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One Member Compact

By M. MCKEE, A. PASQUALE and T. PRZEBINDA

Abstract. We consider a dual pair (G, G’), in the sense of Howe,
with G compact acting on L?(R™), for an appropriate n, via the Weil
representation w. Let G be the preimage of G in the metaplectic group.
Given a genuine irreducible unitary representation II of G, let II' be
the corresponding irreducible unitary representation of G’ in Howe’s
correspondence. The orthogonal projection onto the II-isotypic com-
ponent L2(R™)yy is, up to a constant multiple, the unique symmetry
breaking operator in Hom ., (HZ*, HiY ® Hf). We study this oper-
ator by computing its Weyl symbol. Our results allow us to recover
the known list of highest weights of irreducible representations of G
occurring in Howe’s correspondence when the rank of G is strictly big-
ger than the rank of G’. They also allow us to compute the wavefront
set of I by elementary means.
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Introduction

Let W be a finite dimensional vector space over R equipped with a non-
degenerate symplectic form (-,-) and let Sp(W) denote the corresponding
symplectic group. Write §1J)(W) for the metaplectic group. Let us fix the
character x of R given by x(r) = > r € R. Then the Weil representation
of Sp(W) associated to  is denoted by (w, H.,).
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For G, G’ C Sp(W) forming a reductive dual pair in the sense of Howe,
let (~}, G’ denote their preimages in é?)(W) Howe’s correspondence (or
local 6-correspondence) for G, G’ is a bijection II < II' between the ir-
reducible admissible representations of G and G’ which occur as smooth
quotients of w, [How89b]. It can be formulated as follows. Assume that
Homg, (K, HiY) # 0. Then Homg, (HZ”, HY) is a G'-module under the ac-
tion via w. Howe proved that it has a unique irreducible quotient, which
is an irreducible admissible representation (I, Hyy) of Q. Conversely,
Hom, (HZ?, Hip) is a G-module which has a unique irreducible admissi-
ble quotient, infinitesimally equivalent to (IT, Hy). Furthermore, IT ® II'
occurs as a quotient of w™ in a unique way, i.e.

(1) dim Hom, , (H”, Hf ® Hyp) = 1.

In [Kob15], the elements of

Homg, (K3, Hiy), Homg, (K, Hiy) and  Homge, (HS, HE ® Hip)

GG/
are called symmetry breaking operators. Their construction is part of Stage
C of Kobayashi’s program for branching problems in the representation
theory of real reductive groups.

Since the last space is one dimensional, it deserves a closer look. The
explicit contruction of the (essentially unique) symmetry breaking operator
in Hom, , (HZ?, Hy ® Hfjy) provides an alternative and direct approach to
Howe’s correspondence. To do this is the aim of the present paper.

Our basic assumption is that (G, G’) is an irreducible dual pair with G
compact. As shown by Howe [How79], up to an isomorphism, (G,G’) is one
of the pairs

(2) (Oa,Sp2in(R)),  (Ua,Upg)s  (SPas Om) -

Then the representations II and II' together with their contragredients are
arbitrary irreducible unitary highest weight representations. They have
been defined by Harish-Chandra in [Har55], were classified in [EHW83] and
have been studied in terms of Zuckerman functors in [Wal84], [Ada83] and
[Ada87]. The 1-1 correspondence of representations in terms of their highest
weights was first determined by Kashiwara and Vergne in [KV78].
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The crucial fact for constructing the symmetry breaking operator in
Homéé, (HY, HY ® HE) is that, up to a non-zero constant multiple, there
is a unique GG’-invariant tempered distribution frigrr on W such that

(3) Hom, (K, Hiy ® Hip) = C(Op o K)(fugm)

where Op and K are classical transformations which we shall review in
section 1. In [Prz93|, fiemr is called the intertwining distribution associated
to I @ II'. In fact, if we work in a Schrodinger model of w, then fremr
happens to be the Weyl symbol, [Hér83], of the operator (Op o K)(fuem)-

The previous paragraph does not require G to be compact. Suppose that
the group G is compact. Let O and dyr respectively denote the character
and the degree of II. Then the projection onto the II-isotypic component of
w is equal to dry/2 times

(4) /G w(§)0n(3) dj = w(Or).

where O11(§) = On(§~") and we normalize the Haar measure d§ of G to
have the total mass 2. (This explains the constant multiple % needed for the
projection. In this way, the mass of G is equal to 1.) By Howe’s correspon-
dence with G compact, the projection onto the Il-isotypic component of w
is a symmetry breaking operator for IT ® II'. The intertwining distribution
for IT @ I’ is therefore determined by the equation

) (0p 6 K)(fre) = 5(On).

There are more cases when frjgrr may be computed via the formula (5), see
[Prz93]. However, if the group G is compact then the distribution character
O may also be recovered from frigrr via an explicit formula, see [Prz91].
Thus, in this case, we have a diagram

(6) On — frigm — O -

In general, the asymptotic properties of frigm relate the associated varieties
of the primitive ideals of II and II' and, under some more assumptions, the
wave front sets of these representations, see [Prz93], [Prz91] and [MPP24].

The usual, often very successful, approach to Howe’s correspondence
avoids any work with distributions on the symplectic space. Instead, one
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finds Langlands parameters (see [Moe89], [AB95], [Pau98], [Pau00], [Pau05],
[LPTZ03]), character formulas (see [Ada98|, [Ren98], [DP96], [Prz18],
[Mer20], [LP22]), or candidates for character formulas (as in [BP14], [Prz00],
[LP24]), or one establishes preservation of unitarity (as in [Li89], [He03],
[Prz93], [ABP*07], [HLS11], [MSZ17]). However, in the background (ex-
plicit or not), there is the orbit correspondence induced by the unnormalized
moment maps

g*(_W—>g/*,

where g and g’ denote the Lie algebras of G and G’, respectively, and g*
and g™ are their duals. This correspondence of orbits has been studied in
[DKP97], [DKP05] and [Pan10]. Furthermore, in their recent work, [LM15],
Loke and Ma computed the associated variety of the representations for the
dual pairs in the stable range in terms of the orbit correspondence. The
p-adic case was studied in detail in [Moe98].

Working with the GG’-invariant distributions on W is a more direct
approach than relying on the orbit correspondence and provides different
insights and results. As a complementary contribution to all work men-
tioned above, we compute the intertwining distributions frgmr explicitly,
see section 5. As an application, we obtain the wave front set of II' by
elementary means. The computation will be sketched in section 17, and the
detailed proof appeared in [MPP24]. Another application of the methods
presented in this paper leads to the explicit formula for the character of
the corresponding irreducible unitary representation II' of G’. This can be
found in [Mer17, Mer20].

The explicit formulas for the intertwining distribution provide important
information on the nature of the symmetry breaking operators. Namely,
they show that none of the symmetry breaking operators of the form (Op o
K)(fuem) is a differential operator. For the present situation, this an-
swers in the negative the question on the existence of differential symmetry
breaking operators, addressed in different contexts by several authors (see
for instance [KP16a, KP16b, KS15] and the references given there). This
property is the content of Corollary 14.

Finally, observe that our computations leading to the intertwining dis-
tributions apply to any genuine irreducible representation II of the compact
member G of a dual pair. They provide an explicit formula for the Weyl
symbol of the projection of w| & onto the Il-isotypic component. According
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to Howe’s duality theorem, this projection is non-zero if and only if there
is a unitary highest weight representation II' of G’ such that II @ I’ oc-
curs in w|éé/, i.e. II occurs in Howe’s correspondence. When the rank of
G is strictly bigger than that of G’, we recover the known necessary and
sufficient conditions on the highest weights of II so that it occurs in Howe’s
correspondence. See Corollary 11.

The paper is organized as follows. In section 1, we introduce some nota-
tion and review the construction of the intertwining distributions. Section 2
computes the intertwining distribution for the dual pair (Z, Sp(W)), where
Z = Oy is the center of the symplectic group Sp(W), and introduces some
properties needed in the sequel. Section 3 recalls how to realize the dual
pairs with one member compact as Lie supergroups, and section 4 collects
some definitions and properties of the Weyl-Harish-Chandra integration for-
mulas on W that we will need to compute the intertwining distributions.
Section 5 states the main results of this paper. The dual pairs (Og, Spyy (R))
are particular because the group SOs is abelian. The intertwining distribu-
tions corresponing to these pairs are computed in section 6. The smallest
example of (Og,Spy(R) = SLy(R)) is presented with more details. An ad-
ditional example is given in section 7, where we illustrate the main two
theorems when (G,G’) = (U;,U,,) and II is the trivial representation of
U;. The proofs of the main results are in sections 8, 9 and 10. We treat
the special cases concerning the non-identity connected components of the
orthogonal groups in sections 11, 12, 13 and 14. Here we need the Weyl’s
integral and character formulas found by Wendt in [Wen01]. Section 15 con-
tains the proof of a necessary condition of a representation of [NJZ to occur in
Howe’s correspondence for (Uj, Uy 4) when p = min(p,q) <! <!'=p+¢. In
section 16, we consider the dual pair (Sp;, O3, ). Using intertwining distri-
bution, we recover the known fact that certain representations of Sp; occur
in Howe’s correspondence. Finally, in section 17, we outline how the results
of this paper lead, for each representation II of G occurring in Howe’s dual-
ity, to the computation of the wave front set of the representation II' dual
to II. The details are in [MPP24]. The nine appendices collect and prove
some auxiliary results.

Acknowledgement. We are indebted to the anonymous referee whose
extremely careful reading and valuable comments made us aware of errors
and omissions in the original manuscript. The questions raised by the referee
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have lead us to make significant additions, which have greatly improved our
paper.

1. Notation and Preliminaries

Let us first recall the construction of the metaplectic group éY)(W) and
the Weil representation w. We are using the approach of [AP14, Section 4],
to which we refer the reader for more details.

Let sp denote the Lie algebra of Sp(W), both contained in End(W). Fix
a positive definite compatible complex structure J on W, that is an element
J € sp such that J2 = —1 (minus the identity on W) and the symmetric
bilinear form (J-,-) is positive definite on W. For an element g € Sp(W),
let J, = J7!(g — 1). The adjoint of J, with respect to the form (J-,-) is
J; = Jg~1(1 — g). In particular, Jy and J; have the same kernel. Hence
the image of Jy is

JgW = (Ker J3)* = (Ker Jy)*

where | denotes the orthogonal complement with respect to (J-,-). There-
fore, the restriction of J; to J;W defines an invertible element. Thus for
every g # 1, it makes sense to talk about det(Jg)jglw, the reciprocal of the
determinant of the restriction of J,; to J,W. With this notation, we have

(7)) Sp(W) = {3 = (g:6) € SP(W) x C, & =™~ det(J,) 71y,

with the convention that det(Jg)jglw = 11if g = 1. There exists a 2-cocycle
C : Sp(W) x Sp(W) — C, explicitly described in [AP14, Proposition 4.13],

such that Sp(W) is a group with respect to the multiplication

(8) (915 1) (92; &2) = (9192;§152C (91, 92))

and the homomorphism

9) Sp(W) 3 (g;€) — g € Sp(W)

does not split.

Let pw (or simply dw) be the Lebesgue measure on W normalized by
the condition that the volume of the unit cube with respect to the form
(J-,-) is 1. (Since all positive complex structures are conjugate by elements
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of Sp, this normalization does not depend on the particular choice of J.)
Let W = X @Y be a complete polarization. We suppose that X, Y and
J are chosen so that J(X) = Y. Similar normalizations are fixed for the
Lebesgue measures on every vector subspace of W, for instance on X and on
Y. Furthermore, for every finite dimensional real vector space V, we write
S(V) for the Schwartz space on V and S&'(V) for the space of tempered
distributions on V. We use the notation G’ for the second member of a dual
pair because it is the centralizer of G in Sp(W). We also use the notation -’
for all the objects associated with G, such as g/, IT’, ... Unfortunately, this
collides with the usual notation for the dual of a linear topological space
in functional analysis, also used in this paper, such as D'(R"), S'(R™), ...
We hope the reader will guess from the context the correct meaning of the
notation.

Each element K € §'(X x X) defines an operator Op(K) € Hom(S(X),
S'(X)) by

(10) Op(K)v(z) = /XK(JJ,IL‘/)U(ZL‘/) da’.
The map
(11) Op : §'(X x X) — Hom(S(X), S’ (X))

is an isomorphism of linear topological spaces. This is known as the
Schwartz Kernel Theorem, [Tre67, Theorem 51.7]. The Weyl transform
is the linear isomorphism K : §'(W) — §’(X x X) defined for f € S(W) by

12 K(Dea) = [ fa=a +ux(Glna ) dy.

(Recall that y is the character of R we fixed at the beginning of the intro-
duction.)
For g € Sp(W), let

(13) Xet)(w) =x(z((g+ V(g - D7 ww)  (u= (9w, weW).

Notice that, if g — 1 is invertible on W, then

Xc(g) (u) = X(i<c(9)ua u>) s
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where ¢(g) = (g +1)(g — 1)~ ! is the usual Cayley transform.
Following [AP14, Definition 4.23 and (114)], we define

(14) T:Sp(W) 3§ =(g;6) — £ Xe(g)g—1yw € S' (W),

where f14_1)w is the Lebesgue measure on the subspace (9—1)W normalized
as above, i.e. the volume of the unit cube with respect to the form (J-,-) is
1. Set

(15) w=0poKoT.

As proved in [AP14, Theorem 4.27], w is a unitary representation of QB on
L2(X). In fact, (w,L?(X)) is the Schrédinger model of Weil representation
of /S\f) attached to the character y and the polarization W = X @ Y. In this
realization, H,, = L2(X) and H® = S(X).

The distribution character of the Weil representation turns out to be
the function

(16) 0 :Sp(W) 3 (g;€) — £ € C,

[AP14, Proposition 4.27]. Hence for § € Sp(W) in the preimage of g €
Sp(W) under the double covering map (9), we have

Suppose now that G,G’ C Sp(W) is a dual pair. Every irreducible
admissible representation IT @ IT’ of Gx G occurring in Howe’s correspon-
dence may be realized, up to infinitesimal equivalence, as a subspace of
HX' = S'(X). Hence

Hom, o, (M, HiY ® Hip) € Hom(S(X), S'(X))

The existence of the interwining distribution frigry € (W) defined (up to
a multiplicative constant) by (3) is thus a consequence of (1), (11) and (12).
Finally, because of (15), equation (4) and (5) lead to the equality

(18) fuenr = 5760 = [ 6n@)7(@)dy.

The problem of finding an explicit expression for frgm is hence transformed
into the task of computing the right-hand side of (18).
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2. The Center of the Metaplectic Group

Let Z = {1,—1} be the center of the symplectic group Sp(W). Then
(Z,Sp(W)) is a dual pair in Sp(W) with compact member Z. Let (Z, é?)(W))
be the corresponding dual pair in the metaplectic group §I/)(W) Then Z
coincides with the center of Sp(W) and is equal to

(19) Z:{(1;1)a(1;_1)7(_1;C)7(_1;_C)}7
where ¢ = (%)%dlmw.

In this section we illustrate how to compute the intertwining distribu-
tions for the pair (Z,Sp(W)). At the same time, we introduce some facts
that will be needed in the rest of the paper.

The formula for the cocycle in (8) is particularly simple over Z:

C(l,:l:l) = C(—l, 1) =1 and C’(_l’ _1) — 2dimW.

Also, C(g,1) = C(1,g9) =1 for all g € Sp(W) by [AP14, Proposition 4.13].
Notice that

(20) (—1;:|:<)2 = (1;C20(—17—1>) — (1;(_1)%dimW)‘
Hence the covering (9) restricted to Z,
(21) 7 3z —>z€7

splits if and only if %dimW is even.
By (14) and (7), we have

T(1;1) =946, T(1;—-1) = =46,
T(-1;0) =Cpw, T(-1-C0)=—Cpw.
Moreover, [AP14, Proposition 4.28] shows that for v € L2(X) and = € X,

w(1; Do (z) = v(z), w(l; =o(r) = —v(z),
; vxzﬁv—x w(—1;— U£:—£U—$
w(=1;Q)o(x) <] (=z), w(=1;=Cv(z) 1 (=)

Since T'(2) = O(2)Xc(z) (z—1yw for Z € Z, it follows that

(22) w(Z)v(z) = v(zz) (E€lZ).
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The fraction
- O(2)
(23) X+(2) = 3755
©(2)]
defines an irreducible character x4 of the group Z. Let € be the unique
non-trivial irreducible character of the two element group Z. Then
- O(2) .=
(24) x-(2) =e(2)37y; (€7
©(2)|

(3€2)

is also an irreducible character of Z.

Let L?(X), C L%(X) denote the subspace of the even functions and let
L2(X)_ C L?(X) denote the subspace of the odd functions. Then, as is well
known, [KV78, (6.9)], the restriction wi of w to L?#(X)4 is irreducible. As
we have seen above, the center Z acts on L2 (X) 4 via the character x+. Thus
X+ is the central character of w4.

Hence, in the case of the dual pair (Z,Sp(W)), Howe’s correspondence
looks as follows

(25) (X-i-ac) A (w+aL2(X)+) and (X—ac) A (w—7L2(X)—) :
The projections
L?2(X) — LX)y and L*X)— L*X)_

are respectively given by
1. 1 o 1. 1 i
Sw(i) = 1 R (Ew() and Zw(xo) = 3 3% (B)eld).
z€Z z€Z
The corresponding intertwining distributions are

L Y 6 5 1 —1dim
fX+®UJ+ = Z ZX+(Z)T(Z) = 5(6 192732 d W,U/W) :
3c7

(26) .
(6 _ 2—5 dlmW/.LW) ,

N | =

fra = 3 SR (B)T(5) =
ZEZ

where we normalize the total mass of Z to be 1, as we did for a general dual

pair (G,G’) with G compact.

The right-hand side of (26) is a sum of two homogenous distributions
of different homogenity degrees. So, asymptotically, they can be isolated.
This allows us to recover pw, and hence Tgvw) (W), the wave front of w,
out of the intertwining distribution.
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3. Dual Pairs as Lie Supergroups

To present the main results of this paper, we need the realization of dual
pairs with one member compact as Lie supergroups. The content of this
section is taken from [Prz06] and [MPP15]. We recall the relevant material
for making our exposition self-contained.

For a dual pair (G,G’) as in (2), there is a division algebra D = R, C,
H with an involution over R, a finite dimensional right D-vector space V
with a positive definite hermitian form (-,-) and a finite dimensional right
D-vector space V' with a non-degenerate skew-hermitian form (-,-)" such
that G coincides with the isometry group of (-,-) and G’ coincides with
the isometry group of (-,-)’. We assume that G centralizes the complex
structure J and that J normalizes G’. Then the conjugation by J is a
Cartan involution on G, which we denote by 6.

Let Vg =V, d = dimp Vg, V7 = V' and d’ = dimp V7. We assume that
both Vg5 and V7 are right vector spaces over D. Set V = V5 ® V7 and define
an element S € End(V) by

S('UQ + 7)1) = Uy — V1 (vo € Vﬁ, V1 € VT) .
Let

End(V); = {z € End(V); Sz = aS},
End(V)7 = {z € End(V); Sz = —aS},
GL(V)g = End(V)y N GL(V).

Denote by (-,-)” the direct sum of the two forms (-,-) and (-,-)". Let

(27) s5 = {z € End(V)g; (zu,v)" = —(u,2v)”, u,v € V},
st ={z € End(V)5; (zu,v)” = (u,Szv)", u,v € V},
5 = 55 @ s,
S={s e GL(V)g; (su,sv)” = (u,v)", u,v €V},
(28) (z,y) = trpyr(Szy) -

(Here trp/r(z) denotes the trace of = considered as a real endomorphism of
V.) Then (S,s) is a real Lie supergroup, i.e. a real Lie group S together
with a real Lie superalgebra s = s5 @ s, whose even component s5 is the
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Lie algebra of S. (In terms of [DM99, §3.8], (S,s) is a Harish-Chandra
pair.) We shall write s(V) instead of s whenever we want to specify the Lie
superalgebra s constructed as above from V and (-,-)".

