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A Category of Probability Spaces

By Takanori Adachi and Yoshihiro Ryu

Abstract. We introduce a category Prob of probability spaces
whose objects are all probability spaces and whose arrows correspond
to measurable functions satisfying an absolutely continuous require-
ment. We can consider a Prob-arrow as an evolving direction of in-
formation. We introduce a contravariant functor E from Prob to Set,
the category of sets. The functor E provides conditional expectations
along arrows in Prob, which are generalizations of the classical condi-
tional expectations. For a Prob-arrow f−, we introduce two concepts
f−-measurability and f−-independence and investigate their interac-
tion with conditional expectations along f−. We also show that the
completion of probability spaces is naturally formulated as an endo-
functor of Prob.

1. Introduction

One of the most prominent examples of applying category theory to

probability theory is Lawvere and Giry’s approach of formulating transition

probabilities in a monadic example ( [Law62], [Gir82] ). However, there

are few of making categories consisting of all probability spaces due to a

difficulty of finding an appropriate condition of their arrows. One of the

trials is a way to adopt measure-preserving functions as arrows. With this

setting, for example, Franz develops a stochastic independence theory in

[Fra03]. Our approach is one of this simple-minded trials. Another recent

trial of generalizing arrows is made by Motoyama and Tanaka [Mot16]. They

introduce a notion of bounded arrows between probability spaces and define

the category of all probability spaces and all bounded arrows between them,

called CPS.
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We have two main results in this paper. One is an introduction of the

category Prob of all probability spaces and null-presearving maps between

them. The other one is that we show the existence of the conditional expec-

tation functor from Prob to Set, which is a natural generalization of the

classical notion of conditional expectation.

We introduce a category Prob of all probability spaces in order to see a

possible generalization of some classical tools in probability theory including

conditional expectations. Actually, [Ada14] provides a simple category for

formulating conditional expectations, but its objects and arrows are so lim-

ited that we cannot use it as a foundation of categorical probability theory.

We will also see that all arrows in the category CPS defined in [Mot16] are

arrows in Prob as well if ignoring they have opposite directions. Therefore,

CPSop is a subcategory of Prob.

The original idea of the category Prob comes when we sought a gener-

alization of the notion of financial risk measures that is one of the crucial

tools for managing risks in the financial industry. The risk measure is a

means of evaluating a future risk that is represented as a random variable,

with current information by calculating its conditional expectation given

the information. The reason of using the conditional expectation is that we

have less information than we will have in future. The conditional expecta-

tion is a perfect tool as long as the only difference between today and future

is the information we can access, that is, the changing part of a probability

space (Ω,F ,P) from now to future is just the σ-field F . However, after

experiencing recent financial crises, we are suspecting that the probability

measure P also varies through time, which created the disasters since we

treated it as invariant when we calculated the risk. A trial of making the

probability measure vary was the motivation of [Ada14].

In this paper, beyond that, we treat the situation when the underlying

set Ω of elementary events also varies, that is, all the three components

of the probability space are changing. We represent this change of entire

probability spaces by an arrow between them, thinking within a category of

probability spaces. So a natural requirement for the arrow is that we can

extend the classical conditional expectation given the (current) σ-field to

a sort-of conditional expectation along the arrow. The category Prob was

developed so that this requirement is satisfied.

The arrows of Prob are maps corresponding to measurable functions
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satisfying an absolutely continuous requirement that is weaker than the

measure-preserving requirement (Section 2). The requirement can be re-

stated the inverse of the arrow preserves null sets. The resulting Prob-

arrow can be seen as an evolving direction of information together with its

interpretation. We will see that the requirement allows us to extend some

important notions relativized by a σ-algebra in classical probability theory

to notions relativized by a Prob-arrow f−. For example, we introduce no-

tions of a conditional expectation along f− (Section 3), a f−-measurable

function (Section 4) and a random variable independent of f− (Section 5).

These are considered as generalizations of the classical counterparts. The

existence of those natural generalizations may support a claim saying that

the requirement for Prob-arrows is a natural one. We also see that the com-

pletion procedure of probability spaces becomes an endofunctor of Prob

(Section 6).

The category Prob and functors developed in this paper convey more

natural and richer structures than those introduced in [Ada14].

2. Category of Probability Spaces

In this paper, X̄ = (X,ΣX ,PX), Ȳ = (Y,ΣY ,PY ) and Z̄ = (Z,ΣZ ,PZ)

are probability spaces.

