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Local Rigidity of Certain Actions of

Nilpotent-by-Cyclic Groups on the Sphere

By Mao Okada

Abstract. Let G = SU(n, 1), n ≥ 2 be the orientation-pre-
serving isometry group of the complex hyperbolic space H

n
C

with an
Iwasawa decomposition G = KAN . We prove local rigidity of a family
of certain actions of a subgroup Γ ⊂ AN on the imaginary boundary
∂H

n
C

= S2n−1.

1. Introduction

Let Γ be a finitely generated group, and G a topological group. Consider

the space Hom(Γ, G) of homomorphisms from Γ into G equipped with the

topology induced from the product topology of GΓ. Two homomorphisms

ρ1, ρ2 ∈ Hom(Γ, G) are said to be conjugate to each other if there exists

an element g ∈ G such that gρ1(γ)g−1 = ρ2(γ) for all γ ∈ Γ. A homo-

morphism ρ ∈ Hom(Γ, G) is said to be locally rigid if the conjugacy class

of ρ is a neighborhood of ρ. In this paper, we will study local rigidity in

a broader sense: A family A ⊂ Hom(Γ, G) of homomorphisms is locally

rigid if the set of homomorphisms conjugate to certain elements of A is a

neighborhood of A. Our main interest is the case where G = Diff(M), the

group of C∞-diffeomorphisms of a compact manifold M with Cr-topology

(r = 0, 1, . . . ,∞). In this case, we say that the family A of actions of Γ on

M is Cr-locally rigid.

A typical example of local rigidity of a family of actions is a result of

Ghys [3], which shows Cr-local rigidity (3 ≤ r ≤ ∞) of the family of group

actions defined as follows. Let Γ = π1(Σg) be the fundamental group of an

oriented closed surface of genus g ≥ 2. Consider the family of embeddings of

Γ into PSL(2,R) as cocompact lattices. The standard action of PSL(2,R)

on S1 = RP
1 induces a family of actions of Γ on S1, which is locally rigid.
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Note that the family is locally compact since Γ is a finitely generated group

and PSL(2,R) is a finite-dimensional Lie group.

Asaoka [1] proved C2-local rigidity of a family of actions of the solv-

able group BS(n, k) = 〈a, b1, . . . , bn | abia
−1 = bki , bibj = bjbi (i, j =

1, . . . , n)〉, (n ≥ 2, k ≥ 2) on the sphere Sn. The family of actions are in-

duced by a family of embeddings ι : Γ → SO(n+1, 1) of Γ into SO(n+1, 1),

which acts on the real hyperbolic space H
n+1
R

by isometries in a canonical

manner and thus on the imaginary boundary ∂H
n+1
R

= Sn. We remark that

the images ι(Γ) of the embeddings is not discrete in SO(n+1, 1). It should

be mentioned that the statement also holds for n = 1, while the family

is contained in a single conjugacy class, i.e., such actions are locally rigid.

This fact is a part of the work of Burslem-Wilkinson [2].

The result of Asaoka with HR replaced by HC is the statement of our

theorem; we proved local rigidity of a family of actions of a solvable group

Γ on the imaginary boundary ∂H
n+1
C

= S2n+1 of the complex hyperbolic

space. The groups Γ are defined as follows. Let SU(n+1, 1) = KAN be an

Iwasawa decomposition, and Λ a lattice of N . As N is a normal subgroup

of AN , A acts on N by conjugation. Fix a nontrivial element a ∈ A which

preserves Λ ⊂ N , i.e., aΛa−1 ⊂ Λ. Note that since A is 1-dimensional,

the subgroup Z = 〈a〉 ⊂ A generated by a is a lattice of A. Consider the

subgroup Γ of SU(n + 1, 1) generated by Z = 〈a〉 and Λ. Such a Γ will be

called a standard subgroup of SU(n + 1, 1). Note that Γ is not discrete in

AN . In fact, the closure is isomorphic to Z � N .

The action of a standard subgroup on S2n+1 induced by the natural

action of SU(n + 1, 1) on ∂H
n+1
C

= S2n+1 will be called a standard action.

For a fixed standard subgroup Γ ⊂ SU(n + 1, 1), an embedding of Γ into

SU(n+1, 1) as a standard subgroup is not unique. Thus the family of such

embeddings induces that of standard actions of Γ. Now we state our main

theorem.

Theorem 1.1. Let Γ be a standard subgroup of SU(n + 1, 1). The

family of standard actions of Γ on S2n+1 is C3-locally rigid.

Note that when we apply the above construction for SU(n + 1, 1) =

KAN to an Iwasawa decomposition SO(n + 1, 1) = KAN , we obtain the

family of group actions in the above result of Asaoka.

Our strategy for the proof, which is similar to that of Asaoka’s, can be
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described as follows. Since the standard actions of Γ admit a common fixed

point in S2n+1, the family of standard actions induce a family of homomor-

phisms from Γ into the group G(R2n+1,O) of germs of diffeomorphisms of

R
2n+1 defined around O ∈ R

2n+1 and fixing O. The first step is to reduce

our main theorem to local rigidity of the family in Hom(Γ,G(R2n+1,O)),

which is, so to speak, local rigidity of local actions. The Taylor expansion

at O ∈ R
2n+1 induces a homomorphism from G(R2n+1,O) onto the group

of formal transformations F(R2n+1,O) of R
2n+1 fixing O. The second step

is to show that local rigidity of the family in Hom(Γ,G(R2n+1,O)) follows

from that of the induced family in the space Hom(Γ,F(R2n+1,O)). The

last step is to prove local rigidity of the family in Hom(Γ,F(R2n+1,O)).

A difficulty of the case G = SU(n + 1, 1), compared to the case G =

SO(n+ 1, 1), comes from differences in the dynamics of A around the fixed

point, where we fixed Iwasawa decomposition G = KAN . For example,

in [1], Asaoka applied a tool from the theory of dynamical systems called

linearization to diffeomorphisms close to the action of a non-trivial element

a ∈ A , while in our case such diffeomorphisms cannot be linearized im-

mediately. So we used Sternberg’s normalization [6]; a modified version of

linearization.

In Section 2, we will study the standard subgroups of SU(n + 1, 1). In

particular, we will give an explicit presentation of such a group. In Section

3, we will begin with reviewing a proof of linearization of a diffeomorphism

around a contracting fixed point. The goal of Section 3 is to give a proof

of a normalization which will be used later. In Section 4, we will set up

terminology for spaces on which the Lie group N acts simply transitively,

called Heisenberg spaces. The remaining sections are devoted to the proof

of Theorem 1.1; Section 5, 6, and 7 correspond to the three steps of the

proof mentioned above. The most difficult part of the proof is the last

step consisting of calculations on the group of formal transformations. In

the case G = SO(n+1, 1), Asaoka rephrased such calculations, using Weil’s

implicit function theorem, as vanishing of a certain cohomology. In our case,

calculations of such cohomology will be much more difficult. To overcome

the difficulty, in Subsection 7.1, we introduce an analogy of the group of

jets of diffeomorphisms at a point. Then in Subsection 7.4, our calculation

can be rephrased in terms of certain homomorphisms of Lie algebras.
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2. The Family of Standard Actions

2.1. The action of SU(n + 1, 1) on S2n+1

Let SU(n+ 1, 1) ⊂ GL(n+ 2,C) be the group of special linear transfor-

mations of C
n+2 = {(z0, . . . , zn+1)} preserving the Hermitian form

〈z, w〉 = z0wn+1 +

n∑
i=1

ziwi + zn+1w0.

Fix the Iwasawa decomposition SU(n + 1, 1) = KAN , where

K =
{
g ∈ SU(n + 1, 1) | gT = g−1

}
,

A =




 es 0 0

0 In 0

0 0 e−s



∣∣∣∣∣∣ s ∈ R


 ,

N =




 1 −zT −‖z‖2/2− it

0 In z

0 0 1



∣∣∣∣∣∣ z ∈ C

n, t ∈ R


 .

The group SU(n+1, 1) naturally acts on the imaginary boundary ∂H
n+1
C

of

the complex hyperbolic space. In fact, since SU(n+1, 1) preserves the Her-

mitian form on C
n+2, it also acts on the light cone L = {z ∈ C

n+2|〈z, z〉 = 0}
and its projectivization ∂H

n+1
C

= P(L) ⊂ PC
n+1, which is diffeomorphic to

the (2n+ 1)-dimensional sphere S2n+1. This natural action of SU(n+ 1, 1)

on S2n+1 will be denoted by ρ0.

The action ρ0 of G = SU(n + 1, 1) on S2n+1 can be described by the

induced homomorphism ρ0
∗ : g = Lie(G) → X(S2n+1) of Lie algebras, where

X(S2n+1) is the Lie algebra of the smooth vector fields on S2n+1. To see

the structure of the Lie algebra g ⊂ gl(n + 2,C) of G, put

E =


 1 0 0

0 0 0

0 0 −1


 ∈ g.

Then g is decomposed as g =
⊕

|λ|≤2,λ∈Zg(λ), where g(λ) = {X ∈ g |
[E,X] = λX}. More explicitly,

g
(0) =




 z 0 0

0 U 0

0 0 −z



∣∣∣∣∣∣ z ∈ C, U ∈ u(n), z + trU − z = 0


 ,
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g
(−1) =




 0 0 0

ξ 0 0

0 −ξ
T

0



∣∣∣∣∣∣∣ ξ ∈ C

n


 ,

g
(+1) =




 0 −ξ

T
0

0 0 ξ

0 0 0



∣∣∣∣∣∣∣ ξ ∈ C

n


 ,

g
(−2) =




 0 0 0

0 0 0

−iτ 0 0



∣∣∣∣∣∣ τ ∈ R


 , g(+2) =




 0 0 −iτ

0 0 0

0 0 0



∣∣∣∣∣∣ τ ∈ R


 .

Note that a = RE, n = g(+1) ⊕ g(+2), where a and n are the Lie algebras

of A and N , respectively. The vector field ρ0
∗(E) vanishes at the points

p0 = [1, 0, . . . , 0] ∈ P(L) = S2n+1 and q0 = [0, . . . , 0, 1]. We will use the

atlas {(φ0, S2n+1 \ {q0}), (ψ0, S2n+1 \ {p0})} consisting of the two charts

defined by

φ0 : [1, z1, . . . , zn+1] �−→ (Rez1, Imz1, . . . ,Rezn, Imzn, Imzn+1),

ψ0 : [z0, z1, . . . , zn, 1] �−→ (Imz0,Rez1, Imz1, . . . ,Rezn, Imzn).

These coordinate charts induce the homomorphisms φ0
∗, ψ

0
∗ of Lie algebras

of X(S2n+1) into X(R2n+1). The following lemma is a consequence of a

straight-forward computation. To reduce the notation, put ∂i = ∂/∂xi ∈
X(R2n+1).

Lemma 2.1.

(i) φ0
∗ ◦ ρ0

∗(E) = −x1∂1 − · · · − x2n∂2n − 2x2n+1∂2n+1

(ii) φ0
∗ ◦ ρ0

∗(g
(−1)) is generated by ∂2i−1 − x2i∂2n+1, ∂2i + x2i−1∂2n+1 (1 ≤

i ≤ n).

(iii) φ0
∗ ◦ ρ0

∗(g
(−2)) is generated by ∂2n+1.

