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Symmetry Breaking Operators for Dual Pairs with

One Member Compact

By M. McKee, A. Pasquale and T. Przebinda

Abstract. We consider a dual pair (G,G′), in the sense of Howe,
with G compact acting on L2(Rn), for an appropriate n, via the Weil

representation ω. Let G̃ be the preimage of G in the metaplectic group.
Given a genuine irreducible unitary representation Π of G̃, let Π′ be
the corresponding irreducible unitary representation of G̃′ in Howe’s
correspondence. The orthogonal projection onto the Π-isotypic com-
ponent L2(Rn)Π is, up to a constant multiple, the unique symmetry
breaking operator in Hom

G̃G̃′(H∞
ω ,H∞

Π ⊗ H∞
Π′). We study this oper-

ator by computing its Weyl symbol. Our results allow us to recover
the known list of highest weights of irreducible representations of G̃
occurring in Howe’s correspondence when the rank of G is strictly big-
ger than the rank of G′. They also allow us to compute the wavefront
set of Π′ by elementary means.
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Introduction

Let W be a finite dimensional vector space over R equipped with a non-

degenerate symplectic form 〈·, ·〉 and let Sp(W) denote the corresponding

symplectic group. Write S̃p(W) for the metaplectic group. Let us fix the

character χ of R given by χ(r) = e2πir, r ∈ R. Then the Weil representation

of S̃p(W) associated to χ is denoted by (ω,Hω).



SBOs for Dual Pairs with One Member Compact 259

For G,G′ ⊆ Sp(W) forming a reductive dual pair in the sense of Howe,

let G̃, G̃′ denote their preimages in S̃p(W). Howe’s correspondence (or

local θ-correspondence) for G̃, G̃′ is a bijection Π ↔ Π′ between the ir-

reducible admissible representations of G̃ and G̃′ which occur as smooth

quotients of ω, [How89b]. It can be formulated as follows. Assume that

Hom
G̃
(H∞

ω ,H∞
Π ) �= 0. Then Hom

G̃
(H∞

ω ,H∞
Π ) is a G̃′-module under the ac-

tion via ω. Howe proved that it has a unique irreducible quotient, which

is an irreducible admissible representation (Π′,HΠ′) of G̃′. Conversely,

Hom
G̃′(H∞

ω ,H∞
Π′) is a G̃-module which has a unique irreducible admissi-

ble quotient, infinitesimally equivalent to (Π,HΠ). Furthermore, Π ⊗ Π′

occurs as a quotient of ω∞ in a unique way, i.e.

dim Hom
G̃G̃′(H∞

ω ,H∞
Π ⊗H∞

Π′) = 1 .(1)

In [Kob15], the elements of

Hom
G̃
(H∞

ω ,H∞
Π ) , Hom

G̃′(H∞
ω ,H∞

Π′) and Hom
G̃G̃′(H∞

ω ,H∞
Π ⊗H∞

Π′)

are called symmetry breaking operators. Their construction is part of Stage

C of Kobayashi’s program for branching problems in the representation

theory of real reductive groups.

Since the last space is one dimensional, it deserves a closer look. The

explicit contruction of the (essentially unique) symmetry breaking operator

in Hom
G̃G̃′(H∞

ω ,H∞
Π ⊗H∞

Π′) provides an alternative and direct approach to

Howe’s correspondence. To do this is the aim of the present paper.

Our basic assumption is that (G,G′) is an irreducible dual pair with G

compact. As shown by Howe [How79], up to an isomorphism, (G,G′) is one

of the pairs

(Od,Sp2m(R)) , (Ud,Up,q) , (Spd,O
∗
2m) .(2)

Then the representations Π and Π′ together with their contragredients are

arbitrary irreducible unitary highest weight representations. They have

been defined by Harish-Chandra in [Har55], were classified in [EHW83] and

have been studied in terms of Zuckerman functors in [Wal84], [Ada83] and

[Ada87]. The 1-1 correspondence of representations in terms of their highest

weights was first determined by Kashiwara and Vergne in [KV78].
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The crucial fact for constructing the symmetry breaking operator in

Hom
G̃G̃′(H∞

ω ,H∞
Π ⊗H∞

Π′) is that, up to a non-zero constant multiple, there

is a unique GG′-invariant tempered distribution fΠ⊗Π′ on W such that

Hom
G̃G̃′(H∞

ω ,H∞
Π ⊗H∞

Π′) = C(Op ◦ K)(fΠ⊗Π′) ,(3)

where Op and K are classical transformations which we shall review in

section 1. In [Prz93], fΠ⊗Π′ is called the intertwining distribution associated

to Π ⊗ Π′. In fact, if we work in a Schrödinger model of ω, then fΠ⊗Π′

happens to be the Weyl symbol, [Hör83], of the operator (Op ◦ K)(fΠ⊗Π′).

The previous paragraph does not require G to be compact. Suppose that

the group G is compact. Let ΘΠ and dΠ respectively denote the character

and the degree of Π. Then the projection onto the Π-isotypic component of

ω is equal to dΠ/2 times∫
G̃
ω(g̃)Θ̌Π(g̃) dg̃ = ω(Θ̌Π) ,(4)

where Θ̌Π(g̃) = ΘΠ(g̃−1) and we normalize the Haar measure dg̃ of G̃ to

have the total mass 2. (This explains the constant multiple 1
2 needed for the

projection. In this way, the mass of G is equal to 1.) By Howe’s correspon-

dence with G compact, the projection onto the Π-isotypic component of ω

is a symmetry breaking operator for Π ⊗ Π′. The intertwining distribution

for Π ⊗ Π′ is therefore determined by the equation

(Op ◦ K)(fΠ⊗Π′) =
1

2
ω(Θ̌Π) .(5)

There are more cases when fΠ⊗Π′ may be computed via the formula (5), see

[Prz93]. However, if the group G is compact then the distribution character

ΘΠ′ may also be recovered from fΠ⊗Π′ via an explicit formula, see [Prz91].

Thus, in this case, we have a diagram

ΘΠ −→ fΠ⊗Π′ −→ ΘΠ′ .(6)

In general, the asymptotic properties of fΠ⊗Π′ relate the associated varieties

of the primitive ideals of Π and Π′ and, under some more assumptions, the

wave front sets of these representations, see [Prz93], [Prz91] and [MPP24].

The usual, often very successful, approach to Howe’s correspondence

avoids any work with distributions on the symplectic space. Instead, one
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finds Langlands parameters (see [Moe89], [AB95], [Pau98], [Pau00], [Pau05],

[LPTZ03]), character formulas (see [Ada98], [Ren98], [DP96], [Prz18],

[Mer20], [LP22]), or candidates for character formulas (as in [BP14], [Prz00],

[LP24]), or one establishes preservation of unitarity (as in [Li89], [He03],

[Prz93], [ABP+07], [HLS11], [MSZ17]). However, in the background (ex-

plicit or not), there is the orbit correspondence induced by the unnormalized

moment maps

g
∗ ←− W −→ g

′∗ ,

where g and g′ denote the Lie algebras of G and G′, respectively, and g∗

and g′∗ are their duals. This correspondence of orbits has been studied in

[DKP97], [DKP05] and [Pan10]. Furthermore, in their recent work, [LM15],

Loke and Ma computed the associated variety of the representations for the

dual pairs in the stable range in terms of the orbit correspondence. The

p-adic case was studied in detail in [Moe98].

Working with the GG′-invariant distributions on W is a more direct

approach than relying on the orbit correspondence and provides different

insights and results. As a complementary contribution to all work men-

tioned above, we compute the intertwining distributions fΠ⊗Π′ explicitly,

see section 5. As an application, we obtain the wave front set of Π′ by

elementary means. The computation will be sketched in section 17, and the

detailed proof appeared in [MPP24]. Another application of the methods

presented in this paper leads to the explicit formula for the character of

the corresponding irreducible unitary representation Π′ of G̃′. This can be

found in [Mer17, Mer20].

The explicit formulas for the intertwining distribution provide important

information on the nature of the symmetry breaking operators. Namely,

they show that none of the symmetry breaking operators of the form (Op ◦
K)(fΠ⊗Π′) is a differential operator. For the present situation, this an-

swers in the negative the question on the existence of differential symmetry

breaking operators, addressed in different contexts by several authors (see

for instance [KP16a, KP16b, KS15] and the references given there). This

property is the content of Corollary 14.

Finally, observe that our computations leading to the intertwining dis-

tributions apply to any genuine irreducible representation Π of the compact

member G̃ of a dual pair. They provide an explicit formula for the Weyl

symbol of the projection of ω|
G̃

onto the Π-isotypic component. According
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to Howe’s duality theorem, this projection is non-zero if and only if there

is a unitary highest weight representation Π′ of G̃′ such that Π ⊗ Π′ oc-

curs in ω|
G̃G̃

′ , i.e. Π occurs in Howe’s correspondence. When the rank of

G is strictly bigger than that of G′, we recover the known necessary and

sufficient conditions on the highest weights of Π so that it occurs in Howe’s

correspondence. See Corollary 11.

The paper is organized as follows. In section 1, we introduce some nota-

tion and review the construction of the intertwining distributions. Section 2

computes the intertwining distribution for the dual pair (Z,Sp(W)), where

Z = O1 is the center of the symplectic group Sp(W), and introduces some

properties needed in the sequel. Section 3 recalls how to realize the dual

pairs with one member compact as Lie supergroups, and section 4 collects

some definitions and properties of the Weyl–Harish-Chandra integration for-

mulas on W that we will need to compute the intertwining distributions.

Section 5 states the main results of this paper. The dual pairs (O2,Sp2l′(R))

are particular because the group SO2 is abelian. The intertwining distribu-

tions corresponing to these pairs are computed in section 6. The smallest

example of (O2,Sp2(R) = SL2(R)) is presented with more details. An ad-

ditional example is given in section 7, where we illustrate the main two

theorems when (G,G′) = (Ul,Up,p) and Π is the trivial representation of

Ul. The proofs of the main results are in sections 8, 9 and 10. We treat

the special cases concerning the non-identity connected components of the

orthogonal groups in sections 11, 12, 13 and 14. Here we need the Weyl’s

integral and character formulas found by Wendt in [Wen01]. Section 15 con-

tains the proof of a necessary condition of a representation of Ũl to occur in

Howe’s correspondence for (Ul,Up,q) when p = min(p, q) < l ≤ l′ = p+q. In

section 16, we consider the dual pair (Spl,O
∗
2l′). Using intertwining distri-

bution, we recover the known fact that certain representations of Spl occur

in Howe’s correspondence. Finally, in section 17, we outline how the results

of this paper lead, for each representation Π of G̃ occurring in Howe’s dual-

ity, to the computation of the wave front set of the representation Π′ dual

to Π. The details are in [MPP24]. The nine appendices collect and prove

some auxiliary results.

Acknowledgement . We are indebted to the anonymous referee whose

extremely careful reading and valuable comments made us aware of errors

and omissions in the original manuscript. The questions raised by the referee
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have lead us to make significant additions, which have greatly improved our

paper.

1. Notation and Preliminaries

Let us first recall the construction of the metaplectic group S̃p(W) and

the Weil representation ω. We are using the approach of [AP14, Section 4],

to which we refer the reader for more details.

Let sp denote the Lie algebra of Sp(W), both contained in End(W). Fix

a positive definite compatible complex structure J on W, that is an element

J ∈ sp such that J2 = −1 (minus the identity on W) and the symmetric

bilinear form 〈J ·, ·〉 is positive definite on W. For an element g ∈ Sp(W),

let Jg = J−1(g − 1). The adjoint of Jg with respect to the form 〈J ·, ·〉 is

J∗
g = Jg−1(1 − g). In particular, Jg and J∗

g have the same kernel. Hence

the image of Jg is

JgW = (KerJ∗
g )⊥ = (KerJg)

⊥ ,

where ⊥ denotes the orthogonal complement with respect to 〈J ·, ·〉. There-

fore, the restriction of Jg to JgW defines an invertible element. Thus for

every g �= 1, it makes sense to talk about det(Jg)
−1
JgW

, the reciprocal of the

determinant of the restriction of Jg to JgW. With this notation, we have

S̃p(W) = {g̃ = (g; ξ) ∈ Sp(W) × C, ξ2 = idim(g−1)W det(Jg)
−1
JgW

} ,(7)

with the convention that det(Jg)
−1
JgW

= 1 if g = 1. There exists a 2-cocycle

C : Sp(W) × Sp(W) → C, explicitly described in [AP14, Proposition 4.13],

such that S̃p(W) is a group with respect to the multiplication

(g1; ξ1)(g2; ξ2) = (g1g2; ξ1ξ2C(g1, g2))(8)

and the homomorphism

S̃p(W) � (g; ξ) → g ∈ Sp(W)(9)

does not split.

Let µW (or simply dw) be the Lebesgue measure on W normalized by

the condition that the volume of the unit cube with respect to the form

〈J ·, ·〉 is 1. (Since all positive complex structures are conjugate by elements
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of Sp, this normalization does not depend on the particular choice of J .)

Let W = X ⊕ Y be a complete polarization. We suppose that X, Y and

J are chosen so that J(X) = Y. Similar normalizations are fixed for the

Lebesgue measures on every vector subspace of W, for instance on X and on

Y. Furthermore, for every finite dimensional real vector space V, we write

S(V) for the Schwartz space on V and S ′(V) for the space of tempered

distributions on V. We use the notation G′ for the second member of a dual

pair because it is the centralizer of G in Sp(W). We also use the notation · ′
for all the objects associated with G′, such as g′, Π′, ... Unfortunately, this

collides with the usual notation for the dual of a linear topological space

in functional analysis, also used in this paper, such as D′(Rn), S ′(Rn), ...

We hope the reader will guess from the context the correct meaning of the

notation.

Each element K ∈ S ′(X × X) defines an operator Op(K) ∈ Hom(S(X),

S ′(X)) by

Op(K)v(x) =

∫
X
K(x, x′)v(x′) dx′.(10)

The map

Op : S ′(X × X) → Hom(S(X),S ′(X))(11)

is an isomorphism of linear topological spaces. This is known as the

Schwartz Kernel Theorem, [Trè67, Theorem 51.7]. The Weyl transform

is the linear isomorphism K : S ′(W) → S ′(X × X) defined for f ∈ S(W) by

K(f)(x, x′) =

∫
Y
f(x− x′ + y)χ

(1
2
〈y, x + x′〉

)
dy ,(12)

(Recall that χ is the character of R we fixed at the beginning of the intro-

duction.)

For g ∈ Sp(W), let

χc(g)(u) = χ
(

1
4〈(g + 1)(g − 1)−1u, u〉

)
(u = (g − 1)w, w ∈ W) .(13)

Notice that, if g − 1 is invertible on W, then

χc(g)(u) = χ
(

1
4〈c(g)u, u〉

)
,
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where c(g) = (g + 1)(g − 1)−1 is the usual Cayley transform.

Following [AP14, Definition 4.23 and (114)], we define

T : S̃p(W) � g̃ = (g; ξ) −→ ξ χc(g)µ(g−1)W ∈ S ′(W) ,(14)

where µ(g−1)W is the Lebesgue measure on the subspace (g−1)W normalized

as above, i.e. the volume of the unit cube with respect to the form 〈J ·, ·〉 is

1. Set

ω = Op ◦ K ◦ T .(15)

As proved in [AP14, Theorem 4.27], ω is a unitary representation of S̃p on

L2(X). In fact, (ω,L2(X)) is the Schrödinger model of Weil representation

of S̃p attached to the character χ and the polarization W = X⊕ Y. In this

realization, Hω = L2(X) and H∞
ω = S(X).

The distribution character of the Weil representation turns out to be

the function

Θ : S̃p(W) � (g; ξ) → ξ ∈ C× ,(16)

[AP14, Proposition 4.27]. Hence for g̃ ∈ S̃p(W) in the preimage of g ∈
Sp(W) under the double covering map (9), we have

T (g̃) = Θ(g̃)χc(g)µ(g−1)W (g̃ ∈ S̃p(W)) .(17)

Suppose now that G,G′ ⊆ Sp(W) is a dual pair. Every irreducible

admissible representation Π ⊗ Π′ of G̃ × G̃′ occurring in Howe’s correspon-

dence may be realized, up to infinitesimal equivalence, as a subspace of

H∞
ω

′ = S ′(X). Hence

Hom
G̃G̃′(H∞

ω ,H∞
Π ⊗H∞

Π′) ⊆ Hom(S(X),S ′(X)) .

The existence of the interwining distribution fΠ⊗Π′ ∈ S ′(W) defined (up to

a multiplicative constant) by (3) is thus a consequence of (1), (11) and (12).

Finally, because of (15), equation (4) and (5) lead to the equality

fΠ⊗Π′ =
1

2
T (Θ̌Π) =

∫
G

Θ̌Π(g̃)T (g̃) dg .(18)

The problem of finding an explicit expression for fΠ⊗Π′ is hence transformed

into the task of computing the right-hand side of (18).
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2. The Center of the Metaplectic Group

Let Z = {1,−1} be the center of the symplectic group Sp(W). Then

(Z,Sp(W)) is a dual pair in Sp(W) with compact member Z. Let (Z̃, S̃p(W))

be the corresponding dual pair in the metaplectic group S̃p(W). Then Z̃

coincides with the center of S̃p(W) and is equal to

Z̃ = {(1; 1), (1;−1), (−1; ζ), (−1;−ζ)} ,(19)

where ζ =
(
i
2

) 1
2

dimW
.

In this section we illustrate how to compute the intertwining distribu-

tions for the pair (Z,Sp(W)). At the same time, we introduce some facts

that will be needed in the rest of the paper.

The formula for the cocycle in (8) is particularly simple over Z:

C(1,±1) = C(−1, 1) = 1 and C(−1,−1) = 2dim W .

Also, C(g, 1) = C(1, g) = 1 for all g ∈ Sp(W) by [AP14, Proposition 4.13].

Notice that

(−1;±ζ)2 = (1; ζ2C(−1,−1)) = (1; (−1)
1
2

dim W) .(20)

Hence the covering (9) restricted to Z̃,

Z̃ � z̃ → z ∈ Z(21)

splits if and only if 1
2 dim W is even.

By (14) and (7), we have

T (1; 1) = δ , T (1;−1) = −δ ,

T (−1; ζ) = ζ µW , T (−1;−ζ) = −ζ µW .

Moreover, [AP14, Proposition 4.28] shows that for v ∈ L2(X) and x ∈ X,

ω(1; 1)v(x) = v(x) , ω(1;−1)v(x) = −v(x) ,

ω(−1; ζ)v(x) =
ζ

|ζ|v(−x) , ω(−1;−ζ)v(x) = − ζ

|ζ|v(−x) .

Since T (z̃) = Θ(z̃)χc(z)µ(z−1)W for z̃ ∈ Z̃, it follows that

ω(z̃)v(x) =
Θ(z̃)

|Θ(z̃)|v(zx) (z̃ ∈ Z̃) .(22)
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The fraction

χ+(z̃) =
Θ(z̃)

|Θ(z̃)| (z̃ ∈ Z̃)(23)

defines an irreducible character χ+ of the group Z̃. Let ε be the unique

non-trivial irreducible character of the two element group Z. Then

χ−(z̃) = ε(z)
Θ(z̃)

|Θ(z̃)| (z̃ ∈ Z̃)(24)

is also an irreducible character of Z̃.

Let L2(X)+ ⊆ L2(X) denote the subspace of the even functions and let

L2(X)− ⊆ L2(X) denote the subspace of the odd functions. Then, as is well

known, [KV78, (6.9)], the restriction ω± of ω to L2(X)± is irreducible. As

we have seen above, the center Z̃ acts on L2(X)± via the character χ±. Thus

χ± is the central character of ω±.

Hence, in the case of the dual pair (Z,Sp(W)), Howe’s correspondence

looks as follows

(χ+,C) ↔ (ω+,L2(X)+) and (χ−,C) ↔ (ω−,L2(X)−) .(25)

The projections

L2(X) → L2(X)+ and L2(X) → L2(X)−

are respectively given by

1

2
ω(χ̌+) =

1

4

∑
z̃∈Z̃

χ̌+(z̃)ω(z̃) and
1

2
ω(χ̌−) =

1

4

∑
z̃∈Z̃

χ̌−(z̃)ω(z̃) .

The corresponding intertwining distributions are

fχ+⊗ω+ =
1

4

∑
z̃∈Z̃

χ̌+(z̃)T (z̃) =
1

2

(
δ + 2−

1
2

dim WµW

)
,

fχ−⊗ω− =
1

4

∑
z̃∈Z̃

χ̌−(z̃)T (z̃) =
1

2

(
δ − 2−

1
2

dim WµW

)
,

(26)

where we normalize the total mass of Z to be 1, as we did for a general dual

pair (G,G′) with G compact.

The right-hand side of (26) is a sum of two homogenous distributions

of different homogenity degrees. So, asymptotically, they can be isolated.

This allows us to recover µW, and hence τsp(W)(W), the wave front of ω±,

out of the intertwining distribution.
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3. Dual Pairs as Lie Supergroups

To present the main results of this paper, we need the realization of dual

pairs with one member compact as Lie supergroups. The content of this

section is taken from [Prz06] and [MPP15]. We recall the relevant material

for making our exposition self-contained.

For a dual pair (G,G′) as in (2), there is a division algebra D = R, C,

H with an involution over R, a finite dimensional right D-vector space V

with a positive definite hermitian form (·, ·) and a finite dimensional right

D-vector space V′ with a non-degenerate skew-hermitian form (·, ·)′ such

that G coincides with the isometry group of (·, ·) and G′ coincides with

the isometry group of (·, ·)′. We assume that G centralizes the complex

structure J and that J normalizes G′. Then the conjugation by J is a

Cartan involution on G′, which we denote by θ.

Let V0 = V, d = dimDV0, V1 = V′ and d′ = dimDV1. We assume that

both V0 and V1 are right vector spaces over D. Set V = V0 ⊕ V1 and define

an element S ∈ End(V) by

S(v0 + v1) = v0 − v1 (v0 ∈ V0, v1 ∈ V1) .

Let

End(V)0 = {x ∈ End(V); Sx = xS} ,

End(V)1 = {x ∈ End(V); Sx = −xS} ,

GL(V)0 = End(V)0 ∩ GL(V) .

Denote by (·, ·)′′ the direct sum of the two forms (·, ·) and (·, ·)′. Let

s0 = {x ∈ End(V)0; (xu, v)′′ = −(u, xv)′′, u, v ∈ V} ,(27)

s1 = {x ∈ End(V)1; (xu, v)′′ = (u, Sxv)′′, u, v ∈ V} ,

s = s0 ⊕ s1 ,

S = {s ∈ GL(V)0; (su, sv)′′ = (u, v)′′, u, v ∈ V} ,

〈x, y〉 = trD/R(Sxy) .(28)

(Here trD/R(x) denotes the trace of x considered as a real endomorphism of

V.) Then (S, s) is a real Lie supergroup, i.e. a real Lie group S together

with a real Lie superalgebra s = s0 ⊕ s1, whose even component s0 is the
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Lie algebra of S. (In terms of [DM99, §3.8], (S, s) is a Harish-Chandra

pair.) We shall write s(V) instead of s whenever we want to specify the Lie

superalgebra s constructed as above from V and (·, ·)′′.
The group S acts on s by conjugation and 〈·, ·〉 is a non-degenerate S-

invariant form on the real vector space s, whose restriction to s0 is symmetric

and restriction to s1 is skew-symmetric. We shall employ the notation

s.x = Ad(s)x = sxs−1 (s ∈ S , x ∈ s) ,(29)

x(w) = ad(x)(w) = xw − wx (x ∈ s0 , w ∈ s1) .(30)

In terms of the notation introduced at the beginning of this section,

g = s0|V0
, g

′ = s0|V1
, G = S|V0

, G′ = S|V1
.

Define W = HomD(V1,V0). Then, by restriction, we have the identification

W = s1 .(31)

Under this identification, the adjoint action of G on s1 becomes the action

on W by the left (postmultiplication). Similarly, the adjoint action of G′ on

s1 becomes the action of G′ on W via the right (premultiplication) by the

inverse. Also, we have the unnormalized moment maps

τ : W � w → w2|V0
∈ g , τ ′ : W � w → w2|V1

∈ g
′ .(32)

An element x ∈ s is called semisimple (resp., nilpotent) if x is semisimple

(resp., nilpotent) as an endomorphism of V. We say that a semisimple

element x ∈ s1 is regular if it is nonzero and dim(S.x) ≥ dim(S.y) for all

semisimple y ∈ s1. Let x ∈ s1 be fixed. For x, y ∈ s1 let {x, y} = xy+yx ∈ s0

be their anticommutator.

The anticommutant and the double anticommutant of x in s1 are

x
s1 = {y ∈ s1 : {x, y} = 0} ,

xs1s1 =
⋂

y∈xs1

y
s1 ,

respectively. A Cartan subspace h1 of s1 is defined as the double anticom-

mutant of a regular semisimple element x ∈ s1. We denote by h1
reg the set

of regular elements in h1.
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Next we describe the Cartan subspaces h1 ⊆ s1. We refer to [Prz06, §6]

and [MPP15, §4] for the proofs omitted here. Let l be the rank of g, l′ the

rank of g′, and set

l′′ = min(l, l′) .(33)

Given a Cartan subspace h1, there are Z/2Z-graded subspaces Vj ⊆ V such

that the restriction of the form (·, ·)′′ to each Vj is non-degenerate, Vj is

orthogonal to Vk for j �= k and

V = V0 ⊕ V1 ⊕ V2 ⊕ · · · ⊕ Vl′′ .(34)

The subspace V0 coincides with the intersection of the kernels of the ele-

ments of h1 (equivalently, V0 = Ker(x) if h1 =
xs1s1). For 1 ≤ j ≤ l′′, the

subspaces Vj = Vj

0
⊕ Vj

1
are described as follows.

Suppose D = R. Then there is a basis v0, v
′
0 of Vj

0
and a basis v1, v

′
1 of

Vj

1
such that

(v0, v0)
′′ = (v′0, v

′
0)

′′ = 1 , (v0, v
′
0)

′′ = 0 ,(35)

(v1, v1)
′′ = (v′1, v

′
1)

′′ = 0 , (v1, v
′
1)

′′ = 1 .

The following formulas define an element uj ∈ s1(V
j),

uj(v0) =
1√
2
(v1 − v′1) , uj(v1) =

1√
2
(v0 − v′0) ,

uj(v
′
0) =

1√
2
(v1 + v′1) , uj(v

′
1) =

1√
2
(v0 + v′0) .

Suppose D = C. Then there are vectors v0 and v1 such that Vj

0
= Cv0,

Vj

1
= Cv1, (v0, v0)

′′ = 1 and (v1, v1)
′′ = δji, with δj = ±1 fixed by the form

(·, ·)′. The following formulas define an element uj ∈ s1(V
j),

uj(v0) = e−iδj
π
4 v1 , uj(v1) = e−iδj

π
4 v0 .(36)

Suppose D = H. Then Vj

0
= Hv0, Vj

1
= Hv1, where (v0, v0)

′′ = 1 and

(v1, v1)
′′ = i. The following formulas define an element uj ∈ s1(V

j),

uj(v0) = e−iπ
4 v1 , uj(v1) = e−iπ

4 v0 .
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In any case, by extending each uj by zero outside Vj , we have

h1 =

l′′∑
j=1

Ruj .(37)

The formula (37) describes a maximal family of mutually non-conjugate

Cartan subspaces of s1. By classification, see [Prz06, §6], there is only one

such subspace unless the dual pair (G,G′) is isomorphic to (Ul,Up,q) with

l′′ = l < p + q. In the last case there are min(l, p) − max(l − q, 0) + 1

such subspaces, assuming p ≤ q. For each m such that max(l− q, 0) ≤ m ≤
min(p, l) there is a Cartan subspace h1,m determined by the condition that m

is the number of positive δj ’s in (36). We may assume that δ1 = · · · = δm = 1

and δm+1 = · · · = δl = −1. If (G,G′) is isomorphic to (Ul,Up,q) with

l ≥ l′′ = p+q, then there is a unique Cartan subspace of s1 up to conjugation.

It is determined by the condition that in (36) there are p positive and q

negative δj ’s. We may assume that the first p δj ’s are positive.

The Weyl group W (S, h1) is the quotient of the stabilizer of h1 in S by

the subgroup Sh1 fixing each element of h1. If D �= C, then W (S, h1) acts by

all sign changes and all permutations of the uj ’s. If D = C, the Weyl group

acts by all sign changes and all permutations of the uj ’s which preserve

(δ1, . . . , δl′′), see [Prz06, (6.3)].

Set δj = 1 for all 1 ≤ j ≤ l′′, if D �= C, and in any case, i.e. D �= C or

D = C, define

Jj = δjτ(uj) , J ′
j = δjτ

′(uj) (1 ≤ j ≤ l′′) .(38)

Then Jj , J
′
j are complex structures on Vj

0
and Vj

1
respectively. Explicitly,

Jj(v0) = −v′0, Jj(v
′
0) = v0 , J ′

j(v1) = −v′1 , J ′
j(v

′
1) = v1 , if D = R ,(39)

Jj(v0) = −iv0 , J ′
j(v1) = −iv1 , if D = C or D = H .

(The point of the multiplication by the δj in (38) is that the complex struc-

tures Jj , J ′
j do not depend on the Cartan subspace h1.) In particular, if

w =
∑l′′

j=1 wjuj ∈ h1, then

τ(w) =
l′′∑
j=1

w2
j δjJj and τ ′(w) =

l′′∑
j=1

w2
j δjJ

′
j .(40)
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(Notice that w2
j ≥ 0.) Let h2

1
⊆ s0 be the subspace spanned by all the

squares w2, w ∈ h1. (This is a linear space, not a collection of squares. We

hope that the notation h2
1

will not cause any confusion.) Then

h
2
1

=

l′′∑
j=1

R(Jj + J ′
j) .(41)

We shall use the following identification

h
2
1
|V0

�
l′′∑
j=1

yjJj =
l′′∑
j=1

yjJ
′
j ∈ h

2
1
|V1

.(42)

Recall from (33) that l′′ = min(l, l′). If l′′ = l, then h2
1
|V0

is a Cartan

subalgebra of g which we denote by h. The identification (42) embeds h

diagonally in g and in g′. It is contained in an elliptic Cartan subalgebra

of g′, say h′. (“Elliptic” means that all the roots of h in g′C are purely

imaginary.) Similarly, if l′′ = l′, then h2
1
|V1

is an elliptic Cartan subalgebra

of g′ which we denote by h′. If l ≤ l′ we denote by z′ ⊆ g′ the centralizer of

h. Similarly, if l′ ≤ l we denote by z ⊆ g the centralizer of h′. In particular,

if l′ = l, then z′ = h′ = h = z, where the first equality is in g, the second is

(42) and the last is in g′.
Let s0C = gC⊕g′C be the complexification of s0. Fix a system of positive

roots for the adjoint action of h2
1

on s0C. Suppose first that l ≤ l′. By the

identification (42), h preserves both gC and g′C. So our choice of positive

roots for (h2
1C

, s0C) fixes a positive root system of (hC, gC) and extends to

a compatible positive root system for (h′C, g
′
C). Let πg/h be the product

of positive roots of (hC, gC) and let πg′/z′ be the product of positive roots

of (h′C, g
′
C) such that the corresponding root spaces do not occur in z′C. If

l > l′, then πg′/h′ and πg/z can be similarly defined. See Appendix A for

the explicit expressions of these root products restricted to the elements in

(42).

Suppose l′ < l. Then V0
1

= 0, V0
0
�= 0 and

V0 = V0
0
⊕ V1

0
⊕ V2

0
⊕ · · · ⊕ Vl′′

0
(43)

is a direct sum orthogonal decomposition with respect to the positive definite

hermitian form (·, ·). We extend h ⊆ g to a Cartan subalgebra h(g) ⊆ g as
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follows. The restriction of h(g) to V1
0
⊕V2

0
⊕· · ·⊕Vl′′

0
coincides with h. Pick

an orthogonal direct sum decomposition

V0
0

= V0
0
,0 ⊕ V0

0
,l′′+1 ⊕ V0

0
,l′′+2 ⊕ · · · ⊕ V0

0
,l ,(44)

where for j > l′′, dimDV0
0
,j = 2 if D = R and dimDV0

0
,j = 1 if D �= R. Also

V0
0
,0 = 0 unless G = O2l+1, in which case dimDV0

0
,0 = 1. In each space V0

0
,j ,

with j > l′′, we pick an orthonormal basis and define Jj as in (39). Then

h(g) =

l∑
j=1

RJj .(45)

If l ≤ l′, then we set h(g) = h.

Let J∗
j , 1 ≤ j ≤ l, be the basis of the space h(g)∗ which is dual to

J1, . . . , Jl, and set

ej = −iJ∗
j , 1 ≤ j ≤ l .(46)

If µ ∈ ih(g)∗, then µ =
∑l

j=1 µjej with µj ∈ R. We say that µ is strictly

dominant if µ1 > µ2 > · · · > µl.

4. Orbital Integrals on W

In this section we recall from [MPP15] and [MPP20] some definitions

and results concerning the orbital integrals on W that we will need in the

following sections.

Let S ′(W)S denote the space of S-invariant tempered distributions on

W, where the S-action is induced by (29). Let h1 be a Cartan subspace of

W. Suppose first that G is different from O2l+1 with l < l′. For w ∈ h1
reg,

the orbital integral attached to the orbit O(w) = S.w is the element µO(w),h1

of S ′(W)S defined for φ ∈ S(W) by

µO(w),h1
(φ) =

∫
S/S

h
1

φ(s.w) d(sSh1) .(47)

Suppose now that G = O2l+1 with l < l′. Then one needs to modify (47)

because the union of the orbits S.w over all w ∈ h1
reg would not be dense

in W; see [MPP15, Theorem 20]. Let w0 ∈ s1(V
0) be a non-zero element,
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w ∈ h1
reg and Sh1+w0 the centralizer of w+w0 in S. Set O(w) = S.(w+w0)

and define

µO(w),h1
(φ) =

∫
S/S

h
1
+w0

φ(s.(w + w0)) d(sS
h1+w0) .(48)

(Since s1(V
0)\{0} is a single S(V0)-orbit, the S-orbit of w+w0, and hence the

right-hand side of (48), does not depend on the choice of w0 ∈ s1(V
0).) The

orbital integrals (47) and (48) are well-defined, tempered distribution on

W, which depend only on τ(w), or equivalently τ ′(w), via the identification

(42).

For w ∈ h1, set

πs0/h
2
1
(w2) =

{
πg/h(τ(w))πg′/z′(τ

′(w)) if l ≤ l′,

πg/z(τ(w))πg′/h′(τ ′(w)) if l ≥ l′ .
(49)

As shown in [MPP20, Lemma 1.2], there is a constant C(h1), depending on

h1 and with |C(h1)| = 1, such that

πs0/h
2
1
(w2) = C(h1)|πs0/h

2
1
(w2)| .(50)

The set h1
reg of regular elements of h1 is explicitly given by

h1
reg = {w ∈ h1; πs0/h

2
1
(w2) �= 0} .(51)

Choose a positive Weyl chamber h
+
1

⊆ h1
reg, i.e. an open fundamental

domain for the action of the Weyl group, W (S, h1). There is a normalization

dτ(w) of the Lebsegue measure on h, respectively a normalization dτ ′(w) of

the Lebsegue measure on h′, such that the following equalities hold for all

φ ∈ S(W):

µW(φ) =
∑
h1

∫
τ(h+

1
)
|πs0/h

2
1
(w2)|µO(w),h1

(φ) dτ(w) if l ≤ l′ ,(52)

µW(φ) =

∫
τ ′(h+

1
)
|πs0/h

2
1
(w2)|µO(w),h1

(φ) dτ ′(w) if l ≥ l′ .(53)

Formulas (52) and (53) are the Weyl–Harish-Chandra integration formulas

on W, [MPP15, Theorem 21]. The sum in (52) is over the family of mutually
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non-conjugate Cartan subspaces h1 ⊆ W. (It therefore reduces to a single

term for (G,G′) different from (Ul,Up,q) with l < l′ = p + q.) The formulas

agree for l = l′ once we identify τ(w) and τ ′(w) via (42).

