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Concentration-Compactness and Finite-Time

Singularities for Chen’s Flow

By Yann BERNARD, Glen WHEELER and Valentina-Mira WHEELER

Abstract. Chen’s flow is a fourth-order curvature flow motivated
by the spectral decomposition of immersions, a program classically
pushed by B.-Y. Chen since the 1970s. In curvature flow terms the
flow sits at the critical level of scaling together with the most popular
extrinsic fourth-order curvature flow, the Willmore and surface diffu-
sion flows. Unlike them however the famous Chen conjecture indicates
that there should be no stationary nonminimal data, and so in partic-
ular the flow should drive all closed submanifolds to singularities. We
investigate this idea, proving that (1) closed data becomes extinct in
finite time in all dimensions and for any codimension; (2) singularities
are characterised by concentration of curvature in L™ for intrinsic di-
mension n € {2,4} and any codimension (a Lifespan Theorem); and
(3) for n = 2 and in any codimension, there exists an explicit €2 such
that if the L? norm of the tracefree curvature is initially smaller than
€2, the flow remains smooth until it shrinks to a point, and that the
blowup of that point is an embedded smooth round sphere.

1. Introduction

Suppose f : M™ — RN, N > n is a smooth isometric immersion. We
assume that M™ is closed and complete. Denote by H the mean curvature
vector of f. Then

(Af)(p) = H(p)

for all p € M™, where A here refers to the rough Laplacian. The rough
Laplacian is that induced by the connection on the pullback bundle
f*(TR™1). Applying the operator again yields

(A*f)(p) = (AH)(p).
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If A2f = 0, we call f biharmonic. Chen’s conjecture is the statement
that AH = 0 implies H = 0. This conjecture is motivated by Chen’s
work in the spectral decomposition of immersed submanifolds. There has
been much activity on the conjecture (see as a sample the recent papers
(2, 8, 19, 20, 26, 27, 28, 29, 30, 34, 38] and Chen’s recent survey [6]), but
still it remains open.

In this paper we study the heat flow for A2: this is a one-parameter
family of smooth isometric immersions f : M" x [0,T) — RV satisfying
f(p,0) = fo(p) for a given smooth isometric immersion fy : M™ — RY and

(CF) (&ff)(p, t) = _(AQf)(p7 t) )

for all (p,t) € M™ x (0, T). We call (CF) Chen’s flow and fy the initial data.
Since A? is a fourth-order quasilinear elliptic operator, local existence and
uniqueness for (CF) is standard. Details can be found in [1, Chapter 3]. See
also [9, Chapter 5], [33] and [18].

THEOREM 1. Let fy : M™ — RY be a smooth closed isometrically
immersed submanifold. There exists a T € (0, 00] and unique one-parameter
family of smooth closed isometric immersions f : M™ x [0,T) — RN such
that (CF) is satisfied and T is maximal.

Note that mazimal above means that there does not exist another family
f : M %0, T) — RY of smooth closed isometrically immersed hypersurfaces
satisfying (CF), f(p,0) = fo(p) with 7' > T.

A simple consequence of the argument used by Jiang [10] is that there
are no closed biharmonic submanifolds of Euclidean space. Therefore it
is natural to expect that the flow may only exist for at most finite time,
that is, T" < oo. The following result gives a precise estimate, sharp for
n € {2,3,4}.

THEOREM 2. Chen’s flow f : M™ x [0,T) — RN with smooth, closed

initial data fo : M™ — RN has finite mazimal time of existence, with the
explicit estimate

(1) T < w(fo)
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4
where for n € {2,3,4} we have C, = 4wpn?, and for n > 4 we have
4

C,= n?Z}TiH”' Here w, denotes the area of the unit n-sphere. Furthermore,
if equality is achieved in (1), then u(fy) \, 0 ast /' T.

REMARK 1. Round spheres are driven to points under Chen’s flow with
T = %, where rg is the initial radius. This shows that the estimate (1) is
sharp in dimensions 2,3 and 4. We expect that the same estimate holds in
higher dimensions.

Given Theorem 2, it is natural to ask for a classification of finite-time
singularities. For higher-order curvature flow such as Chen’s flow, such
classifications are very difficult. For example, a classification of singular
geometries remains well open for the two most popular extrinsic fourth-
order curvature flow, that is, the Willmore flow and the surface diffusion
flow (see for example [14, 15, 16, 21, 24, 35, 36, 37, 39]).

For both the surface diffusion and Willmore flows, the general principle
of concentration or compactness from the classical theory of harmonic map
heat flow remains valid. We are able to obtain a similar result here: We
present the following characterisation of finite-time singularities, also called
a concentration-compactness alternative or lifespan theorem.

THEOREM 3. Letn € {2,4}. There exist constants €1 > 0 and ¢ < 0o
depending only on n and N with the following property. Let f : M™ X
[0,T) — RN be a Chen flow with smooth initial data.

(Case 1: n=2.) Letp be chosen such that
(2) / |APdu =¢e(z) <er for all x € RV
71 (By()) =0
Then the mazimal time T of smooth existence satisfies
T> 1
c

and we have the estimate

1
/ |APdp < ceq forallt e [O, —p4]
f=H(Bp(x)) ¢
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(Case 2: n=4.) Letp be chosen such that

3) / AP 4+ |VARdp| =) <er forallz e RY.
F1(Bo(e) =0

Then the mazimal time T of smooth existence satisfies

7>
c
and we have the estimate
1
(4) / |AI* + |VA|Pdp < gy for allt e [0, —,04}.
f=H(Bp(z)) c

REMARK 2. Our proof applies to a general class of flows, including the
Willmore flow and the surface diffusion flow. This is new for the Willmore
flow and the surface diffusion flow in four dimensions (the two dimensional
case for the Willmore flow is the main result of [15], and a corresponding
theorem surface diffusion flow is contained in [36]). In three dimensions a
lifespan theorem for the surface diffusion flow is known [36], however the
constants (1, ¢) there for n = 3 depend on the measure of the initial data.
Here, new estimates enable our constants to be universal.

The main result of [15] and the lifespan theorems from [21, 23, 35, 36, 37]
(assuming the external force vanishes identically) are generalised by our
work here. See Theorem 20 for a precise statement.

The concentration phenomenon that Theorem 3 guarantees can be seen
as follows. If p(t) denotes the largest radius such that either of the concen-
tration conditions ((2) or (3)) holds at time ¢, then p(t) < /¢(T —t) and
so at least €1 of the curvature (or its derivative if n = 4) concentrates in a
ball f~(B,r(z)). That is,

(n=2) lim |APdp > e,
t=T J =B, (2))
(n=4) lim |AI* + |VA|Pdp > 1,

t=T J 1By ()

where x = z(t) is understood to be the centre of a ball where the integral
above is maximised. In either case, this implies that a blowup of such a
singularity will be nontrivial.
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Although Theorem 3 yields a characterisation of finite time singularities
as space-time concentrations of curvature, it does not give any information
at all about the asymptotic geometry of such a singularity. One of the
simplest observations in this direction is that for spherical initial data with
radius rg, the flow shrinks homothetically to a point with maximal time

4
_ 7o

C 4n2?

As the evolution is homothetic, parabolic rescaling about the space-time
singularity reveals a standard round sphere. This asymptotic behaviour is
called shrinking to a round point.

One may therefore hope that this behaviour holds in a neighbourhood of
a sphere. This is our final result of the paper, proved using blowup analysis.

THEOREM 4. There exists an absolute constant e2 > 0 depending only
on N such that if f: M? x [0,T) — RN is Chen’s flow satisfying

(5) /M A% 2dy

then T < 0o, and f(M?,t) shrinks to a round point ast — T.

< g9 <87
t=0

This paper is organised as follows. In Section 2 we describe our nota-
tion, some fundamental identities, and the Chen flow in the normal bundle.
Section 3 gives evolution equations and the proof of Theorem 2. Our anal-
ysis throughout the paper relies on control obtained via localised integral
estimates. The key tools that facilitate this are the Michael-Simon Sobolev
inequality [25] and the divergence theorem. Section 4 contains the conse-
quences of these that we need here, and proofs of all new statements. One
especially long proof is delayed to the Appendix. Integral estimates valid
along the flow are also proved in Section 4, including control on the local
growth of the L™ norm of A. The section is concluded with a proof of the
lifespan theorem. Section 5 is concerned with global analysis for the flow,
and contains a proof of the monotonicity result for the L? norm of A, and
blowup analysis, ending in the proof of Theorem 4.
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2. Notation and the Normal Flow

Let us first collect various general formulae from the differential geom-
etry of submanifolds which we need for later analysis. We use notation
similar to that of Kuwert-Schétzle [14, 15, 16], Hamilton [11] and Huisken
[12, 13]. We have as our principal object of study a smooth isometric im-
mersion f : M™ — R of a Riemannian manifold (M™, g) = (M™, f*§&")
into RV,

The induced metric has components

(6) 9ij = (0:f, 05 f) .

where 0 denotes the regular partial derivative and (-,-) is the standard
Fuclidean inner product. Integration on 3 is performed with respect to the
induced area element

(7) du = +/det g dC",

where dL" is the standard Hausdorff measure on R".
The second fundamental form A is a symmetric (0, 2) tensor field in the
normal bundle of f with components

(8) Aij = (05 f)*

There are two invariants of A relevant to our work here: the first is the
trace with respect to the metric

H= traceg A = gijAZ-j

called the mean curvature vector, and the second the tracefree second fun-
damental form defined by

0 1
A% = Ay —

Lig.
1 17
J n J

We define the Gauss curvature to be

1 =
K = S(AP - |aP).



Concentration-Compactness and Finite-Time Singularities for Chen’s Flow 61

From (8) and the smoothness of f we see that the second fundamental form
is symmetric; less obvious but equally important is the symmetry of the
first covariant derivatives of A:

Vidjr = VA, = Vi Aij;

these are the Codazzi equations. In the case here of high codimension they
follow with V the connection induced in the normal bundle along f from
the fact that the ambient space has constant curvature.

One basic consequence of the Codazzi equations which we shall make
use of is that the gradient of the mean curvature is completely controlled
by a contraction of the (0,3) tensor VA°. To see this, first note that

VAl =V,H = VZ-<(AO)§- + %g;iﬁ),

then factorise to find

7 0\i n * 40
9) Vil = 2Vi(A%)) = (7 A0);.

This in fact shows that all derivatives of A are controlled by derivatives of

A°. For a (p, q) tensor field T', let us denote by VT the tensor field with

components V;, ; TP =V - V; T

_ Viin gy gg (it g1dg
covariant derivative is applied first. Since

?. In our notation, the i,-th

1 7 1 * A0
V(k)A = (V(k)AO + EQV(k)H> = (V(k)AO + mgV(k_l)v A ),
we have

(10) IV Al* <

2n —1 012
— |V(k)A| .

The fundamental relations between components of the Riemann curvature

tensor R;jx;, the Ricci tensor R;; and scalar curvature R are given by Gauss’
equation

Rijia = (Air, Ajt) — (Aa, Aji)
with contractions
@' Riji = R, = <ﬁ7Aik> — <A{,Ajk> , and
g*Ripy = R=|H|> — |A]%.
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We will need to interchange covariant derivatives. For a (0, m)-tensor T
normal along f we have

(11) VUT = le‘T + RZJ;T
where
RzJ;T = Ak <AkjvT> - Akj (Api, T) = Zz< Zj>T> - Zj ( ZivT> .

Note that <R$-T, T> —0

We also use for normal tensor fields T' and S the notation T % .S to
denote a linear combination of new tensors, each formed by contracting
pairs of indices from T and S by the metric ¢ with multiplication by a
universal constant. The resultant tensor will have the same type as the
other quantities in the expression it appears. We denote polynomials in the
iterated normal derivatives of T' by

P = 3. VT s+ VT,
k1+...+k]':i

where the constants c;; € R are absolute. As is common for the *-notation,
we slightly abuse these constants when certain subterms do not appear in
our P-style terms. For example

IVA? = (VA,VA) =1 (V(1)A* V(1)A) + 0 (A V(5 A) = P3(A).

Using the Codazzi equation with the interchange of covariant derivative
formula given above, we obtain Simons’ identity [32]:

(12) AA=VH + Ax Ax A

The interchange of covariant derivatives formula for mixed tensor fields T'
is simple to state in *-notation:

(13) Vz‘jT:VjiT—i-T*A*A.

Let {01f,...,0nf} be an orthonormal basis for T, M and {v1,... ,un_p} be
an orthonormal basis for N, M with Christoffel symbols in the normal bundle
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vanishing at p, that is, I'(p) = 0. We call such a frame for T,M ® N,M a
normal frame. Then

Oiva = <aiVom akf> akf =+ <aiVom V,B) Vs

(149) == (Afva) O + Toovs = — (Al va) B0t
so that

AV = ~g7 (045, va) 0f + (AF, Ojva ) 00 + ( AF,ve ) 0,01)
(15) == (V) ~ (A7,00) Ay

In most of our integral estimates, we include a function v : M™ — R in the
integrand. Eventually, this will be specialised to a smooth cutoff function
on the preimage of balls on R**! via the immersion f. For now however,
let us only assume that v =4 o f, where

(7) 0<7<1, and [7lc2(Rnt1) < 5 < o0.