2.2. The standard subgroups of SU(n + 1, 1)

Let SU(n + 1, 1) = KAN be an Iwasawa decomposition. In this paper,

we will study certain finitely-presented subgroups Γ of AN .

Definition 2.2. A subgroup Γ ⊂ SU(n+1, 1) is said to be a standard

subgroup of SU(n + 1, 1) if there exist
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• an Iwasawa decomposition SU(n + 1, 1) = KAN ,

• a lattice Λ of N , and

• a nontrivial element a ∈ A with aΛa−1 ⊂ Λ,

such that Γ is generated by a and Λ.

Note that a standard subgroup is not discrete in SU(n + 1, 1). In fact,

its closure is the subgroup 〈a〉� N generated by a and N .

In the rest of this subsection, we will give explicit presentations of stan-

dard subgroups of SU(n + 1, 1). It suffices to consider the Iwasawa decom-

position as in 2.1. We will first describe presentations of lattices in N . Let

Λ be a lattice of N . Using a result of Mal’cev [4] for general connected

simply-connected nilpotent Lie group, we obtain a basis {X1, . . . , X2n+1} of

the Lie algebra n of N such that

(i) {expX1, . . . , expX2n+1} is a system of generators of Λ,

(ii) 〈Xi+1, . . . , X2n+1〉 is an ideal of 〈Xi, . . . , X2n+1〉 for i = 1, . . . , 2n, and

(iii) [Xi, Xj ] =
∑

k m
k
ijXk with some rational constants mk

ij .

We will identify the Lie algebra n = g(+1) ⊕ g(+2) with C
n ⊕ R equipped

with the bracket

[(ξ, τ), (ξ′, τ)] = (0,−2Φ(ξ, ξ′)),

where Φ(ξ, ξ′) = Im(ξ′
T
ξ). Then the Lie group N can be identified with the

Lie group C
n × R = {(z, t)} equipped with the product (z, t) · (z′, t′) =

(z + z′, t + t′ − Φ(z, z′)). By the condition (ii), we see that X2n+1 ∈
[n, n] = g(+2). So X2n+1 = (0, τ) for some non-zero τ ∈ R. Thus for

i = 1, . . . , 2n, Xi = (ξi, τi), where {ξ1, . . . , ξ2n} is an R-linear basis of C
n.

Since Ad((z, t))(ξ, τ) = (ξ, τ − 2Φ(z, ξ)), there exists g = (z, 0) ∈ N such

that Ad(g)Xi = (ξi, 0) for i = 1, . . . , 2n. Replacing Xi with Ad(g)Xi if

necessary, we may assume τi = 0. It follows that mk
ij = 0 for k �= 2n + 1.

Set mij = m2n+1
ij . We may assume, by multiplying X2n+1 by the inverse an

integer if necessary, that mij are integers. Put bi = expXi for i = 1, . . . , 2n

and c = expX2n+1. Then Λ can be presented as follows:

Λ = 〈b1, . . . , b2n, c | [bi, c] = 1, [bi, bj ] = cmij for i, j = 1, . . . , 2n〉.
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To describe the matrix (mij)ij , fix the R-linear basis {e1, ie1, . . . , en, ien} of

C
n. Then by the condition (iii), 2GTJG = τ(mij)ij , where G ∈ GL(2n,R)

correspends to the R-linear basis {ξ1, . . . , ξ2n} and J ∈ GL(2n,R) corre-

sponds to the multiplication by i ∈ C on C
n. Thus (mij)ij is contained in

the set

M = {GTJG | G ∈ GL(2n,R)} ∩M(2n,Z),

where M(2n,Z) denotes the set of integer matrices. Conversely, given a

matrix (mij)ij ∈M, the group Λ defined by the above presentation can be

embedded into N as a lattice.

Since Ad(exp sE)(ξ, τ) = (esξ, e2sτ) for (ξ, τ) ∈ n, the condition es ∈
Z is necessary for Ad(exp sE)(Λ) ⊂ Λ. With the above presentation of

Λ, we see that a standard subgroup Γ of SU(n + 1, 1) has the following

presentation:

Γ = 〈a, b1, . . . , b2n, c | abia−1 = bki , aca
−1 = ck

2
, R〉,(1)

where (mij)ij ∈ M, k ∈ Z, k ≥ 2, and R denotes the relations appeared in

the above presentation of Λ.

2.3. The standard actions of a standard subgroups

Let Γ be a standard subgroup of SU(n + 1, 1). By the action ρ0 of

SU(n+1, 1) on S2n+1, each embedding of Γ into SU(n+1, 1) as a standard

subgroup induces an action of Γ on S2n+1. We will call such an action of Γ

a standard action of Γ on S2n+1. The following is the main theorem of the

present paper.

Theorem 1.1. Let Γ be a standard subgroup of SU(n + 1, 1). The

family of standard actions of Γ on S2n+1 is C3-locally rigid.

From now on, we fix a standard subgroup Γ of SU(n + 1, 1) with the

presentation (1). The action of Γ on S2n+1 induced by the inclusion Γ ⊂
SU(n+1, 1) will also be denoted by ρ0. To prove Theorem 1.1, it is enough

to show that for each embedding ι of Γ into SU(n+1, 1) as a standard sub-

group, any actions sufficiently close to ρ0 ◦ ι are conjugate to standard ones.

Replacing Γ with its embedded image ι(Γ) if necessary, it suffices to show
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that actions close to ρ0 are conjugate to standard ones. Moreover, replac-

ing ρ0 with its conjugacy, we may assume that the Iwasawa decomposition

appeared in Definition 2.2 is the one given in 2.1.

In the remainder of this subsection, we will give an explicit description

of the action ρ0 of Γ in terms of the coordinate charts φ0, ψ0 introduced in

Subsection 2.1. Note that the map ρ0(a) has exactly one contracting fixed

point p0 ∈ S2n+1 and exactly one expanding fixed point q0 ∈ S2n+1, while

ρ0(λ) has exactly one fixed point p0 for all λ �= 1 ∈ Λ. In particular, p0

is the common fixed point of ρ0, i.e., ρ0(γ)p0 = p0 for all γ ∈ Γ. Thus the

coordinate chart ψ0 on S2n+1 \{p0} induces an action of Γ on R
2n+1, which

will be denoted by ψ0
∗ρ

0. Then it is easy to see the following, the proof of

which is left to the reader.

Lemma 2.3. There are bases {u1, . . . , u2n}, {v1, . . . , v2n} of R
2n and

t ∈ R such that for any (x0, x) = R× R
2n = R

2n+1,

ψ0
∗ρ

0(a)(x0, x) = (k2x0, kx),

ψ0
∗ρ

0(bi)(x0, x) = (x0 − 〈ui, x〉, x + vi),

ψ0
∗ρ

0(c)(x0, x) = (x0 − t, x),

where 〈 ·, · 〉 denotes the Euclidean inner product on R
2n.

In general, for a diffeomorphism f that is defined around O ∈ R
m, and

fixes O, the differential (df)O at O ∈ R
m can be identified with a matrix

in GL(m,R). For each ρ0(γ) (γ ∈ Γ), the coordinate chart φ0 induces

a diffeomorphism around O ∈ R
2n+1 fixing O, which will be denoted by

φ0
∗(ρ

0(γ)). A straightforward computation shows the following, the proof of

which is left to the reader.

Lemma 2.4.

(i) The diffeomorphism φ0
∗(ρ

0(a)) is linear:

φ0
∗(ρ

0(a))(x) =

(
1
kI2n 0

0 1
k2

)
x

for x around O ∈ R
2n+1.
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(ii) There is a basis {u1, . . . , u2n} of R
2n such that

(dfi)O =

(
I2n ui
0 1

)
, (dg)O = I2n+1,

where fi = φ0
∗(ρ

0(bi)), g = φ0
∗(ρ

0(c)).

3. Sternberg’s Normalization

We first recall Sternberg’s original proof of linearization of a diffeomor-

phism around a contracting fixed point. Let G = G(Rm,O) be the group

of germs of diffeomorphisms defined around O ∈ R
m = {(x1, . . . , xm) |

xi ∈ R} and fixing O ∈ R
m. Let R[[x1, . . . , xm]] be the ring of formal

power series in the variables x1, . . . , xm over R. The set F = F(Rm,O) ⊂
(R[[x1, . . . , xm]])m of the Taylor expansions of the elements in G has a nat-

ural group structure. The group F will be called the group of formal trans-

formations of R
m. Let DOf ∈ F be the formal transformation defined by

f ∈ G. Note that the group GL(m,R), which is a subgroup of the group

of diffeomorphisms around O ∈ R
2n+1 that fix O, is naturally a subgroup

of G and F . When F ∈ F is the Taylor expansions F = DOf of f ∈ G,

the differential (df)O at O ∈ R
m, which can be identified with a matrix in

GL(m,R), will be called the linear part of F .

Theorem 3.1 (Sternberg’s linearization [6]). Let f ∈ G be the germ

of a contraction at O ∈ R
m, λ1, . . . , λm ∈ C, |λi| < 1 the eigenvalues of the

differential (df)O of f at O ∈ R
m, and L ∈ G the germ of the linear trans-

formation defined by (df)O ∈ GL(m,R). Assume the following condition,

called the non-resonant condition:

λi �= λl1
1 . . . λln

m for all i = 1, . . . ,m, lj ∈ Z≥0,
∑
j

lj ≥ 2.

Then f and L are conjugate in G.

Sternberg’s proof of the above theorem consists of the following two

propositions.

Proposition 3.2 ([6]). If f, f ′ ∈ G are the germs of contractions sat-

isfying DOf = DOf
′ ∈ F , then fand f ′ are conjugate by an element h ∈ G

with DOh = 1 = DOid ∈ F .
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Proposition 3.3 ([6]). Let F ∈ F be a formal transformation, and

L ∈ GL(m,R) the linear part of F . If L is a contraction satisfying the

non-resonant condition, then F and L are conjugate in F .

As mentioned in [6], the latter proposition has a natural modification

in the case where the non-resonant condition does not hold. In fact, under

some weaker conditions, one can find a (non-linear) polynomial transfor-

mation conjugate to the given transformation. Such a technique is called

normalization of a transformation. While Proposition 3.4 below, which will

be used later, is an immediate consequence of [6], we will give here a proof

of Proposition 3.4. In fact, the notation and calculation in the proof will

also be used later.

Recall the notation introduced in Section 2. We want to normalize

formal transformations close to the linear one φ0
∗(ρ

0(a)) ∈ GL(2n + 1,R)

induced by the standard action of a ∈ Γ around p0. By Lemma 2.4,

φ0
∗(ρ

0(a)) =

(
1
kI2n 0

0 1
k2

)
, k ≥ 2.

Let us denote the above matrix by I(k). Observe that I(k) does not satisfy

the non-resonant condition in Theorem 3.1. Thus formal transformations

close to I(k), in general, do not satisfy the non-resonant condition.

Proposition 3.3 was proved by solving an equation in F = F(Rm,O) by

induction on the degree. More explicitly, to prove Proposition 3.3, it suffices

to find a solution of the equation

FH = HL

in H ∈ F . Note that each F ∈ F can be uniquely written as an infinite sum

of maps in S(r)(Rm), where S(r)(Rm), r ≥ 1 denotes the space of polynomial

functions F : R
m → R

m whose components are homogeneous polynomials

of degree r. Thus we can construct a solution by induction on r.