The group S acts on s by conjugation and (-,-) is a non-degenerate S-
invariant form on the real vector space s, whose restriction to s; is symmetric

and restriction to st is skew-symmetric. We shall employ the notation

(29) s.x = Ad(s)z = szs™ ! (seS, zes),

(30) z(w) = ad(z)(w) = 2w — wx (x € 55, w € s7) .

In terms of the notation introduced at the beginning of this section,
g=>55lvy, 0 =sglv;, G=S8lv,;, G =8|

Define W = Homp(V1, V). Then, by restriction, we have the identification

(31) W =s7.

Under this identification, the adjoint action of G on s becomes the action
on W by the left (postmultiplication). Similarly, the adjoint action of G’ on
s7 becomes the action of G’ on W via the right (premultiplication) by the
inverse. Also, we have the unnormalized moment maps

(32) T:W3w—>w2|\/6€g, T’:Waw—>w2|VTEgl.

An element = € s is called semisimple (resp., nilpotent) if x is semisimple
(resp., nilpotent) as an endomorphism of V. We say that a semisimple
element = € sy is regular if it is nonzero and dim(S.z) > dim(S.y) for all
semisimple y € s1. Let « € sy be fixed. For z,y € sylet {z,y} = zy+yz € 55
be their anticommutator.

The anticommutant and the double anticommutant of x in sy are

xsf = {y€5T1{$,y}:O},
I%ET _ ﬂ y5T=
YeEr ST

respectively. A Cartan subspace by of s7 is defined as the double anticom-
mutant of a regular semisimple element x € s7. We denote by h7"“? the set
of regular elements in by.
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Next we describe the Cartan subspaces hy C s7. We refer to [Prz06, §6]
and [MPP15, §4] for the proofs omitted here. Let [ be the rank of g, I’ the
rank of g/, and set

(33) " = min(l,1').

Given a Cartan subspace by, there are Z/2Z-graded subspaces V/ C V such
that the restriction of the form (-,-)” to each V/ is non-degenerate, V7 is
orthogonal to V¥ for j # k and

(34) v=V'aVeaViae. .. -aV".

The subspace VO coincides with the intersection of the kernels of the ele-
ments of by (equivalently, VY = Ker(x) if by = "*Ts7). For 1 < j < 1", the
subspaces V/ = V% @ V% are described as follows.

Suppose D = R. Then there is a basis vy, v} of V% and a basis vy, v] of
Vi; such that

(35) (vo,v0)" = (vg,v0)" =1, (vo,vp)" =0,
(Ubvl)//: (U/bvl)l/zov (Ubvl) =1
The following formulas define an element u; € st(V7),

wiwo) = —=(v1 —v}), (1) = —=(vp — ¥},

Hg
\V) \V)

HS
\] \]

u;(vp) = 7(1)1 +u1), () = 7(00 +p) -

Suppose D = C. Then there are vectors vy and v such that V% = Cuy,
Vi; = Cu1, (v9,v9)" =1 and (v1,v1)"” = 6;¢, with 6; = £1 fixed by the form
(-,+)'. The following formulas define an element u; € s3(V/),

(36) uj(vg) = e ity ) uj(vy) = e Wity

Suppose D = H. Then V% = Huy, V{; = Huvy, where (vg,v0)” = 1 and
(v1,v1)” = i. The following formulas define an element u; € st(V7),

. T

uj(vg) = e "4vy, uj(vy) =e "2ug.
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In any case, by extending each u; by zero outside V7, we have

l//

(37) by = Ru;.
j=1

The formula (37) describes a maximal family of mutually non-conjugate
Cartan subspaces of s7. By classification, see [Prz06, §6], there is only one
such subspace unless the dual pair (G, G’) is isomorphic to (U, U, ,) with
" =1 < p+q. In the last case there are min(l,p) — max(l — ¢,0) + 1
such subspaces, assuming p < ¢. For each m such that max(l — ¢,0) < m <
min(p, [) there is a Cartan subspace by, determined by the condition that m
is the number of positive §;’s in (36). We may assume that 6; = -+ = 6, = 1
and 6pq1 = -+ = 6 = —1. If (G,G’) is isomorphic to (U;,U,,) with
[ > 1" = p+q, then there is a unique Cartan subspace of s7 up to conjugation.
It is determined by the condition that in (36) there are p positive and ¢
negative 0;’s. We may assume that the first p ¢;’s are positive.

The Weyl group W (S, hy) is the quotient of the stabilizer of hy in S by
the subgroup SY1 fixing each element of hy. If D # C, then W (S, hy) acts by
all sign changes and all permutations of the u;’s. If D = C, the Weyl group
acts by all sign changes and all permutations of the u;’s which preserve
(61, ceey 51//), see [PI‘Z06, (63)]

Set §; =1 forall 1 <j <" if D# C, and in any case, i.e. D # C or
D = C, define

(38) Jj=0m(uy),  Jj=87"(u;)  (1<j<1Y).
Then Jj, Jj’- are complex structures on V% and V% respectively. Explicitly,

(39) Jj(vo) = —vf, Jj(vy) =vo, JJ/»(’Ul) = —v], J;(vi) =y, if D=R,

Jj(vo) = —ivo, Ji(v1) = —ivy, if D=CorD=H.

(The point of the multiplication by the ¢; in (38) is that the complex struc-
tures Jj, JJ’- do not depend on the Cartan subspace hy.) In particular, if
w= Z?;l wju; € by, then

1 1

(40) T(w) = Zw?éij and 7'(w) = Zw?éij'-.
j=1 j=1
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(Notice that wj2- > 0.) Let h% C sy be the subspace spanned by all the
squares w?, w € 7. (This is a linear space, not a collection of squares. We
hope that the notation b% will not cause any confusion.) Then

lll

(41) b2 =) R(J; +J)).

We shall use the following identification

l// l//
(42) bilvy, 3D i =Y uiJj € By, -
j=1 j=1

Recall from (33) that {” = min(l,!"). If I” =, then h%]va is a Cartan
subalgebra of g which we denote by h. The identification (42) embeds b
diagonally in g and in g’. It is contained in an elliptic Cartan subalgebra
of ¢/, say . (“Elliptic” means that all the roots of h in g are purely
imaginary.) Similarly, if I” =1’ then h%]VT is an elliptic Cartan subalgebra
of g’ which we denote by b’. If I <1’ we denote by 3’ C ¢’ the centralizer of
b. Similarly, if I’ <[ we denote by 3 C g the centralizer of b’. In particular,
if ' =1, then 3/ = b’ = h = 3, where the first equality is in g, the second is
(42) and the last is in ¢'.

Let s5c = gc @ g be the complexification of s5. Fix a system of positive
roots for the adjoint action of b% on g5 Suppose first that [ < I'. By the
identification (42), b preserves both gc and gi. So our choice of positive
roots for (h%@, s5c) fixes a positive root system of (hc, gc) and extends to
a compatible positive root system for (he,g). Let mg/y be the product
of positive roots of (hc, gc) and let Ty /5 be the product of positive roots
of (he, gc) such that the corresponding root spaces do not occur in 3c. If
[ > 1, then my sty and g/ can be similarly defined. See Appendix A for
the explicit expressions of these root products restricted to the elements in
(42).

Suppose I’ < 1. Then V% =0, V% £ 0 and

(43) Vog=VlaVioVie - @V

is a direct sum orthogonal decomposition with respect to the positive definite
hermitian form (-,-). We extend h C g to a Cartan subalgebra h(g) C g as
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follows. The restriction of h(g) to V%@ V%@- e V%N coincides with h. Pick
an orthogonal direct sum decomposition

(44) VE=Vl o Vit o vii P o o Vet

where for j > 1", dimpV)? =2 if D = R and dimp V)7 = 1 if D # R. Also
V%O = 0 unless G = Og;41, in which case dimp Vg,o = 1. In each space Vg’j,
with j > 1", we pick an orthonormal basis and define J; as in (39). Then

l

(45) hg) =Y RJ;.

Jj=1

If I <, then we set h(g) = b.
Let J7, 1 < j < I, be the basis of the space h(g)* which is dual to
Ji,...,J;, and set

(46) ej=—iJf, 1<j<l,

If p € ih(g)*, then p = 22:1 pje; with p; € R We say that p is strictly
dominant if pq > po > --- > py.

4. Orbital Integrals on W

In this section we recall from [MPP15] and [MPP20] some definitions
and results concerning the orbital integrals on W that we will need in the
following sections.

Let S’(W)® denote the space of S-invariant tempered distributions on
W, where the S-action is induced by (29). Let hy be a Cartan subspace of
W. Suppose first that G is different from Og1; with I < I'. For w € 7",
the orbital integral attached to the orbit O(w) = S.w is the element p10(4) 5,
of §&'(W)® defined for ¢ € S(W) by

) powin (@) = [, dlow)diss™).

Suppose now that G = Og;y1 with [ < {’. Then one needs to modify (47)
because the union of the orbits S.w over all w € "9 would not be dense
in W; see [MPP15, Theorem 20]. Let wo € s7(V°) be a non-zero element,
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w € h7"% and SH+¥0 the centralizer of w +wp in S. Set O(w) = S.(w +wp)
and define

(48) 1o (w), b (9) = /S/s‘wwo d(s.(w + wp)) d(sSIrH0) .

(Since 57(V?)\ {0} is a single S(V?)-orbit, the S-orbit of w+wg, and hence the
right-hand side of (48), does not depend on the choice of wy € sp(VY).) The
orbital integrals (47) and (48) are well-defined, tempered distribution on
W, which depend only on 7(w), or equivalently 7/(w), via the identification
(42).

For w € by, set

49 Ty (w?) = Ta/b(T(W) gy (7' (w)) if 1<V,
( ) o/fk( ) {779/5(7'<w))7rg,/h, (T’(’LU)) if [ > I

As shown in [MPP20, Lemma 1.2], there is a constant C'(hy), depending on
by and with |C'(hy)| = 1, such that

(50) a2 (%) = O7) ey e ()]
The set h7"“Y of regular elements of by is explicitly given by

(51) b = {w € by; ﬂ%/rﬁ(wg) # 0} .

Choose a positive Weyl chamber h% C h7", i.e. an open fundamental
domain for the action of the Weyl group, W (S, hy). There is a normalization
dr(w) of the Lebsegue measure on b, respectively a normalization d7’(w) of
the Lebsegue measure on b, such that the following equalities hold for all

» € S(W):

1

@ =Y [, o (@) drtw) i<

(53)  wle) = //(mr%m now (@) drw) i1

Formulas (52) and (53) are the Weyl-Harish-Chandra integration formulas
on W, [MPP15, Theorem 21]. The sum in (52) is over the family of mutually
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non-conjugate Cartan subspaces ht C W. (It therefore reduces to a single
term for (G, G’) different from (U;, U, ,) with [ <!’ = p+¢.) The formulas
agree for [ = I’ once we identify 7(w) and 7/(w) via (42).

Let Cp. = C(by) - i 9/Y  where C(h7) is as in (50). If (G,G') =
(U, Upyg) with I <" =p+gq, let

min(p,l)
Urr = U 7lbgm).
by m=max(l—q,0)

In all other cases, UbT 7(H7"9) will denote 7(ht"*?), where by is the fixed
Cartan subspace. The Harish-Chandra regular almost-elliptic orbital inte-
gral on W is the function

F:Jr(by9) — S'(W)3
by

_reg

defined for every y € Ufk 7(h1¥), y = 7(w) = 7'(w) as follows:

ZfﬁC"”ﬁ”g’/z,'(?J)/«o(w),[%1 ifl<v,

(54) Ply) - o
Comg 1ty (V) RO (w), by it >1.

Following Harish-Chandra’s notation, we shall write Fy(y) for F'(y)(¢).
Suppose first that [ < I'. According to [MPP20, Theorem 3.6], F
uniquely extends to a function F : h — S’(W)3 satisfying

(55) F(sy) =sgngp(s)F(y)  (s€ W(G,h), y€b).

This extension is supported in h N 7(W). The extended map F' is smooth
on the subset of y = Zé’:l y;J;j where each y; # 0 and, for any multi-index
a=(a,...,qp) with

d—r—1 ifD=RorC
< |
(56) max(ag, ..., o) —{ 2(d'—=r) ifD=H,

the function 9(J7*J52 ... J;")F(y) extends to a continuous function on h N
7(W) vanishing on the boundary of h N 7(W).

For any values of | and I’, there is the pullback via the unnormalized
moment map 7 : W — ¢, namely

7 8@) 3¢ = por e S(W)E.
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According to [MPP20, (25)] (a special case of a theorem of Astengo, Di
Blasio and Ricci [ABR09, Theorem 6.1]), there is a continuous map 7, :
S(W)& — S(g') such that

(57) ™orl(p)=0¢ (9 SW)Y).

In particular, the map 7" is surjective. We will denote by ¢ the projection
of ¢ € S(W) onto the space of the G-invariants in S(W),

(58) 6% (w) = / dgw)dg  (weW).
G

(Recall that we have normalized the Haar measure on G so that its mass is

1.)
Suppose now that [ > I’. Then by [MPP20, (39)],

(59 Ful) = Chmps) [ 0Ag ) dgW) (6 €SOV, y € 7).

where H C G’ is the Cartan subgroup corresponding to b/,

(60) b =71.(6%) € S(d),
and ka is a suitable non-zero constant. The right-hand side of (59) is
Harish-Chandra’s orbital integral of 1. It provides a W (G’, h’)-skew-invari-
ant extension of Fj to h'I"~m¢9  where §/I"=7°9 C B’ is the subset where
no non-compact roots vanish. Furthermore, as a function of ¢, Fy(y) is
S-invariant; see [MPP20, Theorem 3.3].

Notice that, by [MPP20, (69)-(72)], formulas (59) and (60) also hold
when [ = I’ because Z' = H' in this case.

LEMMA 1. Suppose that | < I' and G # Ogq1. Let U C §™9 be a
nonempty W (G, h)-invariant open subset. Then there is a nonzero function
¢ € C2(W)C such that ¢ > 0 and supp Fy C U. (Here supp denotes the

support.)

PROOF. Let V be a nonempty open set in h"*9 with closure V C U. By
[Var89, p. 19, especially (9)], the set G.V is open in g. Hence 771(G.V) is
open and S-invairant in W. Let ¢ € C2°(W)% be a nonzero function such
that ¢ > 0 and supp ¢ C 7 !(G.V). We want to prove that supp Fy € U.
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Suppose first that G # U;. Hence Fy(y) = Chmg /5 (Y)ho(w) b (#) for
all y € 7(hy"). (Here my 5y (y) = 7y y (7' (w)) where y = 7(w) = 7'(w).)
Since the zero set of 7y ,y is a finite union of root hyperplanes, supp Fy
is the closure in h of the set of the y = 7(w) with w € h7"* such that
1o(w) b (9) # 0. If po(w) . (¢) # 0, then O(w) Nsupp ¢ # 0, where O(w) =
S.w. Hence (S.w) N 771(G.V) # 0. This means that there are g,g; € G,
g’ € G’ and v € V such that g¢’.w = 771(g1.v). Therefore

gy =g7(w)=7(99'w) = g1.v and hence g;'gy=vecGynh.

By [Varg89, Corollary 23], y € W(G, h)v. Thus y € V because V is W(G, h)-
invariant. This proves that supp Fy C Vcu.

The same argument extends to the case of G = U; because all Cartan
subspaces by, satisfy T(f)im) ch O

REMARK 1. The Cartan subalgebra b’ is f-stable, where 6 is the fixed
Cartan involution of g’. Let H C G’ be the Cartan subgroup which is
the centralizer of b’ in G/, and let K’ be the maximal compact subgroup
of G’ which is fixed by 6. Then, by [Har56, Lemma 10], the Weyl group
W (G, 4’) coincides with W (K’, §’), i.e. the normalizer of H in K’ modulo
the centralizer of H' in K. Explicitly, K’ is Uy if D = R or H, and U, x Uy if
D = C. Hence W(G', b’) acts on b’ by permuting the J7, (38), if D = R or H,
and by separately permuting the first p and the last ¢ elements JJ’» ifD=C.
Since 6 =1forall j=1,...,0' if D=Ror H,and §; =1for j=1,...,p
and 6; = —1for j =p+1,...,p+ ¢ if D = C, it follows from (40) that
the domain of integration 7/(h7"*?) appearing in (53) is W (G, h’)-invariant.
This property will be relevant in Proposition 2 below.

Recall from page 269 the notions of semisimple and regular elements
in W = s;. By [MPP15, Theorem 20], the set of semisimple elements is
dense in W for every dual pair with one member compact unless (G, G’) =
(Ogi41, Spyy (R)) with 204+ 1 < 2I’. As noticed in section 3, W has a unique
class of Cartan subalgebras unless (G,G’) = (U;,Up,) with I <!’ =p+gq.
Suppose these two families of dual pairs are excluded. Let b7 denote the
Cartan subalgebra in W fixed in (37). Then W™ = S.h7"“ is the set of
regular semisimple elements of W. It is open and dense in W.

PROPOSITION 2. Suppose that | > 1. Let ® be a W(G', b)-invariant
function on 7'(b7"%?). Then there is a unique S-invariant function Pt on
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W7"€9 such that
Phy) = (@o7)(y)  (yebr™).

Moreover,
1 oo
61) sy /. ey PO Fol0) = | #wiwdn  (oeczw)

provided the integrals are absolutely convergent.

PrOOF. The existence of ®* is due to the fact that ® o7’ is a W (S, hy)-
invariant function on h;"*. The Weyl group W (G', ') acts on 7/(h;"“9) by
permuting the coordinates with respect to the basis {.J7,. .., J,}. The action
is simple and transitive and 7/ (f)}r ) is a fundamental domain. Since the
function ®(y)mg/;(y)Fy(y) is W(G',b')-invariant on 7/(h7"*), the formula
(61) is a restatement of the Weyl-Harish-Chandra integration formulas on
W for I > 1/, see (52). O

5. Main Results

Suppose an irreducible representation II of G occurs in Howe’s corre-
spondence. This means that there is a subspace Hp C L2(X) on which the
restriction of w coincides with IT. Since Z C GNG’, then either Hy C L2(X) 4
or Hy C LQ(X),. In the first case the restriction of the central character
x1t of IT to Z is equal to x4 and in the second case to x_. Thus for Z € Z
and g € G

(62) On(z9) = x+()0n(g) if Hm CL*(X)4
On(zg) = x-(5)On(9) i Hn € L*(X)-
We see from equations (17), (23), (24) and (62) that the function
G3g— T(5)6n(g) € S'(W)

is constant on the fibers of the covering map (9). The following lemma is a
restatement of (18). Our main results will be the explicit expressions of the
various integrals appearing on the right-hand sides of the equations below.

LEMMA 3. Let GY C G denote the connected identity component. Sup-
pose (G,G") = (Ug,Up,) or (Spg, 03,,). Then G =G = -G and

©)  fuen = [ Gu@T@ds = [ 6n(@T()ds



SBOs for Dual Pairs with One Member Compact 279

Formula (63) holds also if (G,G') = (Og,Spa,(R)) with d even and On

supported in GY, because G° = SOy = —SOy; = —GO. In the remaining
cases

(64) fuon = [ Ou@T@)ds = [ Ou@T@ag+ [ GG dy.

The integrals over —G? in (63) and (64) are given in Theorems 4 and 5
below, proved in section 10. The integrals over the other connected com-
ponent in (64) are computed in Theorems 7, 8 and 10, respectively, and
proved in sections 11, 12, and 14. Theorem 6, proved in this section, will
furthermore show that the second integral on the right-hand side of (64)
coincides with the first integral when (G, G’) = (Og4, Spyy (R)), where d = 21
or d=2l+1, provided [ > ['.