Let Ch1
= C(h1) · idimg/h, where C(h1) is as in (50). If (G,G′) =

(Ul,Up,q) with l < l′ = p + q, let

⋃
h1

τ(h1
reg) =

min(p,l)⋃
m=max(l−q,0)

τ(h1,m) .

In all other cases,
⋃

h1
τ(h1

reg) will denote τ(h1
reg), where h1 is the fixed

Cartan subspace. The Harish-Chandra regular almost-elliptic orbital inte-

gral on W is the function

F :
⋃
h1

τ(h1
reg) → S ′(W)S

defined for every y ∈
⋃

h1
τ(h1

reg), y = τ(w) = τ ′(w) as follows:

F (y) =


∑

h1
Ch1

πg′/z′(y)µO(w),h1
if l ≤ l′ ,

Ch1
πg′/h′(y)µO(w),h1

if l > l′ .
(54)

Following Harish-Chandra’s notation, we shall write Fφ(y) for F (y)(φ).

Suppose first that l ≤ l′. According to [MPP20, Theorem 3.6], F

uniquely extends to a function F : h → S ′(W)S satisfying

F (sy) = sgng/h(s)F (y) (s ∈ W (G, h), y ∈ h) .(55)

This extension is supported in h ∩ τ(W). The extended map F is smooth

on the subset of y =
∑l

j=1 yjJj where each yj �= 0 and, for any multi-index

α = (α1, . . . , αl) with

max(α1, . . . , αl) ≤
{

d′ − r − 1 if D = R or C ,

2(d′ − r) if D = H ,
(56)

the function ∂(Jα1
1 Jα2

2 . . . Jαl
l )F (y) extends to a continuous function on h∩

τ(W) vanishing on the boundary of h ∩ τ(W).

For any values of l and l′, there is the pullback via the unnormalized

moment map τ ′ : W → g′, namely

τ ′∗ : S(g′) � ψ → ψ ◦ τ ′ ∈ S(W)G .
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According to [MPP20, (25)] (a special case of a theorem of Astengo, Di

Blasio and Ricci [ABR09, Theorem 6.1]), there is a continuous map τ ′∗ :

S(W)G → S(g′) such that

τ ′∗ ◦ τ ′∗(φ) = φ (φ ∈ S(W)G) .(57)

In particular, the map τ ′∗ is surjective. We will denote by φG the projection

of φ ∈ S(W) onto the space of the G-invariants in S(W),

φG(w) =

∫
G
φ(g.w) dg (w ∈ W) .(58)

(Recall that we have normalized the Haar measure on G so that its mass is

1.)

Suppose now that l > l′. Then by [MPP20, (39)],

Fφ(y) = C ′
h1
πg′/h′(y)

∫
G′/H′

ψ(g′.y) d(g′H′) (φ ∈ S(W), y ∈ h1
reg) ,(59)

where H′ ⊆ G′ is the Cartan subgroup corresponding to h′,

ψ = τ ′∗(φ
G) ∈ S(g′) ,(60)

and C ′
h1

is a suitable non-zero constant. The right-hand side of (59) is

Harish-Chandra’s orbital integral of ψ. It provides a W (G′, h′)-skew-invari-

ant extension of Fφ to h′In−reg, where h′In−reg ⊆ h′ is the subset where

no non-compact roots vanish. Furthermore, as a function of φ, Fφ(y) is

S-invariant; see [MPP20, Theorem 3.3].

Notice that, by [MPP20, (69)–(72)], formulas (59) and (60) also hold

when l = l′ because Z′ = H′ in this case.

Lemma 1. Suppose that l ≤ l′ and G �= O2l+1. Let U ⊆ hreg be a

nonempty W (G, h)-invariant open subset. Then there is a nonzero function

φ ∈ C∞
c (W)G such that φ ≥ 0 and suppFφ ⊆ U. (Here supp denotes the

support.)

Proof. Let V be a nonempty open set in hreg with closure V ⊆ U. By

[Var89, p. 19, especially (9)], the set G.V is open in g. Hence τ−1(G.V) is

open and S-invairant in W. Let φ ∈ C∞
c (W)G be a nonzero function such

that φ ≥ 0 and suppφ ⊆ τ−1(G.V). We want to prove that suppFφ ⊆ U.
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Suppose first that G �= Ul. Hence Fφ(y) = Ch1
πg′/z′(y)µO(w),h1

(φ) for

all y ∈ τ(h1
reg). (Here πg′/z′(y) = πg′/z′(τ

′(w)) where y = τ(w) = τ ′(w).)

Since the zero set of πg′/z′ is a finite union of root hyperplanes, suppFφ

is the closure in h of the set of the y = τ(w) with w ∈ h1
reg such that

µO(w),h1
(φ) �= 0. If µO(w),h1

(φ) �= 0, then O(w)∩ suppφ �= ∅, where O(w) =

S.w. Hence (S.w) ∩ τ−1(G.V) �= ∅. This means that there are g, g1 ∈ G,

g′ ∈ G′ and v ∈ V such that gg′.w = τ−1(g1.v). Therefore

g.y = g.τ(w) = τ(gg′.w) = g1.v and hence g−1
1 g.y = v ∈ G.y ∩ h .

By [Var89, Corollary 23], y ∈ W (G, h)v. Thus y ∈ V because V is W (G, h)-

invariant. This proves that suppFφ ⊆ V ⊆ U.

The same argument extends to the case of G = Ul because all Cartan

subspaces h1,m satisfy τ(h1,m) ⊆ h. �

Remark 1. The Cartan subalgebra h′ is θ-stable, where θ is the fixed

Cartan involution of g′. Let H′ ⊆ G′ be the Cartan subgroup which is

the centralizer of h′ in G′, and let K′ be the maximal compact subgroup

of G′ which is fixed by θ. Then, by [Har56, Lemma 10], the Weyl group

W (G′, h′) coincides with W (K′, h′), i.e. the normalizer of H′ in K′ modulo

the centralizer of H′ in K′. Explicitly, K′ is Ul′ if D = R or H, and Up×Uq if

D = C. Hence W (G′, h′) acts on h′ by permuting the J ′
j , (38), if D = R or H,

and by separately permuting the first p and the last q elements J ′
j if D = C.

Since δj = 1 for all j = 1, . . . , l′ if D = R or H, and δj = 1 for j = 1, . . . , p

and δj = −1 for j = p + 1, . . . , p + q if D = C, it follows from (40) that

the domain of integration τ ′(h1
reg) appearing in (53) is W (G′, h′)-invariant.

This property will be relevant in Proposition 2 below.

Recall from page 269 the notions of semisimple and regular elements

in W = s1. By [MPP15, Theorem 20], the set of semisimple elements is

dense in W for every dual pair with one member compact unless (G,G′) =

(O2l+1,Sp2l′(R)) with 2l + 1 < 2l′. As noticed in section 3, W has a unique

class of Cartan subalgebras unless (G,G′) = (Ul,Up,q) with l < l′ = p + q.

Suppose these two families of dual pairs are excluded. Let h1 denote the

Cartan subalgebra in W fixed in (37). Then Wreg = S.h1
reg is the set of

regular semisimple elements of W. It is open and dense in W.

Proposition 2. Suppose that l ≥ l′. Let Φ be a W (G′, h′)-invariant

function on τ ′(h1
reg). Then there is a unique S-invariant function Φ� on
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Wreg such that

Φ�(y) = (Φ ◦ τ ′)(y) (y ∈ h1
reg) .

Moreover,

1

|W (G′, h′)|

∫
τ ′(h1

reg)

Φ(y)πg/z(y)Fφ(y) dy =

∫
W

Φ
(w)φ(w) dw (φ ∈ C∞
c (W))(61)

provided the integrals are absolutely convergent.

Proof. The existence of Φ� is due to the fact that Φ◦τ ′ is a W (S, h1)-

invariant function on h1
reg. The Weyl group W (G′, h′) acts on τ ′(h1

reg) by

permuting the coordinates with respect to the basis {J ′
1, . . . , J

′
l′}. The action

is simple and transitive and τ ′(h+
1
) is a fundamental domain. Since the

function Φ(y)πg/z(y)Fφ(y) is W (G′, h′)-invariant on τ ′(h1
reg), the formula

(61) is a restatement of the Weyl–Harish-Chandra integration formulas on

W for l ≥ l′, see (52). �

5. Main Results

Suppose an irreducible representation Π of G̃ occurs in Howe’s corre-

spondence. This means that there is a subspace HΠ ⊆ L2(X) on which the

restriction of ω coincides with Π. Since Z̃ ⊆ G̃∩G̃′, then either HΠ ⊆ L2(X)+
or HΠ ⊆ L2(X)−. In the first case the restriction of the central character

χΠ of Π to Z̃ is equal to χ+ and in the second case to χ−. Thus for z̃ ∈ Z̃

and g̃ ∈ G̃,

ΘΠ(z̃g̃) = χ+(z̃)ΘΠ(g̃) if HΠ ⊆ L2(X)+ ,(62)

ΘΠ(z̃g̃) = χ−(z̃)ΘΠ(g̃) if HΠ ⊆ L2(X)− .

We see from equations (17), (23), (24) and (62) that the function

G̃ � g̃ → T (g̃)Θ̌Π(g̃) ∈ S ′(W)

is constant on the fibers of the covering map (9). The following lemma is a

restatement of (18). Our main results will be the explicit expressions of the

various integrals appearing on the right-hand sides of the equations below.

Lemma 3. Let G0 ⊆ G denote the connected identity component. Sup-

pose (G,G′) = (Ud,Up,q) or (Spd,O
∗
2m). Then G = G0 = −G0 and

fΠ⊗Π′ =

∫
G

Θ̌Π(g̃)T (g̃) dg =

∫
−G0

Θ̌Π(g̃)T (g̃) dg .(63)
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Formula (63) holds also if (G,G′) = (Od,Sp2m(R)) with d even and ΘΠ

supported in G̃0, because G0 = SOd = −SOd = −G0. In the remaining

cases

fΠ⊗Π′ =

∫
G

Θ̌Π(g̃)T (g̃) dg =

∫
−G0

Θ̌Π(g̃)T (g̃) dg +

∫
G\(−G0)

Θ̌Π(g̃)T (g̃) dg .(64)

The integrals over −G0 in (63) and (64) are given in Theorems 4 and 5

below, proved in section 10. The integrals over the other connected com-

ponent in (64) are computed in Theorems 7, 8 and 10, respectively, and

proved in sections 11, 12, and 14. Theorem 6, proved in this section, will

furthermore show that the second integral on the right-hand side of (64)

coincides with the first integral when (G,G′) = (Od,Sp2l′(R)), where d = 2l

or d = 2l + 1, provided l > l′.

Remark 2. Notice that, since the character ΘΠ is conjugation invari-

ant, ∫
G

Θ̌Π(g̃)T (g̃)(φ) dg =

∫
G

Θ̌Π(g̃)T (g̃)(φG) dg ,

where φG is defined as in (58).

Let

ι =

{
1 if D = R or C ,
1
2 if D = H ,

(65)

and let

r =
2 dim g

dim VR

,(66)

where the subscript R indicates that we are viewing V as a vector space

over R. Explicitly,

r =


2l − 1 if G = O2l ,

2l if G = O2l+1 ,

l if G = Ul ,

l + 1
2 if G = Spl .

(67)
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Let

δ =
1

2ι
(d′ − r + ι) and β =

2π

ι
.(68)

Fix an irreducible representation Π of G̃ that occurs in the restriction of

the Weil representation ω to G̃. Let µ ∈ ih(g)∗ be the Harish-Chandra

parameter of Π with µ1 > µ2 > · · · . This means that µ = λ + ρ, where λ is

the highest weight of Π and ρ is one half times the sum of the positive roots

of (gC, hC). If G = U1 then ρ = 0 and µ = λ is the weight of Π. If G = O2

then ρ = 0. In this case, if Π is trivial or det, then µ = 0. Otherwise Π|SO2

has two weights and we pick any one of them.

Let Pa,b and Qa,b be the piecewise polynomial functions defined in (D.4)

and (D.5). Define

aj = −µj − δ + 1 , bj = µj − δ + 1 ,(69)

pj(ξ) = Paj ,bj (βξ)e
−β|ξ| , qj(ξ) = β−1Qaj ,bj (β

−1ξ) (1 ≤ j ≤ l, ξ ∈ R) ,(70)

where δ and β are as in (68). Notice that aj and bj are integers (see Lemma

20). Furthermore, set

κ0 =

{
1/2 if G = O2l and λl = µl = 0 ,

1 otherwise .
(71)

Theorem 4. Let l ≤ l′. Then there is a non-zero constant C which

depends only on the dual pair (G,G′) such that for all φ ∈ S(W)∫
−G0

Θ̌Π(g̃)T (g̃)(φ) dg(72)

= C κ0χ̌Π(c̃(0))

∫
h∩τ(W)

 l∏
j=1

(
pj(yj) + qj(−∂yj )δ0(yj)

) · Fφ(y) dy ,

where χΠ is the central character of Π (see (62)), c̃ is a real analytic lift of

the Cayley transform (see (119)), δ0 is the Dirac delta at 0, and Fφ(y) is

the Harish-Chandra regular almost-elliptic orbital integral on W of φ at y

(see [MPP20, Definition 3.2] and (54)).



SBOs for Dual Pairs with One Member Compact 281

The term

l∏
j=1

(
pj(yj) + qj(−∂yj )δ0(yj)

)
(73)

is:

(1) a function of y if and only if all the qj’s are zero, and this happens if

and only if l = l′ and (G,G′) �= (O2l,Sp2l′(R));

(2) a linear combination of products of functions and Dirac delta’s at 0 in

some coordinates yj if and only if all the qj’s are of degree zero. This

happens if and only if either (G,G′) = (O2l,Sp2l(R)), or l′ = l+1 and

D = C or H.

In the remaining cases, (73) is a distribution, but not a measure.

Remark 3. The integration domain h∩τ(W) appearing in Theorem 4

was explicitly determined in [MPP20, Lemma 3.4]. It is equal to h if D �= C

or if D = C and l ≤ min(p, q). By (163), (164) and Appendix H, we see that

aj ≤ 0 for all 1 ≤ j ≤ l when l ≤ l′. Hence each Paj ,bj (βyj) vanishes for

yj < 0. In cases (1) and (2) of Theorem 4 with D = R or H, we can therefore

replace the domain of integration h with the smaller domain τ(h1).

In the case l > l′, up to conjugation, there is a unique Cartan subspace

h1 in W. Recall that for D = C we are supposing that p ≤ q.

Define s0 ∈ W (G, h(g)) by

s0(Jj) = Jj (1 ≤ j ≤ l) if D = R or H ,(74)

s0(Jj) =


Jj (1 ≤ j ≤ p)

Jq+j (p + 1 ≤ j ≤ l − q)

Jj−l+l′ (l − q + 1 ≤ j ≤ l)

if D = C .(75)

Theorem 5. Let l > l′. Consider a genuine irreducible representation

Π of G̃. (Its highest weight is among the weights listed in Appendix H).

Then ∫
−G0

Θ̌Π(g̃)T (g̃) dg �= 0(76)
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if and only if the highest weight λ =
∑l

j=1 λjej of Π is of the form

(a) λ1 ≥ λ2 ≥ · · · ≥ λl′ ≥ 0 and λj = 0 for l′ + 1 ≤ j ≤ l , if D = R or H ,

(b) λj =
p− q

2
+ νj , where ν1 ≥ · · · ≥ νp ≥ 0 , νj = 0 for

p + 1 ≤ j ≤ l − q , 0 ≥ νl−q+1 ≥ · · · ≥ νl , if D = C .

Suppose that (a) and (b) are satisfied. Then there is a non-zero constant C

which depends only on the dual pair (G,G′) such that for all φ ∈ S(W)

∫
−G0

Θ̌Π(g̃)T (g̃)(φ) dg = C κ0χ̌Π(c̃(0))

∫
τ ′(h1

reg)

( l′∏
j=1

p
s−1
0 (j)

(yj)
)
· Fφ(y) dy ,(77)

where κ0 is as in (71) and, explicitly,

l′∏
j=1

ps−1
0 (j)(yj) =

{∏l′
j=1 pj(yj) if D = R or H ,(∏p
j=1 pj(yj)

)(∏l′
j=p+1 pj+l−l′(yj)

)
if D = C .

The right-hand side of (77) can be written as a non-zero constant multiple

of

κ0χ̌Π(c̃(0))

∫
τ ′(h1

reg)
Φ(y)πg/z(y)Fφ(y) dy =

∫
W

Φ�(w)φ(w) dw ,(78)

where

Φ(y) =

∑
s′∈W (G′,h′) sgng′/h′(s′)

∏l′

j=1 Pas0,j ,bs0,j ,2δj (β(s′y)j)

πg/z(y)
e−β

∑ l′
j=1 |yj | ,(79)

(yj = J ′
j
∗
y, y = τ(w) = τ ′(w), w ∈ h1

reg)

is a non-zero W (G′, h′)-invariant real-valued continuous function on

τ ′(h1
reg), and Φ� is an S-invariant function such that Φ�(w) = Φ(τ ′(w))

for all w ∈ h1
reg. In (79), µ is the Harish-Chandra parameter of Π,

as,j = −(sµ)j − δ + 1 , bs,j = (sµ)j − δ + 1 (s ∈ W (G, h), 1 ≤ j ≤ l) ,(80)

Pa,b,±2 is the polynomial defined in (D.1) or (D.2), and the δj’s are as in

(36). (See (42) for the identifications y = τ(w) = τ ′(w) in (79) .)

Remark 4. Recall from Remark 1 that the domain of integration

τ ′(h1
reg) appearing in Theorem 5 is W (G′, h′)-invariant. Formula (79) will
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prove, by Proposition 2, that the intertwining distribution is not zero when

the conditions (a) or (b) are satisfied.

Remark 5. Conditions (a) and (b) in Theorem 5 are precisely those

ensuring that Π occurs in Howe’s correspondence. See Corollary 11 below.

(They are contragredient to those listed in [Prz96, Appendix], because the

Weil representation used there is contragredient to the one used here.)

Before considering the integrals over G \ (−G0) in (64), let us introduce

some notation concerning the irreducible representations of the orthogonal

groups. Since D �= C, we can choose a polarization W = X ⊕ Y so that G

preserves X and Y. We shall suppose in what follows that we have made

such a choice.

Suppose that G = Od. Then, for each highest weight λ of an irreducible

representation of G0 there are one or two unitary genuine representations

of G̃ having highest weight λ. There are two if and only if either d = 2l and

λl = 0, or d = 2l + 1. See e.g. [GW09, §5.5.5]. Let Πλ,+ and Πλ,− be these

representations. Set

χ+(g̃) =
Θ(g̃)

|Θ(g̃)| (g ∈ Od) ,(81)

where Θ is defined in (16). Then χ+ is a character of G̃. Notice that (81)

is an extension of (23) from Z̃ to G̃. In fact, Proposition 4.28 in [AP14]

implies that (χ+(g̃))2 = (det g)−1
X , where (det g)X indicates the determinant

of g as endomorphism of X.

Then, in the Schrödinger model for the Weil representation ω, for which

the space of smooth vectors is S(X),(
ω ⊗ χ−1

+

)
(g̃)f(x) = f(g−1x) (g ∈ G, f ∈ S(X), x ∈ X) .(82)

Hence ω ⊗ χ−1
+ descends to a representation ω0 of G given by

ω0(g)f(x) = f(g−1x) (g ∈ G, f ∈ S(X), x ∈ X) .(83)

Theorem 6. Suppose that l > l′. Let Π be an irreducible representa-

tion of Õd occurring in the restriction of the Weil representation to Õd. If
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d = 2l, then λl = 0. In both cases d = 2l or d = 2l+1, the second irreducible

genuine representation of Õd having the same highest weight as Π does not

occur in the restriction of the Weil representation to Õd. Moreover,∫
G

Θ̌Π(g̃)T (g̃) dg = 2

∫
G0

Θ̌Π(g̃)T (g̃) dg = 2

∫
−G0

Θ̌Π(g̃)T (g̃) dg .(84)

In particular, ∫
G\(−G0)

Θ̌Π(g̃)T (g̃) dg =

∫
−G0

Θ̌Π(g̃)T (g̃) dg .(85)

The integral on the very right-hand side of (84) was computed in Theo-

rem 5.

Proof. Let λ be the highest weight of Π, and let d = 2l or 2l + 1.

Recall the notation introduced before (81).

Suppose that both Πλ,+ and Πλ,− occur. Then Πλ,± ⊗ χ−1
+ descends to

a representation (Πλ,±⊗χ−1
+ )|G of G occurring in ω0. Let S(X)Πλ,± ⊆ S(X)

denote the Πλ,±-isotypic component in S(X). By (83),

(Πλ,± ⊗ χ−1
+ )|G(g)f(x) = f(g−1x) (g ∈ G, f ∈ S(X)Πλ,± , x ∈ X) .(86)

Let Πλ,0 denote an irreducible representation of G whose restriction to the

identity component has highest weight λ. As one can see from [GW09,

§5.5.5],

if (Πλ,+ ⊗ χ−1
+ )|G = Πλ,0, then (Πλ,− ⊗ χ−1

+ )|G = Πλ,0 ⊗ det .(87)

Hence Πλ,0 ⊗Πλ,0 ⊗ det occurs in ω0 ⊗ω0, acting on S(X⊕X). Recall that

Πλ,0 = Πc
λ,0 is self-contragredient. Since Πc

λ,0 ⊗ Πλ,0 contains the trivial

representation, we conclude that det occurs in ω0⊗ω0. Observe that ω0⊗ω0

acts on S(X ⊕ X) by

ω0 ⊗ ω0(g)f(x) = f(g−1x) (g ∈ G, f ∈ S(X ⊕ X), x ∈ X) .

It is therefore the “representation ω0” corresponding to a dual pair

(Od,Sp4l′(R)). By Proposition F.1, it follows that d ≤ 2l′, contrary to

our assumption.

Suppose first that Πλ,+ is not isomorphic to Πλ,−, which by the descrip-

tion of the irreducible representations of orthogonal groups [GW09, §5.5.5]
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can occur only when λl = 0 if d = 2l. Then the above argument shows

that only one of Πλ,+ and Πλ,− (i.e. Π) occurs in the restriction of the Weil

representation.

On the other hand, if Πλ,+ is isomorphic to Πλ,−, then d = 2l (because

det(−I2l+1) = −1) and, again by [GW09, §5.5.5], λl �= 0. In this case,

Πλ,0 = Πλ,0 ⊗ det and the above argument shows that the representation

does not occur in ω.

Thus the second representation of Õd which has the same restriction as

Π to G0 = SOd, does not occur. Hence the Π|
S̃Od

-isotypic component of ω

coincides with the Π-isotypic component of ω. Therefore∫
G

Θ̌Π(g̃)T (g̃) dg = 2

∫
G0

Θ̌Π(g̃)T (g̃) dg .

(The factor 2 is a consequence of the normalization of the measures.) In

particular,
∫
G\G0 Θ̌Π(g̃)T (g̃) dg =

∫
G0 Θ̌Π(g̃)T (g̃) dg . If G = O2l, then G0 =

−G0 and if G = O2l+1, then G \ G0 = −G0. This explains the second

equality in (84). �

Remark 6. It should be pointed out that the proof of Theorem 6

does not use the known classification of the highest weights of the genuine

irreducible representations occurring in Howe’s correspondence.

Consider now the case (G,G′) = (O2l,Sp2l′(R)) and the character ΘΠ

not supported in the preimage G̃0 of the connected identity component

G0 ⊆ G.

Suppose that l ≤ l′ and l �= 1. Then the graded vector space (34) is

equal to

V = V0
1
⊕ V1 ⊕ V2 ⊕ · · · ⊕ Vl .

Recall from (35) that in each Vj

0
we selected an orthonormal basis v0, v′0.

For convenience, we introduce the index j in the notation and we write

v2j−1 = v0 and v2j = v′0, for 1 ≤ j ≤ l. Then v1, v2, . . . , v2l is an

orthonormal basis of V0 and

Jjv2j−1 = −v2j , Jjv2j = v2j−1 (1 ≤ j ≤ l) .

In terms of the dual basis (46) of h∗C, the positive roots are

ej ± ek (1 ≤ j < k ≤ l) .
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Define an element s ∈ G by

sv1 = v1, sv2 = v2, . . . , sv2l−1 = v2l−1, sv2l = −v2l .(88)

Then G = G0 ∪G0s is the disjoint union of two connected components. Set

V0,s = V1
0
⊕ V2

0
⊕ · · · ⊕ Vl−1

0
⊕ Rv2l , and Vs = V0,s ⊕ V1 .

The dual pair corresponding to (V0,s,V1) is (Gs,G
′
s) = (O2l−1,Sp2l′(R))

acting on the symplectic space Ws = Hom(V1,V0,s). The objects corre-

sponding to Ws will be distinguished by the subscript s.

Let hs =
∑l−1

j=1 RJj . This is the centralizer of s in h =
∑l

j=1 RJj . Set

ρC
s = (l − 1)e1 + (l − 2)e2 + · · · + el−1 .(89)

Let

λ =

l−1∑
j=1

λjej

be the highest weight of Π. (Here λl = 0 because we assume that ΘΠ is not

supported in G̃0.) Define

µC = λ + ρC
s .

The number r, (67), for the group G is equal to

r = 2l − 1

and the number δ, (68), for the dual pair (G,G′) is equal to

δ =
1

2
(2l′ − r + 1) = l′ − l + 1 .

Set

aC
j = −µC

j − δ + 1 = −µC
j − l′ + l ,

bC
j = µC

j − δ + 1 = µC
j − l′ + l , (1 ≤ j ≤ l − 1) .

Notice that aC
j = aj and bC

j = bj for 1 ≤ j ≤ l− 1 because ρC
s coincides with

the restriction of ρ to hs. Using these numbers in place of aj and bj in (70),

define the functions pC
j and qC

j .
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Theorem 7. Let (G,G′) = (O2l,Sp2l′(R)) with 1 < l ≤ l′. Assume

that the character ΘΠ is not supported in G̃0. Then there is a constant C

which depends only on the dual pair (G,G′) such that for any φ ∈ S(W)∫
G0s

Θ̌Π(g̃)T (g̃)(φ) dg(90)

= CDΠχ̌Π(c̃(0))

∫
hs

l−1∏
j=1

(
pC
j (yj) + qC

j (−∂yj )δ0(yj)
)
· FφG|Ws (y) dy ,

where χ̌Π(c̃(0)) and DΠ are equal to ±1, and DΠ distinguishes Π and Π⊗det.

Theorem 7 excludes the dual pairs (G,G′) = (O2,Sp2l′(R)) because

its proof relies on an analogue of the Weyl’s character formula for G \ G0

proved by [Wen01] for nonconnected compact semisimple Lie groups. These

excluded cases will be treated in subsection 6.1.

Now we consider the case (G,G′) = (O2l+1,Sp2l′(R)) with 1 ≤ l ≤
l′. Recall from (34) the graded vector space V. In the case we consider,

dimV0
0

= 1, dimV0
1

= 2(l′ − l) and for 1 ≤ j ≤ l, dimVj

0
= dimVj

1
= 2. Let

Ws = Hom(V1,V
1
0
⊕ · · · ⊕ Vl

0
) and W⊥

s = Hom(V1,V
0
0
) .

Then

W = Ws ⊕ W⊥
s(91)

is a direct sum orthogonal decomposition. Let Gs ⊆ G be the subgroup

acting trivially on the space V0
0
. The Lie algebra gs of g embeds as those

elements acting as zero on V0
0
. Let G′

s = G′. Then the dual pair corre-

sponding to Ws is (Gs,G
′
s) " (O2l,Sp2l′(R)) and dual pair corresponding

to W⊥
s is (O1,Sp2l′(R)). If H is a Cartan subgroup of G, then H0 = H0

s

is a Cartan subgroup of G0
s, and the Lie algebras g and gs share the same

Cartan subalgebra h = hs. The following theorem will be proved in section

14.

Theorem 8. Let (G,G′) = (O2l+1,Sp2l′(R)) with 1 ≤ l ≤ l′. Then

there is a nonzero constant C such that for all φ ∈ S(W)

∫
G0

Θ̌Π(g̃)T (g̃)(φ) dg = C(−1)|λ|
∫

h

l∏
j=1

(
pj(yj) + qj(−∂yj )δ0(yj)

)
FφG|Ws

(y) dy ,(92)
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where pj , qj are defined as in (70), λ is the highest weight of Π and |λ| =∑l
j=1 λj is a nonnegative integer. (See Appendix H.)

If l = l′, then FφG|Ws is proportional to Fφ (independently of φ).

Remark 7. As in Theorem 4, the term

l∏
j=1

(
pj(yj) + qj(−∂yj )δ0(yj)

)
is a function of y (i.e. all the qj ’s are zero) if and only if l = l′. In the other

cases, it is a distribution, but not a measure. Furthermore, if l = l′, we can

replace the domain of integration h with the smaller domain τ(h1).

Remark 8. It is known from the classification of the representations

occurring in Howe’s correspondence (see e.g. [Prz96, Appendix]) that for the

pair (G,G′) = (O2l+1,Sp2l′(R)) with l ≤ l′ there are two representations of

G̃ with the same highest weight λ that occur in the correspondence, namely

Π(g̃) and Π(g̃)⊗ det(g). They agree on G0, so the integral on the left-hand

side of (92) cannot distinguish them. In particular, we cannot replace the

factor (−1)|λ| with χ̌Π(c̃(0)), which appears in Theorems 4 and 5.

Remark 9. The pair (O1,Sp2l′(R)) was studied in detail in section 2.

Suppose (G,G′) = (Od,Sp2l′(R)), where d = 2l or 2l + 1 and d > 2. In

Theorem 9 below, the integral over G\(−G0) of the distribution-valued map

g → Θ̌Π(g̃)T (g̃) is reduced to an integral over −G0
s. The resulting equality,

which holds independently of the mutual relation between the ranks l and

l′, will be needed in [MPP24]. Recall that

G \ (−G0) =

{
G0s if G = O2l ,

G0 if G = O2l+1 .

Moreover, −G0
s = G0

s if G = O2l+1.

Theorem 9. Let G = Od with d > 2. If d = 2l, suppose that the

character ΘΠ is not supported in G̃0. Then for all φ ∈ S(W)∫
G\(−G0)

Θ̌Π(g̃)T (g̃)(φ) dg =
1

2

∫
−G0

s

Θ̌Π(g̃) det(1 − g)Ts(g̃)(φ
G|Ws) dg ,(93)
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where Ts is the operator T , see (14), corresponding to the symplectic space

Ws.

We prove Theorem 9 in section 13.

Remark 10. The term det(1−g) appearing in (93) admits a represen-

tation theoretical interpretation. Indeed, let σ be the spin representation of

the spin cover of G0
s. Then the tensor product σ ⊗ σc is a representation of

G0
s and, by [Lit06, Ch. XI, III., p. 254]

Θσ⊗σc(g) = |Θσ(g)|2 = det(1 + g) (g ∈ G0
s) .(94)

So det(1 − g) = Θσ⊗σc(−g).

Suppose l > l′. Theorem 6 reduces the computation of
∫
G Θ̌Π(g̃)T (g̃) dg

to that of
∫
−G0 Θ̌Π(g̃)T (g̃) dg, done in Theorem 5. One could still try to

compute the integral on G \ (−G0) directly, without relying on Theorem 6.

As an example, we do it for O2l+1 in Theorem 10 below. Nevertheless, the

result is less precise than that from Theorem 6 since we are only able to

prove that the integral over G \ (−G0) is a nonzero constant multiple of the

one over −G0. Determining the constant is a serious issue even in the much

easier situation of (Ul,Ul′); see [MPP23].

To consider the case (G,G′) = (O2l+1,Sp2l′(R)) with l > l′, recall the

graded vector space V, (34) and the formula (43),

V = V0 ⊕ V1 ⊕ · · · ⊕ Vl′ ,

where, as in (44),

V0
0

= V0,0

0
⊕
(
V0,0

0

)⊥
,

V0
1

= 0 ,

with dimV0,0

0
= 1 and dim

(
V0,0

0

)⊥
= 2(l − l′). Let

Ws = Hom(V1
1
⊕ · · · ⊕ Vl′

1
,
(
V0,0

0

)⊥
⊕ V1

0
⊕ · · · ⊕ Vl′

0
), W⊥

s = Hom(V1,V
0,0

0
) .
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(Notice that V1
1
⊕· · ·⊕Vl′

1
= V1 and

(
V0,0

0

)⊥
⊕V1

0
⊕· · ·⊕Vl′

0
is the orthogonal

complement of the one dimensional space V0,0

0
in V0.) Then

W = Ws ⊕ W⊥
s(95)

is a direct sum orthogonal decomposition. Let Gs ⊆ G be the subgroup act-

ing trivially on the space V0,0

0
and let G′

s = G′. The dual pair corresponding

to Ws is (Gs,G
′
s) " (O2l,Sp2l′(R)) and dual pair corresponding to W⊥

s is

(O1,Sp2l′(R)).

Theorem 10. Let (G,G′) = (O2l+1,Sp2l′(R)) with l > l′. Then∫
G0

Θ̌Π(g̃)T (g̃) dg �= 0(96)

if and only if the highest weight λ =
∑l

j=1 λjej of Π satisfies condition (a)

of Theorem 5 for D = R. Suppose that this condition is satisfied. Then

there is a non-zero constant C which depends only on the dual pair (G,G′)
such that for all φ ∈ S(W)

∫
G0

Θ̌Π(g̃)T (g̃)(φ) dg = C(−1)|λ|
∫
τ ′(h1

reg)

( l′∏
j=1

pj(yj)
)
Fφ(y) dy .(97)

As a byproduct of our calculations of the intertwining distributions, we

obtain the list of highest weights of the genuine irreducible representations

Π of G̃ that occur in Howe’s correspondence when l > l′. This list was first

determined (without any restrictions on the ranks l and l′) in [KV78].

Corollary 11. Suppose that l > l′. A genuine representation Π ∈ G̃∧

occurs in Howe’s correspondence if and only if its highest weight satisfies

conditions (a) or (b) of Theorem 5.

Proof. Our computations of the intertwining distribution∫
G Θ̃Π(g̃)T (g̃) dg can be applied to any genuine irreducible representation

Π ∈ G̃∧ (not necessarily occurring in Howe’s correspondence). This distri-

bution is nonzero if and only if ω|
G̃

has a nonzero Π-isotypic component.
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This is equivalent to the fact that there is a unitary highest weight repre-

sentation Π′ of G̃′ such that Π ⊗ Π′ occurs in ω|
G̃G̃′ . The nonvanishing of

the intertwining distributions leads to conditions (a) or (b) of Theorem 5

when G = Ul or Spl. In the case of orthogonal groups, we can further use

Theorem 6 and conclude that the nonvanishing of the intertwining distri-

butions is equivalent to the nonvanishing of the integral of Θ̃Π(g̃)T (g̃) over

−G0. The claim then follows again from Theorem 5. �

As we shall see in the proofs in section 10, the list of highest weights in

Theorem 5 is obtained by comparing the support of the function
∏l′

j=1 pj(yj)

with the domain of integration, τ ′(h1
reg). Unfortunately, this method is not

refined enough to provide necessary and sufficient conditions when l ≤ l′.
Let us now consider the dual pair (Ul,Up,q). Recall that in this case

l′ = p + q and that we assume that p ≤ q. If l ≤ p all irreducible genuine

representations of Ũl occur because the pair is in the stable range with Ul

the smaller member; see [Li89] or [PP08]. The absence of conditions on the

highest weight in Theorem 4 is consistent with this fact (despite the fact

that we cannot see that our intertwining operator is not 0).

If p < l ≤ p+q then the next corollary gives precise necessary conditions

on the highest weight of Π to occur in the correspondence. The proof is

independent of the classification and is based on a refined analysis of the

intertwining distribution; see section 15.