Definition 2.1 [Null-preserving functions]. A measurable function

f : Ȳ → X̄ is called null-preserving if f−1(A) ∈ NY for every A ∈ NX ,

where NX := P
−1
X (0) ⊂ ΣX and NY := P

−1
Y (0) ⊂ ΣY .

The following characterization is straightforward.

Proposition 2.1. Let f : Ȳ → X̄ be a measurable function. Then, f

is null-preserving if and only if PY ◦ f−1 � PX , where µ � ν means that

µ is absolutely continuous with respect to ν, that is, µ(A) = 0 whenever

ν(A) = 0.

The following diagram (that does not commute in general) might be
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helpful to see the situation we consider.

Y

f

��

NY ⊂ ΣY
PY

�������

[0, 1]

X NX

f−1

��

⊂ ΣX

f−1

��

PX

�������

Definition 2.2 [Bounded functions (Motoyama-Tanaka [Mot16])]. A

measurable function f : Ȳ → X̄ is called bounded if there exists a positive

number M > 0 such that PY (f−1(A)) ≤MPX(A) for every A ∈ ΣX .

By Proposition 2.1, the following proposition is obvious.

Proposition 2.2. Every bounded function f : Ȳ → X̄ is null-pre-

serving.

Proposition 2.3. Let f and g be two null-preserving functions as fol-

lows:

Z̄
g �� Ȳ

f �� X̄

Then, f ◦ g is also null-preserving.

Proof. Immediate. �

Proposition 2.3 makes the following definition well-defined.

Definition 2.3 [Category Prob]. A category Prob is the category

whose objects are all probability spaces and the set of arrows between them

are defined by

Prob(X̄,Ȳ ) := {f− | f : Ȳ → X̄ is a null-preserving function.},

where f− is a symbol corresponding uniquely to a function f .

We write IdX for an identity measurable function from X̄ to X̄, while

writing idX for an identity function from X to X. Therefore, the identity

arrow of a Prob-object X̄ is Id−X .
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Motoyama and Tanaka [Mot16] introduce the category consisting of all

probability spaces and all bounded arrows between them, and call it CPS.

By Proposition 2.2, CPSop is a subcategory of Prob. So the category

CPS is, in a sense, not large enough for developing the theory of financial

risk measures as we mentioned in Section 1.

An arrow f− in Prob can be considered to represent an evolving di-

rection of information with a way of its interpretation. The information is

evolving along f−1 but with a restriction to its accompanying probability

measure.

In order to see it more concretely, let us consider the case where f is an

identity function on X, that is, consider a Prob-arrow id−X : (X,Σ1,P1)→
(X,Σ2,P2). Then, we have Σ1 ⊂ Σ2 and P2 = P2 ◦ id−1

X � P1. This means

that the information is growing while the support of the probability measure

is decreasing. The latter makes sense if we think of the following situation:

someone believed that some event among many other events may happen,

but now she has changed her mind to believe that the event will never occur,

and so she can concentrate on other possible events.

Actually, [Ada14] treats this special situation. It introduces, for a given

measurable space (Ω,G), a category χ(Ω,G) whose objects are all the pairs

of the form (FU ,PU ) where FU is a sub-σ-field of G and PU is a probability

measure on G. And it has a unique arrow from (FV ,PV) to (FU ,PU ) only

when FV ⊂ FU and PU � PV . Note that there is a natural embedding ι of

the category χ(Ω,G) into Prob.

χ(Ω,G) ι �� Prob

(FV ,PV)
ι ��

∗
��

(Ω,FV ,PV | FV)

ι(∗):=id−Ω
��

(FU ,PU )
ι �� (Ω,FU ,PU | FU )

Proposition 2.4. A probability space � := ({∗}, {{∗}, ∅},P�), where

P�({∗}) := 1 and P�(∅) := 0, is an initial object of the category Prob.

Actually, for a probability space X̄, !−X : �→ X̄ is a unique arrow in Prob,

where !X : X → {∗} is a function such as !X(x) = ∗ for all x ∈ X.

Proof. First, we show the uniqueness of !−X . But it is a straightforward
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consequence from the fact that there exists only one arrow !X fromX to {∗}.
Next, we prove that !−X is a Prob-arrow. Obviously !X is measurable, so all

we need to show is that !−1
X is null-preserving. Since ∅ is the only null

set of � and any inverse image of ∅ is also ∅, we conclude !−1
X is null-

preserving. �

In the following discussions, we fix the state space to be the measur-

able space (R,B(R)) for simplicity. L∞(X̄) is a vector space consisting of

R-valued random variables v such that PX - ess supx∈X |v(x)| < ∞, while

L1(X̄) is a vector space consisting of R-valued random variables v such that∫
X |v| dPX has a finite value. For two random variables u1 and u2, we write

u1 ∼PX u2 or u1 = u2 PX -a.s. when PX(u1 �= u2) = 0. L∞(X̄) and L1(X̄)

are quotient spaces L∞(X̄)/ ∼PX and L1(X̄)/ ∼PX , respectively.

