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A Singular Perturbation Problem for Heteroclinic

Solutions to the FitzHugh-Nagumo Type

Reaction-Diffusion System with Heterogeneity

By Takashi Kajiwara and Kazuhiro Kurata

Abstract. In a previous paper, the first author considered the
variational problems for heteroclinic solutions to the FitzHugh-
Nagumo type reaction-diffusion system involving heterogeneity µ(x)
and proved the existence of the minimizers. However, the precise lo-
cation of the transition layer of the minimizers was not clear in the
paper.

In this paper, we consider the same problems as the singular per-
turbation problems. Then we prove that the minimizer has exactly
one transition layer near the minimum point of µ(x) by using the first
order energy expansion. Moreover, we derive the more precise energy
asymptotic expansion.

1. Introduction and Main Results

In this paper, motivated by Chen, Kung and Morita [4], we consider the

heteroclinic solution to the following problems involving heterogeneity µ(x):{
−du′′(x) = µ(x)(f(u(x)) − u(x)/γ) − v(x) + u(x)/γ, x ∈ R,

−v′′(x) = u(x) − γv(x), x ∈ R,
(1.1)

or {
−du′′(x) = µ(x)f(u(x)) − v(x), x ∈ R,

−v′′(x) = u(x) − γv(x), x ∈ R,
(1.2)

with

(u(x), v(x)) → (±aγ ,±aγ/γ), x → ±∞,(1.3)

where d > 0, γ > 1, f(s) = s − s3, aγ =
√

1 − 1/γ and µ is a function

satisfying the following conditions:
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(µ1) There exist µ0 > 0 and x0 ∈ R such that µ0 = µ(x0) ≤ µ(x) ≤ 1 holds

for all x ∈ R. Moreover, µ �≡ 1.

(µ2) 1 − µ ∈ L1(R) ∩ C(R) and µ(x) → 1 as |x| → ∞.

We note that Chen, Kung and Morita [4] treated the case µ ≡ 1.

(1.1) and (1.2) arise in the FitzHugh-Nagumo type reaction-diffusion

system (FHN RD system, in short). The FHN RD system was introduced

in physiology, which essentially describes neural excitability. This system

has also been studied mathematically as a model which generates complex

patterns. A typical FHN RD system is given in the following form:


∂u

∂t
(x, t) = d∆u(x, t) + f(u(x, t)) − v(x, t), x ∈ Ω, t > 0,

τ
∂v

∂t
(x, t) = D∆v(x, t) + u(x, t) − γv(x, t), x ∈ Ω, t > 0,

(1.4)

where Ω ⊂ R
N (N ≥ 1) is a domain, d,D, τ, γ are positive constants and

f(s) = s− s3. In particular, we treat the steady state problem of (1.4) with

Ω = R in this paper.

There are many works to study on stationary solutions to (1.4). In the

case N = 1 and Ω = R, Klaasen and Troy [12] constructed a pulse solution

and a periodic solution. Chen and Choi [3] constructed a pulse solution

in the different parameter ranges. Moreover, Chen, Kung and Morita [4]

constructed a heteroclinic solution by a variational approach. Reinecke and

Sweers [17] constructed a positive radially symmetric solution for the steady

state problem of (1.4) for the case N ≥ 1 and Ω = R
N . Chen and Tanaka [5]

extended the results of [17] under weaker assumptions. In addition, Wei and

Winter [19] constructed a standing wave cluster solution which has multiple

peaks with a specific geometric pattern. In the case that Ω is bounded in

R
N (N ≥ 1), Oshita [16] or Dancer and Yan [6] focused on the variational

structure of (1.4) and showed that the minimizer of the variational problem

corresponding to the stationary problem of (1.4) oscillates rapidly when

d > 0 is small. We note that Oshita [16] treated the Neumann boundary

condition and Dancer and Yan [6] treated the Dirichlet boundary condition.

For other works, see e.g. [7, 15, 18].

Before we state our results, we shall recall the strategy in [4] which

treated the case µ ≡ 1. In the case µ ≡ 1, (1.1) and (1.2) become the
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following problem:{
−du′′(x) = f(u(x)) − v(x), x ∈ R,

−v′′(x) = u(x) − γv(x), x ∈ R.
(1.5)

Chen, Kung and Morita assumed γ > 1 and hence (1.4) has three con-

stant stationary solutions (−aγ ,−aγ/γ), (0, 0) and (aγ , aγ/γ), where aγ =√
1 − 1/γ is the positive root of

f(aγ) =
aγ
γ

.(1.6)

In this paper, we shall call a solution to (1.5) satisfying (1.3) a heteroclinic

solution. To obtain the heteroclinic solution, they introduced some nota-

tions. Let v̂ ∈ C∞(R) be an odd function satisfying

v̂(x) =

{
aγ/γ, x > 1,

−aγ/γ, x < −1,

and define û ∈ C∞(R) as follows:

û(x) = −v̂′′(x) + γv̂(x).

We note that û is an odd function and satisfies

û(x) =

{
aγ , x > 1,

−aγ , x < −1.

They proposed the following energy functional J0(ψ) corresponding to (1.5)

with (1.3) :

J0(ψ) =

∫
R

[
θ2

2

∣∣u′∣∣2 +
1

4
(u2 − a2

γ)
2 +

1

2

(
v′ − u′

γ

)2

+
γ

2

(
v − u

γ

)2
]
dx,

where θ2 = d− 1/γ2, u = û+ψ, v = v̂ +Lψ and L : L2(R) → H2(R) is the

inverse operator of (−d2/dx2 + γ). They showed that if θ2 = d− 1/γ2 > 0,

then the minimizing problem

σ0 = inf
{
J0(ψ) : ψ ∈ H1(R)

}
has a minimizer ψ0 ∈ H1(R) and then (u, v) = (û + ψ0, v̂ + Lψ0) is a

heteroclinic solution to (1.5).
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Now we consider (1.1) and (1.2). We say that (u, v) is a heteroclinic

solution to (1.1) or (1.2) if (u, v) is a solution to (1.1) or (1.2) satisfying

(1.3). We note that (1.1) and (1.2) also have variational structures. The

energy functionals corresponding to these problems are defined as follows:

J̄θ(ψ) =

∫
R

[
θ2

2

∣∣u′∣∣2 +
µ(x)

4
(u2 − a2

γ)
2

+
1

2

(
v′ − u′

γ

)2

+
γ

2

(
v − u

γ

)2
]
dx,(1.7)

J̃θ(ψ) =

∫
R

[
θ2

2

∣∣u′∣∣2 +
µ(x)

4
(u2 − a2

γ)
2

+
1

2

(
v′ − u′

γ

)2

+
γ

2

(
v − u

γ

)2

+
1 − µ(x)

2γ
u2

]
dx.(1.8)

Kajiwara [10] proved that under the assumptions (µ1) and (µ2) for µ(x),

the following minimizing problems have minimizers ψ̄θ and ψ̃θ, respectively:

σ̄(θ, γ) = inf
{
J̄θ(ψ) : ψ ∈ H1(R)

}
,(1.9)

σ̃(θ, γ) = inf
{
J̃θ(ψ) : ψ ∈ H1(R)

}
.(1.10)

Moreover, one can see that (ūθ, v̄θ) = (û + ψ̄θ, v̂ + Lψ̄θ) and (ũθ, ṽθ) =

(û+ψ̃θ, v̂+Lψ̃θ) are the heteroclinic solutions to (1.1) and (1.2), respectively.

However, their precise profiles, for example, the number and the location of

the transition layers of ūθ or ũθ, were not clear in [10]. The purpose of this

paper is to clarify the profile of uθ in the singular perturbation problems as

θ → 0 with 1/γ = o(θ).

Our first main results are following:

Theorem 1. Assume that γ > 1, θ2 = d − 1/γ2 > 0, 1/γ = o(θ) and

µ(x) satisfies (µ1) and (µ2). Let ψθ ∈ H1(R) be a minimizer of (1.9) or

(1.10), uθ = û + ψθ and vθ = v̂ + Lψθ. Then for sufficiently small θ > 0,

there exists the unique point xθ ∈ R such that uθ(xθ) = 0.
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Moreover, we set

M = {x ∈ R : µ(x) = µ0} �= ∅.

Then we obtain the further information of xθ.

Theorem 2. Assume that γ > 1, θ2 = d − 1/γ2 > 0, 1/γ = o(θ)

and µ(x) satisfies (µ1) and (µ2). Let ψθ ∈ H1(R) be a minimizer of (1.9)

or (1.10), uθ = û + ψθ and xθ be the point defined in Theorem 1. Then

dist(xθ,M) → 0 as θ → 0.

With these theorems, we can reveal the asymptotic behavior of uθ.

Namely, we can see that uθ has exactly one transition layer with O(ε) near

the minimum point of µ(x) for small θ > 0. These results generalize the re-

sults for the Allen-Cahn equation. For the Allen-Cahn equation, Nakashima

[14] considered the following problem with heterogeneity h(x):

{
−du′′(x) = h(x)f(u(x)), x ∈ (0, 1),

u′(0) = u′(1) = 0.
(1.11)

Here the author assumes that h(x) is a positive smooth function in (0, 1)

and there exists x∗ ∈ (0, 1) such that h(x∗) = minh(x) and h′′(x∗) > 0.

Then the author constructed the solution to (1.11) which has a transition

layer near x∗ for sufficiently small d > 0. We note that Matsuzawa [13]

studied (1.11) without a non-degenerate assumption on h(x). Ei and Mat-

suzawa [8] considered (1.11) on R. They assumed that d > 0 is small and

h(x) ∈ C(R) has an interval I such that h(x) = miny∈Rh(y) for all x ∈ I.

Then they showed the transition layer tends to stay in the center of I from

the viewpoint of dynamics. Roughly speaking, these results show that the

solution to (1.11) tends to transit near the minimum point of h(x).

In the proof of Theorems 1 and 2, the following estimates on σ̄ = σ̄(θ, γ)

and σ̃ = σ̃(θ, γ) play important roles:

Proposition 1. Assume that γ > 1, θ2 = d−1/γ2 > 0, 1/γ = o(θ) as

θ → 0 and µ(x) satisfies (µ1) and (µ2). Then the following estimate holds:

σ(θ, γ) = a3
γ

√
µ0c∗θ + o(θ) as θ → 0,
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where σ represents σ̄ or σ̃ and c∗ is the positive constant defined as follows:

c∗ =

∫ 1

−1

√
(1 − s2)2

2
ds =

2
√

2

3
.(1.12)

In this paper, we also obtain more accurate estimates of σ̄ and σ̃ under

the additional assumptions (µ2’) and an additional relation between γ and

θ:

(µ2’) µ ∈ C2(R) and there exists a constant C > 0 such that |µ′′(x)| < C

holds for all x ∈ R.

Our second main results are the following energy asymptotic expansion:

Theorem 3. Assume that γ > 1, θ2 = d− 1/γ2 > 0, 1/γ = o(θ), and

µ(x) satisfies (µ1), (µ2) and (µ2’).

(1) Assume θ2 � 1/γ � θ. Then the following inequalities hold:

0 ≤ σ̄(θ, γ) − a3
γ

√
µ0c∗θ ≤

a3
γ
√
µ0

2θγ2
A + o

(
1

θγ2

)
,

0 ≤ σ̃(θ, γ) −
{
a3
γ

√
µ0c∗θ +

a2
γ

2γ

∫
R

(1 − µ(x)) dx

}
≤

a3
γ
√
µ0

2θγ2
A + o

(
1

θγ2

)
,

where c∗ is defined in (1.12),

A =

∫ ∞

0

∫ ∞

0
(|y + z| − |y − z|)B(y)B(z) dydz,(1.13)

B(y) = U0(y)(1 − U0(y)
2),(1.14)

and

U0(x) = tanh(x/
√

2).(1.15)

(2) Assume θ2 � 1/γ � θ4/3. Then the following estimate holds:
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σ̄(θ, γ) = a3
γ

√
µ0c∗θ +

a3
γ
√
µ0

2θγ2
A + o

(
1

θγ2

)
,(1.16)

(3) Assume θ2 � 1/γ � θ3/2. Then the following estimate holds:

σ̃(θ, γ) = a3
γ

√
µ0c∗θ +

a2
γ

2γ

∫
R

(1 − µ(x)) dx +
a3
γ
√
µ0

2θγ2
A + o

(
1

θγ2

)
.(1.17)

Remark 1. The formula θ2 � 1/γ � θ means that θ2 = o(1/γ) and

1/γ = o(θ) hold as θ → 0 and 1/γ → 0.

Remark 2. We conjecture that (1.16) and (1.17) hold under the

weaker assumption θ2 � 1/γ � θ. We need stronger technical

assumptions to control the behaviors of Uθ(y) as in Lemma 18 (see Sec-

tion 5).

In the energy expansions (1.16) and (1.17), we can see that the leading

term corresponds to the Allen-Cahn energy (see Lemmas 1 and 2) and the

second term of (1.16) or third term of (1.17) represents the non-local effect

of the FHN RD system. The upper estimate is obtained by substituting an

appropriate test function into J̄(ψ) or J̃(ψ). For the lower estimate, it is

necessary to analyze the behavior of the minimizers in details.

We add some comments on the case µ ≡ 1. In this case, we can check

that the same statements of Theorem 1 or (1) and (2) of Theorem 3 hold.

Moreover, we may assume xθ = 0 since (1.5) is invariant under translations

of u. On the other hand, Chen, Kung and Morita [4] showed that if we

take γ > 1 large enough for a given d > 0, then one can construct the

odd solution ud to (1.5) and (1.3) which is positive on (0,∞) by the sub-

supersolution method. They also showed the uniqueness of such a solution

under the same assumption in [4]. In addition, Kajiwara [11] showed that

we can take γ > 1 independent of d > 0 for the statement in [4] to be true.