Corollary 12. Suppose that D = C and p < l ≤ p + q. Let Π ∈ G̃∧

be a genuine irreducible representation of highest weight λ. If either λp+1 >
p−q
2 or (when q < l holds) λl−q < p−q

2 , then Π does not occur in Howe’s

correspondence.

For the dual pair (Spl,O
∗
2l′), by the known classification of highest

weights of representations of Spl occurring in Howe’s correspondence, all ir-

reducible genuine representations of S̃pl occur if l ≤ l′. We can recover this

fact out of the formula for the intertwining distribution determined in The-

orem 4 (and hence without using the classification) only when l′ ∈ {l, l+1}.
This is the content of the following corollary, proved in section 16.

Corollary 13. Suppose that D = H and l ≤ l′. Let Π be an irre-

ducible genuine representation of G = Spl with highest weights λ1 ≥ · · · ≥
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λl. If λl ≥ l′− l− 1 then Π occurs in Howe’s correspondence. In particular,

if l′ = l or l′ = l + 1, then every genuine irreducible representation Π ∈ G̃∧

occurs in Howe’s correspondence.

We terminate our discussion on the highest weights of the genuine irre-

ducible representations of G̃ occurring in Howe’s correspondence with the

pair (O2,Sp2l′(R)). For this dual pair, we compute the intertwining distri-

butions in section 6. We will recover the (well-known) list of representations

of Õ2 occurring in Howe’s correspondence by their explicit formulas. See

also Remark 12.

Remark 11. In this article we have considered the group Up,q with

p ≤ q. Suppose now that q ≥ p. This is equivalent to replacing the form

(·, ·)′ into its opposite. Correspondingly, the symplectic form 〈·, ·〉 becomes

its opposite. The inner product −〈J ·, ·〉 is now positive definite provided we

select −J instead of J . In the notation at the beginning of section 1, the

equation defining the preimages of g ∈ Sp(W) in S̃p(W) becomes

ξ2 = idim(g−1)W det(−Jg)
−1
JgW

= (−i)dim(g−1)W det(Jg)
−1
JgW

,

because (−1)dim(JgW) = (−1)dim(g−1)W. This means that ξ is transformed

into ξ̄. Since Θ((g; ξ)) = ξ, we conclude that Θ needs to be changed into Θ,

i.e. the metaplectic representation ω is replaced by its contragredient ω∨.

Therefore

ω|
G̃×G̃′ =

⊕
(Π ⊗ Π′) is replaced by ω∨|

G̃×G̃′ =
⊕

(Π∨ ⊗ (Π′)∨) .

The highest weights of the representations of Ul occurring in ω∨ are obtained

from those listed for far in this paper by changing their sign and permuting

them so that they are in decreasing order. Those written in (H.1), are

replaced for Up,q, where q ≥ p, with

λj =
q − p

2
+ νj , νj ∈ Z , ν1 ≥ ν2 ≥ · · · ≥ νl .

We conclude this section with a result on the non-differential operator

nature of the symmetry breaking operators in Hom
G̃G̃′(H∞

ω ,H∞
Π ⊗H∞

Π′).
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Corollary 14. Let (G,G′) be a real reductive dual pair with one

member compact. Then the essentially unique non-zero symmetry break-

ing operator in

Hom
G̃G̃′(H∞

ω ,H∞
Π ⊗H∞

Π′)

is not a differential operator.

Proof. We are going to show that (Op◦K)(fΠ⊗Π′) is not a differential

operator.

Let f ∈ S ′(W) and recall the definition of K(f) in (12). According

to [Hör83, Theorems 5.2.1 (the Schwartz kernel theorem) and 5.2.3], the

continuous linear map Op◦K(f) is a distribution-valued differential operator

if and only if K(f) ∈ S ′(X×X) is supported by the diagonal ∆ = {(x, x); x ∈
X}. This implies that f is supported in Y. Indeed, given ϕ ∈ S(X×X), let

ψ ∈ S(X × X) be defined by ϕ(x, x′) = ψ(x − x′, x + x′) for all x, x′ ∈ X.

Furthermore, let ψ(·, ·̂) ∈ S(X × Y) denote the partial Fourier transform of

ψ with respect to its second variable, defined by

ψ(a, ŷ) =

∫
X
χ
(1
2
〈y, b〉

)
ψ(a, b) db ((a, y) ∈ X × Y) .

Then

suppϕ ∩ ∆ = ∅ if and only if suppψ(·, ·̂) ∩ ({0} × Y) = ∅ .

Since K(f)(ϕ) = f(ψ(·, ·̂)) by (12), we obtain the claim.

Notice that this cannot happen in our case. Indeed, the support of fΠ⊗Π′

is GG′-invariant. Since the complex structure J ∈ G′ permutes X and Y, the

only GG′-orbit in Y is the zero orbit. Hence the inclusion supp fΠ⊗Π′ ⊆ Y

would imply supp fΠ⊗Π′ = {0}. This would mean that the wavefront set

of Π′ is 0, i.e. Π′ is finite dimensional. By classification, see Appendix H

all highest weight representations occurring in Howe’s correspondence are

infinite dimensional unless G′ = Ul′ , which is compact. In this case, the

intertwining distribution is a smooth function; see [MPP23]. In particular,

its support is not 0. Hence the intertwining operator is not a differential

operator. �
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6. The Pair (O2,Sp2l′(R))

We consider here the case (G,G′) = (O2,Sp2l′(R)). By (E.6) and Propo-

sition E.1, we can identify

Õ2 = {(g; ζ) ∈ O2 × C×; ζ2 = (det g)l
′} .

and the det1/2-covering Õ2 � (g; ζ) → g ∈ O2 splits if and only if l′ is even.

Let Π ∈ Õ2 occur in Howe’s correspondence and let χ+ : Õ2 → C× be the

character of Õ2 defined by (81).

Since Π is genuine, there is Π0 ∈ Ô2 such that Π0(g) = (Π ⊗ χ−1
+ )(g̃).

Accordingly, ∫
O2

Θ̌Π(g̃)ω(g̃) dg =

∫
O2

Θ̌Π0(g)ω0(g) dg ,

where ω0 is as in (83).

Observe that the image under the metaplectic cover of supp(ΘΠ) is equal

to supp(ΘΠ0). Since S̃O2 → SO2 splits by (E.10), we conclude that ΘΠ is

supported in G̃0 = S̃O2 if and only if ΘΠ0 is supported in SO2. In the

sequel, triv denotes the trivial representation.

Proposition 15. Let (G,G′) = (O2,Sp2l′(R)) and let Π be a genuine

irreducible representation of G̃ with character ΘΠ not supported in G̃0. Then

either Π = t̃riv = χ+, or Π = d̃et is the character of G̃ such that (d̃et ⊗
χ−1

+ )(g̃) = det(g) for all g̃ ∈ G̃.

Decompose W = M2,2l′(R) as W = W1 ⊕ W2, where W1 is subspace of

the w ∈ W for which all entries of the second row are 0 and W2 is subspace

of the w ∈ W for which all entries of the first row are 0. Then∫
(SO2)s

χ−1
+ (g̃)T (g̃)(φ) dg = µO(φ) ,(98)

where s is as in (88), O is the O2×Sp2l′(R)-orbit of n0 =

(
0 0 . . . 0

1 0 . . . 0

)
∈

W and µO ∈ S ′(W) is the invariant measure on O defined by

µO(φ) = 2l
′−1

∫
W2

∫
O2

φ(gw) dg dµW2(w) (φ ∈ S(W)) .(99)
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Therefore∫
O2

Θ̌
d̃et

(g̃)T (g̃)(φ) dg =

∫
SO2

χ−1
+ (g̃)T (g̃)(φ) dg − µO(φ) (φ ∈ S(W))(100)

and ∫
O2

Θ̌
t̃riv

(g̃)T (g̃)(φ) dg =

∫
SO2

χ−1
+ (g̃)T (g̃)(φ) dg + µO(φ) (φ ∈ S(W)) .(101)

The integral over SO2 is computed by Theorem 4.

If l′ = 1, then d̃et does not occur in Howe correspondence and hence∫
O2

Θ̌
d̃et

(g̃)T (g̃) dg = 0 .

Moreover, ∫
O2

Θ̌
t̃riv

(g̃)T (g̃) dg = 2

∫
SO2

χ−1
+ (g̃)T (g̃) dg = 2µO .(102)

Proof. For n ∈ Z, let ρn be the character of SO2 defined by

ρn(

(
cos θ sin θ

− sin θ cos θ

)
) = einθ .

Up to equivalence, the irreducible representations of O2 are of the form

Π0,n = IndO2
SO2

(ρn) with n > 0, together with the trivial representation triv

and det. (Moreover, Π0,n " Π0,−n and Π0,0 = 1⊕det.) Hence ΘΠ0 does not

have support contained in S̃O2 if and only if Π0|SO2 = 1. Hence the only

possible cases are triv and det.

Since

Θ̌
t̃riv

(g̃)T (g̃) = χ−1
+ (g̃)T (g̃) ,

Θ̌
d̃et

(g̃)T (g̃) = Θ̌
d̃et

(g̃)χ+(g̃)χ−1
+ (g̃)T (g̃) = det(g)χ−1

+ (g̃)T (g̃) ,

we see that∫
O2

Θ̌
t̃riv

(g̃)T (g̃) dg =

∫
SO2

χ−1
+ (g̃)T (g̃) dg +

∫
(SO2)s

χ−1
+ (g̃)T (g̃) dg ,∫

O2

Θ̌
d̃et

(g̃)T (g̃) dg =

∫
SO2

χ−1
+ (g̃)T (g̃) dg −

∫
(SO2)s

χ−1
+ (g̃)T (g̃) dg .
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We now compute the integral over (SO2)s. Let gt =

(
cos(t) sin(t)

− sin(t) cos(t)

)
∈

SO2 and recall from (88) that s =

(
1 0

0 −1

)
∈ O2 \ SO2. Then gts =

gt/2sg−t/2. If f is any function on (SO2)s, then∫
(SO2)s

f(g) dg =

∫
SO2

f(gts)dgt =
1

2π

∫ 2π

0

f(gts) dt =
1

2π

∫ 2π

0

f(gt/2sg−t/2) dt

=
1

2π

∫ π

0

f(gtsg−t) · 2dt =
1

2π

∫ π

0

f(gtsg−t) dt+
1

2π

∫ 2π

π

f(gtsg−t) dt

=
1

2π

∫ 2π

0

f(gtsg−t) dt =

∫
SO2

f(g−tsgt) dgt .

Applying this to SO2 � g → χ−1
+ (g̃)T (g̃) ∈ S ′(R), we get∫

(SO2)s
χ−1

+ (g̃)T (g̃) dg =

∫
SO2

χ−1
+ (g̃−1sg)T (g̃−1sg) dg .(103)

Decompose W = M2,2l′(R) as in the statement of the theorem and let g ∈
O2. Then W = g−1W1 ⊕ g−1W2 is an orthogonal decomposition such that

g−1sg preserves both g−1W1 and g−1W2. Notice that

g−1sg|g−1W1
= 1g−1W1

because s|W1 = 1 ,

g−1sg|g−1W2
= −1g−1W2

because s|W2 = −1 .

By Lemma G.1,

χ−1
+ (g̃−1sg)TW(g̃−1sg) = χ−1

+ (1̃g−1W1
)TW(1̃g−1W1

)(104)

⊗ χ−1
+ ( ˜−1g−1W2

)TW( ˜−1g−1W2
) ,

independently of the choices of the preimages of g−1sg, 1g−1W1
and −1g−1W2

in S̃p(W), S̃p(g−1W1) and S̃p(g−1W2), respectively. We can therefore fix

1̃g−1W1
to be the identity element of S̃p(g−1W1), which gives χ−1

+ (1̃g−1W1
) =

1. Hence

χ−1
+ (1̃g−1W1

)TW(1̃g−1W1
) = δ0,g−1W1

,

where δ0,g−1W1
indicates Dirac’s delta at 0 in the space g−1W1.

By [AP14, Definition 4.16 and Remark 4.5], Θ2
W(−1) = (−2i)dim W.

Hence |ΘW(−̃1)| = 2dim W/2 only depends on the dimension of W. In par-

ticular,

|Θg−1W2
(−̃1)| = |ΘW2(−̃1)| = 2dim W2/2 .
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So

χ−1
+ ( ˜−1g−1W2

)TW( ˜−1g−1W2
) = |Θg−1W2

(−̃1)|µg−1W2
= 2dimW2/2µg−1W2

.

Thus (104) becomes

χ−1
+ (g̃−1sg)TW(g̃−1sg) = 2dim W2/2δ0,g−1W1

⊗ µg−1W2
.(105)

By (103), for all φ ∈ S(W),∫
(SO2)s

χ−1
+ (g̃)T (g̃)(φ) dg = 2dimW2/2

∫
SO2

(δ0,g−1W1
⊗ µg−1W2

)(φ) dg

= 2dimW2/2

∫
SO2

∫
g−1W2

φ(w) dµg−1W2
(w) dg

= 2dimW2/2

∫
W2

∫
SO2

φ(gw) dg dµW2(w) .

Notice that, since sw = −w for w ∈ W2,∫
W2

∫
SO2

φ(gw) dg dµW2(w) =

∫
W2

∫
SO2

φ(−gw) dg dµW2(w)

=

∫
W2

∫
SO2

φ(gsw) dg dµW2(w)

=

∫
W2

∫
(SO2)s

φ(gw) dg dµW2(w) .

Hence,∫
(SO2)s

χ−1
+ (g̃)T (g̃)(φ) dg

= 2dim W2/2
(1

2

∫
W2

∫
SO2

φ(gw) dg dµW2(w) +
1

2

∫
W2

∫
(SO2)s

φ(gw) dg dµW2(w)
)

= 2dim W2/2−1

∫
W2

∫
O2

φ(gw) dg dµW2(w) .

In conclusion,∫
(SO2)s

χ−1
+ (g̃)T (g̃)(φ) dg = µO(φ) (φ ∈ S(W)) ,

where µO is as in (99).
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We now show that µO is a O2 × Sp2l′(R)-invariant measure on the orbit

O. Notice first that W2 \ {0} = Sp2l′(R).n0. Indeed, n0 ∈ W2 and Sp2l′(R)

preserves W2. Conversely, let w2 =

(
0 0

u v

)
∈ W2 \ {0}, where u, v ∈

M1,l′(R). Since J =

(
0 Il′

−Il′ 0

)
∈ Sp2l′(R) and w2J =

(
0 0

−v u

)
, we

can suppose that u �= 0. If a ∈ GLl′(R) has u as its first row and b is a

symmetric matrix having v as its first row, then

(
a b

0 (at)−1

)
∈ Sp2l′(R)

and n0

(
a b

0 (at)−1

)
= w2. It follows from this that {gw2; g ∈ O2, w2 ∈

W2} = O∪{0}. The right-hand side of (99) is clearly O2-invariant, and we

see that it is Sp2l′(R)-invariant by linear changes of variables in the integral

over W2 because the elements of Sp2l′(R) have determinant 1.

Let l′ = 1. By Proposition F.1, d̃et does not occur in Howe corre-

spondence. Let Π = t̃riv. Since d̃et does not occur, the projection onto

the O2-isotypic component is equal to the projection onto the-SO2 isotypic

component. Therefore, (102) follows, because the volume of SO2 is 1
2 .

Since (100) vanishes when l′ = 1, we have∫
O2

Θ̌
t̃riv

(g̃)T (g̃) dg = 2

∫
SO2

χ−1
+ (g̃)T (g̃) dg = 2µO . �

Remark 12. Formulas (100) and (101) show that d̃et and t̃riv occur

in the Howe correspondence when l′ > 1. This is compatible with the

classification, as for l′ > 1 the the dual pair (O2,Sp2l′(R)) is in the stable

range, so all genuine representations occur.

6.1. The special case (G,G′) = (O2,Sp2(R) = SL2(R))

In this case, H = SO2 and g = h = RJ1, where J1 = R

(
0 1

−1 0

)
.

Moreover, τ(h1) = R+J1 and h∩τ(W) = h. The Harish-Chandra parameter

of Π ∈ Õ∧
2 (which coincides with its highest weight since ρ = 0) is of the form

µe1, where µ ≥ 0 is an integer. Hence, in the notation (69), a = −b = −µ

and β = 2π.

If µ = 0, then P−µ,µ = 0. If µ > 0, then the function P−µ,µ is supported
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in [0,+∞) and, by (D.4) and Remark 17,

P−µ,µ,2(2πy1) = 2(−1)µ−1L1
µ−1(4πy1) = 2(−1)µ−1

µ−1∑
h=0

(
µ

µ− 1 − h

)
(−4πy1)

h

h!
,(106)

where L1
µ−1 is a Laguerre polynomial. Moreover, by (D.5), Q−µ,µ(y) =

2π(−1)µ for all µ ≥ 0.

Suppose first µ > 0. Then Π is supported in S̃O2 and, by Lemma 3 and

Theorem 4, for every φ ∈ S(W),

fΠ⊗Π′(φ) =

∫
SO2

Θ̌Π(g̃)T (g̃)(φ) dg(107)

= 2πC(−1)µ
∫ +∞

0
P−µ,µ,2(2πy1)e

−2πy1Fφ(y1J1) dy1

+ C

∫
h

δ0(y)Fφ(y) dy ,

where C is the constant appearing in Theorem 4. To make formula (107)

explicit, we need to calculate the terms involving F (y), the Harish-Chandra

regular almost-elliptic orbital integral on W.

By [MPP20, Definition 3.1, (39) and (27)] and (I.2) with Z′ = H′, there

are constants Ch1
and C ′

h1
such that, for all y = y1J1 = τ(w) ∈ τ(h1),

Fφ(y) = Ch1
πg′/h′(y′)

∫
S/S

h
1

φ(s.w) d(sSh

1
)(108)

= C ′
h1
πg′/h′(y′)

∫
G′/H′

ψ(g′.y′) d(g′H′) ,

where y′ = y1J
′
1 = y1

(
0 1

−1 0

)
= τ ′(w), and ψ = τ ′∗(φ

G) ∈ S(g′). The

right-hand side of (108) is Harish-Chandra’s orbital integral for the orbit

G′.y′.
Notice that, for G = O2 and l = 1 ≤ l′, the extension of F (y) from

y ∈ h+ = τ(h1) to −τ(h1) is even in y; see [MPP20, Theorem 3.6]. Hence,∫
h

δ0(y)Fφ(y) dy = limy1→0+ Fφ(y1J1) (φ ∈ S(W)) .
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Write x ∈ g′ as

x = x1

(
1 0

0 −1

)
+x2

(
0 1

1 0

)
+x3J

′
1 =

(
x1 x2 + x3

x2 − x3 −x1

)
= A(x1, x2, x3) ,

where (x1, x2, x3) ∈ R3. Then the map A : R3 → g′ is a linear isomorphism.

It transfers the adjoint action of G′ on g′ to the natural action on R3 by

SO(2, 1)0, the identity component of SO(2, 1), i.e. the group of isometries

of x2
1 + x2

2 − x2
3 = −det(A(x1, x2, x3)) preserving the positive light cone

X0+ = {(x1, x2, x3) ∈ R3;x2
1 + x2

2 = x2
3, x3 > 0} .

See [HT92, Chapter IV, §5.1]. Under the map A, the orbit G′.y′ with

y′ = y1J
′
1 and y1 > 0 is the image of the hyperboloid’s upper sheet

O−
y1

= {(x1, x2, x3) ∈ R3;x2
1 + x2

2 − x2
3 = −y2

1, x3 > 0} .

Under A, the positive light cone X0+ corresponds to the G′-orbit of x0 =(
0 1

0 0

)
. Moreover G′.x0 " G′/MN, where M = {±1} and N = exp(Rx0) ={(1 t

0 1

)
; t ∈ R

}
. As the geometry suggests, for suitable normalizations

of the SO(2, 1)0-invariant orbital measures,

limy1→0+

∫
O−
y1

f dµO−
y1

=

∫
X0+

f dµX0+ (f ∈ S(R3)) .

Thus, for a suitable positive constant C ′′
h1

(109)

∫
h

δ0(y)Fφ(y) dy = C ′′
h1

∫
G′/MN

ψ(g′.x0) d(g′MN)

(φ ∈ S(W), ψ ∈ S(g′)G, ψ ◦ τ ′ = φG) .

Suppose now that µ = 0. Then, by Proposition 15, Π = t̃riv = χ+ and

for φ ∈ S(W),

f
t̃riv⊗t̃riv

′(φ) = 2

∫
SO2

χ−1
+ (g̃)T (g̃)(φ) dg = 2C

∫
h

δ0(y)Fφ(y) dy ,

where t̃riv
′

denotes the representation of S̃p2(R) in Howe correspondence

with t̃riv and the last equality follows from Theorem 4.
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7. Another Example: (G,G′) = (Ul,Up,p) and Π = t̃riv

Let (G,G′) = (Ul,Up,p). Hence l′ = 2p. Consider the trivial representa-

tion triv of Ul. In the Schrödinger model, with a polarization W = X ⊕ Y

preserved by G, we have

ω(g̃)v(x) = χ+(g̃)v(g−1x) (g̃ ∈ G̃, v ∈ S(X), x ∈ X) ,(110)

where χ+ : S̃p(W) → U1 is a function whose restriction to G̃ is a character.

See [AP14, Proposition 4.28]. Let t̃riv denote this restriction. Then t̃riv

is the lift to Ũl of triv, which occurs in Howe’s correspondence. Moreover,

(110) implies that

ω(Θ̌
t̃riv

)v(x) =

∫
G
v(g−1x) dg (v ∈ S(X), x ∈ X) .

Let t̃riv
′
be the representation of Ũp,p which corresponds to t̃riv. If l = 1,

then t̃riv
′
is a minimal representation of Up,p, called the Wallach represen-

tation.

In this section we are computing f
t̃riv⊗t̃riv

′ , which is the Weyl symbol

of the operator ω(Θ̌
t̃riv

). As in our main theorems, we distinguish the cases

l ≤ l′ and l > l′. Notice first that the parameters appearing in (68) are

β = 2π and δ = p +
1 − l

2
=

1 + l′ − l

2
.

Moreover, ρ =
∑l

j=1

(
l+1
2 − j

)
ej for G = Ul.

7.0.1 The case l ≤ l′

The parameters (69) corresponding to Π = t̃riv are

aj = − l′

2
+ j and bj = − l′

2
+ l + 1 − j ,(111)

where 1 ≤ j ≤ l. Observe that the aj ’s and the bj ’s describe the same set

{−l′/2 + 1, . . . ,−l′/2 + l − 1,−l′/2 + l}

and bl+1−j = aj for all 1 ≤ j ≤ l. Hence, by (D.6),

Pal+1−j ,bl+1−j (ξ) = Pbj ,aj (ξ) = Paj ,bj (−ξ) ,(112)

Qal+1−j ,bl+1−j (ξ) = Qbj ,aj (ξ) = Qaj ,bj (−ξ) .(113)
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Since aj = bl+1−j ≤ 0 for all 1 ≤ j ≤ min(l, l′/2), by (D.2),

Paj ,bj ,−2(ξ) = Pal+1−j ,bl+1−j ,2(ξ) = 0 (1 ≤ j ≤ min(l, l′/2)) .(114)

Also, aj ≤ 0 for all j (and hence bj ≤ 0 for all j) if and only if l ≤ l′/2.

Furthermore, aj + bj = l − l′ + 1, which is independent of j, is ≥ 1 if and

only if l = l′. As a consequence (see (D.5)),

Paj ,bj = 0 for all 1 ≤ j ≤ l if and only if l ≤ l′

2
,

Qaj ,bj �= 0 for all 1 ≤ j ≤ l if l < l′ ,

Qaj ,bj = 0 for all 1 ≤ j ≤ l if l = l′ .

We now examine more precisely the formula for f
t̃riv⊗t̃riv

′ when l ≤ l′/2.

This is the stable range case. As remarked above, Paj ,bj = 0 for all 1 ≤ j ≤ l,

whereas (see (D.5))

Qaj ,bj (yj) = 2π(1 + yj)
−aj (1 − yj)

−bj .

Hence pj = 0 for all 1 ≤ j ≤ l, whereas

qj(−∂yj )
∗ = qj(∂yj ) =

(
1 +

1

2π
∂yj

) l′
2
−j(

1 − 1

2π
∂yj

) l′
2
−(l−j+1)

,

where ∗ denotes the formal adjoint. Theorem 4 yields for φ ∈ S(W)

f
t̃riv⊗t̃riv

′(φ) =

∫
Ul

Θ̌
t̃riv

(g̃)T (g̃)(φ) dg(115)

= C

∫
h

[ l∏
l=1

qj(−∂yj )δ0(yj)
]
Fφ(y) dy

= C
[( l∏

l=1

qj(∂yj )
)
Fφ

]
(0) ,

where C is a nonzero constant. Hence f
t̃riv⊗t̃riv

′ has support inside the

nilpotent cone in W.

Another case where the formula for f
t̃riv⊗t̃riv

′ simplifies is when l = l′ =

2p because Qaj ,bj = 0 for all j. Since aj = b2p+1−j ≤ 0 for 1 ≤ j ≤ p, we

have

Paj ,bj (ξ) =

{
2πPaj ,bj ,2(ξ)IR+(ξ) if 1 ≤ j ≤ p ,

2πPaj ,bj ,−2(ξ)IR−(ξ) if p + 1 ≤ j ≤ 2p .
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In particular, in this case, we can replace in (72) the domain of integration

h∩τ(W) with τ(h1), where h1 is the unique Cartan subspace of W and τ(h1)

is determined by the condition that the first p values δj in (36) are equal to

1 and the last p are equal to −1. The explicit expression for f
t̃riv⊗t̃riv

′ can

be easily computed using (72), (D.1) and (D.2). For instance, if p = 1, i.e.

(G,G′) = (U2,U1,1), then

f
t̃riv⊗t̃riv

′(φ) = C

∫ ∞

0

∫ 0

−∞
e2π(y2−y1)Fφ(y1, y2) dy2dy1 (φ ∈ S(W)) ,

where C is a nonzero constant.

7.0.2 The case l > l′

In this case, Qaj ,bj = 0. The Weyl group W (Up,p, h
′) acts on h′ by

permuting the first p coordinates and the last p coordinates (see Remark

1). The parameter as,j and bs,j appearing in (79) are therefore obtained by

separately permuting the first p = l′/2 and the last p terms appearing in

(111). Notice that

aj ≤ 0 if and only if 1 ≤ j ≤ l′
2 ,

bj ≤ 0 if and only if l + 1 − l′
2 ≤ j ≤ l .

In particular, since l > l′, for each j, at most one between aj and bj can be

≤ 0. Moreover, there is at least one index j for which both aj and bj are

positive, namely j = l′
2 + 1.

When G′ = U1,1 (and hence l′ = 2), then W (U1,1, h
′) is trivial and s0

maps J1 to itself and Jl to J2, and (79) simplifies to a nonzero constant

multiple of

Pa1,b1,2(2πy1)Pal,bl,−2(2πy2)

(y2 − y1)(y1y2)l−2
e−2π(y1−y2) (y = τ ′(w), w ∈ h1

reg) ,

where aj , bj are as in (111) and the denominator is the root product (A.4).

8. The Integral over −G0 as an Integral over g

Let sp(W) be the Lie algebra of Sp(W). Set

sp(W)c = {x ∈ sp(W); x− 1 is invertible in End(W)} ,(116)

Sp(W)c = {g ∈ Sp(W); g − 1 is invertible in End(W)} .(117)
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The Cayley transform c : sp(W)c → Sp(W)c is the bijective rational map

defined by c(x) = (x + 1)(x − 1)−1. Its inverse c−1 : Sp(W)c → sp(W)c is

given by the same formula, c−1(g) = (g + 1)(g − 1)−1.

Since all eigenvalues of x ∈ g ⊆ End(W) are purely imaginary, x − 1

is invertible. Therefore g ⊆ sp(W)c. Moreover, c(g) ⊆ G. Since the map

c is continuous, the range c(g) is connected. Also, −1 = c(0) is in c(g).

Furthermore, for x ∈ g,

c(x) − 1 = (x + 1)(x− 1)−1 − (x− 1)(x− 1)−1 = 2(x− 1)−1

is invertible. Hence c(g) ⊆ G∩Sp(W)c. This is an equality because c(c(y)) =

y and c(G) ⊆ g. Thus

c(g) = {g ∈ G; det(g − 1) �= 0} .

This is a connected open dense subset of −G0. Hence∫
−G0

T (g̃)Θ̌Π(g̃) dg =

∫
c(g)

T (g̃)Θ̌Π(g̃) dg .(118)

If G �= O2l+1, then G0 = −G0. If G = O2l+1, then G is the disjoint union

of G0 and −G0. Let

c̃ : g → G̃(119)

be a real analytic lift of c. Set c̃−(x) = c̃(x)c̃(0)−1. Then c̃−(0) is the

identity of the group S̃p(W). By (14), we have

T (c̃(x)) = Θ(c̃(x))χx µW .(120)

Therefore, for a suitable normalization of the Lebesgue measure on g,∫
−G0

Θ̌Π(g̃)T (g̃) dg =

∫
g

Θ̌Π(c̃(x)) Θ(c̃(x)) jg(x)χx µW dx ,(121)

where jg(x) is the Jacobian of the map c : g → c(g) (see Appendix B for

its explicit expression). Also, since c̃(0) is in the center of the metaplectic

group, ∫
−G0

Θ̌Π(g̃)T (g̃) dg = χ̌Π(c̃(0))

∫
g

Θ̌Π(c̃−(x)) Θ(c̃(x)) jg(x)χx µW dx ,(122)

where χΠ is the central character of Π; see (62). In the rest of this paper

we shall write dw = dµW(w), when convenient.
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9. The Invariant Integral over g as an Integral over h

We now apply the Weyl integration formula to reduce the integral on g

in (122) to an integral on a Cartan subalgebra of g. In section 3, this Cartan

subalgebra was denoted by h(g), see (45). To make our notation lighter, in

this section we will write h instead of h(g). Let H ⊆ G be the corresponding

Cartan subgroup. Fix a system of positive roots of (gC, hC). For any positive

root α let gC,α ⊆ gC be the corresponding ad(hC)-eigenspace and let Xα ∈
gC,α be a non-zero vector. Let H0 ⊆ H denote the connected component

of the identity. There is a character (continuous group homomorphism)

ξα : H0 → C× such that

Ad(h)Xα = ξα(h)Xα (h ∈ H0) .

The derivative of ξα at the identity coincides with α. Let ρ ∈ h∗C denote

one half times the sum of all the positive roots. Then in all cases except

when G = O2l+1 or G = Ul with l even, there is a character ξρ : H0 → C×

whose derivative at the identity is equal to ρ, see [GW09, (2.21) and p. 145].

When G = O2l+1 or G = Ul with l even, the character ξρ exists as a map

defined on a non-trivial double cover

Ĥ0 � ĥ → h ∈ H0(123)

of H0. In particular the Weyl denominator

∆(h) = ξρ(h)
∏
α>0

(1 − ξ−α(h))(124)

is defined for h ∈ H0 or h ∈ Ĥ0 according to the cases described above.

We will see below how the Weyl group W (G, h) acts on Ĥ0. The sign

representation sgng/h of the Weyl group W (G, h) is defined by

∆(sh) = sgng/h(s)∆(h) (s ∈ W (G, h)) ,(125)

where either h ∈ H0 or h ∈ Ĥ0.

Suppose first that G = O2l+1. Then H = H0 · Z = H0 × Z is the direct

product of H0 and the center Z of Sp(W). The group Ĥ0 and the action

of the Weyl group on it are described in Appendix C. The double cover of



306 M. McKee, A. Pasquale and T. Przebinda

H is H̃ = H0 × Z̃. Set
̂̃
H = Ĥ0 × Z̃. We have a chain of double covering

homomorphisms

(126)

We extend ∆, ξµ and Θ̌Π to
̂̃
H by defining ∆(ĥ, z̃) = ∆(ĥ) and ξµ(ĥ, z̃) =

ξµ(ĥ) or ξµ(h) if it exists, and Θ̌Π(ĥ, z̃) = Θ̌Π(h, z̃). Recall from (C.3) the

section

ĉ− : h � x → Ĥ0

and define

ĉ− : h � x → (ĉ−(x), 1) ∈ ̂̃
H .(127)

This is a real analytic lift of the modified Cayley transform defined on h by

c−(x) = (1 + x)(1 − x)−1 = −c(x) .(128)

Suppose now that G = Ul. Then H0 = H. Consider the case when l is

even. If G′ = Up,q with p + q odd, then the covering H̃ → H does not split

(see Proposition E.1). Hence ∆, ξµ and Θ̌Π are defined on Ĥ = H̃ and the

Weyl group of H acts on Ĥ in a way compatible with the cover H̃ → H.

We have the modified Cayley transform c− : h → H, an analytic section

σ : c−(h) → Ĥ and the map

ĉ− : h � x → σ(c−(x)) ∈ Ĥ .(129)

If G′ = Up,q with p+q even, then define Ĥ to be the Cartan subgroup of the

group
√

G defined in Proposition E.1 covering H. (In particular, we have

the action of the Weyl group W (G, h) on Ĥ because W (G, h) = W (
√

G, h).)

Then ∆, ξµ and Θ̌Π are defined on Ĥ. By Proposition E.1, the metaplectic

cover H̃ = H × {1, 1̃} splits and we have maps

Ĥ −→ H −→ H̃ −→ H ,(130)

ĥ → h → (h; 1) → h .

Again ∆, ξµ and Θ̌Π are defined on Ĥ and (129) defines the lift of the Cayley

transform we shall use. In this case, we set
̂̃
H = Ĥ.
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For the remaining dual pairs, Ĥ = H and we lift ∆ and ξµ to functions

on H̃ constant on the fibers of the covering map H̃ → H and write ĉ− for

c̃−, which was defined under the equation (119).

Lemma 16. Let µ ∈ ih∗. Then

ξ−µ(ĉ−(x)) =
l∏

j=1

(
1 + ixj
1 − ixj

)µj

=
l∏

j=1

(1 + ixj)
µj (1 − ixj)

−µj (x ∈ h) .(131)

Proof. By (34), it is enough to verify this formula when l = 1. In this

case, x = x1J1 and µ = µ1e1 = −iµ1J
∗
1 . Let log denote the local inverse of

the exponential map near 1. Then, for x sufficiently close to 0,

log(c−(x)) = log
(
(1 + x)(1 − x)−1

)
= log(1 + x) − log(1 − x)

is a real analytic odd function of x. Hence it admits a Taylor series expansion∑
n≥0

anx
2n+1 =

∑
n≥0

an(−1)nx2n+1
1 J1 .

Thus

µ(log(c−(x))) = −
∑
n≥0

an(−1)nx2n+1
1 iµ1 = −

∑
n≥0

an(ix1)
2n+1µ1 = ln

(
1 − ix1

1 + ix1

)
µ1 .

By taking exponentials, we obtain

ξ−µ(ĉ−(x)) = e−µ(log(c−(x))) =

(
1 + ix1

1 − ix1

)µ1

,

and the result extends to all x ∈ h by real analyticity. �

Let Π be an irreducible representation of G̃, and let µ ∈ ih∗ represent

the infinitesimal character of Π. When µ is dominant, then we will refer

to it as the Harish-Chandra parameter of Π. This is consistent with the

usual terminology; see e.g. [Kna86, Theorem 9.20]. Then the corresponding

character ξµ is defined as ξµ = ξρ ξµ−ρ, where ξµ−ρ is one of the extremal

H0-weights of Π. In these terms, Weyl’s character formula looks as follows,

ΘΠ(h)∆(h) = κ0

∑
s∈W (G,h)

sgng/h(s)ξsµ(h) ,(132)
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where h ∈ H̃0 or h ∈ ̂̃
H0, according to the cases above, and κ0 is as in (71).

Lemma 17. Let πg/h be the product of the positive roots of (gC, hC) and

let

κ(x) = κ0

πg/h(x)

∆(ĉ−(x))
Θ(c̃(x)) jg(x) (x ∈ h) .