Proposition 2.5. Let u1 and u2 be two elements of L∞(X̄), and f−

be an arrow in Prob(X̄, Ȳ ). Then, u1 ∼PX u2 implies u1 ◦ f ∼PY u2 ◦ f .

Proof. Assume that u1 ∼PX u2. Then, PX(u1 �= u2) = 0. Hence, we

have PY

(
f−1{u1 �= u2}

)
= (PY ◦ f−1)(u1 �= u2) = 0 since PY ◦ f−1 � PX .

Therefore PY (u1 ◦ f �= u2 ◦ f) = 0 since {u1 ◦ f �= u2 ◦ f} ⊂ f−1{u1 �= u2},
which means u1 ◦ f ∼PY u2 ◦ f . �

Proposition 2.5 makes the following definition well-defined.

Definition 2.4 [Functor L]. A functor L : Prob → Set is defined

by:

X X̄

f−

��

� L �� LX̄ :=

Lf−

��

L∞(X̄) � [u]∼PX�

Lf−

��
Y

f

��

Ȳ
� L �� LȲ := L∞(Ȳ ) � [u ◦ f ]∼PY

Example 2.6. Let ω be the category whose objects are all integers start-

ing with 0 and for each pair of integers s and t with s ≤ t there is a unique

arrow ∗s,t : s → t. That is, ω is the category corresponding to the integer

set N with the usual total order. For a real number p ∈ (0, 1), we define a

functor B := Bp : ω → Prob in the following way.
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For an object t of ω, Bt is a probability space X̄t := (Xt,Σt,Pt) whose

components are defined as follows:

1. Xt := {0, 1}t, the set of all binary numbers of t digits,

2. Σt := 2Xt ,

3. for a ∈ Xt, Pt : Σt → [0, 1] is the probability measure defined by

Pt({a}) := p#a(1− p)t−#a where #a is the number of occurrences of

1 in a.

For an integer t, F (∗t,t+1) := ft is defined by ft(i0i1 . . . itit+1) :=

i0i1 . . . it where ik is 0 or 1. For s < t, We write fs,t for F (∗s,t) =

fs ◦ fs+1 ◦ · · · ◦ ft−1.

Since Σt is a powerset of Xt, any function from Xt is measurable. More-

over by the definition of Pt, only null set in Σt is ∅. Therefore any function

between Xs and Xt is null-preserving. Hence, fs,t is a Prob-arrow. Thus,

the functor B is well-defined.

The functor B represents a filtration over the classical binomial model,

for example developed in [Shr04]. So we can think B a sort of generalized

filtration .

One of the biggest difference between the classical and Prob versions

of binomial models is that the classical version requires the terminal time

horizon T for determining the underlying set Ω := {0, 1}T while our version

does not require it since the time variant probability spaces can evolve

without any limit. That is, our version allows unknown future elementary

events, which, we believe, shows a big philosophical difference from the

Kolmogorov world.

3. Conditional Expectation Functor

Definition 3.1. Let us consider a Prob arrow f− : X̄ → Ȳ . Take

v ∈ L1(Ȳ ) and put

v∗(B) :=

∫
B
v dPY
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for B ∈ ΣY . Then v∗ ◦ f−1 is absolutely continuous w.r.t. PX , since f−1

maps PX -null sets to PY -null sets and

v∗ ◦ f−1(A) =

∫
f−1(A)

v dPY (A ∈ ΣX).

So, thanks to Radon-Nikodym theorem, we have the unique (up to PX -a.s.)

element Ef−
(v) of L1(X̄) such that

∫
A
Ef−

(v) dPX =

∫
f−1(A)

v dPY(3.1)

for all A ∈ ΣX . We call this element Ef−
(v) the conditional expectation

of v along f−.

Proposition 3.1. For u ∈ L1(X̄), EId−X (u) ∼PX u.

Proof. For every A ∈ ΣX ,
∫
AE

Id−X (u) dPX =
∫
Id−1

X (A) u dPX =∫
A u dPX . �

Proposition 3.2. Let f− and g− be arrows in Prob like:

X̄
f−

�� Ȳ
g− �� Z̄ .

1. For v1, v2 ∈ L1(Ȳ ), v1 ∼PY v2 implies Ef−
(v1) ∼PX E

f−
(v2).

