and we assume the
following technical but important condition on the category € (note that
the examples of € in §3 satisfy this condition):

(x3) For a regular scheme X € Ob(€) and a regular closed subscheme
Y C X which belongs to Ob(€), the blow-up of X along Y belongs to
Mor(6).

Let ()98 be an admissible cohomology theory on €'°8. As an applica-
tion of the Riemann-Roch theorem without denominators, we define Chern
classes for log pairs with values in an admissible cohomology theory I'(x)'°8
on €'°¢. Let (X, D) be a log pair in €, and put U := X\ D. Let j : U — X
(resp. f: D — X) be the natural open (resp. closed) immersion. Put

H?(X,D;T(i)) == H*(Xzar, (i) (x,p)) and

H™(X,D;T (%) := @ HY(X,D;T(i)).
>0

We would like to construct a total Chern class map

(13.1.1) ¢ = (ci)iz0 : Ko(U) — H*(X, D;T(x))

which satisfy the following four properties:

(L1) We have co = 1 (constant). If o € Ko(U) is the class of a line bundle
L over U, then ci(a) = 0 for any i > 2, and ci(«) agrees with the

value of the class of L under the map

0°8 : Pic(U) — H*(X,D;T(1))  cf Definition 12.5(1).

(L2) The map c is contravariantly functorial for morphisms in @los.
(L3) For a, B € Ko(U), we have

cla+p)=cla)uc(Bd) in H*(X,D;l(x)).



Riemann-Roch Theorem without Homotopy Invariance 305

(L4) For o, B € Ko(U), we have
Sa®pP)=Ca)*xB) in H*(X,D;T(x)).

Here c(a) denotes the augmented Chern class (rk(a),c(a)), and
I~{2*(X,D; (%)) denotes the \-ring defined in a similar way as for
H?*(X,,T(x)) in Theorem 4.2(4).

For i > 1, we define the i-th Chern class map ¢; = ¢; (x p) by induction on
the number r of irreducible components on D. Assume first that r = 1, i.e.,
D is a regular integral closed subscheme of X, and consider the following
diagram with exact rows:

[ Ik
Ko(X) Ko(U)

Ci,xl

HZ=2(D,T(i —1)) N H%(X,T(i)) N H*(X, D;T (1)),

Ko(D)

where the middle vertical arrow is the i-th Chern class map of X, cf. Corol-
lary 4.4. For an element a € Ky(U), we take a lift § € Ky(X) of o and
define the i-th Chern class ¢;(a) € H* (X, D;T(i)) as

ci(a) = j*(ci x(B)),

which is independent of the choice of 3. Indeed, given another lift 5’ of «,
we have 8 = ' + f.(v) for some v € Ky(D) and

cix(8) = ciinx(B)Ucrx(f()
k=0

= cix(B)+ ) cikx(B) U fiPe1p/x ()
k=1
by Corollary 4.4 (1), (3) and Corollary 9.3 (see also the assumption (x3) at
the beginning of this section). In particular, we have
ax(B)=cix(F)+ filz) for Fze H**(D,I(i—1))

by the projection formula, and thus j*(c; x(8)) = j*(c; x(3')). Note that
the resulting total Chern class map ¢ = (c¢;);>0 satisfies the properties (L1)
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—(L4) by the surjectivity of the map Ko(X) — Ko(U) and Corollary 4.4 for
X.
Next suppose that » > 2, and fix an irreducible component Y of D. Put

D' := D\Y (Zariski closure in X), E:=Y xx D'

for each p > 1. By the induction hypothesis, we are given total Chern class
maps

cxo)  Ko(U') — H¥(X,D'iT(x)) (U :=X\D)
cv,m) : Ko(V) — H* (Y, ;T (%) (V=Y < E),

which satisfy the properties (L1)—(L4). Let j : (X,D) — (X,D’) (resp.
f: (Y,E) — (X,D") be the natural open (resp. closed) immersion of
simplicial log pairs, and let k : U — U’ (resp. g : V < U’) be the natural
open (resp. closed) immersion of simplicial schemes. In view of the diagram
with exact rows

Ko(V) - Ko(U") K

C(X,D’)\L
' i
HQ*_Z(K E; r(* _ 1)) L H?*(X, D/; r(*)) L) HQ*(XyD; r(*))

Ko(U)

and the construction in the case r = 1, it is enough to check the following
Riemann-Roch theorem for our induction step:

THEOREM 13.1. The following diagram commutes for each i > 1:

9=
Ko(V) Ko(U")
Pi—l,(Y,E)/(X,D’)l \Lci,(X,D’)

P2 (Y, B3 F(i = 1)) == B (X, D/; F(3)),
where P;_1 (v,p)/(x,p) denotes the polynomial in Chern class maps

Pi_11(rk, c1,(v,E), Co,(v,E)» - - 5 Cim1,(v,E); C1,v,8) (Nvyur)),

and P;_1 1 denotes the universal polynomial constructed in §8.
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We first note the following lemma, which is an immediate consequence
of the assumption (x3) at the beginning of this section:

LEMMA 13.2. Let o : M — X x P! be the blow-up of X x P! :=
X Xgpec(z) Py along Y x {00}, and put D := o1 (D’ x P'). Then (M,D) is
a log pair in 6, and the morphism o : (M,D) — (X x P!, D' x P) belongs
to Mor(6'°8).

PrOOF OF THEOREM 13.1. In view of Lemma 13.2 and the push-
forward map in Proposition 12.9, we see that the argument in Step 2 of
the proof of Theorem 9.1 works in this situation and reduces Theorem 13.1
to the following case:

e f is isomorphic to the zero section of the projective completion m :
P(E® 1) — Y of a vector bundle E — Y of rank r, and we have
D' = 77 Y(E). Here 1 denotes the trivial line bundle over Y .