Using the chain rule, this implies Dy = (Dy o f)Df and then D%y =
(D?*5y 0 f)(Df,Df) + (D7 o f)D?f(-,-). A routine calculation shows that
there exists a constant ¢, = ¢,(c5) € R such that

Vv <cey, |V(2)’7| <cey(ey +4]),  and
V)] < eeq(e + ey Al + AP + [V A)).

When we write “for a function v : M™ — R as in ()” we mean a function ~ :
M™ — R as above, satisfying all conditions labeled (vy), which additionally
achieves the values zero and one in at least two points on M™.

We note that if 4 is a cutoff function on a ball in R™*! of radius p, then
we may choose ¢, = % where c is a universal constant and we have used

that ¢y = c5(p).

("7)

2.1. The normal flow
Chen’s flow has tangential and normal components. We calculate in a
normal frame using (15):

A = A = A((H,va)va) = A(Have)
= (AHy)vo + HyAvy +2(VHy, Vi)
= AHyva — HoAi; (A7 1) + (2 (VH,, Vva) — He <vﬁ, ua> ) .



64 Yann BERNARD, Glen WHEELER and Valentina-Mira WHEELER

To see that the bracketed term is tangential, we compute using (14):
<2 (VHa, V) — H, <vﬁ, ya> ,uﬁ>

<—2gij8iHa <A§, ua> Of — Hag™® <aiﬁ, ,,a> Onf, yﬂ>

( —2¢“0;H, <A§, Va> — Hog™* <8iljl, I/a> ) (O f,vp)

0.

It is a standard result that for closed curvature flow tangential motion acts
in the diffeomorphism group of M™, which is tantamount to a reparametri-
sation at each time (see for example [1, Chapter 3]). Therefore Chen’s flow
is equivalent to the purely normal flow:

(NCF)  (0:f)(p,t) = —(A*f)" = —(AHo v — HaAij (A7, va) ) = —F,

with initial conditions f(-,0) = fo. For simplicity we conduct our analysis
with this formulation.

Note that we may express the velocity F in a coordinate invariant man-
ner as

F=A"H-QAH
where (Q is a normal endomorphism of NM acting on a section ¢ by
Q(A)p = Ay; (A7 ¢) .

The same endomorphism arises in the study of the Willmore flow in high
codimension, see for example (2.4) in [15].

3. Finite-Time Singularities and Evolution Equations

The following evolution equations hold (see Lemma 2.2 in [15]):

LEMMA 5. For f : M™ x [0,T) — RY evolving by 0,f = —F the
following equations hold:

gy =2(F, Ay) ,  dp=(HF)dp,  dg" = —2(F, A7),

Of Aij = —ViF+ Ay <A§7F> )
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where O ¢ = (0,0)*.

Using the P-notation introduced in the previous section we write the
evolution of the second fundamental form as

8#‘141‘]' = — VijALﬁ + (P32 + PE?) (A)

Interchanging covariant derivatives and applying (12) then gives the follow-
ing lemma:

LEMMA 6. For f: M" x[0,T) — RY evolving by (NCF) the following
equation holds:

O Aij = — (A)? Ay + (P + ) (4).

LEMMA 7. For f: M" x[0,T) — RY evolving by (NCF) the following
equation holds:

atV(k)Aij = fA2V(k)A + (P:;H_2 + P\:?)(A) .

Note that this is exactly the same structure that arises in the Willmore
flow. Therefore the n = 2 case of the lifespan theorem can be proved using
the methods of [15]. For n = 3, the work in [36] can be adapted along the
lines of [37, 21]. For n = 4, different arguments are required.

We now state the evolution of curvature quantities along the flow. The
proof is standard, and can be adapted from [15].

LEMMA 8. Let f: M™ x[0,T) — RY be a solution of (NCF) and
be as in (). Suppose s > 2k + 4. For each 6 > 0 there exists a constant

¢ € (0,00) depending only on s, n, N and 6 such that the following estimate
holds:

d
@/ !V(k)A\Q’YSdqu(?—(S)/ IV 2y APy dp
M M
S C(C’y)Qk+4/ ’A’278_2k_4d/$
M

+ C/M V(i) A * <P§+2(A) + Pé(A)) yidu .
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Area is monotone under the flow:

LEMMA 9. Letn € {2,3,4}. For f : M™ x [0,T) — RN evolving by
(NCF) we have

p(fo)* < p(fo)® — Cnt

1
where for n € {2,3,4} we have C,, = 4win?, and for n > 4 we have
4

n .
Cp = ogirs. Here wy denotes the area of the unit n-sphere.

Proor. Differentiating,
d d
il -~ | 4
) = /M 1
_ / (.64 ~ (QAA. 1Y du.
M

Using the estimate <Q(A)ﬁ, ﬁ> > %\ﬁ|4 and the divergence theorem we

estimate
d =9 1 =4 1 =4
gt = — [ \VH[ dp—— [ |[H[ dp < —— | |H|"dp.
M nJm nJm

Now we use the inequality

— ~ n—4
(16) [ = Gty
to estimate
n 4\’ C’n
— n < ——.
4 (M(ft) ) > n

This implies

~

p()F < (o)t — a5

as required. The inequality (16) follows for n = 2, 3,4 from the fundamental
sharp estimate

/ |H|" dp > wyn™
M



Concentration-Compactness and Finite-Time Singularities for Chen’s Flow 67

of Chen [5]. For n =4 (16) is immediate, whereas for n = 2,3 we first use
Holder’s inequality

/ Iﬁ!”duﬁ< / \ﬁ!4du>4u(ft)4%
M M

and then rearrange, to obtain
4
— — —4
vtz ([ 1) s = it
M M

that is, the estimate (16) with C,, = w/; n4 For n > 4, this argument does
not work and we must lose some sharpness in the constant. In this case, we
use Theorem 28.4.1 of [4] to estimate ||H||; from below in terms of the area
scaled appropriately. Such an estimate follows directly from the Michael-
Simon Sobolev inequality (see Theorem 2.1 in [25], stated in Theorem 10
below) by an approximation argument:

n—1 4n+1
u(f) "= < / | dy.

Using Holder’s inequality we find

/, !H\du<( / IH!4du> u(f)

4

and so

= Wn n—4
[ =

4

This establishes (16) with C, = qingr- O

PROOE OF THEOREM 2. Assume that the flow remains smooth with
T> % Then, applying Lemma 9 with

1(fo)

Ch
shows that u(f;) = 0, contradicting the assumption that the flow remains
smooth for ¢ € [0,T). Therefore either the family f shrink to a point, in
which case T' < “(f )
case we have the estlmate (1) as required. OJ

3

t=

, or there is a loss of regularity beforehand. In either
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4. Integral Estimates with Small Concentration of Curvature

The argument for n = 3 and n = 4 is by necessity different to that
for n = 2. This is due to the important role played by the Michael-Simon
Sobolev inequality.

THEOREM 10 (Theorem 2.1 in [25]). Let f : M™ — RY be a smooth
immersed submanifold. Then for any u € CL(M) we have

wf-ng, )" A 7
|ul du < —7m [ IVul+[ul[H|dp.
M Wn, M

Notice the exponent on the left. Our eventual goal for this section is to
prove local L™ estimates for all derivatives of curvature under a hypothesis
that the local concentration of curvature is small. Our main tool to convert
L2 bounds to L bounds is the following theorem, which is an n-dimensional
analogue of Theorem 5.6 from [15]. The proof is contained in Appendix A
of [37].

THEOREM 11. Let f : M™ — RY be a smooth immersed submanifold.
Foru e CHM), n <p<o0,0<B<00and0 <a<1wherel =
(% — 1—1))54— 1 we have

(17) lullos < ellull g™ ([Vull, + [ Hull,)*,
where ¢ = ¢(p,n, N, 3).

The proof follows ideas from [17] and [15]. Due to the exponent in the
Michael-Simon Sobolev inequality (which is itself an isoperimetric obstruc-
tion), it is not possible to decrease the lower bound on p, even at the expense
of other parameters in the inequality.

For n = 3, it is possible to use p = 4 in Theorem 11. This means that
estimates on the same quantities as in the n = 2 case may be used. For
n = 4 we are not able to use p = 4 in Theorem 11. We thus need to estimate
new quantities in this case.

LEMMA 12. Let v be as in (). Then:
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(i) For an immersed surface f: M? — RN, s > 4, we have

/M (JARIVA]? + |AP) ydp < ¢ / 1ALy /M(!V<2>A!2 Ay dy
>

[v>0
2
el ( [ 1APdw)’,
[v>0]

Y

where ¢ = ¢(s, N) is an absolute constant.

(ii) For an immersion f: M* — RN, s > 2, we have
[ (9ARIAR +141) 7* i
M
4
<0 [ I9@AR Y dut Al + 1AL oo | 1A d

()AL o

and for s > 4 we have
[ (VARIAP +147) 2* i
M
< (cll Al 51 +6) /M (V@ AP|Al + [VAP|AP +|A]) y*d

+ ()M AN s
where 0§ € (0,1) and ¢ = ¢(s,0,N) is an absolute constant.

(iii) For an immersion f: M* — RY, s> 8, we have

/M(|A|2|V(2)A|2 +APVAR + VA + |A) 7* du

12 4s i 3 = ?
+ / Vi)yAls 5 du | + / IVA]°vy2 du
M M
4
< (0+clAllffq)

x /M (VA2 + AP [V o AP + [VA[* + |AF) * dy
20 3 s 2
+cuAH437>O]< / VAP A3 du)

2
welAlf g ([ 1VeAI% ¥ du)
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+ele) (14 AN ooy + 1) 1 (1) AN 50y
where 0 € (0,1) and ¢ = ¢(s,0,N) is an absolute constant.
(iv) for an immersion f: M* — RN, s > 16, we have
| (9@APIAR + 9 APIA + [V ) APIV AP
+[VAPIAL + [A]")y* dp
3
2s 2 s
(A ) AR gy [ 1A d
M M
< (0 + cllAllg jy0) /M (IV AP + [V o) AP VAP + [V AP |A]*
+ [VARIAP + A1) dy

3

2 5
. HAHZM( [ Ay du)
L0 /M IV Al' > du

+ o) AN oo (1+ [e) 1y (112) (1 + A1 o) -

where 6 € (0,1) and ¢ = ¢(s,0,N) is an absolute constant.

2
O+ Al )14

(v) for an immersion f: M* — RN, s > 4, we have
19) [ 4 au
M
g 4 8 e
<A ooy [ (TAT +1AP) 7 di ele) A1
and

(19) [ vt au

M

<o [ IV@ARIAR Y dit cle) AL g

where ¢ = ¢(s, N) is an absolute constant.
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We postpone the proof of Lemma 12 to the Appendix. Under an ap-
propriate smallness condition, many terms can be absorbed, yielding the
following Corollary.

COROLLARY 13. Let «y be as in (y). There ezists an € > 0 depending
only onn, s, and N such that if

/ |A|"dp <e <1
[y>0]

we have

(i) for an immersed surface f : M? — RN, s > 4:

[ aPwa 49 v < e [ DAy o))
M M
where ¢ = ¢(s, N) is an absolute constant.

(ii) for an immersion f: M* — RN, s > 2, we have
/M (IVAPA] + [A%) v dp < 6 /M VAP da+ ()2 AN oy
and for s > 4 we have
| (9APIAP 41417 7
M
< (el Al 150 +6) /M V) APIA] dp + () AN o0

where § € (0,1) and ¢ = ¢(s,0,N) is an absolute constant.

(iii) for an immersion f: M* — RN, s > 8, we have
[ APIV AP + A1IVAP + VA + |4F) * du
< (6 +ce3) /M IV A?y* du
ele) (14 £+ 1) 1y () AN 5

where 6 € (0,1) and ¢ = ¢(s,0,N) is an absolute constant.
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(iv) for an immersion f: M* — RN, s > 16, we have
[ (9@APIAR + [V APIA[ + 9 ) APIV AP
+ |VAPIAS + |A]")y du
<O+ clAllpsn) [ 19@APY d
+ e(en)PI1AIR ooy (1 + 1) s (A1) (14 4113 1)

where 6 € (0,1) and ¢ = ¢(s,0,N) is an absolute constant.

(v) for an immersion f: M* — RN, s > 4, we have

16
3

1
A au < Al oy [ 19 ok cle) A1
M M
and
[vaftydn < [ Ve APIAR i+ ele) AN g
M M
where ¢ = ¢(s, N) is an absolute constant.

Next we give a local refinement of Theorem 11.

PROPOSITION 14. Suppose v is as in (). For any tensor T normal
along f: M™ = RN if n =2, we have

[V A
(20) <TI0 IV TS o) + () ITN3 o) + ITAS (o)) 5
and if n = 4, then we have
ITI sy < el Tl o) IV T ey + 17 A%
+ ()2 AVTIS (o) + ()2 ITV AN )

(21) + () IVTI oy + (@) 1T )

where ¢ = ¢(n, N).