REMARK 2. Notice that, since the character Or is conjugation invari-
ant,

/ On(@)T(5)(6) dg = / On(@)T(3) (%) dg .
G G

where ¢ is defined as in (58).

Let
1 ifD=RorC,
(65) L=94 .
5 lfD:H,
and let
2dim g
(66) " dim Vg’

where the subscript R indicates that we are viewing V as a vector space
over R. Explicitly,

21— 1 if G =09,
21 if G = Og41,
l if G =1,
I+% if G=Sp.

(67) r=
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Let

(68) 6:2%(d'—7"+b) and 5:27“.
Fix an irreducible representation II of G that occurs in the restriction of
the Weil representation w to G. Let u € ih(g)* be the Harish-Chandra
parameter of Il with pq > pg > ---. This means that p = A+ p, where A is
the highest weight of Il and p is one half times the sum of the positive roots
of (gc, he). If G = Ujp then p =0 and g = A is the weight of II. If G = O
then p = 0. In this case, if IT is trivial or det, then p = 0. Otherwise II|go,
has two weights and we pick any one of them.

Let P, and Q4 be the piecewise polynomial functions defined in (D.4)
and (D.5). Define

(69) aj:fujf(5+1, bj:ﬂj*(S‘i’l,
(70) p;j(€) = Py, (Be ™l (&) = 87 Qayp, (7€) (1<j<I EER),

where 6 and 3 are as in (68). Notice that a; and b; are integers (see Lemma
20). Furthermore, set

1/2 fG=0 dN=wy =0
(71) 50:{ / 1 21 al l 19 5

1 otherwise .

THEOREM 4. Letl < l'. Then there is a non-zero constant C which
depends only on the dual pair (G,G’) such that for all p € S(W)

(72) On(9)T(9)(9) dg

—Qo

l
= C roxm(&(0 /f) H pj(y;) + 4;( ayj)50(yj)) Fy(y) dy,
Nt (W j=1

where x11 is the central character of T (see (62)), ¢ is a real analytic lift of
the Cayley transform (see (119)), &g is the Dirac delta at 0, and Fy(y) is
the Harish-Chandra reqular almost-elliptic orbital integral on W of ¢ at y
(see [MPP20, Definition 3.2] and (54)).
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The term

l
(73) H Dpj yj +QJ ayj)éo(yj))
7j=1

is:

(1) @ function of y if and only if all the q;’s are zero, and this happens if
and only if 1 = 1" and (G, G") # (Og, Spyy (R));

(2) a linear combination of products of functions and Dirac delta’s at 0 in
some coordinates y; if and only if all the q;’s are of degree zero. This
happens if and only if either (G, G’") = (Og, Spy(R)), orl’ =1+1 and
D=C orH.

In the remaining cases, (73) is a distribution, but not a measure.

REMARK 3. The integration domain hN7(W) appearing in Theorem 4
was explicitly determined in [MPP20, Lemma 3.4]. Tt is equal to h if D # C
orif D = C and | < min(p, q). By (163), (164) and Appendix H, we see that
aj <0 foralll <j <!l when! <1!. Hence each Pa, b (By;) vanishes for
y; < 0. In cases (1) and (2) of Theorem 4 with D = R or H, we can therefore
replace the domain of integration h with the smaller domain 7(by).

In the case [ > I’, up to conjugation, there is a unique Cartan subspace
b1 in W. Recall that for D = C we are supposing that p < g.
Define so € W(G,h(g)) b

(74) so(Jj) = J; (1<5<) if D =R or H,
J; (1<j<p)

(75) s0(Jj) = Jg+g p+1<j<l—q) iftD=C.
Jj—ipr (—q+1<5 <)

THEOREM 5. Let > I'. Consider a genuine irreducible representation
IT of G. (Its highest weight is among the weights listed in Appendiz H).
Then

(76) / On(§)T(§)dg #0
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if and only if the highest weight A = Zzzl Ajej of I is of the form

(a) M>X>- > N >0and X\j=0forl'+1<j<l, ifD=R orH,
(b) )\j:;l%+l/j, where vy > - >vp, >0, v; =0 for
p+1<j<l—-q,02v_q12--2vy, ifD=C.

Suppose that (a) and (b) are satisfied. Then there is a non-zero constant C
which depends only on the dual pair (G, G’) such that for all ¢ € S(W)

l/
() [ ,On@T(@)(9)dg = C roxn(E(0)) / . )(H Pot () (3) - Faly) dy,
— P 1reg j=1
where kg is as in (71) and, explicitly,

4 Il .
() = szlpj(yj) ifD=R orH,
Hp o) {(Hﬁ;lpj ) (IT'—yr pis1-0(y;)) #D=C.

The right-hand side of (77) can be written as a non-zero constant multiple

of

(78) mmwm/

MW%%MMM&@wz/@WWMM,

W%

where

ol l/ .
Zs’EW(G’,h’) bgng,/h/(s’) szl Paso,j7b301j’25j (ﬂ(S/y)J) 6_52 51:1 [yl ,
Ta/3(Y)
(i =Jj"y, y =7(w) = 7'(w), w € h7"*)

(79) ®(y) =

is a mnon-zero W(G' b)-invariant real-valued continuous function on
7' (b7"%9), and ®F is an S-invariant function such that ®(w) = ®(7'(w))
for allw € h7"9. In (79), p is the Harish-Chandra parameter of 11,

(80) asj=—(sp)j—6+1, bsj=(sp)j—6+1 (s€W(G,h), 1<5<1),

P,y 12 is the polynomial defined in (D.1) or (D.2), and the 6;’s are as in
(36). (See (42) for the identifications y = T(w) = 7'(w) in (79) .)

REMARK 4. Recall from Remark 1 that the domain of integration
7'(h7"*9) appearing in Theorem 5 is W (G', b')-invariant. Formula (79) will
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prove, by Proposition 2, that the intertwining distribution is not zero when
the conditions (a) or (b) are satisfied.

REMARK 5. Conditions (a) and (b) in Theorem 5 are precisely those
ensuring that IT occurs in Howe’s correspondence. See Corollary 11 below.
(They are contragredient to those listed in [Prz96, Appendix], because the
Weil representation used there is contragredient to the one used here.)

Before considering the integrals over G \ (—G?) in (64), let us introduce
some notation concerning the irreducible representations of the orthogonal
groups. Since D # C, we can choose a polarization W = X @ Y so that G
preserves X and Y. We shall suppose in what follows that we have made
such a choice.

Suppose that G = O4. Then, for each highest weight A of an irreducible
representation of G? there are one or two unitary genuine representations
of G having highest weight A\. There are two if and only if either d = 2/ and
A =0,0rd=20+1. See e.g. [GW09, §5.5.5]. Let Il ;. and II _ be these
representations. Set

(81) +@) = =2 (g€ 0y),

where © is defined in (16). Then x4 is a character of G. Notice that (81)
is an extension of (23) from Z to G. In fact, Proposition 4.28 in [AP14]
implies that (x4 (7))? = (det g)x', where (det g)x indicates the determinant
of g as endomorphism of X.

Then, in the Schrodinger model for the Weil representation w, for which
the space of smooth vectors is S(X),

(82) (wexi) @f(@) =flg"'z) (g€, feSX) zeX).

Hence w ® X:Ll descends to a representation wgy of G given by

(83) wo(g)f(x) = flg™'z)  (9€G, feSX) zeX).

THEOREM 6. Suppose that | > 1'. Let I be an irreducible representa-
tion of Od occurring in the restriction of the Weil representation to Od If



284 M. McKEE, A. PASQUALE and T. PRZEBINDA

d = 2l, then \; = 0. In both cases d = 2l or d = 2l+1, the second trreducible
genuine representation of Oq having the same highest weight as I1 does not
occur in the restriction of the Weil representation to Oq4. Moreover,

s [ On@r@ds=2 [ n@T@ds=2 [ en@T(a)ds.
In particular,
(55) Lo ©3@7@ s = [ Ou)TG) s

The integral on the very right-hand side of (84) was computed in Theo-
rem 9.

PrROOF. Let A be the highest weight of II, and let d = 2 or 2] + 1.
Recall the notation introduced before (81).

Suppose that both IIy y and II _ occur. Then II, + ® Xjrl descends to
a representation (II 4 ®X_T_1)|G of G occurring in wy. Let S(X)m, . € S(X)
denote the IIy 4-isotypic component in S(X). By (83),

(86) (Mrz®@xila(9)f(@)=flg'z) (9€G, feSX)n,.,z€X).

Let II) o denote an irreducible representation of G whose restriction to the
identity component has highest weight A. As one can see from [GW09,
§5.5.5],

(87)  if (T4 @ x;')la = Map, then (T - ®@ x7')|a = MMy ® det.

Hence IT o ® IT o ® det occurs in wy ® wo, acting on S(X @ X). Recall that
I o = II§ , is self-contragredient. Since I1I§ ; ® II o contains the trivial
representafion, we conclude that det occurs in 7w0 ®wp. Observe that wy®wq
acts on S(X & X) by

wo®wo(9)f(z) = flg7'e) (9€G, feSX@X), zeX).

It is therefore the “representation wp” corresponding to a dual pair
(Og4,Spyy(R)). By Proposition F.1, it follows that d < 2I', contrary to
our assumption.

Suppose first that 11, 4 is not isomorphic to 11y _, which by the descrip-
tion of the irreducible representations of orthogonal groups [GW09, §5.5.5]
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can occur only when \; = 0 if d = 2[. Then the above argument shows
that only one of IT 1 and II _ (i.e. II) occurs in the restriction of the Weil
representation.

On the other hand, if Iy ; is isomorphic to Iy _, then d = 21 (because
det(—Ig41) = —1) and, again by [GW09, §5.5.5], \; # 0. In this case,
IIyp = I, o ® det and the above argument shows that the representation
does not occur in w.

Thus the second representation of 6d which has the same restriction as
II to GO = SOy, does not occur. Hence the H|S~Od—isotypic component of w
coincides with the Il-isotypic component of w. Therefore

/ On(3)T(3) dg = 2 / On(a)T(3) dg.
G GO

(The factor 2 is a consequence of the normalization of the measures.) In
particular, fG\GO Ou(9)7T(9) dg = Jqo On(§)T(3) dg . If G = Og, then G* =
—GY and if G = Ogy41, then G\ GY = —G". This explains the second
equality in (84). O

REMARK 6. It should be pointed out that the proof of Theorem 6
does not use the known classification of the highest weights of the genuine
irreducible representations occurring in Howe’s correspondence.

Consider now the case (G,G’) = (Og, Spyy(R)) and the character Or

not supported in the preimage GY of the connected identity component
G’ C G.
Suppose that | < I’ and [ # 1. Then the graded vector space (34) is
equal to
V=VigeVieVe eV,

Recall from (35) that in each V% we selected an orthonormal basis vg, v{.
For convenience, we introduce the index j in the notation and we write
v2j—1 = vo and wvo; = 1)6, for 1 < j < I. Then vy, v9, ..., vy is an
orthonormal basis of V5 and

Jjvgj—1 = —vgj, Jjva; = v (1<j<l.
In terms of the dual basis (46) of b, the positive roots are

ej £ e 1<j<k<lI).
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Define an element s € G by

(88) SU1 = V1, SUy = U, ..., SUy_1 = V91, SU = —U9 .

Then G = GYUGPs is the disjoint union of two connected components. Set
Vo, =ViadVia - @ Vi @Ruy, and V, =V, & V.

The dual pair corresponding to (Vg , V1) is (Gs, Gy) = (O2-1,5pay(R))
acting on the symplectic space W, = Hom(Vy, Vs, s)- The objects corre-
sponding to W, will be distinguished by the subscript s.

Let by = Zé;ll RJ;. This is the centralizer of s in b = 22:1 RJ;. Set

(89) ,OS:(l—1)61+(l—2)€2+'-'—|—61_1.
Let
-1
A= Z)\jej
j=1

be the highest weight of II. (Here A; = 0 because we assume that ©Ory is not
supported in G°.) Define
pe = A4 p5

The number r, (67), for the group G is equal to
r=20—-1
and the number é, (68), for the dual pair (G,G’) is equal to
5:%(2l’—r—|—1):l’—l+1.
Set

C __ C _ C !

b =pS —8+1=pu§—1'+1, (1<ji<i-1).

Notice that ajc = a; and bjc- =b; for 1 < j <1—1 because p§ coincides with
the restriction of p to h,. Using these numbers in place of a; and b; in (70),
define the functions p§ and gj.
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THEOREM 7. Let (G,G’) = (Og;, Spyy(R)) with 1 < 1 < I'. Assume

that the character Oy is not supported in GO. Then there is a constant C
which depends only on the dual pair (G,G’) such that for any ¢ € S(W)

00) [ On(@)T(E)0)dg

-1
= CDnxnte() || T 05+ (-0 )0(0) - Foeyy, ).
s j=1
where x11(¢(0)) and Dy are equal to £1, and Dy distinguishes I1 and II®det.

Theorem 7 excludes the dual pairs (G,G’) = (Og,Spyy(R)) because
its proof relies on an analogue of the Weyl’s character formula for G\ G°
proved by [Wen01] for nonconnected compact semisimple Lie groups. These
excluded cases will be treated in subsection 6.1.

Now we consider the case (G,G’) = (Og41,Spyy(R)) with 1 < [ <
I'. Recall from (34) the graded vector space V. In the case we consider,
dim V9 = 1, dim V9 = 2(' — 1) and for 1 < j <1, dim VZ = dim VZ = 2. Let

W, = Hom(Vy, Vi@ - @ VL) and Wy =Hom(V, VD).
Then

is a direct sum orthogonal decomposition. Let Gy C G be the subgroup
acting trivially on the space Vg. The Lie algebra g of g embeds as those
elements acting as zero on V%. Let G, = G/. Then the dual pair corre-
sponding to Wy is (Gg, G,) ~ (Og, Spyy(R)) and dual pair corresponding
to W is (O1,Spyy(R)). If H is a Cartan subgroup of G, then H? = H?
is a Cartan subgroup of GY, and the Lie algebras g and g, share the same
Cartan subalgebra h = h;. The following theorem will be proved in section
14.

THEOREM 8. Let (G,G') = (Og41,Spoy(R)) with 1 < 1 < I'. Then
there is a nonzero constant C' such that for all ¢ € S(W)

l
(92) | 6n@7(@)(@)dg=C(-1)" /h IT (23 (w3) + a5 (4,0 () Fya . (4) dy

Go ie1
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where pj,q; are defined as in (70), X is the highest weight of Il and |\| =
Zé’:l Aj is a nonnegative integer. (See Appendix H.)
Ifl =1, then Fya|y, is proportional to Fy (independently of ¢).

REMARK 7. As in Theorem 4, the term

l
H pi(y;) + g5( ayj)éo(yj))

is a function of y (i.e. all the g;’s are zero) if and only if [ = I’. In the other
cases, it is a distribution, but not a measure. Furthermore, if [ = ', we can
replace the domain of integration h with the smaller domain 7(by).

REMARK 8. It is known from the classification of the representations
occurring in Howe’s correspondence (see e.g. [Prz96, Appendix]) that for the
pair (G, G’) = (Og41, Spyy (R)) with I <1’ there are two representations of
G with the same highest weight A that occur in the correspondence, namely
I1(§) and I1(§) ® det(g). They agree on G°, so the integral on the left-hand
side of (92) cannot distinguish them. In particular, we cannot replace the
factor (—1)* with x1(¢(0)), which appears in Theorems 4 and 5.

REMARK 9. The pair (O1, Spy,(R)) was studied in detail in section 2.

Suppose (G,G’) = (Og, Spyy (R)), where d =2l or 2l + 1 and d > 2. In
Theorem 9 below, the integral over G\ (—G?) of the distribution-valued map
g — On(§)T(g) is reduced to an integral over —GY. The resulting equality,
which holds independently of the mutual relation between the ranks [ and
I', will be needed in [MPP24]. Recall that

G% ifG=0
G\(C)=q ) oo
GY if G =O0g41.
Moreover, —GS = Gg if G = 0O9g41.
THEOREM 9. Let G = Og with d > 2. If d = 2l, suppose that the
character Oy is not supported in GO. Then for all ¢ € S(W)

©3) [ en@T@@ds =5 [ en(@)dei( - )T @)(6 I ds.
G\(-GO) 2 J-qo
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where Ty is the operator T, see (14), corresponding to the symplectic space
W;.

We prove Theorem 9 in section 13.

REMARK 10. The term det(1—g) appearing in (93) admits a represen-
tation theoretical interpretation. Indeed, let o be the spin representation of
the spin cover of Gg. Then the tensor product o ® o€ is a representation of
GY and, by [Lit06, Ch. XI, III., p. 254]

(94) Oomoc(9) = [0s(g)|* =det(14+g) (g€ GY).
So det(1 — g) = Opaoe(—g).

Suppose | > I’. Theorem 6 reduces the computation of fG On(§)T(g) dg
to that of [ o ©On(§)T(g)dg, done in Theorem 5. One could still try to
compute the integral on G\ (—GP) directly, without relying on Theorem 6.
As an example, we do it for Og; 41 in Theorem 10 below. Nevertheless, the
result is less precise than that from Theorem 6 since we are only able to
prove that the integral over G\ (—G") is a nonzero constant multiple of the
one over —GY. Determining the constant is a serious issue even in the much
easier situation of (U, Uy); see [MPP23].

To consider the case (G,G’) = (Ogiy1,Spyy(R)) with [ > I, recall the
graded vector space V, (34) and the formula (43),

Vv=V'aV'a. . .aV,

where, as in (44),

1
0 _ 0,0 0,0
Vo= vile (Vo)

Ve = o0,
1
with dim V2 = 1 and dim (vg’o) = 2(1—1'). Let

’ J‘ !
W, =Hom(Vi@ - @& VL, (Vg’o) @Vie---@Vh), Wi =Hom(Vy, Vo).
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/ J_ /7
(Notice that V%GB- : -EBVZT = V7 and <Vg’0> @V%@- . -EBV% is the orthogonal

complement of the one dimensional space V%’O in Vg.) Then
(95) W=W, oW

is a direct sum orthogonal decomposition. Let Gs C G be the subgroup act-
ing trivially on the space Vg’o and let G, = G’. The dual pair corresponding
to Wy is (Gg, G%) =~ (Og,Spyy(R)) and dual pair corresponding to Wi is
(O1,Spar (R)).

THEOREM 10. Let (G,G’) = (Og41, Spoy (R)) with 1 > 1. Then
(96) | en@r@as £0

if and only if the highest weight A\ = Eé‘:l Aje; of II satisfies condition (a)
of Theorem & for D = R. Suppose that this condition is satisfied. Then
there is a non-zero constant C' which depends only on the dual pair (G, G’)
such that for all ¢ € S(W)

.
o0 [ en@r@@d=ccM [ (LT es) 7ot .

As a byproduct of our calculations of the intertwining distributions, we
obtain the list of highest weights of the genuine irreducible representations
IT of G that occur in Howe’s correspondence when [ > [’. This list was first
determined (without any restrictions on the ranks [ and I') in [KV78].

COROLLARY 11. Suppose thatl > 1'. A genuine representation Il € G
occurs 1n Howe’s correspondence if and only if its highest weight satisfies

conditions (a) or (b) of Theorem 5.

PrROOF. Our computations of the intertwining distribution
Ja @E(ﬁ)T(ﬁ) dg can be applied to any genuine irreducible representation
I € G" (not necessarily occurring in Howe’s correspondence). This distri-
bution is nonzero if and only if w| a has a nonzero Il-isotypic component.
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This is equivalent to the fact that there is a unitary highest weight repre-
sentation II' of G’ such that Il ® II" occurs in wxq,-
the intertwining distributions leads to conditions (a) or (b) of Theorem 5
when G = U; or Sp;. In the case of orthogonal groups, we can further use
Theorem 6 and conclude that the nonvanishing of the intertwining distri-
butions is equivalent to the nonvanishing of the integral of O (§)T'(§) over
—GY. The claim then follows again from Theorem 5. [J

The nonvanishing of

As we shall see in the proofs in section 10, the list of highest weights in
Theorem 5 is obtained by comparing the support of the function Hé-/zl P (y;)
with the domain of integration, 7/(h;"*). Unfortunately, this method is not
refined enough to provide necessary and sufficient conditions when [ <.