Let @ be the natural projection U’ = 7=1(V) — V. We use the following
commutative diagram instead of (9.2.2):

* C(X,D’)

(13.2.1) Ko(V) —Z Ko(U") H*(X,D';T(x))

k\ l?@g*(lK) l?*E(X,D’)(g*(lK))

¢ / -
TP L BH(X, D T(#),

where 1x denotes the unity of Ko(V'), and the square commutes by (L4) for
(X, D’). The triangle commutes by the projection formula for Grothendieck
groups. By (13.2.1) and (9.2.3) for g, the composite map €y, pr) © g« agrees
with the composite map

Ko(V) LN Ko(U")

¢(x,p") ~ *Ex pry(A-1(Q")) -
— H*(X, D';T(+)) H> (X, D' T (%)),

where Q' denotes the pullback, onto U’, of the universal quotient bundle Q
on X =P(E®1). Therefore we obtain the assertion by the same computa-
tions as in Step 1 of the proof of Theorem 9.1. [
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By Theorem 13.1, we obtain the desired total Chern class map ¢ = ¢(x p)
in (13.1.1). Note that this map satisfies the properties (L1)—(L4) and does
not depend on the choice of the irreducible component ¥ C D, by the
surjectivity of the map Ko(X) — Ko(U).

Ezample 13.3. The categories € considered in Example 12.6 (1)—(3)
satisfy the condition (x3) at the beginning of this section. Consequently we
obtain total Chern class map (13.1.1) for '(x)'°® in those examples.

REMARK 13.4. One can pursue a simplicial analogue of the map
(13.1.1). However the authors do not know if such a Chern class in the
universal situation provides us with a universal Chern class of the from

Cz’,(X,D) : Rj*(QB*Q@)U) — 3{(r(i)(X’D),2i) (j U=X\D < X)

in the homotopy category #oe(X).

Appendix A. Motivic Complex is an Admissible Cohomology
Theory

Let the notation (k, €, Z(7) for ¢ > 0) be as in §3.1. We put Z(i) := 0
for i < 0. For X € Ob(%), the motivic cohomology H% (X,Z(i)) with
Z(i)-coefficients is defined as

Hiy(X,Z(0)) = H (Xzar, Z(1).
We have
(A1) H(X,Z(0)) = H* (Xniey Z(3)) = Hom . (swr(ay) (M (X), Z(0) )
by [SV] Corollaries 1.1.1 and 1.11.2, Proposition 1.8, where NSwT (k) de-

notes the category of Nisnevich sheaves with transfers over k and M (X)
denotes C*(Zy(X)). In this appendix, we prove

THEOREM A.1. Assume that k admits the resolution of singularities in
the sense of [SV] Definition 0.1. Then the motivic complex Z(x) = {Z(i) }iez
18 an admissible cohomology theory on €.
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It is easy to see that Z(x) is a graded cohomology theory on 6. We define
o of the axiom 2.5 (1) as the natural quasi-isomorphism Z(1) = 0*[—1]. One
obtains the axiom 2.5 (2) from [SV] Theorem 4.5 and the fact that we have

(A.0.2) Homp- (nsw (k) (M (X)(4), Z(i)[g]) = O
for VX € Ob(®),"j >4, "qeZ

under the assumption on the resolution of singularities. One can check
(A.0.2) as follows. By (A.0.1) above and loc. cit. Theorem 4.12 and Corol-
lary 4.12.1, the problem is reduced to showing that

Hq(XZanZ(O)) = Hq((X X Pl)ZanZ(O)) for Vq €L

which follows from the fact that the constant sheaf Z(= Z(0)) is flasque on
X7za and (X x Pl)z,,. We check the axiom 2.5 (3) in what follows, which
will be complete in §A.5 below.

A.1 The category of unbounded cochain complexes

For an abelian category s, we will often write C(s) for the category of
unbounded cochain complexes of objects of s{. We will use the following
facts freely in this appendix A, where a Grothendieck category means an
abelian category which satisfies AB5 and has a generator.

o ShiPP(6za) and NSWT (k) are Grothendieck categories.

o [f sl is a Grothendieck category, then A°Psd is again a Grothendieck
category. In particular, A°PNSwT (k) is a Grothendieck category.

When o is a Grothendieck category, there exists a model category struc-
ture on C(#) whose cofibrations are monomorphisms (cf. Lemma B.3 below)
and whose weak equivalences are quasi-isomorphisms [Be| Proposition 3.13.
We will refer this model structure as injective model structure, and we will
mean ‘fibrant with respect to the injective model structure’ by injectively
fibrant. For a complex K*® € C(sA), an injectively fibrant resolution of K* is
a trivial cofibration K* — I*® with I*® injectively fibrant. See Theorem B.1
below for the relation between injectively fibrant complexes and K-injective
complexes.

For a Grothendieck category o, we define the derived category D(#) in
the usual way (see e.g. [Hal] p. 37). It will be discussed in §B.2 below that
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D(s4) has small hom-sets (Corollary B.8) and isomorphic to #o(C()), the
homotopy category of C(sd) with respect to the injective model structure
(Corollary B.9).

A.2 A zig-zag representing the Gysin morphism

Let f:Y < X be a closed immersion of pure codimension r in ‘€. For
i > 0, we fix an injectively fibrant resolution € : Z(i) — I** in C(NSwT(k)).
We also fix a product map

ol (IV)® — 1% in C(NSwT(k))

which lifts, up to homotopy, the canonical isomorphism Z(1)®? = Z(i) of
complexes (cf. [SV] Lemma 3.2 (3)). See Corollary B.8 below for the exis-
tence of such a lift, and see also Proposition B.5 below for the compatibility
of the notions of homotopy in the sense of homotopical and homological
algebra. We construct here a (non-canonical but functorial) zig-zag of maps
in C(NSwT (k)) representing the Gysin morphism of Suslin-Voevodsky ([SV]

§4)

(A.2.1) Gr=Gy : M(X)—=M(Y)(r)2r] in D(NSwT(k)).