Concentration-Compactness and Finite-Time Singularities for Chen’s Flow 73
Assume T = A. There exists an g = eo(n, N) such that if

JAIZ s < €0

we have for n = 2:

1A%, 1=y < c2o(IV () All3 507 + €0(e5)?)

and for n = 4:

JAIE, 1y < cllAlls o0 (Hv@AH%M
(22) () (U AL g + (cw)ﬂw(f))) ,
with ¢ = c¢(n, N, ep).

PROOF. The proof proceeds in two parts: first we deal with the case
where n = 2. Then we prove the statements for n = 4. In each part we will
estimate an arbitrary tensor field .S, and then we will localise the estimate
for S by using a « function. Precisely, we specialise the estimate for S to
S = T2 in the first part and S = T* in the second, taking care to factor
out the quantity ”T||§,h>0} to conclude our desired inequality. Note that
for n = 2 the result is in [15] (except here we keep track of c,, and in the
relevant result from [15] the constant ¢ depends on 7).

Here, and until we deal with the case n = 4, we leave n as a free
parameter. This is because the proof below works for both n = 2 and
n = 3. Therefore, let us take p =4, § = 2 in Theorem 11 to obtain

d-n — 2n_
(23) I1Slloe < ellSllz** (IVSlla+ 1S Hlla) *+7.

We now use integration by parts and the Holder inequality to derive

VS|4 < /M S % (V2)S |VS[2 + 2V % VS # V(s )y
< oS IVSIZIV(2) Sl so
1 1
(24) [VS[la < cl| S5V 2)S]I3-
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Combine inequality (24) with (23) and use Jensen’s inequality to obtain

4—n 2n

4-n 1 1 L, 2n_
(25) 1S]loo < cllSlls™ [(IS11Z 1V ) SNIZ) =+ + IS HI| 7+ ].

Using Holder’s inequality we estimate

2n

= 2inela ) o od Gy
1S Hl3™ < [ 157]]152 Hlla < [ISlls 152 HIl 5,
and combining this with (25) above we conclude

1——n_\nt+4
111 = (11Sllos ™)
n

4—_’n 1 — 2n_ Tl+4
< (cISIST IV SI3™ + 1S3 A]F7))
(26) < cISIE (V@ Sl + 15 1 )3).

We now turn our attention to localising the estimate for S. As mentioned
earlier, for this purpose we set S = Ty2. We first evaluate and estimate the
second derivative term ||V )5 13:

IVeSIE = [ 19T P
M
SC< / IV o T2y 4dps + / VTV 2+ / \TPW@)W@)
M M M
SC</ \V(z)T\Qv“dw/ VTV [y du
M M
2
+ [ TP 19+ 99 du)
<o [ 1VarPydns )2 [ 19T
M M
@) e [ TPIAPRd ) [ \T\Qdu>-
M [y>0]
We interpolate the first derivative term:

(e [ 19120 < (e [ (71 1V Thldu+ele,)® [ 1211V
M M M
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1
<5 [ VTP dute [ 9Py
M M
dele) [ TPy
[v>0]
and thus
@8 [ WP < [ [VpTPrdatce)t [ (rfdu.
M M [y>0]

Inserting this result into (27), and estimating

e [ ITPIAPPdu < c [ TPLAR Yt cte)! [ (P
M M [y>0]

we obtain
@SI3 < e ) TI du
IV (2)S]l5 < VT d
[v>0]
(28) +c/ \T\2|A|474du+c(c7)4/ T 2dy.
M [v>0]

Combining this with our estimate for ||S||« earlier, inequality (26), gives

15115 < ellSI2™ IV T3 50 + () * 1T 115 50
+ 1S H2|l3 + |TA%?3)
(29) < ellTI5sq IV T30 + (@) 1715 fs0 + 1TA5 50 -

Estimating ||T'||%, 1] < |S]|4, proves (20).
Now set T'= A in (20).
For n = 2, Lemma 12 (i) implies

2
APy < e Al 50 (IV @) Alls 50 + 11473 118) + e(e) 1 Allz 50
M

and absorbing on the left we obtain

/M APy dp < el All3 o0 (IV @) Al 50 + () 1AL fy507) -

75
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Inserting this into (29) gives the second statement for n = 2.
For the n = 4 inequalities, we proceed similarly. We first claim

1 2 1 -
(30) I1S]loe < €lS13 (IV(3)Sll5 + 1S3 H|13) -

In order to prove (30), we need some auxilliary estimates. First, we calculate

[ 19 < [ 181195 Va8 du
M M

4 3 3
< || S]lool VSl IV (2)S|” du
M

SO

(31) IVS[I8 < cllSIZ IV 2)S]13 -

We also need

[ Vs du<e [ (9511981195 da
M M

3 3
< Livi st + e /M V513 [V S1E du

N | =

SO
| 1Vestan<e [ VS 95 du
M M

ST 175" TSt
< [ \vSPSdu+tclS|e | VS| dp.

(Note that if ||S||cc = 0 then the estimate is trivially true, and so we assume
this is not the case.) Combining with (31) and absorbing we find

IVS|1§ < ellSllslIV () S113 -
Now applying Theorem 11 yields
1lloo < cllSIE*(IVSlls + |1 H S6)*
3 2 1 2o
< e8Iz IS13 1V ) S13 + 151131153 H l6)
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SO
hon 1 1= 30
1Slloe < cllSIIg** (IV(3)S113 + 1155 Hlg) 52
where a1 =1+ (% - %)ﬂ. Sincen =4, o~ ! = %7 and
3a 12 3 B 36 12
3—2a 12+83-2-42  36+38-24 4+p

12+8

7

so in particular if § = 2 then 3a/(3 — 2a) = 2 or = 6/7. We also note

that g:gg = % This proves the estimate (30).

Now we set S = Tv* and calculate

/ 1V (T4) 2 dp
M
<c [ VTP dutcte,? [ (VTR du
M M
Teley)? /M VT (2 + AP + 2 )y dp
e(ey)? /M T (( + A + Al + [VAP)!
+(E(E+ APV + )y du
SC/ |V<3)T|278du+6(67)2/ V)T I? 4 dp
M M
seler? [ VTR IARA dtele,? [ (VAR dy
M M
T efey)? / T AP A8 dpo + ele)? / VTP A dy
M M
T e(ey)! / TP AP dpi+ ele)f / T2+ dy
M M
SC/ |V(3)T|278dﬂ+0(07)2/ V)T~ dps
M M
dele)? [ VTP IAR A0 dy
M
Te(ey)? /M T2 [VAAS du + elcs)? /M T2 |A* 46 dp

sele)! [ VTR ke [ TP d
M M
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Note that
(@) [ VTP d
M
<cler)? [ VTN TI duteler)® [ VTV I+ da
1
<5 [ VTPt dutee? [ VTV T]" du
M M

o) [ VTP

so that

(67)2/ \V(z)T\276du§/ ‘V(S)T‘2’78d/ﬁ+(cw)4/ IVT*y* dp.
M M M

This refines the above to
[ 1V du
M
<o [ V@RS ducte,? [ VTP AP du
M M
el [ ITRIVAR it ele)? [ TR IAI N dy
M M

—1—0(07)4/ |VT|2fy4du+c(cy)6/ T2 dy.
M M

Combining this with (30) and then cubing everything yields
T2 < el o [ VTP dur [ PAR
M M
e [ VTRIAR S+ (o [ (TP ITAR S dy
M M
e [ TPIA S et ()t [ VTP d
M M

H(e) [ TP ).
M
Using the definition of v we have

17120 py=1 < €llTll2,py>0 <||V(3)T||§,[7>o} T A3 5
+ ()2 AVT (3 (o) + ()2 ITVAIR 1o
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+ () IV s + ()T B ) -

Note that we interpolated one term.
In the particular case where T' = A we find

1A, 1oy < cllAllafy0) ( /M V) AI2 7S dp + /M<|VA|4 AP AR du
(o) (14 AN gy + () i (F) + (cv>2HA||§,h>o])) .

When || A} (y>0) 18 small, we may use Corollary 13 (iii) to absorb the second
integral on the right, and conclude

LA ey < ellAllz s (nv(s)An%M

+ () (L Al g + (e9) 1y () + (CV)2HA”%,[7>O])> =

The Lifespan Theorem is proved using an alternative that relies on being
able to, in a weak sense, preserve the assumption

/ |A[" dp < g9
[v>0]

at later times. A key difficulty is that the flow lives naturally in the L?
heirarchy, and so does not directly control the L™ norm of curvature. This
in turn introduces difficulties in obtaining pointwise control of curvature.
For n = 2 this does not cause any issue. For n = 4 the same Sobolev
inequalities can not apply. Nevertheless we are able to use those proved
above to obtain pointwise control in this case as well.

We begin with the L2-control.

PROPOSITION 15. Let n € {2,4}. Suppose f : M™ x [0,T*] — R¥
evolves by (NCF) and «y is a cutoff function as in (). Then there is a
universal eg = £9(IN) such that if

(32) c=swp [ jAPauze
(0,7%] J [y>0]
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then for any t € [0, T*] we have

t
/ APdy + / / (V@ AP + ARV AP + |A) dudr
[v=1] 0 J[y=1]

< / |A[dp
[v>0]

W=

o+ et(e)* " (14 (n = 2)(4 = m)l(ey)*ulfo)]
+ (n = 2)(n = 3)[(e,) ulfo))? )7,

t=0

:\w

where ¢ = ¢(n, N).

PrOOF. The idea of the proof is to integrate Lemma 8, and then use
the multiplicative Sobolev inequality Lemma 12. This will introduce a mul-
tiplicative factor of [|A[, [y>q in front of several integrals, which we can
then absorb on the left. The proof for n = 2 is the same as that in [15].
Therefore here we give only the proof for n = 4.

Setting k = 0 and s = 4 in Lemma 8 we have

d
G |1t 2 =0 [ 9 AP
M M
<cle)t [ APdue [ (IPHA) + P(A) < 4) o
[v>0] M
We estimate the P-style terms:
[ (22 + P )

<c [ (47190 A1+ IV ARIA] + AP A1) d

IN

¢ | IAPIZ @Al +VARIAR + |A41]y dy
<o [ VAP dutc [ (AP + [APIAP) dp.
M M
We use Corollary 13 (ii) to estimate the second integral and obtain
[ (3 + PR )

(33) <9 /M VAR i+ (o2 o
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We add the integrals [, |A4|%y*dp and [,, |V A|?|A]?y*du to the estimate of
Lemma 8 (with £k =0, s =4) and find

d
G [ 1P 2=0) [ (VAP + APV AR + |AF)
M M
< efey)! / APdy + ¢ / (JARIVA] + |A%)~ dp
[y>0] M
o [ (PHA) + PN < 4) '
M
< efey)! / APdu + 6 / 19 AR g+ (eI AN oy
[v>0] M

which upon absorbing and choosing 6 small yields

d
G [ 1P [ (9 AR & APIVAP + A1) dn
M M
1
< ey )PAIR oy ()20 ()% + 141 1)) -

Integrating, we have

t
/ AP du + / / (VAP + ARV AP + |A) dudr
h=1] 0 Jh=1)

< [ JAPdu| tet(e) (14 (0= 2 - (e Pul o))
[v>0]

t=0

+ (n=2)(n = 3)l(e)) ul(fo)]? )<

where we have incorporated the three cases into one statement, and used
e <1, py(fe) < pu(fe) < pfo), [y=1Ccly>0land 0 <y < 1.0

REMARK 3. It is possible to proceed as in [24] and prove a bound
directly for . (f;) in terms of y(fo), under the smallness hypothesis (32).
However this yields a bound exponential in time, which is quickly worse
than the simple but uniform in time bound used above. It is an interesting
open question on how to control the area locally uniformly in time without
resorting to this crude estimate. In order to overcome this issue we prove
the following estimate for the scale-invariant |V A3 . + [|A[|1 . directly.
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PROPOSITION 16. Suppose f : M* x [0,T*] — RV evolves by (NCF)

and 7y is a cutoff function as in (). Then there is a universal g = €o(N)
such that if

£ = sup / |A|* + |VA|Pdp < o
(0,7*] /[y>0]

then for any t € [0,T*] we have
[ At vap
[v=1]
t
+/ / (V@ AP + V() AP|AP + |VAPIAI* + |[VA|* + |A]®) dudr
0 Jy=1]

< / A + [V APdy
[v>0]

+ Ct(CV)460 9
t=0

where ¢ depends only on ¢, and N.