Let us now consider the dual pair (U;, U, ). Recall that in this case
I = p+ ¢ and that we assume that p < q. If [ < p all irreducible genuine
representations of le occur because the pair is in the stable range with U;
the smaller member; see [Li89] or [PP08]. The absence of conditions on the
highest weight in Theorem 4 is consistent with this fact (despite the fact
that we cannot see that our intertwining operator is not 0).

If p < I < p+q then the next corollary gives precise necessary conditions
on the highest weight of II to occur in the correspondence. The proof is
independent of the classification and is based on a refined analysis of the
intertwining distribution; see section 15.

COROLLARY 12. Suppose that D =C and p <l <p-+gq. Letll € GN
be a genuine irreducible representation of highest weight X. If either A\py1 >
P4 or (when q < 1 holds) Ni—q < %52, then II does not occur in Howe’s
correspondence.

For the dual pair (Sp;, O%,), by the known classification of highest
weights of representations of Sp; occurring in Howe’s correspondence, all ir-
reducible genuine representations of SE occur if [ <1’. We can recover this
fact out of the formula for the intertwining distribution determined in The-
orem 4 (and hence without using the classification) only when I’ € {I,1+1}.
This is the content of the following corollary, proved in section 16.

COROLLARY 13. Suppose that D = H and | < I'. Let II be an irre-
ducible genuine representation of G = Sp; with highest weights \y > --- >
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M. If Ny > 1 —1—1 then II occurs in Howe’s correspondence. In particular,
if ' =1 orl' =141, then every genuine irreducible representation I1 € G/
occurs in Howe’s correspondence.

We terminate our discussion on the highest weights of the genuine irre-
ducible representations of G occurring in Howe’s correspondence with the
pair (Og2,Spyy(R)). For this dual pair, we compute the intertwining distri-
butions in section 6. We will recover the (well-known) list of representations
of 62 occurring in Howe’s correspondence by their explicit formulas. See
also Remark 12.

REMARK 11. In this article we have considered the group U, , with
p < q. Suppose now that ¢ > p. This is equivalent to replacing the form
(+,+)" into its opposite. Correspondingly, the symplectic form (-, -) becomes
its opposite. The inner product —(J-,-) is now positive definite provided we
select —J instead of J. In the notation at the beginning of section 1, the
equation defining the preimages of g € Sp(W) in é\f)(W) becomes

€2 = iV det(—Jp) 3y = (=) 7YV det ()7 v

because (—1)4m(sW) — (—1)dim(g=DW = This means that £ is transformed
into £. Since O((g; €)) = &£, we conclude that © needs to be changed into ©,
i.e. the metaplectic representation w is replaced by its contragredient w".
Therefore

w|éx@ = @(H ®II') is replaced by wv\éxé, = @(Hv ® (Ir')Y).

V- are obtained

The highest weights of the representations of U; occurring in w
from those listed for far in this paper by changing their sign and permuting
them so that they are in decreasing order. Those written in (H.1), are

replaced for U, 4, where ¢ > p, with

We conclude this section with a result on the non-differential operator

nature of the symmetry breaking operators in Hom HY, HY @ Hf)-

éé/(
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COROLLARY 14. Let (G,G’) be a real reductive dual pair with one
member compact. Then the essentially unique non-zero symmetry break-
ing operator in

Homy (M, HEF @ H37)

is not a differential operator.

PROOF. We are going to show that (OpoK)(frgmr) is not a differential
operator.

Let f € S'(W) and recall the definition of K(f) in (12). According
to [Hor83, Theorems 5.2.1 (the Schwartz kernel theorem) and 5.2.3], the
continuous linear map OpoK(f) is a distribution-valued differential operator
if and only if (f) € 8'(XxX) is supported by the diagonal A = {(z, z); = €
X}. This implies that f is supported in Y. Indeed, given ¢ € §(X x X)), let
Y € S(X x X) be defined by p(z,2') = (z — 2/, 2 + 2') for all z,2’ € X.
Furthermore, let ¢(-,~) € S(X X Y) denote the partial Fourier transform of
1 with respect to its second variable, defined by

vad) = [ XGunEnd (@) eXxY),

Then
suppp NA =0 if and only if supp¢(-,) N ({0} xY)=0.

Since K(f)(p) = f(¥(-,7)) by (12), we obtain the claim.

Notice that this cannot happen in our case. Indeed, the support of frgm
is GG’-invariant. Since the complex structure J € G’ permutes X and Y, the
only GG’-orbit in Y is the zero orbit. Hence the inclusion supp frigm €Y
would imply supp frem = {0}. This would mean that the wavefront set
of II" is 0, i.e. II' is finite dimensional. By classification, see Appendix H
all highest weight representations occurring in Howe’s correspondence are
infinite dimensional unless G’ = Uy, which is compact. In this case, the
intertwining distribution is a smooth function; see [MPP23]. In particular,
its support is not 0. Hence the intertwining operator is not a differential
operator. [
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6. The Pair (O2, Spy,(R))

We consider here the case (G, G") = (Og, Spyy(R)). By (E.6) and Propo-
sition E.1, we can identify

02 = {(g;¢) € 09 x C*;¢? = (det g)"'} .

and the det!/?-covering Oy 3 (9;¢) — g € O2 splits if and only if I’ is even.
Let II € Oy occur in Howe’s correspondence and let 4 : Oy — C* be the
character of Oy defined by (81).

Since 1T is genuine, there is IIy € Oy such that o(g) = (I @ x11)(9).
Accordingly,

On(g)w(g) dg = [ Ony(g9)wol(g) dg,
O2 O2
where wy is as in (83).

Observe that the image under the metaplectic cover of supp(©Orr) is equal
to supp(@no). Since S:ég — SO3 splits by (E.10), we conclude that ©ry is
supported in GO = 802 if and only if Oy, is supported in SOs. In the
sequel, triv denotes the trivial representation.

PrOPOSITION 15. Let (G G') = (O2,Spyy(R)) and let 11 be a genuine
irreducible representation ofG with character O not supported in GO. Then
either Il = triv = x4, or Il = det is the character of G such that (det ®
X11)(§) = det(g ) for all § € G.

Decompose W = My oy (R) as W = Wi @ Wy, where Wy is subspace of
the w € W for which all entries of the second row are 0 and Wq s subspace
of the w € W for which all entries of the first row are 0. Then

(98) | X @T@@)ds = o).
(SO2)s
. . . : 00 ... 0
where s is as in (88), O is the Oz X Spyy (R)-orbit of ng = (1 0 O) €

W and po € §'(W) is the invariant measure on O defined by

(99)  po(g) = 2" / b(gw) dgdpg,(w) (6 € S(W)).

W3 JOg
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Therefore

100) [ 6, GT@@ 1= | C@T@@)dg - polo) (6 SW)
and

101 [ 6 @@= [ I @T@O) s +rolé) (6 € SW).

The integral over SOq is computed by Theorem 4.
IfI' =1, then det does not occur in Howe correspondence and hence

| 6 @1@ g =o0.
O2
Moreover,

102 [ 6L @T@ =2 [ G'@TE) s =20

PrOOF. For n € Z, let p, be the character of SOy defined by

cosf  siné in
ol =eme.

—sinf cos6

Up to equivalence, the irreducible representations of Og are of the form
Iy, = Indgg)2 (pn) with n > 0, together with the trivial representation triv
and det. (Moreover, Iy, ~ Ily _, and Il o = 1@ det.) Hence Ory, does not
have support contained in é—\-/OZ if and only if Ily|so, = 1. Hence the only
possible cases are triv and det.

Since

we see that
[ b @r@a= [ C@r@ds [ @r@ds.
O2 SO2 (SO2)s
Lo @rads= [ xer@i- [ Glared

I
2
Q
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. [ cos(t) sin(t)
We now compute the integral over (SO2)s. Let g; = <_ sin(t) cos(t) €
1
0

9t/289—¢j2- If f is any function on (SO2)s, then

SOy and recall from (88) that s = < _01> € Oz \ SO2. Then g;s =

27

. ' 1 1 27
/(802)5 flg)dg = / flges)dge = o flges)dt = o /0 f(ge/259-1/2) di

SO2 0
27

1 B 1 ™ 1
= %/0 flgesg—+) - 2dt = ﬁ/o f(gtsg—e) dt + Py f(gesg_¢)dt

™

1 27
= 2—/ f(gesg—) dt :/ f(g-tsgt) dge .
m™Jo SO,

Applying this to SO2 > g — XII(E)T@) € §'(R), we get

P e

(103) / X7 (9)T(g) dg = / X5 (g7 s9)T (g~ sg) dg .
(SO2)s 502

Decompose W = Mj oy (R) as in the statement of the theorem and let g €
Oy. Then W = ¢7'W; @ ¢~'W, is an orthogonal decomposition such that
g~ sg preserves both ¢ 7'W; and ¢~'W,. Notice that

gilsg|g_1w1 =1,-1w, because slw, =1,

gilsg|g_1w2 = —1g-1w, because slw, = —1.

By Lemma G.1,

D N T

(104) X3 (97 s9)Tw (97 s9) = X5 (Lg-rw, ) Tw (11w, )

DX (—1gm1w,) Tw (= 1g-1w,)
independently of the choices of the preimages of g~ 'sg, 1 g-1w, and —1 1y,
in Sp(W), Sp(g~'*W1) and Sp(g~'Wy), respectively. We can therefore fix
1,-1w, to be the identity element of Sp(g~' W), which gives X_T_l(lg—lwl) =
1. Hence o o

X-T—l(lg—lwl)TW(lg_lwl) = 60,9_1W1 )
where 6y ,-1y, indicates Dirac’s delta at 0 in the space g "Wy,
By [AP14, Definition 4.16 and Remark 4.5], ©%,(—1) = (—2¢)4mW,
Hence |Ow(—1)| = 29™W/2 6nly depends on the dimension of W. In par-

ticular, - - .
1041w, (—1)] = [Ow, (—1)| = 2mW2/2,
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So

e~

Xt (11w, Tw(—14-1w,) = 9, i, (1 Dlpg-1w, = 2dimW2/2),

g71W2 .
Thus (104) becomes

(105)  xi'(g7'sg)Tw(g tsg) =29 W2/28) 1wy, @ pgrvy, -

By (103), for all ¢ € S(W),
/(SO | X3 (9)T(9)(¢)dg 2dimw2/2/ (60,g-1w, @ pg-1w,)(¢) dg
2)8
2‘1”“W2/2/ / w) dpig-1yy, (w) dg
SOz Jg 1W2
20 [ tgu) dg dyow, ().
Ws JSOs
Notice that, since sw = —w for w € W,
/ P(gw) dg dpw, (w / P(—gw) dg dpw,(w)
W2 JSOq Wso JSO2
= / P(gsw) dg dpw, (w)
Wy JSO9

= / / d(gw) dg dpw, (w) .
W2 J(SO2)s

Hence,

/ X @TG)() dg
(SO2)s

2d1mW2/2 / P(gw) dg dpw, (w / / ¢(gw) dg dpw, (w ))
W, J50, Wa J(302)s
_ 2d1mW2/2*1/ ¢(gw) dg dl/’/Wg (w) .
W2 02

In conclusion,
/( o, T @OT@O s =po() (9 SW),

where pp is as in (99).
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We now show that pe is a Oz X Spyy (R)-invariant measure on the orbit
O. Notice first that Wy \ {0} = Spyy (R).ng. Indeed, ng € Wy and Spyy (R)

preserves Wo. Conversely, let wy = (2 2) € Wy \ {0}, where u,v €

. 0 Iy 0 0
M (R). Since J = <_Il/ 0> € Spyr(R) and weJ = <—v u>’ we
can suppose that v # 0. If a € GLy(R) has u as its first row and b is a

. . . . b
symmetric matrix having v as its first row, then <g (at)_1> € Spyyr(R)

and ng (g (atﬁl) = wy. It follows from this that {gws;g € Og,wy €
Wy} = OU{0}. The right-hand side of (99) is clearly Og-invariant, and we
see that it is Spyy (R)-invariant by linear changes of variables in the integral
over Wy because the elements of Spy, (R) have determinant 1.

Let I’ = 1. By Proposition F.1, det does not occur in Howe corre-
spondence. Let II = triv. Since det does not occur, the projection onto
the Os-isotypic component is equal to the projection onto the-SOs isotypic

1

component. Therefore, (102) follows, because the volume of SOg is 3.

Since (100) vanishes when I’ = 1, we have

| e @r@dg=2 [ x0T dg = 2m0. O
O2 SO2

REMARK 12. Formulas (100) and (101) show that det and triv occur
in the Howe correspondence when I’ > 1. This is compatible with the
classification, as for I’ > 1 the the dual pair (Og,Spyy(R)) is in the stable
range, so all genuine representations occur.

6.1. The special case (G,G’) = (Og,Spy(R) = SLo(R))
1

In this case, H = SO9 and g = h = RJ;, where J; = R (_01 0>.
Moreover, 7(hy) = R*J; and hN7(W) = b. The Harish-Chandra parameter
of IT € O% (which coincides with its highest weight since p = 0) is of the form
pei, where p > 0 is an integer. Hence, in the notation (69), a = —b = —pu
and = 2.

If p =0, then P_, , = 0. If s > 0, then the function P_, , is supported
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in [0, +00) and, by (D.4) and Remark 17,

(—4my)"
h! ’

(106) P_y22my1) = 2(—1)“71@3—1(47"91) =2(-1)*! Z <M _;f_ h>
h=0

where Li—l is a Laguerre polynomial. Moreover, by (D.5), Q_, .(y) =
2w (—1)* for all p > 0.

Suppose first © > 0. Then II is supported in SO, and, by Lemma 3 and
Theorem 4, for every ¢ € S(W),

(107)  fuew(¢) = w© On(9)T(9)(¢) dg

“+o0o
— 2 C(— 1) /0 Py a2y )e ™™ Fy(yn ) dys

+C/béo(y)F¢(y) dy,

where C' is the constant appearing in Theorem 4. To make formula (107)
explicit, we need to calculate the terms involving F'(y), the Harish-Chandra
regular almost-elliptic orbital integral on W.

By [MPP20, Definition 3.1, (39) and (27)] and (1.2) with Z' = H’, there
are constants Cp; and Cp_ such that, for all y = y1J1 = 7(w) € 7(h7),

/
1

(108) Fy(y) = Comg () / o(s.) d(s30)

s/shr

~ Gy ) [ old ) dlg'H).
G//H/

where v = 1 J] = 1 <_01 (1)> = 7'(w), and ¢ = 7.(¢%) € S(g’). The
right-hand side of (108) is Harish-Chandra’s orbital integral for the orbit
Gy

Notice that, for G = Og and | = 1 < I’, the extension of F(y) from
y € T = 7(hy) to —7(hy) is even in y; see [MPP20, Theorem 3.6]. Hence,

/h So(y) Fy(y) dy = limy, s Fylyi 1) (6 € S(W)).
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Write z € g’ as

- 1 0 0 1 ’ X To + I3 _
r = (O _1>+x2 <1 0>—|—x3J1 = <x2 e > = A(x1, 2, 23),

where (71,22, 23) € R3. Then the map A : R3 — ¢’ is a linear isomorphism.
It transfers the adjoint action of G’ on g’ to the natural action on R3 by
SO(2,1)°, the identity component of SO(2,1), i.e. the group of isometries
of 23 4+ 23 — 3 = — det(A(x1, z9, z3)) preserving the positive light cone

X" = {(21, 22, 23) € R% 2] + 25 = 23,23 > 0}

See [HT92, Chapter IV, §5.1]. Under the map A, the orbit G'.y’ with
y' =y1J] and y; > 0 is the image of the hyperboloid’s upper sheet

O,, = {(z1,72,73) € R z{ + a3 — 23 = —yi, 23 > 0}.
Under A, the positive light cone X% corresponds to the G’-orbit of zo =

(8 (1]) Moreover G’.xzg ~ G'/MN, where M = {£1} and N = exp(Rzg) =

01
of the SO(2, 1)%-invariant orbital measures,

1t
{ ( ) it € R}. As the geometry suggests, for suitable normalizations

iy, or [ Fdug, = [ Fduxos  (FESEY).
O o Jxo

Thus, for a suitable positive constant C/b/r

109) [ 8o Fulw) dy=Cfy [ (') d(gMN)
) G’/MN

(¢ € S(W), v € S(g)% por’ =)
Suppose now that g = 0. Then, by Proposition 15, IT = triv = X+ and
for p € S(W),

triv @t

o @) =2 [ T @T@(0)dy =20 /b 50(u) Fo(y) dy

— —~
where triv denotes the representation of Spy(R) in Howe correspondence
with triv and the last equality follows from Theorem 4.
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7. Another Example: (G,G') = (U;,U,,) and II = triv

Let (G,G’') = (U;, U, ). Hence I’ = 2p. Consider the trivial representa-
tion triv of U;. In the Schrédinger model, with a polarization W = X @& Y
preserved by G, we have

(110) w@v(z) = x+@vg ') (GG veSX), zeX),

where x4 : §f)(W) — Uy is a function whose restriction to G is a character.
See [AP14, Proposition 4.28]. Let triv denote this restriction. Then triv
is the lift to U; of triv, which occurs in Howe’s correspondence. Moreover,
(110) implies that

w(O -

triv

Jola ):/Gv(glx)dg (e SX), zeX).

— ~ —
Let triv be the representation of U, ;, which corresponds to triv. If [ = 1,

—
then triv is a minimal representation of U, ,, called the Wallach represen-
tation.

In this section we are computing ft;V ot which is the Weyl symbol

of the operator w(@trl ). As in our main theorems, we distinguish the cases
[ <1 and [ >1'. Notice first that the parameters appearing in (68) are
1—1 1401

2 2

06 =27 and b=p—+

Moreover, p = Zé‘:l (l+—1 —j)ej for G =Uj,.

7.0.1 The casel <1’ -
The parameters (69) corresponding to II = triv are
I U

(111) aj=—5+j and  bj=-g4l+1-j,

where 1 < j <. Observe that the a;’s and the b;’s describe the same set
{(=U)2+1,...,=U)2+1—-1,-1'"/2+1}
and bj41—j = a; for all 1 < j < [. Hence, by (D.6),

(112) Pal+1—j7bl+1—j(€) = ij, J(é) - aJ7 ( f)
(113) Qarr_jbi1—; (&) = Qb;a;(§) = Qa;yp; (=€)
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Since a;j = by1—; < 0 for all 1 < j <min(l,1'/2), by (D.2),
(114) Py 2(6) = Pavs i ,2(€) =0 (1< < min(L,1/2)).

Also, a; < 0 for all j (and hence b; < 0 for all j) if and only if I < I'/2.
Furthermore, a; + b; = | — I’ + 1, which is independent of j, is > 1 if and
only if I =1'. As a consequence (see (D.5)),
ll

Pojp, =0forall1 <j <[l ifandonlyif [< R

Qa;p, #0forall 1 <j <1 ifl<l,

Qa;p; =0 forall 1 <j <l ifl=10".

We now examine more precisely the formula for ft?i,,V e when [ < 1'/2.

This is the stable range case. Asremarked above, Py, = 0forall1 < j </,
whereas (see (D.5))

Qayb, (47) = 2m(L+ )™ (1 = ;)™ .