Then, for a suitable normalization of the Lebesgue measure on h and any

φ ∈ S(W),∫
−G0

Θ̌Π(g̃)T (g̃)(φ) dg

=
χ̌Π(c̃(0))

|W (G, h)|

∫
h

(ΘΠ∆)(ĉ−(x)−1)
κ(x)

κ0
πg/h(x)

∫
W

χx(w)φG(w) dw dx

= χ̌Π(c̃(0))

∫
h

ξ−µ(ĉ−(x))κ(x)πg/h(x)

∫
W

χx(w)φG(w) dw dx ,

where φG is as in (58) and each consecutive integral is absolutely convergent.

Proof. Applied to a test function φ ∈ S(W), the first integral over

−G0 and hence over c(g), is absolutely convergent because both, the charac-

ter and the function T (g̃)(φ) are continuous and bounded (see for example

[Prz93, Proposition 1.13]) and the group G is compact. Hence, each con-

secutive integral in the formula (122) applied to φ,∫
−G0

Θ̌Π(g̃)T (g̃)(φ) dg(133)

= χ̌Π(c̃(0))

∫
g

Θ̌Π(c̃−(x)) Θ(c̃(x)) jg(x)

∫
W

χx(w)φ(w) dw dx ,

is absolutely convergent. Since

χg.x(w) = χx(g
−1.w)

and the Lebesgue measure dw is G-invariant,∫
G

∫
W

χg.x(w)φ(w) dw dg =

∫
W

χx(w)φG(w) dw .
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Observe also that Ãd(g̃) = Ad(g) and the characters Θ̌Π and Θ are G̃-

invariant. Moreover, by (124) and (131),

∆(ĉ−(x)) = ∆(ĉ−(x)−1) = (−1)m∆(ĉ−(x)) (x ∈ h) ,

where m is the number of positive roots, and

πg/h(x) = (−1)mπg/h(x) (x ∈ h) .

Therefore the Weyl integration formula on g shows that (133) is equal to
χ̌Π(c̃(0))
|W (G,h)| times∫

h

|πg/h(x)|2Θ̌Π(c̃−(x))Θ(c̃(x)) jg(x)

∫
W

χx(w)φG(w) dw dx

=

∫
h

Θ̌Π(ĉ−(x))∆(ĉ−(x))

(
πg/h(x)

∆(ĉ−(x))
Θ(c̃(x)) jg(x)

)
πg/h(x)

∫
W

χx(w)φG(w) dw dx

=

∫
h

ΘΠ(ĉ−(x)−1)∆(ĉ−(x)−1)
κ(x)

κ0
πg/h(x)

∫
W

χx(w)φG(w) dw dx .

(Here, we suppose that the Haar measure on H is normalized to have total

mass 1.) This verifies the first equality and the absolute convergence. By

(132) and (143) below,

ΘΠ(ĉ−(x)−1)∆(ĉ−(x)−1) = κ0

∑
s∈W (G,h)

sgng/h(s)ξsµ(ĉ−(x)−1)

= κ0

∑
s∈W (G,h)

sgng/h(s)ξ−sµ(ĉ−(x))

= κ0

∑
s∈W (G,h)

sgng/h(s)ξ−µ(ĉ−(s−1x)) .

Since χsx(w) = χx(s
−1w) and φG and the Lebesgue measure dw are

W (G, h)-invariant, we see that the integral
∫
W χx(w)φG(w) dw is W (G, h)-

invariant as a function of x, too. The second equality in the statement of

the lemma then follows from the skew-symmetry of πg/h and the W (G, h)-

invariance of κ, which is a consequence of Lemma 18 below. �

Since any element x ∈ g, viewed as an endomorphism of V over R,

has imaginary eigenvalues which come in complex conjugate pairs, we have

det(1 − x)VR
≥ 1. Define

ch(x) = det(1 − x)
1/2
VR

(x ∈ g) .(134)
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Recall the symbols r and ι from (66) and (65).

Lemma 18. There is a constant C which depends only on the dual pair

(G,G′) such that

κ(x)

κ0
= C chd′−r−ι(x) (x ∈ h) .

Proof. Recall [Prz93, Lemma 5.7] that πg/h(x) is a constant multiple

of ∆(ĉ−(x)) chr−ι(x),

πg/h(x) = C∆(ĉ−(x)) chr−ι(x) .(135)

For the orthogonal groups this is verified in Appendix C. It is easy to com-

pute from [AP14, Definition 4.16], that

(136) Θ(c̃(x))2 = idim W det
(
2−1(x− 1)

)
W

(x ∈ sp(W) , det(x− 1) �= 0) .

Hence there is a choice of c̃ so that

Θ(c̃(x)) =

(
i

2

) 1
2

dimW

det
(
1 − x

) 1
2
W

(x ∈ g) .(137)

Furthermore, since the symplectic space may be realized as W =

HomD(V′,V), see (31), we obtain that

det
(
1 − x

)
W

= det(1 − x)d
′

VR
(x ∈ g) .(138)

Also, as checked in [Prz91, (3.11)], the Jacobian of c̃− : g → G is a constant

multiple of ch−2r(x). (For reader’s convenience a –slightly different– proof

is included in Appendix B.) Hence the claim follows. �

Corollary 19. For any φ ∈ S(W)∫
−G0

Θ̌Π(g̃)T (g̃)(φ) dg = C κ0χ̌Π(c̃(0))

∫
h

ξ−µ(ĉ−(x)) chd′−r−ι(x)πg/h(x)

×
∫

W
χx(w)φG(w) dw dx ,

where C is a constant which depends only on the dual pair (G,G′), φG is as

in (58), and each consecutive integral is absolutely convergent.
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10. An Intertwining Distribution in Terms of Orbital Integrals

on the Symplectic Space

We keep the notation introduced in section 3. Let

W (G, h(g)) =

{
Σl if D = C ,

Σl 	 {±1}l otherwise .
(139)

Denote the elements of Σl by η and the elements of {±1}l by ε = (ε1, ε2,

. . . , εl), so that an arbitrary element of the group (139) is of the form t = εη,

with ε = (1, 1, . . . , 1), if D = C. This group acts on h(g), see (45), as follows:

for t = εη,

t
( l∑

j=1

yjJj

)
=

l∑
j=1

εjyη−1(j)Jj .(140)

As indicated by the notation, W (G, h(g)) coincides with the Weyl group,

equal to the quotient of the normalizer of h(g) in G by the centralizer of

h(g) in G.

The action of W (G, h(g)) on h(g) extends by duality to ih(g)∗. More

precisely, let ej be as in (46). If µ ∈ ih(g)∗, then µ =
∑l

j=1 µjej with all

µj ∈ R. If t = εη ∈ W (G, h(g)), then

t
( l∑

j=1

µjej

)
=

l∑
j=1

εjµη−1(j)ej .(141)

Recall the notation of Lemma 17 and the symbol δ from (68).

Lemma 20. The following formulas hold for any y =
∑l

j=1 yjJj ∈
h(g),

ξ−µ(ĉ−(ty)) = ξ−t−1µ(ĉ−(y)) (t ∈ W (G, h(g)))(142)

and

ξ−µ(ĉ−(y)) chd′−r−ι(y) =
l∏

j=1

(1 + iyj)
µj+δ−1(1 − iyj)

−µj+δ−1 ,(143)
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where all the exponents are integers:

±µj + δ ∈ Z (1 ≤ j ≤ l) .(144)

In particular, (143) is a rational function in the variables y1, y2, . . . , yl.

Proof. By (131),

ξ−µ(ĉ−(y)) =

l∏
j=1

(
1 + iyj
1 − iyj

)µj

=

l∏
j=1

(1 + iyj)
µj (1 − iyj)

−µj .

Hence (142) and (143) follow from the definition of the action of W (G, h(g)),

the definition of ch in (134), and the following easy-to-check formula:

ch(y) =

l∏
j=1

(1 + y2
j )

1
2ι =

l∏
j=1

(1 + iyj)
1
2ι (1 − iyj)

1
2ι .(145)

Let λ =
∑l

j=1 λjej be the highest weight of the representation Π and let

ρ =
∑l

j=1 ρjej be one half times the sum of the positive roots of h(g) in gC.

If µ is the Harish-Chandra parameter of Π, then λ+ρ = µ =
∑l

j=1 µjej ; see

Appendix H for explicit values. Hence, the statement (144) is equivalent to

λj + ρj +
1

2ι
(d′ − r + ι) ∈ Z .(146)

Indeed, if G = Od, then with the standard choice of the positive root system,

ρj = d
2 − j. Also, λj ∈ Z, ι = 1, r = d− 1. Hence, (146) follows. Similarly,

if G = Ud, then ρj = d+1
2 − j, λj + d′

2 ∈ Z, ι = 1, r = d, which implies

(146). If G = Spd, then ρj = d + 1 − j, λj ∈ Z, ι = 1
2 , r = d + 1

2 , and (146)

follows. �

Our next goal is to understand the integral

πg/h(x)

∫
W

χx(w)φG(w) dw

occurring in the formula for
∫
−G0 Θ̌Π(g̃)T (g̃) dg in Lemma 17 and Corollary

19 , in terms of orbital integrals on the symplectic space W. The results
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depend on whether l ≤ l′ or l > l′ and will be given in Lemmas 23 and 24.

We first need two other lemmas.

Lemma 21. Fix an element z ∈ h(g). Let z ⊆ g and Z ⊆ G denote

the centralizer of z. (Then Z is a real reductive group with Lie algebra z.)

Denote by c the center of z and by πg/z the product of the positive roots

for (gC, h(g)C) which do not vanish on z. Let B(·, ·) be any non-degenerate

symmetric G-invariant real bilinear form on g. Then there is a constant Cz

such that for x ∈ h(g) and x′ ∈ c,

(147) πg/h(g)(x)πg/z(x
′)

∫
G
eiB(g.x,x′) dg

= Cz

∑
tW (Z,h(g))∈W (G,h(g))/W (Z,h(g))

sgng/h(g)(t)πz/h(g)(t
−1x)eiB(x,t(x′)).

(Here πz/h(g) = 1 if z = h. Recall also the notation g.x = gxg−1.)

Proof. The proof is a straightforward modification of the argument

proving Harish-Chandra’s formula for the Fourier transform of a regular

semisimple orbit, [Har57, Theorem 2, page 104]. A more general, and by

now classical, result is [DV90, Proposition 34, p. 49]. �

The symplectic form 〈·, ·〉 on W, according to the Lie superalgebra struc-

ture introduced in (28), is

〈w′, w〉 = trD/R(Sw′w) (w′, w ∈ W) .(148)

Hence

〈x(w), w〉 = trD/R(Sxw2) (x ∈ g ⊕ g
′ , w ∈ W) .(149)

Set

B(x, y) = π trD/R(xy) (x, y ∈ g) .(150)

Lemma 22. Recall the Gaussian χx from (13). Then

χx(w) = eiB(x,τ(w)) (x ∈ g, w ∈ W) .(151)
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Proof. Notice that, for x ∈ g ⊕ g′ and w ∈ W,

trD/R(Sxw2) = trD/R(xw2|V0
) − trD/R(xw2|V1

) ,

where

trD/R(xw2|V0
) = trD/R(x|V0

w|V1
w|V0

) = trD/R(w|V0
x|V0

w|V1
)) = trD/R(wxw|V1

)

and similarly

trD/R(xw2|V1
) = trD/R(wxw|V0

) .

Hence

〈xw,w〉 = trD/R(Sxw2) = − trD/R(Swxw) = −〈wx,w〉 .

Therefore

〈x(w), w〉 = 2 trD/R(Sxw2) (x ∈ g ⊕ g
′ , w ∈ W) .(152)

Then (149) and (32) show that

π

2
〈x(w), w〉 = B(x, τ(w)) (x ∈ g , w ∈ W) ,

which completes the proof. �

The Harish-Chandra regular almost semisimple orbital integral F (y),

y ∈ h, was defined in [MPP20, Definition 3.2 and Theorems 3.3 and 3.5];

see also section 4 above. In particular, [MPP20, Theorem 3.5] implies that,

in the statements below, all the integrals over h involving F (y) are absolutely

convergent. Recall the notation Fφ(y) for F (y)(φ).

Lemma 23. Suppose l ≤ l′. Then, with the notation of Lemma 17,

πg/h(x)

∫
W

χx(w)φG(w) dw = C

∫
h∩τ(W)

eiB(x,y)Fφ(y) dy ,

where C is a non-zero constant which depends on the dual pair (G,G′).

Proof. The Weyl–Harish-Chandra integration formula on W, see

(52), (53) and (49), shows that∫
W

χx(w)φG(w) dw(153)

=
∑
h1

∫
τ(h+

1
)
πg/h(τ(w))πg′/z′(τ(w))C(h1)µO(w),h1

(χxφ
G) dτ(w) ,
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where h
+
1
⊆ h1

reg is an open fundamental domain for the action of the Weyl

group W (S, h1) and C(h1) is a constant, determined in [MPP20, Lemma

2.1]. Let us consider first the case of a semisimple orbital integral

µO(w),h1
(χxφ

G) =

∫
S/S

h
1

(χxφ
G)(s.w) d(sSh1) ,

where Sh1 is the centralizer of h1 in S. Recall the identification y = τ(w) =

τ ′(w) and let us write s = gg′, where g ∈ G and g′ ∈ G′. Then

χx(s.w) = ei
π
2
〈x(s.w),s.w〉 = eiB(x,τ(s.w)) = eiB(x,g.τ(w)) = eiB(x,g.y)(154)

and

φG(s.w) = φG(g′.w) .(155)

Since l ≤ l′, equation (I.1) below implies that there is a positive constant

C1 such that

µO(w),h1
(χxφ

G) = C1

∫
G
eiB(x,g.y) dg

∫
G′/Z′

φG(g′.w) d(g′Z′) .

However we know from Harish-Chandra (Lemma 21) that

πg/h(x)

(∫
G
eiB(x,g.y) dg

)
πg/h(y) = C2

∑
t∈W (G,h)

sgng/h(t)e
iB(x,t.y) .

Hence, using (153) and [MPP20, Definition 3.2 and Lemma 3.4], we obtain

for some suitable positive constants Ck,

πg/h(x)

∫
W

χx(w)φG(w) dw(156)

= C3

∑
t∈W (G,h)

sgng/h(t)
∑
h1

∫
τ(h+

1
)
eiB(x,t.y)C(h1)πg′/z′(y)

×
∫

G′/Z′
φG(g′.w) d(g′Z′) dy

= C4

∑
t∈W (G,h)

sgng/h(t)

∫
⋃

h
1
τ(h+

1
)
eiB(x,t.y)FφG(y) dy

= C4

∑
t∈W (G,h)

∫
⋃

h
1
τ(h+

1
)
eiB(x,t.y)FφG(t.y) dy
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= C4

∫
W (G,h)(

⋃
h
1
τ(h+

1
))
eiB(x,y)FφG(y) dy

= C4

∫
h∩τ(W)

eiB(x,y)FφG(y) dy .

Since FφG = vol(G)Fφ = Fφ, the formula follows.

Next we consider the case G = O2l+1, G′ = Sp2l′(R), l < l′. Then

µO(w)(χxφ
G) =

∫
S/S

h
1
+w0

(χxφ
G)(s.(w + w0)) d(sS

h1+w0) ,

where w0 ∈ s1(V
0) is a nonzero element. Since the Cartan subspace h1

preserves the decomposition (34), (w + w0)
2 = w2 + w2

0. Hence, (s.(w +
w0))

2 = s.(w2 + w2
0). The element x ∈ h acts by zero on g′. Therefore

x(s.(w +w0))
2 = x(s.(w +w0))

2|V0
. Since S(V0) = O1 × Sp2(l′−l)(R) we see

that w2
0|V0

= 0. Thus xs.w2
0|V0

= 0. Therefore, by (27),

〈x(s.(w + w0)), s.(w + w0)〉 = tr(x(s.(w + w0))
2) = tr(xs.w2|V0

) = tr(xg.τ(w)) ,

because s = gg′. Hence,

χx(s.(w + w0)) = ei
π
2
〈x(s.(w+w0)),s.(w+w0)〉 = eiB(x,g.τ(w)) = eiB(x,g.y)

and

φG(s.(w + w0)) = φG(g′.(w + w0)) .

Therefore, with n = τ ′(w0), we obtain from (I.3) that

µO(w)(χxφ
G) = C1

∫
G
eiB(x,g.y) dg

∫
G′/Z′n

φG(g′.w) d(g′Z′n) ,

where Z′n is the centralizer of n in Z′. Thus, the computation (156) holds

again, and we are done. �

Lemma 24. Suppose l > l′. Let z ⊆ g and Z ⊆ G be the centralizers of
τ(h1). Then for φ ∈ S(W)

πg/h(g)(x)

∫
W

χx(w)φG(w) dw

= C
∑

tW (Z,h(g))∈W (G,h(g))/W (Z,h(g))

sgng/h(g)(t)πz/h(g)(t
−1.x)

∫
τ ′(h1

reg)

eiB(x,t.y)Fφ(y) dy ,
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where C is a non-zero constant which depends only on the dual pair (G,G′).

Proof. By the Weyl–Harish-Chandra integration formula with the
roles of G and G′ reversed, see (53) and (49),∫

W

χx(w)φG(w) dw = C1

∫
τ ′(h1

reg)

πg/z(τ
′(w))πg′/h′(τ ′(w))µO(w)(χxφ

G) dτ ′(w) ,

where

µO(w)(χxφ
G) =

∫
S/S

h
1

(χxφ
G)(s.w) d(sSh1) .

Recall the identification y = τ(w) = τ ′(w) and let us write s = gg′, where

g ∈ G and g′ ∈ G′. Then, as in (154) and (155),

χx(s.w) = eiB(x,g.y) and φG(s.w) = φG(g′.w) .

Since l > l′, equation (I.2) implies that there is a constant C2 such that

µO(w)(χxφ
G) = C2

∫
G
eiB(x,g.y) dg

∫
G′/H′

φG(g′.w) d(g′H′) .

By (147) in Lemma 21 and [MPP20, (34)], we obtain for some constants Ck

πg/h(g)(x)

∫
W

χx(w)φG(w) dw(157)

= C3

∑
tW (Z,h(g))∈W (G,h(g))/W (Z,h(g))

sgng/h(g)(t)πz/h(g)(t
−1.x)

×
∫
τ ′(h1

reg)
eiB(x,t.y)πg′/h(y)

∫
G′/H′

φG(g′.w) d(g′H′) dy

= C4

∑
tW (Z,h(g))∈W (G,h(g))/W (Z,h(g))

sgng/h(g)(t)πz/h(g)(t
−1.x)

×
∫
τ ′(h1

reg)
eiB(x,t.y)FφG(y) dy .

Since FφG = vol(G)Fφ = Fφ, the formula follows. �

Lemma 25. Suppose l ≤ l′. Then there is a seminorm q on S(W) such

that∣∣∣ ∫
h∩τ(W)

Fφ(y) eiB(x,y) dy
∣∣∣ ≤ q(φ) ch(x)−d′+r−ι (x ∈ h, φ ∈ S(W)) .
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Proof. The boundedness of the distribution-valued function T (g̃), g̃ ∈
G̃, means that there is a seminorm q on S(g) such that

|T (g̃)(φ)| ≤ q(φ) (g̃ ∈ G̃ , φ ∈ S(g)) .

Hence, ∣∣∣Θ(c̃(x))

∫
W

χx(w)φ(w) dw
∣∣∣ ≤ q(φ) (x ∈ g) .(158)

Equivalently, replacing q(φ) with a constant multiple of q(φ), and using

(134), (137) and (138), we see that∣∣∣ ∫
W

χx(w)φ(w) dw
∣∣∣ ≤ q(φ) ch−d′(x) (x ∈ g) .(159)

Since l ≤ l′, Lemma 23 together with (159) proves that (again up to a

multiplicative constant that can be absorbed by q(φ)),∣∣∣ ∫
h∩τ(W)

Fφ(y) eiB(x,y) dy
∣∣∣ ≤ q(φ) |πg/h(x)| ch(x)−d′ .

Recall the constants r and ι from (67) and (65). Then, as one can verify

from (A.1),

max{degyj πg/h; 1 ≤ j ≤ l} =
1

ι
(r − 1) ,(160)

where degyj πg/h denotes the degree of πg/h(y) with respect to the variable

yj .

Also, (160) and (145) imply that

|πg/h(x)| ≤ C5 chr−1(x) ≤ C5 chr−ι(x) (x ∈ h) ,

where C5 is a constant. Thus, the claim follows. �

Lemmas 23 and 24 allow us to restate Corollary 19 in terms of orbital

integrals on the symplectic space W.

Corollary 26. Suppose l ≤ l′. Then for any φ ∈ S(W)∫
−G0

Θ̌Π(g̃)T (g̃)(φ) dg = Cκ0 χ̌Π(c̃(0))

∫
h

ξ−µ(ĉ−(x)) chd′−r−ι(x)

×
∫
h∩τ(W)

eiB(x,y)Fφ(y) dy dx ,
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where C is a constant that depends only on the dual pair (G,G′) and each

consecutive integral is absolutely convergent.

Proof. The equality is immediate from Corollary 19 and Lemma 23.

The absolute convergence of the outer integral over h follows from Lemma

25. �

Corollary 27. Suppose l > l′. Then for any φ ∈ S(W),∫
−G0

Θ̌Π(g̃)T (g̃)(φ) dg

= Cκ0 χ̌Π(c̃(0))
∑

s∈W (G,h(g))

sgng/h(g)(s)

∫
h(g)

ξ−sµ(ĉ−(x)) chd′−r−ι(x)

× πz/h(g)(x)

∫
τ ′(h1

reg)
eiB(x,y)Fφ(y) dy dx ,

where C is a constant that depends only on the dual pair (G,G′) and each

consecutive integral is absolutely convergent.

Proof. The formula is immediate from Corollary 19, Lemma 24 and
formula (142):

1

κ0

∫
−G0

Θ̌Π(g̃)T (g̃) dg(φ)

= C1χ̌Π(c̃(0))

∫
h(g)

ξ−µ(ĉ−(x)) chd
′−r−ι(x)

(
πg/h(g)(x)

∫
W

χx(w)φG(w) dw

)
dx

= C2χ̌Π(c̃(0))

∫
h(g)

ξ−µ(ĉ−(x)) chd
′−r−ι(x)

×

 ∑
tW (Z,h(g))∈W (G,h(g))/W (Z,h(g))

sgng/h(g)(t)πz/h(g)(t
−1.x)

×
∫
τ ′(h1

reg)

eiB(x,t.y)Fφ(y) dy

)
dx

=
C2 χ̌Π(c̃(0))

|W (Z, h(g))|

∫
h(g)

ξ−µ(ĉ−(x)) chd
′−r−ι(x)

×

 ∑
t∈W (G,h(g))

sgng/h(g)(t)πz/h(g)(t
−1.x)

∫
τ ′(h1

reg)

eiB(x,t.y)Fφ(y) dy

 dx
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= C3χ̌Π(c̃(0))
∑

t∈W (G,h(g))

sgng/h(g)(t)

∫
h(g)

ξ−µ(ĉ−(t.x)) chd
′−r−ι(t.x)

×
(
πz/h(g)(x)

∫
τ ′(h1

reg)

eiB(t.x,t.y)Fφ(y) dy

)
dx

= C3χ̌Π(c̃(0))
∑

t∈W (G,h(g))

sgng/h(g)(t)

∫
h(g)

ξ−t−1µ(ĉ−(x)) chd
′−r−ι(x)

×
(
πz/h(g)(x)

∫
τ ′(h1

reg)

eiB(x,y)Fφ(y) dy

)
dx .

Let G′′ be the isometry group of the restriction of the form (·, ·) to V0,0

0
and

let h′′ =
∑l

j=l′+1 RJj . Then, as in (160), we check that

max{degxj
πz/h(g); 1 ≤ j ≤ l} = max{degxj

πz′′/h′′ ; l′ + 1 ≤ j ≤ l} =
1

ι
(r′′ − 1) ,

where r′′ =
2 dimg′′

R

dim V0,0

0 R

is defined as in (66). Since r − r′′ = d′, we see that

chd′−r−ι(x)|πz/h(g)(x)| ≤ const chd′−r−ι+r′′−ι(x) = const ch−2ι(x) .

Furthermore, Fφ is absolutely integrable. Therefore, the absolute conver-

gence of the last integral over h(g) follows from the fact that ch−2ι is abso-

lutely integrable. �

To prove Theorem 4 (and Theorem 5), we still need the following explicit

formula for the form B(x, y). Let β =
2π

ι
, where ι is as in (65). Then

B(x, y) = −β

l∑
j=1

xjyj
(
x =

l∑
j=1

xjJj , y =

l∑
j=1

yjJj ∈ h(g)
)
.(161)

Indeed, the definition of the form B, (150), shows that

B(x, y) = π trD/R(xy) = π
∑
j,k

trD/R(JjJk)xjyk(162)

= π
∑
j

trD/R(−1
Vj

0

)xjyj = −2π

ι

∑
j

xjyj .
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Proof of Theorem 4. Notice that the degree of the polynomial

Qaj ,bj is −aj − bj = 2δ − 2 and is independent of µ and j. Explicitly,

2δ − 2 =
1

ι
(d′ − r − ι) ,(163)

(where ι = 1/2 if D = H and 1 otherwise). Hence, by [MPP20, Theorem

3.5], the function Fφ has the required number of continuous derivatives for

the formula (72) to make sense. The operators appearing in the integrand of

(72) act on different variables and therefore commute. Also, the constants

aj , bj are integers by (144). Hence, equation (72) follows from Corollary 26,

Lemma 20, formula (161), and Proposition D.5.

For the last statement about (73), we have

d′ − r − ι =


2l′ − 2l if (G,G′) = (O2l,Sp2l′(R)) ,

2l′ − 2l − 1 if (G,G′) = (O2l+1,Sp2l′(R)) ,

l′ − l − 1 if (G,G′) = (Ul,Up,q), p + q = l′ ,

l′ − l − 1 if (G,G′) = (Spl,O
∗
2l′) .

(164)

Thus, since we assume l ≤ l′, the product (73) is a function if and only if d′−
r−ι < 0, i.e. if and only if l = l′ and (G,G′) �= (O2l,Sp2l′(R)). Furthermore,

(73) contains no derivatives (but terms involving δ0 are allowed) if and only if

d′−r−ι = 0, which corresponds to either l = l′ and (G,G′) = (O2l,Sp2l′(R)),

or l′ = l + 1 and D = C or H. This completes the proof. �

Suppose now l > l′. Let h′′ =
∑l

j=l′+1 RJj , so that

h(g) = h ⊕ h
′′.(165)

Then the centralizer of τ(h1) coincides with the centralizer of h in g and

is equal to z = h ⊕ g′′, where g′′ is the Lie algebra of the group G′′ of the

isometries of the restriction of the form (·, ·) to V0
0
. Furthermore, the derived

Lie algebras of z and g′′ coincide (i.e. [z, z] = [g′′, g′′]) and h′′ is a Cartan

subalgebra of g′′. We shall identify h and h′ by means of (42). This justifies

writing h(g) = h′ ⊕ h′′ when we need to emphasize the role of g′.

Lemma 28. Suppose l > l′. In terms of Corollary 27 and the decom-
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position (165)

(166) ξ−sµ(ĉ−(x)) chd′−r−ι(x)πz/h(g)(x)

=
(
ξ−sµ(ĉ−(x′)) chd′−r−ι(x′)

)(
ξ−sµ(ĉ−(x′′)) chd′−r−ι(x′′)πg′′/h′′(x′′)

)
,

where x = x′ + x′′ ∈ h(g), with x′ ∈ h′ and x′′ ∈ h′′. Moreover,

(167)

∫
h′′

ξ−sµ(ĉ−(x′′)) chd′−r−ι(x′′)πg′′/h′′(x′′) dx′′

= C
∑

s′′∈W (G′′,h′′)

sgng′′/h′′(s′′)I{0}(−(sµ)|h′′ + s′′ρ′′) ,

where C is a constant, ρ′′ is one half times the sum of the positive roots for

(g′′C, h
′′
C) and I{0} is the indicator function of zero.

Proof. Formula (166) is obvious, because ĉ−(x′ +x′′) = ĉ−(x′)ĉ−(x′′)
and πz/h(g)(x

′ + x′′) = πg′′/h′′(x′′). We shall verify (167). Let r′′ denote the

number defined in (66) for the Lie algebra g′′. A straightforward computa-

tion verifies the following table:

g r r′′ d′ − r + r′′

ud d d− d′ 0

od d− 1 d− d′ − 1 0

spd d + 1
2 d− d′ + 1

2 0

By (135) applied to G′′ ⊇ H′′ and g′′ ⊇ h′′,

πg′′/h′′(x′′) = C ′′
1 ∆′′(ĉ−(x′′)) chr′′−ι(x′′) (x′′ ∈ h

′′) ,

where ∆′′ is the Weyl denominator for G′′,

∆′′ = κ′′
0

∑
s′′∈W (G′′,h′′)

sgng′′/h′′(s′′) ξs′′ρ′′(168)

and

κ′′
0 =

{
1
2 if G′′ = Od′′ where d′′ is even ,

1 otherwise .
(169)
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Hence, by (145), the integral on the left-hand side of (167) is a constant

multiple of ∫
h′′

ξ−sµ(ĉ−(x′′))∆′′(ĉ−(x′′)) chd′−r+r′′(x′′) ch−2ι(x′′) dx′′(170)

= 2dimh′′
∫
ĉ−(h′′)

ξ−sµ(h)∆′′(h) dh ,

where ĉ−(h′′) ⊆ Ĥ′′0.
Notice that the function

Ĥ′′0 � h → ξ−sµ(h)∆′′(h) ∈ C

is constant on the fibers of the covering map

Ĥ′′0 → H′′0 .(171)

Indeed, the covering (171) is non-trivial only in two cases, namely G′′ =

O2l′′+1 and G′′ = Ul′′ with l′′ even; see (123). In these cases, (168) shows

that this claim is true provided that the weight −sµ + s′′ρ′′ is integral for

the Cartan subgroup H′′ (i.e. it is equal to the derivative of a character of

H′′).
Suppose G′′ = O2l′′+1. Then G = O2l+1, λj ∈ Z and ρj ∈ Z + 1

2 . Hence,

(−sµ)j ∈ Z + 1
2 . Since, ρ′′j ∈ Z + 1

2 , we see that (−sµ)j + ρ′′j ∈ Z.

Suppose now that G′′ = Ul′′ with l′′ even. Then G = Ul and (−sµ)j ∈
Z + 1

2 . In fact, if l′ is even, i.e. l = l′ + l′′ is even, then λj ∈ Z and

ρj ∈ Z + 1
2 . If l′ is odd, i.e. l = l′ + l′′ is odd, then λj ∈ Z + 1

2 and ρj ∈ Z.

Since ρ′′j ∈ Z + 1
2 , in both cases, we conclude that (−sµ)j + ρ′′j ∈ Z.

Therefore, (170) is a constant multiple of∑
s′′∈W (G′′,h′′)

sgng′′/h′′(s′′)

∫
H′′0

ξ−sµ(h)ξs′′ρ′′(h) dh(172)

=

{
vol(H′′0) sgng′′/h′′(s′′) if (sµ)|h′′ = s′′ρ′′,
0 if (sµ)|h′′ /∈ W (G′′, h′′)ρ′′ ,

= vol(H′′0)
∑

s′′∈W (G′′,h′′)

sgng′′/h′′(s′′)I{0}(−(sµ)|h′′ + s′′ρ′′) . �
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Corollary 29. Suppose l > l′ and keep the notation of Lemma 28 .

Then ∫
−G0

Θ̌Π(g̃)T (g̃) dg = 0

unless there is s ∈ W (G, h(g)) such that

(sµ)|h′′ = ρ′′ .(173)

If G = O2l+1 or Spl, then (173) is equivalent to

µ|h′′ = ρ′′ and s|h′′ = 1 .(174)

Suppose G = O2l and write h′′ = h′′0 ⊕ RJl, where h′′0 =
∑l−1

j=l′+1 RJj. Then

(173) is equivalent to

µ|h′′ = ρ′′, s|h′′
0

= 1, and s|RJl = ±1 .(175)

Finally, if G = Ul, then (173) holds if and only if there is j0 ∈ {0, 1, . . . , l′}
such that

µj0+j = ρ′′l′+j and s(Jj0+j) = Jl′+j (1 ≤ j ≤ l − l′) .(176)

Suppose that (173) holds. Then for any φ ∈ S(W)

(177)
∫
−G0

Θ̌Π(g̃)T (g̃) dg(φ) = C κ0χ̌Π(c̃(0))
∑

s∈W (G,h(g)), (sµ)|h′′=ρ′′
sgng/h(g)(s)

×
∫

h′
ξ−sµ(ĉ−(x)) chd

′−r−ι(x)

∫
τ ′(h1

reg)

eiB(x,y)Fφ(y) dy dx ,

where C is a non-zero constant which depends only on the dual pair (G,G′),
and each consecutive integral is absolutely convergent.

Proof. Observe that B(x′ + x′′, y) = B(x′, y) for x′ ∈ h′, x′′ ∈ h′′ and

y ∈ τ ′(h1
reg) ⊆ h′. We see therefore from Corollary 27 and Lemma 28 that∫
−G0

Θ̌Π(g̃)T (g̃) dg(φ)(178)

= C κ0χ̌Π(c̃(0))
∑

s∈W (G,h(g))

∑
s′′∈W (G′′,h′′)

sgng/h(g)(s) sgng′′/h′′(s′′)

× I{0}(−(sµ)|h′′ + s′′ρ′′)

×
∫
h′

ξ−sµ(ĉ−(x)) chd′−r−ι(x)

∫
τ ′(h1

reg)
eiB(x,y)Fφ(y) dy dx .
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Notice that for x ∈ h′ and s′′ ∈ W (G′′, h′′), we have s′′x = x. Thus

ξ−sµ(ĉ−(x)) = ξ−s′′sµ(ĉ−(x)) by (142). Notice also that, by (165),

W (G′′, h′′) ⊆ W (G, h) and sgng′′/h′′(s′′) = sgng/h(g)(s
′′). Moreover,

I{0}(−(sµ)|h′′ + s′′ρ′′) = I{0}(−(s′′−1sµ)|h′′ + ρ′′). Hence, replacing s by

s′′s in (178), we see that this expression is equal to

(179) C κ0χ̌Π(c̃(0))
∑

s∈W (G,h(g))

∑
s′′∈W (G′′,h′′)

sgng/h(g)(s)I{0}(−(sµ)|h′′ + ρ′′)

×
∫
h′

ξ−sµ(ĉ−(x)) chd′−r−ι(x)

∫
τ ′(h1

reg)
eiB(x,y)Fφ(y) dy dx ,

which yields (177), with a new non-zero constant C, equal to C|W (G′′, h′′)|.
Clearly (179) is zero if there is no s such that (sµ)|h′′ = ρ′′. The absolute

convergence of the integrals was checked in the proof of Corollary 27.

Recall that h′′ =
∑l

j=l′+1 RJj and µ = λ+ρ where λ is the highest weight

of the genuine representation Π. We take a closer look at the condition

(sµ)|h′′ = ρ′′.

If D = R or H, then ρ|h′′ = ρ′′. All coefficients of ρ are positive and

strictly decreasing by 1 except when G = O2l, where ρl = 0. Hence s|h′′

cannot contain sign changes when G = O2l+1 or Spl, whereas s|h′′
0

cannot

contain sign changes when G = O2l. Using the form of the coefficients of λ,

one easily sees that (173) is equivalent to (174) or (175).

If G = Ul, then λ = p−q
2 + ν, where ν1 ≥ ν2 ≥ · · · ≥ νl are integers.