From the uniqueness of the solution, we readily see that uθ ≡ ud under the

assumptions that µ ≡ 1, d − 1/γ2 > 0 and θ2 = d − 1/γ2 is small, where

uθ is the solution obtained by Theorem 1. This implies that ud can be

characterized from the variational viewpoint.
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This paper is organized as follows. In Section 2, we prepare some basic

lemmas. In Section 3, we prove the upper estimates of energies (Proposi-

tions 2 and 3). In particular, we give a proof of Proposition 1 (see Lemma 2

and Proposition 2). In Section 4, we first give a simple proof of the exis-

tence of the minimizers of (1.9) and (1.10) with Proposition 2. Then we

prove Theorems 1 and 2. We note that we use Proposition 2 also in the

proof of the theorems. In Section 5, we show the lower estimates of energies.

Section 5 consists of four parts. In Subsection 5.1, we introduce some no-

tations and prepare some useful lemmas. In Subsection 5.2, we show some

key lemmas on the behavior of Uθ. The lemmas presented in the subsection

play important roles in obtaining the lower estimates. In Subsection 5.3,

we present some auxiliary lemmas to reduce the amount of calculation. In

Subsection 5.4, we prove Theorem 3.

2. Basic Lemma

In this section, we collect some lemmas to show our main theorems.

Since the next lemma is well-known, we omit the proof.

Lemma 1 ([2]). Let E(U) be as follows:

E(U) =

∫
R

[
1

2

∣∣U ′(x)
∣∣ + W0(U(x))

]
dx,

where W0(s) = (s2 − 1)2/4. Then the following identity holds:

c∗ = inf

{
E(U) : U ∈ H1

loc(R), lim
x→±∞

U(x) = ±1

}
,

where c∗ is the same constant defined in (1.12). Moreover, U0 =

tanh(x/
√

2) attains the minimum of E(U), that is,

E(U0) = c∗.

Remark 3. It is well known that U0 = tanh(x/
√

2) is the unique

solution to 


−U ′′
0 (y) = f(U0(y)), y ∈ R,

U0(0) = 0,

U0(y) → ±1, y → ±∞.

(2.1)
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We also have the following characterization of c∗:

1

2
c∗ = inf

{∫ ∞

0

1

2

∣∣U ′(x)
∣∣2 +

1

4
(U(x) − 1)2 dx;

U ∈ H1
loc([0,∞)), U(0) = 0, lim

x→∞
U(x) = 1

}
= inf

{∫ 0

−∞

1

2

∣∣U ′(x)
∣∣2 +

1

4
(U(x) − 1)2 dx;

U ∈ H1
loc((−∞, 0]), U(0) = 0, lim

x→−∞
U(x) = −1

}
.

The next lemma immediately follows from Lemma 1.

Lemma 2. The following inequality holds:

σ(θ, γ) ≥ a3
γ

√
µ0c∗θ for any (θ, γ) ∈ (0,∞) × (1,∞),

where σ represents σ̄ or σ̃.

Proof. Note that

σ(θ, γ) ≥ inf

{∫
R

[
θ2

2

∣∣u′(x)
∣∣2 +

µ0

4
(u2 − a2

γ)
2

]
dx :

u ∈ H1
loc(R), lim

x→±∞
u(x) = ±aγ

}
.

By the scaling argument and Lemma 1, we have

inf

{∫
R

[
θ2

2

∣∣u′(x)
∣∣2 +

µ0

4
(u2 − a2

γ)
2

]
dx : u ∈ H1

loc(R), lim
x→±∞

u(x) = ±aγ

}
= a3

γ

√
µ0c∗θ.

Thus we conclude the desired estimate. �

The next lemma is well-known, but we present in the following form,

which will be used later.

Lemma 3. Let c and d be constants such that −aγ < c < d < aγ.

Assume that a function u ∈ H1
loc(R) has a transition from c to d on the

interval [x1, x2], namely u satisfies both
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(i) u(x1) = c and u(x2) = d or u(x1) = d and u(x2) = c

and

(ii) u(x) ∈ (c, d) for all x ∈ (x1, x2).

Then it follows that∫ x2

x1

[
θ2

2

∣∣u′∣∣2 +
µ(x)

4

(
u2 − a2

γ

)2]
dx ≥ θK(c, d)(d− c)

√
µ0

2
,

where K(c, d) is defined as

K(c, d) = min
{(

a2
γ − c2

)
,
(
a2
γ − d2

)}
.

Proof. From the fundamental theorem of calculus and Hölder’s in-

equality, we have

d− c = |u(x2) − u(x1)| ≤
(∫ x2

x1

∣∣u′∣∣2 dx

)1/2

|x2 − x1|1/2 .

Thus we can see

θ2

2

∫ x2

x1

∣∣u′∣∣2 dx ≥ θ2

2
· (d− c)2

|x2 − x1|
.

On the other hand, we have∫ x2

x1

µ(x)

4

(
u2 − a2

γ

)2
dx ≥ |x2 − x1|

µ0

4
K(c, d)2.

From the above inequalities, we obtain∫ x2

x1

[
θ2

2

∣∣u′∣∣2 +
µ(x)

4

(
u2 − a2

γ

)2]
dx

≥ 2

√
θ2

2

(d− c)2

|x2 − x1|
|x2 − x1|

µ0

4
K(c, d)2

= θK(c, d)(d− c)

√
µ0

2
.
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Thus we conclude the statement. �

The next lemma gives the representation of the Green function and its

estimate.

Lemma 4. Assume that f ∈ L2(R) ∩ C(R) and f(−x) = −f(x) holds

for all x ∈ R. Let w be a solution to{
−w′′(x) + w(x) = f(x), x ∈ R,

w ∈ H2(R).
(2.2)

Then the following statements hold:

(1) w(−x) = −w(x) holds for all x ∈ R and w is represented as follows:

w(x) =
1

2

∫ ∞

0

(
e−|x−z| − e−|x+z|

)
f(z) dz x ∈ R.(2.3)

(2) The following identity holds:

‖w‖2
H1(R) =

∫ ∞

0

∫ ∞

0

(
e−|y−z| − e−|y+z|

)
f(y)f(z) dydz.(2.4)

Proof. (1) It suffices to show (2.3). By using the Green function

G0(x, z) = e−|x−z|/2, we can write w as follows:

w(x) =

∫
R

G0(x, z)f(z) dz =

∫
R

1

2
e−|x−z|f(z) dz.

Then we calculate as follows:

w(x) =
1

2

∫ ∞

0
e−|x−z|f(z) dz +

1

2

∫ 0

−∞
e−|x−z|f(z) dz

=
1

2

∫ ∞

0
e−|x−z|f(z) dz +

1

2

∫ 0

∞
e−|x+u|f(−u) (−du)

=
1

2

∫ ∞

0

(
e−|x−z| − e−|x+z|

)
f(z) dz.

Hence we conclude (2.3).
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(2) Multiplying (2.2) by w and integrating over R, we obtain

‖w‖2
H1(R) =

∫
R

w(y)f(y) dy.

From (1), the right hand side is written as follows:∫
R

w(y)f(y) dy =

∫
R

∫ ∞

0

1

2

(
e−|y−z| − e−|y+z|

)
f(z)f(y) dzdy

=

∫ ∞

0

∫ ∞

0

1

2

(
e−|y−z| − e−|y+z|

)
f(z)f(y) dzdy

+

∫ 0

−∞

∫ ∞

0

1

2

(
e−|y−z| − e−|y+z|

)
f(z)f(y) dzdy.

By changing variables and using the assumptions on f , the second term of

the above identity is written as∫ 0

−∞

∫ ∞

0

1

2

(
e−|y−z| − e−|y+z|

)
f(z)f(y) dzdy

=

∫ 0

∞

∫ ∞

0

1

2

(
e−|−u−z| − e−|−u+z|

)
f(z)f(−u) dz(−du)

=

∫ ∞

0

∫ ∞

0

1

2

(
e−|u−z| − e−|u+z|

)
f(z)f(u) dzdu.

Thus we conclude (2.4). �

3. Upper Estimate of Energies

In this section, we give the upper estimates of J̄θ(ψ) and J̃θ(ψ) for small

θ > 0. Let U0 be the function defined in (1.15). Moreover, we set functions

u∗, ψ∗ and v∗ as follows:

u∗(x) = aγU0

(
aγ

√
µ0

θ
(x− x0)

)
,(3.1)

ψ∗(x) = u∗(x) − û(x),(3.2)

v∗(x) = v̂(x) + (Lψ∗)(x).(3.3)
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Remark 4. (u∗, v∗) is the unique solution to


−θ2u′′
∗(x) = µ0u∗(x)

(
a2
γ − u∗(x)2

)
, x ∈ R,

−v′′∗(x) + γv∗(x) = u∗(x), x ∈ R,

u∗(x0) = 0,

(u∗(x), v∗(x)) → (±aγ ,±aγ/γ), x → ±∞.

(3.4)

Our goal in this section is to show the following propositions:

Proposition 2. Assume that γ > 1, θ2 = d−1/γ2 > 0, 1/γ = o(θ) as

θ → 0 and µ satisfies (µ1) and (µ2). Then the following inequality holds:

σ(θ, γ) ≤ a3
γ

√
µ0c∗θ + o(θ),

where σ represents σ̄ or σ̃ and c∗ is defined in (1.12).

Proposition 3. Assume that γ > 1, θ2 = d − 1/γ2 > 0, 1/γ = o(θ)

as θ → 0, θ2 � 1/γ � θ and µ satisfies (µ1), (µ2) and (µ2’). Then the

following inequalities hold:

σ̄(θ, γ) ≤ a3
γ

√
µ0c∗θ +

a3
γ
√
µ0

2θγ2
A + O(γ−3/2),

σ̃(θ, γ) ≤ a3
γ

√
µ0c∗θ +

a2
γ

2γ

∫
R

(1 − µ(x)) dx +
a3
γ
√
µ0

2θγ2
A + O(γ−3/2),

where A is defined in (1.13).

Remark 5. The assumption θ2 � 1/γ leads to γ−3/2 � 1/(θγ2).

We treat only J̃θ(ψ) since it suffices to show the estimate of σ̃(θ, γ) for

the proof of Propositions 2 and 3. For simplicity, we write a, Jθ(ψ) and

σ(θ, γ) instead of aγ , J̃θ(ψ) and σ̃(θ, γ), respectively. Propositions 2 and 3

are proved by calculating Jθ(ψ∗). For reader’s convenience, we recall Jθ(ψ∗):

Jθ(ψ∗) =

∫
R

[
θ2

2

∣∣u′
∗
∣∣2 +

µ(x)

4
(u2

∗ − a2)2

+
1

2

(
v′∗ −

u′
∗
γ

)2

+
γ

2

(
v∗ −

u∗
γ

)2

+
1 − µ(x)

2γ
u2
∗

]
dx.
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We now calculate each term of Jθ(ψ∗) in Lemmas 5–9. For simplicity, we

define J
(i)
θ (ψ) (i = 1, 2, 3, 4, 5) as follows:

J
(1)
θ (ψ) =

∫
R

θ2

2

∣∣u′∣∣2 dx,(3.5)

J
(2)
θ (ψ) =

∫
R

µ(x)

4
(u2 − a2)2 dx,(3.6)

J
(3)
θ (ψ) =

∫
R

1

2

(
v′ − u′

γ

)2

dx,(3.7)

J
(4)
θ (ψ) =

∫
R

γ

2

(
v − u

γ

)2

dx,(3.8)

J
(5)
θ (ψ) =

∫
R

1 − µ(x)

2γ
u2 dx,(3.9)

where u, v are defined by u = û+ψ, v = v̂+Lψ. We begin with an estimate

of J
(1)
θ (ψ∗).

Lemma 5. Let u∗ and ψ∗ be functions defined in (3.1) and (3.2), re-

spectively. Then J
(1)
θ (ψ∗) defined in (3.5) is calculated as follows:

J
(1)
θ (ψ∗) =

a3θ
√
µ0

2

∫
R

∣∣U ′
0(x)

∣∣2 dx,

where U0 is defined in (1.15).

Proof. Since we can see that

u′
∗(x) =

a2√µ0

θ
U ′

0

(
a
√
µ0(x− x0)

θ

)
,

we calculate as follows:

J
(1)
θ (ψ∗) =

θ2

2

(
a2√µ0

θ

)2 ∫
R

∣∣∣∣U ′
0

(
a
√
µ0(x− x0)

θ

)∣∣∣∣
2

dx

=
θ2

2

a4µ0

θ2

∫
R

∣∣U ′
0(y)

∣∣2 ( θ

a
√
µ0

dy

)

=
a3θ

√
µ0

2

∫
R

∣∣U ′
0(y)

∣∣2 dy. �



Heteroclinic Solution to FHN RD System with Heterogeneity 155

We next give some estimates of J
(2)
θ (ψ∗).

Lemma 6. Let u∗ and ψ∗ be functions defined in (3.1) and (3.2), re-

spectively. Then the following statements hold:

(1) Let µ be a function satisfying (µ1) and (µ2). Then J
(2)
θ (ψ∗) defined

in (3.6) is calculated as follows:

J
(2)
θ (ψ∗) =

a3√µ0θ

4

∫
R

(
U0(y)

2 − 1
)2

dy + o(θ) as θ → 0,

where U0 is defined in (1.15).

(2) Let µ be a function satisfying (µ1), (µ2) and (µ2’). Then J
(2)
θ (ψ∗) is

calculated as follows:

J
(2)
θ (ψ∗) =

a3√µ0θ

4

∫
R

(
U0(y)

2 − 1
)2

dy + O(θ3) as θ → 0.

