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Discrepancies of p-Cyclic Quotient Varieties

By Takehiko Yasuda

Abstract. We consider the quotient variety associated to a linear
representation of the cyclic group of order p in characteristic p > 0.
We estimate the minimal discrepancy of exceptional divisors over the
singular locus. In particular, we give criteria for the quotient variety
being terminal, canonical and log canonical. As an application, we
obtain new examples of non-Cohen-Macaulay terminal singularities,
adding to examples recently announced by Totaro.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0 and G =

Z/p the cyclic group of order p. Suppose that G linearly acts on the d-

dimensional affine space V = Adk. Let X := V/G be the quotient variety.

This variety is factorial (see [CW11, Th. 3.8.1]), but not necessarily Cohen-

Macaulay. We are interested in singularities of X from the viewpoint of the

minimal model program.

To state our main results, we recall basic notions concerning singular-

ities and introduce some notation. Let us consider a modification (proper

birational morphism) f : Y → X such that Y is normal, and the exceptional

locus Exc (f) ⊂ Y and the preimage f−1(Xsing) of Xsing are both of pure

dimension d− 1. We will call such a morphism an admissible modification.

Note that the last condition implies f−1(Xsing) ⊂ Exc (f). Note also that

an arbitrary modification Y → X can be altered into an admissible one

by blowup and normalization. For an admissible modification f : Y → X,

we define the relative canonical divisor KY/X in the usual way, which is a

Weil divisor with support contained in Exc (f). Let Exc (f) =
⋃
i∈Ef Ei and
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f−1(Xsing) =
⋃
i∈Sf

Ei be the decompositions into irreducible components

with Sf ⊂ Ef and write KY/X =
∑
i∈Ef aiEi, where ai are integers called

discrepancies. We define

δ(X) := discrep (center ⊂ Xsing;X) = inf
f

min
i∈Sf

ai.

Here f runs over admissible modifications of X. We have either δ(X) ≥ −1

or δ(X) = −∞ [KM98, Cor. 2.31]. We say that X is terminal (resp.

canonical, log canonical) if δ(X) > 0 (resp. ≥ 0, ≥ −1). Note that since

our variety X is factorial and hence δ(X) is an integer if not −∞, that X

is canonical is equivalent to that X is log terminal (meaning δ(X) > −1).

We will estimate δ(X) in terms of the givenG-representation V . For each

integer i with 1 ≤ i ≤ p, there exists a unique indecomposable representation

of G over k; we denote it as Vi. The representation V decomposes into

indecomposable ones: V =
⊕l
λ=1 Vdλ with 1 ≤ dλ ≤ p and

∑
dλ = d. The

decomposition is unique up to permutation of direct summands. We define

an invariant DV by

DV :=

l∑
λ=1

(dλ − 1)dλ
2

.

We easily see that DV = 0 if and only if the G-action is trivial, and also

that DV = 1 if and only if a generator of G is a pseudo-reflection (that is,

the fixed point locus V G has codimension one). In these cases, the quotient

variety X is again isomorphic to Adk. Excluding these cases, we assume in

what follows thatDV ≥ 2. The fixed point locus V G is then an l-dimensional

linear subspace of V . The quotient morphism V → X is étale outside V G

and the image of V G is exactly the singular locus Xsing of X. The invariant

DV is clearly additive with respect to direct sums. For indecomposable

representations of small dimensions, we have

DV1 = 0, DV2 = 1, DV3 = 3, DV4 = 6, DV5 = 10.

From [ES80], X is Cohen-Macaulay if and only if d− l = codimV G ≤ 2. If

DV = 2, then V = V ⊕2
2 ⊕ V

⊕(d−4)
1 for some n and X is Cohen-Macaulay.

Note that V ⊕n
1 is the n-dimensional trivial representation. If DV = 3, then

V is either V3 ⊕ V
⊕(d−3)
1 or V ⊕3

2 ⊕ V
⊕(d−6)
1 ; X is Cohen-Macaulay in the
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former and not Cohen-Macaulay in the latter. If DV ≥ 4, then X is never

Cohen-Macaulay.

In [Yas14, Propositions 6.6 and 6.9], the author proved the following

result.

Theorem 1.1. If DV ≥ p, then X is canonical.