In our case, instead of the decomposition of F = F(R2n+1,O) into the

spaces S(r)(R2n+1), it is convenient to use another decomposition of F . Let

F (r), r ≥ −1 be the collection of polynomial functions F : R
2n+1 → R

2n+1

such that I(k) ◦ F ◦ I(k)−1 = krF and that F (O) = O. So F ∈ F (r) if and

only if F is a polynomial function such that

• Fi(x) ∈ H(r+1), (1 ≤ i ≤ 2n)
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• F2n+1(x) ∈ H(r+2),

where Fi(x) denotes i-th component of F (x), and H(r) denotes the R-linear

span of xr11 . . . x
r2n+1

2n+1 ’s satisfying r1 + · · · + r2n + 2r2n+1 = r, which is, so

to speak, the space of homogeneous polynomials of “weighted” degree r. In

particular, for F = (F1, . . . , F2n+1) ∈ F (0), the function Fi : R
2n+1 → R has

the form

Fi(x) =

2n∑
i=1

aixi, (i = 1, . . . , 2n),

F2n+1(x) = a2n+1x2n+1 +
2n∑

i,j=1

bijxixj .

Let P0 ⊂ F be the subgroup defined by

P0 = F ∩ F (0).

Thus, for F ∈ F (0), F ∈ P0 if and only if the linear part of F is an invertible

matrix. Then each F ∈ F can be written as an infinite sum

F =
∑
r≥−1

F (r)

of maps F (r) ∈ F (r). In particular, there is a natural bijection between

the set F and the set P0 ×
∏

r≥−1,r 	=0F (r). Note that the map F → P0,

F �→ F (0) is a group homomorphism.

Proposition 3.4. If F ∈ F is C1-close to I(k) ∈ GL(2n+1,R), then

F is conjugate to G = F (0) ∈ F in F .

Proof. Suppose that F is C1-close to I(k). Replacing F with its

conjugate by a linear transformation, we may assume that F (−1) = 0. We

claim that there is a unique transformation H ∈ F such that H(−1) = 0,

H(0) = id ∈ P0, and FH = HG. We will solve the equation

(FH)(r) = (HG)(r) (r ≥ −1), H(−1) = 0, H(0) = id

by induction on r. When r = −1, the both sides of the equation vanish.

The case r = 0 follows from the fact that the map F �→ F (0) is a group

homomorphism from F onto P0. If r ≥ 1, the equation is equivalent to

L ◦H(r) = H(r) ◦ L + Φ,
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where L is the linear part of G and Φ is a sum of terms determined by F (p)

(p ≤ r) and H(q) (q < r). Now the claim follows from Lemma 3.5 below. �

Lemma 3.5. Let P0 ∩GL(2n + 1,R) (= GL(2n,R)×GL(1,R)) be the

group of linear parts of the transformations of P0. There is a neighborhood

U of I(k) ∈ P0 ∩ GL(2n + 1,R) such that for L ∈ U and r ≥ 1, the linear

map

F (r) → F (r), F �→ L ◦ F ◦ L−1 − F

is a linear automorphism of F (r).

Proof. Let ‖ · ‖ be a norm on R
2n+1. Fix a constant c > 1 and

a neighborhood U ⊂ P0 ∩ GL(2n + 1,R) of I(k) such that c4 < k and

‖LI(k)−1‖, ‖I(k)L−1‖ < c for L ∈ U , where ‖L‖ = max‖x‖=1 ‖Lx‖. Define

a norm on F (r) by ‖F‖ = max‖x‖=1 ‖F (x)‖. Since each component of

F ∈ F (r) is a polynomial in x1, . . . , x2n+1 of degree at most r + 2, we see

that ‖F ◦ L‖ ≤ max{‖F‖‖L‖r+2, ‖F‖} for L ∈ GL(2n + 2,R).

We will show that F = 0 if F ∈ F (r), r ≥ 2, and L−1 ◦F ◦L = F . Since

I(k) ◦ F ◦ I(k)−1 = krF for all F ∈ F (r),

kr‖F‖ = ‖I(k) ◦ F ◦ I(k)−1‖ = ‖I(k) ◦ L−1 ◦ F ◦ L ◦ I(k)−1‖
≤ ‖I(k)L−1‖‖F‖‖LI(k)−1‖r+2 ≤ cr+3‖F‖.

As cr+3 < kr, we see that ‖F‖ = 0. �

4. Heisenberg Space

Let SU(n+1, 1) = KAN be the Iwasawa decomposition as in Section 2.1.

The goal of this section is to set up terminology for affine spaces modeled

on n = Lie(N), which will be used in Subsection 7.3 and Subsection 7.4.

Definition 4.1. A smooth manifold M equipped with a simply tran-

sitive smooth action ρ of N is called a Heisenberg space. The action ρ will

be called a Heisenberg structure of M .

Definition 4.2. Let M be a smooth manifold with dimM = 2n + 1

and X(M) be the Lie algebra of smooth vector fields on M . A subalgebra
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h ⊂ X(M) will be called a Heisenberg connection if h is isomorphic to n as

a Lie algebra and h is linearly independent at each point of M , i.e.,

TxM = {X(x) | X ∈ h}

for all x ∈M .

For the homomorphism ρ∗ : n → X(M) induced by a Heisenberg struc-

ture, ρ∗(n) ⊂ X(M) is a Heisenberg connection. Conversely, given a Heisen-

berg connection h ⊂ X(M) consisting of complete vector fields and an

isomorphisms φ : n → h, we obtain an action ρ of N on M defined by

ρ(g)(x) = exp(φ(exp−1 g))(x). For any Heisenberg connection h ⊂ X(M)

and a point p ∈M , there is a local coordinate system (x1. . . . , x2n+1) around

p such that h is spanned by

∂2i−1 − x2i∂2n+1, ∂2i + x2i−1∂2n+1, ∂2n+1 (1 ≤ i ≤ n)

where ∂i = ∂/∂xi. The subalgebra of X(R2n+1) spanned by these vector

fields will be called the standard Heisenberg connection on R
2n+1.

Lemma 4.3. Let (M,ρ) be a Heisenberg space.

(i) There is a Heisenberg structure σ on M which preserves the Heisenberg

structure ρ, i.e., ρ(g1)σ(g2) = σ(g2)ρ(g1) for all g1, g2 ∈ N .

(ii) Let σ be a Heisenberg structure preserving ρ, U ⊂ M a connected

open subset, and f : U → f(U) ⊂M a diffeomorphism onto its image.

Assume f preserves ρ, i.e., f(ρ(g)x) = ρ(g)f(x) if ρ(g)x, x ∈ U . Then

there is an element g ∈ N such that f = σ(g)|U .

Proof. (i) It is sufficient to consider a Heisenberg structure ρ on R
2n+1

such that ρ∗(n) is the standard Heisenberg connection. Let h′ be the Heisen-

berg connection on R
2n+1 spanned by

∂2i−1 + x2i∂2n+1, ∂2i − x2i−1∂2n+1, ∂2n+1 (1 ≤ i ≤ n).

It is easy to see that [X,Y ] = 0 for all X ∈ ρ∗(n) and Y ∈ h′. Fix an

isomorphism ϕ : n → h′ of Lie algebras. Then σ(exp(X)) = exp(ϕX) (X ∈
n) defines the Heisenberg structure σ preserving ρ.
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(ii) It suffices to show that for each point x ∈ U , there is gx ∈ N such

that σ(gx) coincides with f around x. In fact, such an element gx is unique

if exists. So we obtain the map x �→ gx, U → N , which must be locally

constant. As U is connected, this map is constant.

Let gx ∈ N be the element with σ(gx)x = f(x). Then the diffeomor-

phism σ(gx)
−1◦f : U → ρ(gx)

−1◦f(U) also preserves ρ and σ(gx)
−1◦f(x) =

x. It follows that σ(gx)
−1 ◦ f is the identity on a neighborhood of x. �

Corollary 4.4. Let (M,ρ) be a Heisenberg space and h = ρ∗(n) ⊂
X(M) the corresponding Heisenberg connection.

(i) The centralizer Z(h) of h in X(M) is a Heisenberg connection.

(ii) Let U ⊂ M be a connected open subset and Z(h|U ) the centralizer of

h|U = {X|U | X ∈ h} in X(U). Then Z(h|U ) = Z(h)|U .

Proof. Fix a Heisenberg structure σ on M preserving ρ.

(i) Fix X ∈ Z(h). For t ∈ R, by Lemma 4.3 (ii), there is an element gt ∈
N such that σ(gt) = exp(tX). This defines a continuous homomorphism

t �→ gt, R → N . Then Y = − d
dt |t=0gt ∈ n satisfies σ∗(Y ) = X ∈ X(M). It

follows that Z(h) is the Heisenberg connection corresponding to σ.

(ii) Since Z(h)|U ⊂ Z(h|U ), we will show the converse. Fix X ∈ Z(h|U )

and x ∈ U . It suffices to show that there exists Yx ∈ Z(h), such that X =

Yx around x. By Lemma 4.3 (ii), we obtain a continuous homomorphism

t �→ gt defined around 0 ∈ R and a neighborhood V of x ∈ U such that

σ(gt) = exp(tX) on V . Then Y = − d
dt |t=0gt ∈ n satisfies σ∗(Y ) = X around

x ∈ U . �

Note that if h is the standard Heisenberg connection on R
2n+1, then

Z(h) is spanned by

∂2i−1 + x2i∂2n+1, ∂2i − x2i−1∂2n+1, ∂2n+1 (1 ≤ i ≤ n).

The automorphism f of n = g(+1) ⊕ g(+2) defined by

f(X) =

{
(log λ)X (X ∈ g(+1))

2(log λ)X (X ∈ g(+2))

is called the dilation by a constant λ > 0.
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Definition 4.5. Let h ⊂ X(M) be a Heisenberg connection. A vector

field D ∈ X(M) is called a dilation by λ > 0 of h if ad(D) preserves h and

the endomorphism on h ∼= n induced by ad(D) is the dilation by λ.

Note that the definition of the dilation does not depend on the choice

of an isomorphism between h and n. By definition, if D,D′ ∈ X(M) are

dilations of h by λ > 0, then D −D′ ∈ Z(h).

Lemma 4.6. Let h ⊂ X(M) be a Heisenberg connection. There is a

dilation D of h by λ > 0 which is also a dilation of Z(h) by λ.

Proof. We may assume that h is the standard Heisenberg connection

on R
2n+1. Then

Dλ = −(log λ)(x1∂1 + · · ·+ x2n∂2n + 2x2n+1∂2n+1)

is a dilation of both h and Z(h) by λ. �

Proposition 4.7. Let (M,ρ) be a Heisenberg space and h = ρ∗(n) ⊂
X(M) the corresponding Heisenberg connection. Let U be a connected open

subset of M and f be a diffeomorphism defined on a connected open subset

V of U onto its image f(V ) ⊂ U . Let D ∈ X(U) be a dilation of h|U by

λ �= 1. If f preserves h and D, then f = idV .

Proof. Let σ be a Heisenberg structure on M preserving ρ. By

Lemma 4.3, f = σ(g)|V for some g ∈ N .