Hence p; = 0 for all 1 < j <[, whereas

9

) 1. \4—i 1.\ 5—0=5+D)
Qj(_ayj) = Qj(ayj) = (1 + %8?/1) ’ (1 - %8%) ’

where * denotes the formal adjoint. Theorem 4 yields for ¢ € S(W)

115 S @ = | 0, @T@0) do
l

= 0 [ [TTat-0n)00ta) | o)

=1
= C[(ll:i[lqg'(ﬁyj))&} (0),

where C' is a nonzero constant. Hence f + has support inside the

triv @triv
nilpotent cone in W.

Another case where the formula for ftﬁv oty simplifies is when [ = I’ =
2p because Qq;p;, = 0 for all j. Since a; = bypr1—; < 0for 1 < j < p, we
have
2Py, b, 2(E)IR+ (§)  if1 <5 <p,

21 Py p;,—2(&)Ir-(§) ifp+1<7<2p.

Pa]'7bj (f) = {
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In particular, in this case, we can replace in (72) the domain of integration
hN7(W) with 7(h7), where by is the unique Cartan subspace of W and 7(by)
is determined by the condition that the first p values ¢; in (36) are equal to

1 and the last p are equal to —1. The explicit expression for ftr1V oty Can

be easily computed using (72), (D.1) and (D.2). For instance, if p = 1, i.e.
(G,G/) = (UQ,UL]_), then

ftHv ®t’I‘1V / / mlv2u) F¢(y17 y2) dyady (¢ S S(W)) ,

where C' is a nonzero constant.
7.0.2 The casel > 1’

In this case, Qq;p, = 0. The Weyl group W(U,,,b’) acts on b’ by
permuting the first p coordinates and the last p coordinates (see Remark
1). The parameter a,; and b, ; appearing in (79) are therefore obtained by
separately permuting the first p = I’/2 and the last p terms appearing in
(111). Notice that

a; <0 if and only if 1<j<t
b; <0 ifandonlyifl+1—§§j§l.

In particular, since [ > I, for each j, at most one between a; and b; can be
< 0. Moreover, there is at least one index j for which both a; and b; are
positive, namely j = % + 1.

When G’ = Uy, (and hence I = 2), then W(Uy 1, ) is trivial and s
maps Jj to itself and J; to Jo, and (79) simplifies to a nonzero constant
multiple of

Pflhbl,2(27ry1)Palybl,*2(27ry2) e—27r(y1—y2) (y _ T/(’LU) w e b_reg)
(y2 — y1) (y1y2)' 2 ’ b

where aj,b; are as in (111) and the denominator is the root product (A.4).
8. The Integral over —G° as an Integral over g

Let sp(W) be the Lie algebra of Sp(W). Set

(116) sp(W)° = {x € sp(W); = — 1 is invertible in End(W)},
(117) Sp(W)¢ = {g € Sp(W); g — 1 is invertible in End(W)}.
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The Cayley transform c : sp(W)¢ — Sp(W)¢ is the bijective rational map
defined by c(z) = (z + 1)(z — 1)~1. Its inverse ¢! : Sp(W)¢ — sp(W)€ is
given by the same formula, ¢ '(g) = (g +1)(g — 1)~

Since all eigenvalues of z € g C End(W) are purely imaginary, z — 1
is invertible. Therefore g C sp(W)¢. Moreover, ¢(g) C G. Since the map
¢ is continuous, the range c(g) is connected. Also, —1 = ¢(0) is in c(g).
Furthermore, for x € g,

clr)—1l=(@+)z-1)"—(z-)(z-1)"=2a-1)"

is invertible. Hence ¢(g) € GNSp(W)¢. This is an equality because ¢(c(y)) =
y and ¢(G) C g. Thus

c(g) ={g € G; det(g — 1) # 0}.

This is a connected open dense subset of —G°. Hence
(18) [ T@en@ds= [ T@én@ds.

-GO c(9)
If G # Og41, then G® = -G, If G = Og41, then G is the disjoint union
of G® and —GY. Let
(119) Gig— G
be a real analytic lift of c¢. Set ¢_(x) = ¢(x)é(0)~!. Then ¢_(0) is the
identity of the group Sp(W). By (14), we have

(120) T(e(x)) = O(e(x)) Xa prw -

Therefore, for a suitable normalization of the Lebesgue measure on g,

(121) On(a)T(5) dg = / On(&(x)) O(E(x)) jgl) Xo pow dr,
GO g

where jg(x) is the Jacobian of the map ¢ : g — c(g) (see Appendix B for
its explicit expression). Also, since ¢(0) is in the center of the metaplectic

group,
(122) [ 6n@T(@) s = we0)) [ On(e- () O(c(z) o) s v
- g

where x11 is the central character of II; see (62). In the rest of this paper
we shall write dw = duw (w), when convenient.
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9. The Invariant Integral over g as an Integral over b

We now apply the Weyl integration formula to reduce the integral on g
in (122) to an integral on a Cartan subalgebra of g. In section 3, this Cartan
subalgebra was denoted by h(g), see (45). To make our notation lighter, in
this section we will write b instead of h(g). Let H C G be the corresponding
Cartan subgroup. Fix a system of positive roots of (gc, hc). For any positive
root « let gco C gc be the corresponding ad(hc)-eigenspace and let X, €
gC,n be a non-zero vector. Let H° C H denote the connected component
of the identity. There is a character (continuous group homomorphism)
£, : H — C* such that

Ad(h)Xq = &a(h) X (heH).

The derivative of §, at the identity coincides with a. Let p € b denote
one half times the sum of all the positive roots. Then in all cases except
when G = Og;41 or G = U; with [ even, there is a character ¢, : H° — CX
whose derivative at the identity is equal to p, see [GW09, (2.21) and p. 145].
When G = Og41 or G = U; with [ even, the character §, exists as a map
defined on a non-trivial double cover

(123) HO5h— heH
of HY. In particular the Weyl denominator

(124) A(h) = &(h) [T (1 = &-alh))

a>0

is defined for h € H? or h € HO according to the cases described above.
We will see below how the Weyl group W(G,h) acts on HY. The sign
representation sgng/p of the Weyl group W (G, b) is defined by

(125) A(sh) = sgng/p(s)A(h) (s e W(G,b)),

where either i € H or h € HO.

Suppose first that G = Og41. Then H = H° - Z = H° x Z is the direct
product of H and the center Z of Sp(W). The group HO and the action
of the Weyl group on it are described in Appendix C. The double cover of
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—

His H=H x Z. Set H= H? x Z. We have a chain of double covering

homomorphisms

H=M0xZ —H'xZ— H'xZ— H°,

(126) -
(h,2) —— (h, %) — (h,z) — h.

We extend A, £, and Or to H by defining A(h, 2) = A(h) and €u(h, %) =
£,(h) or €,(h) if it exists, and Oy (h, 2) = O (h, Z). Recall from (C.3) the
section -

c_:ho>x—HO

and define

(127) ¢ ihsw— (@ (x),1) €.

This is a real analytic lift of the modified Cayley transform defined on h by
(128) c(x)=1+2)1—-2)"'=—c(x).

Suppose now that G = U;. Then H® = H. Consider the case when [ is
even. If G = U, , with p + ¢ odd, then the covering H— H does not split
(see Proposition E.1). Hence A, , and Oy are defined on H = H and the
Weyl group of H acts on Hin a way compatible with the cover H — H.
We have the modified Cayley transform c_ : h — H, an analytic section
o :c_(h) — H and the map

(129) h3z — o(c_(z) € H.

If G’ = U, , with p+q even, then define H to be the Cartan subgroup of the
group VG defined in Proposition E.1 coverlng H. (In particular, we have
the action of the Weyl group W(G, h) on H because W(G,h) = W(VG,h).)

Then A, £, and O are defined on H. By Proposition E.1, the metaplectic
cover H=H x {1,1} splits and we have maps
(130) H—H-—H-—H,
h — h — (h;1) = h.
Again A, ¢, and Oy are defined on H and (129) defines the lift of the Cayley

transform we shall use. In this case, we set H=H.
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For the remaining dual pairs, H = H and we lift A and &, to functions
on H constant on the fibers of the covering map H — H and write ¢_ for
¢_, which was defined under the equation (119).

LEMMA 16. Let p € ibh*. Then

(131) & u-() =] (1 “”"J> - H(1 i) (1 —ix;) ™" (z€h).

PROOF. By (34), it is enough to verify this formula when [ = 1. In this
case, * = x1J1 and pu = p1e; = —ipgJy. Let log denote the local inverse of
the exponential map near 1. Then, for x sufficiently close to 0,

log(c—(z)) =log (1 +z)(1 — :U)_l) = log(1 + x) — log(1 — x)

is a real analytic odd function of x. Hence it admits a Taylor series expansion

Z anx® T = Z an (=13,

n>0 n>0
Thus
n n . . n 1—1
pllog(c— (@) = — X an (15 i = = 3 ania)” = tn (1)
n>0 n>0 1 +

By taking exponentials, we obtain

£ (@ (2)) = elosle-@)) = (ﬂ)“

1—x 1
and the result extends to all x € h by real analyticity. [

Let I be an irreducible representation of (~}, and let u € ih* represent
the infinitesimal character of II. When p is dominant, then we will refer
to it as the Harish-Chandra parameter of II. This is consistent with the
usual terminology; see e.g. [Kna86, Theorem 9.20]. Then the corresponding
character &, is defined as &, = £,§,—,, where §,_, is one of the extremal
HO-weights of II. In these terms, Weyl’s character formula looks as follows,

(132) On(h)Ah) =ro > sgngp(s)€pu(h),
seEW(G,h)
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—

where h € HO or h € HY, according to the cases above, and kg is as in (71).

LEMMA 17.  Let mgy be the product of the positive roots of (gc, bc) and
let
Tg/p(2)
Ae-(z))
Then, for a suitable normalization of the Lebesgue measure on b and any

¢ € S(W),

k(x) = Ko

O(c(x)) jg(x)  (zeh).

t/gém@T@wm@

B f/V (E}(,Og )| / (OnA)(e )%”g/h( )/WXx(w)¢G(w) dw dz
= Xn(@ O))/E w(2)mg/n(2 )/WXx(w)gi)G(w) dwdx

where ¢© is as in (58) and each consecutive integral is absolutely convergent.

PrROOF. Applied to a test function ¢ € S(W), the first integral over
—GY and hence over ¢(g), is absolutely convergent because both, the charac-
ter and the function T'(g)(¢) are continuous and bounded (see for example
[Prz93, Proposition 1.13]) and the group G is compact. Hence, each con-
secutive integral in the formula (122) applied to ¢,

139) [ on@T@)0)dg
= xn(e(0) | On(e (1)) O(6() ja(@) [ xolwloo)

is absolutely convergent. Since

-1

Xg.z(w) = Xz(g 'w)

and the Lebesgue measure dw is G-invariant,

//&x mw—kmw&wm
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Observe also that ANd(g) — Ad(g) and the characters O and © are G-
invariant. Moreover, by (124) and (131),

A (2) = A@E-(z)™) = (-D)"A@C-(x)) (v €b),

where m is the number of positive roots, and

Tgp() = (=1)"7gp(z) (v €Dh).
Therefore the Weyl integration formula on g shows that (133) is equal to

X (€(0)) -
G’E(Gﬂh)l times

J rarn(@6n(E- () Ot jate) | xa(w)6 ) dv e

Ae-(z))
:/ @H(a(m)*lm(@(x)*l)’f_“")ﬂg/b(m)/ X (W) (w) dw dz .
b ko w
(Here, we suppose that the Haar measure on H is normalized to have total
mass 1.) This verifies the first equality and the absolute convergence. By

(132) and (143) below,

On(E_ () HAC (@) ) =ro . sengp(s)eE(2) )

= [ ne @) BE @) (2D 0e(r)) jale) ) marn(e) | el w) du e
b w

seW (G,bh)
= ko Z Sgng/h(s)ffs,u(ef (IL‘))
seW (G,bh)
—ro Y sengy(e)u(E(s70)).
seW (G,h)
Since ysr(w) = xz(s7'w) and ¢¢ and the Lebesgue measure dw are

W (G, b)-invariant, we see that the integral [y Xz (0)$% (w) dw is W (G, b)-
invariant as a function of x, too. The second equality in the statement of
the lemma then follows from the skew-symmetry of 74/ and the W (G, b)-
invariance of k, which is a consequence of Lemma 18 below. [J

Since any element x € g, viewed as an endomorphism of V over R,
has imaginary eigenvalues which come in complex conjugate pairs, we have
det(1 — x)yg > 1. Define

(134) ch(z) = det(l — )y  (zeg).
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Recall the symbols r and ¢ from (66) and (65).

LEMMA 18. There is a constant C which depends only on the dual pair
(G,G’) such that

K(z)

Ko

= Cch? ") (x€bh).

PrOOF. Recall [Prz93, Lemma 5.7] that mg/p(z) is a constant multiple
of A(c_(x))ch"*(x),

(135) mg/p(x) = CA(c_(x)) ch"*(z).

For the orthogonal groups this is verified in Appendix C. It is easy to com-
pute from [AP14, Definition 4.16], that

(136) O(&(x))* =i Wdet (27 (z — 1)),  (z €sp(W), det(z — 1) #0).

Hence there is a choice of ¢ so that

i 5 dimW 1
(137) O(é(z)) = (§> det (1—2)2,  (veg).

Furthermore, since the symplectic space may be realized as W =
Homp(V’, V), see (31), we obtain that

(138) det (1—2)y =det(l—2)¥, (v€q).

Also, as checked in [Prz91, (3.11)], the Jacobian of ¢_ : g — G is a constant
multiple of ch™"(z). (For reader’s convenience a —slightly different— proof
is included in Appendix B.) Hence the claim follows. [J

COROLLARY 19. For any ¢ € S(W

On(#)T(3)(6) dg = C roxn(( _/5 2)) ch? ()7 p(2)
el

xAmwwmmm,

where C' is a constant which depends only on the dual pair (G,G'), #C is as
n (58), and each consecutive integral is absolutely convergent.
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10. An Intertwining Distribution in Terms of Orbital Integrals
on the Symplectic Space

We keep the notation introduced in section 3. Let

7, ifD=C,

(139) W(G,b(s)) = {El x {£1}  otherwise.

Denote the elements of ¥; by 7 and the elements of {#1} by € = (ey, €2,

€1), so that an arbitrary element of the group (139) is of the form ¢ = en,
with e = (1,1,...,1),if D = C. This group acts on h(g), see (45), as follows:
for t = en,

l l
(140) t(Zijj) = ZGjynq(j)Jj .
j=1

j=1

As indicated by the notation, W (G, h(g)) coincides with the Weyl group,
equal to the quotient of the normalizer of h(g) in G by the centralizer of
b(g) in G.

The action of W(G,h(g)) on h(g) extends by duality to ih(g)*. More
precisely, let e; be as in (46). If 4 € ib(g)*, then p = 22:1 pje; with all
pi € ROIfFt =en e W(G,h(g)), then

l

l
(141) t(z,ujej) = ZEjun—l(j)ej .
j=1

Jj=1

Recall the notation of Lemma 17 and the symbol 6 from (68).

LEMMA 20. The following formulas hold for any y = Zé‘:l y;d; €
h(a),

(142) Eu(c-(ty) = Ep(e-(y) (€ W(G,h(g)))

and

l
(143) §—u(/c\_(y))chd/—1” L H 1+'ly /‘L]"l_é 1(1 Zyj)_uj—“s—l’
7j=1
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where all the exponents are integers:
(144) fu;+o6cZ (1<j5<).
In particular, (143) is a rational function in the variables yi, ya, ... , Y.

Proor. By (131),

l . . l
1 ALY
=11 (ﬂ) = [T +ay)rs (1 —iy;) .
j=1 j=1

Hence (142) and (143) follow from the definition of the action of W (G, h(g)),
the definition of ch in (134), and the following easy-to-check formula:

l

!

L

(145) ch(y) = H(l + yJ H (1 +1iy;) 2L —iy;)2
=1 =1

Let A = 23:1 Ajej be the highest weight of the representation II and let

p= 22:1 pje; be one half times the sum of the positive roots of h(g) in gc.

If p is the Harish-Chandra parameter of II, then A+p = p = 22:1 [jej; see
Appendix H for explicit values. Hence, the statement (144) is equivalent to

1
(146) >\j+pj+2—L(d/—7’+L)€Z.

Indeed, if G = Oy, then with the standard choice of the positive root system,
pj=4%—j. Also, \; €Z,1=1,r= d — 1. Hence, (146) follows. Similarly,
it G = Uy, then p; = d+1 —J, A + €, = 1 r =d, Wthh implies
(146). If G = Spy, then p] =d+1-1j, )\ €EZ, L= 2, r=d+ i 3, and (146)
follows. [

Our next goal is to understand the integral

Ta/p(2) /W Xa (W) (w) dw

occurring in the formula for [ o On(§)T(§) dg in Lemma 17 and Corollary
19, in terms of orbital integrals on the symplectic space W. The results
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depend on whether [ <1’ or [ > I’ and will be given in Lemmas 23 and 24.
We first need two other lemmas.

LEMMA 21. Fiz an element z € h(g). Let 3 C g and Z C G denote
the centralizer of z. (Then Z is a real reductive group with Lie algebra j.)
Denote by ¢ the center of 3 and by my/; the product of the positive roots
for (gc, b(g)c) which do not vanish on z. Let B(-,-) be any non-degenerate
symmetric G-invariant real bilinear form on g. Then there is a constant Cj
such that for x € h(g) and 2’ € ¢,

(147) mg/pg) (@) g/s(") /G ¢iBlawa’) g

=G5 > sgng/b(g) ()73 p(g) (¢ ) PO,
W (2,5(8) €W (GL0(a) /W (Z,b(g))

(Here m3/n(g) = 1 if 3 = h. Recall also the notation g.x = grgt.)

PROOF. The proof is a straightforward modification of the argument
proving Harish-Chandra’s formula for the Fourier transform of a regular
semisimple orbit, [Har57, Theorem 2, page 104]. A more general, and by
now classical, result is [DV90, Proposition 34, p. 49]. O

The symplectic form (-, -) on W, according to the Lie superalgebra struc-
ture introduced in (28), is

(148) (w' w) = tpyR(Suw'w)  (wwe W),
Hence

(149)  (e(w),w) = trop(Sew?)  (zeg@q, we W),
Set

(150) B(r.y) =7 trpp(zy) (<),

LEMMA 22. Recall the Gaussian xy from (13). Then

(151) Xe(w) = e B@Tw) (x € g,we W).
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ProoF. Notice that, for z € g g’ and w € W,
2 2 2
trp/r(Szw?) = trp/r(zw|v;) — trp/r(zw”|vy)
where
trD/R($w2|Va) = trp/r(z|vywlv,wlvy) = trp/r(wlv,zlvywlv;)) = trp/r(wrw|v,)

and similarly
trp/R(zw?|v;) = trp/r(wzwly;) .

Hence
(w, w) = trpy(Szw?) = — trpyp(Swrw) = — (wz, ).
Therefore
(152) (x(w),w) = 2trD/R(Sacw2) (regadg, weW).
Then (149) and (32) show that
T

§<x(w),w> = B(z,7(w)) (reg, weW),

which completes the proof. [J

The Harish-Chandra regular almost semisimple orbital integral F(y),
y € b, was defined in [MPP20, Definition 3.2 and Theorems 3.3 and 3.5[;
see also section 4 above. In particular, [MPP20, Theorem 3.5] implies that,
in the statements below, all the integrals over § involving F'(y) are absolutely
convergent. Recall the notation Fy(y) for F(y)(¢).

LEMMA 23. Suppose l <1'. Then, with the notation of Lemma 17,

g/ ) / Yo ()6 (w) duw = C / BN () dy,
A b7 (W)

where C' is a non-zero constant which depends on the dual pair (G, G’).