2. For w ∈ L1(Z̄), Ef−
(Eg−(w)) ∼PX E

g−◦f−
(w).

Proof.

1. Assume that v1 ∼PY v2. Then, it is obvious that v∗1 = v∗2 as func-

tions. The result comes from the uniqueness (up to PX -null sets) of

conditional expectations.

2. It is sufficient to show that for every A ∈ ΣX∫
A
Ef−

(Eg−(w)) dPX =

∫
(f◦g)−1(A)

w dPZ .

However, we can get this immediately by applying (3.1) twice. �
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Proposition 3.1 and Proposition 3.2 make the following definition well-

defined.

Definition 3.2 [Functor E ]. A functor E : Probop → Set is defined

by:

X X̄

f−

��

� E �� EX̄ := L1(X̄) � [Ef−
(v)]∼PX

Y

f

��

Ȳ
� E �� E Ȳ :=

Ef−

��

L1(Ȳ ) � [v]∼PY

�

Ef−

��

We call E a conditional expectation functor .

Note that the functors L and E defined in [Ada14] from the category

χ(Ω,G) to Set are representable as L ◦ ι and E ◦ ι, respectively by using L

and E defined in this paper. That is, Prob is a more general and richer

category than χ, while still having enough structure to define conditional

expectation functor.

One may wonder why we do not use more structured category such as

the category of Banach spaces instead of using Set. One of our hidden

goals when we defined the functors L and E is to develop a model of a

logical inference system based on Prob. In order to make it possible, we

wanted to make the functor category over Prob be a topos. Picking Set

as a target category is a natural consequence of this line since the functor

category SetProb becomes a topos.

The following three propositions state basic properties of our conditional

expectations, which are similar to those of classical conditional expectations.

Proposition 3.3 [Linearity]. Let f− : X̄ → Ȳ be a Prob-arrow.

Then for every pair of random variables u, v ∈ L1(Ȳ ) and α, β ∈ R, we

have

Ef−
(αu+ βv) ∼PX αE

f−
(u) + βEf−

(v).(3.2)
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Proof. For all A ∈ ΣX ,

∫
A
Ef−

(αu+ βv) dPX =

∫
f−1(A)

(αu+ βv) dPY

= α

∫
f−1(A)

u dPY + β

∫
f−1(A)

v dPY

= α

∫
A
Ef−

(u) dPX + β

∫
A
Ef−

(v) dPX

=

∫
A
(αEf−

(u) + βEf−
(v)) dPX . �

Proposition 3.4 [Positivity]. Let f− : X̄ → Ȳ be a Prob-arrow.

If a random variable v ∈ L1(Ȳ ) is PY -almost surely positive, i.e. v ≥
0 (PY -a.s.), then Ef−

(v) ≥ 0 (PX-a.s.).

Proof. Since v is PY -almost surely positive, v∗ ◦ f−1(A) =∫
f−1(A) v dPY is a measure on (X,ΣX) for every A ∈ ΣX . Thus Ef−

(v) ≥
0 (PX -a.s.) because Ef−

(v) is a Radon-Nikodym derivative

d(v∗ ◦ f−1)/dPX . �

Proposition 3.5 [Monotone Convergence]. Let f− : X̄ → Ȳ be a

Prob-arrow, v, vn ∈ L1(Ȳ ) be random variables for n ∈ N. If 0 ≤ vn ↑
v (PY -a.s.), then 0 ≤ Ef−

(vn) ↑ Ef−
(v) (PX-a.s.).

Proof. By Proposition 3.3 and Proposition 3.4, we have 0 ≤
Ef−

(vn) ≤ Ef−
(vn+1) (PX -a.s.) for all n ∈ N. Put h := lim supnE

f−
(vn),

then obviously, Ef−
(vn) ↑ h (PX -a.s.). So all we need to show is that

for every A ∈ ΣX ,
∫
AE

f−
(v) dPX =

∫
A h dPX . But, thanks to monotone

convergence theorem, we have

∫
A
h dPX = lim

n→∞

∫
A
Ef−

(vn) dPX = lim
n→∞

∫
f−1(A)

vn dPY

=

∫
f−1(A)

v dPY =

∫
A
Ef−

(v) dPX . �
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Definition 3.3 [Unconditional Expectation]. For v ∈ L1(Ȳ ), we call

E!−Y (v) a unconditional expectation of v, where !−Y is the unique arrow

!−Y : �→ Ȳ defined in Proposition 2.4.

Proposition 3.6. Let !−Y : � → Ȳ be the unique Prob-arrow and

v ∈ L1(Ȳ ). Then, we have

E!−Y (v)(∗) = E
PY [v].(3.3)

Proof.