By Lemma 4.6, there is a dilation D̄ ∈ X(M) by λ of h and Z(h). Then

D− D̄|U ∈ Z(h|U ). By Corollary 4.4 (ii), D− D̄|U = X|U for a vector field

X ∈ Z(h). Since σ(g)|V preserves D = D̄ + X, we see that σ(g) preserves

D̄ + X. Now the claim follows from the following lemma. �

Lemma 4.8. Let (M,ρ) be a Heisenberg space and h = ρ∗(n) ⊂ X(M)

the corresponding Heisenberg connection. For g ∈ N , assume ρ(g) preserves

D + X, where D ∈ X(M) a dilation of h and Z(h) and X ∈ h. Then

g = 1 ∈ N .

Proof. We may assume that M = R
2n+1 and h is the standard Heisen-

berg connection and D = Dλ given in the proof of Lemma 4.6. Since

ρ(g)∗Dλ is a dilation of ρ(g)∗Z(h) = Z(h), ρ(g)∗Dλ = Dλ + Y , Y ∈ h.
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On the other hand, ρ(g)∗X = ρ∗(Ad(g)X̂), where X = ρ∗(X̂), X̂ ∈ n.

It follows that Dλ + X = Dλ + Y + ρ∗(Ad(g)X̂). So Ad(g)X̂ = X̂ + Ŷ ,

where Y = ρ∗(Ŷ ). Then as n is 2-step nilpotent, we see that Ŷ is in the

center of n. So Y ∈ h ∩ Z(h) = R∂2n+1. By ρ(g)∗Dλ = Dλ + Y , we

see that ρ(g) ∈ exp(R∂2n+1). Thus g ∈ N is in the center of N . Then

Ŷ = Ad(g)X̂ − X̂ = 0. It follows that ρ(g) preserves Dλ. We see that

g = 1 ∈ N . �

5. Local Rigidity of the Standard Actions

As mentioned in Section 2, the action ρ0 of Γ on S2n+1 admits the

common fixed point p0 ∈ S2n+1. If σ = ρ0 ◦ ι is a standard homomorphism

with the embedded image ι(Γ) is a standard subgroup whose associated

Iwasawa decomposition coincides with that of Γ, then the point p0 is also

the common fixed point of σ. The coordinate chart φ0 around p0 induces

a group homomorphism φ0
∗ : Diff(S2n+1, p0) → G = G(R2n+1,O), where

Diff(S2n+1, p0) is the group of diffeomorphism of S2n+1 that fix p0. For

each standard action σ as above, φ0 induces the homomorphism φ0
∗σ of Γ

into G defined by φ0
∗σ(γ) = φ0

∗(σ(γ)), γ ∈ Γ. Such a homomorphism will be

called a standard homomorphism from Γ into G.

Proposition 5.1. The family of standard homomorphisms in

Hom(Γ,G) is locally rigid, where G is equipped with C3-topology.

In this section, we will prove Theorem 1.1 using Proposition 5.1. The

proof of Proposition 5.1 will be postponed to the next section.

To derive Theorem 1.1 from Proposition 5.1, we will first prove the

following proposition, which allows us to extend a local conjugacy between

local actions to a global conjugacy.

Proposition 5.2. Let ρ ∈ Hom(Γ,Diff(S2n+1, p0)) be an action with

a common fixed point p0 ∈ S2n+1. Assume that the induced homomor-

phism φ0
∗ρ ∈ Hom(Γ,G) is conjugate to φ0

∗σ ∈ Hom(Γ,G), where σ ∈
Hom(Γ,Diff(S2n+1, p0)) is a standard action. Then the homomorphism

ρ ∈ Hom(Γ,Diff(S2n+1, p0)) is conjugate to σ in Hom(Γ,Diff(S2n+1, p0)).

Proof. Fix a diffeomorphism h′ around O ∈ R
2n+1 fixing O whose

germ is a conjugacy between φ0
∗ρ and φ0

∗σ. Using the coordinate chart ψ0
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on S2n+1 \ {p0} defined in Section 2, put KR = (ψ0)−1([−R,R]2n+1) for

R > 0. Let UR = S2n+1 \KR be an open neighborhood of p0 ∈ S2n+1. By

the assumption, for sufficiently large R,

h−1 ◦ ρ(γ) ◦ h(x) = σ(γ)(x) (γ ∈ Λ±1 ∪ {a−1}, x ∈ UR),

where h = (φ0)−1 ◦ h′ ◦ φ0 is a diffeomorphism around O ∈ S2n+1 fixing

O, and Λ±1 = {b1, b−1
1 , . . . , b2n, b

−1
2n , c, c

−1} is the system of generators of Λ.

For any x ∈ S2n+1 \ {p0}, by Lemma 2.3, there is an integer m ∈ Z with

σ(c)m(x) ∈ UR. Thus S2n+1 =
⋃

m σ(c)−m(UR). Let h̄m : σ(c)−m(UR) →
S2n+1 be the smooth map into its image defined by

h̄m(x) = ρ(c)−m ◦ h ◦ σ(c)m(x).

We will show that h̄m(x) = h̄m′(x) for x ∈ σ(c)−m(UR) ∩ σ(c)−m′
(UR) to

obtain the map h̄ : S2n+1 → S2n+1. By Lemma 2.3 and the definition of

KR, we see that if x ∈ σ(c)−m(UR) ∩ σ(c)−m′
(UR), then there is a word

w = γl . . . γ1 on Λ±1 such that cm = wcm
′ ∈ Λ and that σ(wic

m′
)(x) ∈ UR

for 1 ≤ i ≤ l, where wi = γi . . . γ1.

Then

ρ(wic
m′

)−1 ◦ h ◦ σ(wic
m′

)(x)

= ρ(wi−1c
m′

)−1 ◦ ρ(γi)−1 ◦ h ◦ σ(γi) ◦ σ(wi−1c
m′

)(x)

= ρ(wi−1c
m′

)−1 ◦ h ◦ σ(wi−1c
m′

)(x)

for i = 1, . . . , l, where w0 = 1 ∈ Λ. It follows that ρ(c−m) ◦ h ◦ σ(cm)(x) =

ρ(cm
′
)−1 ◦ h ◦ σ(cm

′
)(x). Thus h̄ is well-defined.

Since h̄ is locally diffeomorphic, h̄ is a smooth covering map on S2n+1,

which is a diffeomorphism. As c ∈ Λ commutes with any γ ∈ Λ±1, h̄m ◦
σ(γ)(x) = ρ(γ) ◦ h̄m(x) for m ∈ Z and γ ∈ Λ±1. Moreover, by the relation

aca−1 = ck
2
, we see that h̄m◦σ(a−1)(x) = ρ(a−1)◦h̄k2m(x). So h̄◦σ(γ)(x) =

ρ(γ) ◦ h̄(x) for any γ ∈ Γ. �

To use Proposition 5.1 for the proof of the main theorem, we will prove

the persistence of the common fixed point p0:

Proposition 5.3. There is a neighborhood U of ρ0 ∈
Hom(Γ,Diff(S2n+1)) where Diff(S2n+1) is equipped with C1-topology, and
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a continuous map ϕ : U → S2n+1 such that ϕ(ρ0) = p0 and that ϕ(ρ) is a

common fixed point of ρ ∈ U .

Proof. Fix constants k−1 < λ < 1, 0 < ε < k−2. Put Λ+1 =

{b1, . . . , b2n, c}. For γ ∈ Λ+1, define mγ ∈ Z by mγ = k if γ �= c and

mγ = k2 if γ = c so that aγa−1 = γmγ . Put Aγ = d(φ0 ◦ ρ0(γ) ◦ (φ0)−1)O.

By Lemma 2.4,

Aγ =

(
I2n uγ
0 1

)

for some uγ ∈ R
2n. Let ‖ · ‖ be the norm on R

2n+1 = {x = (x1, . . . , x2n+1) |
xi ∈ R} defined by ‖x‖ = c1

∑2n
i=1 |xi| + c2|x2n+1|, where c1, c2 > 0 are

constants satisfying

−m2
γ‖uγ‖1c1 + ((1− ε)mγ − λ)c2 > 0

for γ ∈ Λ+1, where ‖ · ‖1 is the norm on R
2n = {x′ = (x′1, . . . , x

′
2n) | x′i ∈ R}

defined by ‖x′‖1 =
∑2n

i=1 |x′i|. Note that (1− ε)mγ−λ > (1−k−2)k−1 > 0.

Then ‖
∑mγ−1

j=0 Aj
γ‖ > εmγ + λ for γ ∈ Λ+1, where ‖A‖ = max‖x‖=1 ‖Ax‖

for A ∈ GL(2n + 1,R).

There are neighborhood U1 of ρ0 ∈ Hom(Γ,Diff(S2n+1)) and neighbor-

hoods V2 ⊂ V1 of φ0(p0) = O ∈ R
2n+1 satisfying the following conditions:

(i) For γ ∈ Λ+1, i = 0, 1, j = 0, 1, . . . ,mγ , φ0 ◦ ρ(aiγj) ◦ (φ0)−1 are

well-defined on V1.

(ii) ‖d(φ0 ◦ ρ(a) ◦ (φ0)−1)x‖ < λ and ‖d(φ0 ◦ ρ(γj) ◦ (φ0)−1)x − Aj
γ‖ < ε

for x ∈ V1 and j = 1, . . . ,mγ .

(iii) For γ ∈ Λ+1, φ
0 ◦ ρ(γ) ◦ (φ0)−1(V2) ⊂ V1.

Using the persistence of a contracting fixed point of a diffeomorphism, we

obtain a neighborhood U2 ⊂ U1 of ρ0 ∈ Hom(Γ,Diff(S2n+1)) and a con-

tinuous map ϕ : U2 → (φ0)−1(V2) such that ϕ(ρ0) = p0 and that ϕ(ρ)

is a contracting fixed point of ρ(a). Since ρ0(γ)(p0) = p0 for γ ∈ Λ+1,

there is a neighborhood U ⊂ U2 of ρ0 ∈ Hom(Γ,Diff(S2n+1)) such that

ρ(γ)(ϕ(ρ)) ∈ (φ0)−1(V2) for ρ ∈ U .

We will show that ϕ(ρ) is a common fixed point of ρ. Fix ρ ∈ U and

γ ∈ Λ+1. Put m = mγ , A = Aγ , x0 = φ0(f(ρ)), F = φ0 ◦ ρ(a) ◦ (φ0)−1,
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G = φ0 ◦ ρ(γ) ◦ (φ0)−1, and y0 = G(x0) − x0. It is sufficient to show that

y0 = 0.

By the definition of U , x0 ∈ V2. By the condition (iii), G(x0) ∈ V1. By

the condition (ii),

‖F (G(x0))− F (x0)‖ ≤ λ‖y0‖,
‖Gj+1(x0)−Gj(x0)‖ ≥ ‖Ajy0‖ − ε‖y0‖ (j = 0, . . . ,m− 1).

So

m−1∑
j=0

‖Gj+1(x0)−Gj(x0)‖ ≥
m−1∑
j=0

‖Ajy0‖ − εm‖y0‖.

Using F ◦G = Gm ◦ F and F (x0) = x0,

F (G(x0))− F (x0) = Gm(x0)− x0 =
m−1∑
j=0

(
Gj+1(x0)−Gj(x0)

)
.