DEFINITION A.2. Let p : X - X (resp. q : X — X x A') be the
blow-up of X along Y (resp. the blow-up of X x Al along Y x {0}), and let
7 : Ny,x — Y be the normal bundle of f. Let L*“* be the tautological line
bundle on P(Ny,x & 1) = ¢~ (Y x {0}), and we fix a lift

= S Homc—(NSWT(k)) (M(]P)(NY/X ©® 1))’ 117.[2])

of £ = c1(L®") € HY(P(Ny,x @ 1),Z(1)), cf. (A.0.1), Corollary B.8. We
construct a zig-zag

I'})/f: M(X) = M(Y)(r)[2r] in C(NSwT(k))

representing the Gysin morphism (A.2.1), from the data ((I%*);>1,
(@))ix2, E).
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We define a map of complexes
o' M(P(Ny/x ®1)) — M(Y) @ I"*[2i]

as the composite

M(P(Ny;x ©1)) 2 M(P(Ny/x & 1))+

M(q")QE®" id®a’
- > —

M(Y)® (IM*[2])% M(Y) ® I**[2i],
where ¢’ denotes the structure morphism IP(Ny/ x®1) =Y. We write
M(]P)(Ny/X ©1)) for the mapping fiber of M(¢') : M(P(Ny,x ®1)) —
M(Y'). The map ¢" and the map

r—1
S : M(P(Nyyx ©1)) — @ M(Y) @ I"*[2i]
i=1
defined as ¥ := (¢!,02,...,0""!) will be important in what follows.

The map ¥ is a quas1—1somorphism by [SV] Theorem 4.5.

Fore = 0,1, let ic : X x{e} — X x Al be the natural closed immersion.
We denote the closed immersion X = X x {0} — X’ (resp. X =
X x {1} — X) induced by ig (resp. i1), again by ig (resp. i1). We
put

M (pry) M (i1)

s:=M(ipopr): M(X x A') —= M(X) — M(X"),
which gives a section to M(q) : M(X') — M(X x A!) (in
D(NSwT(k))). The following zig-zag plays a key role, which repre-
sents Bit of [SV] §4:

£ s M) 5 MR~ Conels) = WH(q (¥ x {0))

= @ M(Y)® I"*[2i].
=1
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Here the arrow u denotes the canonical map and v denotes the com-
posite map

v M(g (Y % {0})) — M(g"(Y x {0})) — M(X') = Cone(s).

We have used the assumption on the resolution of singularities to
verify that v is a quasi-isomorphism (loc. cit. Theorem 4.7). See (1)
for the definition of X.

Because we cannot take a mapping fiber of ¢, constructed in (2), we
introduce an auxiliary complex

r—1
C1 := Cone (M(ql(y x {0})) ©2) Cone(s) & @ MY)eI [2z]>
i=1

and replace t4 with the following composite map:

~ uoM (4
t: M(X) (o)

Cone(s) — C1.

Since the canonical map @:;11 M(Y) ® I**[2i] — O is a quasi-
isomorphism, the mapping fiber Cone(t)[—1] is quasi-isomorphic to
M (X) via the composite map

M (p)
—

b: Cone(t)[—1] - M(X) M(X)

by loc. cit. Theorem 4.8, where w denotes the canonical map. In other
words, w gives a section to M(p) in D(NSwT(k)).

Finally, we obtain a zig-zag of maps of complexes

I+ M(X) <2 Cone(t)[1] "~ Cone(s)
< Mg Y x {0}) =2 M(Y) ® I"*[2r] £ M(Y)(r)[2r],

qis qis

which represents the Gysin morphism G{f .
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DEFINITION A.3. Suppose we are given a diagram in C(NSwT(k)) (or
in C(Ab))

(A.1.2) A4--2.>pB
o e
Al h> B/7

where p and ¢ are maps of complexes and g and h are zig-zags of maps of
complexes

g A=A 25 A, BoAy B2 A, S A, =B

qis qis
h h h hn—2 hp—1
h:A=A) 5 AL 2 AL B2 AL T A =B
qis qis

respectively. Then we will say that the diagram (A.1.2) is commutative or
commutes, iff m = n and there exist commutative squares of complexes

gi gi
A — Aia A; ~ds A
A/ hq A/ A/ h; A/

7 i+1 7 qis i+1

foralli=1,2,...,m — 1.

LEMMA A4 (cf. [SV] Lemma 4.9(1), (2)). Let f:Y — X and = be
as in Definition A.2.

(1) Let f': Y — X' be another closed immersion of pure codimension r
in 6, and suppose we are given a cartesian square

Y'(L X'’
p'l O lp

Y(_f)X,
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where p is an arbitrary morphism in €. Then the following diagram
commutes in C(NSwT(k)):

M(X') o viers M(Y")(r)[2r]
M(p)l lM(p’)@id
s
M(X) o 5 MY () [20],

where p*= denotes the pull-back of Z by P(Ny+/x:©1) — P(Ny/x ®1).
(2) For Z € Ob(6), the diagram

FZ><X

M(Z x X)o o S M(Z x Y)(r)[2r]
H Aoz
M(Z) @ M(X) 2> M(Z) @ M(Y)(r)[2r]

commutes in C(NSwT(k)), where pry denotes the second projection
Z xX —X.

PrROOF. (1) Since Ny /x+ = Ny, x xy Y, the pull-back of the tauto-
logical line bundle on P(Ny,x @ 1) is isomorphic to that on P(Ny/x © 1),
which implies that the zig-zag I\ ff,:p*g using the pull-back p*= makes sense.
The assertion follows from this fact and the construction of the zig-zags.