Moreover,

p− q

2
+ ρp+j =

l − p− q + 1

2
− j = ρ′′l′+j (1 ≤ j ≤ l − l′) .(180)

The Weyl group W (G, h(g)) consists of permutations of the Jj ’s. Hence a

genuine Harish-Chandra parameter µ satisfies (173) if and only if among its

coefficients µ1, . . . , µl we can find a string of l − l′ successive coefficients µj

equal to ρ′′l′+1, . . . , ρ
′′
l and the permutation s translates the corresponding

string of Jj ’s onto Jl′+1, . . . , Jl. This proves (176). �

In the next lemmas we study the integrals appearing on the right-hand

side of (177).
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Lemma 30. For s ∈ W (G, h(g)) and y ∈ τ ′(h1), in the sense of distri-
butions on τ ′(h1

reg),∫
h′

ξ−sµ(ĉ−(x)) chd
′−r−ι(x)eiB(x,y) dx =

( l′∏
j=1

Pas,j ,bs,j (βyj)
)
e−β

∑ l′
j=1 |yj | ,(181)

where as,j, bs,j and β are as in (80) and (68), and Pas,j ,bs,j is defined in

(D.4).

Proof. This follows immediately from Lemma 20, (D.5), and Propo-

sition D.5, since as,j + bs,j = −2δ + 2 ≥ 1 for l > l′. �

Suppose that µ satisfies (173) for some s ∈ W (G, h(g)). The integral

corresponding to s in (177) vanishes when the intersection of the support of

the right-hand side of (181) and τ ′(h1
reg) has an empty interior. We first

study this intersection for some specific elements in W (G, h(g)).

If D = R or H, define s0 = 1 as in (74). Then clearly s0µ|h′′ = ρ′′ by

(174). If D = C, fix j0 ∈ {0, 1, . . . , l′} as in (176) and define s0,j0 as the

permutation in W (G, h(g)) given by

s0,j0(Jj) =


Jj (1 ≤ j ≤ j0)

Jl′−j0+j (j0 + 1 ≤ j ≤ j0 + l − l′)

Jj−l+l′ (j0 + l − l′ + 1 ≤ j ≤ l) ,

(182)

i.e.

Equivalently,

(s0,j0µ)j = µs−1
0,j0

(j) =


µj (1 ≤ j ≤ j0)

µl−l′+j (j0 + 1 ≤ j ≤ l′)

µj0−l′+j (l′ + 1 ≤ j ≤ l) .

(183)
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Hence (s0,j0µ)|h′′ = ρ′′. Notice that s0,p is the element s0 defined in (75).

Lemma 31. Let l > l′ and suppose that µ satisfies (173). Let s0 = 1,

as in (74), if D = R or H, and let s0,j0 be as in (182) if D = C.
If D = R or H, then

l′∏
j=1

Pas0,j ,bs0,j
(βyj) = (2π)l

′
l′∏
j=1

Paj ,bj ,2(βyj)IR+(yj) (y =
l′∑
j=1

yjJ
′
j ∈ h

′)(184)

has support equal to τ ′(h1).
If D = C, then

(185)
l′∏
j=1

Pas0,j0
,j ,bs0,j0 ,j

(βyj) =(2π)l
′
( j0∏
j=1

Paj ,bj ,2(βyj)IR+(yj)
)

×
( l′∏
j=j0+1

Paj+l−l′ ,bj+l−l′ ,−2(βyj)IR−(yj)
)

(y =

l′∑
j=1

yjJ
′
j ∈ h

′)

has support equal to
(∑j0

j=1 R+J ′
j

)
⊕
(∑l′

j=j0+1 R−J ′
j

)
. This support is equal

to τ ′(h1) if j0 = p, whereas its intersection with τ ′(h1) has empty interior if

j0 �= p.

Proof. Let D = R or H. By (65), (67), (68) and Appendix H and

since µ|h′′ = ρ′′ = ρ|h′′ , we see that

µ1 > · · · > µl′ > µl′+1 = ρ′′l′+1 = −δ ,

These inequalities are equivalent to

a1 = −µ1 − δ + 1 < a2 = −µ2 − δ + 1 < · · · < al′ = −µl′ − δ + 1 ≤ 0(186)

because the µj ’s and δ are either all in Z or all in Z+ 1
2 . Hence Paj ,bj ,−2 = 0

for all 1 ≤ j ≤ l′ by (D.2). Since aj + bj = −2δ + 2 > 2, we see that

bj > 2 − aj ≥ 1. Therefore, the polynomial Paj ,bj ,2 is nonzero for all

1 ≤ j ≤ l′. Hence the function on the right-hand side of (184) has support

equal to
∑l′

j=1 R+J ′
j = τ ′(h1).

Let now D = C. By (176), (180), (68) and (163),

µ1 > µ2 > · · · > µj0 > µj0+1 = ρ′′l′+1 =
l − l′ − 1

2
= −δ(> 0) ,

(0 >)δ = − l − l′ − 1

2
= ρ′′l = µj0+l−l′ > µj0+l−l′+1 > · · · > µl .
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Since the µj ’s and δ are either all in Z or all in Z + 1
2 , these inequalities are

equivalent to

a1 = −µ1 − δ + 1 < a2 = −µ2 − δ + 1 < · · · < aj0 = −µj0 − δ + 1 ≤ 0

0 ≥ bj0+l−l′+1 = µj0+l−l′+1 − δ + 1 > · · · > bl = µl − δ + 1 .(187)

Hence,

Paj ,bj ,−2 = 0 i.e. Paj ,bj (yj) = 2πPaj ,bj ,2(yj)IR+(yj) (1 ≤ j ≤ j0) ,

Paj ,bj ,2 = 0 i.e. Paj ,bj (yj) = 2πPaj ,bj ,−2(yj)IR−(yj) (j0 + l − l′ + 1 ≤ j ≤ l) .

The polynomials appearing in these expressions of Paj ,bj are nonzero because

aj + bj = −2δ + 2 > 0 for all j. By (40) and the convention on the symbols

δj ’s for the dual pair (Ul,Up,q) with l > l′ = p+q, the claims on the support

of the right-hand side of (185) follow. �

Let D = C. Suppose that there is s ∈ W (G, h(g)) such that (sµ)|h′′ = ρ′′

and that the string of coefficients of µ equal to those of ρ′′, see (176), starts

at j0 + 1, where j0 ∈ {0, 1, . . . , l′}. Then s = s0,j0 satisfies (sµ)|h′′ = ρ′′.
Lemma 31 shows that if j0 �= p then the intersection of the support of∏l′

j=1 Pas0,j0 ,j
,bs0,j0 ,j

with τ ′(h1) has empty interior. We now prove that

if j0 �= p the same holds for the support of
∏l′

j=1 Pas,j ,bs,j for every s ∈
W (G, h(g)) such that (sµ)|h′′ = ρ′′.

Lemma 32. Let D = C. Suppose that µ and s ∈ W (G, h(g)) satisfy

(176) for j0 ∈ {0, 1, . . . , l′}. If j0 �= p, then the intersection of the support

of
∏l′

j=1 Pas,j ,bs,j with τ ′(h1) has empty interior.

Proof. Since

s0,j0(Jj0+j) = Jl′+j , s(Jj0+j) = Jl′+j (1 ≤ j ≤ l − l′) ,

the composition s−1s0,j0 fixes the elements of {Jj0+1, . . . , Jj0+l−l′} and per-

mutes those of {J1, . . . , Jj0}∪{Jj0+l−l′+1, . . . , Jl}. Then s−1 = (s−1s0,j0)s
−1
0,j0

maps to string) {Jl′+1, . . . , Jl} onto {Jj0+1, . . . , Jj0+l−l′} and hence

{J1, . . . , Jl′} bijectively onto {J1, . . . , Jj0} ∪ {Jj0+l−l′+1, . . . , Jl}. Therefore

{(sµ)j = µs−1(j); 1 ≤ j ≤ l′} is a permutation of {µj ; 1 ≤ j ≤ j0} ∪ {µj ; j0 +

l − l′ + 1 ≤ j ≤ l}. By (187), there are j0 negative aj and l′ − j0 negative

bj for 1 ≤ j ≤ l′. The same is then true for the as,j and the bs,j . The
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support of
∏l′

j=1 Pas,j ,bs,j is therefore a Cartesian product (in some order)

of j0 copies of R+ and l′ − j0 copies of R−. Its intersection with τ ′(h1) has

therefore empty interior if j0 �= p. �
When the intersection of the support of

∏l′
j=1 Pas,j ,bs,j and τ ′(h1) has

empty interior, the integral on the right-hand side of (177) that corresponds

to s vanishes. Lemma 32 shows that every such integral is zero when j0 �= p.

This yields the following corollary.

Corollary 33. Suppose that Π is a genuine representation of Ũl with

Harish-Chandra parameter µ satisfying (176) for j0 ∈ {0, 1, . . . , l′}. If j0 �=
p then

fΠ⊗Π′ =

∫
Ul

Θ̌Π(g̃)T (g̃) dg = 0 .

Thus, if Π is a genuine representation of Ũl which occurs in Howe’s corre-

spondence, then its highest weight must be of the form λ =
∑l

j=1

(p−q
2 +νj

)
ej

where

ν1 ≥ ν2 ≥ · · · ≥ νp ≥ νp+1 = · · · = νl−q = 0 ≥ νl−q+1 ≥ · · · ≥ νl .

Proof. Only the last statement requires proof. We know from Lemma

32 that j0 = p. Hence the first line of (187) looks as follows:

µ1 + δ − 1 > µ2 + δ − 1 > · · · > µp + δ − 1 ≥ 0 .

Since

µj + δ − 1 = λj + ρj + δ − 1 = λj −
p− q

2
+ p− j (1 ≤ j ≤ p) ,

we see that

νj = λj −
p− q

2
(1 ≤ j ≤ p) ,

satisfies

ν1 ≥ ν2 ≥ · · · ≥ νp ≥ 0 .

By a similar analysis of the second line of (187), the claim follows. �
In the proof of Theorem 5 we will see that the condition on the high-

est weight of Π is also sufficient for the nonvanishing of the intertwining

distributions.
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Because of Corollary 33, we can restrict ourselves to the case j0 = p

when G = Ul. In this case, to simplify notation, we will write s0 instead of

s0,p. Hence

s0 = 1 (if D = R or H) and s0 = s0,p (if D = C) .(188)

Observe that this notation allows us to write

l′∏
j=1

Pas0,j ,bs0,j
(βyj) = (2π)l

′
l′∏

j=1

Pas0,j ,bs0,j ,2δj
(βyj)IδjR+(yj) ,(189)

which unifies (184) and (185).

Suppose that s ∈ W (G, h(g)) satisfies (173) and j0 = p if D = C. Then

ss−1
0 |h′′ = 1 and ss−1

0 (h) = h .(190)

The condition ss−1
0 (h) = h and the identification (42), allow us to consider

ss−1
0 as isomorphisms of h′. In the following lemma we prove that such a s

contributes to the right-hand side of (177) if and only if ss−1
0 ∈ W (G′, h′).

Moreover, in this case, the contribution from s agree with that of s0.

Lemma 34. Let l > l′ and let µ and s ∈ W (G, h(g)) satisfy (173) with

j0 = p if D = C. The integral∫
h′

ξ−sµ(ĉ−(x)) chd′−r−ι(x)

∫
τ ′(h1

reg)
eiB(x,y)Fφ(y) dy dx(191)

is zero:

(a) if ss−1
0 |h acts by some sign changes, when D = R or H,

(b) if ss−1
0 |h does not stabilize {J1, . . . , Jp} (and {Jp+1, . . . , Jl′}), when

D = C.

Equivalently, by identifying h and h′ via (42), the integral (191) is zero

unless ss−1
0 ∈ W (G′, h′). Moreover, (177) becomes: for any φ ∈ S(W)

(192)

∫
−G0

Θ̌Π(g̃)T (g̃) dg(φ)

= C κ0χ̌Π(c̃(0))

∫
τ ′(h1

reg)

( l′∏
j=1

Pas0,j ,bs0,j
(βyj)

)
e−β

∑ l′
j=1 |yj |Fφ(y) dy ,
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where C is a non-zero constant which depends on the dual pair (G,G′).

Proof. Let D = R or H. Suppose that ss−1
0 (Jj) = −Jj for some

j ∈ {1, . . . , l′}. Then (sµ)j = −(s0µ)j . Thus Pas,j ,bs,j is supported in R−,

and the support of (181) has a lower dimensional intersection with τ ′(h1).

The case D = C is similar: if ss−1
0 (Ji) = Jj where 1 ≤ i ≤ p < j ≤ l′,

then (sµ)j = (s0µ)i, which interchanges the i-th and j-th indices a and

b of sµ and s0µ. The support of (181) has therefore a lower dimensional

intersection with τ ′(h1).
By the above and by identifying h and h′ via (42), we can restrict the

sum on the right-hand side of (177) to the set of s ∈ W (G, h(g)) such
that ss−1

0 |h ∈ W (G′, h′) and ss−1
0 |h′′ = 1. Therefore, the sum can be

parametrized by W (G′, h′). By (181) and since sgng/h(g)(ss
−1
0 ) =

sgng′/h′(ss−1
0 ), we obtain that

∫
−G0 Θ̌Π(g̃)T (g̃) dg(φ) is κ0χ̌Π(c̃(0)) times

a constant multiple of

∑
s′∈W (G′,h′)

sgng′/h′(s′)

∫
h′

ξ−s′s0µ(ĉ−(x)) chd
′−r−ι(x)

∫
τ ′(h1

reg)

eiB(x,y)Fφ(y) dy dx

=
∑

s′∈W (G′,h′)

sgng′/h′(s′)

∫
τ ′(h1

reg)

( l′∏
j=1

Pas′s0,j ,bs′s0,j
(βyj)

)
e−β

∑ l′
j=1 |yj |Fφ(y) dy .

Observe that

l′∏
j=1

Pas′s0,j ,bs′s0,j
(βyj) =

l′∏
j=1

Pas0,j ,bs0,j
(β(s′−1

y)j)

because s′ ∈ W (G′, h′) permutes the indices 1 ≤ j ≤ l′. Recall also that

Fφ(y) transforms as the sign representation with respect to the action of

W (G′, h′). Formula (192) therefore follows. The new non-zero constant C

is the one appearing in (177) times |W (G′, h′)| times sgng/h(g)(s0), which is

equal to 1 if D = R or H and (−1)q(l−l′) if D = C. �

Proof of Theorem 5. It remains to show that if the highest weight

λ of Π satisfies the conditions (a) or (b), then the integral (76), i.e. (192),

is nonzero.

By (189), the function
∏l′

j=1 Pas0,j ,bs0,j
(βyj) has support equal to τ ′(h1)
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and we can rewrite the right-hand side of (192) as a constant multiple of

κ0χ̌Π(c̃(0))

∫
τ ′(h1

reg)

( l′∏
j=1

Pas0,j ,bs0,j ,2δj
(βyj)

)
e−β

∑ l′
j=1 |yj |Fφ(y) dy .(193)

By the W (G′, h′)-skew-invariance of Fφ, we can replace the term

( l′∏
j=1

Pas0,j ,bs0,j ,2δj
(βyj)

)
e−β

∑ l′
j=1 |yj |

in the integral (193) by its W (G′, h′)-skew-invariant component

( 1

|W (G′, h′)|
∑

s′∈W (G′,h′)

sgng′/h′(s
′)

l′∏
j=1

Pas0,j ,bs0,j ,2δj (β(s′y)j)
)
e−β

∑ l′
j=1 |yj | .(194)

Here we have used that
∑l′

j=1 |(s′y)j | =
∑l′

j=1 |yj |. Notice that

l′∏
j=1

Pas0,j ,bs0,j ,2δj
(β(s′y)j) =

l′∏
j=1

Pa
s′−1s0,j

,b
s′−1s0,j

,2δj (βyj)

because W (G′, h′) only permutes the y-coordinates for which the δj ’s have

equal sign. Moreover, (194) is non-zero because Pa
s′−1s0,j

,b
s′−1s0,j

,2δj (βyj) is

not W (G′, h′)-invariant when W (G′, h′) �= 1. Indeed, the condition µ1 >

µ2 > · · · > µl′ implies b1 > b2 > · · · > bl′ and a1 < a2 < · · · < al′ . If

W (G′, h′) �= 1, then there are at least two indices j �= j′ such that δj = δj′

and the corresponding factors in (194) have different degrees. (If b ≥ 1 then

the degree of Pa,b,2 is b− 1 and if a ≥ 1 then that of Pa,b,−2 is a− 1.)

By (194), the integral (193) is a constant multiple of

κ0χ̌Π(c̃(0))

∫
τ ′(h1

reg)
Φ(y)πg/z(y)Fφ(y) dy ,(195)

where

(196) Φ(y) =

∑
s′∈W (G′,h′) sgng′/h′(s′)

∏ l′

j=1 Pas0,j ,bs0,j ,2δj (β(s′y)j)

πg/z(y)
e−β

∑ l′
j=1 |yj |

(w ∈ h1
reg, y = τ ′(w)) .
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By (A.3) and (A.4), we see that there is a non-zero constant Cz, depend-

ing of (G,G′), such that

πg/z(y) = Czπg′/h′(y) det(y)γV′ (y = τ(w) = τ ′(w), w ∈ h1) ,(197)

where

γ =


l − l′ if D = C

l − l′ + 1
2 if D = H

l − l′ − 1
2 if D = R and g = so2l

l − l′ if D = R and g = so2l+1

(198)

and det(g′)V′ denotes the determinant of g′ as an element of G′ ⊆ GLD(V′).
(See the remark after (E.11) in Appendix E for the case D = H.)

Recall from Remark 1 that W (G′, h′) = W (K′, h′), where K′ is maximal

compact in G′. Split πg′/h′ as a product of the compact and the noncompact

positive roots:

πg′/h′(y) = πk′/h′(y)πnc
g′/h′(y) .

Explicitly,

πk′/h′(

l′∑
j=1

yjJ
′
j) =

{∏
1≤j<k≤l′ i(−yj + yk) if D = R,H ,∏
1≤j<k≤p i(−yj + yk)

∏
1≤j<k≤q i(−yp+j + yp+k) if D = C .

The polynomial in parenthesis in (194) is W (G′, h′)-skew-invariant. Hence

it is divisible by πk′/h′(y) and the fraction∑
s′∈W (G′,h′) sgng′/h′(s′)

∏l′
j=1 Pas0,j ,bs0,j ,2δj

(β(s′y)j)

πk′/h′(y)
(y ∈ h

′)(199)

is a W (G′, h′)-invariant polynomial. Therefore Φ is a W (G′, h′)-invariant

real-valued nonzero continuous function on τ ′(h1
reg). Thus Proposition 2

proves the equality (78) and shows that the integral (195) does not vanish

for suitably chosen φ ∈ C∞
c (W)G. �

Remark 13. Let us consider the term e−β
∑ l′
j=1 |yj | appearing in (196).

Notice that for w =
∑l′

j=1 wjuj ∈ h1,

l′∑
j=1

|yj | =
l′∑
j=1

|J ′
j
∗(τ ′(w))| =

l′∑
j=1

w2
j =

l′∑
j=1

δjJ
′
j
∗(τ ′(w)) =

 l′∑
j=1

δjJ
′
j
∗

 ◦ τ ′(w) .
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This is a quadratic polynomial on h1, invariant under the Weyl group

W (S, h1). Such a polynomial has no GG′-invariant extension to W, unless

G′ is compact. Indeed, suppose P is a real-valued GG′-invariant polynomial

on W such that

P (w) =

 l′∑
j=1

δjJ
′
j
∗

 ◦ τ ′(w) (w ∈ h1) .

Then P extends uniquely to a complex-valued GCG′
C-invariant polynomial

on the complexification WC of W. Hence, by the Classical Invariant Theory,

[How89a, Theorems 1A and 1B] there is a G′
C-invariant polynomial Q on

g′C such that P = Q ◦ τ ′. Hence,

Q(τ ′(w)) = P (w) =

 l′∑
j=1

δjJ
′
j
∗

 ◦ τ ′(w) (w ∈ h1) .

Since τ ′(h1) spans h′, we see that the restriction of Q to h′ is

Q|h′ =
l′∑

j=1

δjJ
′
j
∗ ∈ h

′
C .

Since Q is G′
C-invariant, the restriction Q|h′ has to be invariant under the

corresponding Weyl group. There are no linear invariants if G′ = Sp2l′(R)

or O∗
2l′ . Therefore G′ = Up,q, p + q = l′. But in this case the invariance

means that all the δj are equal. Hence G′ = Ul′ is compact. In the case

G′ = Ul′ , the sum of squares coincides with 〈J(w), w〉 for a positive complex

structure J on W which commutes with G and G′ and therefore

e−β
∑ l′
j=1 |δjJ ′

j
∗(τ ′(w))|(200)

extends to a Gaussian on W. If G′ is not compact then (200) extends to a

GG′-invariant function on W, which is bounded but is not a Gaussian.

11. The Special Case (O2l,Sp2l′(R)) with l ≤ l′

Here we consider the case (G,G′) = (O2l,Sp2l′(R)) and suppose that

the character ΘΠ is not supported in the preimage of the connected identity
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component G̃0. This is equivalent to λl = 0, where λ is the highest weight

of Π. The case l > l′ was considered in Theorem 6. Since the dual pair

(O2,Sp2l′(R)) was treated in section 6, we will suppose in the sequel that

2 ≤ l ≤ l′. Recall the element s ∈ G, (88), with centralizer in h equal to

hs =
∑l−1

j=1 RJj , and the spaces

V0,s = V1
0
⊕ V2

0
⊕ · · · ⊕ Vl−1

0
⊕ Rv2l , Vs = V0,s ⊕ V1 .

The corresponding dual pair is (Gs,G
′
s) = (O2l−1,Sp2l′(R)) acting on the

symplectic space Ws = Hom(V1,V0,s).

The ordered basis v1, v2, ..., v2l−2, v2l−1, v2l of V0, leads to the identifica-

tions

End(V0) = M2l,2l(R) , End(V0,s) = M2l−1,2l−1(R) .

In these terms, the Cartan subgroup H ⊆ G consists of the block diagonal

matrices 
r(θ1) 0

. . .

r(θl−1)

0 r(θl)

 ,

with diagonal blocks

r(θ) =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
, (θ ∈ R) .

Set

h• =

r(θ1) 0
. . .

0 r(θl−1)

(201)

and let H• denote the group of all matrices (201). Then the centralizer

Hs ⊆ H of s consists of the matrices h• 0

0
ε 0

0 ε

 , (ε = ±1) .
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The connected component of the identity (Hs)0 ⊆ Hs is the set of these

matrices with ε = 1. The group Gs and its connected identity component

G0
s contain Cartan subgroups H0

s ⊆ G0
s and Hs ⊆ Gs consisting of matrices(

h• 0

0 1

)
and

(
h• 0

0 ε

)
, (ε = ±1) ,

respectively.

Lemma 35. Every element of the connected component G0s is G-con-

jugate to an element of (Hs)0s.

Proof. Fix an element g ∈ G. As shown in [Cur84, page 114], g

preserves a subspace of V of dimension 1 or 2. Hence V decomposes into

a direct sum of g-irreducible subspaces of dimension 1 or 2, and the claim

follows. �

Let ξν denote the character of H• whose derivative at the identity is

ν ∈ ih∗s. In particular, for h• as in (201),

ξej (h•) = e−iθj (1 ≤ j ≤ l − 1) .

(The negative sign in the exponent is due to fact that ej = −iJ∗
j .)

The elements ej ± ek (1 ≤ j < k ≤ l − 1) and 2ej (1 ≤ j ≤ l − 1)

form a system of type Cl−1 which is dual to that of ((gs)C, (hs)C). The

corresponding ρ-function and the Weyl denominator are respectively

ρC
s = (l − 1)e1 + (l − 2)e2 + · · · + el−1(202)

and

(203) ∆C
s

(( h• 0

0 1

))
= ξρC

s
(h•)

∏
1≤j<k≤l−1

(1 − ξek−ej (h•))(1 − ξ−ej−ek(h•)) ·
l−1∏
j=1

(1 − ξ−2ej (h•))

(h• ∈ H•) .
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Observe that the Weyl group of the root system of type Cl−1 coincides

with W (G0
s, hs). It consists of all permutations and sign changes of the e1,

. . . , el−1. It acts on H0
s =

{( h• 0

0 1

)
;h• ∈ H•

}
and hence on H•.

The following two lemmas follow respectively from [Wen01, Theorems

2.5 and 2.6].

Lemma 36. For any continuous G-invariant function f : G0s → C,∫
G0s

f(g) dg =
1

|W (G0
s, hs)|

∫
H•

f
(( h• 0

0
1 0
0 1

)
s
) ∣∣∣∣∆C

s

(( h• 0

0 1

))∣∣∣∣2 dh• ,

where s =

(
1• 0

0
1 0
0 −1

)
, see (88).

Notice that the coverings

G̃0s → G0s , G̃0 → G0

split (see Appendix E). Hence we may choose continuous sections

(Hs)0s � hs → h̃s ∈ (̃Hs)0s and (Hs)0 � h → h̃ ∈ (̃Hs)0 .(204)

Lemma 37. Consider the map

(Hs)0 � h → h̃s ∈ (̃Hs)0s

obtained by composing the multiplication by s and the fixed continuous sec-

tion. Then

(205)

where

ΘΠs

(( h• 0
0 1

))
=

∑
t∈W (G0

s,hs)
sgngs/hs

(t)ξt(λ+ρCs )(h•)

∆C
s

(( h• 0
0 1

)) (h• ∈ H•) ,(206)
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λ is the highest weight of Π (recall that λl = 0), the sign character sgngs/hs(t)

is defined by

∆C
s

(
t

(
h• 0

0 1

))
= sgngs/hs(t)∆

C
s

(( h• 0

0 1

))
(t ∈ W (G0

s, hs)) ,

and

DΠ = ±1 .(207)

Lemma 38. For φ ∈ S(W),

∫
G0s

Θ̌Π(g̃)T (g̃)(φ) dg =
1

|W (G0
s, hs)|

∫
H•

Θ̌Π

× Ts
˜(

h• 0

0 −1

) (
φG|Ws

)
dh• .

Proof. Clearly, the integral on the left-hand side does not change if

we replace φ by φG. Hence we may assume that φ = φG. By Lemma 36,

the left-hand side multiplied by |W (G0
s, hs)| is equal to

(208)

Apply Lemma G.1 to the decomposition W = Ws ⊕ W⊥
s . For h ∈ (Hs)0,

hs =

(
h• 0

0
1 0
0 1

)(
1 0

0
1 0
0 −1

)
=

(
h• 0

0
1 0
0 −1

)
.

So

hs|Ws =

(
h• 0

0 −1

)
and hs|W⊥

s
= 1|W⊥

s
.

Hence (hs−1)|Ws maps onto Ws and (hs−1)|W⊥
s

= 0. This shows that the

restriction of µW to (hs−1)W is µWs⊗δ0, where δ0 is the Dirac delta on W⊥
s .



SBOs for Dual Pairs with One Member Compact 339

Therefore, for an appropriate choice of the lift of the element

(
h• 0

0 −1

)
on the right-hand side,

Thus, (208) is equal to

(209)

The lemma follows from (209). �

Lemma 39. Let µC = λ + ρC
s . Then, for φ ∈ S(W),∫

G0s
Θ̌Π(g̃)T (g̃)(φ) dg

= DΠ

∫
H•

ξ−µC(h•)∆
C
s

(( h• 0

0 1

))
Ts

˜(
h• 0

0 −1

)(
φG|Ws

)
dh• ,

where ξ−µC(h•) makes sense because λl = 0.

Proof. This follows from Lemma 38. Indeed, notice that

Hence (205) and (206) show that

Θ̌Π

˜(
h• 0

0
1 0
0 −1

)
= DΠΘΠs

(
h−1
• 0

0
1 0
0 1

)

= DΠ

∑
t∈W (G0

s,hs)
sgngs/hs(t)ξt−1µC(h−1

• )

∆C
s

(( h−1
• 0

0 1

)) .
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Furthermore,

∆C
s

(( h−1
• 0

0 1

))
= ∆C

s

(( h• 0

0 1

))
and for t ∈ W (G0

s, hs),

∆C
s

(
t

(
h• 0

0 1

))
= sgngs/hs(t)∆

C
s

(( h• 0

0 1

))
.

Therefore

Θ̌Π

˜(
h• 0

0
1 0
0 −1

)∣∣∣∣∆C
s

(( h• 0

0 1

))∣∣∣∣2
= DΠ

∑
t∈W (G0

s,hs)

ξt−1µC(h−1
• )∆C

s

(
t

(
h• 0

0 1

))
.

Notice that

ξt−1µC(h−1
• ) = ξ−µC(th•)

and since φG is G-invariant,

Therefore

= DΠ

∫
H•

∑
t∈W (G0

s,hs)

ξ−µC(th•)∆
C
s

(
t

(
h• 0

0 1

))
Ts

˜(
th• 0

0 −1

) (
φG|Ws

)
dh•

= |W (G0
s, hs)|DΠ

∫
H•

ξ−µC(h•)∆
C
s

( ( h• 0

0 1

))
Ts

˜(
h• 0

0 −1

) (
φG|Ws

)
dh• . �
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Consider the Cayley transform c• : h• → H• and the (modified) Cayley

transform c� : hs → (Hs)0 defined by

c•

x1J1 0
. . .

0 xl−1Jl−1

 =

c(x1J1) 0
. . .

0 c(xl−1Jl−1)

(210)

c�


x1J1 0

. . .

0 xl−1Jl−1

0

0 0

(211)

=


c(x1J1) 0

. . .

0 c(xl−1Jl−1)

0

0 1

 , i.e. c� = c• × exp .

Notice that c� differs from the usual Cayley transform cs on hs, defined

at the beginning of section 8, for which cs(diag(x1J1, . . . , xl−1Jl−1, 0)) =

diag(c(x1J1), . . . , c(xl−1Jl−1),−1). Let jhs denote the Jacobian of the map

c�. Set

πC

gs/hs


x1J1 0

. . .

0 xl−1Jl−1

0

0 0

 =
∏

1≤j<k≤l−1

(−x2
j + x2

k) ·
l−1∏
j=1

(−2ixj) .

Lemma 40. There are constants A and D such that for x =∑l−1
j=1 xjJj ∈ hs,

∆C
s (c�(x)) = AπC

gs/hs
(x)

l−1∏
j=1

(1 + x2
j )

−l+1 ,(212)

Θs

 ˜(
c•(x) 0

0 −1

) =

(
i

2

)(2l−1)l′

2l
′
l−1∏
j=1

(1 + x2
j )

l′ ,(213)

jhs(x) =
l−1∏
j=1

2(1 + x2
j )

−1(214)
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and hence

∆C
s (c�(x))Θs

(
˜(

c•(x) 0
0 −1

))
jhs(x) = DπC

gs/hs
(x)

l−1∏
j=1

(1 + x2
j )
l′−l .(215)

Proof. Part (212) may be verified via the argument used in Appendix

C, but easier – without the square roots. Formula (213) follows from (137),

and (214) from Appendix B applied to the group SO2. �

Lemma 41. With the notation of Lemmas 39 and 40,

∫
G0s

Θ̌Π(g̃)T (g̃)(φ) dg = CDΠχ̌Π(c̃(0))

∫
h•

ξ−µC(c−(x))

l−1∏
j=1

(1 + x2
j )

l′−l

where χ̌Π is the central character of Π and DΠ = ±1.

Proof. We start with the formula of Lemma 39, use the equality

ξ−µC(h•) = ξ−µC((−1)•)ξ−µC(−h•) ,

apply the change of variables, h• = c•(x) and use the formula (215), noticing

that πC

gs/hs
is a constant multiple of πgs/hs . Here c• : h• → H•, so c•(0) =

(−1)•.
It remains to prove that ξ−µC((−1)•) is a constant multiple of the central

character of Π evaluated at c̃(0). For this, let v �= 0 be a highest vector of

Π. For now, let us denote by ξH̃
−λ and ξH

−λ the characters defined by λ on H̃

and H, respectively. Then ξH̃
−λ(c̃(0)) = ξH

−λ(c(0)) because λ is integral; see

Appendix H. Hence ξH
−λ(c(0))v = Π(c̃(0))v = χ̌Π(c̃(0))v. This implies that

χ̌Π(c̃(0)) = ξH
−λ(c(0)). Since λl = 0,

ξH
−λ(c(0)) = ξH

−λ(−I2l) = ξH
−λ

(
(−1)• 0

0 I2

)
= ξ−λ((−1)•) = ξρCs ((−1)•)ξ−µC((−1)•) ,

where ξρC
s
((−1)•) = ±1. �
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Recall from (150) the symmetric bilinear form

B(x•, y•) (x•, y• ∈ h•) .

Corollary 42. There is a constant C depending only on the dual pair

and a constant DΠ = ±1 distinguishing the representations Π and Π⊗ det,

such that∫
G0s

Θ̌Π(g̃)T (g̃)(φ) dg

= CDΠχ̌Π(c̃(0))

∫
h•

∫
h•

l−1∏
j=1

(1 + ixj)
µC
j +l′−l(1 − ixj)

−µC
j +l′−leiB(x•,y•)

× FφG|Ws

(
y• 0

0 0

)
dy• dx• .

Proof. By Lemma 23,

πgs/hs(x)

∫
Ws

χx(w)φG(w) dw = C

∫
h•

eiB(x•,y•)FφG|Ws

(
y• 0

0 0

)
dy• .

By the proof of Lemma 20,

ξ−µC(c−(x)) =
l−1∏
j=1

(1 + ixj)
µC
j (1 − ixj)

−µC
j .

Hence the formula follows from Lemma 41. �

Proof of Theorem 7. To prove (90), we proceed as in the proof of

Theorem 4, using Corollary 42. �

12. The Special Case (O2l+1,Sp2l′(R)) with 1 ≤ l ≤ l′

Recall the decomposition (91). As in the previous section, we denote

the objects corresponding to Ws by the subscript s, for instance Θs and Ts.

Similarly, we denote the objects corresponding to W⊥
s by the substrict ⊥,

for instance Θ⊥ and T⊥. .
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If H is our Cartan subgroup of G, then the elements of connected identity

component H0 are of the form h =

(
h• 0

0 1

)
with h• in the Cartan sub-

group Hs of Gs; see (201). Cartan subalgebra h = hs.h ∈ H0 acts trivially

on W⊥
s , we see that (h− 1)W = (h• − 1)Ws. Hence,

µ(h−1)W = µ(h•−1)Ws
⊗ δ0 ,

where δ0 is the Dirac delta on W⊥
s .

Lemma 43. There is a choice of coverings H̃0 → H0 and H̃• → H•

such that the map H̃• ∈ h̃• →
˜(
h• 0

0 1

)
∈ H̃0 is a Lie group isomorphism

and

Θ(h̃) = Θs(h̃•) and T (h̃) = Ts(h̃•) ⊗ δ0 (h ∈ H0) .(216)

Proof. We apply Lemma G.1 to the decomposition W = Ws ⊕ W⊥
s .

Then h|Ws = h• and h|W⊥
s

= 1. Choose 1̃ such that 1̃ = 1
S̃p(W⊥

s )
(the

identity of the metaplectic group). Hence T⊥(1̃) = δ0 and, by Lemma G.1,

T (h̃) =
χ+(h̃)

χs,+(h̃•)χ⊥,+(1̃)
Ts(h̃•) ⊗ δ0 ,

where χ+, χs,+ and χ⊥,+ are defined according to (G.1) for W, Ws and

W⊥
s , respectively.

We now show that χ+(h̃) = χs,+(h̃•) and that χ⊥,+(1̃) = 1, which will

complete the proof of the second equality in (216).

We choose complete polarizations

Ws = X1 ⊕ Y1 and W⊥
s = X2 ⊕ Y2

preserved by G = O2l+1. Then

W = X ⊕ Y (X = X1 ⊕ X2, Y = Y1 ⊕ Y2)

is a complete polarization preserved by G. The double covers can be realized

as

G̃ = {(g, ζ) ∈ G × C×; (det g)X = (det g)l
′
= ζ2} ,
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G̃|Ws = {(g, ζ) ∈ G|Ws × C×; (det g)X1 = (det g)l
′
= ζ2} .