ProOF. The Weyl-Harish-Chandra integration formula on W, see
(52), (53) and (49), shows that

(153) /W o (1) 6% () duw

= / (7)) 1 (r () Ot b (6% (),
= Jriot)
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where h%’ C h7"“ is an open fundamental domain for the action of the Weyl
group W (S,bhy) and C(by) is a constant, determined in [MPP20, Lemma
2.1]. Let us consider first the case of a semisimple orbital integral

o) b (626 = /S oy 0850 557,

where SY1 is the centralizer of b7 in S. Recall the identification y = 7(w) =
7/(w) and let us write s = gg’, where g € G and ¢’ € G’. Then

(154) X;r(sw) _ ezg@(s.w),s.w) _ eiB(x,T(s.w)) _ 6iB(:c,g.7'(w)) _ eiB(w,g.y)

and

(155) ¢S (s.w) = ¢%(g'w) .

Since | < I, equation (I.1) below implies that there is a positive constant
(1 such that

1o, b (X2 0®) = 01/

B ag [ 60w dlgZ).
G e/

However we know from Harish-Chandra (Lemma 21) that
Wg/h(gj) (/ ez‘B(x,gy) dg) Wg/h(y) =Yy Z Sgng/b(t)eiB(x,t.y) )
¢ teW(G,bh)

Hence, using (153) and [MPP20, Definition 3.2 and Lemma 3.4], we obtain
for some suitable positive constants Cj,

(156)  mg/p(x) /W o ()6 (w) duw

> sgng/r)(t); / o )0
T 1

teW(G,h)

x / 6 (g w) d(g'Z') dy
G//Z/

=Cy Z sgng/b(t)/ . eiB(w’t'y)F&(y) dy
teW (G,h) Up (1)

— iB(z,t.y)
Cy Z / N Fya(t.y)dy

tew(G,h) 7Y by ()
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—af ¢BE) Fy () dy
w(G,HhU (yl‘r(h%))

:C'4/[j w eiB(z’y)F¢G(y) dy .
Nt

Since Fye = vol(G)Fy = Fy, the formula follows.
Next we consider the case G = Og41, G’ = Spyp(R), I < I'. Then

KO (w) (Xx¢G) — /S/Sryﬁwo (quSG)(s'(w + wO)) d(SShT+wO) 7

where wy € 51(V°) is a nonzero element. Since the Cartan subspace bt
preserves the decomposition (34), (w + wp)? = w? + w3. Hence, (s.(w +
wp))? = s.(w? + w3). The element x € b acts by zero on g'. Therefore
(s.(w+wp))? = z(s.(w +wp))?|v,. Since S(V°) = Oy x Spa(r ) (R) we see
that wi|y, = 0. Thus zs.wjlv, = 0. Therefore, by (27),

(z(s.(w +wp)), 5.(w + wp)) = tr(z(s.(w + wp))?) = tr(xs.w2|vﬁ) = tr(zg.T(w)),

because s = gg’. Hence,

Xx(s-(w +w0)) _ eig(m(s.(w+wo)),s.(w+wo)) _ 6iB(x,g.T(w)) _ 6iB(x,g.y)

and
¢% (s.(w +wo)) = ¢ (g'.(w + wp)) .
Therefore, with n = 7/(wy), we obtain from (I1.3) that

10w (X29®) = 01/

e!Bra9) 4g / ¢S (g w)d(g'Z™),
a Gz

where Z'™ is the centralizer of n in Z’. Thus, the computation (156) holds
again, and we are done. [J

LEMMA 24. Supposel >1". Let 3 C g and Z C G be the centralizers of
7(by). Then for ¢ € S(W)

T/ b(g (T) /W X (w) ¢ (w) dw

=C > Sgng/b(g)(t)ﬂz/b(g)(t_l-w)/l . e Pt Fy(y) dy
tW(Z,b(g) €W (G, b(9) /W (Z,b(g) 7/ (brme9)
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where C' is a non-zero constant which depends only on the dual pair (G, G').

ProoOF. By the Weyl-Harish-Chandra integration formula with the
roles of G and G’ reversed, see (53) and (49),

[ atwstwyde =01 [y w) g (7)o (16 dr (),
W ~(057¢9)

where

1o w) (X20%) = / (x29%)(s.w) d(s8"T) .

s/shr

Recall the identification y = 7(w) = 7/(w) and let us write s = gg’, where
g € G and ¢’ € G'. Then, as in (154) and (155),

Ye(s.w) = eP@IY and ¢S (s.w) = ¢% (¢ .w) .

Since | > I’, equation (I.2) implies that there is a constant C5 such that

10(w) (X ) = 02/

e!Bra9) 4g / ¢% (g w) d(g'H').
G Q'

By (147) in Lemma 21 and [MPP20, (34)], we obtain for some constants Cj,
(157) 7gm(p() /W o ()6 (w) duo

= G Z s8ng/b(g) ()73/h(g) (1)
tW(Z,b(9))eW (G,b(g))/W(Z,b(g))

<[ e [ 68w dg'H) dy
) it

= G > s8ng/b(g) (t)T3/h(g) (1)
1 (Z,b(9)) €W (G, b(g)) /W (Z,b(g))

X / eiB(x’t‘y)Fd)c(y) dy .
T/(bTreg)
Since Fya = vol(G)Fy = Fy, the formula follows. [J

LEMMA 25. Supposel <1'. Then there is a seminorm q on S(W) such
that

[ Faly) P dy| < q(0) chla) (e o€ SW)).
bnT (W)
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_ Proor. The boundedness of the distribution-valued function T'(g), g €
G, means that there is a seminorm g on S(g) such that

T@@)<ald)  (5€G0eS(a),
Hence,
15)  [0@) [ s <a)  (@eq).

Equivalently, replacing ¢(¢) with a constant multiple of ¢(¢), and using
(134), (137) and (138), we see that

159) | [ et de| < gy @) @en.

Since | < I, Lemma 23 together with (159) proves that (again up to a
multiplicative constant that can be absorbed by ¢(¢)),

[ ) e dy] < o(9) lrgno)] )
b (W)

Recall the constants r and ¢ from (67) and (65). Then, as one can verify
from (A.1),

1
(160) max{deg, mg/p; 1 <j <1} = z(r —1),

where degyj mg/p denotes the degree of Wg/h(y) with respect to the variable
Yj-
Also, (160) and (145) imply that

mg/p(a)| < Csch™ H(z) < Csch™(z)  (z €b),

where Cf5 is a constant. Thus, the claim follows. [

Lemmas 23 and 24 allow us to restate Corollary 19 in terms of orbital
integrals on the symplectic space W.

COROLLARY 26. Suppose I <1'. Then for any ¢ € S(W)

On(#)T(3)(6) dg = Crio xun(&( / £ (@ (@) b (x)
el

></ e’ (x’y)F(b(y) dydz,
b7 (W)
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where C' is a constant that depends only on the dual pair (G,G’) and each
consecutive integral is absolutely convergent.

PrROOF. The equality is immediate from Corollary 19 and Lemma 23.

The absolute convergence of the outer integral over h follows from Lemma
25. 0

COROLLARY 27. Suppose l > 1. Then for any ¢ € S(W),
| en@r @)@ ds
el
= Cro xm(¢(0)) Z sgng/h(g)(s)/ E_su(c=(z)) ChdlfrfL(‘,E)
SEW (G,b(g) h(e)

X%MM@/W f%m&@@M,
! 1reg

where C' is a constant that depends only on the dual pair (G,G’) and each
consecutive integral is absolutely convergent.

PrROOF. The formula is immediate from Corollary 19, Lemma 24 and
formula (142):

L[ eu@r) dg()

Ko J_@go
= Cixn(&(0)) b(o) & u(@ () b T () (Wg/r;(g)(x)/sz(w)qﬁG(w)dw) dz
= Coxm(€(0)) ’ )g_u(gj(x))chd’—r_b(x)

’ ( S81g,/1(g) (1) 3 /b (g) (1 -2)
W (Z,(2)) €W (Cb(g)) /W (Z,b(g))

x/ e Bt F(y) dy> dz
o (y7e9)

_GnlE0) [
)

—W(Z,b5(a)] Jo

X ( E Sgng/h(g)(t)ﬂ-z/b(g) (t_l.a:)/

i eiB(x’t'y)F(b(y)dy dx
tEW (G,h(g) 7 (b7)
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= Con(@0) S seng et / € (@ (ta)) ch? T ()

teW(G,h(g))

X <7r3/b(g)(1:)/(h g)eiB(t.x,t.y)F¢(y) dy) dx
T/ T’V’E

= Caxn(¢(0)) Z S0y /p(g) () /r;( )E_t_lu(a(x))ChdLrﬂ(ff)

teW(G,b(a))

X (Wz/b(g)(x)/ \ g)eiB(m’y)F¢(y) dy) dx .
7-/ T’V‘e

Let G” be the isometry group of the restriction of the form (-, -) to Vg’o and
let " = S i=+1RJj. Then, as in (160), we check that

1
max{deg, T,/ng); 1 <j <1} = max{deg, mup; '+1<j <1} = (r -1),

2dim g
where 7" = " Vog%
Yo R

is defined as in (66). Since r — r” = d’, we see that

chd/_’"_b(:n)lwﬁ/b(g) ()| < const ch® """~ (z) = const ch*(x) .

Furthermore, Fy is absolutely integrable. Therefore, the absolute conver-
gence of the last integral over h(g) follows from the fact that ch™2* is abso-
lutely integrable. [J

To prove Theorem 4 (and Theorem 5), we still need the following explicit

2
formula for the form B(z,y). Let § = _7r, where ¢ is as in (65). Then
L

1 ! !
(161)  Ble,y) =B zjy;  (e=)_zjJj.y= y;J; € hlg)
s j=1 i=1
Indeed, the definition of the form B, (150), shows that

(162) B(x,y) = mtrpyr(zy) =7 > trpyr(J;Jk) 759k
ik

2
_WZtTD/R VJ :ijj ——TZ:ijj.
J
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PrROOF OF THEOREM 4. Notice that the degree of the polynomial
Qa;p; 18 —aj —bj = 26 — 2 and is independent of x and j. Explicitly,

1
(163) 26—2=—(d —r—u),

L
(where ¢ = 1/2 if D = H and 1 otherwise). Hence, by [MPP20, Theorem
3.5], the function Fy has the required number of continuous derivatives for
the formula (72) to make sense. The operators appearing in the integrand of
(72) act on different variables and therefore commute. Also, the constants
a;, b; are integers by (144). Hence, equation (72) follows from Corollary 26,
Lemma 20, formula (161), and Proposition D.5.

For the last statement about (73), we have

20 — 21 if (G, G’) = (O, Spyr(R)),

21 —21 —1 if = (R
164)  —r— e if (G,G’) = (O2141,Spyy(R)),

I'—1—-1 if(G,G)=(U,Upg)p+q=1,

I'—1-1 if (G,G') = (Sp;,0%;).

Thus, since we assume [ < I’, the product (73) is a function if and only if d’—
r— < 0,1ie. ifand only if I = " and (G, G’) # (Og;, Spyy (R)). Furthermore,
(73) contains no derivatives (but terms involving 8y are allowed) if and only if
d'—r—u = 0, which corresponds to either [ = I’ and (G, G’) = (Og;, Spyy (R)),
orl'’=14+1and D = C or H. This completes the proof. []

Suppose now [ > I'. Let h” = Eé‘:l’-{-l RJj, so that

(165) hlg) =@ h".

Then the centralizer of 7(hy) coincides with the centralizer of h in g and
is equal to 3 = h & g”, where g” is the Lie algebra of the group G” of the
isometries of the restriction of the form (-, -) to Vg. Furthermore, the derived
Lie algebras of 3 and g” coincide (i.e. [3,3] = [¢”,¢"]) and b” is a Cartan
subalgebra of g”. We shall identify h and " by means of (42). This justifies
writing h(g) = b’ & h” when we need to emphasize the role of g'.

LEMMA 28. Suppose | > 1'. In terms of Corollary 27 and the decom-
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position (165)

(166)  &-u(@ () e~ (@) p(g) ()
= (E-snl@ @) e (@)) (E-sul@ (@) b @ ) rgryp (a1

where x = 2’ + 2" € h(g), with 2’ € b/ and 2 € §”. Moreover,

(167) /h” £*SH (E:($//)) Chdl*T?L(!’E”)ﬂ'g///b//(QT”) dz"

=C > sengyy (8o (= (sw)lyr + 5"0"),
SIIEW(G//,h//)

where C' is a constant, p” is one half times the sum of the positive roots for
(8¢, bC) and gy ds the indicator function of zero.

PRrOOF. Formula (166) is obvious, because c¢_(z' + 2) = ¢Z(a')e=(z")
and m;/p(g) (7' +2") = mgrp (2”). We shall verify (167). Let r” denote the
number defined in (66) for the Lie algebra g”. A straightforward computa-
tion verifies the following table:

g r r’ d—r+7r"
ug d d—d 0
og [|d—1]d-d -1 0
spy || d+5 |d—d + 3 0

By (135) applied to G” 2 H” and ¢g”" D b,
mpe(a) = CLAM @) el ) (@ e W),
where A” is the Weyl denominator for G”,

(168) A,/ = K;g Z Sgng///h//(s”) gs”p”
S/IGW(G,/,h/,)
and
L if G” = Oy where d” is even
(169) Kl = {f

otherwise .
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Hence, by (145), the integral on the left-hand side of (167) is a constant
multiple of

(170) / E—Su (E:(x//))A/I(E:(x/I)) Chd/_r-h»”(x//) Ch_zL(.’L'H) dz"
h//
_ odim’ /A ” ¢ ou(R)A"(h) dh,

where ¢ (") C 0.
Notice that the function

H0 5 h — &g (h)A"(h) € C
is constant on the fibers of the covering map
(171) O — H.

Indeed, the covering (171) is non-trivial only in two cases, namely G” =
Ogpryq and G” = Uy with I” even; see (123). In these cases, (168) shows
that this claim is true provided that the weight —su + s”p” is integral for
the Cartan subgroup H” (i.e. it is equal to the derivative of a character of
H//>'

Suppose G” = Og41. Then G = Og41, Aj € Z and pj € Z+ % Hence,
(—sp)j € Z+ 5. Since, pj €L+ 3, we see that (—su); + P € Z.

Suppose now that G” = U with I” even. Then G = U; and (—spu); €
7 + % In fact, if I’ is even, i.e. [ = 1" +1” is even, then \; € Z and
p; €EZ+ 3. If I'is odd, i.e. | =1'+1"is odd, then \; € Z + 1 and p; € Z.
Since pj € Z + 3, in both cases, we conclude that (—sp); + p; € L.

Therefore, (170) is a constant multiple of

(172) Z sgng///h//(s”) /”0 S—Su(h)fs”p”(h) dh
s"EW (G, ") H
_ vol(H"?) sgngy iy (") if (sp)|yyr = s"p”,
0 if (sp)|yr ¢ W(G",5")p",

= VOI(H”O) Z Sgng///h//(SII)H{O}(—(SILL)‘[’// + S//p”) .
s"EW (G, ")
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COROLLARY 29. Suppose | > I and keep the notation of Lemma 28 .
Then

On(9)T(g) dg = 0
_qo
unless there is s € W(G, h(g)) such that
(173) (su)lgr = p".
If G = Ogy41 or Spy, then (173) is equivalent to
(174) pwly =p" and sl =1.
Suppose G = Og; and write " = hj & RJ;, where hjj = Zi‘jlﬂ RJ;. Then
(173) is equivalent to
(175) M|h// = p’l, S|hg = 1, and 8|RJ[ =41.
Finally, if G = Uy, then (173) holds if and only if there is jo € {0,1,...,U'}
such that
(176) Wjorj = Prvy  and  s(Jjorj) = Jry;  (1<j<1=1).
Suppose that (173) holds. Then for any ¢ € S(W)
(177) On(7)T(g) dg(¢) = C roxu(e(0)) Z SENg/p(g) (5)

-G SEW (G,h(9)), (s1) g =p"
[ €oon(@ (@) () / ( )eiB(wad,(y) dy dz
% (g7

where C' is a non-zero constant which depends only on the dual pair (G, G'),
and each consecutive integral is absolutely convergent.

PROOF. Observe that B(x' + 2" y) = B(2',y) for 2’ € §/, 2" € h” and
y € 7'(b7"9) C h’. We see therefore from Corollary 27 and Lemma 28 that

) [ en@T@)ds(o)
= C koxm(¢(0)) Z Z S8l h(g) (5) seng /gy (s”)
sEW(G,h(g)) €W (G, )
1 //)

x Lioy (— (sl +8"p
< | en@@a @) [ B EG) dyds.
b (")
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Notice that for x € §’ and " € W(G”,p"), we have s"x = z. Thus

E_su(cZ(z)) = &_grsu(c=(x)) by (142). Notice also that, by (165),

W(G",4") C W(G,h) and sgng: p/(s”") = sgngpg(s”). Moreover,

I[{O}( (s)lyr + 8"p") = Lioy(—=(s"tsp)|r + p”). Hence, replacing s by
"s in (178), we see that this expression is equal to

(179) Croxu(é0) > > sengng ($)oy(—(sp)lyr + ")
sEW(G,h(g)) s” €W (G",b")
/ E_sulc= )) ch® ="~ L(x)/ eiB(w’y)Ez)(y) dy dz
T/(hT'reg)

which yields (177), with a new non-zero constant C, equal to C|W(G”,§")|.
Clearly (179) is zero if there is no s such that (su)|pr = p”. The absolute
convergence of the integrals was checked in the proof of Corollary 27.

Recall that h” = Z;:l,ﬂ RJ; and p1 = A+p where X is the highest weight
of the genuine representation II. We take a closer look at the condition
(s12)liyr = .

If D = R or H, then ply: = p”. All coefficients of p are positive and
strictly decreasing by 1 except when G = Oy, where p; = 0. Hence s|py
cannot contain sign changes when G = Og;41 or Sp;, whereas 5‘%’ cannot
contain sign changes when G = Og;. Using the form of the coefficients of A,
one easily sees that (173) is equivalent to (174) or (175).

If G = Uy, then A\ = 1% + v, where 11 > vy > --+ > y; are integers.
Moreover,

P—q l—-p—q+1 . .
(180) T+pp+j=f—¢7=p§5+j (1<j<i-=T).

The Weyl group W (G, h(g)) consists of permutations of the J;’s. Hence a
genuine Harish-Chandra parameter u satisfies (173) if and only if among its
coefficients p1, ..., we can find a string of [ — I’ successive coefficients p;
equal to pj,q,...,p] and the permutation s translates the corresponding
string of J;’s onto Jyy,...,J;. This proves (176). O

In the next lemmas we study the integrals appearing on the right-hand
side of (177).
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LEMMA 30. For s e W(G,h(g)) andy € 7'(by), in the sense of distri-
butions on 7' (h1"Y),
l/
(181) f—su(a(l')) Chd/_’r—l,(m)eiB(iE,y) dr = ( H Pa:;,j,bs,j (ﬂyj))e_ﬂz §=1 [yl )
b’ j=1
where asj, bs; and B are as in (80) and (68), and P,
(D.4).

is defined in

s,J

PrOOF. This follows immediately from Lemma 20, (D.5), and Propo-
sition D.5, since asj +bsj = —26 +2>1for I > 1'. O

Suppose that p satisfies (173) for some s € W(G,h(g)). The integral
corresponding to s in (177) vanishes when the intersection of the support of
the right-hand side of (181) and 7/(h;"“) has an empty interior. We first
study this intersection for some specific elements in W(G, h(g)).

If D = R or H, define s = 1 as in (74). Then clearly sou|p = p” by
(174). If D = C, fix jo € {0,1,...,I'} as in (176) and define sqj, as the
permutation in W (G, h(g)) given by

Jj (1 <3 <o)
(182) 50,0 (Jj) = § Jr—jo+s (Jo+1<j<jo+i-1)
Jj—i4v (Jo+1-U+1<j<1),
ie.
{1,...,J0} {Jo+1,...,U'} {'+1,...,1}

{1,..., 70} {Jo+1,....50+1=0V} H{jo+l-0U+1,...,1}
Equivalently,
1 (1<j<jo)
(183) (s0,o)j = gl )y = YHi-v+i (Jo+1<j< ')

pjo-rv+ ('+1<j<1).
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Hence (sqj,4t)|pr = p”. Notice that s is the element sq defined in (75).