It follows that

λ‖y0‖ ≥ ‖F (G(x0))− F (x0)‖

=

∥∥∥∥∥∥
m−1∑
j=0

(
Gj+1(x0)−Gj(x0)

)∥∥∥∥∥∥ ≥
∥∥∥∥∥∥
m−1∑
j=0

Ajy0

∥∥∥∥∥∥− εm‖y0‖.

Since ‖
∑m−1

j=0 Aj‖ > εm + λ, we obtain ‖y0‖ = 0. �

Now we can prove Theorem 1.1 assuming Proposition 5.1.

Proof of Theorem 1.1 from Proposition 5.1. Let ρ ∈
Hom(Γ,Diff(S2n+1)) be an action close to ρ0 ∈ Hom(Γ,Diff(S2n+1, {p0})).
By Proposition 5.3, we may assume p0 is a common fixed point of ρ. Let

φ0
∗ρ ∈ Hom(Γ,G) be the homomorphism induced by the chart φ0 around p0.

If ρ and ρ0 are close as elements of Hom(Γ,Diff(S2n+1, p0)), then the

induced homomorphisms φ0
∗ρ and φ0

∗ρ
0 in Hom(Γ,G) are also close. By

Proposition 5.1, we obtain a conjugacy between φ0
∗ρ and φ0

∗σ with σ being

a standard action of Γ on S2n+1. Using Proposition 5.2, we see that ρ, σ ∈
Hom(Γ,Diff(S2n+1, p0)) are conjugate. �
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6. Local Rigidity of the Local Actions

By the homomorphism DO : G → F defined by the Taylor expansions,

the standard homomorphisms in Hom(Γ,G) induce elements in Hom(Γ,F),

which will also be called the standard homomorphisms from Γ into F . The

goal of this section is to show that Proposition 5.1 can be reduced to the

following proposition:

Proposition 6.1. The family of standard homomorphisms in

Hom(Γ,F) is locally rigid, where F is equipped with C3-topology.

Proof of Proposition 5.1 from Proposition 6.1. To reduce the

notation, the homomorphism in Hom(Γ,G) induced by ρ0 ∈
Hom(Γ,Diff(S2n+1)) will also be denoted by ρ0. It is sufficient to show

that homomorphisms sufficiently close to ρ0 ∈ Hom(Γ,G) are conjugate to

standard ones.

Assume ρ ∈ Hom(Γ,G) is sufficiently close to ρ0. As DOρ ∈ Hom(Γ,F) is

also close to DOρ
0, by Proposition 6.1, there are a standard homomorphism

DOσ ∈ Hom(Γ,F) (σ ∈ Hom(Γ,G)) and a formal transformation DOh ∈
F (h ∈ G) satisfying

DOρ
0(γ) = DOh(DOσ)(γ)(DOh)−1(2)

for all γ ∈ Γ. In particular,

D0ρ(a) = D0(hσ(a)h−1).

So, by Proposition 3.2, there exists h′ ∈ G satisfying D0h
′ = I ∈ F and

ρ(a) = h′hσ(a)h−1h′−1.

Thus, replacing h′h by h, we may assume the equation (2) and ρ(a) =

hσ(a)h−1. By Lemma 6.2 below, for γ = b1, . . . , b2n, c,

ρ(γ) = hσ(γ)h−1.

So this equation holds for any γ ∈ Γ. �

Lemma 6.2. Let m ≥ 2 be an integer, and f ∈ G = G(R2n+1,O) the

germ of diffeomorphism defined by the matrix(
1
kI2n 0

0 1
k2

)
∈ GL(2n + 1,R).
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If g1, g2 ∈ G satisfy DOg1 = DOg2, fgi = gmi f (i = 1, 2), and

(dg1)O = (dg2)O = I +

(
0 u

0 0

)
∈ GL(2n + 1,R),

for some u ∈ R
2n, then g1 = g2.

Proof. Fix constants r0 ≥ 1 and 1 < c < k satisfying mcr0+1 < kr0−2.

Let ‖ · ‖ be the norm on R
2n+1 defined by ‖x‖ = c1

∑2n
i=1 |xi| + c2|x2n+1|,

where c1, c2 > 0 are constants satisfying

c1(m + 1)‖u‖1 + c2(1− c) < 0,

where ‖ · ‖1 is the norm on R
2n defined by ‖x‖1 =

∑2n
i=1 |xi|. Then it is

easy to see that ‖(dg1)
i
O(v)‖, ‖(dg2)O(dg1)

i
O(v)‖ < c‖v‖ for all v ∈ R

2n+1

and i = 0, . . . ,m.

Then there exist representatives of germs g̃i ∈ gi, f̃ ∈ f and a constant

R1 > 0 satisfying the following condition:

• g̃2
ig̃1

j is well-defined on BR1 for i, j = 1, . . . ,m,

• f̃ g̃i = g̃i
mf̃ on BR1 ,

• ‖g̃1
i(v)‖, ‖g̃2g̃1

i(v)‖ ≤ c‖v‖, ‖g̃2(v)−g̃2(v
′)‖ ≤ c‖v−v′‖ for v, v′ ∈ BR1 ,

i = 0, . . . ,m,

where BR1 ⊂ R
2n+1 is the ball of radius R1 with respect to ‖ · ‖ centered at

O ∈ R
2n+1. Fix a constant 0 < R2 < R1 with

g̃1
if̃(v), g̃2g̃1

if̃(v) ∈ BR1 (v ∈ BR2 , i = 0, . . . ,m).

Since DOg1 = DOg2,

∆ = sup
v∈BR2

‖g̃1(v)− g̃2(v)‖
‖v‖r0

is a finite number. It is sufficient to show that ∆ = 0. For any v ∈ BR2 ,

‖g̃1(v)− g̃2(v)‖ = ‖f̃−1g̃1
mf̃(v)− f̃−1g̃2

mf̃−1(v)‖
≤ k2‖g̃1

mf̃(v)− g̃2
mf̃(v)‖
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≤ k2
m∑
i=1

‖g̃2
m−ig̃1

if̃(v)− g̃2
m−i+1g̃1

m−1f̃(v)‖

≤ k2c

m∑
i=1

‖g̃1
if̃(v)− g̃2g̃1

i−1f̃(v)‖

≤ k2c∆

m∑
i=1

‖g̃1
if̃(v)‖r0

≤ k2c∆m

(
c
1

k
‖v‖

)r0

= ∆
mcr0+1

kr0−2
‖v‖r0 .

It follows that

‖g̃1(v)− g̃2(v)‖
‖v‖r0 ≤ mcr0+1

kr0−2
∆.

Taking the supremum for v ∈ BR2 ,

∆ ≤ mcr0+1

kr0−2
∆.

As mcr0+1

kr0−2 < 1, we have ∆ = 0. �

7. Local Rigidity of Homomorphisms into the Group of Formal

Transformations

In this section, we will give a proof of Proposition 6.1. First, we will show

that, while the group F is an infinite-dimensional Lie group, Proposition

6.1 can be reduced to a problem (Proposition 7.1) of homomorphisms into

a finite-dimensional Lie group Pr. The finite-dimensional Lie group Pr

will be defined in the next subsection. Next, we will show that the proof of

Proposition 7.1 can be divided into three steps. Each steps will be discussed

in subsections 7.2, 7.3, and 7.4, respectively.

7.1. The group of jets of diffeomorphisms at a point

The group Pr (r ≥ 0) is defined as an analogy of the group Jr(R
m,O)

of (r + 1)-th jets of the diffeomorphisms defined around O ∈ R
m that fix
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O ∈ R
m. Note that J0(R

m,O) = GL(m,R) and that the Lie group P0 was

already defined in Section 3 To motivate our definition of the group Pr (r ≥
0), we begin with an observation on Jr(R

m,O). Let X(Rm) be the Lie

algebra of the smooth vector fields on R
m, and Poly(Rm,O) ⊂ X(Rm) the

subalgebra of the polynomial vector fields that vanish at O ∈ R
m. We will

observe that Jr(R
m,O) arises naturally from a gradation on Poly(Rm,O).

Let Poly(r)(Rm,O) ⊂ Poly(Rm,O) be the subspace of vector fields whose

coefficients are homogeneous polynomials of degree r + 1. The Lie algebra

Poly(Rm,O) has a gradation

Poly(Rm,O) =
⊕
r≥0

Poly(r)(Rm,O),

in the sense that [Poly(r)(Rm,O),Poly(r′)(Rm,O)] ⊂ Poly(r+r′)(Rm,O).

Note that Poly(0)(Rm,O) = gl(m,R). For r ≥ 0, the subspace

jr =
⊕

0≤q≤r

Poly(q)(Rm,O)

can be equipped with the Lie bracket [ ·, · ]jr defined by the following condi-

tion: For X ∈ Poly(p)(Rm,O), Y ∈ Poly(q)(Rm,O),

[X,Y ]jr =

{
[X,Y ]X(Rm) (if p + q ≤ r)

0 (otherwise)
.

Note that jr ⊂ Poly(Rm,O), r ≥ 1 is not a subalgebra. Let

nr =
⊕

1≤q≤r

Poly(q)(Rm,O) ⊂ jr

be a nilpotent Lie subalgebra of jr, and Nr the connected simply-connected

nilpotent Lie group with its Lie algebra nr. The group GL(m,R) acts natu-

rally on nr by GL(m,R)× nr → nr, (g,X) �→ g∗X, where g∗X is the push-

forward of X ∈ X(Rm) by the diffeomorphism g ∈ GL(m,R) ⊂ Diff(Rm).

Then the diffeomorphism exp : nr → Nr induces an action of GL(m,R) on

Nr. The semidirect product GL(m,R)�Nr is the group Jr(R
m,O) with its

Lie algebra jr.

To define the group Pr = Pr(R
2n+1,O), we consider a certain gradation

of Poly(R2n+1,O) associated with the matrix

φ0
∗(ρ

0(a)) =

(
1
kI2n 0

0 1
k2

)
∈ GL(2n + 1,R).
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In fact,

Poly(R2n+1,O) =
⊕
r≥−1

p
(r)(R2n+1,O)

is a gradation, where

p
(r)(R2n+1,O) = {X ∈ Poly(R2n+1,O) | φ0

∗(ρ
0(a))∗X = krX}.

For r ≥ 0, in the same way as jr, the subspace

pr =
⊕

0≤q≤r

p
(q)(R2n+1,O)

can be equipped with a Lie bracket. Note that the group P0 ⊂
Diff(R2n+1,O) defined in Section 3 is a Lie group with its Lie algebra

p0 ⊂ X(R2n+1,O). Let Qr be the connected simply-connected nilpotent

Lie group with its Lie algebra

qr =
⊕

1≤q≤r

p
(q),

on which P0 acts naturally in the same way as that of GL(m,R) on Nr.

Finally, we obtain the semidirect product P0 � Qr, which will be denoted

by Pr.

Recall that each F ∈ F admits a decomposition F (x) =
∑

r≥−1 F
(r)(x)

as in Section 3. It is straightforward to see that there is a natural identifi-

cation of Pr with the subspace

{F ∈ F | F (q) = 0 for q = −1, q ≥ r + 1} ⊂ F .

Let F+ be the subgroup of F defined by

F+ = {F ∈ F | F (−1) = 0}.