This result provided the first example of log terminal (even canoni-

cal) but not Cohen-Macaulay singularities in all positive characteristics (re-

call that log terminal singularities in characteristic zero are always Cohen-

Macaulay). For instance, X has such singularities when V = V ⊕3
2 in char-

acteristic two or V = V4 in characteristic five. Later, further examples

of non-Cohen-Macaulay log terminal or canonical singularities [GNT, CT,

Kov, Ber] were found. The above theorem also shows that when V = V3

in characteristic p ≥ 5, X is Cohen-Macaulay (in fact, a hypersurface) but

not log terminal (recall that quotient singularities in characteristic zero are

always log terminal). It should be mentioned that Hacon and Witaszek

[HW] proved that in sufficiently large characteristics, three-dimensional log

terminal singularities are Cohen-Macaulay.

The aim of this paper is to strengthen the above theorem. For a positive

integer j with p � j, we define

shtV (j) :=

l∑
λ=1

dλ−1∑
i=1

⌊
ij

p

⌋
.

Here 
·� denotes the round down of rational numbers to integers. The

following two theorems are our main results:

Theorem 1.2. Suppose that DV ≥ 2. Then DV < p− 1 if and only if

δ(X) = −∞. If DV ≥ p− 1, then

δ(X) = d− 1 − l − max
1≤s≤p−1

{s− shtV (s)}(1.1)

= DV − 1 − max
1≤s≤p−1

{shtV (p− s) + s}.(1.2)

Theorem 1.3. Suppose that DV ≥ 2. Then

δ(X) ≤ DV − p.(1.3)
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If DV ≥ p, then we also have

δ(X) ≥ 2DV
p

− 2.(1.4)

As a direct consequence of these, we obtain:

Corollary 1.4. Suppose that DV ≥ 2. Then X is terminal (resp.

canonical, log canonical) if and only if DV > p (resp. DV ≥ p, DV ≥ p−1).

For instances, in the cases where V = V ⊕3
2 in characteristic two and

V = V4 in characteristic five, the quotient variety X is terminal but not

Cohen-Macaulay. The dimension four is the smallest possible, because we

consider linear actions and the fixed-point locus V G is always of positive

dimension. Note that Totaro [Tot, Cor. 2.2] had earlier announced con-

struction of terminal but not Cohen-Macaulay singularities by using ho-

mogeneous varieties with nonreduced stabilizers. These singularities have

dimension ≥ 8. The current work was motivated by his result. Later, in-

spired by construction of the author, Totaro constructed an example of a

three-dimensional terminal but not Cohen-Macaulay singularity in charac-

teristic two, by considering a non-linear action of Z/2 (see [Tot, Theorem

5.1]).

In the next section, we review basics of motivic integration and give an

expression of δ(X) in terms of motivic integration (Proposition 2.1). In

Section 3, we prove Theorems 1.2 and 1.3.

The essential part of this work was done during a workshop held at

Mathematisches Forschungsinstitut Oberwolfach on September, 2017. The

author thanks the organizers of the workshop and the host institute. He

also thanks Yoshinori Gongyo, Shihoko Ishii, Sándor Kovács, Burt Totaro

and Shunsuke Takagi for helpful conversation and information.

2. Motivic Integration

In this section, after briefly recalling basics of motivic integration, we

prove a result expressing δ(X) in terms of motivic integration, Proposition

2.1, which will be necessary in Section 3.
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We denote by X an irreducible variety of dimension d over k. We denote

the arc space of X by J∞X. This space has the motivic measure denoted

by µX . We let the motivic measure take values in the ring denoted by

M̂′ in [Yas14], a version of the completed Grothendieck ring of varieties.

The element of M̂′ defined by a variety Z is denoted by [Z]. We write

the special element [A1
k] as L, which is invertible by construction. There

exists a ring homomorphism P : M̂′ → Z((T−1)) which sends [Z] to the

Poincaré polynomial of Z (see ibid., pp. 1141-1142). We define the degree of

α =
∑
aiT

i ∈ Z((T−1)) by degα := sup{i | ai �= 0}. For a ∈ M̂′, we define

its dimension as dim a := 1
2 degP (a) so that for a variety Z and an integer

n, we have dim[Z]Ln = dimZ + n.

For n ∈ N, let πn : J∞X → JnX be the truncation map to n-jets. A

subset U ⊂ J∞X is called stable if there exists n ∈ N such that πn(U) is a

constructible subset of JnX, U = π−1
n πn(U) and for every n′ ≥ n, the map

πn′+1(U) → πn′(U) is a piecewise trivial Ad-fibration. The measure µX(U)

of a stable subset U is defined to be [πn(U)]L−nd for n � 0. A measurable

subset of J∞X is a subset approximated by a sequence of stable subsets.

The measure of a measurable subset is defined as the limit of ones of stable

subsets (for details, see [DL02, Appendix], [Seb04, Section 6]).