Proof. From the definition of J
(2)
θ (ψ∗), we have

J
(2)
θ (ψ∗) =

1

4

∫
R

µ(x)

{
a2U0

(
a
√
µ0(x− x0)

θ

)2

− a2

}2

dx

=
a4

4

∫
R

[
µ

(
x0 +

θy

a
√
µ0

)
(U0(y)

2 − 1)2
](

θ

a
√
µ0

dy

)

=
a3θ

4
√
µ0

∫
R

µ

(
x0 +

θy

a
√
µ0

)
(U0(y)

2 − 1)2 dy.

Since

1√
µ0

µ

(
x0 +

θy

a
√
µ0

)
=

1√
µ0

{
µ(x0) − µ(x0) + µ

(
x0 +

θy

a
√
µ0

)}

=
√
µ0

{
1 − 1

µ0

(
µ

(
x0 +

θy

a
√
µ0

)
− µ(x0)

)}
,

we obtain the following:

J
(2)
θ (ψ∗) =

a3θ
√
µ0

4

[∫
R

(U0(y)
2 − 1)2 dy

+
1

µ0

∫
R

{
µ

(
x0 +

θy

a
√
µ0

)
− µ(x0)

}
(U0(y)

2 − 1)2 dy

]
.(3.10)
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Now we assume that µ satisfies (µ1) and (µ2). Then from the dominated

convergence theorem, the second term of the above equation tends to 0 as

θ → 0. Thus we have

J
(2)
θ (ψ∗) =

a3θ
√
µ0

4

∫
R

(U0(y)
2 − 1)2 dy + o(θ).

Hence we conclude the statement of (1).

Next, we assume that µ satisfies (µ1), (µ2) and (µ2’). Since µ′(x0) = 0,

from Taylor’s theorem, we have

µ

(
x0 +

θy

a
√
µ0

)
− µ(x0) =

1

2
µ′′

(
x0 + κ

θ

a
√
µ0

y

)(
θ

a
√
µ0

y

)2

for any fixed y ∈ R, where κ ∈ (0, 1) is a constant which depends on y ∈ R.

Since |µ′′| < C on R, we deduce that∣∣∣∣µ
(
x0 +

θy

a
√
µ0

)
− µ(x0)

∣∣∣∣ ≤ C

2

θ2y2

a2µ0
.

Thus the second term of (3.10) is estimated as follows:∫
R

{
µ

(
x0 +

θy

a
√
µ0

)
− µ(x0)

}
(U0(y)

2 − 1)2 dy

<
C

2

θ2

a2µ0

∫
R

y2
(
U0(y)

2 − 1
)2

dy

= O(θ2).(3.11)

Combining (3.10) and (3.11), we obtain the statement of (2). �

We treat J
(3)
θ (ψ∗) + J

(4)
θ (ψ∗) in Lemmas 7 and 8.

Lemma 7. Let u∗,ψ∗ and v∗ be functions defined in (3.1), (3.2) and

(3.3), respectively. Then the following identity holds:

J
(3)
θ (ψ∗) + J

(4)
θ (ψ∗) =

a4µ0
√
γ

2θ2γ3
J̃(θ, γ),

where

J̃(θ, γ) =

∫ ∞

0

∫ ∞

0

[(
e
− θ

√
γ

a
√

µ0
|s−t| − e

− θ
√

γ

a
√

µ0
|s+t|

)
B(s)B(t)

]
dsdt(3.12)
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and B(s) is defined in (1.14).

Proof. Set w∗ as follows:

w∗ = v∗ −
u∗
γ

.

It is easy to check that (u∗, v∗) satisfies the following equations:

−u′′
∗(x)

γ
=

µ0

θ2γ
u∗(x)

(
a2 − u∗(x)2

)
,

−v′′∗(x) + γ

(
v∗(x) − u∗(x)

γ

)
= 0.

Thus w∗ satisfies

−w′′
∗(x) + γw∗(x) = − µ0

θ2γ
u∗(x)

(
a2 − u∗(x)2

)
.

Now we set w̃∗ as follows:

w̃∗(y) = w∗

(
x0 +

y√
γ

)
.

Then we can see that∫
R

[
1

2

(
v′∗ −

u′
∗
γ

)2

+
γ

2

(
v∗ −

u∗
γ

)2
]

dx

=
1

2

∫
R

[∣∣w′
∗(x)

∣∣2 + γ |w∗(x)|2
]
dx

=
γ

2

∫
R

[∣∣w̃′
∗(y)

∣∣2 + |w̃∗(y)|2
] 1√

γ
dy

=

√
γ

2
‖w̃∗‖2

H1(R) .(3.13)

Moreover, w̃∗ satisfies

−w̃′′
∗(y) + w̃∗(y) = − µ0

θ2γ2
ũ∗(y)

(
a2 − ũ∗(y)

2
)
,

where ũ∗(y) = u∗(x0 + y/
√
γ). Since ũ∗(−y) = −ũ∗(y) holds for all y ∈ R,

we obtain

‖w̃∗‖2
H1(R) =

∫ ∞

0

∫ ∞

0

(
e−|y−z| − e−|y+z|

)
H(z)H(y)dydz(3.14)
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from (2) of Lemma 4, where

H(y) = − µ0

θ2γ2
ũ∗(y)

(
a2 − ũ∗(y)

2
)
.

Now we rewrite H(y) by using U0(y):

H(y) = − µ0

θ2γ2
ũ∗(y)

(
a2 − ũ∗(y)

2
)

= − µ0

θ2γ2
u∗

(
x0 +

y√
γ

)(
a2 − u∗

(
x0 +

y√
γ

)2
)

= − µ0

θ2γ2
aU0

(
a
√
µ0

θ

y√
γ

)(
a2 − a2U0

(
a
√
µ0

θ

y√
γ

)2
)

= −a3µ0

θ2γ2
B

(
a
√
µ0

θ

y√
γ

)
,

where B(s) is defined in (1.14). Hence by changing variables, we calculate

(3.14) as follows:

‖w̃∗‖2
H1(R) =

a6µ2
0

θ4γ4

∫ ∞

0

∫ ∞

0

(
e
− θ

√
γ

a
√

µ0
|s−t| − e

− θ
√

γ

a
√

µ0
|s+t|

)

×B(s)B(t)

(
θ
√
γ

a
√
µ0

)2

dsdt

=
a4µ0

θ2γ3
J̃(θ, γ),(3.15)

where J̃(θ, γ) is defined in (3.12). Combining (3.13) and (3.15), we conclude

the statement of the lemma. �

Lemma 8. Assume that µ satisfies (µ1) and (µ2). Let u∗ and v∗ be

functions defined in (3.1) and (3.3). Then the following statements hold

true:

(1) If 1/γ = o(θ6/5) as θ → 0, then

J
(3)
θ (ψ∗) + J

(4)
θ (ψ∗) = o(θ).(3.16)

(2) If θ2 � 1/γ � θ as θ → 0, then
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J
(3)
θ (ψ∗) + J

(4)
θ (ψ∗) ≤

a3√µ0

2θγ2
A + O(γ−3/2),(3.17)

where A is defined in (1.13).

(3) Moreover, by combining (1) and (2), it follows that if 1/γ = o(θ), then

(3.16) holds.

Proof. (1) First, we assume that 1/γ = o(θ6/5). From Lemma 7, we

recall that

J
(3)
θ (ψ∗) + J

(4)
θ (ψ∗) =

a4µ0
√
γ

2θ2γ3
J̃(θ, γ).(3.18)

It is easy to check that there exists a constant C0 > 0 such that J̃(θ, γ) < C0.

Moreover, we can see

√
γ

θ2γ3
=

1

θ2
· o(θ5/2·6/5) = o(θ).

Thus we obtain the conclusion of the lemma in the case (1).

(2) Next, we consider the case (2). From the Taylor expansion of e−x,

we can see that

e−x ≤ 1 − x +
x2

2

and

−e−x ≤ −1 + x +
x2

2
.

Thus we obtain that

e
− θ

√
γ

a
√

µ0
|y−z| − e

− θ
√

γ

a
√

µ0
|y+z|

≤ θ
√
γ

a
√
µ0

(|y + z| − |y − z|) +
1

2

(
θ
√
γ

a
√
µ0

)2 (
|y − z|2 + |y + z|2

)

≤ θ
√
γ

a
√
µ0

(|y + z| − |y − z|) +
θ2γ

a2µ0
(y2 + z2).
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Thus we have the following inequality:

J̃(θ, γ) ≤ θ
√
γ

a
√
µ0

∫ ∞

0

∫ ∞

0
(|y + z| − |y − z|)B(y)B(z) dydz

+
θ2γ

a2µ0

∫ ∞

0

∫ ∞

0
(y2 + z2)B(y)B(z) dydz

Combining the above inequality with (3.18), we arrive at

J
(3)
θ (ψ∗) + J

(4)
θ (ψ∗) ≤

a3√µ0

2θγ2
A +

a2

γ3/2

∫ ∞

0

∫ ∞

0
(y2 + z2)B(y)B(z) dydz.

As a consequence, we have proved (2).

(3) Any 1/γ = o(θ) case is contained in either case (1) or case (2).

With attention to 1/(θγ2) = o(θ) and 1/γ3/2 = o(θ), we can see J
(3)
θ (ψ∗) +

J
(4)
θ (ψ∗) = o(θ) even if in case (2). Hence we conclude that (3.16) holds for

any 1/γ = o(θ). �

Finally we calculate J
(5)
θ (ψ∗).

Lemma 9. Assume that µ satisfies (µ1), (µ2) and (µ2’). Let u∗ and

ψ∗ be functions defined in (3.1) and (3.2). Then J
(5)
θ (ψ∗) defined in (3.9)

is calculated as follows:

J
(5)
θ (ψ∗) =

a2

2γ

∫
R

(1 − µ(x)) dx

+
aθ

2γ
√
µ0

{∫
R

(1 − µ0)
(
U0(x)2 − 1

)
dx + o(1)

}
.

Proof. From the definition of J
(5)
θ (ψ∗), we can see that

J
(5)
θ (ψ∗)(3.19)

=
1

2γ

∫
R

(1 − µ(x))(u∗(x)2 − a2) dx +
1

2γ

∫
R

(1 − µ(x))a2 dx

=
1

2γ

∫
R

(1 − µ(x))

{
a2U0

(
a
√
µ0(x− x0)

θ

)
− a2

}
dx

+
a2

2γ

∫
R

(1 − µ(x)) dx
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=
a2

2γ

∫
R

{
1 − µ

(
x0 +

θy

a
√
µ0

)}
(U0(y)

2 − 1)
θ

a
√
µ0

dy

+
a2

2γ

∫
R

(1 − µ(x)) dx

=
aθ

2γ
√
µ0

∫
R

{
1 − µ

(
x0 +

θy

a
√
µ0

)}
(U0(y)

2 − 1) dy

+
a2

2γ

∫
R

(1 − µ(x)) dx.

From the continuity of µ and µ(x0) = µ0, we easily see that∫
R

{
1 − µ

(
x0 +

θy

a
√
µ0

)}
(U0(y)

2 − 1) dy

=

∫
R

(1 − µ0)(U0(y)
2 − 1) dy + o(1).

Thus we conclude the statement. �

With these lemmas, we prove Propositions 2 and 3.

Proof of Proposition 2. With Lemmas 5, 6, 8, 9 and (3.19), we

can estimate Jθ(ψ∗) as follows:

Jθ(ψ∗) ≤a3θ
√
µ0

∫
R

[
|U ′

0(x)|2
2

+
1

4

(
U0(x)2 − 1

)2]
dx

+
a2

2γ

∫
R

(1 − µ(x)) dx

+
aθ

2γ
√
µ0

∫
R

(1 − µ0)
(
U0(x)2 − 1

)2
dx + o(θ).

From Lemma 1 and the assumption on γ and θ, we can see

Jθ(ψ∗) ≤ a3√µ0c∗θ + o(θ).

Thus we have shown the statement. �

Proof of Proposition 3. With Lemmas 5, 6, 8 and 9, we can esti-

mate Jθ(ψ∗) as follows:

Jθ(ψ∗) ≤a3θ
√
µ0

∫
R

[
|U ′

0(x)|2
2

+
1

4

(
U0(x)2 − 1

)2]
dx
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+ O(θ3) +
a3√µ0

2θγ2
A + O(γ−3/2)

+
1

2γ

∫
R

(1 − µ(x)) dx

+
aθ

2γ
√
µ0

{∫
R

(1 − µ(x))
(
U0(x)2 − 1

)2
dx + o(1)

}
.

Since θ3 = o(γ−3/2) and θ/γ = o(γ−3/2), we can see

Jθ(ψ∗) ≤ a3√µ0c∗θ +
1

2γ

∫
R

(1 − µ(x)) dx +
a3√µ0

2θγ2
A + O(γ−3/2).

Thus we complete the proof. �

Proof of Proposition 1. We can readily prove the statement from

Lemma 2 and Proposition 2. �

4. Behavior of the Minimizer

In this section, we will investigate the behavior of the minimizer. As in

the previous section, we treat only J̃θ(ψ). For simplicity, we write a, Jθ(ψ)

and σ(θ, γ) as aγ , J̃θ(ψ) and σ̃(θ, γ), respectively.

4.1. Existence of the minimizer

We show the existence of a minimizer of (1.10). Although the existence

of the minimizer has been already shown in [10], we can show it easier by

using the estimate of σ(θ, γ). First, we give a lemma to show the existence

of a minimizer.

Lemma 10. Fix θ > 0 small enough. Let {ψj}j be a minimizing se-

quence of the minimizing problem (1.10) and uj = û + ψj. Moreover, let

{xj}j be a sequence in R such that uj(xj) = 0. Then there exists a constant

C1 > 0 such that |xj | < C1 for all j ∈ N.

Proof. We prove by contradiction. Namely, we assume that there

exists a subsequence {xjk}k such that |xjk | → ∞ as k → ∞. By taking a

subsequence of {xjk}k if necessary, we may assume that xjk → ∞ as k → ∞.
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For simplicity, we write xjk = xj . Let δ > 0 be a small constant and take j

large enough such that the following inequalities hold:

µ(x) > 1 − δ for all x ≥ xj ,

Jθ(ψj) ≤ a3c∗(
√
µ0 + δ)θ.