E!−Y (v)(∗) =

∫
{∗}
E!−Y (v) dP� =

∫
!−1
Y ({∗})

v dPY =

∫
Y
v dPY = E

PY [v]. �

Proposition 3.6 asserts that our unconditional expectation is a natural

extension of the classical one.

4. f−-Measurability

Definition 4.1 [f−-measurability]. Let f− : X̄ → Ȳ be a Prob-

arrow and v ∈ L∞(Ȳ ). v is called f−-measurable if there exists w ∈
L∞(X̄) such that v ∼PY w ◦ f .

The following proposition allows us to say that an element of LȲ is

f−-measurable.

Proposition 4.1. Let f− : X̄ → Ȳ be a Prob-arrow and v1 and v2 be

two elements of L∞(Ȳ ) satisfying v1 ∼PY v2. Then, if v1 is f−-measurable,

so is v2.

Proof. Obvious. �

The next proposition is well-known. For example, see Page 206 of

[Wil91].

Proposition 4.2. Let f− : X̄ → Ȳ be a Prob-arrow and v ∈ L∞(Ȳ ).

Then, v is f−-measurable if and only if v is f−1(ΣX)/B(R)-measurable.
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Proposition 4.2 says that f−-measurability is an extension of the classical

measurability.

Theorem 4.3. Let f− : X̄ → Ȳ be a Prob-arrow, u be an element

of L1(Ȳ ) and v be a random variable in L∞(Ȳ ), and assume that v is f−-

measurable. Then we have

Ef−
(v · u) ∼PX w · Ef−

(u),(4.1)

where w ∈ L∞(X̄) is a random variable satisfying v ∼PY w ◦ f .

Proof. By (3.1), it is sufficient to prove that for every A ∈ ΣX ,

∫
f−1(A)

v · u dPY =

∫
A
w · Ef−

(u) dPX .(4.2)

But, it is obvious from the transformation theorem applying with the

Jordan decomposition. �

Theorem 4.3 is a generalization of a classical formula

E
P[v · u | G] ∼P v · EP[u | G]

for a G-measurable random variable v.

The following theorem has some categorical taste.

Theorem 4.4. Let E �L, EP1 : Probop×Prob→ Set be two parallel

bifunctors defined by

E � L := � ◦ (E × L) and EP1 := E ◦ P1

where P1 : Probop ×Prob→ Probop is the projection for the first compo-

nent, and � : Set× Set→ Set is a functor which sending an ordered pair

of sets to the set product of its components.

Now, for each Prob-object X̄, define a function αX̄ : L1(X̄)×L∞(X̄)→
L1(X̄) by αX̄(〈[u]∼PX

, [v]∼PX
〉) = [u · v]∼PX

. Then the following diagram
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commutes.

Probop ×Prob
E�L �� Set Set Probop ×Prob

EP1��

〈X̄, X̄〉 L1(X̄)× L∞(X̄)
αX̄ �� L1(X̄)

EId−X
��

〈X̄, X̄〉

〈Id−X , f−〉
��

〈Ȳ , X̄〉

〈f−, Id−X〉

��

〈Id−Y , f−〉
��

L1(Ȳ )× L∞(X̄)

Ef−×LId−X

��

EId−Y ×Lf−

��

L1(X̄) 〈X̄, Ȳ 〉

〈Ȳ , Ȳ 〉 L1(Ȳ )× L∞(Ȳ )
αȲ �� L1(Ȳ )

Ef−

��

〈Ȳ , Ȳ 〉

〈f−, Id−Y 〉

��

In other words, α : E � L
··−→ EP1 is a dinatural transformation.

Proof. For 〈[v]∼PY
, [u]∼PX

〉 ∈ L1(Ȳ )× L∞(X̄), we have

(EId−X ◦ αX̄ ◦ (Ef− × LId−X))(〈[v]∼PY
, [u]∼PX

〉) =
[
Ef−

(v) · u
]
∼PX

,

(Ef− ◦ αȲ ◦ (EId−Y × Lf−))(〈[v]∼PY
, [u]∼PX

〉) =
[
Ef−

(v · (u ◦ f))
]
∼PX

since EId−X = IdL1(X̄). But by Theorem 4.3, two rightmost hand sides

coincide, which completes the proof. �

5. f−-Independence

Definition 5.1 [Category mpProb]. A Prob-arrow f− : X̄ → Ȳ is

called measure-preserving if PY ◦ f−1 = PX . A subcategory mpProb of

Prob is a category whose objects are same as those of Prob but arrows are

limited to all measure-preserving arrows.