(See Appendix E.) Furthermore, by [AP14, Proposition 4.28],

Θ(g̃)

|Θ(g̃)| =
det−1/2(g̃)

|det−1/2(g̃)|
(g̃ ∈ G̃) .(217)

Since for h ∈ H0

(deth)X = (deth|X1)X1 ,

we see that we may choose the cover H̃• adjusted to H̃0 so that

χ+(h̃) = χs,+(h̃•) (h =

(
h• 0

0 1

)
) .(218)

As recalled on page 283, for any g̃ in the metaplectic group such that g

preserves the decomposition W⊥
s = X2 ⊕ Y2, the restriction of the Weil

representation acts by

ω(g̃)f(x) = det(g̃)−1/2f(g−1x) (x ∈ X2) .

Applying this equality to 1̃ ∈ G̃|W⊥
s
, we see that det(1̃)−1/2 = 1. Thus (217)

implies that χ⊥,+(1̃) = 1. This proves the second equality in (216).

To prove that Θ(h̃) = Θs(h̃•), observe first that Θ2(1) = 1 by [AP14,

Definition 4.16]. Therefore |Θ⊥(1̃)| = 1. As shown in the proof of Lemma

G.1, this implies that |Θ(h̃)| = |Θs(h̃•)|. So the claim follows from (218). �

Proof of Theorem 8. As in (210), consider the Cayley transform

c• : hs → Hs and the modified Cayley transform c� : hs → H0, defined by

(219) c�(diag(x1J1, . . . , xlJl, 0)) = diag(v1, . . . , vl, 1), vj =
−ixj + 1

−ixj − 1

(xj ∈ R, 1 ≤ j ≤ l) ,

i.e. c� = c• × exp. See Appendix C for the above realization of H0. Notice

also that W (G, h) = W (Gs, hs).
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By (216) and since c•(hs) is dense in Hs,∫
G0

Θ̌Π(g̃)T (g̃)(φ) dg(220)

=
1

|W (Gs, hs)|

∫
Hs

Θ̌Π

( ˜(
h• 0

0 1

))
∆
( ̂(

h• 0

0 1

))
× ∆

( ̂(
h• 0

0 1

))
Ts(h̃•)(φ

G|Ws) dh•

=
4l

|W (Gs, hs)|

∫
hs

Θ̌Π

( ˜(
c•(x) 0

0 1

))
∆
( ̂(

c•(x) 0

0 1

))
× ∆

( ̂(
c•(x) 0

0 1

))
Θs(c̃•(x))

×
∫

Ws

χx(w)
(
φG|Ws

)
(w) dw · ch−2(x) dx ,(221)

where the jacobian of the map c� : hs → H0 is computed using Appendix

B for G = SO2. As shown in Appendix B, the Weyl group of (Spin2l+1, Ĥ
0)

is isomorphic to the Weyl group of (SO2l+1,H
0) and the covering Ĥ0 → H0

intertwines the action of these groups. As before, we denote both Weyl

groups by W (G, h). For every t ∈ W (G, h) and x ∈ h, we have tc�(x) =

c�(tx). Indeed, a permutation acts on c�(x) by permuting the coordinates

of x, and a sign change ε = ±1 acts on each coordinate by

ε : v =
−ix + 1

−ix− 1
→ vε =

−iεx + 1

−iεx− 1
(x ∈ R) .

Therefore,

t ĉ�(x) = ĉ�(tx) (x ∈ h, xj �= 0, 1 ≤ j ≤ l) .

Consequently, if µ is the Harish-Chandra parameter of Π, then

(222) ξ−tµ(ĉ�(x)) = ξ−µ(t ĉ�(x)) = ξ−µ(ĉ�(tx))

(t ∈ W (G, h), x ∈ h, xj �= 0, 1 ≤ j ≤ l) .

For x as in (222), we now proceed as in Lemma 17:

Θ̌Π

( ˜(
c•(x) 0

0 1

))
∆
( ̂(

c•(x) 0

0 1

))
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= ΘΠ

( ˜(
c•(x) 0

0 1

)−1)
∆
( ̂(

c•(x) 0

0 1

)−1)
=

∑
t∈W (G,h)

sgng/h(t)ξ−tµ

( ̂(
c•(x) 0

0 1

))

=
∑

t∈W (G,h)

sgng/h(t)ξ−µ

( ̂
t

(
c•(x) 0

0 1

))
=

∑
t∈W (Gs,hs)

sgng/h(t)ξ−µ(ĉ•(tx)) ,

and

Θs(c̃•(x))

(∫
Ws

χx(w)
(
φG|Ws

)
(w) dw

)
ch−2(x)

is a W (Gs, hs)-invariant function of x ∈ hs. Hence (220) is a constant
multiple of

4l

|W (Gs, hs)|
∑

t∈W (Gs,hs)

sgng/h(t)

∫
hs

ξ−µ(ĉ•(tx))∆
( ̂(

c•(x) 0

0 1

))
Θs(c̃•(x))(223)

×
(∫

Ws

χx(w)
(
φG|Ws

)
(w) dw

)
ch−2(x) dx

= 4l
∫

hs

ξ−µ(ĉ•(x))∆
( ̂(

c•(x) 0

0 1

))
Θs(c̃•(x))

1

πgs/hs(x)
ch−2(x)

×
(
πgs/hs(x)

∫
Ws

χx(w)
(
φG|Ws

)
(w) dw

)
dx .

Appendix C, (137) and (145) show that there is a constant C1 such that

(224) ∆
( ̂(

c•(x) 0

0 1

))
Θs(c̃•(x))

1

πgs/hs(x)
ch−2(x)

= C1 ch2l′−2l−1(x)

l∏
j=1

sgn(xj) (x ∈ h, x =

l∑
j=1

xjJj , xj �= 0) .

By Lemma 23, there is a constant C2 such that

πgs/hs(x)

∫
Ws

χx(w)
(
φG|Ws

)
(w) dw = C2

∫
hs

eiB(x,y)FφG|Ws (y) dy .(225)
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Notice that µj + 1
2 is a positive integer for 1 ≤ j ≤ l. By Lemma 20 and

(C.9),

ξ−µ(ĉ•(x)) =

l∏
j=1

( ixj + 1

ixj − 1

)µj+ 1
2

√
ixj − 1

ixj + 1
(226)

=

l∏
j=1

(ixj + 1)µj+
1
2

(ixj − 1)µj+
1
2

√
ixj − 1√
ixj + 1

=

l∏
j=1

(ixj + 1)µj+
1
2

(−1)µj+
1
2 (1 − ixj)

µj+
1
2

√
1 − ixj√
ixj + 1

isgn(xj)

= il(−1)|µ|+
l
2

l∏
j=1

(1 + ixj)
µj (1 − ixj)

−µj

l∏
j=1

sgn(xj) ,

where |µ| =
∑l

j=1 µj . Since δ = 1
2(2l′ − 2l + 1), see (68), we get from (145)

ξ−µ(ĉ•(x)) ch2l′−2l−1(x) = il(−1)|µ|+
l
2

l∏
j=1

(1 + ixj)
−aj (1 − ixj)

−bj
l∏
j=1

sgn(xj) ,(227)

where aj and bj are as in (69).
The above implies that (223) is equal to a constant multiple of∫

hs

ξ−µ(ĉ•(x)) ch2l′−2l−1(x)eiB(x,y)FφG|Ws
(y) dy dx(228)

= il(−1)|µ|+
l
2

∫
hs

l∏
j=1

(1 + ixj)
−aj (1 − ixj)

−bj
∫

hs

eiB(x,y)FφG|Ws
(y) dy dx .

Since τ(Ws)∩hs = hs for D = R, we are in the situation considered by The-
orem 4, see also Corollary 26. Hence the same computation as in Theorem

4 shows that (228) is equal to il(−1)|µ|+
l
2 times∫

hs

l∏
j=1

(
Paj ,bj (βyj)e

−β|yj | + β−1Qaj ,bj (−β−1∂yj )δ0(yj)
)
FφG|Ws

(y) dy(229)

=

∫
hs

l∏
j=1

(
pj(yj) + qj(−∂yj )δ0(yj)

)
FφG|Ws

(y) dy .

Recall from Appendix H that the highest weights of Π are integers λ1 ≥
λ2 ≥ · · · ≥ λl ≥ 0 and that ρ =

∑l
j=1(l + 1

2 − j)ej . Hence

(−1)|µ|+
l
2 = (−1)

l(l+1)
2 (−1)|λ| .(230)
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We now look at FφG|Ws when l = l′. By (I.1), there is a constant C1 > 0

such that

(231)

∫
S/S

h
1

φ(s.w) d(sSh1) = C1

∫
G

∫
G′/Z′

φ(gg′.w) dg d(g′Z′)

(φ ∈ S(W), w ∈ h1
reg) .

Because of the embedding Gs ⊆ G and the normalization vol(Gs) = 1,∫
Gs

∫
G′/Z′

φG(gsg
′.w) dgs d(g

′Z′)

=

∫
Gs

∫
G′/Z′

∫
G
φ((ggs)g

′.w)) dg dgs d(g
′Z′)

=

∫
G

∫
G′/Z′

φ(gg′.w) dg d(g′Z′) (φ ∈ S(W), w ∈ h1
reg) .

Hence, for arbitrary φ ∈ S(W),

µO(w),h1
(φG|Ws) = µO(w),h1

(φ) (w ∈ h1
reg) .(232)

Since πg′/h′(y) = πg′s/h′
s
(y) by (A.3), we conclude that there is constant C2

such that

FφG|Ws = C2Fφ = C2FφG (φ ∈ S(W)) .(233)

This finishes the proof of Theorem 8. �

Remark 14. When l < l′ the Weyl–Harish-Chandra orbital integrals
involve almost semisimple elements, see (48), and the FφG|Ws is not necessar-

ily proportional to Fφ as a function of φ ∈ S(W). Indeed, let w0 ∈ s1(V
0),

as in (48). Then by (I.3), there is a constant C3 > 0 such that∫
S/Sh

1
+w0

φ(s.(w + w0))) d(sSh1+w0)(234)

= C3

∫
G

∫
G′/Z′ n

φ(gg′.(w + w0)) dg d(g′Z′ n) (φ ∈ S(W), w ∈ h1
reg) ,

where Z′n is the centralizer of n = τ ′(w0) in G′. Because of the embedding
Gs ⊆ G and the normalization vol(Gs) = 1,∫

Gs

∫
G′/Z′n

φG(gsg
′.(w + w0)) dgs d(g

′Z′ n)
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=

∫
Gs

∫
G′/Z′n

∫
G

φ((ggs)g
′.(w + w0)) dg dgs d(g

′Z′ n)

=

∫
G

∫
G′/Z′n

φ(gg′.(w + w0)) dg d(g′Z′ n) (φ ∈ S(W), w ∈ h1
reg) .

However it may happen that∫
Gs

∫
G′/Z′n

φG(gsg
′.(w + w0)) dgs d(g

′Z′ n) �=
∫

Gs

∫
G′/Z′n

φG(gsg
′.w) dgs d(g

′Z′ n) .

Hence, by (234), there is generally no positive constant C4 such that, for

arbitrary φ ∈ S(W),

µO(w),h1
(φG|Ws) = C4µO(w),h1

(φ) (w ∈ h1
reg) .(235)

13. Proof of Theorem 9

Before proving Theorem 9, let us remark that we will not need to dis-

tinguish between the cases l > l′ and l ≤ l′. We will be working with a

Cartan subgroup of G, which we shall denote by H and not by H(g) as

previously done when l > l′. This is justified because the Cartan subspaces

of W, which led to the decomposition h(g) = h ⊕ h′′, play no role here.

On the other hand, we will need to distinguish between the even and odd

orthogonal groups.
Consider first the case G = O2l with l > 1. Retain the notation intro-

duced at the beginning of section 11 and let ρC
s be as in (89). Then the

functions ξρs and ∆s for Gs = O2l−1 are defined on the double cover Ĥ0
s of

H0
s introduced in section 9:

∆s(ĥ) = ξρs(ĥ)
∏

1≤j<k≤l−1

(1−ξek−ej (h))(1−ξ−ej−ek(h))·
l−1∏
j=1

(1−ξ−ej (h)) (h ∈ H0
s) .

Nevertheless, |∆s(ĥ)| is well defined as a function on H0
s itself, and can be

considered as a function on H• ⊆ O2(l−1) by setting |∆s(h•)| =∣∣∣∣∆s

(( h• 0

0 1

))∣∣∣∣. Observe that for ν =
∑l−1

j=1 νjej ∈ ih∗s with νj ∈ Z

for 1 ≤ j ≤ l,

ξν(h•) = ξν

(( h• 0
0 1

))
=

l−1∏
j=1

e−iνjθj (h• = exp
( l−1∑
j=1

θjJj

)
∈ H•) .(236)
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Hence

ξν(−h•) = (−1)|ν|ξν(h•) where |ν| =

l−1∑
j=1

νj .(237)

Since 1 = |ξρs(h•)| = |ξρC
s
(h•)| and

(1 − ξ−2ej (h•)) = (1 − ξ−ej (h•))(1 + ξ−ej (h•)) ,

we see that∣∣∣∣∆C
s

(( h• 0

0 1

))∣∣∣∣ =
∣∣∣∆s

(( h• 0

0 1

))∣∣∣ · l−1∏
j=1

|1 + ξ−ej (h•)| .

Furthermore, by (236),

l−1∏
j=1

|1 + ξ−ej (h•)|2 =

l−1∏
j=1

(1 + ξej (h•))(1 + ξ−ej (h•)) = det(1 + h•) .

Thus ∣∣∣∣∆C
s

(( h• 0

0 1

))∣∣∣∣2 =
∣∣∣∆s

(
h• 0

0 1

) ∣∣∣2 det(1 + h•)(238)

=
1

2

∣∣∣∆s

(
h• 0

0 1

) ∣∣∣2 det
(
1 +

(
h• 0

0 1

))
.

Finally, by (237),

∆C
s (
(
−
(

h• 0

0 1

))
= (−1)l(l−1)/2∆C

s

(( h• 0

0 1

))
.(239)

By Lemma 38, (239) and (238), for φ ∈ S(W),∫
G0s

Θ̌Π(g̃)T (g̃)(φ) dg

=
1

|W (G0
s, hs)|

∫
H•

Θ̌Π

˜(
h• 0

0
1 0
0 −1

)

×
∣∣∣∣∆C

s

(( h• 0

0 1

))∣∣∣∣2 Ts

˜(
h• 0

0 −1

)(
φG|Ws

)
dh•

=
1

|W (G0
s, hs)|

∫
H•

Θ̌Π

˜(
−h• 0

0
1 0
0 −1

)
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×
∣∣∣∣∆C

s

(( h• 0

0 1

))∣∣∣∣2 Ts

˜(
−h• 0

0 −1

)(
φG|Ws

)
dh•

×
∣∣∣∆s

(
h• 0

0 1

) ∣∣∣2 det
(
1 +

(
h• 0

0 1

))

where ιs : −G0
s → G is the embedding given, in terms of matrices, by

(
a b

c d

)
→

 a 0 b

0 1 0

c 0 d

 , with a ∈ M2l−2,2l−2(R), d ∈ R .

Now, Weyl’s integration formula on G0
s yields∫

G0s
Θ̌Π(g̃)T (g̃)(φ) dg =

1

2

∫
G0
s

Θ̌Π(ιs(−g)) det(1 + g)Ts

(
−̃g
) (

φG|Ws

)
dg .

Making the change of variables g → −g on the right-hand side, we get (93).

Let now G = O2l+1 with l ≥ 1. The Cartan subgroup H of G is described

in Appendix C. In particular, H0 = {(u1, u2, . . . , ul, 1);uj ∈ SO2, 1 ≤ j ≤ l}.
Suppose first that 1 ≤ l ≤ l′. On page 287, we introduced Gs ⊆ G

as the subgroup acting trivially on the 1-dimensional subspace V0
0

of V0.

Considering Gs as a group of isomorphisms of V1
0
⊕ · · · ⊕ Vl

0
identifies the

Cartan subgroup Hs of Gs with

{h• = (u1, u2, . . . , ul);uj ∈ SO2, 1 ≤ j ≤ l} .(240)

The identification of Hs with (240) applies when l > l′ as well. Indeed, in

this case Gs ⊆ G was defined on page 283 as the subgroup acting trivially

on the 1-dimensional subspace V0,0

0
of V0. The identification therefore holds

when we consider Gs as a group of isomorphisms of (V0,0

0
)⊥⊕V1

0
⊕ · · ·⊕Vl

0
.
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Recall from (123) the double covering Ĥ0 � ĥ → h ∈ H0 of H0 on which

the functions ξρ and ∆ are well-defined. It is easy to check that∣∣∣∣∣∆(
̂(
h• 0

0 1

)
)

∣∣∣∣∣
2

= |∆s(h•)|2 det(1 − h•) (h• ∈ H0
s) ,(241)

where

∆s(h•) = ξρs(h•)
∏

1≤j<k≤l

(1 − ξ−ej+ek(h•))(1 − ξ−ej−ek(h•)) .

(The product is empty if l = 1. In this case, ∆s(h•) = 1 for all h•.) Recall

from (216) (or (242)) that T (
˜(
h• 0

0 1

)
) = Ts(h̃•) ⊗ δ0 for h• ∈ H0

s, where

δ0 is the Dirac delta on W⊥
s .

Hence, by Weyl’s integration formula and (241), for φ ∈ S(W),∫
G0

Θ̌Π(g̃)T (g̃)(φ) dg =
1

|W (G0, h)|

∫
H0

Θ̌Π(h̃)|∆(ĥ)|2T (h̃)(φG) dh

=
1

2|W (G0
s, hs)|

∫
H0

s

Θ̌Π

( ˜(
h• 0
0 1

))
det(1 − h•)|∆s(h•)|2Ts(h̃•)(φ

G|Ws
) dh•

=
1

2

∫
G0

s

Θ̌Π(g̃) det(1 − g)Ts(g̃)(φ
G|Ws) dg .

This proves (93) for G = O2l+1.

14. A Different Look at the Pair (O2l+1,Sp2l′(R)) with l > l′

Recall the decompositions h(g) = h⊕ h′′ from (165) and W = Ws ⊕W⊥
s

from (95). Recall also that we often identify h and h′ via (42). As before, we

denote the objects corresponding to Ws by the subscript s: gs, Gs, Θs, and

Ts. In particular, hs = h(g), see (45), and H0
s = H(g)0. Since any element

h ∈ H(g)0 acts trivially on W⊥
s , we see that

(h− 1)W = (h− 1)Ws .

Hence, as in (216),

Θ(h̃) = Θs(h̃) and T (h̃) = Ts(h̃) ⊗ δ0 (h ∈ H(g)0) ,(242)
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where δ0 is the Dirac delta on W⊥
s .

We consider the (modified) Cayley transform c� : h(g) → H(g)0 defined

as in (219). Notice that

c�(x′ + x′′) = c(x′)c�(x′′) (x′ ∈ h = h
′, x′′ ∈ h

′′) ,

where c : h′ → H′ is the usual Cayley transform.

Let zs denote the centralizer of h in gs. Then zs = h⊕g′′s , where g′′s is the

Lie algebra of the group G′′
s of isometries of the restriction of the form (·, ·)

to the 2(l − l′)-dimensional real vector space (V0,0

0
)⊥. Then h′′ is a Cartan

subalgebra of g′′s . The following lemma is a variation of Lemma 28 in the

present situation.

Lemma 44. Suppose l > l′ and let µ be the Harish-Chandra parameter

of a genuine irreducible representation of Õ2l+1. In terms of the decompo-

sition (165)

(243) ξ−sµ(ĉ�(x)) ch2l′−2l−1(x)πzs/h(g)(x)

=
(
ξ−sµ(ĉ(x′)) ch2l′−2l−1(x′)

)(
ξ−sµ(ĉ�(x′′)) ch2l′−2l−1(x′′)πg′′s /h′′(x′′)

)
,

where x = x′ + x′′ ∈ h(g), with x′ ∈ h and x′′ ∈ h′′. Moreover,

(244)

∫
h′′

ξ−sµ(ĉ�(x′′)) ch2l′−2l−1(x′′)πg′′s /h′′(x′′) dx′′

= C
∑

s′′∈W (G′′,h′′)

sgng′′/h′′(s′′)I{0}(−(sµ)|h′′ + s′′ρ′′) ,

where C is a constant, ρ′′ is one half times the sum of the positive roots for

(g′′C, h
′′
C) and I{0} is the indicator function of zero.

Proof. Formula (243) is obvious, because πzs/h(g)(x
′ + x′′) =

πg′′s /h′′(x′′). We shall verify (244). By (C.8) applied to g′′ ⊇ h′′,

πg′′s /h′′(x′′) = C ′′
1 ∆′′(ĉ�(x′′)) ch2(l−l′)−1(x′′) (x′′ ∈ h

′′) ,

where ∆′′ is the Weyl denominator for G′′, see (168). Hence, the integral

(244) is a constant multiple of∫
h′′

ξ−sµ(ĉ�(x′′))∆′′(ĉ(x′′)) ch−2(x′′) dx′′ = 2dimh′′
∫
ĉ�(h′′)

ξ−sµ(h)∆′′(h) dh ,
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where ĉ�(h′′) ⊆ Ĥ′′0. We therefore obtain the right-hand side of (244) as in

the proof of Lemma 28. �

Proof of Theorem 10. Similar computations as those done in sec-
tion 12 together with (242) and h(g) = hs imply that the left-hand side of
(97) is a constant multiple of

(245)
1

|W (G0, h(g))|

∫
h(g)

(
ΘΠ(ĉ�(x)−1)∆(ĉ�(x)−1)

)( ∆(ĉ�(x))

πgs/h(g)(x)
Θs(c̃�(x))

)
× πgs/h(g)(x)

∫
Ws

χx(w)
(
φG|Ws

)
(w) dw ch−2(x) dx ,

where c�(hs) is a dense subset of H(g)0. Lemma 24 shows that there is a
constant C1 such that

πgs/h(g)(x)

∫
Ws

χx(w)φG|Ws
(w) dw

= C1

∫
τ ′(h1

reg)

∑
tW (Zs,h(g))∈W (Gs,h(g))/W (Zs,h(g))

× sgngs/h(g)(t)πzs/h(g)(t
−1.x)eiB(x,t.y)FφG|Ws

(y) dy ,

where zs ⊆ gs is the centralizer of h = h′. By (224), for a suitable constant

C1, for all x =
∑l

j=1 xjJj ∈ h with xj �= 0 for 1 ≤ j ≤ l,

∆(ĉ�(x))

πgs/h(g)(x)
Θs(c̃�(x)) ch−2(x) = C1 ch2l′−2l−1(x)

 l∏
j=1

sgn(xj)

 .

Hence (245) is equal to a constant multiple of

∑
u∈W (G,h(g))

sgng/h(g)(u)

∫
h(g)

∫
τ ′(h1

reg)

ξ−u.µ(ĉ�(x)) ch2l′−2l−1(x)

(
l∏
j=1

sgn(xj)

)

×
∑

tW (Zs,h(g))∈W (Gs,h(g))/W (Zs,h(g))

sgngs/h(g)(t)πzs/h(g)(t
−1x)eiB(x,ty)FφG|Ws

(y) dy dx .

Notice that for t ∈ W (G, h(g)) = W (Gs, h(g)) and x ∈ h(g),

l∏
j=1

sgn(txj) =
sgng/h(g)(t)

sgngs/h(g)(t)

l∏
j=1

sgn(xj) .(246)
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Interchanging the sums, changing the variable of integration x to tx and

using that ch(tx) = ch(x) and B(tx, ty) = B(x, y), we see that (245) is a

constant multiple of∑
tW (Zs,h(g))∈W (Gs,h(g))/W (Zs,h(g))

∑
u∈W (G,h(g))

sgng/h(g)(u) sgng/h(g)(t)

×
∫
h(g)

∫
τ ′(h1

reg)
ξ−µ(ĉ�(u−1tx)) ch2l′−2l−1(x)

×

 l∏
j=1

sgn(xj)

πzs/h(g)(x)eiB(x,y)FφG|Ws (y) dy dx .

Now, replace u ∈ W (G, h(g)) with tu, where t ∈ W (Gs, h(g)) = W (G, h(g)).

Hence, (245) is a constant multiple of

∑
u∈W (G,h(g))

sgng/h(g)(u)

∫
h(g)

∫
τ ′(h1

reg)
ξ−µ(ĉ�(u−1x)) ch2l′−2l−1(x)(247)

×

 l∏
j=1

sgn(xj)

πzs/h(g)(x)eiB(x,y)FφG|Ws (y) dy dx .

Lemma 44, together with the identification (42) of h and h′, implies that
this last expression is a constant multiple of∑

u∈W (G,h(g))

sgng/h(g)(u)
( ∑
u′′∈W (G′′,h′′)

sgng′′/h′′(u′′)I{0}(−(uµ)|h′′ + u′′ρ′′)
)

×
∫

h′

∫
τ ′(h1

reg)

ξ−uµ(ĉ�(x)) ch2l′−2l−1(x)

×

 l∏
j=1

sgn(xj)

 eiB(x,y)FφG|Ws
(y) dy dx

=
∑

u∈W (G,h(g))
(uµ)|h′′=ρ′′

sgng/h(g)(u)

∫
h′

ξ−uµ(ĉ�(x)) ch2l′−2l−1(x)

 l∏
j=1

sgn(xj)

(248)

×
∫
τ ′(h1

reg)

eiB(x,y)FφG|Ws
(y) dy dx .(249)
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As in (227), for u ∈ W (G, h(g)) and x ∈ h′,

ξ−uµ(ĉ�(x)) ch2l′−2l−1(x)

 l∏
j=1

sgn(xj)

(250)

= il(−1)|uµ|+
l
2

l∏
j=1

(1 + ixj)
−au,j (1 − ixj)

−bu,j ,

where |uµ| =
∑j

j=1(uµ)j and au,j , bu,j are as in (80). Hence, computations

as in the proof of Lemma 30 lead to the following equality, which holds in

the sense of distributions on τ ′(h1
reg) for every u ∈ W (G, h(g)):

(251)

∫
h′

ξ−uµ(ĉ•(x)) ch2l′−2l−1(x)

 l∏
j=1

sgn(xj)

 eiB(x,y) dx

= il(−1)|uµ|+
l
2

( l′∏
j=1

Pau,j ,bu,j (2πyj)
)
e−2π

∑ l′
j=1 |yj | ,

where Pau,j ,bu,j is defined in (D.4).

The sum on the right-hand side of (248) is over the elements u ∈
W (G, h(g)) for which (uµ)|h′′ = ρ′′. By Corollary 29, this has two con-

sequences. The first is that this sum is 0 unless µ satisfies µ|h′′ = ρ′′. As

seen in the proof of Theorem 5, this means that the highest weight λ = µ−ρ

of Π satisfies condition (a) of that theorem. The second consequence is that

for the µ satisfying µ|h′′ = ρ′′, an element u ∈ W (G, h(g)) can give a nonzero

contribution to the sum in (248) only if u|h′′ = 1. The latter condition holds

for instance if u = 1.
Suppose in the following that µ satisfies µ|h′′ = ρ′′. Consider first the

case u = 1. By Lemma 31,

l′∏
j=1

Paj ,bj (2πyj) = (2π)l
′
l′∏
j=1

Paj ,bj ,2(2πyj)IR+(yj) (y =
l′∑
j=1

yjJ
′
j ∈ h

′)(252)

has support equal to τ ′(h1). Because of (251), we can proceed as in Lemma

34 to show that if u ∈ W (G, h(g)) satisfies (uµ)|h′′ = ρ′′ and changes the

sign of some coordinates (i.e. yj → −yj for some j), then the corresponding

integral on the right-hand side of (248) is zero. Recalling that (uµ)|h′′ =
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ρ′′ implies u|h′′ = 1, we see that all terms in this sum vanish but those

corresponding u ∈ W (G′, h′) ⊆ W (G, h(g)). The sum is hence over u ∈
W (G′, h′) and formula (248) becomes a constant multiple of∑

u∈W (G′,h′)

sgng′/h′(u)(−1)|uµ|+
l
2

×
∫
τ ′(h1

reg)

 l′∏
j=1

Pau,j ,bu,j ,2(2πyj)

 e−2π
∑ l′
j=1 |yj |FφG|Ws (y) dy .

If u ∈ W (G′, h′) then |uµ| = |µ|. Recall from (230) that (−1)|µ|+
l
2 =

(−1)
l(l+1)

2 (−1)|λ|.
By the W (G′, h′)-skew invariance of FφG|Ws (y) the above integral is

therefore a constant multiple of

(253)

It remains to show that, as a function of φ, FφG|Ws is a constant multiple of

here FφG = Fφ. This follows from the same argument used for (233) in the

case l = l′, using (A.3) and (I.2) instead of (I.1). (Notice that since G is

compact, the integral on G/Z is vol(Z)−1 times the same integral over G.)

This concludes the proof of (97). �

Remark 15. The factor (−1)|λ| appearing on the right-hand side of

(97) in Theorem 10 turns out to be a constant multiple of χ̌Π(c̃(0)), the

value at c̃(0) of the central character of Π, as in Theorems 6 and 5. However,

we do not have a proof of this fact independent of the known classification

of the representations occurring in Howe’s correspondence for the dual pair

(G,G′) = (O2l+1,Sp2l′(R)), see e.g. [Prz96, Appendix (A.4)]. Assume the

classification. If l > l′, given λ, there is a unique representation Π of G̃

occurring in the correspondence with highest weight λ. We see from [Prz96,

(A.4.2.1)] that the highest weight λ′ of the corresponding representation Π′

of G̃′ is of the form λ′ = η + λ′′, where λ′′ is integral and |λ′′| = |λ|.
Let v �= 0 be a highest weight vector of Π′ and let c̃′ : g′ → G̃′ be the lift of

the Cayley transform satisfying c̃′(0) = c̃(0) (Recall that c′(0) = −1 = c(0)

is in the center of the symplectic group and hence in G ∩ G′.) Then

χ̌Π′(c̃′(0))v = Π′(c̃′(0))v = ξλ′(c̃′(0))v ,
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which implies that χ̌Π′(c̃′(0)) = ξλ′(c̃′(0)). Since λ′′ has integral coordinates

ξλ′′(c̃′(0)) = ξλ′′(c(0)) = (−1)|λ
′′| = (−1)|λ| .

Hence

ξλ′(c̃′(0)) = ξη(c̃′(0))ξλ′′(c̃′(0)) = ξη(c̃′(0))(−1)|λ| .

Since Π and Π′ agree on the center of the symplectic group, ξλ(c̃(0)) =

ξλ′(c̃′(0)), yielding

ξλ(c̃(0)) = ξη(c̃(0))(−1)|λ| ,

where ξη(c̃(0)) is a constant independent of the representation Π.

15. Proof of Corollary 12

We will distinguish two cases:

(a) 0 ≤ p < l = p + q,

(b) 0 ≤ p < l < p + q.

In both cases, we shall prove that if∫
G

Θ̌Π(g̃)T (g̃) dg �= 0 ,(254)

then λp+1 ≤ p−q
2 and λl−q ≥ p−q

2 . Here the second condition is empty if

l ≤ q.
Consider first case (a). Then aj + bj = −2δ + 2 = 1 for all 1 ≤ j ≤ l. So

Qaj ,bj = 0 for all 1 ≤ j ≤ l, and hence, in the notation of (72),

l∏
j=1

(
pj(yj) + qj(−∂yj )δ0(yj)

)
Fφ(y) =

( l∏
j=1

Paj ,bj (βyj)
)
e−

∑ l
j=1 |yj |Fφ(y) .(255)

Moreover, by Lemma D.1, for every 1 ≤ j ≤ l, at most one between Paj ,bj ,2

and Paj ,bj ,−2 can be nonzero. By [MPP20, Lemma 3.5] and because l > p =
l − q > 0,

h ∩ τ(W) = W (G, h)
{
y =

l∑
j=1

yjJj : y1, . . . , ymax(l−q,0) ≥ 0 ≥ yp+1, . . . , yl
}

(256)

=
{
y =

l∑
j=1

yjJj : p coordinates yj are ≥ 0

and q coordinates yj are ≤ 0
}
.
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If (254) holds, then Paj ,bj ,2 �= 0 for p coordinates yj and Paj ,bj ,−2 �= 0 for

q coordinates yj . The first condition is equivalent to bj ≥ 1 for p values of

j. The second condition is equivalent to aj ≥ 1, equivalently, bj ≤ 0 for

q(= l − p) values of j. Since the bj ’s are strictly decreasing, we conclude

that if (254) holds, then

b1 > · · · > bp > 0 ≥ bp+1 > · · · > bl .

But, for 1 ≤ j ≤ l,

bj = λj + ρj − δ + 1 = λj +
l

2
− j + 1 .

Hence bp > 0 is equivalent to λp ≥ p− q

2
, and bp+1 ≤ 0 is equivalent to

λp+1 ≤ p− q

2
. This proves the claim in the case (a).

Let us now come to case (b). Then Qaj ,bj �= 0 for all 1 ≤ j ≤ l because

aj + bj = −2δ + 2 < 1. Recall the integral (72):∫
h∩τ(W)

 l∏
j=1

(
pj(yj) + qj(−∂yj )δ0(yj)

) · Fφ(y) dy .

For γ ⊆ {1, 2, . . . , l}, let |γ| denote its cardinality and set γc = {1, 2, . . . , l}\
γ. Clearly,

l∏
j=1

(
pj(yj) + qj(−∂yj )δ0(yj)

)
(257)

=
∑

γ⊆{1,2,...,l}

( ∏
j∈γc

pj(yj)
)(∏

j∈γ
qj(−∂(Jj))δ0(yj)

)
.

For s ∈ W (G, h) let

Ys =
{
y =

l∑
j=1

yjJj : ys(1), . . . , ys(max(l−q,0)) ≥ 0 ≥ ys(p+1), . . . , ys(l)
}
.(258)

By (256), h∩τ(W) =
⋃

s∈W (G,h) Ys . Notice that Ys = Ys′ if the permutations

s and s′ differ at most on the set {max(l− q, 0) + 1, . . . , p}. Hence one may

choose a subset W0(G, h) ⊆ W (G, h) such that the union

h ∩ τ(W) =
⋃

s∈W0(G,h)

Ys
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is disjoint. Hence the integral in (72) is a sum of the integrals over these

Ys’s. We consider each of them separately. Let then s ∈ W0(G, h) be fixed.

We see from (257) that the integral over Ys is equal to

∑
γ⊆{1,2,...,l}

∫
Ys

( ∏
j∈γc

pj(yj)
)(∏

j∈γ
qj(−∂(Jj))δ0(yj)

)
Fφ(y) dy ,(259)

where empty products are equal to 1.
As in case (a), by Lemma D.1, for every 1 ≤ j ≤ l, at most one between

Paj ,bj ,2 and Paj ,bj ,−2 can be nonzero. By (258), if the integral (259) is
nonzero then

j ∈ {s(1), . . . , s(l − q)} ∩ γc implies Paj ,bj ,2 �= 0, i.e. bj ≥ 1 (for the l > q case) ,

j ∈ {s(p + 1), . . . , s(l)} ∩ γc implies Paj ,bj ,−2 �= 0, i.e. aj ≥ 1 .