PROOF. Let us first calculate
a A*Y*du =4 | |A2(A, A)~°d A H FV~*d
dtHWM— |A]Z (A, Ag) v du + [ A JF) 2 dp
M M M
+S/ | Ay~ dp
M
— 4 [ AP (AL A+ (P + PO ()" dn
M
4 [ 1A (. (PR + ) () d
M
+S/ Al iy dp.
M
Observe that
4/ \A\2<A,—(AL)QA+ (P§+P§)(A)>78 dp
M
+/ [ (A, (P + P§)(4)) 5" du
M

=4 / |A|? (A, VPVIV,V, A) 75 dp + / PY(A) * (P§ + PY)(A)y® dp
M M
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=4 [ (T (4147, V) 4) 7" d
+ 45 /M |A|? (AVP, VIV, V,A) v du
— s [ (TAAPT. V9,407 d
+ [ PR (P + P ()" di
— 4 /M (VITPAA] 124 (A, VPA)), Vg A) 7 dp
+ 4s /M |A|? (AVP, VIV, V,A) v dp
—4s /M (VP(AJAP)VIy, VoV, Ay v~ dp
+ /M PJ(A) * (P§ + P3)(A)y" dp
=4 /M (VP AJAP +2VPA (A, VIA) + 2VIA (A, VP A)

+2A(VPA,VIA) + 24 (A, VP A) VA dp
+ 4s / |A|2 (AVP, VIV, V,A) v dp
M

~ s [ (VAP VY, 4) 0 d
M
+ /M Pg(A) * (P32 + Pg?) (A)y* dp
= —4/ IV (2)AI*| A 7* du—8/ | (A, V() A) > ~* dp
M M
4 / (2VPA (A, VIA) + 2VIA (A, VP A)
M

+2A(VPA,VIA) V0 A)y* dp
s [ AP (AT, V19,9,4) 7 dy
M

—43/ (VP(AJAP)V9, VoV, Ay v dp
M
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+ [ P« (P + P ()
M
= 4/ V) AP AP v° dp — 8/ | (A, V() A) > ~° dp
M M
+ / (AxVAxVAxVA)y du
M
nyy / A2 (AVP~, VIV, Y, A) v* dp
M
- 43/ <VP(A|A|2)Vq’y, V4 VpA) v dp
M
+ / PJ(A) * (P§ + P)(A)y" dp
M

Using v = Ao f, we combine this with the evolution of ||AH§11 s/ and estimate
to find ’

d
et A4 s
% [ 1At
< —4/ VAP 1APP v du—8/ | (A, V) A) |*~* dp
M M
s [ JAP (AT, V1V,9,4) 5 dy
M
—45/ (VP(A|AP)V9y, VYV A) v~ dp
M
+/ (A*VA*VA*V(Q)A+P30(A)*P32(A)+P80(A))’ysdu
M
+8/ Al Yy~ d
M
<-4 [ [V APIAP Y dy
M
+/ (AxVAx VAV A+ PJ(A)* P{(A) + PJ(A))y du
M

ele) /M<|A|4|V<2>A| APV ) Al
APV AV gy Al + A7) v du

< (4+61+65)/ [V (2)APP|A]? ~* du+53/ IV (5)Al?* dp
M M



Concentration-Compactness and Finite-Time Singularities for Chen’s Flow 85

+(52+54+57)/ |A|878d,u+56/ IVA*+* du
M M
+/ (Ax VAxVAx V() A+ P(A) « P5(A) + B (A)y" dp
M
+C(Cv)4/ JAI*y dp.
M

In the above, we used the estimates (¢ varies from line to line, is fixed
depending on 6;, s, 4 to be chosen)

c(er) [ A9 Al d
§51/ IV (2)AlP|A* * du+c(67)2/ |A|S 52 dy
M M

S(Sl/ |V(2)A|2|A|273 d#+52/ |A|8’st,u+c(c,y)4/ |A|473*4dﬂ,
M M "

c(er) [ JAPIT Al d
M
<0 [ VAP ductele)? [ 1AP
M M

<o [ V@APIAR dun [ AR dele)! [ JAlty .
M M M

() /M APIVA|V 0 Al d
< / IV ) AP2IAP 4 i+ eey)? / VAPRIA 4~ dy
M M

S65/ ‘V@)AVIA\Q'NM%/ |VA‘4’YSdM+c(Cw)4/ Ay dp,
M M M

. 5 . N
C(Cv)/ A"y dp < 57/ |AIB du—i—c(c,Y)Q/ |AI® 52 dp
M M M

< 57/ AISVSdu—i—c(cw)‘l/ |A* Y dp.
M M
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Now let us deal with the P-style terms by estimating

/ (A* VA*VA*V A+ PY(A) x P2(A) + P2(A))Y* du
M
< C/M(\AHVA|2\V(2)A! + AP APV @) Al + [A[IVAP) + |A]F)y* dp
<o [ IVAPIARY ducte [ (VA7 + AR du,
M M
Combining, we find
d
—/ |AYy* dp < (—4+51+55+68)/ V) APA]P 7* dps
dt M M
+53/ IV 3)Al> 7 dps
M
(34) + (c+ 62+ 64 +67)/ |AIB4® dp
M
+ (C+66)/ IVA[* % du
M

el [ A d
M

Now we turn to the next term, [, [VA|?~+* du. Since this is an L?-norm,
the evolution is standard. Unfortunately, the typical approach with Lemma
8 interpolates between V(3)A and A in L?, whereas we wish to go down
instead to A in L*. So we calculate

d
— / VA2~ dp = 2/ (VA,—VPAV,VA+ (P§ + P)(A)) " du
+ / |VA|2 <ﬁ, F> % du + s/ |VA]2’yt'yS*1 dpu
M M
= —2/ (VA,VPAV,VA)~*dp
M
+ [ (VA P3A) + PAD di
M

+s/ IVAPyy tdp.
M

For the first two terms, we find

) / (VA, VPAV,VA) 7 dp + / (VA= (P3(A) + PLA)y* du
M M
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- _2/ Vi) AP dia+ 28/ (V" AV, AV A) 7~ dp
M M
_ 23/ (VT AVP~, qurA> ,stl dy
M
+ [ (VA P3A) + PN d
M
=2 [ VAP =25 [ (TTAV )7
M M
-2 / (YVImAV Ty + 4V APy
M
+ (s = YV AVPyVy, Vigr A)y* = du
+ / (VA (PJ(A) + P (A)y dpe.
M

Note that
—2s(s—1) / (V" AVPANV 1y, Vg A) v 2 dp
M

< cfey)? /M(V(g)A « VA v 2dpu.

Classifying and estimating terms in this way, using also v = J o f, we

combine this with the evolution of ||VAH§ Lo/ 1O find (note that the ¢ here

depends on s and N)
d
—/ IVA[y® du < —2/ V(54?7 dp
+ [ (VA (PA) + PN du
M
(35) el [ (VAxTAn* 2 du
M
o) [ (VA (Vg Ad+ s VA dy
M

T efey) /M VAPV o Al + |AP)* .

For the P-style terms we estimate (here ¢ depends additionally on
69,010, 611)

[P+ P 9 4) v
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<c [ ([4FI9 A1+ AV A4
+ VAP + | A1V A [VA])ydp
<c [ (IAPIVAIT @A+ [V AIITAPIA
+ VAP + [AVAP) 7 dp
<t [ VAP du+on [ [Vi)APIAPd
M M
de [ (IVA1 411V AP) v
M
359/ ’V(3)A’278du+510/ IV (2)Al2| APy dp
M M
+5n/ \A\gvsd,u,—irc/ VA yodp.
M M
We additionally observe the estimate
(e [ (Vi Tay 2y
+c(cy) / (VgyA* (Vig)A+ Ax VA Hdu
M

+eler) [ IVAP(Via) Al + 14 d

(36)
< 512/ |V<3)A|275du+613/ AP ~* dp
M M
v [ VAl rdatele? [ 194y da
M M
o) [ ARyt cle)t [ A1 .
M M
Since

c(ey)? / VAl y* 2 dp
M

< 514/ VAl y° du+0(cw)4/ VAP~ dp
M M
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we refine (36) to

C(Cv)/ (V(g)A* (V(Q)A—l— (CW)VA—FA*VA))fyS_l dy
M
weler) [ VARVl + 147" da
(37) < (512—|—514)/ |V(3)A|278d,u+613/ \Al8vsdu
M M

C/ IVA*y*dp
M

+e(e))! / VAP v~ dp + ¢(cy)* /M JA[*y* dpe.

Combining (36) and (37) with (35) we find
/ IVAPPy* dp
—(2 =69 — 612 — 614) /M IV (3) A2 v* dp
(38) + 610 /M V) AP APy dp
+ (611 + 613) / |AB~* dp + c/ VA ysdu
M M

o) [ VARt cle)t [ A1 .
M M

Taking the final estimates (34) and (38) together, we obtain
d

Al A d
T (|\+|V!)vu

—(2— 63 — 69 — 612 — 614) /M IV (3)Al*7* du
— (4 — 6 — b5 — b3 — b10) /M IV (2)Al*|A* v* du
+ (c+ 82 4 64 + 67 + 611 + b13) /M |AI®~* du
e+ 0) [ VA" dy

see)! [ 1TAPY dutele)! [ A1 .
M M

89
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With appropriate choices for 6; we find
d
o | A+ 1V ARy dn
M
3 S S
< —5/ VAl y du—3/ V) AlP|A]?~° dp
M M
o [ APy e [ valty g
M M

o) [ [VAPy s cle)t [ (Al .
M M

We deal with each of the integrals with a large coefficient in turn. By the
Michael-Simon Sobolev inequality we estimate

4
3s 3
[ vl (/ VARV o)Al 7 du)
M M

3s %
wel [ 1aIvass )
M
3
3s—4
+C((C»y)/ VAP ™ du)
M
2 2
3 s 3
§0</ \VA|475du> </ |V(2)A|2’75d,u>
M M
3
vl [ 1aran)” [ warya
[v>0] M
2 2
4 2 3 4 s 8
wetedd( [ wara)’ ([ waiyan)
[v>0] M
. 2
§6</ IV Al* 72 du)
M
+(l+csé>/ |VA[*~* du
2 ) Jus

2
+e(e) ( / VAP du)
[v>0]

Now observe the intermediate estimate

2 2
(/ IV (2)Al* 72 du) < C(/ V(3)Al[VA[~2 d#)
M M
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2
s—2
n c(<c7> [ Wmalvaly = du)

1 s 2 )
< 5(/ V) Al* 7> du) +C€o/ IV 5)A*7* dp
M M

2
re(te)? [ VAP an)
M
that is,
. 2
(/ !V(z)AI272du) Sceo/ Vi) APy dp
M M

2
+c(cﬁ,)4</ ]VA\QV%CZ;O :
M

Combining this with the above yields

1 1
/ ]VA|4fysd,u§cao/ ]V(g)AIQ’ysdu—i- (5—1-0503)/ VA" % du
M M M

2
+ c(cv)4</ |V AJ? d,u) .
[y>0]

A similar argument applies to the integral [}, |A[®v* du (see the derivation
of (90) for details), yielding:

(41)

4
1A < Al gy [ (TAI 4 1AF) 7 d

16
Telen) AN g

Combining (41), (42) and taking a sufficiently small £y such that the left
hand side absorbs, we have

(43) /M<|A|8 VA dpt < e /M IV AP i+ e(ey) o

Combining (43) with (40) above and choosing ¢¢ again if necessary, we
finally arrive at the estimate
d

oA+ 19 AR du
M
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+ [ (I9@AR + [T APIAR + VAL + AP VAP +A]) 7
M
< c(ey)ten .
Integrating the above finishes the proof. [

PROPOSITION 17.  Suppose f : M* x [0,T*] — R evolves by (NCF)
and 7 is a cutoff function as in (). Then there is an €9 = e0(N) such that

if

(44) e = sup / Al*dp < <o
[0,7%] J[v>0]

then for any t € [0,T*] we have

t
/[ VAl /0 /[ T AR+ [V APIAP + [V AP AT
'Y: e

+ |V APIVAP + VA |A]?
+ VA2 AI® + | A" dpdr

< / Vi APdp| o+ et(ey)% (1+ [(e) o)) (1 + €2,
[y>0] =0

(45)

where ¢ = ¢(N).
Proor. Lemma 8 with k =2, s = 16 gives
d
G | IV @AP S 2= 0) [ 190 AP
M M
<cle) [ APdute [ (IPHA) + PR Vo) 4) v
[v>0] M
We estimate the P-style terms as follows:
[ (P3A)+ PA 0 4) 7
< 9/M IV @y Ay dp + C/M V(o) APP|A[* 7' 0dp

+C/ vQ)A*(V(3)A*VA*A+V(2)A*VA*VA)716du
M
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+c/ Vigd* (VigyAdx Ax Ax Ax A
M

+VAxVAxAx Ax A)~y%dy
= 6?/M (VAP + [V APIAP + VA A?) o' %dp

(46) +o [ (VAPIAI + 9 ARIVAPR) 1 %d.
The equality
[ I9ARAR S =~ [ (84,4) [TAPLAR
M M
) / (V, A, A) (VPV A, VA) |A]? y'%dp
M
) / (V, A, A) [VA[2 (VP A, A) A dy
M