The existence of δ is guaranteed by (µ2) and Proposition 2. Now we define

E
(j)
i (ψ) (i = 1, 2) as follows:

E
(j)
1 (ψ) =

∫ xj

−∞

θ2

2

∣∣u′(x)
∣∣2 +

µ(x)

4

(
u2 − a2

)2
dx,

E
(j)
2 (ψ) =

∫ ∞

xj

θ2

2

∣∣u′(x)
∣∣2 +

µ(x)

4

(
u2 − a2

)2
dx,

where u = û + ψ. Then we can see that

E
(j)
1 (ψj) + E

(j)
2 (ψj) < Jθ(ψj) < a3c∗(

√
µ0 + δ)θ.(4.1)

Moreover, if necessary, by taking δ > 0 small enough, we can obtain

inf
{
E

(j)
1 (ψ) : ψ ∈ H1((−∞, xj ]), u(xj) = 0, u = û + ψ

}
≥ inf

{∫ xj

−∞

θ2

2
|u′|2 +

µ0

4
(u2 − a2)2 dx :

u ∈ H1
loc((−∞, xj ]), u(xj) = 0, u(x) → −a (x → −∞)

}
=

1

2
a3√µ0c∗θ,

and

inf
{
E

(j)
2 (ψ) : ψ ∈ H1([xj ,∞)), u(xj) = 0, u = û + ψ

}

≥ inf

{∫ ∞

xj

θ2

2
|u′|2 +

1 − δ

4
(u2 − a2)2 dx :

u ∈ H1
loc([xj ,∞)), u(xj) = 0, u(x) → a (x → ∞)

}
=

1

2
a3
√

1 − δc∗θ.

Here we used the Remark 2.1 and the same scaling argument as in the proof

of Lemma 2. Hence we obtain

1

2
a3c∗θ

(√
µ0 +

√
1 − δ

)
≤ E

(j)
1 (ψj) + E

(j)
2 (ψj).
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However, this contradicts (4.1) for small θ > 0. �

We prove the existence of the minimizer.

Proposition 4. Assume that γ > 1, θ2 = d − 1/γ2 > 0, 1/γ = o(θ)

as θ → 0 and µ satisfies (µ1) and (µ2). Then minimizing problem (1.10)

has a minimizer.

Proof. Let {ψj}j be a minimizing sequence of (1.10) and uj = û+ψj .

From Lemma 10, we may assume that

uj ≥ 0 on (C1,∞) for all j ∈ R,

where C1 is defined in Lemma 10. We may assume that C1 > 1. Thus from

Proposition 2, we can see

‖ψj‖2
L2(C1,∞) =

∫ ∞

C1

(uj − a)2 dx

≤ 1

a2

∫ ∞

C1

(uj + a)2 (uj − a)2 dx,

≤ 4

a2
Jθ(ψj)

≤ 8a
√
µ0c∗θ.

Thus there exists a constant C2 > 0 such that

‖ψj‖L2(C1,∞) < C2.

Similarly we can see

‖ψj‖L2(−∞,−C1) < C2.

On the other hand, for any x ∈ (−C1, C1), we obtain

|uj(x)| = |uj(x) − uj(xj)| ≤
∫ C1

−C1

∣∣u′
j

∣∣ dx
≤
√

2C1

∥∥u′
j

∥∥
L2(R)

≤ 2
√

C1Jθ(ψj)

θ
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by Schwarz’s inequality. It follows that

‖uj‖L∞(−C1,C1) < Ĉ2

for some Ĉ2 > 0. Thus we conclude that there exists a constant C̃2 such

that

‖ψj‖L2(R) < C̃2.

Moreover, since it follows that {‖ψ′
j‖L2(R)}j is uniformly bounded from

Proposition 2, there exists ψ0 ∈ H1(R) such that

ψj → ψ0 weakly in H1(R) and ψj → ψ0 in Cloc(R).

We define u0 = û + ψ0 and v0 = v̂ + Lψ0. Then (u0, v0) satisfies

lim
x→±∞

(u0(x), v0(x)) = (±a,±a/γ)

since ψ0, Lψ0 ∈ H1(R). Now we prove ψ0 is a minimizer of (1.10). First,

from the lower semicontinuity in L2(R), we see that∫
R

∣∣u′
0

∣∣2 dx ≤ lim inf
j→∞

∫
R

∣∣u′
j

∣∣2 dx.

Then, from Fatou’s lemma, we have∫
R

µ(x)

4

(
u2

0 − a2
)2

dx ≤ lim inf
j→∞

∫
R

µ(x)

4

(
u2
j − a2

)2
dx

and

1

2γ

∫
R

(1 − µ(x))u2
0 dx ≤ lim inf

j→∞
1

2γ

∫
R

(1 − µ(x))u2
j dx.

We set vj = v̂ + Lψj and then we can see

vj −
uj

γ
→ v0 −

u0

γ
weakly in H1(R).

Hence it follows that∫
R

(
v′0 −

u′
0

γ

)2

+

(
v0 −

u0

γ

)2

dx

≤ lim inf
j→∞

∫
R

(
v′j −

u′
j

γ

)2

+

(
vj −

uj

γ

)2

dx.
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As a consequence, we obtain that

Jθ(ψ0) ≤ lim inf
j→∞

Jθ(ψj) = σ(θ, γ).

This means ψ0 is a minimizer of (1.10) and (u0, v0) is a heteroclinic solution

to (1.2). �

We next show Theorem 1

4.2. Proof of Theorem 1

We now prove Theorem 1. Here we shall show the generalized statement

as follows:

Theorem 4. Assume that γ > 1, θ2 = d − 1/γ2 > 0, 1/γ = o(θ) and

µ(x) satisfies (µ1) and (µ2). Let ψθ ∈ H1(R) be a minimizer of (1.9) or

(1.10), uθ = û + ψθ and vθ = v̂ + Lψθ. Then for any b ∈ (−aγ , aγ), there

exists the unique point xθ(b) ∈ R such that uθ(xθ(b)) = b by taking θ > 0

small enough if necessary.

Proof. We use the notation a instead of aγ , for simplicity. From

the boundary condition uθ(x) → ±a as x → ±∞, it is clear that for any

b ∈ (−a, a), there exists at least one point xθ = xθ(b) ∈ R such that

uθ(xθ) = b. Moreover, we can see that for any m0 > 0, we may assume that

uθ > b−m0 on (xθ,∞) and uθ < b + m0 on (−∞, xθ)(4.2)

by taking θ small enough if necessary. Indeed, if there exist m1 > 0, {θj}j
and yj > xθj such that θj → 0 (j → ∞) and uθj (yj) < b − m1, then there

exists x′
θj

> yj such that u(x′
θj

) = b. On the other hand, we readily see

Jθj (ψθj ) > E
(j)
3 (ψj) + E

(j)
4 (ψj) + E

(j)
5 (ψj),

where E
(j)
i (ψ) (i = 3, 4, 5, j ∈ N) is defined as follows:

E
(j)
3 (ψθj ) =

∫ xθj

−∞

θ2

2

∣∣∣u′
θj

∣∣∣2 +
µ(x)

4

(
u2
θj
− 1

)2
dx,

E
(j)
4 (ψθj ) =

∫ ∞

x′
θj

θ2

2

∣∣∣u′
θj

∣∣∣2 +
µ(x)

4

(
u2
θj
− 1

)2
dx,

E
(j)
5 (ψθj ) =

∫ x′
θj

xθj

θ2

2

∣∣∣u′
θj

∣∣∣2 +
µ(x)

4

(
u2
θj
− 1

)2
dx.
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Then we can see

E
(j)
3 (ψj) + E

(j)
4 (ψj) ≥ a3√µ0c∗θj .(4.3)

Indeed, set

ūθj (x) =

{
uθj (x), x ≤ xθj ,

uθj (x + x′
θj
− xθj ), x > xθj

and then we have

E
(j)
3 (ψj) + E

(j)
4 (ψj) =

∫
R

θ2
j

2

∣∣∣ū′
θj

∣∣∣2 +
µ0

4
(ū2

θj
− 1)2 dx.

In addition, ūθj ∈ {u ∈ H1
loc(R), limx→±∞ u(x) = ±a} since uθj (xθj ) =

uθj (x
′
θj

). Thus we obtain (4.3) from Lemma 2.

Moreover, from Lemma 3, we deduce that

E
(j)
5 (ψj) ≥ C3θj ,

where C3 = K(b−m1, b)m1

√
µ0/2. Thus we obtain

Jθj (ψθj ) ≥ (a3√µ0c∗ + C3)θj ,

but this contradicts the upper estimate Jθj (ψθj ) < a3√µ0c∗θj +o(θj). Thus

(4.2) should be true.

Now we set

Uθ(y) =
1

a
uθ

(
θy

a
√
µ0

+ xθ

)
,

Ψθ(y) = Uθ(y) −
1

a
û(y),

Vθ(y) =
1

a
v̂(y) + (LΨθ)(y).

We note that since Uθ(0) = b/a for any θ > 0, it follows that

Uθ >
b

a
− δ

a
on (0,∞) and Uθ <

b

a
+

δ

a
on (−∞, 0)(4.4)

for small δ > 0 from (4.2). We shall investigate the asymptotic behavior of

Uθ as θ → 0. We write Jθ(ψθ) with Uθ and Vθ:

Jθ(ψθ) =

∫
R

[
θ2

2

∣∣u′
θ

∣∣2 +
µ(x)

4
(u2

θ − a2)2 +
1

2

(
v′θ −

u′
θ

γ

)2



168 Takashi Kajiwara and Kazuhiro Kurata

+
γ

2

(
vθ −

uθ

γ

)2

+
1 − µ(x)

2γ
u2
θ

]
dx

=

∫
R

[
a4θ2µ0

2θ2

∣∣U ′
θ

∣∣2 +
a4µ

(
(θy/(a

√
µ0)) + xθ

)
4

(U2
θ − 1)2

+
a4

2θ2

(
V ′
θ −

U ′
θ

γ

)2

+
a2γ

2

(
Vθ −

Uθ

γ

)2

+
1 − µ

(
(θy/(a

√
µ0)) + xθ

)
2γ

a2U2
θ

]
θ

a
√
µ0

dy

=a3√µ0θ

∫
R

[
1

2

∣∣U ′
θ

∣∣2 +
µ
(
(θy/(a

√
µ0)) + xθ

)
4µ0

(
U2
θ − 1

)2

+
1

2θµ0

(
V ′
θ −

U ′
θ

γ

)2

+
γ

2a2µ0

(
Vθ −

Uθ

γ

)2

+
1 − µ

(
(θy/(a

√
µ0)) + xθ

)
2a2µ0γ

U2
θ

]
dy

Thus from Proposition 2, we obtain

E∗(Uθ) :=

∫
R

[
1

2

∣∣U ′
θ

∣∣2 +
µ
(
(θy/(a

√
µ0)) + xθ

)
4µ0

(
U2
θ − 1

)2]
dy

≤ c∗ + o(1).(4.5)

Moreover, since E∗(Uθ) ≥ E(Uθ) ≥ c∗ holds, we can see

∫
R

[
1

2θ2

(
V ′
θ −

U ′
θ

γ

)2

+
γ

2

(
Vθ −

Uθ

γ

)2
]
dy ≤ o(1)(4.6)

Combining (4.4) and (4.5), we can show that there exists a constant C4 > 0

such that

‖Ψθ‖H1(R) < C4(4.7)

as in the proof of the boundedness of {ψj}j in Proposition 4. We now prove

that there exists a positive constant C̃4 such that∥∥Ψ′′
θ

∥∥
L2(R)

< C̃4.(4.8)
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From the definition of Uθ and Vθ, the following equation is obtained:

−da3µ0

θ2
U ′′
θ (y) = µ

(
θy

a
√
µ0

+ xθ

)
f(aUθ(y)) − aVθ(y).

With f(a) = a/γ, the right hand side is written as follows:

(r.h.s.) = µ

(
θy

a
√
µ0

+ xθ

)
(f(aUθ(y)) − f(a)) − a

(
Vθ(y) −

Uθ(y)

γ

)

+ a

(
1

γ
− Uθ(y)

γ

)
+

{
µ

(
θy

a
√
µ0

+ xθ

)
− 1

}
a

γ
.

Here we remark that we can prove that Uθ is uniformly bounded in L∞(R)

with (4.5) by almost the same argument in the proof of Lemma 2.6 in [10].

Hence there exists a constant C5 > 0 such that∣∣∣∣µ
(

θy

a
√
µ0

+ xθ

)
(f(aUθ) − f(a))

∣∣∣∣ ≤ C5a |Uθ − 1| .

Moreover, we have∫ ∞

0

a2

γ2

∣∣∣∣µ
(

θy

a
√
µ0

+ xθ

)
− 1

∣∣∣∣
2

dy =
a2

γ2

∫ ∞

xθ

(1 − µ(z))2
(
a
√
µ0

θ
dz

)

≤ a3√µ0

γ2θ
‖1 − µ‖2

L2(R) .

Note that, by the assumption (µ2), we have 1 − µ ∈ L2(R), since 1 − µ ∈
L1(R) and 1 − µ ∈ L∞(R). Thus we obtain

da3µ0

θ2

∥∥U ′′
θ

∥∥
L2(0,∞)

≤ a

(
C5 +

1

γ

)
‖Uθ − 1‖L2(0,∞) + a

∥∥∥∥Vθ −
Uθ

γ

∥∥∥∥
L2(0,∞)

+

(
a3√µ0

γ2θ

)1/2

‖1 − µ‖L2(R) .