Franz defines stochastic independence in the opposite category of

mpProb as an example of his introducing notion of stochastic indepen-

dence in monoidal categories.

Definition 5.2 [Fra03]. Two mpProb-arrows f− : X̄ → Z̄ and g− :

Ȳ → Z̄ are called independent if there exists an mpProb-arrow q− :
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X̄ ⊗ Ȳ → Z̄ such that the following diagram commutes

Z̄

X̄
p−1

��

f−
����������

X̄ ⊗ Ȳ
q−

��

Ȳ
p−2

��

g−
		��������

where X̄ ⊗ Ȳ := (X × Y,ΣX ⊗ ΣY ,PX ⊗ PY ), p1 and p2 are projections,

ΣX ⊗ ΣY is the smallest σ-algebra of X × Y making both p1 and p2 mea-

surable, and PX ⊗ PY is a product measure such that (PX ⊗ PY )(A×B) =

PX(A)PY (B) for all A ∈ ΣX and B ∈ ΣY .

Franz shows that the notion of independence defined in Definition 5.2

exactly matches the classical one in the sense of the following proposition.

Proposition 5.1 [Fra03]. Two mpProb-arrows f− : X̄ → Z̄ and

g− : Ȳ → Z̄ are independent if and only if for every pair of A ∈ ΣX and

B ∈ ΣY

PZ(f−1(A) ∩ g−1(B)) = PZ(f−1(A))PZ(g−1(B)).(5.1)

Before extending the notion of independence to the category Prob, we

need the following note.

Proposition 5.2. Let f− : X̄ → Ȳ be a Prob-arrow. We define a

Prob-object X̄f− by

X̄f− := (X,ΣX ,PY ◦ f−1).(5.2)

Then, the following diagram commutes in Prob

X̄
f−

��

id−X ��

Ȳ

X̄f−

f∼



�������

where f∼ and id−X are corresponding Prob-arrows of f : Ȳ → X̄f− and

idX : X̄f− → X̄, respectively. Moreover, f∼ is measure-preserving.
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Proof. Obvious. �

Definition 5.3 [Independence in Prob]. Two Prob-arrows f− :

X̄ → Z̄ and g− : Ȳ → Z̄ are called independent if there exists a measure-

preserving arrow q− : X̄f− ⊗ Ȳg− → Z̄ such that the following diagram

commutes.

X̄
f−

��

id−X ��

Z̄ Ȳ
g−��

id−Y��
X̄f−

p−1

��

f∼
������������

X̄f− ⊗ Ȳg−
q−

��

Ȳg−
p−2

��

g∼
������������

Lemma 5.3. For a measure-preserving Prob-arrow f− : X̄ → Ȳ ,

Ef− ◦ Lf− = idLX̄ .

Proof. For u ∈ L∞(X̄), (Lf−)[u]∼PX
= [u ◦ f ]∼PY

is f−-measurable.

Hence by Theorem 4.3,

Ef−(Lf−([u]∼PX
)) =

[
Ef−

(u ◦ f)
]
∼PX

=
[
u · Ef−

(1Y )
]
∼PX

.

But, since f− is measure-preserving, for all A ∈ ΣX

∫
A
Ef−

(1Y ) dPX =

∫
f−1(A)

1Y dPY = PY (f−1(A)) = PX(A) =

∫
A

1X dPX .

Therefore, Ef−
(1Y ) = 1X , which concludes the proof. �

Lemma 5.4. Let X̄ and Ȳ be probability spaces. Then for all v ∈
L∞(Ȳ ),

Ep−1 (v ◦ p2) ∼PX E
PY [v]1X(5.3)

where p1 and p2 are projections from X × Y to X and Y , respectively.
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Proof. For A ∈ ΣX ,∫
A
Ep−1 (v ◦ p2) dPX

=

∫
p−1
1 (A)

v ◦ p2 d(PX ⊗ PY )

=

∫
X×Y

(v ◦ p2) · (1A ◦ p1) d(PX ⊗ PY )

=

∫
Y

∫
X

((v ◦ p2)〈x, y〉) · ((1A ◦ p1)〈x, y〉) PX(dx) PY (dy)

=

∫
Y
v(y) PY (dy)

∫
X

1A(x) PX(dx)

= E
PY [v]

∫
A

1X dPX . �

Theorem 5.5. Let f− : X̄ → Z̄ and g− : Ȳ → Z̄ be two independent

Prob-arrows. Then, for every v ∈ L∞(Ȳ ), we have

Ef−
(v ◦ g) ∼PX E

PZ [v ◦ g]Ef−
(1Z).(5.4)

Proof. For the diagram in Definition 5.3, apply E to its left box, and

apply L to its right box. Then, we get the following diagram.