~ 16/ (VpA, AVPY) VAP A2y dp
M

= —/ (VA A)x (VA= VAx Ax A)yOdy
M

1 2
=5 [ VIR VAP
M
16 / (V, A, AVP) [V AP A2 A5 dy
M
implies the estimate
1
[ 1vaf AR a5 [ VIAPPIVAR
M 2 u
=— /M(V(Z)A * A) % (VAx VAx Ax A)~'%du
» 20 412 15
—16/ (V, A4, AVPA) [V AP A2y dp
M
1
<5 [ IVAMAR e [ Ve APIAl
4 Jm M

(47) 16 / (V, A, AVP) [V AP A2 Sy
M

93
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To deal with the last term we use Young’s inequality twice (on the first line
with exponents 4 and %, for the second with exponents 3 and %) to estimate

16 /M (V, A, AVP) [V A2 AP2 A5 dy
1
<5 [ IVARAR Sk cle)? [ 12
1
<5 [ ITAAP Y Sk e [ a0
M M
(48) wele)® [ 141" .
Combining (47) and (48) we find
1 2
[ IVARAR Y+ 5 [ [91AR T AR
M M
1
<5 [ ITALAR Y St e [ (T APLAT + A1)
M M

+c(ey) 1Al 507

which after absorbing yields
/ VAPAP A du + / VAP’V AP 1 dy
M M
(49) <e /M<|V<2>A|2A|4 A1) g+ (e AN s -
Combining (49) with (46), we find
¢ / ([PA(A) + P2(A)] * V5 A) 7 '%dp + / VANAP A dy
M M
<0 /M (IV 0 AP + [V ) A2|A2) 4%
T / (V@ APIAL + Vo) ARV AP + |A) 418du
M

(50) + C(Cv)GHAHi[’)OO} :

Now we require the multiplicative Sobolev inequality in (iv) of Corollary
13. This is particularly useful for estimating the right hand side of (50):

/M(|V<3>A|2|A|2 LIV APIA[ 4 [V o) A2V A
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+ |VAP|A]° 4 |A[") "0 du
<0+ clAllL ) /M IV 0y AI27 6 dp

+ ele) AN s (1+ [e) 1y (1) (14 AN y57)

where 6 € (0,1) and ¢ = ¢(s,60, N) is an absolute constant. Applying this
and absorbing, we find

d
5/ |V<2>A|2716dﬂ+/ (VAP + [V APIAP + |V o) AP | AL
M M
+ |V APIVAP? + VA AP + [VAP|AL® + |A]") v Cdp dr
5.3 1 1 1
c(ey)®[(e) i (f)] €2 + e(ey)%e2 (1+ [(ey) 1y (£0)]2) (1 + €7)
1 1 1
< c(cy)be2 (1+ [(07)4M7(ft)]2)(1 +¢e2).

Integrating finishes the proof. [J

IN

For L control we use the following estimated form of Lemma 8. The
proof of Proposition 18 carries over essentially unchanged from [15]. The
n = 2 case of Proposition 19 is very similar to [15] for n = 2. Therefore we
focus only on the case n = 4 in the proof below.

PROPOSITION 18.  Suppose f : M™ x [0,T*] — RN evolves by (NCF)
and 7 is a cutoff function as in (v). Then, for s > 2k + 4 the following
estimate holds:

d
E/ \V(k:)A|2’stu+/ IV es2) APy dps
M M
(51) < AL psg /M IV Al dp

T el AR o (1 + AT o)
where ¢ = ¢(N).
PROPOSITION 19. Let n € {2,4}. Suppose f : M™ x [0,T*] — R¥

evolves by (NCF) and v is a cutoff function as in (7). Then there is an
g0 = eo(n, N) such that if

(52) sup [ [Al"d < =0,
[0,7+] J [y>0]
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we can conclude

IV ) Al 2y
< (CV)QIH_Q (va*v [(07)4/1(‘]“0)],]\[, CE()(O),. e 7a0(k+3))7

where ao( ) (fo) 2 Hv(j)AH2[w>O]{t 0°

PrRoOOF. The idea is to use our previous estimates and then integrate.
We fix v and consider nested cutoff functions v, .. Define for 0 <o <7 <1
functions v, r = Yo 07y satisfying v, = 0 for v < o and 7, = 1 for v > 7.
The function v, , is chosen such that ~, , satisfies inequalities (), with the
estimate

C'YU,T = ’

Note that ||Vt)s 7|l depends only on o and 7, so that when they are fixed
we have ¢,, = < cc,. We use this below.

As noted above, we present the proof for n = 4 only and refer to [15] for
n = 2. We first estimate

4
§</ Vs Alz’ysdu>
4
< cfey) (/M VAl [V ) Al du) ’
4
+ C(Cv)2</ V@34 IV(2)A|751dﬂ> ’
2 2
%</ VAl Sdu>3</ |V(2)A|273du)3
zM 2
‘i‘C(Cv)Q(/ IV(s)AWdu)s(/ IV@)AIZVS‘Qdu)s
< % (cy %(/ V(3 A[Q’ysdu) +c/ |V 4)A|2 yidu

+ c(cy) </ IV (2) AP? Sdu) +ccy?o</ IV (2) AP? 52du>
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which upon absorption yields
4
2 2,5 3 2_s
([ 1vwaryan) < [ [vaaroan
M M

2
+C(Cv)2</ |V(2)A|275d/~6>
M
:
64) rete) ([ WAy i)
M

We apply the estimate (54) with v =, s to find

2 8
()3 NV AN 54 < V@Al sy +ele)? IV Allz sy
10 8
(55) +e(e) 3 Vi Allg sy

Taking e¢ as in (44), we can apply the estimate (45) of Proposition 17 for
Y = 71,3 In particular we have the estimate

(56) V) Al3 15y < a0(2) + eT™(e)%% (1 + [(e) 1l fo)]2) (1 +22) .

Combining (55) with (56) we have
8
IV AllS s < el VAl sy +c

where ¢ depends on T™, ag(2), [(¢y)*u(fo)] and N as in (53). We have also
used € < 1. From now until the rest of this proof all constants ¢ (that may
vary from line to line) shall depend on these quantities. Later in the proof
¢ may additionally depend on «ag(k); when this occurs it will be explicitly
stated.

From Proposition 14 we find, using 7z z instead of =,

3.7
478

t
R -
0
Lo 8
< (148 oy (19041 o

e 1AL+ e 1) )
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t
/0 <\|V<4)A\§,hzz} + C) dr

1
<c50/\|V4)A|]2 L jydr+cef

=

< e(u(fo)eo)

Now from Proposition 17 with v = 71 3 we have the estimate

3
4

(e

N

/0 HV(4)A||§MZ%] dr < ap(2) + cT™*(cy)° %(1 + [(ey) (fo)]2) (1 + 5%) <c.

In the above we used € < 1. This implies

t
1

(57) /0 A g dr < cb.
Now, integrating Proposition 18 with v = 7z 15 yields an inequality of the
form

t

o) <50 + [ Aralrdr

c

where

16

at) = IV Al ps 1

e [ (148 (1 1A )]

B(t) = HWk)AHg,hzg] T
and

A(t) = HAHio,['yZ%}’

Noting that 8 and [ Adr are bounded as shown above, we can invoke
Gronwall’s inequality and conclude

(58) (VA3 sy < 6 /ﬁ DA g < o
where now ¢ depends additionally on ag(k). Therefore using (22) with vis =
we have
1
(59) [Alloo,jy>21] < cgf
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Finally, using (21) with T'= V) A and v = 73 1 we obtain for any I € Ny

IV Al oy < iV Al e g (Vs Al s g
1AV Al gy + (@)NAV ) Al o
+ (e IV AV AR 2 01 + () IV a4 Al 2

Z =
+ () IV AR s )
< VAl e g (1Y a5 Al 5

3

A1 po VAl s )
+(e)?[1A11%, [7>31]”V(l+1 A||2 >31]

3

(Cv) HV A||2 7>31]||VA”2 [v>31]
+ () IV A o gy + (@) IV 0 A o) -

3

The estimate (58), applied for k = 1,k, k + 1,k 4+ 3 then yields
IV @y Alloo,y=1) < c.

Tracing through the dependence of the above ¢ on (c,) and the scale-
invariant [(cy)*u(fo)] reveals the structure of the constant given in (53).
This completes the proof of the proposition. [

PrROOF OF THEOREM 3. The proof for n = 2 follows exactly as in [15].
It should be noted that the argument given in [37] results in a constant
that depends on the measure of the initial immersion. That was natural
in the setting of [37] where volume was a-priori along the flow possibly
not controlled, depending on the given global force field. Here, we have
no external forcing term, and so it is desirable to obtain the theorem with
universal constants not depending on the initial data.

This improvement is possible due to the validity of Proposition 16. We
make the definition

(60) ) = sup [ Al + (VAP dp.
zeRN J f=1(B,(z))
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By covering Bi(z) € RY with several translated copies of B, there is a
constant ¢, depending only on N such that

z€RN

(61) w0 < e, swp [ Al + [T AP dp.
f1(By ()

By short time existence the function 7 : [0,7)) — R is continuous. We
now define

(62) to =sup{0 <t <min(T,\) : n(7) <6 for 0 <7 <t}

where A, 6 are parameters to be specified later.
The proof continues in three steps.

(63) to = min(7T, \),
(64) to=X = Lifespan Theorem,

The three statements (63), (64), (65) together imply the Lifespan Theorem.
The argument is as follows: first notice that by (63) t9 = X or to = T', and
if to = X then by (64) we have the Lifespan Theorem. Also notice that if
to = oo then T' = oo and the Lifespan Theorem follows from estimate (67)
below (used to prove statement (64)). Therefore the only remaining case
where the Lifespan Theorem may fail to be true is when tg =1 < co. But
this is impossible by statement (65), so we are finished.

To prove step 1, suppose it is false. This means that tg < min(\,T'), so
that on [0, t9) we have n(t) < 6, and

(66) n(to) = 6.

Setting ¥ to be a cutoff function that is identically one on B, () and zero
outside B,(x), so that v has the corresponding properties on the preimages
of these balls under f, Proposition 16 implies

/ A + [V AP dp
f=Y(Bp (x))

</ A + VAR du|  +cotper, te0to).
F=1(Bs(z t=0
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A covering argument implies

w0 < e sup [ A + [V A= dy
z€RN J f~1(Bg (2))

so that

(67) / \A]4 + \VA]Q dp < cper + cnco)\p_451 .
f=H(B1(z))

We choose 6 = 3¢;e1, and €1 small enough such that 6 < g where ¢q is the
smaller of those appearing in Proposition 16 and Proposition 19. Then, for
A < pt/cg, the above estimate implies

n(t) < 2cher

for all t € [0,tp). Therefore (recall that to < T') limy—, n(t) < 2cye1. This
is a contradiction with (66).

This establishes step one (63). We have also proved the second step
(64). Observe that if £y = A then by the definition (62) of o,

T >,

which is the lower bound for maximal time claimed by the lifespan theorem.
The estimate (4) follows from (67). That is, we have proved if ¢ty = A, then
the lifespan theorem holds, which is the second step.

We assume

t():T?éOO;

since if T' = oo then the lower bound on T holds automatically and again
the previous estimates imply the a-priori control on HA||i 1B T
HVAHif,l(Bl(x)). Note also that we can safely assume 7' < A, since other-
wise we can apply step two to conclude the Lifespan Theorem.

In this case, Proposition 19 implies that the flow exists smoothly up to
and including time 7. The proof of this claim follows exactly as in [15].
In particular, we have uniform control in C* for the flow, allowing us to
reapply short time existence and extend the flow. This contradicts the
maximality of T', and finishes the proof. [
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All steps in the proof rely only on the flow having the form
F=AYH+ P)(A).

Both the surface diffusion flow and the Willmore flow have this form, in
addition to Chen’s flow. The work in this section extends results from
[15, 37, 36] to the case where n = 4 for the flows considered there. We state

a general version of the lifespan theorem here incorporating this.

THEOREM 20. Let n € {2,4}. There exist constants €1 > 0 and ¢ <
oo depending only on n and N with the following property. Consider a

curvature flow f : M™ x [0,T) — RN with smooth initial data satisfying
(Ouf )L =-F
where F = ALH + PY(A).

(Case 1: n=2.) Letp be chosen such that
/ |APdp|  =e(z) <e for all z € RY
=1 (By(2)) =0

Then the mazimal time T of smooth existence satisfies
7> 1
c
and we have the estimate

1
/ |APdp < ceq forallt e [O, —pﬂ.
f=H(Bp(x)) ¢

(Case 2: n=4.) Letp be chosen such that

/ ‘A|4 + |VAPPdu = e(x) <eg for all z € RN .
F=H(By(x)) t=0

Then the mazimal time T of smooth existence satisfies
1
T > _p4 3
c
and we have the estimate

1
/ ‘A’4 + \VA|2dM < cgp for allt € [0, —pﬂ.
71 (Bp(2)) c
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5. Global Analysis of the Flow

Now we move from a local condition on the concentration of curvature
for the initial data, to a global condition on the tracefree second funda-
mental form. Unlike the estimates we have already discussed, we are now
restricted to n = 2. We follow the same strategy as in [23], where asymp-
totic convergence to a round point is proved for a Willmore/Helfrich flow.
The key difference here is in showing that the energy is monotone. This is
where the restriction on dimension arises.