From (4.6), (4.7) and d/θ2 = 1 + o(1), we can see∥∥U ′′
θ

∥∥
L2(0,∞)

< C̃5

holds for some constant C̃5 > 0. Similarly we can deduce∥∥U ′′
θ

∥∥
L2(−∞,0)

< C̃5.
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As a consequence, we have shown (4.8). Combining (4.7) and (4.8), we can

see that there exists Ψ∗ ∈ H2(R) such that

Ψθ → Ψ∗ weakly in H2(R) and Ψθ → Ψ∗ in C1
loc(R).

Let U∗ = û/a+ Ψ∗. Then we show the equation which U∗ satisfies. For any

φ ∈ C∞
c (R), we have∫

R

da3µ0

θ2
U ′
θφ

′ dy

=

∫
R

[
µ

(
θy

a
√
µ0

+ xθ

)
(f(aUθ(y)) − f(a)) − a

(
Vθ(y) −

Uθ(y)

γ

)

+a

(
Uθ(y)

γ
− 1

γ

)
+

{
1 − µ

(
θy

a
√
µ0

+ xθ

)}
a

γ

]
φ dy.(4.9)

We note that there exist µ1 ∈ [µ0, 1] and {θj}j such that µ(θjy/(a
√
µ0) +

xθj ) → µ1. By taking θ = θj → 0, we can deduce that∫
R

U ′
∗φ

′ dy =

∫
R

µ1

µ0
f(U∗)φdy.

Hence U∗ is the unique solution to


−U ′′
∗ (x) =

µ1

µ0
f(U∗), x ∈ R,

U∗(x) → ±1 x → ±∞.

This implies that there exist positive constants m∗ and δ∗ such that

U ′
∗(x) > m∗ for all x ∈ [−δ∗, δ∗].

Since U ′
θ → U ′

∗ in Cloc(R), we have

U ′
θ(x) >

m∗
2

for all x ∈ [−δ∗, δ∗].

This is equivalent to

u′
θ(x) >

a2m∗
2θ

for all x ∈
[
xθ −

θδ∗
a

, xθ +
θδ∗
a

]
.

This leads to

uθ

(
xθ +

θδ∗
a

)
> b +

am∗δ∗
2

and uθ

(
xθ −

θδ∗
a

)
< b− am∗δ∗

2

for any small θ > 0. Thus we can prove the uniqueness of xθ from (4.2)

with m0 = am∗δ∗/2. �
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4.3. Proof of Theorem 2

We next give the proof of Theorem 2.

Proof of Theorem 2. We prove by contradiction. Namely, we sup-

pose that there exist δ0 > 0 and {θj}j such that θj → 0 and dist(xθj ,M) ≥
δ0 holds for all j ∈ N. Set µ1 as follows:

µ1 = inf

{
µ(x) : dist(x,M) ≥ δ0

2

}
.

Then, we have µ1 > µ0. Let ρ > 0 be a small constant. We suppose that

uθj has a transition from −a + ρ to a − ρ on the interval Iθj (ρ) ⊂ R. We

remark xθ ∈ Iθj (ρ). We set

E
(j)
6 (ψθj ) =

∫
Iθj (ρ)

[
θ2
j

2

∣∣∣u′
θj

∣∣∣2 + µ(x)W (uθj )

]
dx,

where W (s) = (s2 − a2)2/4. From Proposition 2, it is easy to see that

E
(j)
6 (ψθj ) ≤ Jθj (ψθj ) ≤ a3√µ0c∗θj + o(θj).(4.10)

Now we deduce the lower estimate of E
(j)
6 (ψθj ). First, we estimate µ on

Iθj (ρ). From (4.10), we have

a3√µ0c∗θj + o(θj) ≥ Jθ(ψθj ) ≥
∫
Iθj (ρ)

µ(x)W (uθj ) dx ≥ µ0

4
ρ4

∣∣Iθj (ρ)∣∣ .
Thus we see that

∣∣Iθj (ρ)∣∣ ≤ 4

µ0ρ4

(
a3√µ0c∗θj + o(θj)

)
.

Since xθj ∈ Iθj (ρ) and dist(xθj ,M) > δ0, this means that there exists j0 ∈ N

such that dist(Iθj (ρ),M) > δ0/2 holds for all j ≥ j0. Hence we may assume

µ(x) ≥ µ1 for all x ∈ Iθj (ρ).
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Next, we estimate the integrand of E
(j)
6 (ψθj ). For any x ∈ Iθj (ρ), we

can see the following:

θj
2

2

∣∣∣u′
θj

∣∣∣2 + µ(x)W (uθj (x)) ≥ θj
2

2

∣∣∣u′
θj

∣∣∣2 + µ1W (uθj (x))

≥ 2

√
θj

2

2

∣∣∣u′
θj

∣∣∣2 µ1W (uθj (x))

= θj

∣∣∣u′
θj

∣∣∣√2µ1W (uθj (x))

= θj
√
µ1

d

dx
{h(uθ(x))} ,

where h(s) =
∫ s
0

√
2W (t) dt. As a consequence, we obtain

E
(j)
6 (ψθj ) ≥ θj

√
µ1 {h(a− ρ) − h(−a + ρ)} = θj

√
µ1

∫ a−ρ

−a+ρ

√
2W (s) ds.

With attention to W (aτ) = a4(τ2 − 1)2/4 and c∗ =
∫ 1
−1

√
(1 − τ2)2/2 dτ ,

we deduce

E
(j)
6 (ψθj ) ≥ θj

√
µ1

∫ 1−ρ/a

−1+ρ/a
a2

√
(1 − τ2)2

2
(adτ)

= a3θj
√
µ1

(
c∗ − 2

∫ 1

1−ρ/a

√
(1 − τ2)2

2
dτ

)
.

Hence by taking ρ → 0, we obtain

E
(j)
6 (ψθj ) ≥ a3θj

√
µ1c∗.

However, it clearly contradicts (4.10). Thus we conclude the statement. �

5. Lower Estimate for Energies

In this section, we give a proof for the lower estimates of σ̄(θ, γ) and

σ̃(θ, γ). For simplicity, we write a as aγ . Let ψθ be a minimizer of (1.10),

(uθ, vθ) = (û + ψθ, v̂ +Lψθ) and (Uθ, Vθ) be the function defined as follows:

Uθ(y) =
1

a
uθ

(
xθ +

θy

a
√
µ0

)
,(5.1)
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Vθ(y) =
1

a
vθ

(
xθ +

θy

a
√
µ0

)
,(5.2)

where xθ is defined in Theorem 2. From Theorem 4,

Uθ(x)

{
> 0, x > 0,

< 0, x < 0
(5.3)

holds for small θ > 0. In this section, we always assume that θ > 0 is small

enough so that (5.3) holds.

Our goal in this section is to prove the following statement:

Theorem 5. Assume that γ > 1, θ2 = d− 1/γ2 > 0, 1/γ = o(θ), and

µ(x) satisfies (µ1), (µ2) and (µ2’).

(1) Assume that θ2 � 1/γ � θ. Then the following estimate holds:

σ̃(θ, γ) ≥ a3√µ0c∗θ +
a2

2γ

∫
R

(1 − µ(x)) dx + o

(
1

θγ2

)
,

where c∗ is defined in (1.12).

(2) Assume that θ2 � 1/γ � θ4/3. Then the following estimate holds:

σ̄(θ, γ) ≥ a3√µ0c∗θ +
a3√µ0

2θγ2
A + o

(
1

θγ2

)
,

where A is defined in (1.13).

(3) Assume that θ2 � 1/γ � θ3/2. Then the following estimate holds:

σ̃(θ, γ) ≥ a3√µ0c∗θ +
a2

2γ

∫
R

(1 − µ(x)) dx +
a3√µ0

2θγ2
A + o

(
1

θγ2

)
.

Combining Proposition 3 and Theorem 5, we readily see that Theorem 3

follows. We can prove Theorem 5 by calculating the each term of Jθ(ψθ),

where Jθ represents J̄θ or J̃θ. However, the calculation is rather complicated

and needs some lemmas on the behaviors of Uθ. Therefore we divide this

section into four parts. In Subsection 5.1, we introduce some notations

and prove useful lemmas. In Subsection 5.2, we show key lemmas on the

behavior of Uθ. The lemmas presented in the subsection play important

roles in the proof of the lower estimates. In Subsection 5.3, we present some

auxiliary lemmas to reduce the amount of calculation. In Subsection 5.4,

we prove Theorem 5.
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5.1. Notations and useful lemmas

We introduce following notations:

Bθ(x) = Uθ(x) − Uθ(x)3,(5.4)

Gd(x, y) =
1

2
√

1 − 1/(dγ2)
exp

{
−
√

1 − 1

dγ2
|x− y|

}
,(5.5)

Γ(x, y) =Gd

(
θ
√
γ

a
√
µ0

x,
θ
√
γ

a
√
µ0

y

)
−Gd

(
θ
√
γ

a
√
µ0

x,− θ
√
γ

a
√
µ0

y

)
.(5.6)

Here we remark that Gd(x, y) is the Green function corresponding to
 −w′′(x) +

(
1 − 1

dγ2

)
w(x) = f(x), x ∈ R,

w(x) → 0, x → ±∞.

The Green function Gd(x, y) appears in the calculation of J
(3)
θ (ψθ)+J

(4)
θ (ψθ),

where J
(i)
θ (i = 1, 2, · · · , 5) are defined in (3.5) – (3.9). We may assume that

1

2
√

1 − 1/(dγ2)
< 1(5.7)

holds under the assumption 1/γ = o(θ) since d = θ2 + 1/γ2.

Now we show some useful lemmas. First, we prove a lemma on Uθ(y).

This lemma has been already shown essentially in the proof of Theorem 1.

Lemma 11. Let ψθ be a minimizer of (1.9) or (1.10), uθ = û+ψθ and

Uθ be defined in (5.1). Then Uθ → U0 in C1
loc(R) as θ → 0.

Proof. We recall that, for any φ ∈ C∞
c (R), Uθ satisfies the following

identity.∫
R

da3µ0

θ2
U ′
θφ

′ dy

=

∫
R

[
µ

(
θy

a
√
µ0

+ xθ

)
(f(aUθ(y)) − f(a)) − a

(
Vθ(y) −

Uθ(y)

γ

)

+a

(
Uθ(y)

γ
− 1

γ

)
+

{
1 − µ

(
θy

a
√
µ0

+ xθ

)}
a

γ

]
φ dy.(4.9)
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We note it follows that µ(θy/(a
√
µ0) +xθ) → µ0 as θ → 0 from Theorem 2.

Moreover, we remark that U0 is the unique solution to (2.1). Thus we

can conclude the statement as in the proof of Theorem 1 (see the proof of

Theorem 4). �

Next, we show some lemmas on Bθ(y) and Γ(x, y). We choose δ̄ small

such that (1 − 2δ̄)2 > 2/3. Then there exists a positive constant R such

that

1 − δ̄ < U0(x) < 1 for all x ≥ R.(5.8)

Lemma 12. Let B(y) and Bθ(y) be functions defined in (1.14) and

(5.4). Then the following holds for sufficiently small θ > 0:

B(y) −Bθ(y)

{
> 0, if U0(y) < Uθ(y) and |y| ≥ R,

< 0, if U0(y) > Uθ(y) and |y| ≥ R.
(5.9)

Moreover, there exists a positive constant C such that

|B(y) −Bθ(y)| < C |U0(y) − Uθ(y)| .(5.10)

Proof. From the definition of B(y) and Bθ(y), it is easy to check that

B(y) −Bθ(y) = U0(y) − U0(y)
3 −

(
Uθ(y) − Uθ(y)

3
)

= (U0(y) − Uθ(y))
{
1 −

(
U0(y)

2 + U0(y)Uθ(y) + Uθ(y)
2
)}

.

From the equation, we can derive (5.10) since U0 and Uθ are uniformly

bounded.

Recall that δ̄ is the constant such that (1 − 2δ̄)2 > 2/3 and R is the

constant defined in (5.8). Then we may assume that 1 − δ̄ < Uθ(R) for

sufficiently small θ > 0. Moreover, we can prove that

Uθ(x) > 1 − 2δ̄ for all x > R

similarly as (4.2). Hence we obtain

1 −
(
U0(y)

2 + U0(y)Uθ(y) + Uθ(y)
2
)
< −1 for all y > R.
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Thus we conclude

B(y) −Bθ(y)

{
> 0, U0(y) < Uθ(y) and y ≥ R,

< 0, U0(y) > Uθ(y) and y ≥ R.

For y < −R, we can prove similarly. �

Lemma 13. Let Γ(x, y) be a function defined in (5.6). Then the fol-

lowing inequalities hold for small θ > 0:

Γ(x, y)

{
> 0, x > 0, y > 0,

< 0, x > 0, y < 0,
(5.11)

∫
R

|Γ(x, y)B(x)| dx ≤ 4θ
√
γ

a
√
µ0

∫
R

|x|B(x) dx for all y ∈ R,(5.12)

where B(x) is defined in (1.14).

Proof. It is obvious that (5.11) holds.

We note that for any c, d > 0,∣∣∣e−c − e−d
∣∣∣ ≤ |d− c| + 1

2
|d− c|2

holds. Noting (5.7), we have

|Γ(x, y)| ≤
∣∣∣∣Gd

(
θ
√
γ

a
√
µ0

x,
θ
√
γ

a
√
µ0

y

)
−Gd

(
θ
√
γ

a
√
µ0

x,− θ
√
γ

a
√
µ0

y

)∣∣∣∣
≤ θ

√
γ

a
√
µ0

∣∣ |x− y| − |x + y|
∣∣ +

1

2

θ2γ

a2µ0
(|x− y| − |x + y|)2

≤ 2θ
√
γ

a
√
µ0

|x| + 2θ2γ

a2µ0
|x|2 .