L1X̄ L1Z̄
Ef−

��
Ef∼

											
Eq−

��

L∞Z̄� ��� L∞Ȳ
Lg−��

Lid−Y��
L1X̄f−

Eid−X

��

L1(X̄f− ⊗ Ȳg−)
Ep−1
�� L∞(X̄f− ⊗ Ȳg−)

Lq−
��

� ��� L∞Ȳg−
Lp−2

��

Lg∼
��












The left and right boxes in the above diagram commute since they are

images of functors E and L, the center box also commutes by Lemma 5.3,

and so does the whole diagram. Now for v ∈ L∞(Ȳ ), let us see the values

at the upper-left corner of the diagram developed through two paths, which

should coincide.

(Ef− ◦ Lg−)[v]∼PY
= [Ef−

(v ◦ g)]∼PX
,

(Eid−X ◦ Ep−1 ◦ Lp−2 ◦ Lid−Y )[v]∼PY
= [(Eid−X ◦ Ep−1 )(v ◦ p2)]∼PX

.
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Hence by Lemma 5.4,

Ef−
(v ◦ g) ∼PX E

PZ◦g−1
[v]Eid−X (1X) ∼PX E

PZ [v ◦ g]Eid−X (1X).

Now for every A ∈ ΣX ,

∫
A
Eid−X (1X) dPX =

∫
A

1X d(PZ ◦ f−1) = (PZ ◦ f−1)(A)

=

∫
f−1(A)

1Z dPZ =

∫
A
Ef−

(1Z) dPX .

Therefore, Eid−X (1X) ∼PX E
f−

(1Z), which completes the proof. �

Definition 5.4 [f−-independence]. For a random variable v ∈ L1(Ȳ ),

we define a probability space R̄v by R̄v := (R,B(R),PY ◦ v−1). Then,

v− : R̄v → Ȳ is a Prob-arrow. Now for a Prob-arrow f− : X̄ → Ȳ ,

v is said to be independent of f−, denoted by v⊥f−, if f− and v− are

independent.

The following proposition allows us to say that an element of L1(Ȳ ) is

independent of f−.

Proposition 5.6. Let f− : X̄ → Ȳ be a Prob-arrow and v1 and v2 be

two elements of L1(Ȳ ) satisfying v1 ∼PY v2. Then, v1⊥f− implies v2⊥f−.

Proof. Assume that v1 ∼PY v2 and v1⊥f−. Let N := {y ∈ Y |
v1(y) �= v2(y)} and M := Y −N . Then, PY (N) = 0.

First, we show that

PY ◦ v−1
1 = PY ◦ v−1

2 .(5.5)

For every B ∈ B(R) and i = 1, 2,

(PY ◦ v−1
i )(B) = PY (v−1

i (B) ∩N) + PY (v−1
i (B) ∩M) = PY (v−1

i (B) ∩M).

But,

y ∈ v−1
1 (B) ∩M ⇔ v1(y) = v2(y) ∈ B ⇔ y ∈ v−1

2 (B) ∩M,
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which proves (5.5). Hence, R̄v1 = R̄v2 .

Now since v1⊥f−, we have the following measure-preserving q−1 .

X̄
f−

��

id−X ��

Ȳ

X̄f−
p−1

��

f∼
������������

X̄f− ⊗ R̄v1

q−1

��

R̄v1
p−2

��

v−1
������������

Then, q1 satisfies that q1(y) = 〈f(y), v1(y)〉 for all y ∈ Y . Similarly we

define a function q2 : Y → X × R by q2(y) = 〈f(y), v2(y)〉 for all y ∈ Y .

Then, all we need to show is that q−2 is a measure-preserving Prob-arrow,

in other words,

PY ◦ q−1
2 = (PY ◦ f−1)⊗ (PY ◦ v−1

2 ).(5.6)

However, by (5.5) and the fact that q−1 is measure-preserving, it is enough

to show that

PY ◦ q−1
1 = PY ◦ q−1

2 .(5.7)

For any E ∈ ΣX ⊗ B(R) and i = 1, 2,

(PY ◦ q−1
i )(E) = PY (q−1

i (E) ∩N) + PY (q−1
i (E) ∩M) = PY (q−1

i (E) ∩M).