In what follows, we assume that X is normal and the canonical sheaf

ωX is invertible. The ω-Jacobian ideal JX ⊂ OX is then defined by

JXωX = Im
(∧dΩX/k → ωX

)
. For an admissible modification f : Y → X,

let f∞ : J∞Y → J∞X be the induced map of arc spaces. For a measurable

subset U ⊂ J∞Ysm ⊂ J∞Y , where Ysm denotes the smooth locus, we have

the change of variables formula,∫
U

L−ordKY/X dµY =

∫
f∞(U)

LordJX dµX .

Here ord ? denotes the order function associated to a divisor or an ideal

sheaf. The proofs of our main results are based on repeated evaluation of

dimensions of integrals as above. For this reason, we introduce the following

notation: For a measurable subset U of J∞X (resp. J∞Ysm), we define

ν(U) := dim

(∫
U

LordJX dµX

)
(

resp. ν(U) := dim

(∫
U

L−ordKY/X dµY

))
,
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provided that the integral converges. We say that a measurable subset

U of J∞X or J∞Ysm is small if the relevant integral converges. When

U ⊂ J∞Ysm, we have ν(U) = ν(f∞(U)).

In what follows, we write A =a.e. B (resp. A ⊂a.e. B) to mean that there

exists a measure zero subset C such that A\C = B\C (resp. A\C ⊂ B\C);

“a.e.” stands for “almost everywhere”. We also denote by πX the truncation

map J∞X → J0X = X and similarly for πY .

Proposition 2.1. Let Cr ⊂ π−1
X (Xsing), r ∈ N be a countable collec-

tion of small measurable subsets such that π−1
X (Xsing) =a.e.

⋃
r∈NCr. Then

δ(X) = d− 1 − sup
r
ν(Cr).

The corresponding result in characteristic zero would be well-known to

specialists and is an easy consequence of the existence of log resolution,

the change of variables formula and explicit computation of
∫
U L−ordKY/X

for some small measurable subsets U ⊂ J∞Y . Since we work in positive

characteristic, we do not know the existence of log resolution. However a

result of Reguera [Reg09, Prop. 3.7(vii)], that every stable point determines

a divisorial valuation, can take the place of the existence of log resolution.

Indeed similar results for MJ-discrepancies have been proved by using it

[IR17, Th. 3.18]. The rest of this section is devoted to the proof of the

above proposition, which uses only standard arguments. We first prove a

few auxiliary results.

Lemma 2.2. Let C,Ci, Di, i ∈ N be small measurable subsets of J∞X.

(1) If C ⊂a.e.
⋃
i∈NDi, then ν(C) ≤ supi∈Nν(Di).

(2) If
⋃
i∈NCi =a.e.

⋃
i∈NDi, then supi∈Nν(Ci) = supi∈Nν(Di).

Proof. For the first assertion, let D′
i := Di \

⋃
j<iDj . Then the sets

D′
i are mutually disjoint and

⋃
iD

′
i =

⋃
iDi. Therefore∫

C
LordJX dµX =

∑
i∈N

∫
C∩D′

i

LordJX dµX .



Discrepancies of p-Cyclic Quotient Varieties 7

It follows that

ν(C) = sup
i∈N

ν(C ∩D′
i) ≤ sup

i∈N
ν(D′

i) ≤ sup
i∈N

ν(Di).

Thus the first assertion holds. For the second assertion, we apply the first

assertion to C = Ci for each i to get

ν(Ci) ≤ sup
j∈N

ν(Dj).

This shows supi ν(Ci) ≤ supi ν(Di). The opposite inequality is proved by

the same argument. �

For i ∈ Ef and an integer b > 0, we define

E◦
i := (Ei,sm ∩ Ysm) \

⋃
j∈Ef\{i}

Ej ⊂ Y,

Ni,b := {γ ∈ π−1
Y (E◦

i ) | ordEi(γ) = b} ⊂ J∞Y.

To emphasize f , we also write Ni,b as Nfi,b. By a standard computation of

motivic integration,∫
Ni,b

L−ordKY/X dµY = µY (Ni,b)L
−aib = [E◦

i ](L − 1)L−(1+ai)b.

In particular,

ν(Ni,b) = d− (1 + ai)b.

Lemma 2.3. Let M be the set of (isomorphism classes of) admissible

modifications f : Y → X. We have

δ(X) = d− 1 − sup
f∈M,i∈Sf ,b>0

ν(Nfi,b).