LEMMA 21. Let f: M?x[0,T) — RN be Chen’s flow. There exists an
absolute constant €9 > 0 such that if

[ tanze
M

then

d o 1 o
—/ A |2du§—/ rAH%m——/ A2 H* dy
dt M M 2 v

17
——/ IVA°|>H? dp.
4 Ju

PROOF. We first compute
d d1 .
et A° 2 — = H 2
G [ A= 55 [ jRa
_ _/ (AYH +Q(A%)H F) dy
M
_ 1 77 o\ 17 1 77 r7
_ _/ (ACH + Q(A%)H, A H — QA)H) du
M
— [ atAP s [ (@E.QUE) d
M M
+/ <ALﬁ,Q(A)FI> du—/ <Q(A0)ﬁ,Alﬁ> dpi.
M M
Note that

/M <A¢ﬁ, QA)H — Q(AO)ﬁ> dp
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2
1 7121 712 5\ 2

— = [ |\VAPIHP du— ’<VHH>’ dy
2 u M

:—5/ VARIAR .
2 um

_1 /M (A“H AP dy

Therefore we find
d 02 1732 3 121 712
— [ [AdpT < — | [ATH["dp— 5 [ |VH[?|H| dp
b [ LA PAPIEP dy.
M

We now use estimate [22][(14)] (see also [14][(17)]), valid analogously in high
codimension, which reads

N 1 B
(1_5)/ ]H\Q\VAO]ny‘ldqu(——Qé)/ |FY]A° 27
M 2 M
1 712 7124
< (5 +35)/ \H 2V 2 dp
2 M

b [ A7+ APITAT ) o+ che [
M

| A°Pdyp,
[v>0]

for § > 0, where ¢ is a constant depending only on 6.
Rarranging this with v =1 yields

L 296 . 1—46 .
— | |HP|VHPdp < - /HQVAOQd — /H4A°2d
RS AR < < [ PPl g [V AR

+c/ (JA%6 + |A° 2|V A°2) .
M

In order to absorb the bad term we need

31—46 1 1 2
— > — <— 1—46 > = +26 = - > 66.
21466 2 37L 3

This is satisfied for § < %, so let’s pick 6 = 1—18. This implies

3 [ o - 17 [ - i Tl
= / APIVAPd <~ / APV A | / 1A% 2dp
M M M
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+c/ (JA%[6 + |4° 2|V A% %) dp.
M
The evolution of [|A°||2 can then be estimated by
d - ~ 1 _
S U ey VS TR VUL (R o e
dt Jar M M 2 /m
17 012| [7|2 7 012 714
e XL (e P
M M
-I—c/ (JA%[6 + | 4° |V A° %) dy
M
. - 3 R
< [atAPdpr [ aAR -] [ AP d
M M M
17 -
— —/ |VA°|2|H|2du+c/ (JA°15 + |A° 2V A°) ) dp .
8 Ju M

Estimating [, |A°[*|H|?du < [y |H[*|A°2dp + ¢ [, |A°|% dp, this be-
comes

. 1 .
T I TR WV ("
17 o 7 o o o
- §/ VA |2|H|2du—|—c/ (JA°1° + |A° 2V A°)*)dpe .
M M
Now we use the smallness assumption, so that the Sobolev inequalities
[ (147 + APV AP
M
<) A%3 /M IV AP + [AP|VAP + A1 A°) dp

and

| (9@ AP +APITAR + A A < c [ (AT

from [14] and [36] respectively, become valid. Combining these together we
find that, for o sufficiently small,

d 1 - 1 "
— | |A%Pdu< —Z | |AHd —/ A°PPH*d
G| arans = [ aiRa— g [ ARt
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1 -
-5 [ IvArE .
8 Ju
as required. [

REMARK 4. The integral identity we use, as well as the relationship
between A, A° and H, are only valid for n = 2.

Interior estimates for the flow follow using an argument analogous to
[23, Theorem 3.11].

THEOREM 22. Suppose f : M? x (0,6] — RY flows by (NCF) and
satisfies

sup / |A]Pdp < e < e,
0<t<6 J f~1(Ba,(0))

where § < cp*. Then for any k € Ny and t € (0,8) we have
_k
IV ey All2,f-1(B,(0)) < ket 4
IV ) Alloo, 18, (0) < exvet™
where ¢ s an absolute constant for each k.

We know by the Lifespan Theorem that for any sequence of radii r; ™\, 0
there exists a sequence of times ¢; /T such that

t; = inf {t >0: sup / |APdp > 63} <T,
z€RN J f=1(By, (2))

where €3 = ¢1/c; and €1, ¢; are the constants from the Lifespan Theorem.
Curvature is quantised along f(-,t;) so that

/f—l(B o) | A2 dp < 3 for any = € RY,
T T

t=t;

> e3 for some z; € RN,
t=t;

(63) /f |A2dp

(B, (,))
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Consider the rescaled immersions

fi o MP [ = vy g, rsH(T — 1)) — RY,

fi(p,t) = %(f(p, tj+rit) — x;).

The Lifespan Theorem implies rj_4 (T'—tj) > cg for any j and also that

sup / |A|?dp < gg for 0 < t < co.
zeRN Jf (B (x))

Interior estimates on parabolic cylinders Bi(z) x (t — 1,¢t] yields
IV Alloo,s, < (k) for  —ritt;+1<t <co.

The Willmore energy is bounded and so a local area bound may be ob-
tained by Simon’s estimate [31]. Therefore applying Kuwert-Schéitzle’s
compactness theorem [14, Theorem 4.2] (see also [3, 7]) to the sequence
fi = fi(-,0) : M? — RY we recover a limit immersion fo : M2 — RN,

~

where M? = M?2.
We also obtain the diffeomorphisms ¢; : M?2(j) — U; C M 2 such that
the reparametrisation

£i(85,7) : M2(5) x [0, co) — RV
is a Chen flow with initial data
Fi(95,0) = fo+uj : M2(j) — RV,

We obtain the locally smooth convergence

(69) fi(85,) = f,
where f : M2 x [0, co) — RY is a Chen flow with initial data fo.
THEOREM 23. Let f : M? x [0,T) — RY be a Chen flow satisfying

the smallness hypothesis. Then the blowup f as constructed above satisfies
1QII3 =0, where (|| A°]))3)" < —2(|Q3.
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PrROOF. The monotonicity calculation implies

// QU (650 Py, =2 [ /|Q;|dujdt

< [ 1A5OPdy — [ 1430 Pl
M2 M2
= [ 1aPda- [ 140+ e P,
M2 M2
and this converges to zero as j — oo.
PROOF OF THEOREM 4. Theorem 23 implies
[ (A HP & (AP 4+ H147P)du =0
M2
and so the blowup is a union of embedded spheres and planes. Ruling out
disconnected components using [14, Lemma 4.3] and noting that by (68) we
have || A||3 > 0, we conclude that f is a round sphere.
As the sequence of radii was arbitrary and area is monotone, this shows
that u(fy) \, 0 and that f; is asymptotic to a round point. [J

Appendix

PROOF OF LEMMA 12. Statement (i) is Lemma 4.2 in [15].
Let us now prove (ii). We estimate

Jorarvause( [ vanaiyt g [ a4t a
M M M
4
9 3s—2 3
+e) [ 141 )
M
<o [ wapiapyan) ([ 1> an)
M M

4
el Al / A5 dy

(/ A3 4
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2 2
< ( | vapiapy du>3< [ 1ap> du>3
M M

4
el Al gy [ 1417 d

2 2
rele)i( [ paran) ([ 1apaan)
[y>0] M

2
<o f |VA\2|A|2fdu+c( / |A|5728du)
M M

4
+elldll g [ 1A it cle 1AL g
<0 [ [VAPLAR Y du
M
4
+ el g+ 141 o) | 1417 di

+ ()| Al s -

Note that in the above we used 3s — 2 > 2s. Now for the other term we
estimate

/ VAPRAP A dj = —2 / (VA1) (ATF) (V7 Ayp) (A™) * dps
M M
/ AAx Ax Ax A~ dp
M
—/ VAxAsx Ax Ax Dy~y*tdpu
M
Se/lvaFfdu+c/|AWfdu
M M
o) [ ITAIAP Y d
M
§9/ Vo) AI* y* dps
M
1
so [ AP dug [ IVAPIAR y dy
M M

+ (C'y)z||A||i[7>0}
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where we used s > 2. Absorbing yields
/ IVAPIAP v dp < 9/ V@) A*~* dps
M M
we [ 1A dut (e PAN g
We add these estimates together to obtain
[ AVAPIAR +14F) v <0 [ (Fi)aP" oo [ AP AR
M M M
4
+ el g+ 141 o) | 147" d
+ (07)2||A||i[7>0} :
Absorbing again for @ sufficiently small yields
| (VAPIAP +14F) v <6 [ 19, 4P " du

4
+ el g+ 141 o) | 1417 di
+ (Cv)ZHAHi[ApO}'

as required.
For the second estimate in (ii) we begin with

[ 1vaPap e < [ VaAllAfy duele,) [ TAlA b
M M M
3 S
=5 [ I9IAPR Al d
M
1
<5 [ IVAPLARY +0 [ VAP |4l du
M M
o [ AT dukele)? [ APy d
M M
1
<5 [ IVAPIAP 40 [ [90,AP 1] du
M M

* C/M |A|"® du + 0(07)4“AH§M>0]
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which upon absorbing yields
2 3 2
[ vAPLAP <0 [ (9P 141" d
M M

(70) +C/M AL dpe + () AN 507

Note that in the estimate above we used 2s — 4 > s. Now Michael-Simon
yields

3 3
Jouaraus e [ vanato¥an) ve( [ %% )’
M M M
3
o 2
wete)b ([ 141557 )
M
3 3 .
< Al oy [ 1941 1AL d
3
el g [ 1A d

1
o 2
betet [ 1A% F au [ 17y )
M M

< AR g /M VAP AP, dy

3
+ (Al o +0) [ 14T d

(71) +efey)? ( [ 14T du) }

To deal with the last term we estimate

2
7T s=3 s—
c<c7>3( [ 1ty du) < e WA gy [ 14112
1
< 3 A% AP ~25-6 g 2
< c(cy)”| ||3,[7>0} M’ 1”7y I

1
21 i
< cle Pl ([ 14722 an)

<0 [ 1A dit ol 1A g
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where we used 4s — 12 > s. This allows us to improve estimate (71) to
3 3
A s < el A g [ VA A7 d
M M
3
2 7
+ (@A s +0) [ 1A d

+c(ey) Al >0 -

Combining the above with estimate (70), we have
| (9APIAP +141) 2
M
< (cllAll3 5+ 9) /M (V) APIA] + [VAPIA] + |A]7) v dp

+ (Cv)4HAH§,[y>O]7

as required.
For (iii) we begin by noting

) /M (Aij, TPAT) <Vquz, quAkl> ~+* dy
= / <AijaALAij> VAP~ dp +/ VA 4* dp
M M
+ 5/ <Al-j’vaij> <Akl7quAkl> Viy 451 dy
M
and
_2/ (Aij, VPAT) (V9 430, ¥,y A™ ) 7 dp
M
= / ’APW(z)A!QV‘s dup —i—/ |AJ? <Vquz,ALVqul> + dp
M M
+ 5/ |Af? <Vquz, quAkl> VPy s tdp
M
so that
(12) [ VA = =2 [ (45,9247 (V1A Ty A" 1 d
M M

- /M <Aij, AJ‘AU> VA2~ du
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- s/ <A7;j, VPAU> <Akl, quAkl> Viyy*~tdu
M
:/ APV 9)AI? 7 du
M
b [ 147 (9140, 809,44) 5 dy
M
- /M (A, A+ ATY VAP 5 dp
+s/ |A12<qukl,quA’f’>vas—1du
M
(73) —s / (Ayj, VP AT <Ak,,quAkl>vq778—1du.
M
We estimate
/M A2 (V7 A, ATV, A ) 5 dp
1
< 9/ VAl v du+ Z/ IVA|** dp
M M
+09/ Al dp;
M
and, recalling s > 4,
2 q kl D s—1
S/ |Al <V Akt VpgA >V YT dp
M
- s/ <Aij, VpAij> <Ak1, quAkl> Viy~y*~tdu
M
1
§/ APV (9 AP~ du+1/ IVA|*~* dp
M M
+032(Cv)4/ [A[* = dp.
M
Combining with the above we find

/ IVA*y* dp < 9/ VA y* du+6/ APV () AP v* dp
M M M

(74) +es”(ey) | All3 fys0)
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Now let us estimate the second term on the right. By the Michael-Simon
Sobolev inequality we find

4
ARV o A2 4 A VA Vi AlS A% du)’
M| I"IV@)Al" v dp < c M| 12 [VA[ |V (9)Al2 v1 dp

4
3 1 3s 3
ve( [ 113V AL DAl ® an)