The assertion (2) follows from similar arguments as for (1), whose details
are left to the reader. [J

The following lemma is a slight generalization of Lemma A.4 (1), whose
proof is also straight-forward and left to the reader:

LEMMA A.5. Under the same setting as in Lemma A.4 (1), we fix an-
other injectively fibrant resolution Z(i) — J** in O(NSwT(k)) and a product
map

B (JE)® — g% in O(NSwT(k))
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lifting, up to homotopy, the canonical isomorphism Z(1)%* = Z(i), for each
1> 0. Let

Z: M(P(Ny/xr ®1)) — J"*[2]

be a map of complexes representing the first Chern class of the tautological
line bundle on P(Ny//xf ® 1), and suppose that we are given maps ' :
I — J* of injectively fibrant resolutions of Z(i) fori > 1, fitting into the
following commutative diagrams in C(NSwT (k)):

M(P(Nyr)x: &1)) —=> rle (I1)® — > five
l lvl (wl)@il iw‘
M(P(Nyx @ 1)) —=— Jte, (S L gie.

Then the diagram

rx_
M(X') = M(Y') () [2r]
M (p) lM(p’)@id
FX

> M(Y)(r)[2r]

commutes in C(NSwT(k)), where F%:E, is defined by the data ((J*)i>1,
(82, E).

A.3 Lifts of the first Chern class of line bundles

The aim of this subsection is to construct a morphism (A.3.2) below from
the first Chern class of a line bundle L, over a simplicial variety Z, € A°P,
which will play an important role in our construction of Gysin morphisms for
simplicial varieties. We work with the category A°°’NSwT (k), the category
of simplicial objects in NSwT (k). Let

7 : NSwT (k) — A°PNSwT (k)

be the functor which assigns A € Ob(NSwT(k)) to the constant simplicial
object A.
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For an object A, € Ob(A°°NSwT(k)), let C*(A) be the Suslin complex
of Ay, i.e., the term C79(A,) in degree ¢ = —g is the simplicial Nisnevich
sheaf with transfers

U € Ob(@) — A, (U x AY).

This construction naturally extends to complexes A} of simplicial Nisnevich
sheaves with transfers.

ProproOSITION A.6 ([SV] Corollary 1.11.2).  Let A3 and B} be objects of
C~(A°PNSwT(k)), and assume that A3 has homotopy invariant cohomology
sheaves for each p > 0. Then the natural embedding Bf — C*(Bg) induces
an isomorphism

Hom p(acensw (k) (Bs s As) = Hom pacensw (k) (C°(By), Ay).

PROOF. One obtains the assertion by the same arguments as in [SV]
Corollary 1.10.2—Corollary 1.11.2, starting from loc. cit. Corollary 1.10.2 for
usual Nisnevich sheaves with transfers. [J

PROPOSITION A.7. For Z, € Ob(A°P€), there exists a natural equiva-
lence of functors

I'(Zy, —) = Hom poonsw (k) (Zer (Zs), 7(—)) : NSwWT (k) — Ab,

where Zy(Z,) denotes the simplicial Nisnevich sheaves with transfers con-
sisting of the data ((Z(Zp))iplcob(a) (Ztr(a?))aemor(a))-

PrROOF. For 0 <i < p,let d;: [0] — [p] be the map sending 0 to i. Let
% € Ob(NSwT(k)) be an arbitrary sheaf. By the definition of I'(Z,, %) and
Yoneda’s lemma, I'(Z,, %) agrees with the kernel of the map

Zur(d§)* = Zue(df )* - Homnsw () (Zier(Z0), F) — Homsw (i) (Zer(Z1), F),
which shows that

F(ZMOJ) ) HomA°PNSWT(k)(ZU(Z*)7T(%))'
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To show the inclusion in the other direction, it is enough to show that for
any s € I'(Z,,%) and p > 1, the value of s under the map

Zer(d])* - HomnswT (k) (Zee(Zo), F) — Homyswr(k) (Zer(Zp), F)

is independent of 0 < 4 < p. One can easily check this claim by induction
on p and simplicial identities, whose details are left to the reader. [J

Let Z, be a simplicial object in €, and let L, be a line bundle on Z,. Let
€ : Z(1) — I*® be an injectively fibrant resolution of Z(1) in C(NSwT(k)).
We consider a composite map

Ker(d : [(Zy, I2) — I'(Z, I%))

m(d: T(Z,, 1') = [ Z,, %)

& Hom g aoenswT (k) (Zer (Z), 7(1°)[2])
— Hom p(asensw (k) (Zer(Zs), T(1°)[2])

(A.3.1) & Hom p(aoenswT (k) (M (Zi), T(Z(1))[2]),

where K(A°PNSwT(k)) denotes the homotopy category of C(A°PNSwT (k))
(cf. §B.2 below), and the second isomorphism is obtained from Proposition
A.7; the last isomorphism follows from Proposition A.6 for B, = Z(Z).
Consequently, the first Chern class c(Ly) is defined in the last group of

(A.3.1). Now we fix an injectively fibrant resolution €l : 7(Z(1)) — I'"* in
C(A°PNSwT (k)), and a morphism

H*(Zynis, Z(1)) =

(A.3.2) Co: M(Z,) — IM°[2] in C(A°PNSwT(k))

which lifts ¢;(Ly), cf. Corollary B.8. For a morphism a : [p] — [¢] in A,
there is a commutative diagram

g2l

(A.3.3) M(Zy) == 11*12] <o 22
M(az)i C aﬂ»'l " H
M(Zp) = I;*[2] <q— Z(1)[2]

in C(NSwT(k)). We note here that the arrows €} and ¢, are fibrant resolu-

tions by Lemma A.8 below, and that the zig-zag in the lower row (resp. the
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upper row) represents the first Chern class ¢1(Ly,) € H?(Z, nis, Z(1)) (resp.
c1(Lq) € H*(Zynis, Z(1))), cf. (A.0.1). In the following lemma, an injective
fibration means a fibration with respect to the injective model structure:

LEMMA A.8. Let g. : A} — B! be an injective fibration in
C(A®NSwT(k)).  Then g, : Ay — By is an injective fibration in
C(NSwT (k)) for each p > 0.