Proof. If X is not log canonical, then the both sides are −∞. If X is

log canonical, since 1 + ai ≥ 0, we have ν(Nfi,b) ≤ ν(Nfi,1) for every f ∈ M,
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i ∈ Sf , b > 0. Therefore

δ(X) = inf
f∈M,i∈Sf

ai

= d− 1 − sup
f∈M,i∈Sf

ν(Nfi,1)

= d− 1 − sup
f∈M,i∈Sf ,b>0

ν(Nfi,b). �

Lemma 2.4. There exists a countable set M0 ⊂ M of admissible mod-

ifications of X such that

π−1
X (Xsing) =a.e.

⋃
f∈M0, i∈Sf , b>0

f∞(Nfi,b).

Proof. The lemma follows from the following two facts:

(1) There exist countably many measurable subsets Cj ⊂ π−1
X (Xsing), j ∈

N such that π−1
X (Xsing) =a.e.

⋃
j Cj .

(2) Every measurable subset C ⊂ π−1
X (Xsing) is almost everywhere covered

by f∞(π−1
Y (E◦

i )) for countably many f ’s.

For the first fact, we can for instance take Cj to be the locus of arcs having

order j + 1 along Xsing ([DL99, Lemma 4.1], [Seb04, Lemme 4.5.4]). For

the second one, we need a result of Reguera [Reg09, Prop. 3.7(vii)] that

every stable point of J∞X determines a divisorial valuation on the function

field, which means that for every irreducible stable subset C ′ ⊂ π−1
X (Xsing),

there exist an admissible modification f : Y → X and i ∈ Sf such that

f∞(π−1
Y (E◦

i )) contains the generic point of C ′. Let C ⊂ π−1
X (Xsing) be

a measurable subset. By definition of measurable subsets (see [DL02, Def.

A.5]), there exists a sequence of stable subsets which approximate C. In par-

ticular there exists a stable subset C ′ such that dimµX(C�C ′) is arbitrarily

small, say < dimµX(C). Here A�B denotes the symmetric difference of A

and B, that is, the subset (A∪B)\(A∩B). Then dimµX(C ′) = dimµX(C).

Replacing C ′ with C ′ \π−1
X (Xsm) = C ′∩π−1

X (Xsing), we may further assume
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C ′ ⊂ π−1
X (Xsing). Decomposing C ′ into irreducible stable subsets and apply-

ing Reguera’s result to each of them, we see that there exist finitely many

subsets B1, . . . , Bm ⊂ π−1
X (Xsing) of the form f∞(π−1

Y (E◦
i )) such that

dimµX

(
C ′ \

m⋃
h=1

Bh

)
< dimµX(C ′) = dimµX(C).

Since

C \
m⋃
h=1

Bh ⊂
(
C ′ \

m⋃
h=1

Bh

)
∪ (C \ C ′),

we have

dimµX

(
C \

m⋃
h=1

Bh

)
≤ max

{
dimµX

(
C ′ \

m⋃
h=1

Bh

)
,dimµX(C \ C ′)

}

< dimµX(C).

We then apply this argument to C \
⋃m
h=1Bh instead of C and repeat it.

Eventually we get a measure zero subset by removing countably many sub-

sets of the same form from C, equivalently C is almost everywhere cov-

ered by countably subsets of this form. Since each subset of the form

f∞(π−1
Y (E◦

i )) is almost everywhere covered by countably many subsets of

the form f∞(Nfi,b), the second fact above holds. �

Proof of Proposition 2.1. For any admissible modification f and

i ∈ Sf , since f∞(Nfi,1) ⊂a.e.
⋃
r Cr, from Lemma 2.2, we have

ai = d− 1 − ν(Ni,1) ≥ d− 1 − sup
r
ν(Cr).

Thus δ(X) ≥ d− 1 − supr ν(Cr).

Let M0 be a countable set of admissible modifications of X as in Lemma

2.4. Then ⋃
r

Cr =a.e.

⋃
f∈M0,i∈Sf ,b>0

f∞(Nfi,b)

and from Lemma 2.2,

sup
r
ν(Cr) = sup

f∈M0,i∈Sf ,b>0
ν(Nfi,b).
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This equality together with Lemma 2.3 shows

δ(X) = d− 1 − sup
f∈M,i∈Sf ,b>0

ν(Nfi,b)

≤ d− 1 − sup
f∈M0,i∈Sf ,b>0

ν(Nfi,b)

= d− 1 − sup
r
ν(Cr). �

3. Proof of Theorems 1.2 and 1.3

In this section, we prove Theorems 1.2 and 1.3, applying Proposition

2.1 to a special choice of small measurable subsets for which the values of

ν were explicitly computed in [Yas14].

Let V = Adk and X = V/G be as in Introduction. We assume DV ≥ 2.