4
3s 3 3 3s_ 3
+c(Z<c7> [ 14 VAl 1du>
M

4
. . 3
vl [ 1AV AL i)
M

1 3 3s 3
<ol [ 1AR 1AV AL dn)
M
3 1 3s 3
el [ AR VAL 9 Al do

R 3
re(ste) [ 1AV A an)
M

%
(75) vl [ 1aran)” [ AP T AR .
[v>0] M

We work on the first term by estimating:
4
1 3 3s 3
o [ 14119419041 ¥ )
M
7
4 6
s(/ A!du> </\VA!|V A% )
[y>0]
12
( / Am) ( / \VA!475du> ( | vl 75du>
[v>0] M

1 2 4 s
1AL ooy [ 1941 d

IN

IN

2 2 12 4s i
1)+l ([ VeA )
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Estimating
12 4s
/ IVioyAls v5 du
M
2 4s
< C/M IVA|V @) Al5 [V (3)Alvs dp

+es(ey) [ VA VA1 ¥ du
M

1
12 4s 6 6 6  4s 6
= C</ IVig)Al's 5 du> K/ IVA|5 [V(5Al5 775 dﬂ>
M M

5
6 6 4s—6 6
+8(CW)</M VA5 [V Al5 775 d,u> }

and absorbing yields

[ 19@AlEa¥ du<e [ 1945 VAl du
M M

45—6

6 6 6
T e(s(ey)) /M|VA|5 Vi AlS 75 du

< [ 194 Vgl dn
M

1 12 4s
5/ Vo) Als v du
M
45—12

rels(e))t [ 9AF 255 d
M

Absorbing another time gives

[ VoAt s¥auze [ [vafvgala¥
M M

12 45—12

(77) sl ) [ [9AE 45 d

To close this estimate we must use the same technique again on the last
term with c,. The first step is

/MIVA!? ¥ dp
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17

< [ 1ANTAL 904175 d+ ester) / AV A A5 g

< ([t ) [t wat )
+ es(e, (/ A8 [VAIS 455 du> ]

Absorbing gives

/ |VA’ 5 745512

< [ AR 19 AL 2 dut cls(e) [ 1418 1941525 dy
M

Now this whole term that we are estimating is raised to the power % and
has a coefficient involving c,, which scales. Incorporating this, we find

5
6 45 18 4
((e)% [ 14197 a)
: :
<t ([ aa) ([ wart o)
[v>0] M
Since s > % we have 85;336 > s, this term is estimated by
5
((e)® [ 148 1941825 dn)
M
3 3
g 1 4 s 4,5 s
< (ey)2py(f)2 |Al" dp VA" v* dp
[v>0] M

3

36 4 5

(79) < [ Al e ([ jaran)”
M [v>0]

In the above we used 11y := i[y>0]. Now let us move on to the first term in
(78). We estimate it by

s(e)) /|A’5‘V 6 45 12d/£




Concentration-Compactness and Finite-Time Singularities for Chen’s Flow 117

12 45—24

1 12 4s 24 12
<5 [ WAl ¥ dutctote ¥ [ 1a1% 9" a
M M

1 12 4s 24 2 12
<5 [ 19@AE 2% et clste)® i (D1 -

Combining the above with (79), (78) and absorbing in (77) gives

4
S S 5
/ V) AlS 7% du < 6/ IVAIZ V5 A5 7S dp + </ VAt du)
M M M

16

(0 +ele) ¥ () N EIAIE s + () (DI 1AL o)

Note that [(c,)*p(f)] is scale invariant, and that in (80) the constant c
depends on s, n and N. Incorporating the eventual 2 power, we estimate
the first term on the right in (80) by

5
s 1
( / VAJS [V AlS 45 du)
M

3.2 % 2 s i
SC(/ [VA| 72du> (/ V) ATy du)
M M
.\ 1
(81) Sc(/ VAP ~2 d,u) +§/ \V(g)A\Q’ySd,u.
M M

Using a similar strategy as before, we estimate
. 2
C</ IVA\gvidu)
M
. 2
< [ 11vANTe Al )
M
s—2 2
reste?( [ 1A1I9ARF )
M
S % 12 4s %
< [1a#vat % an) ([ mearta® )
M M
4 2
2 3 s 3 3 56 3
+ cs(cy) [VA?v2 dp APy 72 dp
M M
1 2 o4 \3 1 2
< —(/ IV A|5 75 du) + —(/ VAP y2 du)
2\ Jum 2\ Jum
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z 2
+c</ |A|7 VA7 ~7 du>2 +633(CV)6</ AP 45 dﬂ)
12 2
i [ matrta)' (ot
2
o[ ) (] o)
[v>0]
restle)( [ 1apa dﬂ)

and absorb to find

2 §
e ]. 12 4s
</ IVA]® 42 dﬂ) §§</ Vo)Al 75 du)
M M
2
AL g ( [ 1vaiy: du)

1
+ 053(07)6U7(f)2 ‘|AH461,[7>0] :

Ulﬁ

We combine this estimate with (81), (80) and absorb to obtain

3 2
12 4s 4 s
(/M!V(z)AI 55 du) + (/M|VA|3’YQ du)

1
< 5/ |v(3)A|275d,1,+c/ IVA[* 5 dp
M M

2
+ellAL oy ([ 1947 58 an)
+ efe) (e aa (]2
3 12
(82) X (AN 0y + I sy + e (DT 1AN ) -

The estimate (82) is now combined with (76): In the above ¢ depends only

onn, N, and s.
We combine (81) above with the estimate and use Young’s inequality to

obtain

5

é =
s 3 . 1
(/M’Aﬁ VAV @Al ¥ d“) + (/ Vi)l T 7% du)
M
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2
+ ([ 9apyian)
M
2
< el [ (VAR + 941 7" du
20 5 s 2
FellAl g ([ 19482 dn)

+ 0(07)4[(07)4N'y(f)]
% (141150 + 141

1

2

11
3

4 3 1
47['Y>0] + [(C'y) /-‘L’\/(f)] 10 HAH4’[7>O]> :

This estimates the first term in (75). Now let us work on the second:
4
3 1 3s 3
([ 141 19018 19419 ¥ a
2 2
3 g 3 2.8 3
<o [ pvealian) ([ 19 ary )
M M
1 1 2
4 3 2 2,5 3 2,5 3
<c / |A[* dp / A7 [V ) A" 7" dp / V3 Al" 7 du
[y>0] M M

4
< el [ (VAR +1AP V@ AR) 7 do

Combining the above two estimates we find

: :
1 3 3s 3 1 3s
([ 1A VATt an) 4 ([ 147 Al 19041 )

12 4s i g s 2
+ / IVAls v5 du) + / VAP 2 dp
M M
2 4
< C(HA”ih>o] + ||AH437[7>0])

x /M (V@ AP + AP [V AP + VA 5 dy

+c(ey) (ey) 1 (£)]

20
(83)  x (1411500 + 14l

1

2

11
3

4 ERTAE
oo 1) (D041 L) -
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This estimates the second term in (75). For the third term, we estimate:

3 3 3s_ 3
(s<c7> [ 141 VAt 1du>
M
1
s 3 55—8
</ \Alﬁwdu) /|V(2)A|2’Y 5 dp
M M
5 5
smﬁ( / \A!4du> ( / \A\%Sdu)
[v>0] M

55-8
X/ VAP ™5 dp
M

2
< clAl ooy [ AP

2 558
(s4) e AL o ([ 1Va4P " )

In order to estimate the last term, we first calculate

[SYIE

< c(cy)

55—20

(c))? / VAR AT d < ele, )? /MAHv(Q)Aw = i

55—26
wele)® [ 14119419 au

(c;)? / VAP A= dy
55—20

+eler)? [ 1AV Al T d

+ele )/|A\2 B

DO =

<

Absorbing, estimating, and using s > %, we find

(ey)? /M VAR

55—20

/!Auv(sz = 4y

55—32
el [ AP
M

1 558
§§/ VAP ™5 dp
M
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(85) + e iy (F) 2 NAIR sy -

Returning now to the last term of (84), we estimate
6
> 5

6
55—8 5 55—8
</M|V(2)A|27 6 du) SC(/ IVA[ |V (5)Al7 s
6
6 5
rele)H ([ 19411904177 )
1 :
55-8
§§</ Vi) AP~ dﬂ)
M
6
5s—8 5
wel [ AVl )
M
g
wee) ¥ ([ 9P an)

Absorbing and using (85), we find

6 6
5s—8 5 5s—8 5
( / VA2 du) 3c< / VAV 5 Al 5 du)
M M

24 3 12
(36) +ele) R (DAL g
. . . 20
Note that (85) implies, using also s > %,

3
7)152(/ VAIQVSS?)Squ
%
—(/ 4117yl i
</ \A[Q 5s— 32d,u>2
SHUN e ) ([ 17 Almwdu)

ele) T s ()]

7
(/ v, )A|575du) +(cy>‘°’5(/ |A|172765740du)4
M

o\|"’

C"\w
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+eley) Sy ()

_§ 32
( / VAl 2 75du> () iy (DA g

+ C(Cv) 5 :“7( )4 ||AH4,[7>0] .

This yields the estimate

558 :
([ 1VAIT5A1 "
M
3 3
2 8 ° 2 s °
<c / IVAI"y ™3 dp / IV3)Al" " dp
M M
3
12 558 2 _8 s
<cle) ([ VAP ) () [ 9 aRy dn

<)t [ WAt @) [ wpatata)’
+e(ey) 3 1(e) iy (DT (1 + [(e) in ()]F)

which we combine with (86) and (84) to find

4
3 3 3s_ 3
<s<c7> [ 147 194l 1du>

2
<A ooy [ (T@AR + A1) 2 d

+ellAl oo ( [ Fel% % dn)’
+ cley)[(e) i ()]
(87) x (1(e3) (DI + (e 1y (DI + NANE oy ) 1A sy

This estimates the third term in (75). Combining now (75), (87) and (83)
we find

5
12 4s 4
/ APV @ AP v* dp + </ Vig)Als v du)
M M
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2
; ( [ vapss du)
M

1 3 3s 3 12 4s 4
<e /MrAmev(g)Arwdu 4 /M\V(z)A\Swdu

4
3 1 3s 3 s
+c( [ 1A (9041319 Al du) ; ( [ 1wap: dﬂ)

s 3
we(ste) [ 1R DAttt a)
M

2
el Al ooy [ AR 19 AR Y di

2

2 4
< (1412 o) + 14113 1 0)

< [ (T AR +1AP (VAP + VAL + |AF) 7* di
20 5 s o\
+ellAl g ([ 1VAP % dn)

2 12 ds i
+ CHA||4,[7>0} v |v(2)A‘ 5 Y5 dp
o+ ele) e (N1 (AN gy + 1411 o,
3 L 1
() i (DT AN, o) + () 1 (D]

88) e (N1 + o) i (DIBNALE, o) 141

We combine (88) above with our earlier estimate (74) to find

o\
[ 4PV AR 19410 7 dit ([ 190A1% 4% dn)

2
+ ([ 19ar o)
M
4
< (0 +clAlfpsg)

x /M (VAP + A [V AP + [VA[' + |A[%) 2 du
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2
20 .
FellAl g ([ 19482 dn)

2 12 4s
+ CHA||47[7>0] o ‘v(2)A‘ 55 dp

(39) el (14 IAI s + () 1 (1) 1A -

5
1

Note that we have interpolated terms inside the parentheses of the coefficient

of the first and last terms.
It remains only to estimate the term [}, |A[®v* du, which we do so now

with the Michael-Simon Sobolev inequality:

4 4
Jouarvanse( [ 1aPvaly® ) ve( [ 1aryEan)”
M M M
4
3s—4 3
we(te) [ 1 )
M
2

2 2
Sc(/ \Alﬁvgdu)3</ |A|4|VA|273du)3
M M
4
+elAl g [ 1AP* da
M
4 % 8 . s %
el A oy (] 148 5
2 1
% 8 s 3 4 s 8
<Al ([ 1487 an) ([ 1At an)
M M
4
+elldl g [ 1AF d

16
+ 0(67)4“14”43,[7>o]

4 16
(90) < A ooy [ (VAT +1AF) 3 di ot cle) A1 -

Combining this estimate with (89) and also the interpolation 2| A|*|VA|? <
|A]® + |V A|* we conclude

/M(|A|2IV<2)A|2 +IANVAP + [VAI* + |AFF) 7 dp
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12 4s % 3 s 2
+ IV)Als v du | + VA" vz dp
M M
4
< (0+cllAllf ) /M (19 A2+ A2 [V ) A2 + [VAP + [AF)
20 3 3 2
b elA o ( [ 1483 dn)

2 12 4s i
+ C”A||47[7>0} " ‘V(Q)A‘ 5 vy 5 d,U,
+ elen ) (14 AN ooy + () i (D1 ) IAI sy

as required.
Next we consider (iv). We begin by estimating with the Michael-Simon
Sobolev inequality

4 4
. 3 . 3
/\Am”ysduﬁfﬁ(/ mﬁrmw‘”’rdu) +(/ |A|%‘°’rdu>
M M M
4
s 3
+c<cv>%(/ |A|12_57344du)
M
2 2
< ASIVAZA ) AT~ du )
<c |APIVAI" v dp |A|"v2 dp
M M
4
s elldl g [ 1A d

2 2
wete)d ([ 1arys ) ([ 1Ay au)
M M

4
=0 /M [APIVAP Y dp+ (0 + | Al13 1) /M A"y dpe

2 2
vl [iaratau) wetet( [ 1aPT an)
M M

<6 / AP VAP du
M

4
el + 1A ooy + 141 ) [ 1415

T elen) AN oy /M AP 4 dp
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<0 /M AT AR A dat (0 + 1L o) /M A1 du

1
+ c(ey) Py (fr)2 HAHi,[w>O] :

Note that in the last step we used s > 8.
We shall move gradually higher in order. Next we estimate a first order
term:

:
s 9 1o3s
/M\VAWAM i < ( /M|A|2rv@>A||VA|2 . du)
4
7 5 3s 3
+(/ |A|§\VA|5’YTdM>
M
:
wel [ 1wty i)
M
N
rete)t ([ 1A1HVARE S )
M
2 2
2 A4 _s 3 5 = 3
Sc< [ 19eAraly du) ( [ vala 72du>
M M
+C</ IVAI‘E"VSdu> (/ |A|772du>
M M
%
+c<c7>%( [ wariary du)
M

x ( [ vaary du)
M

oAl g /M VAPAPY du

< G/M (|V(2)A|2|A|4 + |VAPP) 4% dp

2
+c( [ vAlaP o du)
M

el Al o /M A d

+efey)? /M VAPIA 2 dp
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TellAl g /M IV APIA[S du
<0 [ (VaAPIAlt+ 1V AP) 7 da
oAl g /M VAPIAP du

oAl gy / A 4 dy
M
cler)? [ VAPIAI 2 .