PrROOF. We endow the category A°PC(NSwT(k)) = C(A°PNSwT(k))
with another model structure, the Reedy model structure (cf. [GJ] Chap-
ter VII) associated with the injective model structure on C(NSwT(k)), and
consider the following diagram of model categories (in fact, a Quillen equiv-
alence):

(A°PC(NSwT (k)), Reedy structure)
id
<%T> (C(A°PNSwT (k)), injective structure)

1
Both hand sides share the class of weak equivalences (i.e., level-wise quasi-
isomorphisms), and the upper arrow sends Reedy cofibrations to injective
cofibrations (i.e., injective maps), cf. [GJ] Chapter VII, Corollary 2.6 (2).
Hence the lower arrow sends injective fibrations to Reedy fibrations, and the
assertion follows from the fact that Reedy fibrations give injective fibrations
at each level, loc. cit. VII Corollary 2.6 (1). O

A.4 Construction of push-forward maps

Let 7 : NSwT(k) — A°PNSwT (k) be as in §A.3. For each ¢ > 0, we fix
an injectively fibrant resolution €& : 7(Z(i)) — I* in C(A®°NSwT(k)). For
A® € C(NSwT(k)) and p > 0, put

RHom(A*, Z(i))p := Hom st (A° I;;') (hom-complex).

Each €}, : Z(i) — I* is an injectively fibrant resolution in C(NSwT(k)) by
Lemma A.8.

Let v, : NSWT (k) — Sht?®(€z,,) be the natural restriction (forgetful)
functor. For each i > 0, we fix an injectively fibrant resolution x* : Z(i) —
Jo® of Z(i) = v Z(i) in C(Sh?®(€z4)). By the left hand isomorphism of
(A.0.1) for all X € Ob(6€), the map Z(i) — Z/*Ié’. is a trivial cofibration
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in C(Shvab(%z”)), and there exists a quasi-isomorphism of complexes A’ :
vily® — Jb* extending k' : Z(i) — J%*. Under these settings, one can
rephrase the isomorphisms in (A.0.1) as

RI(X.2(0)) < BRI (Xnis, Z(0)o
qis
(A.4.1) © s RI(Xnis, Z(i))p —— RHom(M(X), Z(i)),
qis qis
for arbitrary p > 0 and X € Ob(€), where RI'(X,Z(i)) (resp.
RI'(Xnis, Z(i))p) denotes I'(X, J"*) (resp. I'(X,I,®)) and ¢ denotes the
canonical map [p] — [0] in A.
For i > 2, we fix a map in C(A°PNSwT(k))

s (20 — it

i~

which represents the canonical isomorphism 7(Z(1))®" = 7(Z(1)). For i,j >
0, we also fix a map in C(A°PNSwT(k))

bl I @ I — I
which represents the canonical isomorphism 7(Z(7)) @ 7(Z(j)) = 7(Z(i+7)).
(We do not suppose that abl = a?.) For i,j,r > 0, there is a square which

is commutative up to homotopy in C(A°PNSwT(k))

oI ®id

(A.4.2) I*erte I e nt

id®aj7Tl laiﬂ)r

. . abItr L
Lz(,o ® Lz—&-'r,o Il+]+r7..

Let f : Y, — X, be a strict closed immersion of pure codimension r of
simplicial schemes in €. Let N, be the normal bundle of f : Y, — X, and
let

Ex € Hom cf(AopNsWT(k))(M(P(N* ©1)), 1;1’.[2])

be a lift of ¢ (LP2U), the first Chern class of the tautological line bundle on
P(N, @ 1), cf. §A.3. For U € Ob((Xy)zar), we put Yy := Y, xx, U, where
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p > 0 denotes the integer such that U is an open subset of X, and consider
a zig-zag in C(Ab)

(fohz, : BRIV, 2()) Y RHom(M (Ye), Z(3)),

i,

N RHom(M (Yy )(r), Z(i + 1))y

Iy, =) . (A.4.1) ,
___________________ > RHom(M(U)[-2r],Z(i +r))p > RI(U, Z(i + 7))[2r].

Here F%,Ep denqtes the zig-zag defined by the data ((I)®)i>1, (al)i>2,Ep)
(cf. §A.2), and &," denotes the composite map

85"« RHom(M (Yr), Z(4)),

g—gRe”

Hom%nswrky) (M (Yu)(r), I I®)

i,r
Ap

" Homsyr(ay) (M (Yo) (r), I,"®) = RHom(M (Yyr) (r), Z(i + 1)),

The reason of the sign of —(I} gj =,)" will be explained in Lemmas A.9
and A.11(3) below. The zig-zag (fy)i =, is contravariantly functorial in
U € Ob((X4)zar) by (A.3.3) and Lemma A.5, and hence, yields a morphism

fiz,  [Z(i)y, — Z(i +71)x,[2r] in D((Xi)zar)-

One can easily check that fi=, is independent of the choice of Z, lifting

Y

c1 (L), For this reason, we will write fi for fi =, , in what follows. We will

[Py

often write fi for the following morphism induced by the above fi:

fi:Z(i)y, — Rf'Z(Gi+7r)x.[2r] in D(Y:)zar)-

*

LEMMA A.9. fi satisfies (3a) and (3d) of Definition 2.5.