For Γ ∈ {γc, γ}, define

Ys,Γ =
{
yΓ =

∑
j∈Γ

yjJj :

{
yj ≥ 0 for all j ∈ {s(1), . . . , s(l − q)} ∩ Γ

yj ≤ 0 for all j ∈ {s(p + 1), . . . , s(l)} ∩ Γ

}
,

where the first line of conditions has to be omitted when l ≤ q. Then
Ys = Ys,γc × Ys,γ and (259) becomes

∑
γ⊆{1,2,...,l}

∫
Ys,γc

( ∏
j∈{s(1),...,s(l−q)}∩γc

pj(yj)IR+(yj)
)

(260)

×
( ∏
j∈{s(max(l−q,0)+1),...,s(p)}∩γc

pj(yj)
)( ∏

j∈{s(p+1),...,s(l)}∩γc
pj(yj)IR−(yj)

)

×
(∫

Ys,γ

( ∏
j∈γ

qj(−∂(Jj))δ0(yj)
)
Fφ(y) dyγ

)
dyγc

=
∑

γ⊆{1,2,...,l}

∫
Ys,γc

( ∏
j∈{s(1),...,s(l−q)}∩γc

pj(yj)IR+(yj)
)

×
( ∏
j∈{s(max(l−q,0)+1),...,s(p)}∩γc

pj(yj)
)( ∏

j∈{s(p+1),...,s(l)}∩γc
pj(yj)IR−(yj)

)

×
(∏
j∈γ

qj(∂(Jj))Fφ(y)|yj=0,j∈γ

)
dyγc ,

where the first products are empty unless l > q and empty products are

equal to 1.
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Suppose that l > q and there is jγ ∈ {s(1), . . . , s(l− q)}∩γ. Then every

y =
∑l

j=1 yjJj with yj ≥ 0 for j ∈ {s(1), . . . , s(l − q)} ∩ γc, yj ≤ 0 for

j ∈ {s(p + 1), . . . , s(l)} ∩ γc and yj = 0 for j ∈ γ belongs to

{
y =

l∑
j=1

yjJj :

 yj ≥ 0 for all j ∈ {s(1), . . . , s(l − q)} \ {jγ},
yj ≤ 0 for all j ∈ {s(p + 1), . . . , s(l)},
yjγ = 0

}
⊆ ∂(h ∩ τ(W)) ,

where ∂(h ∩ τ(W)) denotes the boundary of h ∩ τ(W). For all 1 ≤ j ≤ l,

degQaj ,bj = −aj − bj = 2δ − 2 = p + q − l − 1 .

Hence, the term
(∏

j∈γ qj(∂(Jj))Fφ(y)
)
|yj=0,j∈γ is zero on ∂(h ∩ τ(W)) by

[MPP20, Theorem 3.5]. Choosing j = jγ , we see that the integral corre-

sponding to γ in (260) vanishes. Similarly (and not only in the case l > q),

the integral corresponding to γ vanishes if there is jγ ∈ {s(p+1), . . . , s(l)}∩
γ. The sum in (260) therefore reduces to a sum over the γ having no in-

tersection with {s(1), . . . , s(max(l − q, 0))} ∪ {s(p + 1), . . . , s(l)}. For these

γ’s,

{s(1), . . . , s(max(l − q, 0))} ∩ γc = {s(1), . . . , s(max(l − q, 0))} ,

{s(p + 1), . . . , s(l)} ∩ γc = {s(p + 1), . . . , s(l)} .

Hence,

bs(j) ≥ 1 for 1 ≤ j ≤ l − q, if l > q ,

as(j) ≥ 1 for p + 1 ≤ j ≤ l .

In particular, there are at least max(l − q, 0) elements bj ≥ 1. So bl−q ≥ 1

if l > q. Similarly, there are at least l − p elements aj ≥ 1. So ap+1 ≥ 1.

As in the case (a), we conclude that if the integral over Ys corresponding to

this γ is not zero, then λl−q ≥ p−q
2 (when l > q holds) and λp+1 ≤ p−q

2 .

This applies to all γ and all s. Hence, if (254) is satisfied, then λl−q ≥
p−q
2 (when l > q holds) and λp+1 ≤ p−q

2 . This concludes the proof of

Corollary 12.

16. Proof of Corollary 13

Before entering into the proof of Corollary 13, let us consider the dual

pair (G,G′) = (Spl,O
∗
2l′) with arbitrary l ≤ l′. Let Π be an irreducible



SBOs for Dual Pairs with One Member Compact 363

genuine representation of G̃. We want to prove that the intertwining dis-

tribution corresponding to Π is nonzero. For this, it suffices to show that

the integral on the right-hand side of (72) is nonzero for suitable functions

φ ∈ S(W). The explicit expression of that integral depends on the values of

the parameters aj and bj constructed from the Harish-Chandra parameter

µ1 > µ2 > · · · > µl of Π.

The parameters of the pair (Spl,O
∗
2l′) are d = l, d′ = l′, ι = 1/2 and

hence δ = l′−l. Notice that −aj−bj = 2δ−2 = 2(l′−l−1) does not depend

on j. No qj-term occurs in (72) if and only if −aj − bj < 0, i.e. if and only

if l = l′. Every qj-term is a constant multiple of a delta distribution if and

only if −aj − bj = 0, i.e. if and only if l + 1 = l′. In all other cases, the

qj-terms are distributions and not measures.

As recalled in Appendix H, the highest weights of Π are integers λj

satisfying λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0 and the ρ-function for (g, h) is ρ =∑l
j=1(l + 1 − j)ej . Hence aj = −µj − δ + 1 ≤ 0 , i.e. Paj ,bj ,−2 = 0, for all

1 ≤ j ≤ l. On the other hand, the sign of

bj = µj − δ + 1 = λj + (l + 1 − j) − l′ + l + 1 (1 ≤ j ≤ l)

might depend on j. Recall that b1 > b2 > · · · > bl. All the bj are positive

provided so is bl, and bl = λl + 2 + l− l′ > 0 if and only if λl ≥ l′ − l− 1. In

this case, Paj ,bj ,2 �= 0 (and hence pj �= 0) for all 1 ≤ j ≤ l. Notice that the

condition λl ≥ l′ − l − 1 is automatically satisfied when l′ − l − 1 ≤ 0, that

is l′ ∈ {l, l + 1}.

Proof of Corollary 13. The discussion preceeding this proof

shows that if λl ≥ l′ − l − 1 then, for 1 ≤ j ≤ l,

pj(yj) = 2πPaj ,bj ,2(yj)IR+(yj)e
−2π|yj | (yj ∈ R) ,(261)

where Paj ,bj ,2 is a nonzero polynomial of degree bj − 1(≥ 0). Let W0(G, h)

denote the subgroup of W (G, h) acting as permutations on the variables yj
of y =

∑l
j=1 yjJj ∈ h. Then

πg/h(y)
∑

t∈W0(G,h)

sgng/h(t)

l∏
j=1

Paj ,bj ,2((ty)j) (y ∈ h) .(262)

is a W0(G, h)-invariant real-valued polynomial on h. It is nonzero because

deg(Pa1,b1,2) > deg(Pa2,b2,2) > · · · > deg(Pal,bl,2). Let U be an open,
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nonempty, W (G, h)-invariant set with compact closure U ⊆ hreg. Observe

that U ∩ τ(h1
reg) is nonempty, open, W0(G, h)-invariant and with compact

closure contained in τ(h1
reg). We choose such a U so that the polynomial

(262) has constant sign on U ∩ τ(h1
reg).

By Lemma 1, we can choose a nonzero function φ ∈ C∞
c (W)G such that

φ ≥ 0 and suppFφ ⊆ U. It follows, in particular, that Fφ, as well as all

its partial derivatives, vanishes along the root hyperplanes yj = 0, where

1 ≤ j ≤ l. For such a φ, the right-hand side of (72) reduces to a constant

multiple of ∫
h∩τ(W)

 l∏
j=1

pj(yj)

 · Fφ(y) dy .(263)

By (261), we can replace the domain of integration h∩ τ(W) with τ(h1
reg).

Choose a smooth W (G, h)-invariant function αφ on h which is equal to 1

on U and has compact support contained in hreg. Then
αφ
πg/h

is a smooth

W (G, h)-skew-invariant function on h. Set

Φ(y) =
(2π)l

|W0(G, h)|
αφ(y)

πg/h(y)

×

 ∑
t∈W0(G,h)

sgng/h(t)

l∏
j=1

Paj ,bj ,2((ty)j)

 e−2π
∑ l
j=1 |yj | (y ∈ h) .

This is a nonzero smooth W0(G, h)-invariant function on h. Since

πg/h(y)Fφ(y) is W0(G, h)-invariant, the integral in (263) can be written as∫
τ(h1

reg)
Φ(y)πg/h(y)Fφ(y) dy .(264)

By (49), (50) and (54),

πg/h(y)Fφ(y) = C|πs0/h
2
1
(w2)|

∫
S/S

h
1

φ(s.w) d(sSh1) (y = τ(w) = τ ′(w)) .

Like Fφ, it is supported in U and is a nonzero constant multiple of a function

of constant sign. Moreover, by (262), Φ is nonzero and with constant sign in

U∩ τ(h1
reg). Thus (264), and hence the intertwining distribution evaluated

at φ, is nonzero.



SBOs for Dual Pairs with One Member Compact 365

Remark 16. Suppose that l ≤ l′. Among all dual pairs with one

member compact, (Spl,O
∗
2l′) is the easiest for computing the intertwining

distributions, both because G = Spl is connected and because there is only

one conjugacy class of Cartan subspaces in W. Still, establishing if the

integral giving the intertwining distribution is nonzero is problematic also

in this case as soon as there are nonconstant polynomials Qaj ,bj . The reason

is that, at present, we do not have sufficient information on the derivatives

of the Cauchy–Harish-Chandra integrals. For the orbital integrals for the

adjoint action of a Lie group on it Lie algebra, the relevant information is

contained in Harish-Chandra’s work; see e.g. [Var89, Theorem 9, p. 37].

17. A Sketch of a Computation of the Wave Front Set of Π′

Corollary 45. For any representation Π ⊗ Π′ which occurs in the

restriction of the Weil representation to the dual pair (G̃, G̃′),

WF (Π′) = τ ′(τ−1(0)) .

Here WF (Π′) stands for the wave front of the character ΘΠ′ at the

identity and 0 = WF (Π) since Π is finite dimensional.

The complete proof is rather lengthy but unlike the one provided in

[Prz91, Theorem 6.11], it is independent of [Vog78]. We sketch the main

steps below. The details may be found in [MPP24].

The variety τ−1(0) ⊆ W is the closure of a single GG′-orbit O; see e.g.

[Prz91, Lemma 2.16]. There is a positive GG′-invariant measure µO on this

orbit which defines a homogeneous distribution. We denote its degree by

degµO.

Recall that if V is a n-dimensional real vector space, t > 0 and Mtv = tv

for v ∈ V, then the pullback of u ∈ S ′(V ) by Mt is M∗
t u ∈ S ′(V), defined

by

(M∗
t u)(φ) = t−nu

(
φ ◦Mt−1

)
(φ ∈ S(V)) .

In particular, for V = W

M∗
t µO = tdeg µOµO .

Define τ ′∗ : S ′(W) → S ′(g′) by τ ′∗(u)(ψ) = u(ψ ◦ τ ′) . Then, for t > 0,

t2 dimg′M∗
t2 ◦ τ ′∗ = tdimWτ ′∗ ◦M∗

t .(265)
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A rather lengthy but straightforward computation based on Theorems

4, 5 and 7, shows that

tdeg µOM∗
t−1fΠ⊗Π′ →

t→0
C µO ,(266)

as tempered distributions on W, where C is a non-zero constant.

Let F indicate a Fourier transform on S ′(g′). Then, for t > 0,

M∗
t ◦ F = t− dimg′F ◦Mt−1 .(267)

Hence, in the topology of S ′(g′),

t2 deg µO′M∗
t2Fτ ′∗(fΠ⊗Π′) →

t→0+
CFµO′ ,(268)

where C �= 0 and O′ = τ ′(O).

There is an easy to verify inclusion WF (Π′) ⊆ O′, [Prz91, (6.14)] and a

formula for the character ΘΠ′ in terms of F(τ ′∗(fΠ⊗Π′)),

1

σ
· c̃∗−ΘΠ′ = ̂τ ′∗(fΠ⊗Π′) ,(269)

where σ is a smooth function, [Prz91, Theorem 6.7]. By combining this

with the following elementary lemma, one completes the argument.

Lemma 46. Suppose f, u ∈ S ′(Rn) and u is homogeneous of degree

d ∈ C. Suppose

tdM∗
t−1f(ψ) →

t→0+
u(ψ) (ψ ∈ S(Rn)) .(270)

Then

WF0(f̂) ⊇ suppu ,(271)

where the subscript 0 indicates the wave front set at zero and

f(x) =

∫
Rn

f̂(y)e2πix·y dy .
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Appendix A. Products of Positive Roots

Keep the notation introduced in section 3. Recall, in particular, that∑l′′
j=1 yjJj ∈ h2

1
|V0

and
∑l′′

j=1 yjJ
′
j ∈ h2

1
|V1

are identified via (42). Here

l′′ = min(l, l′).

Suppose l ≤ l′. We can choose the system of the positive roots of h in
gC so that their product is given by the formula

πg/h(
l∑

j=1

yjJj)(A.1)

Let z′ ⊆ g′ be the centralizer of h. We may choose the order of roots of h in

g′C/z
′
C so that the product of all of them is equal to

(A.2)

Suppose l > l′. We can choose the system of the positive roots of h′ in
g′C so that their product is given by the formula

πg′/h′(
l′∑
j=1

yjJ
′
j) =


∏

1≤j<k≤l′ i(−yj + yk) if D = C ,∏
1≤j<k≤l′(−y2

j + y2
k) if D = H ,∏

1≤j<k≤l′(−y2
j + y2

k) ·
∏l′

j=1(−2iyj) if D = R .

(A.3)

Moreover, let z ⊆ g be the centralizer of h. We may choose the positive

roots of h in gC/zC so that their product is equal to

πg/z(
l′∑

j=1

yjJj)(A.4)
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=



∏
1≤j<k≤l′ i(−yj + yk) ·

∏l′
j=1(−iyj)

d−d′

if D = C ,∏
1≤j<k≤l′(−y2

j + y2
k) ·

∏l′
j=1(−2iyj) ·

∏l′
j=1(−y2

j )
d−d′

if D = H ,∏
1≤j<k≤l′(−y2

j + y2
k) ·

∏l′
j=1(−iyj)

d−d′

if D = R and g = so2l ,∏
1≤j<k≤l′(−y2

j + y2
k) ·

∏l′
j=1(−iyj) ·

∏l′
j=1(−iyj)

d−d′−1

if D = R and g = so2l+1 .

Appendix B. The Jacobian of the Cayley Transform

Here we determine the Jacobian of the modified Cayley transform c− :

g → G. A straightforward computation shows that for a fixed x ∈ g,

c−(x + y)c−(x)−1 − 1 = (1 − x− y)−12y(1 + x)−1 (y ∈ g) .

Hence the derivative (tangent map) is given by

c′−(x)y = (1 − x)−12y(1 − x)−1 (y ∈ g) .(B.1)

Recall that G is the isometry group of a hermitian form (·, ·) on V. Hence

we have the adjoint

EndD(V) � g → g∗ ∈ EndD(V)

defined by

(gu, v) = (u, g∗v) (u, v ∈ V) .

Let us view the Lie algebra g as a real vector space and consider the map

γ : GLD(V) → GL(g) , γ(g)(y) = gyg∗ .

Then det ◦γ : GLD(V) → R× is a group homomorphism. Hence there is a

number s ∈ R such that

det(γ(g)) = (det(g)VR
)s (g ∈ GLD(V)) ,
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where the subscript R indicates that we are viewing V as a vector space

over R. On the other hand, for a fixed number a ∈ R×,

det(γ(aIV)) = a2 dimg and det(aIV)VR
= adimVR .

Hence,

det(γ(g)) = (det(g)VR
)

2 dim g
dim VR (g ∈ GLD(V)) .

If x ∈ g, then 1 ± x ∈ GLD(V) and

(1 ± x)∗ = 1 ∓ x and
(
(1 ± x)−1

)∗
= (1 ∓ x)−1 .

Hence

c′−(x)y = 2(1 − x)−1y(1 + x)−1c−(x) = 2
(
γ((1 − x)−1)y

)
c−(x) (y ∈ g) .

Notice that |det(c−(x))| = 1 because c(g) ⊆ G. Therefore

|det(c′−(x))| = 2dim g det(1 − x)
− 2 dim g

dim V
R

VR
= 2dim g ch(x)−2r (x ∈ g) ,(B.2)

where ch and r are as in (134) and (66), respectively.

Appendix C. The Weyl Denominator Lifted by the Cayley

Transform

Consider the orthogonal matrix group

G = O2l+1 = {g ∈ GL2l+1(R); ggt = I} .

The spin group is a connected two-fold cover

Spin2l+1 → SO2l+1

of the special orthogonal group. We identify

a + ib =

(
a −b

b a

)
(a, b ∈ R) .(C.1)

Then

SO2(R) = {u ∈ C; |u| = 1} .
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Fix the diagonal Cartan subgroup

H = {diag(u1, u2, . . . , ul,±1); uj ∈ SO2(R) , 1 ≤ j ≤ l} ⊆ O2l+1 .

Then the connected identity component of H is

H0 = {diag(u1, u2, . . . , ul, 1); uj ∈ SO2(R); 1 ≤ j ≤ l} .

Denote by Ĥ0 ⊆ Spin2l+1 the preimage of H0. The Weyl group of (Spin2l+1,

Ĥ0) is isomorphic to the Weyl group of (SO2l+1,H
0) and the covering

Ĥ0 → H0

intertwines the action of these groups. As explained in [GW98, Lemma

6.3.4 and Theorem 6.3.5], one may realize Ĥ0 as the quotient

Ĥ0 = (SO2)
l /K ,

where K consists of all elements (z1, z2, . . . , zl) ∈ (SO2)
l such that each

zj = ±1 and z1z2 · · · zl = 1. The Weyl group is generated by the inverses

zj → z−1
j and permutations of the coordinates. It acts on the Lie algebra h

via the permutations and all sign changes. The covering map is realized as

Ĥ0 � (z1, z2, . . . , zl)K → diag(z2
1 , z

2
2 , . . . , z

2
l , 1) ∈ H0 .

Let a ∈ R and define θa by a = tan
(
θa
2

)
. Then

c−(−ia) =
1 − ia

1 + ia
= e−iθa .

Set J =

(
0 1

−1 0

)
. Under the identification (C.1), J is identified with −i.

Hence,

c−(aJ) = (I + aJ)(I − aJ)−1 = exp(θaJ)(C.2)

Therefore the range of the Cayley transform

c−(h) = {diag(u1, u2, ..., ul, 1); uj �= −1 for all j}
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is stable under the action of the Weyl group and c− intertwines the action

of the Weyl group on the Lie algebra and on the group. Pick the following

branch of the complex square root,

√
reiθ =

√
rei

θ
2 (r > 0,−π < θ < π)

and set

σ : c−(h) � diag(u1, u2, . . . , ul, 1) → diag(
√
u1,

√
u2, . . . ,

√
ul)K ∈ Ĥ0 .

This is a section of the covering map which intertwines the Weyl group

actions. Define

ĉ−(x) = σ(c−(x)) (x ∈ h) .(C.3)

Then ĉ− also intertwines the Weyl group actions. Explicitly,

ĉ−(diag(x1J1, x2J2, . . . , xlJl, 0)) = diag(
√
u1,

√
u2, . . . ,

√
ul)K ,

where

uj =
1 − ixj

1 + ixj
.

In these terms, the usual choice of the positive roots ej ± ek, with 1 ≤ j <

k ≤ l, and ej , with 1 ≤ j ≤ l together with (131) gives

ξej (diag(u1, u2, . . . , ul, 1)) = uj .

Hence,

ξ−ej+ek(diag(u1, u2, . . . , ul, 1)) = u−1
j uk ,

ξ−ej−ek(diag(u1, u2, . . . , ul, 1)) = u−1
j u−1

k ,

ξ−ej (diag(u1, u2, . . . , ul, 1)) = u−1
j ,

ξρ(diag(
√
u1,

√
u2, . . . ,

√
ul, 1)K) = ul−1

1 ul−2
2 · · ·ul−1ξ ,

where

ξ =
√
u1

√
u2 . . .

√
ul .

We now verify the following formula

∆(ĉ−(x)) = C1πg/h(x) ch−2l+1(x) (x ∈ h) ,(C.4)
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where where C1 = 2l
2
. It is easy to check that

(C.5)

√
1 + zj
1 − zj

=

√
1 + zj√
1 − zj

, 1 + zj =
√

1 + zj
√

1 + zj ,√
1 + x2

j =
√

1 + zj
√

1 − zj (zj = −ixj , xj ∈ R) .

We shall use the polynomial identity∏
1≤j<k≤l

ajbk =
( l∏

j=1

al−j
j

)( l∏
k=1

bk−1
k

)
(C.6)

when either bj = 1 or bj = aj for all 1 ≤ j ≤ l. By (124) and (C.6),

∆(ĉ−(x)) = ξ
( l−1∏

j=1

ul−j
j

) ∏
1≤j<k≤l

(1 − u−1
j u−1

k )(1 − u−1
j uk)

l∏
j=1

(1 − u−1
j )

= ξ
∏

1≤j<k≤l

(uj − u−1
k )(1 − u−1

j uk)

l∏
j=1

(1 − u−1
j ) .

By (C.5),

uj − u−1
k =

1 + zj
1 − zj

− 1 − zk
1 + zk

=
2(zj + zk)

(1 − zj)(1 + zk)
,

1 − u−1
j uk = 1 − 1 − zj

1 + zj

1 + zk
1 − zk

=
2(zj − zk)

(1 + zj)(1 − zk)
,

1 − u−1
j = 1 − 1 − zj

1 + zj
=

2zj
1 + zj

=
2zj√

1 + zj
√

1 + zj
.

Since ξ =
∏l

j=1
√
uj , we obtain by (C.5), (C.6) and (A.1),

∆(ĉ−(x)) = 2l
2

∏
1≤j<k≤l

1

(1 − z2
j )(1 − z2

k)

l∏
j=1

1√
1 + zj

√
1 − zj

×
∏

1≤j<k≤l

(zj + zk)(zj − zk)

l∏
j=1

zj

= 2l
2
( l∏

j=1

1

(1 − z2
j )

l−1

l∏
j=1

1√
1 + x2

j

)
πg/h(x) (x ∈ h) ,



SBOs for Dual Pairs with One Member Compact 373

which gives (C.4).

Recall from (219) that if x = diag(x1J1, x2J2, . . . , xlJl, 0) ∈ h = hs, then

c�(x) = diag(v1, v2, . . . , vl, 1) has coordinates

vj = c(xjJj) = −c−(xjJj) = −uj , (1 ≤ j ≤ l)

with |vj | = 1 and vj �= 1 for all j. The identification (C.1) implies the

identification

vj = −uj =
zj + 1

zj − 1
, (zj = −ixj , 1 ≤ j ≤ l) .

On the subset where vj �= ±1 for all j define

ĉ�(x) = σ(c�(x)) (x ∈ h, xj �= 0, 1 ≤ j ≤ l) .(C.7)

We now prove the following equality:

∆(ĉ�(x)) = C2

(
l∏
j=1

sgn(xj)

)
πgs/hs(x) ch−2l+1(x) (x ∈ h, xj �= 0, 1 ≤ j ≤ l) ,(C.8)

where C2 = (2i)l
2

and sgn(xj) = xj/|xj |. (Notice that ∆(ĉ�(x)) is singular

at xj = 0 because so is the fixed section σ, which depends on our choice of√·.) It is easy to check that

(C.9)

√
zj + 1

zj − 1
=

√
zj + 1√
zj − 1

, zj + 1 =
√

zj + 1
√

zj + 1 ,

√
zj − 1 = −i sgn(xj)

√
1 − zj , −i sgn(xj)

√
1 + x2

j =
√

zj + 1
√

zj − 1

(zj = −ixj , xj ∈ R \ {0}) .
As before,

∆(ĉ�(x)) = ξ
∏

1≤j<k≤l

(vj − v−1
k )(1 − v−1

j vk)
l∏

j=1

(1 − v−1
j ) ,

where, by (C.9),

vj − v−1
k =

zj + 1

zj − 1
− zk − 1

zk + 1
=

2(zj + zk)

(zj − 1)(zk + 1)
,

1 − v−1
j vk = 1 − zj − 1

zj + 1

zk + 1

zk − 1
=

2(−zj + zk)

(zj + 1)(zk − 1)
,

1 − v−1
j = 1 − zj − 1

zj + 1
=

2

zj + 1
=

2√
zj + 1

√
zj + 1

.
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Since ξ =
∏l

j=1
√
vj , we obtain by (C.5), (C.6) and (A.1),

∆(ĉ�(x)) = 2l
2
( l∏
j=1

√
zj + 1

zj − 1

)( ∏
1≤j<k≤l

1

(z2
j − 1)(z2

k − 1)

)

×
( l∏
j=1

1√
zj + 1

√
zj + 1

)( ∏
1≤j<k≤l

(zj + zk)(−zj + zk)
)

= 2l
2
( l∏
j=1

√
zj + 1√
zj − 1

1√
zj + 1

√
zj + 1

)( l∏
j=1

1

(1 − z2
j )
l−1

)
× (−1)l(l−1)/2

( ∏
1≤j<k≤l

(zj + zk)(zj − zk)
)

= il(l−1)2l
2
( l∏
j=1

1√
zj − 1

√
zj + 1

)( l∏
j=1

1

(1 − z2
j )
l−1

)
πgs/hs

(x)

= (2i)l
2
( l∏
j=1

sgn(xj)√
1 + x2

j

)( l∏
j=1

1

(1 + x2
j )
l−1

)
πgs/hs

(x) (x ∈ h \ {0}) ,

which gives (C.8).

Appendix D. The Special Functions Pa,b and Qa,b

For two integers a and b define the following functions in the real variable

ξ,

Pa,b,2(ξ) =

{ ∑b−1
k=0

a(a+1)···(a+k−1)
k!(b−1−k)! 2−a−kξb−1−k if b ≥ 1

0 if b ≤ 0,
(D.1)

Pa,b,−2(ξ) =


(−1)a+b−1

∑a−1
k=0

b(b+1)···(b+k−1)
k!(a−1−k)! (−2)−b−kξa−1−k

if a ≥ 1

0 if a ≤ 0,

(D.2)

where a(a + 1) · · · (a + k − 1) = 1 if k = 0. Notice that

Pa,b,−2(ξ) = Pb,a,2(−ξ) (ξ ∈ R, a, b ∈ Z) .(D.3)

Set

Pa,b(ξ) = 2π(Pa,b,2(ξ)IR+(ξ) + Pa,b,−2(ξ)IR−(ξ))(D.4)

= 2π(Pa,b,2(ξ)IR+(ξ) + Pb,a,2(−ξ)IR+(−ξ)) ,
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where IS denotes the indicator function of the set S. Also, let

(D.5) Qa,b(iy)

= 2π


0 if a + b ≥ 1 ,∑−a

k=b
a(a+1)···(a+k−1)

k! 2−a−k(1 − iy)k−b if − a > b− 1 ≥ 0 ,∑−b
k=a

b(b+1)···(b+k−1)
k! 2−b−k(1 + iy)k−a if − b > a− 1 ≥ 0 ,

(1 + iy)−a(1 − iy)−b if a ≤ 0 and b ≤ 0 .

Observe also that

Pb,a(ξ) = Pa,b(−ξ) and Qb,a(iy) = Qa,b(−iy) .(D.6)

The following elementary fact will be crucial at several points.

Lemma D.1. Suppose that a + b ≤ 1. Then at most one between Pa,b,2

and Pa,b,−2 can be non-zero. Hence Pa,b is either 0 or the restriction of a

polynomial to a half line.

Remark 17. Let Γ denote the gamma function. If k is a nonnegative

integer, then

a(a + 1) · · · (a + k − 1) =
Γ(a + k)

Γ(a)
,

which is often shortened by the Pochhammer symbol (a)k. Another useful
formula is

a(a+1) · · · (a+k−1) = (−1)k(−a)(−a−1) · · · (−a−k+1) = (−1)k
Γ(−a + 1)

Γ(−a + 1 − k)
.

In this notation, for an integer b ≥ 1 and h = 0, 1, . . . , b− 1,

(b− 1− h)! =
(b− 1)!

(−b + 1)h
and Γ(−a− b+ 2 + h) = Γ(−a− b+ 2) (−a− b+ 2)h .

Hence

Pa,b,2(ξ) =
b−1∑
k=0

(−1)k
Γ(−a + 1)

Γ(−a + 1 − k)

1

k!(b− 1 − k)!
2−a−kξb−1−k

= Γ(−a + 1)
b−1∑
h=0

(−1)b−1−h 1

Γ(−a− b + 2 + h)

1

(b− 1 − h)!h!
2−a−b+1+hξh

= (−1)b−12−a−b+1 Γ(−a + 1)

Γ(−a− b + 2) (b− 1)!

b−1∑
h=0

(−b + 1)h
(−a− b + 2)hh!

(2ξ)h
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= (−1)b−12−a−b+1 Γ(−a + 1)

Γ(−a− b + 2) (b− 1)!
1F1

(
− b + 1;−a− b + 2; 2ξ

)
= (−1)b−12−a−b+1L−a−b+1

b−1 (2ξ) ,

where 1F1 is the confluent hypergeometric function and Lα
n(x) is a Laguerre

polynomial. See [Erd53, 6.9(36), §10.12].

Proposition D.2. For any a, b ∈ Z, the formula∫
R

(1 + iy)−a(1 − iy)−bφ(y) dy (φ ∈ S(R))(D.7)

defines a tempered distribution on R. The restriction of the Fourier trans-

form of this distribution to R \ {0} is a function given by∫
R

(1 + iy)−a(1 − iy)−be−iyξ dy = Pa,b(ξ)e
−|ξ|.(D.8)

The right-hand side of (D.8) is an absolutely integrable function on the real

line and thus defines a tempered distribution on R. Furthermore,

(1 + iy)−a(1 − iy)−b =
1

2π

∫
R

Pa,b(ξ)e
−|ξ|eiyξ dy +

1

2π
Qa,b(iy)(D.9)

and hence,∫
R

(1 + iy)−a(1 − iy)−be−iyξ dy = Pa,b(ξ)e
−|ξ| + Qa,b(−

d

dξ
)δ0(ξ) .(D.10)

Proof. Since, |1 ± iy| =
√

1 + y2, (D.7) is clear. The integral (D.8)

is equal to

(D.11)
1

i

∫
iR

(1 + z)−a(1 − z)−be−zξ dz

= 2π(−IR+(ξ) resz=1(1 + z)−a(1 − z)−be−zξ

+ IR−(ξ) resz=−1(1 + z)−a(1 − z)−be−zξ) .

The computation of the two residues is straightforward and (D.8) follows.

Since ∫ ∞

0
e−ξeiξy dξ = (1 − iy)−1 ,
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we have

(D.12)

∫ ∞

0
ξme−ξeiξy dξ =

(
d

d(iy)

)m

(1 − iy)−1 = m!(1 − iy)−m−1

(m = 0, 1, 2, . . . ) .

Thus, if b ≥ 1, then∫ ∞

0
Pa,b,2(ξ)e

−ξeiξy dξ

=

b−1∑
k=0

a(a + 1) · · · (a + k − 1)

k!
2−a−k(1 − iy)−b+k

= (1 − iy)−b2−a
b−1∑
k=0

(−a)(−a− 1) · · · (−a− k + 1)

k!

(
−1

2
(1 − iy)

)k

.

Also, if a ≤ 0, then

2a(1 + iy)−a =

(
1 − 1

2
(1 − iy)

)−a

=
−a∑
k=0

(
−a

k

)(
−1

2
(1 − iy)

)k

=
−a∑
k=0

(−a)(−a− 1) · · · (−a− k + 1)

k!

(
−1

2
(1 − iy)

)k

.

Hence, ∫ ∞

0

Pa,b,2(ξ)e
−ξeiξy dξ − (1 + iy)−a(1 − iy)−b(D.13)

= (1 − iy)−b2−a
(
b−1∑
k=0

(−a)(−a− 1) · · · (−a− k + 1)

k!

(
−1

2
(1 − iy)

)k

−
−a∑
k=0

(−a)(−a− 1) · · · (−a− k + 1)

k!

(
−1

2
(1 − iy)

)k)
.

Recall that Pa,b,−2 = 0 if a ≤ 0. Hence, (D.8) shows that (D.13) is the

inverse Fourier transform of a distribution supported at {0}, hence a poly-

nomial.

Suppose −a < b− 1. Then (D.13) is equal to

2−a
b−1∑

k=−a+1

(−a)(−a− 1) · · · (−a− k + 1)

k!

(
−1

2

)k

(1 − iy)k−b ,
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which is zero because (−a)(−a− 1) · · · (−a− k + 1) = 0 for k ≥ −a + 1. If

−a = b− 1, then (D.13) is obviously zero.

Suppose −a > b− 1. Then (D.13) is equal to

−2−a
−a∑
k=b

(−a)(−a− 1) · · · (−a− k + 1)

k!

(
−1

2

)k

(1 − iy)k−b .(D.14)

As in (D.12) we have∫ 0

−∞
ξmeξeiξy dξ =

(
d

d(iy)

)m
(1 + iy)−1 = (−1)mm!(1 + iy)−m−1 (m = 0, 1, 2, . . . ) .

Suppose a ≥ 1. Then∫ 0

−∞
Pa,b,−2(ξ)e

ξeiξy dξ

= (−1)a+b−1
a−1∑
k=0

b(b + 1) · · · (b + k − 1)

k!
(−2)−b−k(−1)a−1+k(1 + iy)−a+k

= (1 + iy)−a2−b
a−1∑
k=0

(−b)(−b− 1) · · · (−b− k + 1)

k!

(
−1

2
(1 + iy)

)k
.

Also, if b ≤ 0, then

2b(1 − iy)−b =

−b∑
k=0

(−b)(−b− 1) · · · (−b− k + 1)

k!

(
−1

2
(1 + iy)

)k

.

Hence, ∫ 0

−∞
Pa,b,−2(ξ)e

ξeiξy dξ − (1 + iy)−a(1 − iy)−b(D.15)

= (1 + iy)−a2−b
(
a−1∑
k=0

(−b)(−b− 1) · · · (−b− k + 1)

k!

(
−1

2
(1 + iy)

)k

−
−b∑
k=0

(−b)(−b− 1) · · · (−b− k + 1)

k!

(
−1

2
(1 + iy)

)k)
.

As before, we show that (D.15) is zero if −b ≤ a − 1. If −b > a − 1, then

(D.15) is equal to

−2−b
−b∑
k=a

(−b)(−b− 1) · · · (−b− k + 1)

k!

(
−1

2

)k

(1 + iy)k−a .
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If a ≥ 1 and b ≥ 1, then our computations show that∫ ∞

0

Pa,b,2(ξ)e
−ξeiξy dξ +

∫ 0

−∞
Pa,b,−2(ξ)e

ξeiξy dξ − (1 + iy)−a(1 − iy)−b(D.16)

is a polynomial which tends to zero if y goes to infinity. Thus (D.16) is

equal zero. This completes the proof of (D.9). The statement (D.10) is a

direct consequence of (D.9). �

The test functions which occur in Proposition D.2 need not be in the

Schwartz space. In fact the test functions we shall use in our applications are

not necessarily smooth. Therefore we shall need a more precise version of

the formula (D.10). This requires a definition and two well-known lemmas.

Following Harish-Chandra denote by S(R×) the space of the smooth

complex valued functions defined on R× whose all derivatives are rapidly

decreasing at infinity and have limits at zero from both sides. For ψ ∈ S(R×)

let

ψ(0+) = lim
x→0+

ψ(ξ) , ψ(0−) = lim
x→0−

ψ(ξ), 〈ψ〉0 = ψ(0+) − ψ(0−) .

In particular the condition 〈ψ〉0 = 0 means that ψ extends to a continuous

function on R.

Lemma D.3. Let c = 0, 1, 2, . . . and let ψ ∈ S(R×). Suppose

〈ψ〉0 = · · · = 〈ψ(c−1)〉0 = 0 .(D.17)

(The condition (D.17) is empty if c = 0.) Then∣∣∣∣∫
R×

e−iyξψ(ξ) dξ

∣∣∣∣ ≤ min{1, |y|−c−1}(|〈ψ(c)〉0|+ ‖ ψ(c+1) ‖1 + ‖ ψ ‖1)(D.18)

Proof. Integration by parts shows that for z ∈ C×∫
R+

e−zξψ(ξ) dξ = z−1ψ(0+) + · · · + z−c−1ψ(c)(0+) + z−c−1

∫
R+

e−zξψ(c+1)(ξ) dξ ,∫
R−

e−zξψ(ξ) dξ = −z−1ψ(0−) − · · · − z−c−1ψ(c)(0−) + z−c−1

∫
R−

e−zξψ(c+1)(ξ) dξ .