There are natural surjective group homomorphisms F+ → Pr and Pq → Pr

for q > r ≥ 0 defined by forgetting higher-order terms. By abuse of notation,

such homomorphisms will be denoted by πr : F+ → Pr, πr : Pq → Pr. Note

that for a standard homomorphism S ∈ Hom(Γ,F), by Lemma 2.4, we see

that S(Γ) ⊂ F+, or S ∈ Hom(Γ,F+).
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To reduce the notation, the homomorphism DOφ
0
∗ρ

0 ∈ Hom(Γ,F+) in-

duced by the action ρ0 ∈ Hom(Γ,Diff(S2n+1)) will be denoted by R0. We

will show that Proposition 6.1 follows from the next proposition, which

claims that the family of the standard homomorphisms in Hom(Γ,Pr) (r ≥
2) is locally rigid if Pr is equipped with the topology induced from P1:

Proposition 7.1. For f ∈ Hom(Γ,Pr), r ≥ 2 with π1f ∈ Hom(Γ,P1)

sufficiently close to π1R
0, there exists a standard homomorphism S ∈

Hom(Γ,F+) such that f, πrS ∈ Hom(Γ,Pr) are conjugate.

To prove Proposition 6.1 assuming Proposition 7.1, we need some lem-

mas:

Lemma 7.2. If a homomorphism R ∈ Hom(Γ,F) is C1-close to R0,

then R is conjugate to a homomorphism in Hom(Γ,F+).

Proof. There is a natural group homomorphism d : F → GL(2n +

1,R) defined by the differential at O ∈ R
2n+1. Then for γ = b1, . . . , b2n, c,

dR0(γ) =

(
I2n uγ
0 1

)
, dR0(a) =

(
1
kI2n 0

0 1
k2

)

for k ≥ 2, uγ ∈ R
2n. Let us denote these matrices I(uγ) and I(k), re-

spectively. Let f : M(2n + 1,R) → R
2n be the map defined by f(X) =

(X2n+1,i)i=1,...,2n, where M(m,R) denotes the space of m ×m matrices. If

Y ∈ GL(2n+ 1,R) is close to I(k), then replacing Y with its conjugate, we

may assume that f(Y ) = 0. Thus it suffices to show the following: Assume

• X,Y ∈ GL(2n + 1,R) are sufficiently close to I(u), I(k), respectively,

• f(Y ) = 0, and

• Y X = X lY

for some u ∈ R
2n and l ≥ k ≥ 2. Then f(X) = 0.

Let ε > 0 be a constant satisfying

l∑
i=2

(
l

i

)
εi−1‖I(u)‖l−i < 1
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and

k−1 + ε < k(k−1 − ε)− (k−2 + ε).

If Y is sifficiently close to I(k), we may assume that ‖f(Y Z)‖ ≤ (k−2 +

ε)‖f(Z)‖ and (k−1 − ε)‖f(E)‖ ≤ ‖f(ZY )‖ ≤ (k−1 + ε)‖f(E)‖ for Z ∈
M(2n + 1,R), where ‖ · ‖ denotes the Euclidean norm on R

2n. Put X =

I(u) + E, E ∈ M(2n + 1,R). Then f(X) = f(E). If X is sufficiently close

to I(u), we may assume that ‖E‖ < ε, where ‖E‖ = max‖x‖=1 ‖Ex‖. We

see that

‖f(Y X)‖ ≤ (k−2 + ε)‖f(X)‖ = (k−2 + ε)‖f(E)‖.

On the other hand,

X lY = I(u)lY +


 ∑

i+j=l−1

I(u)iEI(u)j


Y + ΨY,

where Ψ denotes the terms of (I(u)+E)l in which E appears more than once.

Note that f(I(u)Z) = f(ZI(u)) = f(Z) and ‖f(ZW )‖ ≤ ‖f(Z)‖‖W‖ +

‖f(W )‖Z‖ for Z,W ∈M(2n + 1,R). Then f(I(u)lY ) = f(Y ) = 0, and

‖f
((∑

I(u)iEI(u)j
)
Y
)
‖ ≥ (k−1 − ε)‖f

(∑
I(u)iEI(u)j

)
‖

= l(k−1 − ε)‖f(E)‖.

Moreover, we can show that

‖f(Ψ)‖ ≤ ‖f(E)‖
l∑

i=2

(
l

i

)
‖E‖i−1‖I(u)‖l−i ≤ ‖f(E)‖.

Thus

(k−1 + ε)‖f(E)‖ ≥ ‖f(ΨY )‖ ≥ {k(k−1 − ε)− (k−2 + ε)}‖f(E)‖

and we see that ‖f(E)‖ = 0, or f(E) = f(X) = 0. �

Lemma 7.3. Let S ∈ Hom(Γ,F+) be a standard homomorphism. As-

sume R ∈ Hom(Γ,F+) satisfies the following condition:
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• R(a) = S(a),

• π1R(γ) = π1S(γ) for γ ∈ Γ.

Then R = S.

Proof. Set F = R(bi), and G = R(a) = S(a). Since abi = bki a and

G ∈ P0, we see that

G ◦ F (r) = (F k)(r) ◦G.

We will show that F is uniquely determined by this equation and F (r), r =

0, 1. For r ≥ 2, by F (−1) = 0, F (0) = id, we see that

(F k)(r) = kF (r) + Φ,

where Φ is a map determined by F (r′) (r′ < r). Using G ◦ F (r) ◦ G−1 =

krF (r),we see that F (r) is determined by F (r′) (r′ < r). Thus F = R(bi) =

S(bi).

It remains to show that R(c) = S(c). Fix bi, bj with [bi, bj ] = cm,

m �= 0. As we have seen that R(bi) = S(bi) and R(bj) = S(bj), we obtain

R(c)m = S(c)m. Since S(c)(0) = id and S(c)(1) = 0,

mR(c)(2) = (R(c)m)(2) = (S(c)m)(2) = mS(c)(2).

Thus R(c)(2) = S(c)(2). Since ac = ck
2
a, by a similar argument to that

of F = R(bi), we see that F = R(c) is determined by F (r), r = 0, 1, 2. It

follows that R(c) = S(c). �

Proof of Proposition 6.1 from Proposition 7.1. If a homomor-

phism R : Γ → F is C3-close to R0, by Lemma 7.2, we may assume that

R(Γ) ⊂ F+. Moreover, the homomorphisms π1R, π1R
0 ∈ Hom(Γ,P1) are

also close. By Proposition 7.1, we obtain h ∈ P1 and a standard homomor-

phism S ∈ Hom(Γ,F+) such that h(πrR(γ))h−1 = πrS(γ) for γ ∈ Γ. In

particular, h(π1R(γ))h−1 = π1S(γ).

Fix H ∈ F with π1H = h ∈ P1. Then π1(HR(a)H−1) = π1(S(a)).

Thus by Proposition 3.4, replacing H if necessary, we may assume that

HR(a)H−1 = S(a). Then Lemma 7.3 shows that HR(γ)H−1 = S(γ) for all

γ ∈ Γ. �
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The proof of Proposition 7.1 can be divided into three steps as follows.

Recall that Γ is a subgroup of AN in the Iwasawa decomposition SU(n +

1, 1) = KAN defined in Section 2, and that the closure of Γ in AN is

〈a〉 � N . As the first step of the proof, we will show that homomorphisms

of Γ can be extended to 〈a〉� N :

Proposition 7.4. If f ∈ Hom(Γ,Pr), r ≥ 2 is a homomorphism with

π1f ∈ Hom(Γ,P1) sufficiently close to π1R
0, then f can be uniquely extended

to a continuous homomorphism f̄ : 〈a〉 � N → Pr. Furthermore, if f(a) ∈
P0, then f̄(N) ⊂ Qr.

As the next step, using the extension f̄ , we will show the persistence of

f(a):

Proposition 7.5. If f ∈ Hom(Γ,Pr), r ≥ 2 is a homomorphism with

π1f ∈ Hom(Γ,P1) sufficiently close to π1R
0 and f(a) ∈ P0 ⊂ Pr, then

f(a) = πrR
0(a) ∈ P0.

The final step of the proof is to prove the persistence of f(N):

Proposition 7.6. If f ∈ Hom(Γ,Pr), r ≥ 2 is a homomorphism with

π1f ∈ Hom(Γ,P1) sufficiently close to π1R
0 and f(a) = πrR

0(a) ∈ P0 ⊂ Pr,

then there is an element h ∈ P0 such that hf̄(N)h−1 = πrR
0(N), where f̄

is the extension of f obtained by Proposition 7.4.

The proof of the above propositions will be given in the remaining sub-

sections. Proposition 7.1 can be derived from these three propositions as

follows:

Proof of Proposition 7.1 from Proposition 7.4, 7.5, and 7.6.

Let f ∈ Hom(Γ,Pr), r ≥ 2 be a homomorphism with π1f ∈ Hom(Γ,P1)

sufficiently close to π1R
0. By Proposition 3.4, after replacing f with its con-

jugate, we may assume that f(a) ∈ P0 ⊂ Pr. We obtain the extension f̄ ∈
Hom(〈a〉� N,Pr) by Proposition 7.4. By Proposition 7.5, f(a) = πrR

0(a).

After replacing f with its conjugate, by Proposition 7.6, we may assume

that f̄(N) = πrR
0(N). Using Lemma 7.7 below, we obtain a standard

homomorphism S ∈ Hom(Γ,F+) such that πrf = πrS ∈ Hom(Γ,Pr). �
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Lemma 7.7. Let f ∈ Hom(Γ,Pr) (r ≥ 2) be a homomorphism with

π1f : Γ → P1 sufficiently close to π1R
0 and f̄ : 〈a〉�N → Pr the extension

of f . If

• f(a) = πrR
0(a), and

• f̄(N) = πrR
0(N),

then there is a standard homomorphism S ∈ Hom(Γ,F+) such that f = πrS.

We will use the following fundamental result on lattices in nilpotent Lie

groups:

Theorem 7.8 ([5], Chapter II. Theorem 2.11). Let N and V be two

nilpotent simply connected Lie groups, and H a uniform subgroup of N .

Then any continuous homomorphism f : H → V can be extended uniquely

to a continuous homomorphism f̄ : N → V .

Proof of Lemma 7.7. By the definition of the standard homomor-

phism, it is sufficient to show that there is an embedding ι : Γ → AN as a

standard subgroup such that f = πrR
0 ◦ ι.

Since the action ρ0 of AN on S2n+1 admits the same common fixed

point p0 as that of Γ, R0 = DOφ
0
∗ρ

0 ∈ Hom(Γ,F+) admits the natural

extension to DOφ
0
∗ρ

0 ∈ Hom(AN,F+), which will also be denoted by R0 ∈
Hom(AN,F+). Note that πrR

0 : AN → Pr is an automorphism onto its

image.

By the assumption, we obtain the embedding ι = (πrR
0)−1◦f : Γ → AN

satisfying ι(a) = a and ι(Λ) ⊂ N . It remains to show that ι(Λ) ⊂ N is a

lattice. Since π1f is close to π1R
0, ι is close to the inclusion Γ ⊂ AN . In

particular, ι|Λ is close to the inclusion Λ ⊂ N in Hom(Λ, N). By Theorem

7.8, ι|Λ extends uniquely to a continuous homomorphism ι|Λ : N → N .