PRrROOF. (3d) immediately follows from Lemma A.4 (1). To check (3a),
suppose that f has pure codimension 1, i.e., Y, is an effective Cartier divisor
on X, via f. Let )Z',C be the blow-up of X, x Al along Y, x {0}, and let E, be
the exceptional divisor on X.. Let LUt be the tautological line bundle on
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E, =P(N,®1). Note that the strict closed immersion ig : X, = X, x {0} —
X, x Al induces a strict closed immersion X, < )Z',C, which we denote again
by i9. Let Lg, be the line bundle on X/ associated with the effective Cartier
divisor Ej, whose sheaf of sections gives the invertible sheaf O(E, ). The pull-
back of Lg, by ig : Xj — )N(L is isomorphic to the line bundle Ly, on X,
associated with Y;, which implies that the map

ib Hy (XL Z(1) —= H3, (X, Z(1))

sends c1(Lg,) to c1(Ly,). On the other hand, the dual (Lg,)" restricts to
L2 under F, — X,. By this fact and our construction of f;, we have
ig(cl (Lg,)) = fi(1) in Hy (X,,Z(1)). We obtain (3a) from these facts. [J

PRrROPOSITION A.10. f satisfies the projection formula (3b) of Defini-
tion 2.5.

ProoF. Fori,j >0 and U € Ob((X4)zar) with U C X, we put
R“*(U) := RHom(M(U),Z(3)), and
R™ (Yy () := RHom(M (Yu)(5), Z(i))y
for simplicity. We consider the following diagram in C(Ab):

a;’j o (flﬁj ®id)

. L . i+,
(A43) Rz,o(U) R Rj’.(YU) RVt (Yu)
1d®6$r l 6;+j,r
it o p e
' L o o(fy®id) . . .
R (U) @ RIT*(Yy(r)) R4 (Yy (r))
- Iy
v ot v

Ri,-(U) (% Rj+r,o(U> [2r] RiFI*me(U)[2r].

whose upper square commutes up to a homotopy defined globally on (X, )zar
by (A.4.2). The lower square commutes in the sense of Definition A.3 by
the commutative squares

M (fy xid)(r)[2r]

M(U) @ M(Yu)(r)[2r] M(U x Yu)(r)[2r] M(Yv)(r)[2r]
A A A
id®(_lﬂ‘l’jU=5p) _Fg;‘[’JU’Ep _F‘l’jUEp
: : M :

M(U) ® M(U) = M(U x U) M(U)
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in C(NSwT(k)), cf. Lemma A.4 (1), (2). One can easily derive the asser-
tion from the commutativity (up to a functorial homotopy) of the above
diagram. [

A.5 Proof of (3c)

Let f:Y — X be a closed immersion of pure codimension r in ‘€, the
above construction of fi works in the Nisnevich topology as well, and gives
rise to a morphism

fi: K Z()y — Z(i +7)x[2r]

both in D(Xz,,) and D(Xy;s). Our task is to check (3c) for fi in the Zariski
topology, which is reduced to showing the same properties in the Nisnevich
topology by [SV] Corollary 1.1.1.

LEMMA A.11. Let 7 be either Zar or Nis, and put clx(Y) := fi(1) €
H%(X;,Z(r)). Then the following holds:

(1) Letp: X — X be the blow-up along Y, and let E C X be the excep-
tional fiber. Let &€ € H%(X,,Z(1)) be the localized first Chern class of
the invertible sheaf O(1) = O(—E) on X. Then we have

r—1

¢ = —pidx(Y) mod €P H¥(Y;,Z(i))
=1

under the isomorphism

r—1
HY (X, Z(r)) = HY (X, Z(r) & @ H¥ (Y-, Z()).
=1

For this isomorphism, see [SV] Theorem 4.8 and the construction after
loc. cit. Theorem 4.8.

(2) If f has a retraction w : X — Y, then fi: fLZZ(i)y — Z(i + r)x|[2r]
factors as

Uclx (Y)

Ly = Lo z@y 27 £z« Z(i + r)x[2r]

in D(X,).
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(3) If there exists a simple normal crossing divisor D = \J;_; Dj on X
with ﬂ;zl D; =Y and each D; smooth, then we have

cdx (V) =clx(D1)Uclx (D) U---Uclx(D,) in HY¥ (X, Z(r)).

We first prove (3c) in D(Xp;s) admitting this lemma. By an argument
of Voevodsky in [V] Proof of Theorem 4.14, for a point x € X, contained in
Z, there exist a Nisnevich neighborhood  — U = X and an étale map v :
U — Z <A™ such that w™(Y) = v~ 1Y x0,), w1 (Z) = v=1(Zx(0s,0,)),
where 0, (resp. 0,) denotes the origin of A" = A} (resp. A®). Hence one
can reduce (3c) to the following sufficiently local situation (L) by taking a
Nisnevich hypercovering:

(L) We have X = Z x A", and the closed immersions f, g and go f
are isomorphic to the zero sections Y — Y X A", Z — Z x A® and
Z — Z x A" respectively.

In this case, (3c) follows from Lemma A.11(2), (3), which is parallel to the
arguments in [FG] Proof of Proposition 1.2.1.

PROOF OF LEMMA A.11. (1) Let p’ : X’ — X x A! be the blow-
up along Y x {0}. Let E' C X' be the exceptional fiber, and let ¢ €
H2, (X!, 7(1)) be the localized first Chern class of the invertible sheaf 0(1) =
O(—FE’) on X'. Let ig : X < X' be the natural closed immersion induced by
the closed immersion X x {0} < X x A!. Consider the following composite
map:

#

1—(T ~ % ~
e HE(X L)) — B (X, Z(r)) — BE (X, ()

Z

where the last arrow is the retraction to p?. This composite map sends
1 to —clx(Y) by the construction of the Gysin morphism G5 : M(X) —
M(Y')(r)[2r] and our definition of fi. Now the assertion follows from the
fact that ig((") =¢£".
(2) By Proposition A.10, the following triangle commutes in D(X):
S 2(i) x
f*(f”)l
. S X
f+Z(i)y ——=Z(i +r)x[2r].

UC|X(Y)
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One obtains the assertion immediately from this fact.
(3) Since we have clx(D;) = ¢1(0x(D;)) by Lemma A.9, the assertion
follows from (1) and the same arguments as in [FG| Proposition 1.1.4. [J

This completes the proof of Theorem A.1.