LEMMA 31. Letl > 1" and suppose that pu satisfies (173). Let so = 1,
as in (74), if D =R or H, and let sqj, be as in (182) if D = C.
IfD =R orH, then
l/ l/
(184) H aco o (003) = @m)" T Pay 2 (Byp)les () (=i Jj € 1)
j=1

Jj=1

has support equal to T'(by).
IfD =C, then

Jo

185 ]._.[ 50,50927%0,j¢ (ﬁyﬂ) 7T>ll ( H Paj»bp?(ﬁyj)]IR*' (%))

j=1
v v
I1 Poervtor 2Bl () (5= ) €1)
J=jo+1 =1
has support equal to ( '0 | RT J’) (ZJ o1 R ) This support is equal

to 7' (by) if jo = p, whereas its intersection with T (hT) has empty interior if
Jo # -

PROOF. Let D = R or H. By (65), (67), (68) and Appendix H and
since |y = p” = plyr, we see that

fin > e >y > g = Py = =6,
These inequalities are equivalent to

(186) ap=—pu —0+1<ar=—-pu—0+1< ---<ap=—-—pur—-6+1<0

because the ;s and 6 are either all in Z or all in Z 4 % Hence Paj,bj7_2 =0
for all 1 < j <!’ by (D.2). Since a; +b; = —26 +2 > 2, we see that
bj > 2 —a; > 1. Therefore, the polynomial P, p; 2 is nonzero for all
1 < j <. Hence the function on the right-hand side of (184) has support
equal to Zé | RYJE = 7'(by).
Let now D = (C By (176), (180), (68) and (163),
" -0 -1
P> pi2 > > gy > fjo+l = Py =~ = —6(>0),

-1 -1

(0>)6=— 5

/!
=01 = Mol = Hjotl—l41 > = > [ -
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Since the p;’s and ¢ are either all in Z or all in Z + %, these inequalities are
equivalent to

0 =—p —0+1<ar=—p—06+1<---<aj=—pj,—6+1<0
(187) Oij0+l,l/+1 = Hjo+1—-1'+1 —5+1> >bl :ul—6+1.

Hence,

Pllj,bj,—Q =0 ie. Paj,bj (y]) = 27TPaj7bj;2(yj)HR+ (yj) (1 <j< .70) ,
Po,b;2=0 ie Py p,(y;) =27Pa;p;,—2(y)lr-(y;) Go+1-1'+1<5<1).

The polynomials appearing in these expressions of P, 5, are nonzero because
a; +bj = —20+2> 0 for all j. By (40) and the convention on the symbols
6;’s for the dual pair (U;, U, 4) with [ > I’ = p+¢, the claims on the support
of the right-hand side of (185) follow. [J

Let D = C. Suppose that there is s € W(G, h(g)) such that (su)[y = p”
and that the string of coefficients of 1 equal to those of p”, see (176), starts
at jo + 1, where jo € {0,1,...,I'}. Then s = s, satisfies (su)|p = p”.
Lemma 31 shows that if jo # p then the intersection of the support of
Hl/ P, b - with 7/(h7) has empty interior. We now prove that

j=1 aso,jo"ﬁ 50,404
if jo # p the same holds for the support of Hézl P,
W(Ga h(g)) SUCh that (S'u)’h// = p”‘

.jbs; fOT every s €

LEMMA 32. Let D = C. Suppose that p and s € W(G,h(g)) satisfy
(176) for jo € {0,1,...,1"}. If jo # p, then the intersection of the support
of szl Py, ; p.; with 7'(by) has empty interior.

PRroOOF. Since

s04o(Jjord) = Jowsr  s(jgrs) =Jryy (1 <ji<i=T),

the composition 3*1307j0 fixes the elements of {Jj,11,...,Jj,+i—r} and per-
mutes those of {J1, ..., Jjo }U{Jjo41—r+1,-..,Ji}. Thens™! = (3_130,3'0)5(;]1‘0
maps to string) {Jyyq,...,Ji} onto {Jj41,...,Jjo—r} and hence
{J1,...,Jr} bijectively onto {Ji,...,Jjo} U{Jjo+1—r+1,-..,J1}. Therefore
{(s11)j = ps—1(jy; 1 < j <1’} is a permutation of {u;;1 < j < jo} U{py;jo +
| —U'+1<j<I} By (187), there are jo negative a; and I’ — jo negative
bj for 1 < j < I. The same is then true for the as; and the by ;. The
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support of H?Zl Py, ; b, is therefore a Cartesian product (in some order)
of jo copies of R* and I’ — jy copies of R™. Its intersection with 7/(h1) has
therefore empty interior if jg # p. O

When the intersection of the support of Hé-lzl Py, ;p,; and 7'(hy) has
empty interior, the integral on the right-hand side of (177) that corresponds
to s vanishes. Lemma 32 shows that every such integral is zero when jo # p.
This yields the following corollary.

COROLLARY 33. Suppose that 11 is a genuine representation offjl with
Harish-Chandra parameter p satisfying (176) for jo € {0,1,...,U'}. If jo #
p then

Jnemw = /U On(9)T(g) dg=0.

Thus, if I1 is a genwine representation of [~Jl which occurs in Howe’s corre-
spondence, then its highest weight must be of the form \ = Zé‘:l (’? -H/j)ej
where

nm2ve > 221 ==y_¢=02y_41 2> 21.

PROOF. Only the last statement requires proof. We know from Lemma
32 that jo = p. Hence the first line of (187) looks as follows:

p1+O0—=1>pp+6—-1>-->p,+6—-1>0.
Since
pP—q . .
uj+5—1:)\j+pj+5—1:)\j—T+p—j (1<j5<p)),

we see that p—g
vi=X T 5 (1<j<p),
satisfies

vp2ve 22,20,
By a similar analysis of the second line of (187), the claim follows. [J

In the proof of Theorem 5 we will see that the condition on the high-
est weight of II is also sufficient for the nonvanishing of the intertwining
distributions.
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Because of Corollary 33, we can restrict ourselves to the case jo = p
when G = U;. In this case, to simplify notation, we will write sg instead of
50,p. Hence

(188) sop=1 (ifD=RorH) and sp=sp, (IfD=C).

Observe that this notation allows us to write

(189) Ilfz%],ﬁu By;) = (2m)! Ilfzmjvm,, (By; s, e+ (y5)
7j=1

which unifies (184) and (185).
Suppose that s € W (G, h(g)) satisfies (173) and jy = p if D = C. Then

(190) ssgtlpr =1 and  ssyl(h) =h.

The condition ss;'(h) = b and the identification (42), allow us to consider
55 ! as isomorphisms of §’. In the following lemma we prove that such a s
contributes to the right-hand side of (177) if and only if ss; ' € W(G',§’).
Moreover, in this case, the contribution from s agree with that of sg.

LEMMA 34. Letl >1" and let p and s € W(G, h(g)) satisfy (173) with
jo=p if D =C. The integral

(191) /g_su ) ch? 7~ ‘(x)/ eiB(x’y)F¢(y) dy dz
T/(bTTeg)

18 zero:
(a) if 5851|h acts by some sign changes, when D = R or H,

(b) if ssyt|p does not stabilize {J1,...,Jp} (and {Jpi1,...,Jy}), when
D=C.

FEquivalently, by identifying b and b’ via (42), the integral (191) is zero
unless ssy - € W(G', ). Moreover, (177) becomes: for any ¢ € S(W)

a92) [ en(@)() dsto)
.

= Croxn@0) [ (TL Py (00) =591 (g)
j=1

/(bye)
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where C' is a non-zero constant which depends on the dual pair (G, G’).

PROOF. Let D = R or H. Suppose that ssal(Jj) = —J; for some
je{l,....,l'}. Then (spu); = —(sop);. Thus P, .
and the support of (181) has a lower dimensional intersection with 7/(by).

The case D = C is similar: if ssal(Ji) =Jjwhere 1 <i<p<j<Ul,
then (sp); = (sop)i, which interchanges the i-th and j-th indices a and
b of sp and sou. The support of (181) has therefore a lower dimensional

intersection with 7/(by).

By the above and by identifying b and b’ via (42), we can restrict the
sum on the right-hand side of (177) to the set of s € W(G,h(g)) such
that ssy'lp € W(G',b') and ss;'|yr = 1. Therefore, the sum can be
parametrized by W(G',h’). By (181) and since sgng/h(g)(ssal) =
sgng//b/(ssal), we obtain that [ oo On(3)7(7)dg(¢) is koxm(¢(0)) times
a constant multiple of

b,; is supported in R™,

> smngyle) [ E v @@t @ [ PEIE ) dyde

S EW (G b)) ™' (by"?)

— I’,l .
=Y [ (HP« g B0 B ) dy.
S’GW(G’, /) hl“’q)

Observe that

ll

1
HPG’S 50> J: s's0,7 ﬁyj HPasojy 50] Sl y)j)

=1

because s € W(G', ') permutes the indices 1 < j < I’. Recall also that
Fy4(y) transforms as the sign representation with respect to the action of
W(G',p’). Formula (192) therefore follows. The new non-zero constant C
is the one appearing in (177) times |I/VI(G'7 h’)| times sgng g g)(s0), which is
equal to 1 if D =R or H and (1)) if D =C. O

PROOF OF THEOREM 5. It remains to show that if the highest weight
A of II satisfies the conditions (a) or (b), then the integral (76), i.e. (192),
is nonzero.

By (189), the function H Pa,, ;.bsy.; (Byj) has support equal to 7'(hy)
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and we can rewrite the right-hand side of (192) as a constant multiple of

l/

4 ]
(193) KVOXH(E(O)) //(fﬁw ) ( H Paso Js so J? (ﬁy )>€_BZ = IyJ‘F‘ls(y) dy :
/(b j=1

By the W(G', b')-skew-invariance of Fy,, we can replace the term

l/

I _
<HPa50 4+bsg.322 (ﬂy )) Zj:1 lyj1

j=1

in the integral (193) by its W(G’, h’)-skew-invariant component

! / - I .
099 (g 3 s GIT 2oy (36)e 0

s'EW (G, )

Here we have used that 25'/:1 |(s'y);| = 22,:1 lyj]. Notice that

4 4
H sq,5:bs0,5,2 H Loo,7 b— 150’j726j(ﬂyj)

because W(G’, ') only permutes the y-coordinates for which the 6;’s have

equal sign. Moreover, (194) is non-zero because P, , | 5 ,_ 1, 2 (By;) is
s 50,37 s

not W (G, b')-invariant when W (G', ') # 1. Indeed, the Condition 1 >
o > -+ > pp implies by > by > -+ > by and a1 < a9 < - < ap. If
W(G',p") # 1, then there are at least two indices j # j' such that 6; = 6/
and the corresponding factors in (194) have different degrees. (If b > 1 then
the degree of P, 49 is b— 1 and if a > 1 then that of P,j 2 is a — 1.)

By (194), the integral (193) is a constant multiple of

(195) koXn(@0) [ @)y Falw)dy.
7/ (B"e9)
where
(196) (p(y) _ Zs’EW(G’,b’) Sgng’/h’(sl) H;,:l Paso,j,bso,j,Zéj (ﬁ(sly)]) _le 1 |yg|
Ta/5(Y)

(w € b,y = 7'(w)).
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By (A.3) and (A.4), we see that there is a non-zero constant C;, depend-
ing of (G, G’), such that

(197)  7g/5(y) = Csmg y (y) det(y)y, (v =7(w) =7'(w), w € by),
where

-0 ifD=C

I—-U'+1 ifD=H

I—U'—% ifD=Randg=soy

. if D=R and g = 509,11

(198) v =

and det(g')ys denotes the determinant of ¢’ as an element of G' C GLp(V’).
(See the remark after (E.11) in Appendix E for the case D = H.)

Recall from Remark 1 that W(G’, ") = W(K', ), where K’ is maximal
compact in G'. Split Ty /ty as a product of the compact and the noncompact
positive roots:

Ty (Y) = Te sy (V) Ty e (Y) -
Explicitly,
Tty li usl;) = {HKKKZ/ P ?fD —EE
I <jcnep =0 ) I <jciaq 1(=Ypts + Ypir) D =C.

The polynomial in parenthesis in (194) is W(G’, h’)-skew-invariant. Hence
it is divisible by 7 /gy (y) and the fraction

ZS/EW(G’,[’)’) Sgng//h/(gl) H‘lj’zl Paso ],bso 172 (/3(5 y) )

(199) e /iy (Y)

(yeb)

is a W(G',p’)-invariant polynomial. Therefore ® is a W(G', §’)-invariant
real-valued nonzero continuous function on 7/(h7"*). Thus Proposition 2
proves the equality (78) and shows that the integral (195) does not vanish
for suitably chosen ¢ € C°(W)¢. O

l/
REMARK 13. Let us consider the term e ?*> i=1 ¥l appearing in (196).
Notice that for w = Zé-:l wju; € by,

v U v
Z\MZZ\J}*( ( ‘_Zw *Z@J/* ( = (Z@J]’-*) o7 (w)
J=1 Jj=1 j=1
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This is a quadratic polynomial on by, invariant under the Weyl group
W (S, by). Such a polynomial has no GG'-invariant extension to W, unless
G’ is compact. Indeed, suppose P is a real-valued GG'-invariant polynomial
on W such that

Then P extends uniquely to a complex-valued GeGg-invariant polynomial
on the complexification W¢ of W. Hence, by the Classical Invariant Theory,
[How89a, Theorems 1A and 1B] there is a G{-invariant polynomial @ on
ge such that P = Q o 7’. Hence,

Q(r'(w)) = P(w) = | Y &;J;* | o7'(w)  (w € by).
Since 7/(hy) spans b’, we see that the restriction of @ to b’ is

l/
Qly =Y _6;J;" € b
j=1

Since @ is G-invariant, the restriction @[y has to be invariant under the
corresponding Weyl group. There are no linear invariants if G’ = Spy; (R)
or O},. Therefore G' = U,,4, p+ ¢ = 1. But in this case the invariance
means that all the 6; are equal. Hence G’ = Uy is compact. In the case
G’ = Uy, the sum of squares coincides with (J(w), w) for a positive complex
structure J on W which commutes with G and G’ and therefore

(200) BTy 1657 (r (w)]

extends to a Gaussian on W. If G’ is not compact then (200) extends to a
GG/-invariant function on W, which is bounded but is not a Gaussian.

11. The Special Case (Oq, Spyy(R)) with [ <V

Here we consider the case (G,G’) = (Og, Spyy(R)) and suppose that
the character Ory is not supported in the preimage of the connected identity
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component GO. This is equivalent to A; = 0, where A is the highest weight
of II. The case [ > I’ was considered in Theorem 6. Since the dual pair
(O2, Spyy(R)) was treated in section 6, we will suppose in the sequel that
2 <1 <. Recall the element s € G, (88), with centralizer in h equal to
hs = Zé;ll RJ;, and the spaces

Vo, =VgaVie - oV eRuy, V.=V, &V,

The corresponding dual pair is (Gg, G,) = (Og—1, Spyy(R)) acting on the
symplectic space Wy = Hom(Vy, Vg ;).

The ordered basis v1,v2, ..., Vai—2, V911, V91 of Vg, leads to the identifica-
tions

End(Vﬁ) = Mgl’gl(R) y End(Vas) == Mglfl,glfl(R) .

In these terms, the Cartan subgroup H C G consists of the block diagonal
matrices

T’(Gl) 0

with diagonal blocks

0= (55 i) CER

Set

(201) he = ..
0 T‘(@l_l)
and let Ho denote the group of all matrices (201). Then the centralizer
H?® C H of s consists of the matrices

he | 0O

0 0], (e ==1).
€

€
0
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The connected component of the identity (H*)? C H?® is the set of these
matrices with e = 1. The group G, and its connected identity component
GY contain Cartan subgroups HY C GY and Hy C Gy consisting of matrices

(%’ 2) and (% S) (e=41),

respectively.

LEMMA 35. Every element of the connected component G%s is G-con-
jugate to an element of (H*)"s.

ProOOF. Fix an element ¢ € G. As shown in [Cur84, page 114], g
preserves a subspace of V of dimension 1 or 2. Hence V decomposes into
a direct sum of g-irreducible subspaces of dimension 1 or 2, and the claim
follows. [

Let &, denote the character of He whose derivative at the identity is
v € ib%. In particular, for he as in (201),

ej(he) =€ (1<j<i-1).

(The negative sign in the exponent is due to fact that e; = —z'.]j*.)

The elements e; £ e, (1 < j <k <l—1)and2; (1 <j<1-1)
form a system of type Cj_; which is dual to that of ((gs)c, (hs)c). The
corresponding p-function and the Weyl denominator are respectively

(202) ps=(1—1er+(1—2)ea+--+e 1

and

-1

=&ohe)  J] (0= &epey(ha))(X =& cjmep(he)) - [T = €-e, (Ra))

1<j<k<I-1 j=1
(he € H,) .
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Observe that the Weyl group of the root system of type C;_1 coincides
with W(GY, b,). It consists of all permutations and sign changes of the ey,
he
., e_1. It acts on Hg = { ( 0 ? ) 1he € H.} and hence on H,.
The following two lemmas follow respectively from [Wen01, Theorems
2.5 and 2.6].

LEMMA 36. For any continuous G-invariant function f : G%s — C,

he 0
704~ ey H.f<( 0 | ‘f)s) (5 1)

2
dhe

1. 0
where s = ( 0|1 0 ), see (88).
1

0 —
Notice that the coverings
GOs — G, GO - @O

split (see Appendix E). Hence we may choose continuous sections

—_— —_—

(204) (H*)°s > hs — hs € (H*)0s  and  (H®)°>h — h e (H%)0.

LEMMA 37. Consider the map

P

(H*)" 5 h — hs € (H)0s

obtained by composing the multiplication by s and the fized continuous sec-
tion. Then

he | 0

(205) @H(< o] (1)>s):Dn6ns(< fg ?)) (he € H),

where

sgn t he
(206) @HS(( ha | O )) _ Zrew(Goun.) %80, /o, (D€i(r1p0) (o)

TG

(h° € HO) ’
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A is the highest weight of IL (recall that \; = 0), the sign character sgng_/p_ (t)
is defined by

A5t (D)) =smem a5 (L)) e wickn,

and

(207) Dp = +1.

LEMMA 38. For ¢ € S(W),

x T(%’%) (¢%Iw.) dha.

ProOOF. Clearly, the integral on the left-hand side does not change if
we replace ¢ by ¢C. Hence we may assume that ¢ = ¢%. By Lemma 36,
the left-hand side multiplied by |W (G2, bs)]| is equal to

he /0\/ 2 he ’U\/
o9 [ o (ST T) s (R (517 o

Apply Lemma G.1 to the decomposition W = W, @ VVSl For h € (H®)?,
he | 0 1| o he | 0
hs = 1 0 1 0 | = 1 0 |.
0 ‘ 0o 1/\° ‘ 0 -1 Olo -1

hslw, = < }8' _01 > and  hslywr = 1y -

So

Hence (hs —1)|w, maps onto W, and (hs —1)|yw . = 0. This shows that the
restriction of iy to (hs—1)W is uw, ®8g, where &g is the Dirac delta on W
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Therefore, for an appropriate choice of the lift of the element < }z). _01 >

on the right-hand side,

Thus, (208) is equal to

(209) /.(L)H(<I;. éo(f)S)’A?(( 0 ?))

The lemma follows from (209). O

LEMMA 39. Let u® =X+ pS. Then, for ¢ € S(W),

|, en@T@) @) do

he | 0 he | O
= C ° ° G
_DH/H. é_uc(h.)As(< T ))T( 01 ) (¢6|w,) dha,
where §_M0(h.) makes sense because \; = 0.