But,

y ∈ q−1
1 (E) ∩M ⇔ (〈f(y), v1(y)〉 ∈ E ∧ v1(y) = v2(y))

⇔ (〈f(y), v2(y)〉 ∈ E ∧ v1(y) = v2(y))

⇔ y ∈ q−1
2 (E) ∩M,

which proves (5.7). �

Proposition 5.7. Let !−Y : � → Ȳ be a unique Prob-arrow and v ∈
L1(Ȳ ). Then, v is independent of !−Y .

Proof. Obvious. �

Theorem 5.8. Let f− : X̄ → Ȳ be a Prob-arrow and v ∈ L1(Ȳ )

which is independent of f−. Then we have,

Ef−
(v) ∼PX E

PY [v]Ef−
(1Y ).(5.8)
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Proof. Let {un : R → R}n∈N be a sequence of functions defined by

un := idR · 1[−n,n]. Then by Theorem 5.5, Ef−
(un ◦ v) ∼PX E

PY [un ◦
v]Ef−

(1Y ) since un ∈ L∞(R̄un). On the other hand, we have

un ◦ v = un ◦ v+ − un ◦ v−

and

0 ≤ un ◦ v+ ↑ v+,
0 ≤ un ◦ v− ↑ v−

as n goes to∞, where v+ (v−) is the positive (negative) part of the R-valued

function v. So by Proposition 3.3 and Proposition 3.5, we obtain

Ef−
(v) ∼PX lim

n→∞
Ef−

(un ◦ v)

∼PX lim
n→∞

(
Ef−

(un ◦ v+)− Ef−
(un ◦ v−)

)

∼PX lim
n→∞

E
PY [un ◦ v+]Ef−

(1Y )− lim
n→∞

E
PY [un ◦ v−]Ef−

(1Y )

∼PX E
PY [v+]Ef−

(1Y )− E
PY [v−]Ef−

(1Y )

∼PX E
PY [v]Ef−

(1Y ). �

As a combination of (5.8) and (3.3), we have

Ef−
(v) ∼PX E

!−Y (v)(∗)Ef−
(1Y ),(5.9)

which is a natural generalization of the relationship between classical con-

ditional expectations given independent σ-fields and unconditional expec-

tations.

6. Completion Functor

The following definition is taken from pages 202-203 of [Wil91].

Definition 6.1 [Wil91]. Let (X,ΣX ,PX) be a probability space.

1. Σ∗
X := {F ⊂ X | ∃A,B ∈ ΣX , A ⊂ F ⊂ B and PX(B −A) = 0},
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2. For F ∈ Σ∗
X , P

∗
X(F ) is defined by P

∗
X(F ) := PX(A) = PX(B), where

A,B ∈ ΣX satisfies A ⊂ F ⊂ B and PX(B −A) = 0.

Then, it is well-known that the triple (X,Σ∗
X ,P

∗
X) is well-defined and

becomes a probability space called the completion of (X,ΣX ,PX).

Proposition 6.1. Let f− : (X,ΣX ,PX) → (Y,ΣY ,PY ) be a Prob-

arrow.

1. The function f : Y → X is Σ∗
Y /Σ

∗
X-measurable.

2. P
∗
Y ◦ f−1 � P

∗
X .

Proof.

1. For any F ∈ Σ∗
X , by Definition 6.1 there exist A,B ∈ ΣX such that

A ⊂ F ⊂ B and PX(B−A) = 0. Then, since PY ◦f−1 � PX , we have

f−1(A) ⊂ f−1(F ) ⊂ f−1(B) and PY (f−1(B)−f−1(A)) = PY (f−1(B−
A)) = 0. Therefore, again by Definition 6.1, f−1(F ) ∈ Σ∗

Y .

2. Assume that F ∈ Σ∗
X and PX(F ) = 0. Then, it is sufficient to show

that (P∗
Y ◦ f−1)(F ) = 0. Now by Definition 6.1, there exists B ∈ ΣX

such that F ⊂ B and P
∗
X(F ) = PX(B) = 0. Then by PY ◦ f−1 � PX ,

we have (P∗
Y ◦ f−1)(F ) ≤ (P∗

Y ◦ f−1)(B) = (PY ◦ f−1)(B) = 0. �

Proposition 6.1 makes the following definition well-defined.

Definition 6.2 [Functor C]. A functor C : Prob → Prob is defined

by:

X (X,ΣX ,PX)

f−

��

� C �� C(X,ΣX ,PX) :=

Cf−

��

(X,Σ∗
X ,P

∗
X)

f−

��
Y

f

��

(Y,ΣY ,PY ) � C �� C(Y,ΣY ,PY ) := (Y,Σ∗
Y ,P

∗
Y )

The functor C is called a completion functor .
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