Thus we see that∫
R

|Γ(x, y)B(x)| dx ≤ 2θ
√
γ

a
√
µ0

∫
R

|xB(x)| dx +
2θ2γ

a2µ0

∫
R

∣∣x2B(x)
∣∣ dx

≤ 4θ
√
γ

a
√
µ0

∫
R

|x|B(x) dx

for sufficiently small θ. Thus we conclude the statement. �
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5.2. Key lemmas on the behavior of Uθ

In this subsection, we prove some lemmas, which reveal the dependency

of Uθ on θ and γ.

The next lemma gives the uniform estimate of Vθ − Uθ/γ. Moreover,

this lemma is used in the proof of Lemma 15.

Lemma 14. Assume θ2 � 1/γ � θ. Let ψθ be a minimizer of (1.9) or

(1.10), uθ = û + ψθ and (Uθ, Vθ) be defined in (5.1) and (5.2). Then there

exists a positive constant C such that∥∥∥∥Vθ −
Uθ

γ

∥∥∥∥
L∞(R)

≤ C

γ3/4

Proof. Let J
(i)
θ (ψ) (i = 1, 2, . . . , 5) be functionals defined in (3.5) –

(3.9). Then we can see that

J
(1)
θ (ψθ) + J

(2)
θ (ψθ) ≥ a3√µ0c∗θ.

Hence we obtain

J
(i)
θ (ψθ) ≤

a

2γ

∫
R

(1 − µ(x)) dx +
a3√µ0

2θγ2
A + o

(
1

θγ2

)
(i = 3, 4)

from Proposition 3 and the positivity of J
(i)
θ (ψ) (i = 3, 4, 5).

Now we shall rewrite J (i)(ψθ) (i = 3, 4) with Uθ and Vθ:

J
(3)
θ (ψθ) =

1

2

∫
R

(
v′θ(x) − u′

θ(x)

γ

)2

dx,

=
a2µ0

2θ2

∫
R

{
aV ′

θ

(
a
√
µ0(x− xθ)

θ

)
− 1

γ
aU ′

θ

(
a
√
µ0(x− xθ)

θ

)}2

dx

=
a3√µ0

2θ

∫
R

(
V ′
θ(y) −

U ′
θ(y)

γ

)2

dy,

J
(4)
θ (ψθ) =

γ

2

∫
R

(
vθ(x) − uθ(x)

γ

)2

dx,

=
γ

2

∫
R

{
aVθ

(
a
√
µ0(x− xθ)

θ

)
− 1

γ
aUθ

(
a
√
µ0(x− xθ)

θ

)}2

dx

=
aγθ

2
√
µ0

∫
R

(
Vθ(y) −

Uθ(y)

γ

)2

dy,
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As a consequence, we obtain the following inequalities:∫
R

(
V ′
θ(y) −

U ′
θ(y)

γ

)2

dy ≤ 2θ

a3√µ0
· a

2γ
M1 ≤ M2

θ

γ
,

∫
R

(
Vθ(y) −

Uθ(y)

γ

)2

dy ≤ 2
√
µ0

aγθ
· a

2γ
M1 ≤ M3

θγ2
,

where Mi (i = 1, 2, 3) are positive constants. Therefore, we have∥∥∥∥Vθ −
Uθ

γ

∥∥∥∥
L∞(R)

≤
∥∥∥∥V ′

θ −
U ′
θ

γ

∥∥∥∥
1/2

L2(R)

·
∥∥∥∥Vθ −

Uθ

γ

∥∥∥∥
1/2

L2(R)

≤ M
1/4
2 ·M1/4

3 · θ
1/4

γ1/4
· 1

γ1/2
· 1

θ1/4
≤ C

γ3/4
.

Here we used the interpolation inequality

‖u‖L∞(R) ≤
∥∥u′∥∥1/2

L2(R)
‖u‖1/2

L2(R)
for any u ∈ H1(R).

Thus we conclude the statement. �

The next lemma shows the behavior of Uθ(y) as y → ±∞. This lemma

is used in the proof of Lemma 17.

Lemma 15. Assume θ2 � 1/γ � θ. Let ψθ be a minimizer of (1.9)

or (1.10), uθ = û + ψθ and Uθ be defined in (5.1). There exists positive

constants C and δ1 such that

|Uθ(y) − 1| ≤ C

γ3/4
+ Ce−δ1y for all y ≥ 0,(5.13)

|Uθ(y) + 1| ≤ C

γ3/4
+ Ceδ1y for all y ≤ 0.(5.14)

Proof. It suffices to show (5.13). Fix y ≥ 0. We then derive the

equation Uθ should satisfy.

−U ′′
θ (y) = − θ2

a3µ0
u′′
θ

(
xθ +

θy

a
√
µ0

)

=
θ2

a3µ0d

[
µ

(
xθ +

θy

a
√
µ0

)
f

(
uθ

(
xθ +

θy

a
√
µ0

))

−vθ

(
xθ +

θy

a
√
µ0

)]
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=
θ2

a3µ0d

[
µ

(
xθ +

θy

a
√
µ0

)
f (aUθ(y)) − aVθ(y)

]

=
θ2

a3µ0d

[
µ

(
xθ +

θy

a
√
µ0

)(
aUθ(y) − (aUθ(y))

3
)

−a

(
Vθ(y) −

Uθ(y)

γ

)
− a

γ
Uθ(y)

]
.

We rewrite the right hand side with the relation a− a3 = a/γ:

(r.h.s.) =
θ2

a3µ0d

[
µ

(
xθ +

θy

a
√
µ0

)(
a3Uθ − a3U3

θ

)
− a

(
Vθ −

Uθ

γ

)

−
(

1 − µ

(
xθ +

θy

a
√
µ0

))
a

γ
Uθ

]
.

Hence we obtain the following equation:

−dµ0

θ2
U ′′
θ = µ

(
xθ +

θy

a
√
µ0

)(
Uθ − U3

θ

)
− 1

a2

(
Vθ −

Uθ

γ

)

− 1

a2γ

(
1 − µ

(
xθ +

θy

a
√
µ0

))
Uθ.

We set ξθ(y) = 1 − Uθ(y). From (4.2), for 0 < δ2 < 1, there exists R0 > 0

independent of θ > 0 such that

Uθ(y) ≥ δ2 for all y ≥ R0.

We define cθ(y) and gθ(y) as follows:

cθ(y) = µ

(
xθ +

θy

a
√
µ

)
Uθ(y)(1 + Uθ(y)),

gθ(y) = − 1

a2

(
Vθ(y) −

Uθ(y)

γ

)
− 1

γa2

(
1 − µ

(
xθ +

θy

a
√
µ0

))
Uθ(y).

Then we can see

cθ(y) ≥ µ0δ2 for all y ≥ R0.(5.15)

Moreover we can see

‖gθ‖L∞(R) ≤
C

γ3/4
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from Lemma 14 and the boundedness of Uθ. The function ξθ satisfies

−dµ0

θ2
ξ′′θ (y) = cθ(y)ξθ(y) + gθ(y).

We recall that from Kato’s inequality [1], for all u ∈ H1
loc(R),

(|u|)′′ ≥ u′′ sgn(u)

holds in H1 sense. Hence we have

dµ0

θ2
(|ξθ|)′′ ≥

dµ0

θ2
ξ′′θ (y) sgn(ξθ(y))

= cθ |ξθ(y)| + gθ(y) sgn(ξθ(y))

≥ cθ |ξθ(y)| −
C

γ3/4
.

Noting (5.15) and d/θ2 = 1 + o(1), we obtain


−(|ξθ(y)|)′′ +
δ2

2
|ξθ(y)| ≤

2C

γ3/4
, y ≥ R0,

|ξθ(R0)| ≤ 1,

|ξθ(y)| → 0, y → ∞.

On the other hand, we note that for any constant C ′ > 0,

u(y) =
4C

δ2γ3/4
+ C ′e−y

√
δ2/2

satisfies

−u′′(y) +
δ2

2
u(y) =

2C

γ3/4
.

Take C ′ > 0 large enough so that C ′e−
√

δ2/2R0 ≥ 1. Then we have u(R0) ≥
1. Put v(y) = |ξ(y)| − u(y). Then v(y) satisfies

−v′′(y) +
δ2

2
v(y) ≤ 0, for all y > R0

in H1 sense and v(R0) ≤ 0, v(y) → −4C/(δ2γ
3/4) < 0 (y → ∞). Hence, by

using the weak maximum principle, we have

|ξθ(y)| ≤ u(y) =
4C

δ2γ3/4
+ C ′e−y

√
δ2/2 for all y > R0.



Heteroclinic Solution to FHN RD System with Heterogeneity 181

Moreover, since ξθ(y) = 1 − Uθ(y) is uniformly bounded in [0, R0], there

exists a constant C ′′ > 0 such that

|ξθ(y)| ≤
C ′′

γ3/4
+ C ′′e−y

√
δ2/2 for all y > 0.

Thus we conclude the statement. �

Since Uθ → U0 in C1
loc(R) as θ → 0, we can see qualitatively that the

measures of {Uθ(y) ≥ 1} and {Uθ(y) ≤ −1} tend to zero as θ → 0. The

next lemma gives a quantitative estimate for the measures of {Uθ(y) ≥ 1}
and {Uθ(y) ≤ −1}. Moreover, this lemma is used in the proof of Lemma 18.

Lemma 16.

(1) Assume θ2 � 1/γ � θ. Let ψθ be a minimizer of (1.9), uθ = û + ψθ

and Uθ be defined in (5.1). Then there exists a positive constant C

such that ∫ ∞

0
(1 − Uθ(y))

2 χθ(y) dy ≤ C

θ2γ2
,(5.16) ∫ 0

−∞
(1 + Uθ(y))

2 χθ(y) dy ≤ C

θ2γ2
,(5.17)

where χθ(y) = χ{Uθ(y)≥1}(y) and χθ(y) = χ{Uθ(y)≤−1}(y).

(2) Assume θ2 � 1/γ � θ. Let ψθ be a minimizer of (1.10), uθ = û + ψθ

and Uθ be defined in (5.1). Then there exists a positive constant C

such that ∫ ∞

0
(1 − Uθ(y))

2 χθ(y) dy ≤ C

θγ
,(5.18) ∫ 0

−∞
(1 + Uθ(y))

2 χθ(y) dy ≤ C

θγ
.(5.19)

Proof. (1) It suffices to show (5.16). Since J̄θ(ψθ) = σ̄(θ, γ), we see

that

a3θ
√
µ0

(∫
R

[
1

2

∣∣U ′
θ(y)

∣∣2 +
µ(xθ + θy/(a

√
µ0))

4µ0

(
Uθ(y)

2 − 1
)2]

dy

)
≤ σ̄(θ, γ)
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holds. Combing the above inequality with Proposition 2, we obtain∫
R

[
1

2

∣∣U ′
θ(y)

∣∣2 +
1

4

(
Uθ(y)

2 − 1
)2]

dy ≤ c∗ +
C

θ2γ2
.(5.20)

We set Ūθ(y) as follows:

Ūθ(y) =




Uθ(y), Uθ(x) ∈ (−1, 1),

1, Uθ(x) ≥ 1,

−1, Uθ(x) ≤ −1.

Then we have ∫
R

∣∣Ū ′
θ(y)

∣∣2 dy ≤
∫
R

∣∣U ′
θ(y)

∣∣2 dy(5.21)

and ∫
R

(Uθ(y) − 1)2 dy

=

∫
R

(
Ūθ(y) − 1

)2
dy +

∫
{Uθ(y)≥1}

(Uθ(y) − 1)2 dy

+

∫
{Uθ(y)≤−1}

(Uθ(y) − 1)2 dy.(5.22)

Moreover, it is easy to check that∫
R

[
1

2

∣∣Ū ′
θ(y)

∣∣2 +
1

4

(
Ūθ(y)

2 − 1
)2]

dy ≥ c∗(5.23)

from Lemma 1. Thus combining (5.20) – (5.23), we can see

1

4

∫
{Uθ(y)≥1}

(Uθ(y) − 1)2 dy +
1

4

∫
{Uθ(y)≤−1}

(Uθ(y) − 1)2 dy ≤ C

θ2γ2

Remarking (5.3), we find

1

4

∫
{Uθ(y)≥1}

(
Uθ(y)

2 − 1
)2

dy ≥
∫ ∞

0
(Uθ(y) − 1)2 χθ(y) dy,

1

4

∫
{Uθ(y)≤−1}

(
Uθ(y)

2 − 1
)2

dy ≥
∫ 0

−∞
(Uθ(y) + 1)2 χθ(y) dy.
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Hence we conclude the statement.

(2) We note that

∫
R

[
1

2

∣∣U ′
θ(y)

∣∣2 +
1

4

(
Uθ(y)

2 − 1
)2]

dy ≤ c∗ +
C

θγ

follows from Proposition 2. By repeating the same argument, we can prove

the statement. �

5.3. Auxiliary lemmas

In this subsection, we give some lemmas to reduce the amount of calcu-

lation for the proof of Theorem 5. The next lemma is used in the proof of

in Lemma 22.

Lemma 17. Assume θ2 � 1/γ � θ. Let ψθ be a minimizer of (1.9) or

(1.10), uθ = û+ψθ and Uθ be defined in (5.1). Then the following estimate

holds:

aθ

2γ
√
µ0

∫
R

{
1 − µ

(
xθ +

θy

a
√
µ0

)}
(Uθ(y)

2 − 1) dy = o

(
1

θγ2

)
.

Proof. From (5.13), we see

∫ ∞

0

{
1 − µ

(
xθ +

θy

a
√
µ0

)}
|Uθ(y) − 1| dy

≤
∫ ∞

0

{
1 − µ

(
xθ +

θy

a
√
µ0

)}
C

γ3/4
dy

+

∫ ∞

0

{
1 − µ

(
xθ +

θy

a
√
µ0

)}
Ce−δ1y dy

≤ C

γ3/4θ
+

C

δ1
.