Appendix B. Two Remarks on Homotopical and Homological
Algebra

by Kei Hagihara

Let o4 be an abelian category. We say that a morphism f : K — L in
C(dA) is a monic quasi-isomorphism if it is a monomorphism and a quasi-
isomorphism.

B.1 K-injectivity and right lifting property

The following fact is stated in §2 of an earlier version of [Ho|, where the
credit is due to Avramov, Foxby and Halperin. Unfortunately their preprint
(referred as [AFH97] there) has not been available so far.

THEOREM B.1. For a complex X = X® € C(dA), the following two
conditions are equivalent to each other:

(i) The morphism X — O has the right lifting property with respect to all
monic quasi-isomorphisms f : K — L, that is, an arbitrary morphism
g: K — X in C(A) is extended to a morphism h : L — X in C(A):

K—2>x
.7
o7

L——0.

(il) X is K-injective in the sense of Spaltenstein [Sp|, and X7 is injective
for all q € Z.

We give a proof of this fact in this subsection. To prove the theorem,
we prepare Lemmas B.2-B.4 below. We omit the proof of the first lemma:
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LEMMA B.2. Let T be an object of A, and let K = K*® be an object of
C(A). Then we have

Hom ¢ (Cone(idr)[—n], K) = Homy(T, K™ h
for any n € Z.

LEmMA B.3. A morphism f: K — L in C() is a monomorphism, if
and only if f*: K™ — L™ is a monomorphism in A for any n € Z.

PROOF. Assume first that f is a monomorphism. Then for arbitrary
T € Ob(A) and n € Z, the map

[« : Hom gy (Cone(idr)[—n — 1], K) — Hom ¢(y)(Cone(idr)[—n — 1], L)

is injective, which together with Lemma B.2 implies that f™ : K™ — L™ is
a monomorphism. The converse immediately follows from the fact that

Hom ¢y (T, K) C H Homy (T, K™).
nel

This completes the proof of the lemma. [J

LEMMA B4. For T, X € Ob(C(«A)) and n € Z, there is a natural
isomorphism

Hom™ (T, X) = H Hom (T™ "+ X™) = Hom ¢ (Cone(idr)[—n], X)
meZ
PrROOF. We define a map
F:Hom" (T, X) — Hom ¢ (Cone(idr)[—n], X)
by sending

(fm . Tm+1—n N Xm)m —
(A% 0 fet + frn o dpt ™™ frn) : T @ T XM,

which is well-defined (i.e., the data on the right hand side gives a mor-
phism in C(sd)) by a straight-forward computation (see [GM] p. 154 for
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the differential of Cone(idr)). On the other hand, we define a map G :
Hom ¢y (Cone(idr)[—n], X) — Hom™ !(T, X) by sending

(@ b)) : T @ T™H 5 XM, s (byy : T XM,
It is obvious that G o F' = id},,n—1. Moreover, we obtain
(F © G)((ama bm)m) = (dg_l © bm—l + bm © d?—&-l—n’ bm)m = (am7 bm)mu

by the condition that (am,,bm)m is a morphism in C(sd). Thus we obtain
the lemma. OJ

PROOF OF THEOREM B.1 (i)=-(ii). We first show that X" is injective
for any n € Z. Let ¢ : S — T be an arbitrary monomorphism in &{. Then
the map ¢ : Cone(idg) — Cone(idr) induced by ¢ is a monomorphism by
Lemma B.3, and moreover it is a quasi-isomorphism, because Cone(idg) and
Cone(idy) are acyclic. Hence by the lifting property of X — 0, the map

Hom ¢y (Cone(idr)[—n — 1], X) — Hom gy (Cone(ids)[—n — 1], X)
induced by @[—n — 1] is surjective, which implies that the map
©* : Homy (T, X™) — Homy(S, X™)

is surjective by Lemma B.2. Thus X" is injective. We next show that X
is K-injective, i.e., the hom-complex Hom® (T, X) is acyclic for any acyclic
T € Ob(C(s)). Our task is to show that H"(Hom*(7, X)) = 0 for any
n € Z. Note that we have

Ker(dl',, : Hom™(T, X) — Hom" (T, X))

Im(d?~L : Hom" (T, X) — Hom"™(T, X)) ’

Hom

Ker(d}jom : Hom™(T, X) — Hom"*!(T', X)) = Hom gz (T[—n], X).

H"™(Hom®* (T, X)) =

Note also that we have
Hom”_l(T,X) = Hom ¢y (Cone(idr)[—n], X)

by Lemma B.4. The natural map ¢ : T — Cone(idr) is a monic quasi-
isomorphism by Lemma B.3 and the acyclicity of 7. Hence the lifting
property of X — 0 implies that the map

(i[=n])* : Hom gy (Cone(idr)[—n], X) — Homc(sg)(T[—n],X)
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is surjective. Noting that this map corresponds to the differential map of
Hom® (7', X), one obtains that H"(Hom®(T', X)) = 0. Thus X is K-injective.

(ii)=(i). Let f: K — L be a monic quasi-isomorphism in C(s4). Our
task is to show that the map

[ Hom ) (L, X) — Hom gy (K, X)

is surjective. Since the quotient complex L/K is acyclic, the hom-complex
Hom®*(L/K, X) is acyclic by the assumption that X is K-injective, and the
map

(B.1.1) f*:Hom*(L, X) — Hom*(K, X)

is a quasi-isomorphism in C(s4). Now noting that Z°(Hom®(—, X)) =
Hom ¢y (—, X), consider a commutative diagram with exact rows in

Hom (L, X) —%> Hom ¢y (L, X) —— HO(Hom*(L, X)) — 0

l s l P ll P

Hom (K, X) 4, Hom () (K, X) — H%(Hom*(K, X)) — 0,

where the right vertical arrow is bijective by the fact that (B.1.1) is a quasi-
isomorphism. On the other hand, the left vertical arrow in the above dia-
gram is surjective, because we have