Combining this with the estimate (recall 3s > 20)

(ey)? / VAPIA 2 dp

<0 [ VAP e ole) ¥ [ 41475

<9/ VAP ~® dp + c(c,) 30(/ IAlwvsdu>
</ ’A| 33 —20 )
5 s —0 10 _ s L 1_30 %
<9/ IVA]° v*dp + c(cy) 3 /|A\ 2 d# Nw(f)6||AH4,['y>0]

10
<0 /M (IVAP + A1) 7* du + e(e)°l(e) i (£ 1AL, o
yields
[ IVAPIARY <0 [ (Vi APIA+ VAP +141) 7 du
M M
el Al g /MWAF\Ar%Sdu
e Al g / A5 dy

10

+ e(e)°[(e) iy (B All g -
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These estimates combine to yield
/M (IVAPIAP + A1) y* dp < 6 /M IV APIA[* + VAP + [A]") 7 dp

(91) el Al g /M (IVAPIAI +A[)* dp

+e(ey)* ([(e) ia (D)2 + [(e) s (£)]5)

10
3

X (HAH4,[,Y>0] + HAHih>O]) .

Now we estimate
[ 1Py dn < [ IV AlVAR Ay ductcler) [ VAR Al du
M M M
o
<o [ [V@APIVAR Y du+ 55 [ VAR AP du
M 0 Jar
1
by [ IVAP it ele) [ 19 AIy d
2 Jm M
<c/ ]V(Q)AIQ\VAIQVSCZM—{—&/ IVA|°v* dp
M M
+6/ |A|1ovsdu
M

3 S S—
+Z/ IVAP v du+6(cv)5/ |APP*~ dp
M M

so that absorbing for ¢ sufficiently small yields

[ 1vapran<e [ [VoAPIVARY du+o [ a1y dy
M M M
—i—c(cw)‘:’/ |AP Y dp.
M

Now (recall 4s > 25)

4s—

_ s 25 15 25
e [ AP0 [ AR dutcte)¥ [ A2 d
M M M

1 15
<0 /M A4 du+ eles)¥l(e, ) (TS IANL o
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Combining this with the previous estimate we find
/ VAP dp < C/ V) AP|[VAP y° du+9/ A"y dps
M M M
1 15

T ele) e (AT AN g -

Using this we estimate the RHS of (91) and absorb to find
| (TAPAP + 141) dy
M

<0 [ (V@APIAI + 1V APITAR) 5 da
+ el Al gy [ (VAPIAP +141)" du

(92) + e(e) AN ooy (14 [(e) n (D)) (1 + HAIIZ% o) -

Note that we interpolated some terms in the last product on the right hand
side. Now we move on to terms involving V 5y A. We begin with

/Mrv@AFrAr%s i

1 3s 3 3s
< C(/ V) AlIV (2)A|2| APy du+/ V@) Al [VA|APy dp

4
/ Ve AR AP du+ () / Vo AL} AP u)

2 412 s 5 4= 5
< ([ Varapydu) ([ 19eAlA
M M
+c( / |v(2>A|2|VA|Zdeu) ( / IV(2>A||AI4'72du>
M M
2 2
2l 114 s 8 4 s 8
+c< [ W ariar, du) ( [ 19l 72du>
2 £
i 2 g4 3 48 3
et [ FmAPIAPytdn) ([ VAl

<c / Vi APIAY d
M
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+0 [ (9@ ARIVAR + Ve AR1AIY) " dy

2
+C</ V) AllA*y2 du) +C(Cv)2/ IV o) AP|APy** dp
M M
< [ IVAPIARY dut 0+ clAll,s0)
< [ (Ve APITAR + 9 APIAI) Y di
93 tele)t [ VAR
Since
_ 1 _
@ [ VAPt < e [ [9aARd
M M
+9/ |V(k+1)A|2’75d:u
M
o)t [ Voo APy S
M
implies
(07)2/ IV AP v~ dp < 0/ IV ey AP Y° dp
M M
(94) +e(ey) /M’v(k—l)A‘Q'YS_S du.,
we have
0(67)4/ VAP dp < 0/ IV Al*y® du+0(cv)8/ | APy dps
M M M
< 9/ VAl du
M
1
T eles) (o) () IAI e

Combining this with the estimate (93) yields

[ IV APIA du
M



Concentration-Compactness and Finite-Time Singularities for Chen’s Flow 131

< (0 + cllAllf jys0)
< [ (VAP +19 APV AR + [V APIA1)* du
1
(95) b [ 1T APIARY dut ole,) e ) i (1AL s

In order to estimate the remaining term involving V() A we first note the

following equality:
~ [ (T AT ATV AR) 5 d
M
=2 / (Vij A VI AR (ViV, A VP AT v dp
M
1
___—/)hﬂVAﬂzfdu.
2 Ju
In particular, this term has a sign. We use this to estimate
[ 19@APITAR du < c [ [9AlIVARY* du
M M
dele) [ IV AITAR Y d
1
<5 [ IVAPVAR Y du
M
b [ [V@AlIvARY du
M
(96) +ee,)’ / VA" 2 dp.
M

In order to control the last two terms on the right, we need two auxilliary
estimates. The first is obtained by estimating

(07)2/ ’vA|4,ys—2 dﬂ
M
< ele)” /M V) AIVAPIA] 2 dpa + e(ey)? /M VAP A| 7"~ dp

(c))? /M VAP 2 dp + cl(e,)? /M V) APRIA2 72 d

c(cy)°1All%, 1507 -
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Absorbing gives

(cy)? / VAP 2 dpt < efe,)? / V) ARIA2 42 dy
M M
+ () * I AllL >0 -

Estimating the first term on the right as in (93) (the only difference here is
that we have s — 2 instead of s — 4), using also (94), we find

(Cw)z/M [VA|* 2 dp
<0 [ (VAP + 9 APIAl) 2 du

(97) + e(e) (1 + [(e) iy (D) A+ 1AL o) AN o) -

The second term in (96) is estimated as follows:

3.8 4 2s i 4 2 i
c [ 19@AIvARy dn <ol [ VAl du) ([ 1vataE de
M M M

1

2

SH(/ IV(3)A\472sdu>
M

3

4 2 2

+c</ IVA|I*~s d,u> i
M

The first term will be estimated below, it is also useful in controlling the
highest order term involving V(3)A. For the second, we calculate

3
s 2
( [ vas® du)
M

9 2s 3 253 2
< MIV(2>A||VA| |Aly3 dp + (¢y) MIVA\ |Aly™ 3 du

3 3
<0 Vi ARIVAZ A du ) VAPRIAZAS du )
< V) AIFIVA]" v dp |VAI|A|"v3 dp

M M

3

3 8s—12 4
+(Cv)2(||AH4,[y>o][ [ waptys du] )

[N
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IN

3
1 2s 2 s
3( [ varta¥an) vo [ (Ve aPIvAR dy

3
" ( [ wapapy; du) T () AL g

3
1 2s 2 s
3( [ varta¥an) vo [ Ve aPvAR dy

IN

3
2 2
+ HAH?L,[’7>0} </M [VA[* 55 dﬂ) + (07)6”‘4“2,[001

Note that in the above we used 85;# > 2—35 Absorbing yields
3
([ vars¥a) <o [ [weapvapsa
M M
%
2s
AR oy ([ 19A1% dn)
+(c9) Al fy 0 -
This gives the following estimate for the second term in (96):
3
3,8 4,2 :
[ WAIVAP dut ([ 941155 an)
M M
4 2s % 2 2.5
<o [ WAl dn) 0 [ 190 APTAR
M M
3
2 2
+ 1418 o VA S dp )+ (c9)° Al ) -
M

Combining the second order estimates (95), (96), (97) together, and
absorbing, we have the following partial estimate:

3
. 3
/M(rv(z)AP\Ar4 LV ARIVAR) * du + ( /M VAP E du)
<O+l Al )

x /M (VAP + [V APIVAPR + |V o) A2 A[")* dp
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1 3
2 2 2
+9( / IV(3>AI4V2SdM> +||A|ri,h>01( / IVA\4’V3du>
M M
O8) 4 elen)®0+ [(en) NI+ AR o) 1412 oo

Let us now turn to controlling the highest order term. We first show the
following estimate, which is also needed for the terms involving V 5y A above:

/M IV (3)A|* 7% du

<o [ MwalvearE dut [ 9 APIAIR%
M M
4
3
Fie) [ V0P i)
M
1 1
2 s 2 4 _2s 2
<c IV Al*~* dp IVis)Al" v dp
M M
3
Hldliga| [ VoAt e+ @) [ [9oaP 5 an)
M M
2 2
< VAP dul | [ VA A2 dp|”
<c \(4)!7# !(3)!7M
4
+c||A||4h>0/ IV (3)Al* v** dp + c(cy) 3</ V34 ~55 d,u)
<ol [ 1wty an] + 0+ dailyg [ 19parsa
rete)?| [ IVt QSdu} [ v SW}
<e| [ M !278614 + 0+l g [ VoAl da

2
+C(Cv)4[/M\V(3)A\2’YS_4 du] :

Absorbing yields the estimate

2
/ |V(3)A|4728 dp < C|:/ ‘V(4)A’2,YS d,u:|
M M
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,é
el Al gy [ VAl d

(99) + () [/M VAl du] 2 :

Estimate (94) implies
(07)2/ IVi3)AP 7" du < 0/ IV @)Al* v du+6(07)8/ |A2 "~ 10 dpy
M M M

<c /M VAR i+ ele) s (NI AI g

Combining this with (99) we find
/ IV Al* ™ dp
M

- 2 4
<c| [ WAy du] +elall g [ 1V0Al* du

+ e(ey) () 1y (NNAN >0
- 1
2 3
<c /M \V(4)A‘2,YS dM+CHA||ZZ,[7>0] </M |V(3)A|4,yzs du>

2
(100) . c(cV)G[(cy)‘lMy(f)]%||A||ih>0}} -

We apply the auxilliary estimate (100) to control the following

/M|V<3>A|2|A12vs dp+ 1AI2 o /M VA 4% du

1
2
<24 o [ 19412 )
8
< [l Al13 (g /M VAP dpp+ el Allf oy /M V(5 A4 7% du

+e(ey)®(ey) i (HIZ N AN 1o -

Combining the above with (100), and the lower order estimates (92), (98),
and interpolating some terms, we finally conclude

/M(w(g)AFrAF LIV APIA 4 [V o) A2V A
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+ [VAPIAL + [A]")y* dp

3
28 5
(A ) ARy [ A d
M M
<O+ clAll ) [ (VAP + (Ve APIVAR + V) ARIAL

+[VAPA]S +]A")y* dp

3
2s 2
AL ([ 194157 d)
M
'2 S
0+ 1AL o)A ooy [ Vi)l

+ e(e)) AN 0y (14 [(e) 1y (£)]2) (1 + 141G ) -

Finally let us consider (v). The estimate (18) has already been proved,
it is the intermediate estimate (90). For (19), we note first that the equality
(72) implies the estimate

[ vaftdn e [ Ve AlvAP 14]* du
M M
+eler) [ 19 AIPATAR 7 da
1
< [ VAR e [ Ve ARAP d
M M
bele)? [ VAP AP 2 dy
M
1
<5 [ VAR e [ Ve APAPR Y d
M M
el [ 1A d
M
The final estimate (19) follows by absorption. [J
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