Similarly we can check that

∫ 0

−∞

{
1 − µ

(
xθ +

θy

a
√
µ0

)}
|Uθ(y) + 1| dy ≤ C

γ3/4θ
+

C

δ1
.
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Thus we estimate the left hand side as follows:

aθ

2γ
√
µ0

∫
R

{
1 − µ

(
xθ +

θy

a
√
µ0

)}
(Uθ(y)

2 − 1) dy

≤ aθ

2γ
√
µ0

(
C

γ3/4θ
+

C

δ1

)

=
C

γ7/4
+

Cθ

δ1γ
.

We can easily to check θ/γ = o(1/(θγ2)) and 1/γ7/4 = o(1/(θγ2)). �

The next lemma is used in the proof of in Lemma 20.

Lemma 18.

(1) Assume θ2 � 1/γ � θ4/3. Let ψθ be a minimizer of (1.9), uθ = û+ψθ

and Uθ be defined in (5.1). Then the following estimates hold:∫ ∞

R

∫ ∞

0
Γ(x, y)B(x) |1 − Uθ(y)|χθ(y) dxdy = o(θ

√
γ),(5.24) ∫ −R

−∞

∫ ∞

0
Γ(x, y)B(x) |1 + Uθ(y)|χθ(y) dxdy = o(θ

√
γ),(5.25)

where χθ and χθ are defined in Lemma 16 and R is the constant defined

in (5.8).

(2) Assume θ2 � 1/γ � θ3/2. Let ψθ be a minimizer of (1.10), uθ =

û + ψθ and Uθ be defined in (5.1). Then (5.24) and (5.25) hold:

Proof. We prove only (5.24) since we can prove (5.25) by the almost

same argument.

We note that for 0 < s < t, the following inequality holds:

0 < e−s − e−t ≤ e−s(t− s).

Thus for x > 0 and y > 0, we can calculate as follows:

0 < Γ(x, y)

≤ exp

{
−
√

1 − 1

dγ2
· θ

√
γ

a
√
µ0

|x− y|
}

− exp

{
−
√

1 − 1

dγ2
· θ

√
γ

a
√
µ0

|x + y|
}
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≤ θ
√
γ

a
√
µ0

∣∣ |x + y| − |x− y|
∣∣ exp

{
−
√

1 − 1

dγ2
· θ

√
γ

a
√
µ0

|x− y|
}

≤ Cθ
√
γ |x| exp

{
−
√

1 − 1

dγ2
· θ

√
γ

a
√
µ0

|x− y|
}

.

We note that we have used (5.7) for the above calculation. Now we set

K(x, y) = exp

{
−
√

1 − 1

dγ2
· θ

√
γ

a
√
µ0

|x− y|
}

χ[0,∞)(x)χ[R,∞)(y).

Then by (5.7) we can easily check that∫
R

K(x, y) dx ≤ a
√
µ0

θ
√
γ

· 1√
1 − 1/(dγ2)

∫
R

e−|z| dz ≤ C

θ
√
γ
.

We can also check that ∫
R

K(x, y) dy ≤ C

θ
√
γ
.

From the Schur lemma [9], we can see∫
R

∫
R

K(x, y) |x|B(x) |1 − Uθ(y)|χθ(y) dxdy

≤ C

θ
√
γ

∥∥ |x|B(x)
∥∥
L2(R)

·
∥∥∥|1 − Uθ(y)|χθ(y)

∥∥∥
L2([0,∞))

.

From (5.16), we have∫
R

∫
R

K(x, y) |x|B(x) |1 − Uθ(y)|χθ(y) dxdy ≤ C

θ
√
γ
· 1

θγ
=

C

θ2γ3/2
.

Note that 1/(θ2γ3/2) = o(1) by the assumption 1/γ = o(θ4/3). Thus we

obtain ∫ ∞

R

∫ ∞

0
Γ(x, y)B(x) |1 − Uθ(y)|χθ(y) dxdy

≤Cθ
√
γ

∫
R

∫
R

K(x, y) |x|B(x) |1 − Uθ(y)|χθ(y) dxdy

≤Cθ
√
γ · 1

θ2γ3/2
= o (θ

√
γ) .
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Thus we have proved (5.24).

(2) We note that ∥∥∥(Uθ − 1)χθ
∥∥∥
L2([0,∞))

<
C

θ1/2γ1/2

follows from (5.18). Then we can check that∫
R

∫
R

K(x, y) |x|B(x) |1 − Uθ(y)|χθ(y) dxdy ≤ C

θ
√
γ
· 1

θ1/2γ1/2
=

C

θ3/2γ

by repeating the same argument. Thus we obtain (5.24). �

Lemmas 19 and 20 are used in Lemma 24

Lemma 19. Assume θ2 � 1/γ � θ. Let ψθ be a minimizer of (1.9) or

(1.10), uθ = û + ψθ and Uθ be defined in (5.1). Moreover, let P1 be

P1 = −a4√γθ2

d2γ3

∫ R

−R

∫ ∞

0
Γ(x, y)B(x)µ

(
xθ +

θy

a
√
µ0

)
(B(y) −Bθ(y)) dxdy,

where R > 0 is the constant defined in (5.8). Then P1 = o(1/(θγ2)) holds.

Proof. From (5.12), we can see

|P1| ≤
a4√γθ2

d2γ3
· 4θ

√
γ

a
√
µ0

∫ ∞

0
|x|B(x) dx ·

∫ R

−R
(B(y) −Bθ(y)) dy.

We easily see ∫ R

−R
(B(y) −Bθ(y)) dy = o(1)

from C1
loc convergence and (5.10). Thus we conclude |P1| = o(1/(θγ2)). �

Lemma 20. Define P2 and P3 as follows:

P2 = − a4√γθ2

d2γ3

∫ ∞

R

∫ ∞

0
Γ(x, y)B(x)µ

(
xθ +

θy

a
√
µ0

)
× (B(y) −Bθ(y)) dxdy,

P3 = − a4√γθ2

d2γ3

∫ −R

−∞

∫ ∞

0
Γ(x, y)B(x)µ

(
xθ +

θy

a
√
µ0

)
× (B(y) −Bθ(y)) dxdy,

where R > 0 is the constant defined in (5.8).
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(1) Assume θ2 � 1/γ � θ4/3. Let ψθ be a minimizer of (1.9), uθ = û+ψθ

and Uθ be defined in (5.1). Then P2 = o(1/(θγ2)) and P3 = o(1/(θγ2))

hold.

(2) Assume θ2 � 1/γ � θ3/2. Let ψθ be a minimizer of (1.10), uθ =

û + ψθ and Uθ be defined in (5.1). Then P2 = o(1/(θγ2)) and P3 =

o(1/(θγ2)) hold.

Proof. (1) We shall prove only P2 = o(1/(θγ2)).

We note that from the definition of B(x), (5.9) and (5.11),

B(x) > 0, x > 0,

B(y) −Bθ(y) =

{
> 0, U0(y) < Uθ(y) and |y| ≥ R,

< 0, U0(y) > Uθ(y) and |y| ≥ R,

and

Γ(x, y) > 0, x > 0, y > 0.

hold. This implies that we may assume

Uθ(y) > U0(y)(5.26)

for the lower estimate of P2. Now we set P4 and P5 as follows:

P4 =
a4√γθ2

d2γ3

∫ ∞

R

∫ ∞

0
Γ(x, y)B(x)µ

(
xθ +

θy

a
√
µ0

)
× (B(y) −Bθ(y))χ{0≤Uθ(y)≤1}(y) dxdy,

P5 =
a4√γθ2

d2γ3

∫ ∞

R

∫ ∞

0
Γ(x, y)B(x)µ

(
xθ +

θy

a
√
µ0

)
× (B(y) −Bθ(y))χ

θ(y) dxdy.

We shall estimates P4 and P5. From (5.10) and (5.12), we estimate P4 as

follows:

P4 ≤ a4√γθ2

d2γ3
· 4θ

√
γ

a
√
µ0

∫ ∞

0
|x|B(x)dx

·
∫ ∞

R
C |U0(y) − Uθ(y)|χ{0≤Uθ(y)≤1}(y) dy.
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Moreover, we can see that if 0 ≤ Uθ(y) ≤ 1, then

|U0(y) − Uθ(y)| = 1 − U0(y) − (1 − Uθ(y)) ≤ 2(1 − U0(y))

holds from (5.26). Hence we have∫ ∞

R
|U0(y) − Uθ(y)|χ{0≤Uθ(y)≤1}(y) dy = o(1)

by the dominated convergence theorem. It follows that

P4 = o

(
1

θγ2

)
.

We next calculate P5 as follows:

P5 ≤a4√γθ2

d2γ3

∫ ∞

R

∫ ∞

0
Γ(x, y)B(x) (B(y) −Bθ(y))χ

θ(y) dxdy

≤a4√γθ2

d2γ3

∫ ∞

R

∫ ∞

0
Γ(x, y)B(x)C |U0(y) − Uθ(y)|χθ(y) dxdy

≤C
a4√γθ2

d2γ3

∫ ∞

R

∫ ∞

0
Γ(x, y)B(x) |1 − Uθ(y)|χθ(y) dxdy

+ C
a4√γθ2

d2γ3

∫ ∞

R

∫ ∞

0
Γ(x, y)B(x) |1 − U0(y)|χθ(y) dxdy.

We note we used the relations (5.10) and |U0(y) − Uθ(y)| ≤ |1 − Uθ(y)| +
|1 − U0(y)| for the above calculation. For the first term, we can see

a4√γθ2

d2γ3

∫ ∞

R

∫ ∞

0
Γ(x, y)B(x) |1 − Uθ(y)|χθ(y) dxdy =

a4√γθ2

d2γ3
· o(θ√γ)

= o

(
1

θγ2

)

from (1) of Lemma 18. For the second term, we can readily see that∫ ∞

R

∫ ∞

0
Γ(x, y)B(x) |1 − U0(y)|χθ(y) dxdy

< C
4θ
√
γ

a
√
µ0

∫ ∞

0
|x|B(x) dx ·

∫ ∞

R
(1 − U0(y))χ

θ(y) dy

= O(θ
√
γ) · o(1) = o(θ

√
γ)



Heteroclinic Solution to FHN RD System with Heterogeneity 189

from (5.12) and the dominated convergence theorem. Thus we obtain P5 =

o(1/(θγ2)). Since P2 = −P4−P5 holds from (5.3), we conclude the statement

of (1). By repeating the same argument with (2) of Lemma 18, we can prove

(2). �

5.4. Proof of Theorem 5

In this section, we derive the lower estimate. To show this, we calcu-

late each term of Jθ(ψθ), where ψθ is a minimizer of (1.10). For reader’s

convenience, we recall J
(i)
θ (ψ) (i = 1, 2, . . . , 5):

J
(1)
θ (ψ) =

∫
R

θ2

2

∣∣u′∣∣2 dx,(3.5)

J
(2)
θ (ψ) =

∫
R

µ(x)

4
(u2 − a2)2 dx,(3.6)

J
(3)
θ (ψ) =

∫
R

1

2

(
v′ − u′

γ

)2

dx,(3.7)

J
(4)
θ (ψ) =

∫
R

γ

2

(
v − u

γ

)2

dx,(3.8)

J
(5)
θ (ψ) =

∫
R

1 − µ(x)

2γ
u2 dx.(3.9)

We begin with J
(1)
θ (ψθ) + J

(2)
θ (ψθ). This lemma can be proved as in

Lemma 2.

Lemma 21. Assume θ2 � 1/γ � θ. Let ψθ be a minimizer of (1.9) or

(1.10). Then the following inequality holds:

J
(1)
θ (ψθ) + J

(2)
θ (ψθ) ≥ a3√µ0c∗θ.

Next, we estimate J (5)(ψθ).

Lemma 22. Assume θ2 � 1/γ � θ. Let ψθ be a minimizer of (1.10).

Then the following estimate holds:

J
(5)
θ (ψθ) =

a2

2γ

∫
R

(1 − µ(x)) dx + o

(
1

θγ2

)
.
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Proof. We transform J
(5)
θ (ψθ) as follows:

J
(5)
θ (ψθ) =

a2

2γ

∫
R

(1 − µ(x)) dx− 1

2γ

∫
R

(1 − µ(x))
(
a2 − uθ(x)2

)
dx.

By changing variables, we have∣∣∣∣ 1

2γ

∫
R

(1 − µ(x))
(
a2 − uθ(x)2

)
dx

∣∣∣∣
=

∣∣∣∣ a2

2γ
· θ

a
√
µ0

∫
R

(
1 − µ

(
xθ +

θy

a
√
µ0

))(
1 − Uθ(y)

2
)
dx

∣∣∣∣ .
Then from Lemma 17, we obtain∣∣∣∣ 1

2γ

∫
R

(1 − µ(x))
(
a2 − uθ(x)2

)
dx

∣∣∣∣ = o

(
1

θγ2

)

Thus we complete the proof. �

Finally, we estimate J
(3)
θ (ψθ) + J

(4)
θ (ψθ) in the Lemmas 23 – 25.

Lemma 23. Assume θ2 � 1/γ � θ. Let ψθ be a minimizer of (1.9)

or (1.10), uθ = û + ψθ and Uθ be defined in (5.1). Moreover, define H̄(y),

H̃(y) as follows:

H̄(y) = − a3µ0

dγ2
B

(
a
√
µ0y

θ
√
γ

)
,(5.27)

H̃(y) =
a3

dγ2

[
µ0B

(
a
√
µ0y

θ
√
γ

)
− µ

(
xθ +

y√
γ

)
Bθ

(
a
√
µ0y

θ
√
γ

)]

+
a

dγ3
Uθ

(
a
√
µ0y

θ
√
γ

)(
1 − µ

(
xθ +

y√
γ

))
,(5.28)

where B(x) and Bθ(x) are defined in (1.14) and (5.4). Then the following

estimate holds:

J
(3)
θ (ψθ) + J

(4)
θ (ψθ)

≥
√
γ

2

∫∫
R2

Gd(x, y)H̄(x)H̄(y) dxdy +
√
γ

∫∫
R2

Gd(x, y)H̄(x)H̃(y) dxdy.
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Proof. Let w̃θ(x) be function defined as follows:

w̃θ(x) = vθ

(
xθ +

x√
γ

)
−

uθ

(
xθ + x√

γ

)
γ

.