Proposition 3.1. Let J := {j ∈ Z | j > 0, p � j} ∪ {0}. There

exist measurable subsets Mj ⊂ π−1
X (Xsing), j ∈ J such that

⋃
j∈JMj =a.e.

π−1
X (Xsing) and∫

Mj

LordJX dµX =

{
(L − 1)Ll+j−1−�j/p�−shtV (j) (j > 0)

Ll (j = 0).

Proof. This follows from computation in Proof of [Yas14, Prop. 6.9]

and a version of the change of variables formula, ibid., Theorem 5.20. For

j > 0, we take Mj to be the image of J∞,jX , the space of twisted arcs with

ramification jump j (for the definition, see ibid., Definition 3.11). A point

of J∞,jX corresponds to a G-equivariant morphism SpecOL → V , where L

is a Galois extension of k((t)) with Galois group G and ramification jump

j, and OL is the integral closure of k[[t]] in L. The closed point of SpecOL
maps into V G. This implies Mj ⊂ π−1

X (Xsing). For j = 0, we take M0 to

be the intersection of the image of J∞,0X and π−1
X (Xsing). Since the map⊔

j∈J J∞,jX → J∞X is almost bijective (ibid., Proposition 3.17), these sets

Mj almost cover π−1
X (Xsing). �

For a positive integer j with p � j, we write j = np + s with n ≥ 0 and

1 ≤ s ≤ p− 1. Since shtV (j) = DV n+ shtV (s), we have

ν(Mj) = l + (p− 1 −DV )n+ s− shtV (s).(3.1)
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Note that since shtV (1) = 0,

ν(M1) = l + 1 > l = ν(M0).(3.2)

Lemma 3.2. We have

s− shtV (s) = shtV (p− s) + s+ d− l −DV .

Proof. The proof here is taken from [Yas14, Proof of Prop. 6.36]. We

have

shtV (p− s) + s+ d− l −DV

= s+

(
l∑
λ=1

dλ−1∑
i=1

i+

⌊
− is
p

⌋)
+ d− l −DV

= s+

(
l∑
λ=1

dλ−1∑
i=1

−
⌊
is

p

⌋
− 1

)
+ d− l

= s− shtV (s). �

Lemma 3.3. We have

shtV (s) ≤ (s− 1)DV
p

.

Proof. When i varies from 1 to dλ − 1, the differences isp −
⌊
is
p

⌋
take

dλ − 1 distinct values in {1/p, . . . , (p− 1)/p}. Therefore

dλ−1∑
i=1

⌊
is

p

⌋
≤
dλ−1∑
i=1

is

p
−
dλ−1∑
j=1

j

p
=
s− 1

p

dλ−1∑
i=1

i =
(s− 1)(dλ − 1)dλ

2p
.

The lemma follows by taking the sum over λ. �

Proof of Theorem 1.2. From Propositions 2.1 and 3.1, δ(X) = −∞
if and only if ν(Mj) are not bounded above. In turn, from (3.1), this is
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equivalent to that DV < p − 1, which proves the first assertion. Equality

(1.1) follows again from Propositions 2.1 and 3.1 and from formulas (3.1)

and (3.2). Equality (1.2) follows from Lemma 3.2. �

Proof of Theorem 1.3. If δ(X) = −∞, then (1.3) is trivial. We

may suppose that δ(X) �= −∞, which is, from Theorem 1.2, equivalent to

DV ≥ p− 1. Since

shtV (p− (p− 1)) + (p− 1) = p− 1,

again from Theorem 1.2, we have

δ(X) ≤ DV − p.

On the other hand, from Theorem 1.2 and Lemma 3.3,

δ(X) = DV − 1 − max
1≤s≤p−1

{shtV (p− s) + s}

≥ DV − 1 − max
1≤s≤p−1

{
p− s− 1

p
DV + s

}

=
DV
p

− 1 − max
1≤s≤p−1

{
s

(
1 − DV

p

)}
.

If DV ≥ p, then

=
DV
p

− 1 −
(

1 − DV
p

)
=

2DV
p

− 2. �

Remark 3.4. The additive action of the fixed point part V G on V

commutes with the G-action. Therefore X as well as its jet schemes and

the arc space inherit the V G-action. Using this structure, we can show that

for a closed subset C ⊂ Xsing, ν(Mj ∩ π−1
X (C)) = ν(Mj) − l + dimC with

Mj as in Proposition 3.1. By the same argument as above, we can prove

that if DV ≥ p− 1, then

2DV
p

− 2 + l − dimC ≤ discrep (center ⊂ C;X) ≤ DV − p+ l − dimC.
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