Hom™!(L,X) = J] Homg(L™ X™),
me

Hom ™' (K,X) = ] Homu (K™ X™),
meZ

and f™: K™ — L™ is a monomorphism (resp. X™ ! is injective) for any
m by Lemma B.3 (resp. by assumption). Hence the middle vertical arrow
is surjective as well, which shows the lifting property. [

B.2 Homotopy categories and derived category
We assume here that o is a Grothendieck category. Recall that the cate-
gory C(d) is endowed with the injective model structure, whose cofibrations
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are injective maps and whose weak equivalences are quasi-isomorphisms, cf.
[Be] Proposition 3.13. Let I be the full subcategory of C(sd) consisting
of injectively fibrant objects, and let #o(C(sd)) be the homotopy category
of C(sd) with respect to the injective model category structure. On the
other hand, let K(sd) be the homotopy category of C(sd) in the sense of
homological algebra, i.e., the category whose objects are those of C(sd) and
whose morphisms are homotopy equivalence classes of morphisms in C(A),
cf. [Hal] Chapter I, §2. The following fact for unbounded complexes is stan-
dard and was useful in Appendix A, but the authors do not know a written
literature for it:

ProproSITION B.5. For X € Ob(C(sd)) and Y € Ob(l), there exists a
canonical bijection

Hom ge(s1) (X, Y') & Homge,(oat)) (X, Y).

To prove this proposition, the following standard construction will be
useful:

DEFINITION B.6. For X = (X*,d%) € Ob(C(«A)), let X = ()N(',d}() €
Ob(C(A)) be the mapping cylinder of the identity map idy : X — X (cf.
[GM] p. 154):

Xt=X"e X" e Xxn

d} : )A(:n - )Z?H»l, (IE,y, Z) = (d&(:ﬂ) - Y 7d7)l(+1(y)7y + dr)L((Z))
We define a morphism i : X & X — X in C(sA) as i(u,v) := (u,0,v), and
define j : X — X in C(sd) as j(z,y, 2) := =+ z. Then ¢ is a monomorphism

by Lemma B.3, and j is a quasi-isomorphism by loc. cit., p. 155 Lemma 3.
In other words, the diagram

XoXx-x-2.x

is a cylinder object of X with respect to the injective model structure, cf.
[GJ] p. 68.

Proor or PROPOSITION B.5. Let X and Y be as in Proposition B.5,
and let f,g : X — Y be two morphisms in C(sf). Our task to show that
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f and ¢ are homotopic in the sense of homological algebra if and only if f
and g are homotopic with respect to the injective model structure. By the
assumption that Y € Ob(I) and [GJ] Chapter II, Corollary 1.9, it is enough
to prove the following claim (#) for f,¢g: X — Y in C(sd), where we do not
assume that Y € Ob(I):

(W) There exists a collection (H™ : X™ — Y™ 1),cz of morphisms in s
satisfying the relation

(B.2.1) Ao H  + H M ody = f"—g"  ("neZ),

if and only if there exists a map h: X — Y in C(sA) fitting into the
following commutative diagram:

(B.2.2) XoX
l (f.9)

We prove (#). Assume that there exists a collection (H™ : X" — Y"1, o7
of morphisms satisfying (B.2.1). Then we define the morphism

Xt =X"a X" e X" —Y" (nek)

by h™(z,y,z) := f*(z) + H""(y) + ¢"(z). It is easy to check that h =
(W")pez : X — Y is a morphism of complexes and fits into the commutative
diagram (B.2.2). Conversely, suppose that we are given a morphism h :
X — Y of complexes fitting into (B.2.2). We then define H" : X — Y"1
by H"(z) := h"1(0,2,0). One can easily check that the collection (H" :
X" — Yn71), o7 satisfies the relation (B.2.1). O

By Proposition B.5, there is no fear of confusion in saying that two
maps f,g: X — Y in C() with Y € Ob(I) are homotopic, either in the
sense of homotopical or homological algebra. We next show the following
lemma, which extends the facts in [Hal] Chapter I, Lemmas 4.4 and 4.5 to
unbounded complexes:
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LEMMA B.7.

(1) Let f: X — Y be a morphism in C(d) with Y € Ob(I), and assume
that X is acyclic. Then f is homotopic to zero.

(2) Letg:Y — Z be a quasi-isomorphism in C(sd) with Y € Ob(I). Then
there exists a morphism s : Z — Y such that s o g is homotopic to
idy .

PrROOF. (1) Since Y is K-injective by Theorem B.1 and X is acyclic,
Hom®(X,Y) is acyclic. Hence we have

Hom sy (X, Y) & H(Hom*(X,Y)) = 0,

which implies the assertion.
(2) One can deduce the assertion from (1) by the same arguments as in
the proof of [Hal] Chapter I, Lemma 4.5. O

The following corollary of Lemma B.7 (2) verifies that the derived cat-
egory D(d) defined in the usual way has small hom-sets, under the as-
sumption that s is a Grothendieck category. Compare with [Be] Remark
3.15, and see also [Hal] Chapter I, Proposition 3.1 and the proof of loc. cit.
Proposition 3.2 for the description of hom-sets of localized categories.

COROLLARY B.8. For X € C(sd) and Y € I, the inductive limit with

respect to all quasi-isomorphisms 'Y Y in C(sA)

lim  Hom sy (X, Y”)
y 8y

is small, and canonically isomorphic to Hom gy (X,Y).

By Proposition B.5 and Corollary B.8, we obtain the following corollary,
which shows that the definition of the derived category of C(sd) given in [Be]
Corollary 3.14 is consistent with the usual construction:

COROLLARY B.9. For XY € C(dA), there exists a canonical bijection
Homsgeo( cat) (X, Y) = Hom gy (X, Y).

Consequently, D(A) is canonically isomorphic to 3o(C(A)).
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