Then we can show that w̃θ satisfies

J
(3)
θ (ψθ) + J

(4)
θ (ψθ) =

√
γ

2
‖w̃θ‖2

H1(R)(5.29)

similarly as in Lemma 7.

Now we shall derive the equation for w̃θ. For simplicity, we write ũθ, ṽθ
as follows:

ũθ(x) = uθ

(
xθ +

x√
γ

)
, ṽθ(x) = vθ

(
xθ +

x√
γ

)
.

Since (uθ, vθ) satisfies

− u′′
θ(x)

γ2
=

µ(x)

dγ2

(
uθ(x) − uθ(x)3

)
− vθ(x)

dγ2
,

− v′′θ (x) + γ

(
vθ(x) − uθ(x)

γ

)
= 0,

(ũθ, ṽθ) satisfies

− ũ′′
θ(x)

γ
=

µ
(
xθ + x/

√
γ
)

dγ2

(
ũθ(x) − ũθ(x)3

)
− ṽθ(x)

dγ2
,

− ṽ′′θ (x) +

(
ṽθ(x) − ũθ(x)

γ

)
= 0.

Hence w̃θ satisfies

−w̃′′
θ (x) +

(
1 − 1

dγ2

)
w̃θ(x) = −µ(xθ + x/

√
γ)

dγ2

(
ũθ(x) − ũθ(x)3

)
+

ũθ(x)

dγ3
.

With the relation 1 − a2 = 1/γ, we rewrite the right hand side as

(r.h.s.) = −µ(xθ + x/
√
γ)

dγ2

(
a2ũθ(x) − ũθ(x)3 + (1 − a2)ũθ

)
+

ũθ(x)

dγ3

= −µ(xθ + x/
√
γ)

dγ2

(
a2ũθ(x) − ũθ(x)3

)
+

ũθ(x)

dγ3

(
1 − µ

(
xθ +

x√
γ

))
.
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We note that we can see

a2ũθ(x) − ũθ(x)3 = a3

(
Uθ

(
a
√
µ0x

θ
√
γ

)
− Uθ

(
a
√
µ0x

θ
√
γ

)3
)

= a3Bθ

(
a
√
µ0x

θ
√
γ

)

from the relation ũθ(x) = aUθ

(
a
√
µ0x/(θ

√
γ)
)
. Thus we conclude that w̃θ

should satisfy

−w̃′′
θ (x) +

(
1 − 1

dγ2

)
w̃θ(x) = H̄(x) + H̃(x).(5.30)

It is easy to check H̄, H̃ ∈ L2(R) and hence w̃θ is represented as

w̃θ(x) =

∫
R

Gd(x, y)
(
H̄(y) + H̃(y)

)
dy,

where Gd(x, y) is the Green function defined in (5.5). Moreover, multiplying

(5.30) by w̃θ, we obtain∫
R

[(
w̃′
θ

)2
+

(
1 − 1

dγ2

)
w̃2
θ

]
dx

=

∫∫
R

Gd(x, y)
(
H̄(y) + H̃(y)

)(
H̄(x) + H̃(x)

)
dydx.(5.31)

Since we can check ∫∫
R

Gd(x, y)H̃(x)H̃(y) dxdy ≥ 0

similarly as in (2) of Lemma 4, we obtain

(r.h.s) ≥
∫∫

R2

Gd(x, y)H̄(x)H̄(y) dydx

+ 2

∫∫
R2

Gd(x, y)H̄(x)H̃(y) dydx.(5.32)

Combining (5.29) – (5.32), we find that

J
(3)
θ (ψθ) + J

(4)
θ (ψθ)

=

√
γ

2
‖w̃θ‖2

H1(R)

≥
√
γ

2

∫
R

[(
w̃′
θ

)2
+

(
1 − 1

dγ2

)
w̃2
θ

]
dx
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≥
√
γ

2

∫∫
R2

Gd(x, y)H̄(x)H̄(y) dydx +
√
γ

∫∫
R2

Gd(x, y)H̄(x)H̃(y) dydx.

Thus we conclude the statement. �

Lemma 24. Let ψθ is a minimizer of (1.9) or (1.10). Assume either

(1) or (2):

(1) If ψθ is a minimizer of (1.9), then θ2 � 1/γ � θ4/3 holds.

(2) If ψθ is a minimizer of (1.10), then θ2 � 1/γ � θ3/2 holds.

Then the following estimate holds:

√
γ

∫∫
R2

Gd(x, y)H̄(x)H̃(y) dxdy ≥ o(1/(θγ2)).

Proof. Since H̄(−x) = −H̄(x) holds for any x ∈ R and Gd(−x, y) =

Gd(x,−y) holds for any x, y ∈ R , we can check that

√
γ

∫∫
R2

Gd(x, y)H̄(x)H̃(y) dxdy

=
√
γ

∫
R

[∫ ∞

0
(Gd(x, y) −Gd(x,−y)) H̄(x) dx

]
H̃(y) dy(5.33)

similarly as in (1) of Lemma 4.

We now simplify (5.33). We transform H̃(y) as follows:

H̃(y) =
a3

dγ2

[(
µ0 − µ

(
xθ +

y√
γ

))
B

(
a
√
µ0

θ
√
γ

y

)

+µ

(
xθ +

y√
γ

)(
B

(
a
√
µ0

θ
√
γ

y

)
−Bθ

(
a
√
µ0

θ
√
γ

y

))]

+
a3

dγ2
· 1

a2γ
Uθ

(
a
√
µ0

θ
√
γ

y

)(
1 − µ

(
xθ +

y√
γ

))
.

We remark the following relations:

H̄(x) = −a3µ0

dγ2

{
U0

(
a
√
µ0

θ
√
γ

x

)
− U0

(
a
√
µ0

θ
√
γ

x

)3
}

< 0 for all x > 0,



194 Takashi Kajiwara and Kazuhiro Kurata

µ0 − µ

(
xθ +

y√
γ

)
< 0 for all y > 0,

Gd(x, y) −Gd(x,−y)

{
> 0 for all (x, y) ∈ (0,∞) × (0,∞),

< 0 for all (x, y) ∈ (0,∞) × (−∞, 0),

B

(
a
√
µ0

θ
√
γ

y

)
= U0

(
a
√
µ0

θ
√
γ

y

)
− U0

(
a
√
µ0

θ
√
γ

y

)3 {
> 0 for all y > 0,

< 0 for all y < 0.

Thus we have∫
R

∫ ∞

0

[
{Gd(x, y) −Gd(x,−y)} H̄(x)

×
(
µ0 − µ

(
xθ +

y√
γ

))
B

(
a
√
µ0

θ
√
γ

y

)]
dxdy > 0.

As a consequence, we estimate (5.33) as follows:

√
γ

∫∫
R2

Gd(x, y)H̄(x)H̃(y) dxdy

≥ a3√γ

dγ2

∫
R

∫ ∞

0

[
(Gd(x, y) −Gd(x,−y)) H̄(x) (Q1(y) + Q2(y))

]
dxdy,

where Q1(y) and Q2(y) are defined as follows:

Q1(y) = µ

(
xθ +

y√
γ

)(
B

(
a
√
µ0

θ
√
γ

y

)
−Bθ

(
a
√
µ0

θ
√
γ

y

))
,

Q2(y) =
1

a2γ
Uθ

(
a
√
µ0

θ
√
γ

y

)(
1 − µ

(
xθ +

y√
γ

))
.

Thus we find that it suffices to show the following estimate:

P6 =
a3√γ

dγ2

∫
R

∫ ∞

0

[
(Gd(x, y) −Gd(x,−y)) H̄(x)Q1(y)

]
dxdy

≥ o

(
1

θγ2

)
,(5.34)

P7 =
a3√γ

dγ2

∫
R

∫ ∞

0

∣∣(Gd(x, y) −Gd(x,−y)) H̄(x)Q2(y)
∣∣ dxdy

= o

(
1

θγ2

)
.(5.35)
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First, we show (5.35). By changing variables, we obtain

P7 =
a3√γ

dγ2
· a

3µ0

dγ2
· 1

a2γ
·
(

θ
√
γ

a
√
µ0

)2

×
∫
R

∫ ∞

0

∣∣∣∣
(
Gd

(
θ
√
γ

a
√
µ0

x,
θ
√
γ

a
√
µ0

y

)
−Gd

(
θ
√
γ

a
√
µ0

x,− θ
√
γ

a
√
µ0

y

))

×
(
U0(x) − U0(x)3

)
· Uθ(y)

(
1 − µ

(
xθ +

θy

a
√
µ

))∣∣∣∣ dxdy
=

a2θ2√γ

d2γ4
·
∫
R

∫ ∞

0
|Γ(x, y)B(x)Uθ(y)|

(
1 − µ

(
xθ +

θy

a
√
µ

))
dxdy,

where Γ(x, y) is defined in (5.6). Thus we can see

P7 ≤ Ca2θ2√γ

d2γ4
· 4θ

√
γ

a
√
µ0

∫ ∞

0
|x|B(x) dx ·

∫
R

(
1 − µ

(
xθ +

θy

a
√
µ0

))
dy

≤ C ′a2θ2√γ

d2γ4
· 4θ

√
γ

a
√
µ0

·
∫
R

(1 − µ(X))

(
a
√
µ0

θ
dX

)

= O

(
1

θ2γ3

)
= o

(
1

θγ2

)

from (5.12). As a consequence, we have shown (5.35) since P7 ≥ 0. Next,

we shall show (5.34). By changing variables, we can see that

P6 = − a3√γ

dγ2
· a

3µ0

dγ2
·
(

θ
√
γ

a
√
µ0

)2

×
∫
R

∫ ∞

0

[(
Gd

(
θ
√
γ

a
√
µ0

x,
θ
√
γ

a
√
µ0

y

)
−Gd

(
θ
√
γ

a
√
µ0

x,− θ
√
γ

a
√
µ0

y

))

× B(x)µ

(
xθ +

θy

a
√
µ0

)
{B(y) −Bθ(y)}

]
dxdy

= − a4θ2√γ

d2γ3

∫
R

∫ ∞

0
Γ(x, y)B(x)µ

(
xθ +

θy

a
√
µ0

)
{B(y) −Bθ(y)} dxdy.

Then P6 can be represented P6 = P1 + P2 + P3, where Pi (i = 1, 2, 3)

are defined in Lemmas 19 and 20. Thus it follows P6 ≥ o(1/(θγ2)) from

Lemmas 19 and 20. �
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Lemma 25. Assume θ2 � 1/γ � θ. Let ψθ be a minimizer of (1.9) or

(1.10). Then the following inequality holds:

√
γ

2

∫∫
R2

Gd(x, y)H̄(x)H̄(y) dxdy ≥ a3√µ0

2θγ2
(A + o(1)).

Proof. For simplicity, we write

P8 =

√
γ

2

∫∫
R2

Gd(x, y)H̄(x)H̄(y) dxdy.

From H̄(−x) = −H̄(x) holds for all x ∈ R, we see that

P8 =
√
γ

∫∫
(0,∞)2

(Gd(x, y) −Gd(x,−y)) H̄(x)H̄(y) dxdy.

From the definition of H̄(x), we can write P8 as follows:

P8 =
a6µ2

0
√
γ

d2γ4

∫∫
(0,∞)2

(Gd(x, y) −Gd(x,−y))

×B

(
a
√
µ0

θ
√
γ

x

)
B

(
a
√
µ0

θ
√
γ

y

)
dxdy.

By changing variables and (5.6), we obtain

P8 =
a6µ2

0
√
γ

d2γ4
·
(

θ
√
γ

a
√
µ0

)2 ∫∫
(0,∞)2

Γ(x, y)B(x)B(y) dxdy

=
a4√γθ2µ0

d2γ3

∫∫
(0,∞)2

Γ(x, y)B(x)B(y) dxdy.

We note that

e−s − e−t ≥ (t− s) − t2

2
for all 0 < s < t.

Then we have

Γ(x, y) ≥ 1

2

{
θ
√
γ

a
√
µ0

(|x + y| − |x− y|) −
√

1 − 1

dγ2

θ2γ

a2µ0
|x + y|2

}

≥ θ
√
γ

2a
√
µ0

(|x + y| − |x− y|) − θ2γ

a2µ0

(
|x|2 + |y|2

)
.
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As a consequence, we find that

P8 ≥ a4√γθ2µ0

d2γ3

{
θ
√
γ

2a
√
µ0

A− θ2γ

a2µ0

∫∫
(0,∞)2

(
|x|2 + |y|2

)
B(x)B(y) dydx

}

≥ a3θ3√µ0

2d2γ2
A− C

γ
√
γθ4

d2γ3
.

Noting d = θ2 + o(θ2) and 1/γ3/2 = o(1/θγ2), we have

P8 ≥ a3√µ0

2θγ2
A + o

(
1

θγ2

)
.

As a consequence, we conclude the statement. �

With these lemmas, we prove Theorem 5.

Proof of Theorem 5. We can prove each statement from Lem-

mas 21 – 25. For the proof of (2) or (3), we only note that J (3)(ψθ)+J (4)(ψθ)

is estimated

J (3)(ψθ) + J (4)(ψθ) ≥
a3√µ0

2θγ2
A + o

(
1

θγ2

)

from Lemmas 23 – 25. �

Proof of Theorem 3. It is obvious from Proposition 3 and Theo-

rem 5. �
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