Since ι|Λ is close to the inclusion, ι|Λ is close to the identity map idN . In

particular, we may assume that the induced homomorphism ι|Λ∗ : n →
n, which is also close to idn, is an isomorphism. As exp : n → N is a

diffeomorphism, ι|Λ is an automorphism of N . It follows that ι(Λ) ⊂ N is

a lattice. �
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7.2. Extension of homomorphisms to a Lie group

In this subsection, we will give a proof of Proposition 7.4. Let f ∈
Hom(Γ,Pr) be a map such that π1f is close to π1R

0. First, by Proposition

3.4, after replacing f with its conjugate, we may assume that f(a) ∈ P0 ⊂
Pr. Next, we will show π0f(bi) = id ∈ P0:

Proposition 7.9. If g, h ∈ P0 satisfying gh = hkg are close to

π0R
0(a), id ∈ P0, respectively, then h = id.

Proof. To prove this proposition, we will use Weil’s implicit function

theorem [7]: Let F1 : (M0, x0) → (M1, x1), F2 : (M1, x1) → (M2, x2) be

smooth maps between smooth manifolds. If F2 ◦ F1 is the constant map at

x2 and

Im(dF1)x1 = Ker(dF2)x2 ,

then there is a neighborhood U of x0 ∈ M0 such that F1(U) is a neighbor-

hood of x1 ∈ F−1
2 (x2).

Put

(M0, x0) = (P0, πrR
0(a)),

(M1, x1) = (P2
0 , (πrR

0(a), id)),

(M2, x2) = (P0, id),

and

F1(g) = (g, id), F2(g, h) = ghg−1h−k.

To apply Weil’s Implicit function theorem to this setting, it is sufficient to

show that Im(dF1)x1 = Ker(dF2)x2 . Then the claim follows immediately.

Identifying the tangent space TπrR0(a)P0 at πrR
0(a) ∈ P0 with TidP0 =

p0 by the left translation, it is straightforward to see that

(dF1)x1(X) = (X, 0), (dF2)x2(X,Y ) = Ad(πrR
0(a))(Y )− kY

for X,Y ∈ p0. By Ad(πrR
0(a)) = id ∈ Aut(p0), it follows that Ker(dF2)x2 =

{(X, 0)}. �

Recall that Pr = P0�Qr. By the above proposition, we may assume that

f(Λ) ⊂ Pr is contained in Qr. By definition, Λ is a lattice of the nilpotent
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Lie group N . By Theorem 7.8, f : Λ → Qr can be uniquely extended to

a continuous homomorphisms f̄ : N → Qr. Note that f(a)f̄(g)f(a)−1 =

f̄(aga−1) for all g ∈ N , since both sides of the equation are continuous

extensions of the homomorphism λ ∈ Λ �→ f(a)f(λ)f(a)−1 = f(aλa−1) ∈
Qr. Thus we proved Proposition 7.4.

7.3. Persistence of the cyclic subgroup

In this subsection, we will prove Proposition 7.5. Let f ∈ Hom(Γ,Pr),

r ≥ 2 be a homomorphism with π1f ∈ Hom(Γ,P1) sufficiently close to π1R
0

and f(a) ∈ P0 ⊂ Pr. To prove f(a) = πrR
0(a) ∈ P0, we will construct a

Lie subalgebra of X(R2n+1) on which f(a), πrR
0(a) ∈ P0 ⊂ Diff(R2n+1) act

in the same way. The subalgebra of X(R2n+1) is , using the terminology in

Section 4, a Heisenberg connection.

Let f̄ ∈ Hom(〈a〉 � N,Pr) be the extension of f obtained by Proposi-

tion 7.4 and f̄∗ : n → qr the homomorphism of Lie algebras induced by the

homomorphism of Lie group f̄ |N : N → Qr. As the linear subspace qr ⊂
X(R2n+1,O) is not a Lie subalgebra, the linear map f̄∗ : n → X(R2n+1,O)

induced by the inclusion qr ⊂ X(R2n+1,O) is not necessarily a homomor-

phism of Lie algebras. But we can construct a homomorphism from n into

X(R2n+1,O) in the following way. The p(s)(R2n+1,O)-component of X ∈ pr

will be denoted by X(s). Recall that X1, . . . , X2n+1 ∈ n is the basis of n with

the relations [Xi, Xj ] = mijX2n+1, [Xi, X2n+1] = 0 satisfying bi = expXi,

c = expX2n+1 as described in Section 2.

Lemma 7.10. For r ≥ 3, let ϕ : n → X(R2n+1,O) be the linear map

defined by

ϕ(Xi) = f̄∗(Xi)
(1) (i = 1, . . . , 2n), ϕ(X2n+1) = f̄∗(X2n+1)

(2).

Then ϕ is a homomorphism of Lie algebras.

Proof. As pr =
⊕

s≤r p(s)(R2n+1,O) is a gradation, and f̄∗ : n → qr

is a homomorphism of Lie algebras, by the relations on n, we see that

0 = f̄∗(X2n+1)
(1),

[f̄∗(Xi)
(1), f̄∗(Xj)

(1)] = mij f̄∗(X2n+1)
(2),

[f̄∗(Xi)
(1), f̄∗(X2n+1)

(2)] = 0,



46 Mao Okada

for i, j = 1, . . . , 2n. It follows that ϕ is a homomorphism of Lie algebras. �

Observe that both f(a), πrR
0(a) ∈ P0 ⊂ Diff(R2n+1) preserve

ϕ(n) ⊂ X(R2n+1) and the restrictions on it coincide. In fact, by the

relations abia
−1 = bki , we see that f(a)∗f̄∗(Xi) = Ad(f(a))f̄∗(Xi) =

kf̄∗(Xi) ∈ pr and thus f(a)∗f̄∗(Xi)
(1) = kf̄∗(Xi)

(1). Since f̄∗(Xi)
(1) ∈ p(1),

πrR
0(a)∗(f̄∗(Xi)

(1)) = kf̄∗(Xi)
(1).

Proof of Proposition 7.5. We will consider the action of g =

f(a)−1 πrR
0(a) ∈ P0 ⊂ Diff(R2n+1) on ϕ(n) ⊂ X(R2n+1). By Lemma 2.1,

φ0
∗ ◦ ρ0

∗(n) ⊂ X(R2n+1) is a frame field on R
2n+1 \ {O}. Thus if π1f is suffi-

ciently close to π1R, by Lemma 7.10, ϕ(n) is a Heisenberg connection on a

neighborhood of a point x ∈ R
2n+1 \ {O}.

If π1f is sufficiently close to π1R, we may assume that there are con-

nected open neighborhoods V ⊂ U of x ∈ R
2n+1 \ {O} such that

• ϕ(n)|U is a Heisenberg connection on U ,

• there is an embedding ι of U into R
2n+1 such that ι∗ϕ(n)|U is the

restriction of the standard Heisenberg conneciton of R
2n+1 to U , and

• g(V ) ⊂ U .

By the above observation, we see that g preserves the Heisenberg connection

ϕ(n)|U . Put E0 = φ0
∗ ◦ ρ0

∗(E). Note that g∗E0 = E0 as g ∈ P0. Since

[E0, Y ] = rY for all Y ∈ p(r), E0 is a dilation of ϕ(n)|U by e. Applying

Proposition 4.7, g is the identity on V . �

7.4. Persistence of the nilpotent Lie group

In this subsection, we will prove Proposition 7.6. As we will see it later,

Proposition 7.6 follows from Proposition 7.11 below, which claims certain

local rigidity of a homomorphism of Lie algebras. Let us set up notation

and terminology to state and prove Proposition 7.11.

Let φ0
∗ ◦ ρ0

∗ : g = su(n + 1, 1) → X(R2n+1) be the homomorphism of

Lie algebras defined in Subsection 2.1. For simplicity of notation, put ι0 =

φ0
∗ ◦ρ0

∗. Recall that g admits the gradation g =
⊕

|λ|≤2,λ∈Zg(λ). The graded

Lie algebra g admits graded Lie subalgebras n+ = g(+1) ⊕ g(+2) and n− =

g(−1) ⊕ g(−2). Note that n+ is the Lie algebra of N , which was denoted by

n.
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By the definition of ρ0 and φ0, it is easy to see that the image of ι0 :

g → X(R2n+1) is contained in the subalgebra p ⊂ X(R2n+1) of polynomial

vector fields on R
2n+1. Moreover, p admits a gradation which is compatible

with that of g: Consider the gradation p =
⊕

r≥−2 p(r), where

p
(r) = p

(r)(R2n+1) = {X ∈ p | φ0
∗(ρ

0(a))∗X = krX}.

In general, for any graded Lie algebras g =
⊕

r g(r), h =
⊕

r h(r), a homo-

morphism of Lie algebras f : g → h is said to be a homomorphism of graded

Lie algebras if

f(g(r)) ⊂ h
(r)

for all r. The space of homomorphisms of graded Lie algebras will be de-

noted by Homgr(g, h). By the definition of p(r), ι0 : g → p is a homomor-

phism of graded Lie algebras.

Recall that the group P0, which is a subgroup of Diff(R2n+1), acts nat-

urally on X(R2n+1). Note that P0 preserves p ⊂ X(R2n+1) and that P0 acts

on p by homomorphisms of graded Lie algebras.

We can now rephrase Proposition 7.6 as the following proposition, which

is, so to speak, a local rigidity of a homomorphism of graded Lie algebra.

Proposition 7.11. If ι ∈ Homgr(n
+, p) is a homomorphism suffi-

ciently close to ι0 = ι0|n+ ∈ Homgr(n
+, p), then there exists h ∈ P0 such

that

ι(n+) = h∗ι
0(n+).

Proof of Proposition 7.6 from Proposition 7.11. Let f ∈
Hom(Γ,Pr), r ≥ 2 be a homomorphism with π1f ∈ Hom(Γ,P1) sufficiently

close to π1R
0 and f(a) = πrR

0(a) ∈ P0 ⊂ Pr, and f̄ ∈ Hom(〈a〉�N,Pr) the

extension of f obtained by Proposition 7.4. Our goal is to find an element

h ∈ P0 satisfying hf̄(N)h−1 = πrR
0(N).

Since f(a) = πrR
0(a), we see that f̄∗ : n+ → pr is a homomorphism of

graded Lie algebras and that the map f̄∗ : n+ → p induced by the inclusion

pr ⊂ p is also a homomorphism of graded Lie algebras. Applying Proposition

7.11 to ι = f̄∗ : n+ → p, we obtain h ∈ P0 such that f̄∗(n+) = h∗ι0(n+).
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Replacing f by h−1fh, we may assume f̄∗(n+) = ι0(n+). As R0
∗ = ι0 : n+ →

p, we see f̄∗(n+) = (πrR
0)∗(n+). Since Qr is a connected simply-connected

nilpotent Lie group, it follows that f̄(N) = πrR
0(N). �

Before beginning the proof of Proposition 7.11, we will prove the follow-

ing:

Proposition 7.12. If ι ∈ Homgr(n
−, p) is a homomorphism suffi-

ciently close to ι0 = ι0|n− ∈ Homgr(n
−, p), then there is an element h ∈ P0

close to the identity such that ι0 = h∗ ◦ ι.