Hence,∫
R×

e−zξψ(ξ) dξ
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= z−1〈ψ〉0 + · · · + z−c〈ψ(c−1)〉0 + z−c−1〈ψ(c)〉0 + z−c−1

∫
R×

e−zξψ(c+1)(ξ) dξ

and (D.18) follows. �

Lemma D.4. Under the assumptions of Lemma D.3, with 1 ≤ c,∫
R

∫
R×

(iy)ke−iyξψ(ξ) dξ dy = 2πψ(k)(0) (0 ≤ k ≤ c− 1) ,

where each consecutive integral is absolutely convergent.

Proof. Since ∫
R

|y|c−1 min{1, |y|−c−1} dy < ∞ ,

the absolute convergence follows from Lemma D.3. Since the Fourier trans-

form of ψ is absolutely integrable and since ψ is continuous at zero, Fourier

inversion formula [Hör83, (7.1.4)] shows that∫
R

∫
R×

e−iyξψ(ξ) dξ dy = 2πψ(0) .(D.19)

Also, for 0 < k,∫
R×

(iy)ke−iyξψ(ξ) dξ =

∫
R×

(−∂ξ)
(
(iy)k−1e−iyξ

)
ψ(ξ) dξ

=

∫
R+

(−∂ξ)
(
(iy)k−1e−iyξ

)
ψ(ξ) dξ +

∫
R−

(−∂ξ)
(
(iy)k−1e−iyξ

)
ψ(ξ) dξ

= (iy)k−1ψ(0+) +

∫
R+

(iy)k−1e−iyξψ′(ξ) dξ

− (iy)k−1ψ(0−) +

∫
R−

(iy)k−1e−iyξψ′(ξ) dξ

= (iy)k−1〈ψ〉0 +

∫
R×

(iy)k−1e−iyξψ′(ξ) dξ .

Hence, by induction on k and by our assumption∫
R×

(iy)ke−iyξψ(ξ) dξ = (iy)k−1〈ψ〉0 + (iy)k−2〈ψ′〉0 + · · · + 〈ψ(k−1)〉0

+

∫
R×

e−iyξψ(k)(ξ) dξ

=

∫
R×

e−iyξψ(k)(ξ) dξ .
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Therefore our lemma follows from (D.19). �

The following proposition is an immediate consequence of Lemmas D.3,

D.4, and the formula (D.9).

Proposition D.5. Fix two integers a, b ∈ Z and a function ψ ∈
S(R×). Let c = −a− b. If c ≥ 0 assume that

〈ψ〉0 = · · · = 〈ψ(c)〉0 = 0 .(D.20)

Then ∫
R

∫
R×

(1 + iy)−a(1 − iy)−be−iyξψ(ξ) dξ dy(D.21)

=

∫
R×

Pa,b(ξ)e
−|ξ|ψ(ξ) dξ + Qa,b(∂ξ)ψ(ξ)|ξ=0

=

∫
R

(
Pa,b(ξ)e

−|ξ| + Qa,b(−∂ξ)δ0(ξ)
)
ψ(ξ) dξ ,

where δ0 denotes the Dirac delta at 0.

(Recall that Qa,b = 0 if c < 0 and Qa,b is a polynomial of degree if c, if

c ≥ 0.)

Let S(R+) be the space of the smooth complex valued functions whose all

derivatives are rapidly decreasing at infinity and have limits at zero. Then

S(R+) may be viewed as the subspace of the functions in S(R×) which

are zero on R−. Similarly we define S(R−). The following propositions

are direct consequences of Proposition D.5. We sketch independent proofs

below.

Proposition D.6. There is a seminorm p on the space S(R+) such

that ∣∣∣∣∫
R+

e−zξψ(ξ) dξ

∣∣∣∣ ≤ min{1, |z|−1}p(ψ) (ψ ∈ S(R+), Re z ≥ 0) ,(D.22)

and similarly for S(R−).
Fix integers a, b ∈ Z with a + b ≥ 1. Then for any function ψ ∈ S(R+),∫

R

(1 + iy)−a(1 − iy)−b
∫
R+

e−iyξψ(ξ) dξ dy = 2π

∫
R+

Pa,b,2(ξ)e
−ξψ(ξ) dξ ,(D.23)
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and any function ψ ∈ S(R−),∫
R

(1 + iy)−a(1 − iy)−b
∫
R−

e−iyξψ(ξ) dξ dy = 2π

∫
R−

Pa,b,−2(ξ)e
ξψ(ξ) dξ ,(D.24)

where each consecutive integral is absolutely convergent.

Proof. Clearly∣∣∣∣∫
R+

e−zξψ(ξ) dξ

∣∣∣∣ ≤ ∫
R+

e−Re zξ|ψ(ξ)| dξ ≤‖ ψ ‖1 .

Integration by parts shows that for z �= 0,∫
R+

e−zξψ(ξ) dξ = z−1ψ(0) + z−1

∫
R+

e−zξψ′(ξ) dξ .

Hence (D.22) follows with p(ψ) = |ψ(0)|+ ‖ ψ ‖1 + ‖ ψ′ ‖1.

Let a, b ∈ Z be such that a + b ≥ 1. Then the function

(1 + z)−a(1 − z)−b

∫
R+

e−zξψ(ξ) dξ

is continuous on Re z ≥ 0 and meromorphic on Re z > 0 and (D.22) shows

that it is dominated by |z|−2. Therefore Cauchy’s Theorem implies that the

left-hand side of (D.23) is equal to

−2π resz=1

(
(1 + z)−a(1 − z)−b

∫
R+

e−zξψ(ξ) dξ

)
.

The computation of this residue is straightforward. This verifies (D.23).

The proof of (D.24) is entirely analogous. �

Appendix E. The Covering G̃ → G

In this appendix we recall some results about the splitting of the restric-

tions L̃ → L of the metaplectic covering

1 → {±1} → S̃p(W) → Sp(W) → 1(E.1)

to a subgroup L of the compact member G of a dual pair (G,G′) as in (2).

This is well known, but we could not find a reference sketching the proofs
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of the results we are using in this paper. We are therefore providing a short

and complete argument.

If K is a maximal compact subgroup of Sp(W), then K̃ is a maximal

compact subgroup of S̃p(W). The group S̃p(W) is connected, noncompact,

semisimple and with finite center Z̃. (Since S̃p(W) is a double cover of

Sp(W), only the connectedness needs to be commented. It follows from the

fact that the covering (E.1) does not split; see e.g. [AP14, Proposition 4.20]

or the original proof [Wei64, p. 199]). The maximal compact subgroup K̃ is

therefore connected; see e.g. [Hel78, Chapter VI, Theorem 1.1]. Hence the

covering

K̃ → K(E.2)

does not split.

As is well known, K is isomorphic to a compact unitary group. In fact,

if W = R2n and

J2n =

(
0 In

−In 0

)
,(E.3)

then

Sp2n(R)J2n =
{(a −b

b a

)
; a, b ∈ GLn(R), abt = bat, aat + bbt = In

}
(E.4)

is a maximal compact subgroup of Sp2n(R) and

Sp2n(R)J2n �
(
a −b

b a

)
→ a + ib ∈ Un(E.5)

is a Lie group isomorphism. Any two maximal compact subgroups of Sp(W)

are conjugate by an inner automorphism. Let K → Sp2n(R)J2n be the corre-

sponding isomorphism. Composition with (E.5) fixes then an isomorphism

φ : K → Un. Set

K̃φ = {(u, ζ) ∈ K × C×; det(φ(u)) = ζ2}(E.6)

Recall the bijection between equivalence classes of n-fold path-connected

coverings and the conjugacy classes of index-n subgroups of the fundamen-

tal group (see e.g. [Hat02, Theorem 1.38]). Then, up to an isomorphism of
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coverings, Un has only one connected double cover. Hence (E.2) is isomor-

phic to

K̃φ � (u, ζ) → u ∈ K .(E.7)

Let L ⊆ K be any subgroup and

L̃ → L(E.8)

the restriction of the covering (E.2) to L. Let L̃φ be the preimage of L in

K̃φ. Then (E.8) splits if and only if

L̃φ → L(E.9)

splits, i.e. there is a group homomorphism L � g → ζ(g) ∈ U1 ⊂ C× such

that ζ(g)2 = det(φ(g)) for all g ∈ L. For instance, if L is a connected

subgroup of K such that

L ⊆ {u ∈ K; det(φ(u)) = 1} ,(E.10)

then (E.8) splits.

To fix φ, let (V, (·, ·)) and (V′, (·, ·)′) be the defining spaces of G and

G′, respectively, with dimDV = d and dimDV′ = d′. Realize W as V ⊗D

V′, considered as a real symplectic space, with symplectic form 〈·, ·〉 =

trD/R
(
(·, ·)⊗ (·, ·)′

)
, where trD/R denotes the reduced trace; see [How79, §5]

and [Wei73, p. 169]. Then the group G is viewed as a subgroup of Sp(W)

via the identification G � g → g ⊗ 1 ∈ Sp(W).1 Similarly, G′ is viewed as a

subgroup of Sp(W) via the identification G′ � g′ → 1 ⊗ g′ ∈ Sp(W). Recall

that n-by-n-matrices over C can be identified with 2n-by-2n matrices over

R under the isomorphism

α : M →
(

ReM − ImM

ImM ReM

)
.

Moreover, n-by-n-matrices over H can be identified with 2n-by-2n matrices

over C under the isomorphism

β : M →
(
z1(M) −z2(M)

z2(M) z1(M)

)
.

1Following the notation at the beginning of Section 3, one should identify g and
(g−1)t ⊗ 1.
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Here, for v ∈ H, we write v = z1(v) + jz2(v) with z1(v), z2(v) ∈ C, and we

similarly define z1(M) and z2(M) if M is a matrix over H.

Since G is compact, there is a compatible positive complex structure

J on W such that the maximal compact subgroup K = Sp(W)J of Sp(W)

contains G. Moreover, since G commutes with J , there is J ′ ∈ G′ such that

J = 1 ⊗ J ′. Set Ip,q =

(
Ip 0

0 −Iq

)
. Then, the explicit expressions of J ′

with respect to the standard basis of V " Dd and of J with respect to the

standard basis of W " R2n are given as follows:

(G,G′) J ′ n J

(Od,Sp2m(R)) J2m md J2md

(Ud,Up,q) −iIp,q d(p + q)

(
0 Idp,dq

−Idp,dq 0

)

(Spd,O
∗
2m) −jIm 2md

(
J2pm 0

0 J2pm

)

Notice that in the (Ud,Up,q)-case we have SJS−1 = J2d(p+q) for S =(
Id(p+q) 0

0 Idp,dq

)
; in the (Spd,O

∗
2m)-case, TJT−1 = J4pm for T =

I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I

. Hence, in all cases we can embed G in (E.4) from the

identification g → g ⊗ 1 ∈ Sp(W)J followed by the isomorphism of Sp(W)J

and Sp2n(R)J2n corresponding to the conjugations by S or T , and then apply

(E.5). We obtain:

det(φ(g)) =


det(g)mV if (G,G′) = (Od,Sp2m(R))

det(g)p−q
V if (G,G′) = (Ud,Up,q)

1 if (G,G′) = (Spd,O
∗
2m)

,(E.11)

where det(g)V denotes the determinant of g as an element of G ⊆ GLD(V).

(The determinant of an n-by-n matrix over H can be reduced to a determi-

nant of a 2n-by-2n matrix over C via the isomorphism β. For elements of
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Sp(d), this notion of determinant coincides with other possible notions of

quaternionic determinants; see [Asl96] for additional information.)

Proposition E.1. The covering G̃ → G splits if and only if det(φ(g))

is a square. This happens for all pairs (G,G′) different from (Od,Sp2m(R))

with m odd and (Ud,Up,q) with p + q odd. In these two non-splitting cases,

the covering G̃ → G is isomorphic to the det1/2-covering
√

G � (g, ζ) → g ∈ G(E.12)

where
√

G = {(g, ζ) ∈ G × C×; ζ2 = det(g)V} .(E.13)

Proof. By (E.11) there is a group homomorphism G � g → ζ(g) ∈
U1 ⊆ C× so that ζ(g)2 = det(φ(g)) for all pairs (G,G′) except at most the

two cases listed in the statement of the Proposition.

Suppose that G′ = Sp2m(R), and let ζ : Od → U1 be a continuous group

homomorphism so that ζ(g)2 = det(g)mV = (±1)m. Then ζ(Od) ⊆ {±1,±i}
and it is a subgroup with at most two elements. So ζ(Od) ⊆ {±1}. On the

other hand, if g ∈ Od \ SOd, then det(g)G = −1. Thus ζ(g)2 �= det(g)mV if

m is odd.

Suppose now that G′ = Up,q, and let ζ : Ud → U1 be a continuous

group homomorphism so that ζ(g)2 = det(g)p−q
V . Restriction to U1 ≡

{diag(h, 1 . . . , 1);h ∈ U1} ⊆ Ud yields a continuous group homomorphism

h ∈ U1 → ζ(h) ∈ U1. Thus, there is k ∈ Z so that ζ(h) = hk for all h ∈ U1.

So h2k = ζ(h)2 = det(diag(h, 1, . . . , 1))p−q implies that p + q must be even.

For the last statement, consider for k ∈ Z the covering Mk = {(g, ζ) ∈
G × C×; ζ2 = det(g)2k+1

V } of G. Then (g, ζ) → (g, ζ
1

2k+1 ) is a covering

isomorphism between Mk and M0. �

Remark 18. Keep the notation of (E.6) and let α : K̃φ → K̃ be the

isomorphism lifting φ−1 : Un → K. Then, by [Fol89, Proposition 4.39] or

[Prz89, (1.4.17)], the map

(u, ζ) → ζ−1ω(α(u, ζ))

is independent of ζ.



SBOs for Dual Pairs with One Member Compact 387

Appendix F. On the Nonoccurrence of the Determinant Char-

acter of Od in Howe’s Correspondence

Consider the reductive dual pair (Od,Sp2n(R)) where d > n. Let

Md,n(R) denote the space of d×n matrices with real coefficients and consider

the Schrödinger model for the Weil representation ω, with space of smooth

vectors S = S(Md,n(R)). Moreover, let χ+ be the character of Õd defined

in (81). As recalled on page 283, the representation ω ⊗ χ−1
+ descends to a

representation ω0 of Od given by

ω0(g)f(x) = f(g−1x) (g ∈ Od, f ∈ S, x ∈ Md,n(R)) .(F.1)

In this appendix, we prove that, under the assumption that d > n, the deter-

minant character det does not occur in ω0. This property is a consequence

of [Prz89, (C.43) Corollary] (which considers the more general case of the

pseudo-orthogonal groups Op,q, where p + q = d > n). However, the proof

in [Prz89] uses part of the classification of the K-types of representations

occurring in Howe’s correspondence, determined by [KV78]. The proof be-

low, which follows the p-adic case in [Ral84, p. 399], is classification-free.

Proposition F.1. If d > n, then det does not occur in ω0. In other

words: if d > n, then there is no character σ of Õd occurring in Howe’s

correspondence such that σ⊗χ−1
+ descends to the determinant character det

of Od.

Proof. We argue by contradiction. Suppose f0 ∈ S is a non-zero

function satisfying

f0(g
−1x) = det(g)f0(x) (g ∈ Od, x ∈ Md,n(R)) .

Define Z = {x ∈ Md,n(R) : x has maximal rank n} . Then Z is Od-invariant

and, by the density of Z in Md,n(R), f0|Z �= 0. Decompose Z as a union of

Od-orbits O. Then there is an Od-orbit O such that f0|O �= 0. Set ϕ = f0|O.

Then

ϕ(g−1x) = det(g)ϕ(x) (g ∈ Od, x ∈ O) .(F.2)

Since O ⊆ Z, the centralizer of any element in O is isomorphic to Od−n.

Hence O = Od/Od−n and ϕ ∈ IndOd
Od−n

(1). By (F.2), det occurs in
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IndOd
Od−n

(1). Frobenius’ reciprocity then implies that the character det |Od−n
contains 1, i.e. det |Od−n = 1. This is clearly impossibile, and we have

reached a contradiction. Thus det cannot occur in ω0. �

Appendix G. Tensor Product Decomposition of the Embedding

T over Complementary Invariant Symplectic Sub-

spaces of W

We keep the notation introduced in section 1. Let

χ+(g̃) =
Θ(g̃)

|Θ(g̃)| (g ∈ Sp(W))(G.1)

(Recall that χ+ is not a character on S̃p(W), since S̃p(W) does not have

any nontrivial character. However, χ+ becomes a character when restricted

to specific subgroups of S̃p(W), such as Õd; see (81).) By definition, see

(14),

χ−1
+ (g̃)T (g̃) = |Θ(g̃)|χc(g)µ(g−1)W (g ∈ Sp(W))(G.2)

descends to a distribution on Sp(W).

Let W = W1⊕W2 be an orthogonal decomposition of W, and endow each

subspace Wj (where j = 1, 2) of the symplectic form 〈·, ·〉j = 〈·, ·〉|Wj×Wj .

Suppose that g ∈ Sp(W) preserves W1 and W2. Let g1 and g2 respectively

denote the restrictions g|W1 and g|W2 of g to these subspaces. Suppose

we have chosen a complete polarization W = X ⊕ Y of W such that X =

X1 ⊕ X2 and Y = Y1 ⊕ Y2, where W1 = X1 ⊕ Y1 and W2 = X2 ⊕ Y2

are complete polarizations. Similarly, suppose that the compatible positive

complex structures J , J1, J2 on W, W1, W2, respectively, satisfy J = J1×J2.

Then J(X) = Y if and only if J(X1) = Y1 and J(X2) = Y2, which we

assume.

Write TW, TW1 and TW2 for the distributions corresponding to S̃p(W),

S̃p(W1), S̃p(W2), respectively. Similar notation will apply to other sym-

bols occurring in the computations below. For the tensor product of tem-

pered distributions, we refer to [Trè67, Corollary of Theorem 51.6, especially

(51.7)].

Lemma G.1. In the above notations,

|ΘW(g̃)|χc(g)µ(g−1)W = |ΘW1(g̃1)|χc(g1)µ(g1−1)W1
⊗ |ΘW2(g̃2)|χc(g2)µ(g2−1)W2

.
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Consequently, independently of the choice of the preimages g̃, g̃1 and g̃2 of

g, g1 and g2 in S̃p(W), S̃p(W1), S̃p(W2), respectively,

χ−1
W,+(g̃)TW(g̃) = χ−1

W1,+
(g̃1)TW1(g̃1) ⊗ χ−1

W2,+
(g̃2)TW2(g̃2) .

Hence, if the elements g̃, g̃1 and g̃2 respectively are chosen so that

χ−1
W,+(g̃) = χ−1

W1,+
(g̃1)χ

−1
W2,+

(g̃2) ,

then

TW(g̃) = TW1(g̃1) ⊗ TW2(g̃2) .

Proof. Since W = W1 ⊕ W2 and g1 = g|W1 , g2 = g|W2 , we have

(g − 1)W = (g1 − 1)W1 ⊕ (g2 − 1)W2. Recall from [AP14, Definitions 4.16,

4.18 and 4.23] that

Θ(g̃)2 = Θ2(g) (g ∈ Sp(W)) .

Thus |ΘV(g̃)|2 = |Θ2
V(g)| for V ∈ {W,W1,W2}. It follows that |ΘW(g̃)| =

|ΘW1(g̃1)||ΘW2(g̃2)|, and this independently of the choice of the preimages

of g, g1 and g2 in S̃p(W), S̃p(W1), S̃p(W2), respectively. Since the decom-
position W = W1 ⊕ W2 is orthogonal,

〈c(g)w,w〉 = 〈c(g1)w1, w1〉1 + 〈c(g2)w2, w2〉2 (wj ∈ (gj−1)Wj , j = 1, 2, w = w1 +w2) ,

where c denotes the Cayley transform. Therefore χc(g) = χc(g1) ⊗ χc(g2) on

W = W1 ⊕ W2. Finally, the normalization of measures on subspaces of

W fixed at the beginning of section 1 is such that µ(g−1)W = µ(g1−1)W1
⊗

µ(g2−1)W2
. �

Appendix H. Highest Weights of Irreducible Genuine Represen-

tations of G̃

In this appendix we collect the roots and weights for the irreducible

genuine representations of G̃, where G is a compact member of a reductive

dual pair (G,G′). Let h be a fixed Cartan subalgebra of the Lie algebra

g of G. We denote by ∆+ a choice of positive roots for (gC, hC) and by ρ

the one-half of their sum. Each genuine irreducible representation of G̃ has

highest weight λ =
∑l

j=1 λjej listed below.
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(G,G′) = (Ul,Up,q), l ≥ 1, q ≥ p ≥ 0, p + q ≥ 1:

If l = 1, then hC = gC. If l ≥ 2, then:

∆+ = {ej − ek; 1 ≤ j < k ≤ l} (type Al−1) , ρ =
l∑

j=1

( l + 1

2
− j

)
ej ,

λj =
p− q

2
+ νj , νj ∈ Z, ν1 ≥ ν2 ≥ · · · ≥ νl .

(G,G′) = (O2l+1,Sp2l′(R)), l ≥ 0, l′ ≥ 1:

If l = 0, then g = 0. If l ≥ 1, then:

∆+ = {ej ± ek; 1 ≤ j < k ≤ l} ∪ {ej ; 1 ≤ j ≤ l} (type Bl) ,

ρ =

l∑
j=1

(
l +

1

2
− j

)
ej , λj ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0 .

There are two irreducible genuine representations of highest weight λ.

(G,G′) = (Spl,O
∗
2l′), l ≥ 1, l′ ≥ 1 (for l′ = 1 this is a degenerate pair):

∆+ = {ej ± ek; 1 ≤ j < k ≤ l} ∪ {2ej ; 1 ≤ j ≤ l} (type Cl) ,

ρ =
l∑

j=1

(l + 1 − j)ej , λj ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0 .

(G,G′) = (O2l,Sp2l′(R)), l ≥ 1, l′ ≥ 1:

If l = 1, then hC = gC. If l ≥ 2, then:

∆+ = {ej ± ek; 1 ≤ j < k ≤ l} (type Dl) , ρ =
l∑

j=1

(l − j)ej ,

λj ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ |λl| .
The weights (λ1, . . . , λl−1,±λl) yield the same representation of O2l if

λl �= 0.

If λl = 0, there are two irreducible genuine representations of highest

weight λ.

Appendix I. Integration on the Quotient Space S/Sh

1

We retain the notation of sections 3 and 4. The purpose of this appendix

is to prove the following lemma.

Lemma I.1. Suppose first that G �= O2l+1 with l < l′. Then there are
positive constants C1 and C2 such that for all φ ∈ Cc(W) and w ∈ h1

reg∫
S/Sh

1

φ(s.w) d(sSh1) = C1

∫
G

∫
G′/Z′

φ((g, g′).w) dg d(g′Z′) if l ≤ l′(I.1)
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∫
S/Sh

1

φ(s.w) d(sSh1) = C2

∫
G/Z

∫
G′

φ((g, g′).w) d(gZ) dg′ if l > l′ .(I.2)

Now, let G = O2l+1 with l < l′ and let w0 ∈ s1(V
0) be a nonzero element.

Then there is a positive constant C3 such that for all φ ∈ Cc(W) and w ∈
h1

reg ∫
S/S

h
1
+w0

φ(s.(w + w0)) d(sSh1+w0)(I.3)

= C3

∫
G

∫
G′/Z′ n

φ((g, g′).(w + w0)) dg d(g′Z′ n) ,

where Z′ n is the centralizer in Z′ of n = τ ′(w0).

Before proving Lemma I.1, let us consider the special case of the dual

pair (G,G′) = (O1,Sp2n(R)), which is not included in this lemma but will

be needed in its proof. In the notation of section 3, V = V0 ⊕ V1, where

dimV0 = 1 and dimV1 = 2n. We have the identifications

S = G × G′ = O(V0) × Sp(V1) , W = Hom(V1,V0) .

Let 0 �= w0 ∈ W. We shall describe StabG′(w0), the stabilizer of w0 in

G′ = Sp(V1), as well as
(
O(V0) × Sp(V1)

)w2
0 and

(
O(V0) × Sp(V1)

)w0 .

Since dim Kerw0 = dim W − 1, we see that dim(Kerw0)
⊥ = 1. Let

X = (Kerw0)
⊥. Since dim X = 1, this is an isotropic subspace of W.

Furthermore Kerw0 = X⊥. Let Y ⊆ W be a subspace of dimension 1 such

that W = Kerw0 ⊕ Y. Set U = (X + Y)⊥. Then the restriction of the

symplectic form of W to U is non-degenerate and

V1 = X ⊕ U ⊕ Y .(I.4)

Let PY ⊆ G′ be the parabolic subgroup preserving Y. Then we have an

isomorphism

PY = GL1(Y) × Sp(U) × N ,

where N is the uniponent radical, isomorphic to a Heisenberg group. We

see from (I.4) that

StabG′(w0) = {1} × Sp(U) × N .(I.5)
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If w1, w2 ∈ s1(V) are non-zero and such that w2
1 = w2

2, then w2 =

±w1. Equivalently, let τ ′ : W → g′ = sp(W) denote the unnormalized

moment map. Then τ ′(w1) = τ ′(w2) implies w2 = ±w1, because O1 acts

transitively on the fibers of τ ′. Equivalently, if one thinks of W as M1,2n(R)

and setting w∗ = Jwt for J =

(
0 1n

−1n 0

)
, one has that w∗

1w1 = w∗
2w2.

This is equivalent to wt
1w1 = wt

2w2, which implies w2 = ±w1.

Now, one readily checks that g′ ∈ Sp(V1)
w2

0 if and only if g′τ ′(w0)g
′−1 =

τ ′(w0). Since, for g′ ∈ Sp(V1),

g′τ ′(w0)g
′−1

= g′w∗
0w0g

′−1
= (w0g

′−1
)∗(w0g

′−1
) = τ ′(w0g

′−1
) ,

this is equivalent to τ ′(w0g
′−1) = τ ′(w0), i.e. w0g

′−1 = ±w0. In turn, this

means that ±g′ ∈ StabG′(w0). Thus

Sp(V1)
w2

0 = {±1} × Sp(U) × N .(I.6)

It follows that(
O(V0) × Sp(V1)

)w2
0 = {±1} ×

(
{±1} × Sp(U) × N

)
(I.7)

and (
O(V0) × Sp(V1)

)w0 = {(ε; ε,m, n); ε = ±1, m ∈ Sp(U), n ∈ N} .(I.8)

Notice that they do not depend on the choice of 0 �= w0 ∈ W. Moreover,(
O(V0) × Sp(V1)

)w2
0/
(
O(V0) × Sp(V1)

)w0 = ({±1} × {±1})/{±(1, 1)}

is a group isomorphic to O1.

Proof of Lemma I.1. We now prove (I.1), excluding for the moment

the pair (G,G′) = (O2l+1,Sp2l(R)).

If l ≤ l′, then h′ = h ⊕ h′′. Write z′ = h ⊕ z′′ and, for the corresponding

groups, Z′ = H × Z′′. Then Sh2
1 = H × Z′.

Let ∆ : H → G × G′ be defined by ∆(h) = (h, (h, 1l′−l)), where 1r
denotes the identity matrix of size r. Then Sh1 = ∆(H)({1l}× ({1l}×Z′′)).
Set

L = Sh2
1/Sh1 = (H × H × Z′′)/Sh1 = (H × H × {1l′−l})/∆(H) .
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Then L is a compact abelian group because so is H. It acts on S/Sh

1
by

(g, g′)Sh1 · (h1, h2, 1l′−l)∆(H) = (gh1, g
′(h2, 1l′−l))S

h1 .

The action is proper and free. Hence the quotient space (S/Sh

1
)/L, i.e. the

space of orbits for this action, has a unique structure of smooth manifold
such that the canonical projection S/Sh1 → (S/Sh1)/L is a principal fiber
bundle with structure group L. Since we have fixed a Haar measure on
H, we also have Haar measures on H × H × {1l′−l} and ∆(H). This fixes
a quotient measure on L = (H × H × {1l′−l})/∆(H). Recall the notation
d(sSh1) for the quotient measure of S/Sh1 . Then there is a unique measure
ds• on (S/Sh1)/L such that for all Φ ∈ Cc(S/S

h1)∫
S/Sh

1

Φ(sSh1) d(sSh1)

=

∫
(S/Sh

1 )/L

(∫
(H×H×{1l′−l})/∆(H)

Φ
(
(g, g′)(h1, h2, 1l′−l)S

h1
)

× d((h1, h2, 1l′−l)∆(H))

)
d(g, g′)•

=
1

vol(∆(H))

∫
(S/Sh

1 )/L

(∫
H×H

Φ
(
(g, g′)(h1, h2, 1l′−l)S

h1
)
d(h1, h2)

)
d(g, g′)• ;

see e.g. [DK00, §3.13, p. 183]. As a set,

(S/Sh1)/L =
(
(G × G′)/Sh1

)
/
(
(H × H × Z′′)/Sh1

)
(I.9)

= (G × G′)/(H × H × Z′′)

= (G × G′)/(H × Z′) = G/H × G′/Z′ ,

where the second equality holds under the identification (g, g′)Sh1L =

(g, g′)(H × H × Z′′). Since the measure d(sSh1) on S/Sh1 is invariant with

respect to the action of S by left-translation and this action commutes with

the right-action of L on S/Sh1 , the measure ds• is left S-invariant. By the

above identification, (G×G′)/(H×Z′) is endowed with an S-invariant mea-

sure, which must be a positive multiple of the quotient measure of those of

G×G′ and H×Z′. Thus ds• is a positive multiple of the product measure of

the quotient measures of G/H and G′/Z′. In conclusion, there is a positive

constant C such that for every Φ ∈ Cc(S/S
h1)∫

S/S
h
1

Φ(sSh1) d(sSh1)
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= C

∫
G/H×G′/Z′

(∫
H×H

Φ
(
(g, g′)(h1, h2, 1l′−l)S

h1
)
d(h1, h2)

)
d(gH) d(g′Z′) .

Suppose that Φ(s) = φ(s.w), where φ ∈ Cc(W) and w ∈ h1
reg. Hence

φ(sSh1 .w) = φ(s.w). Observe that

(g, g′)(h1, h2, 1l′−l).w = gh1w(h−1
2 , 1l′−l)g

′−1 = gh1h
−1
2 wg′−1 = (gh1h

−1
2 , g′).w .

Hence∫
H×H

φ
(
(g, g′)(h1, h2, 1l′−l).w

)
d(h1, h2) =

∫
H

∫
H
φ((gh1, g

′).w) dh1 dh2

= vol(H)

∫
H
φ((gh1, g

′).w) dh1

and∫
G/H×G′/Z′

∫
H×H

φ
(
(g, g′)(h1, h2, 1l′−l).w

)
d(h1, h2) d(gH) d(g′Z′)

= vol(H)

∫
G/H

∫
G′/Z′

(∫
H
φ((gh1, g

′).w)dh1

)
d(gH) d(g′Z′)

= vol(H)

∫
G

∫
G′/Z′

φ((g, g′).w) dg d(g′Z′) .

In conclusion, there is a positive constant C such that for all φ ∈ Cc(W)

and w ∈ h1
reg∫

S/S
h
1

φ(s.w) d(sSh1) = C

∫
G

∫
G′/Z′

φ((g, g′).w) dg d(g′Z′) .(I.10)

Let us now consider the dual pair (G,G′) = (O2l+1,Sp2l′(R)) with 1 ≤
l ≤ l′. We keep the notation introduced on page 287. In particular, V0 =

V0
0
⊕ V0

1
where dim V0

0
= 1 and dimV0

1
= 2(l′ − l). Each h ∈ H0 fixes

V0
0

and hence every h ∈ H is of the form h = (h•, ε) where h• ∈ O(V1
0
⊕

· · ·Vl
0
) " O2l and ε ∈ O(V0

0
). The elements h• form a Cartan subgroup H•

of O(V1
0
⊕ · · ·Vl

0
). At the group level, the decomposition h′ = h⊕ h′′ arising

from the identification (42) corresponds to a decomposition H′ = H• × H′′

of the Cartan subgroup H′ of G′.
If l = l′, then h′′ = 0 and the equality z′ = h′ = h corresponds, at

the group level, to Z′ = H′ = H•. Hence Sh2
1 = H × Z′ = H × H• ∼=



SBOs for Dual Pairs with One Member Compact 395

H• × H• × O(V0
0
) and Sh1 = {(h•, ε, h•);h• ∈ H•} ∼= ∆(H•) × O(V0

0
), where

∆(H•) = {(h, h);h ∈ H•}. Thus L = Sh2
1/Sh1 ∼= (H• × H•)/∆(H•) is a

compact abelian group and, as a set,

(S/Sh1)/L =
(
(G × G′)/Sh1

)
/
(
(H × Z′)/Sh1

)
= G/H × G′/Z′ ,

as in (I.9). Hence (I.1) follows as in the general case l ≤ l′.
Let us now consider the dual pair (G,G′) = (O2l+1,Sp2l′) with 1 ≤ l < l′.

Let 0 �= w0 ∈ s1(V
0) = Hom(V0

1
,V0

0
). We shall describe S(h1+w0)2 and its

subgroup Sh1+w0 .

Since h1 preserves the decomposition (34), we see that (h1 + w0)
2 =

h2
1
+ w2

0 and hence

S(h1+w0)2 = Sh2
1
+w2

0 =
(
Sh2

1

)w2
0 = H• × O(V0

0
) × H• × Sp(V0

1
)n,(I.11)

" H• × H• ×
(
O(V0

0
) × Sp(V0

1
)
)w2

0 ,

where O(V0
0
) = {±1} and Sp(V0

1
)n is the centralizer of n = τ ′(w0) in the

symplectic group Sp(V0
1
). Notice that we can also write

S(h1+w0)2 = H × Z′ n ,(I.12)

where Z′ n is the centralizer of n in Z′. In the identification (I.11),

Sh1+w0 =
{
(h, h, s);h ∈ H•, s ∈

(
O(V0

0
) × Sp(V0

1
)
)w0

}
(I.13)

= ∆(H•) ×
(
O(V0

0
) × Sp(V0

1
)
)w0 .

The groups
(
O(V0

0
) × Sp(V0

1
)
)w2

0 and
(
O(V0

0
) × Sp(V0

1
)
)w0 are computed as

in (I.7) and (I.8), respectively, with V replaced by V0. Then

L = S(h1+w0)2/Sh1+w0 " (H• × H•)/∆(H•)

×
(
O(V0

0
) × Sp(V0

1
)
)w2

0/
(
O(V0

0
) × Sp(V0

1
)
)w0

∼= (H• × H•)/∆(H•) × {±1} ,

which is a compact abelian group. By (I.12), we therefore obtain that, as a

set,

(S/Sh1+w0)/L = (G × G′)/(H × Z′ n) = G/H × G′/Z′ n ,
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and (I.3) follows as in the general case l ≤ l′.

The proof of (I.2) is similar to that of (I.1) and left to reader. �
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[DKP05] Daszkiewicz, A., Kraśkiewicz, W. and T. Przebinda, Dual Pairs and
Kostant-Sekiguchi Correspondence. II. Classification of Nilpotent El-
ements, Central Eur. J. Math. 3 (2005), 430–464.

[DM99] Deligne, P. and J. W. Morgan, Notes on supersymmetry (following
Joseph Bernstein). In Quantum fields and strings: a course for math-
ematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), pages 41–97, Amer.
Math. Soc., Providence, RI, 1999.

[DP96] Daszkiewicz, A. and T. Przebinda, The oscillator character formula,
for isometry groups of split forms in deep stable range, Invent. Math.



SBOs for Dual Pairs with One Member Compact 397

123(2) (1996), 349–376.
[DV90] Duflo, M. and M. Vergne, Orbites coadjointes et cohomologie

équivariante. In The orbit method in representation theory (Copen-
hagen, 1988), volume 82 of Progr. Math., pages 11–60, Birkhäuser
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