Proof. If ι is sufficiently close to ι0 ∈ Homgr(n
−, p), we may assume

that ιn− ⊂ X(R2n+1) is a frame field around O ∈ R
2n+1. Then ιn− is a

Heisenberg connection around O ∈ R
2n+1. Thus there is a unique diffeo-

morphism f : R
2n+1 → R

2n+1 such that f(O) = O and that f∗(ιX) = ι0X

for all X ∈ n−. We will show that such a diffeomorphism f must be an

element of P0 ⊂ Diff(R2n+1).

Since ι preserves the gradations, ιE is a dilation of ιn− by e. As ι0E

is a dilation of ι0n− by e, f∗(ι0E) is also a dilation of ιn− by e. Thus

ιE − f∗(ι0E) ∈ Z(ιn−). Using f(O) = O, we see that ιE = f∗(ι0E).

It remains to show that a diffeomorphism f defined around O ∈ R
2n+1

fixing O with f∗ι0E = ι0E must be in P0. Set f(x) = (f1(x), . . . ,

f2n+1(x)) ∈ R
2n+1. By f∗ι0E = ι0E,

(ι0E)fi = −fi (1 ≤ i ≤ 2n), (ι0E)f2n+1 = −2f2n+1.

Thus it is sufficient to show that a smooth function g defined around O ∈
R

2n+1 with (ι0E)g = mg, m ∈ Z is polynomial. Recall that ι0E = −x1∂1−
· · · − x2n∂2n − 2x2n+1∂2n+1 ∈ p(0). Observe that limt→∞ γ(t) = O ∈ R

2n+1

for any integral curves γ(t) of ι0E. It follows that g = 0 around O ∈ R
2n+1

if m > 0 and that g is constant around O ∈ R
2n+1 if m = 0. If m < 0, since

[ι0E, ∂i] = ∂i, [ι0E, ∂2n+1] = 2∂2n+1,

(ι0E)∂ig = (m + 1)∂ig, (ι0E)∂2n+1g = (m + 2)∂2n+1g

for 1 ≤ i ≤ 2n. Thus we see that g is polynomial function by induction on

m. �
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Let us prove Proposition 7.11. To reduce the notation, put

E =


 1 0 0

0 0 0

0 0 −1


 , F− =


 0 0 0

0 0 0

−i 0 0


 , F+ =


 0 0 −i

0 0 0

0 0 0


 ,

ξ− =


 0 0 0

ξ 0 0

0 −ξ
T

0


 , ξ+ =


 0 −ξ

T
0

0 0 ξ

0 0 0


 (ξ ∈ C

n).

Then the following relations are immediate:

[ξ+, η+] = 2Im(ξ
T
η)F+, [ξ−, η−] = 2Im(ξ

T
η)F−,

[F−, ξ+] = (iξ)−, [F+, ξ−] = (iξ)+, [F−, F+] = E.

Observe that ξ− = [F−, (−iξ)+] and 2F− = ad(F−)2F+. Then we can con-

struct a homomorphism of graded Lie subalgebras from n− into p associated

with ι ∈ Homgr(n
+, p):

Lemma 7.13. For ι ∈ Homgr(n
+, p), the linear map Θι : n− = g(−2) ⊕

g(−1) → p defined by

(Θι)(ξ−) = ad(ι0F−)ι(−iξ)+, (Θι)(F−) =
1

2
ad(ι0F−)2ιF+

is a homomorphism of graded Lie algebras. Moreover, if ι ∈ Homgr(n
+, p) is

sufficiently close to ι0|n+ ∈ Homgr(n
+, p), then Θι ∈ Homgr(n

−, p) is close

to ι0|n− ∈ Homgr(n
−, p).

Proof. By the relations ξ− = [F−, (−iξ)+] and 2F− = ad(F−)2F+,

we see that Θι is close to ι0 as a linear map from n− to p. Since (Θι)(g(−1)) ⊂
[p(−2), p(+1)] = p(−1) and (Θι)(g(−2)) ⊂ [p(−2), [p(−2), p(+1)]] = p(−2), we see

that Θι preserves the gradations. Applying ad(ι0F−)2 to the equation

[ι(−iξ)+, ι(−iη)+] = 2Im(ξ
T
η)ιF+,

we obtain

2[ad(ι0F−)ι(−iξ)+, ad(ι0F−)ι(−iη)+] = 2Im(ξ
T
η)ad(ι0F−)2ιF+.

It follows that Θι is a homomorphism of Lie algebras. �
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Proposition 7.14. If a homomorphism ι ∈ Homgr(n
+, p) is suffi-

ciently close to ι0|n+ ∈ Homgr(n
+, p), then there exist an element h ∈ P0

close to the identity such that ι0|n− = Θ(h∗ ◦ ι) ∈ Homgr(n
−, p).

Proof. By Lemma 7.13 and Proposition 7.12, there is an element

h ∈ P0 such that ι0 = h∗(Θι). Then

ι0(ξ−) = ad(h∗ι
0F−)(h∗ ◦ ι)(−iξ+),

ι0(F−) = ad(h∗ι
0F−)2(h∗ ◦ ι)(F+).

There is t ∈ R satisfying h∗ι0F− = etι0F−. Consider an element h′ ∈
exp(RE) ⊂ P0 such that h′

∗(X) = eλtX for all X ∈ g(λ). Then we see that

Θ((h′h)∗ ◦ ι) = ι0. �

Thus replacing ι by h∗ ◦ ι obtained by the above proposition, we may

assume that Θι = ι0|n− ∈ Homgr(n
−, p).

Lemma 7.15. If ι ∈ Homgr(n
+, p) is sufficiently close to the homomor-

phism ι0|n+ ∈ Homgr(n
+, p), and Θι = ι0|n− ∈ Homgr(n

−, p), then

• [ι0F−, ιF+] = E,

• ιg(+1) = [ι0g(−1), ιg(+2)].

Proof. By [ιξ+, ιF+] = 0, applying ad(ι0F−)2,

2[ad(ι0F−)ιξ+, ad(ι0F−)ιF+] + [ιξ+, ad(ι0F−)2ιF+] = 0.

Then by Θι = ι0,

[ι0(iξ)−, ad(ι0F−)ιF+]− ι0(iξ)− = 0.

It follows that ad(ι0F−)ιF+−E ∈ Z(ι0n−). Since ad(ι0F−)ιF+−E ∈ p(0),

we see that ad(ι0F−)ιF+ − E = 0. Thus we have proved the first item.

Applying ad(ι0F−) to [ιξ+, ιF+] = 0,

[ad(ι0F−)ιξ+, ιF+] + [ιξ+, ad(ι0F−)ιF+] = 0.

By Θι = ι0 and [ι0F−, ιF+] = E,

[ι0(iξ)−, ιF+] + [ιξ+, E] = 0.
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Thus ιξ+ = [ι0(iξ)−, ιF+] for all ξ ∈ C
n and the second item follows. �

By the above lemma, we are left to prove the following:

Proposition 7.16. If X ∈ p(+2) is sufficiently close to ι0F+ satisfying

[ι0F−, X] = E, [[ι0g(−1), X], X] = 0,

then X = ι0F+.

Proof. To show the proposition, we will use implicit function theorem.

Identifying the tangent space Tι0F+p(+2) with p(+2) itself, it is sufficient to

show that X ∈ p(+2) satisfying

[ι0F−, X] = 0,(3)

[[ι0ξ−, X], ι0F+] + [[ι0ξ−, ι0F+], X] = 0(4)

for all ξ− ∈ g(−1) is X = 0.

Define the R-multilinear map Φ : (Cn)4 → p(−2) by

Φ(ξ1, ξ2, ξ3, ξ4) = ad(ι0ξ−1 )ad(ι0ξ−2 )ad(ι0ξ−3 )ad(ι0ξ−4 )X.

By equation (3), we see that Φ is symmetric with respect to ξi. We will show

that Φ = 0. Put α = ad(ι0ξ−) and β = ad(ι0η−) for ξ, η ∈ C
n. Applying

β5 to (4),

10[β2αX, β3ι0F+] + 10[β2αι0F+, β3X] + 5[βαι0F+, β4X] = 0,

where we used (3) and ad(F−)ad(η−)2F+ = 0. When η = −iξ, since

ad(η−)3F+ = ‖ξ‖2ξ− and ad(η−)ad(ξ−)F+ = ‖ξ‖2E, it follows that

−10αβ2αX + 10β4X + 5[E, β4X] = 0.

Thus

Φ(ξ, ξ, iξ, iξ) = 0(5)

for all ξ ∈ C
n. Applying ad(ι0η−)ad(ι0ξ−)4 to (4),

4[α4X,βαι0F+] + 6[α3X,βα2ι0F+] + 4[βα2X,α3ι0F+]
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+ 6[α3ι0F+, βα2X] + 4[βα2ι0F+, α3X] = 0,

where we denoted α = ad(ι0ξ−), β = ad(ι0η−) and used the equations

(3) and ad(F−)ad(ξ−)2F+ = 0. When η = −iξ, using the equations

ad(η−)ad(ξ−)F+ = ‖ξ‖2E, ad(η−)ad(ξ−)2F+ = ‖ξ‖2ξ−, and ad(ξ−)3F+ =

−‖ξ‖2η−, it follows that

4[α4X,E]− 6α4X + 4β2α2X − 6β2α2X + 4α4X = 0.

By (5),

Φ(ξ, ξ, ξ, ξ) = 0

for ξ ∈ C
n. Since Φ is an R-multilinear symmetric map, it follows that

Φ = 0.

Define the R-multilinear map Ψ : (Cn)3 → p(−1) by

Ψ(ξ1, ξ2, ξ3) = ad(ι0ξ−1 )ad(ι0ξ−2 )ad(ι0ξ−3 )X.

By equation (3), Ψ is symmetric. We will show that Ψ = 0. Applying

ad(ι0ξ−)4 to (4), since Φ = 0,

[Ψ(ξ, ξ, ξ), ι0J ] + Ψ(iξ, ξ, ξ) = 0,

where

J =


 −i 0 0

0 0 0

0 0 i


 ∈ g

(0).

As Ψ is an R-multilinear symmetric map,

3[Ψ(ξ, η, ζ), ι0J ] + Ψ(iξ, η, ζ) + Ψ(ξ, iη, ζ) + Ψ(ξ, η, iζ) = 0(6)

for ξ, η, ζ ∈ C
n. Applying ad(ι0η−)4 to (4), when η = −iξ,

−4Ψ(ξ, η, ξ) + 6[Ψ(η, η, ξ), ι0J ] + 2Ψ(η, η, η) = 0.

By (6),

Ψ(η, η, η) = 0.
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Thus Ψ = 0.

As we have seen in Section 4, the centralizer Z(ι0n−) of ι0n− in X(R2n+1)

is contained in p(−2) ⊕ p(−1). Since Ψ is identically 0, we see that for

all ξ1, ξ2 ∈ C
n, ad(ι0ξ−1 )ad(ι0ξ−2 )X ∈ Z(ι0n−) ⊂ p(−2) ⊕ p(−1). On the

other hand, since ι0ξ−1 , ι0ξ−2 ∈ p(−1) and X ∈ p(+2), we obtain

ad(ι0ξ−1 )ad(ι0ξ−2 )X ∈ p(0). So ad(ι0ξ−1 )ad(ι0ξ−2 )X = 0. Similarly, we see

that ad(ι0ξ−)X = 0 for all ξ ∈ C
n, and that X = 0. �
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