ProoFr. This follows from Lemma 38. Indeed, notice that

5 h./\/O h;l/\/o R 0
O 1 0 | =0g 1 0 |=0g 1 0 |s).
01y -1 0 1o -1 < 0 1o 1 )

Hence (205) and (206) show that

—_—

3 he | 0 he'| 0
On o |1 0| = Dn©n, o |10
0 -1 0 1

> ew (GO,by) S81g, /h, (D€-1,0(he )

(51
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Furthermore,

(M5 1)) =oe((5T)

and for t € W(GY, by),

s (519 - (512)

Therefore

—_

on( 5r ) s ()
=Dn Y, §t1uc(h.—1)Ag<t<}g ?))

teW (G9,hs)

2

Notice that
E,0(hy') =€ 0 (tha)

and since ¢© is G-invariant,

Ts( ’5/?1 ) (¢%lw.) = T (t m )) (¢%Iw.)

Therefore

Lot [l (s )

ol S st (O () (i)

H
¢ tew (G2, bs)

=W (@00 | € e haa (ot 2 (F52r) (6%, dne. o
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Consider the Cayley transform c, : hoe — He and the (modified) Cayley
transform ¢ : hs — (H*)? defined by

x1J1 0 c(z1J1) 0
(210) ¢ =
0 zi—1J1-1 0 c(ri-1Ji-1)
x1J1 0
0
(211) ¢ 0 _
0 0
(z1J1) 0
= " 0 , i.e. co=ce X eXPp.
0 c(ri—1J1-1)
0 |1

Notice that co differs from the usual Cayley transform cg on b, defined
at the beginning of section 8, for which c(diag(ziJy,...,21-1J;-1,0)) =
diag(c(x1J1), ..., c(x1—1J1-1), —1). Let jp, denote the Jacobian of the map
ce. Set

.%‘1J1 0
-1

Wss/hs 0 0 = H :U —I—CL‘k H QZLL‘J

T—1J11 1<j<k<i—1 j=1
0 0

LEMMA 40. There are constants A and D such that for z =
Y1 wdj € b,

-1

(212) Af(c@(m)):Aﬂgs/bs(x)n(l+w) ~1+1
C-(Z)\/O A\ T 2V
(213) 0, =3 2 (A +=5)",
(5n))-G)
-1
(214) jo.(2) = [J 201 +23)~!
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and hence

(215)  AS(co(n)e, <( el | 0 )) oo (@) = DSy (@) [T+

PrOOF. Part (212) may be verified via the argument used in Appendix
C, but easier — without the square roots. Formula (213) follows from (137),
and (214) from Appendix B applied to the group SOs. O

LEMMA 41. With the notation of Lemmas 39 and 40,

L, 60T @)0) dg = CDnxn(E0) | € ele H<1+ A

<rum((575)) [ (1) () () dw

where x11 1s the central character of 11 and D = +1.

PrROOF. We start with the formula of Lemma 39, use the equality

"S—;LC (h‘°) = f—uc((_1)°)§—uc(_h°) ’

apply the change of variables, he = co(x) and use the formula (215), noticing
that Wgs/bs is a constant multiple of 7y /p,. Here cqo : he — Hae, 50 co(0) =

(—1)a.

It remains to prove that _,,c((—1)s) is a constant multiple of the central
character of IT evaluated at ¢(0). For this, let v # 0 be a highest vector of

II. For now, let us denote by 52\ and SE\ the characters defined by A on H
and H, respectively. Then 53\(5(0)) = &M (¢(0)) because A is integral; see
Appendix H. Hence &1, (¢(0))v = II(¢(0))v = ¥r1(é(0))v. This implies that
x(¢(0)) = €5, (¢(0)). Since A; = 0,

€43 (e(0)) = (1) = €5 (“C L) = € a((-1)0) = e (D)o (1)),

where {,c((—1)s) = £1. [
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Recall from (150) the symmetric bilinear form

B(%.,yo) (xO’yO € h')

COROLLARY 42. There is a constant C depending only on the dual pair
and a constant D = £1 distinguishing the representations 11 and I ® det,
such that

|, en@T@ @) dg

-1
= CDmn(e(0)) [ [ TL0+ )50 i) 54 eiBlen

o =1

Yo | O
X F¢G\ws ( 010 > dYe dx4 .

Proor. By Lemma 23,

1B(Ze,Ye ° 0
mam(a) [ xew)s(w)dw = C /h By >F¢G,ws<% O)dy..

By the proof of Lemma 20,

-1

€ pele_(x) = JT( + iz (1 —iay) ™5 .

j=1
Hence the formula follows from Lemma 41. OJ

PRrOOF OF THEOREM 7. To prove (90), we proceed as in the proof of
Theorem 4, using Corollary 42. [

12. The Special Case (Og1,Spyy(R)) with 1 < <V

Recall the decomposition (91). As in the previous section, we denote
the objects corresponding to Wy by the subscript s, for instance O, and T%.
Similarly, we denote the objects corresponding to W+ by the substrict L,
for instance © and T’ . .
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If H is our Cartan subgroup of G, then the elements of connected identity

}8' [1) > with he in the Cartan sub-

group Hy of Gy; see (201). Cartan subalgebra h = h.h € HO acts trivially
on Wi, we see that (h — 1)W = (he — 1)W,. Hence,

component HY are of the form h = (

U(h—1)W = H(he—1)W, & 60,

where &y is the Dirac delta on Wi.

LEMMA 43. There is a choice of coverings }?) — HO and }fl\: — H,

such that the map ﬁ: € }LV. — < fg (1) > € HO is a Lie group isomorphism
and
(216) O(h) = O4(he) and T(h) =Ty(he)®b  (heHO).

Proor. We apply Lemma G.1 to the decomposition W = W, & VVSl

Then hlw, = he and hly: = 1. Choose 1 such that 1 = Lo, we) (the

identity of the metaplectic group). Hence T’ (1) = &y and, by Lemma G.1,

Ty = — X0 p i,
(%) Xs,+(he)x 1, +(1) (he) & o

where x4, Xs+ and x| 4 are defined according to (G.1) for W, W, and
WSL, respectively.

We now show that x(h) = X57+(;L\:) and that x (1) = 1, which will
complete the proof of the second equality in (216).

We choose complete polarizations

W,=X:1®Y;, and Wi=X,®Y,
preserved by G = Og;41. Then
W=X6Y (X:X1@X2,Y:Y1@Y2)

is a complete polarization preserved by G. The double covers can be realized
as

G ={(g,¢) € G x C*;(det g)x = (det g)"' = ¢?},
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Glw, = {(9:¢) € Glw, x C*;(det g)x, = (det g)" = ¢*}.
(See Appendix E.) Furthermore, by [AP14, Proposition 4.28],

0@ _ det™'(y) =
(217) )] |det/2()] (§€6).

Since for h € HY
(det h)x = (det h|x,)x,

we see that we may choose the cover H. adjusted to HO so that

(218) i) = vl = ().

As recalled on page 283, for any ¢ in the metaplectic group such that g
preserves the decomposition VVSl = Xo @ Yo, the restriction of the Weil
representation acts by

w(g)f(z) =det(§) " f(g'2) (v €Xa).

Applying this equality to 1 € G|WSL, we see that det(1)~1/2 = 1. Thus (217)

implies that x| 4(1) = 1. This proves the second equality in (216).
To prove that ©(h) = @s(ﬁ:), observe first that ©2(1) = 1 by [AP14,
Definition 4.16]. Therefore |© L(i)’j 1. As shown in the proof of Lemma

G.1, this implies that |©(h)| = |O4(he)|. So the claim follows from (218). O

PROOF OF THEOREM 8. As in (210), consider the Cayley transform
Ce : by — H, and the modified Cayley transform cg, : by — HO, defined by

—irj +1
—i:cj—l
(rj eR,1<5 <),

(219) co(diag(zia,...,21J;,0)) = diag(vi, ..., v, 1), vj =

i.e. co = ce x exp. See Appendix C for the above realization of H?. Notice

also that W (G, ) = W(Gg, bs).
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16) and since cq(hs) is dense in Hy,
(220) /é (¢) dg
:m HS9“<<IB' o)a((5 )

<a((5 1 >>Ts(ﬁ°)(¢Gws)dh-

e [ e a((=24)
(=R e
(221) x /W ) (6 w) () - eh=?(r) dr

where the jacobian of the map cg : h, — HY is computed using Appendix
B for G = SO2. As shown in Appendix B, the Weyl group of (Sping;_ 1, IfIB)
is isomorphic to the Weyl group of (SOq41, H°) and the covering HO — HO
intertwines the action of these groups. As before, we denote both Weyl
groups by W (G, ). For every t € W(G,h) and = € h, we have tcg(z) =
co(tz). Indeed, a permutation acts on cg (x) by permuting the coordinates
of x, and a sign change € = +1 acts on each coordinate by

—ir+1 . —lex+1
g:1v = V= ————— z eR).
—ir—1 s S )

Therefore,

teo(x) = coltr) (zeb ao;#0,1<j<1).
Consequently, if u is the Harish-Chandra parameter of II, then
(222) &pulco(@)) = E-p(tca(z)) = E-plco(tr))
(tGW(G,b),I‘Gh, x]#O, 1§]§l)

For x as in (222), we now proceed as in Lemma 17:

P

(DA 1)
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_1 — -1
“en( (<=0 Ja(() )
= tewz(;},h) sgng/h(t)g—tu<( C.(()x) (1] >>

= Y sgng/b(t)§u<t(c.(()$) ?))
teW (G,bh)

= Y sengp(t)éu(@lt)),

teW (Gs,bs)

" 0. ([ ) (6w, () e

is a W(Gs, hs)-invariant function of z € h,. Hence (220) is a constant
multiple of

(223) m > seng(t) /bsiw(a.(m)m(“'éw) ?))@S(a(x))

teW (Gs,bs)
y ( /w.; xo(w) (6%1w.) (w) dw> ch~2(z) dz

C.G)\ 0 1

= [ cataa((-SFHT))eam
<(mam @) [ xalw) () ) dw) o

Appendix C, (137) and (145) show that there is a constant C such that

ch™2(z)

(224) A(( C'(()x) ? >>@S(C~'($))Wgs/is @ ch=2(z)

l l
= Oy ch?' 2 1(g) H sgn(x;) (xeh, z= Z:chj, xj #0).
j=1

J=1

By Lemma 23, there is a constant C5 such that

(225) g 0. (2) /W xo(w) (9w, ) (w) dw = Cs /h BEN Fye () dy.
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Notice that p; + 5 is a positive integer for 1 < j < [. By Lemma 20 and
(C.9),

<ixj + 1)##% 1y — 1
i:Ej—l—l

I
EN

(226) €, (Go()) i 1
1 J

<.
Il

(izj + 1)’”le i — 1
1 (Zx] — 1)“] 2 Z.’E] _'_ 1

(i + 1)ts VI1—iz; .

isgn(z;
1 (=1)Ht (1—11:)“J+2 1wy + 1 en(z;)

I
EN

J

.,:]N

J
1)+ H1+zx (1 — izj) “JHsgnxj

where |u| = 2321 . Since 6 = %(21’ — 20+ 1), see (68), we get from (145)

l l

(227) €_p(é(@) ch® 2 (@) = i (=) [T (1 +iay) ™% (1 —iz;) ™% [] sg

j=1 j=1

where a; and b; are as in (69).
The above implies that (223) is equal to a constant multiple of

(228) / E_p(Ge(z hm -2l 1($)€iB(I7y>F¢G‘WS (y) dy dx

:il I,uhL / H 1—|—’LIL'7 1_11,]) bj/ eiB(z,y)F¢GIW (y)dyd:c
b ’

Since 7(Wy)Nhs = by for ID) = R, we are in the situation considered by The-
orem 4, see also Corollary 26. Hence the same computation as in Theorem

4 shows that (228) is equal to /(-1 )‘“|+2 times

!
(229) /b 11 (Paj,bj (By;)e Pl + 5_1Qaj,bj(—ﬁ_layj)éo(yj)) Fyey. (y) dy
s j=1

—/h t[(pj(yj)+qj(_ayj)éo(yj))Ffﬁles(y) dy .

Recall from Appendix H that the highest weights of II are integers Ay >

AQZ"'ZAzZUaHdthatP:Zl' (l—|—%—j)ej. Hence

7j=1
S

(230) (—DHHs = (1) (-
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We now look at Fyc|,, when [ =1{". By (L.1), there is a constant C; >0
such that

o [ otswrdssmy =y [ [ otog ) dgd(e)
(¢ € S(W), w e b1"™).

Because of the embedding Gy C G and the normalization vol(Gg) = 1,

/ 6% (g5’ -w) dgs d(g'Z')
R G’/Z’

= [, ) ottestg ) dodo,aie )
— / / o(gg w) dgd(gZ) (6 € S(W), w € by 9).
alaryz

Hence, for arbitrary ¢ € S(W),

(232) 1o(w) b (0 1W.) = Hogw),b (@) (w € by"™™).

Since my iy (y) = mg /5. (y) by (A.3), we conclude that there is constant Cy
such that

(233) F¢G|Ws = CQF¢ = 02F¢G (p € S(W)).
This finishes the proof of Theorem 8. [J

REMARK 14. When [ < I’ the Weyl-Harish-Chandra orbital integrals
involve almost semisimple elements, see (48), and the F, #C|y, 18 nOt necessar-

ily proportional to Fy as a function of ¢ € S(W). Indeed, let wy € s1(V°),
as in (48). Then by (1.3), there is a constant C3 > 0 such that

(234) B(s.(w + wp))) d(sSHTTwo)

S/S hT+w0

B CP’/ / P99’ . (w+wp)) dgd(g'Z' ") (¢ € S(W), w € by"*7),
GJarzn

where Z'" is the centralizer of n = 7/(wg) in G’. Because of the embedding
Gs C G and the normalization vol(Gg) = 1,

// ¢ (959’ -(w + wo)) dgs d(g'Z' ")
c.Jarjzm
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= / / / d((995)g’-(w + wo)) dg dgs d(g'Z' ")
GS //Z/n G

= // ?(g99’-(w+wp)) dgd(g'Z' ™) (6 € S(W), w € h7"*).
G G//Z/n

However it may happen that

G ! f7l T G / Izl TV
/GS///ZMﬁ (9s9"-(w +wo)) dgs d(g'Z )#/GS///ZMLzﬁ (959" -w) dgs d(g'Z' ™).

Hence, by (234), there is generally no positive constant Cy such that, for
arbitrary ¢ € S(W),

(235) o) b (0% 1w,) = Catow)n(¢)  (w € b)),

13. Proof of Theorem 9

Before proving Theorem 9, let us remark that we will not need to dis-
tinguish between the cases [ > I’ and [ < I’ We will be working with a
Cartan subgroup of G, which we shall denote by H and not by H(g) as
previously done when [ > [’. This is justified because the Cartan subspaces
of W, which led to the decomposition h(g) = h @ b”, play no role here.
On the other hand, we will need to distinguish between the even and odd
orthogonal groups.

Consider first the case G = Og; with [ > 1. Retain the notation intro-
duced at the beginning of section 11 and let p$ be as in (89). Then the
functions &,, and A for Gy = Og_; are defined on the double cover ITIE of
H? introduced in section 9:

Adh)y=6,(h) T[] (—teme;(R)(1—E—e;,—er (R f[l —&_e () (heH)).

1<j<k<i—1

Nevertheless, |A,(h)| is well defined as a function on HY itself, and can be
considered as a function on He C Oy by setting [As(he)] =
As<< fé)' (1) ))’ Observe that for v = Zé;ll vje; € iby with v; € Z
for 1 <j <,

-1 -1

(236) &, (ha) = gy( < ’B (1) > ) “TIe ™  (he=exp (Zeij) cH,).

j=1 j=1
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Hence
-1
(237) &(=he) = (-1)M&, (he)  where [v] =) v;.
j=1

Since 1 = [€p, (he)| = |§pc (he)| and
(1 —=&2e;(ha)) = (1 = &c; (he)) (1 4 &, (he))

we see that

Ag(gﬂgg)}4A4(§%gg)yiiu+¢%mm.

Furthermore, by (236),

ll_[l 11+ & e, (he)]? = lHl(l + &, (he))(1 + & ¢, (he)) = det(1 + hs) .
=1 =1
Thusj ]
2
(238) AC((%’%))' - ‘As (%’%) ‘Qdet(l + ha)

(518 o (519))
Finally, by (237),
(239) A§(< B <%’%>) _ (—1)1(”)/2A§<< hO. (1) >> '

By Lemma 38, (239) and (238), for ¢ € S(W),

L., en@T@) @) do

:ﬁwézaﬂl;@“<? 30%>
(54)

X

2 he| 0
(5o

1 . *h./-\/()
‘|W<Gg,bs>|/H.@“< 0 1o _°1>
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25(()
= gz o, (- (517))
() Faer (14 (Le1))

—

en(-(2512)) ) an

where 15 : —G? — G is the embedding given, in terms of matrices, by

—_—

2 —he| 0O

X

b

al0
(“ b)e 0[1]0 |, withae My o9 o(R), deR.
c|d c|0]d ’

Now, Weyl’s integration formula on G? yields

[ On@TE) (@) dg =5 | Oulrs(~9))det(1 + )T (<) (6w.) do.

Making the change of variables ¢ — —g on the right-hand side, we get (93).
Let now G = Og;41 with [ > 1. The Cartan subgroup H of G is described
in Appendix C. In particular, HY = {(uy,u2,...,u;, 1);uj € SO2,1 < j < 1}.
Suppose first that 1 < [ < I’. On page 287, we introduced G; C G
as the subgroup acting trivially on the 1-dimensional subspace V% of V.
Considering G, as a group of isomorphisms of V% B P Vla identifies the
Cartan subgroup Hy of Gg with

(240) {he = (u1,u2,...,u);uj € SO2,1 < j < I}.

The identification of Hy with (240) applies when [ > I’ as well. Indeed, in
this case Gy C G was defined on page 283 as the subgroup acting trivially
on the 1-dimensional subspace Vg’o of V5. The identification therefore holds

when we consider G as a group of isomorphisms of (Vg’o)L @ V%@ D Vla.
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Recall from (123) the double covering HO 5 h — h e HO of H on which
the functions £, and A are well-defined. It is easy to check that

2

(24) ‘A(( fo 0 )

where

= |Ag(he)|? det(1 — hy) (he € HY),

As(he) = &pi(he) T (1= &esver(ha))(1 = Eoejey (ha))-

1<j<k<l

(The product is empty if [ = 1. In this case, As(he) = 1 for all he.) Recall

P

he | 0

from (216) (or (242)) that T(< 01

)) = Ty (he) @ & for he € H?, where

8o is the Dirac delta on W1.
Hence, by Weyl’s integration formula and (241), for ¢ € S(W),

o I R P
L On@T(9)(9) dg = Fras Ty /H Ou(h)|AM)PT(h)(¢F) dh
1 - h. 0 ~

= 2I(G b)) Hg@ﬂ(( oF ) det(t = )l ()P ), s

=5 [, Ou@)aett — @) . .

This proves (93) for G = Ogy41.
14. A Different Look at the Pair (Og41,Spyy(R)) with I > I/

Recall the decompositions h(g) = h @ h” from (165) and W = W, & W
from (95). Recall also that we often identify h and b’ via (42). As before, we
denote the objects corresponding to W by the subscript s: gs, Gs, O4, and
Ts. In particular, hs = bh(g), see (45), and H? = H(g)". Since any element
h € H(g)? acts trivially on WL, we see that

(h—1)W = (h — 1)W,.
Hence, as in (216),

(242) O(h) = O4(h) and T(h) =Ts(h)®8  (heH(g)?),
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where 6y is the Dirac delta on W.
We consider the (modified) Cayley transform cg : h(g) — H(g)® defined
as in (219). Notice that
C@(xl + x//) _ C(l‘,)CQ(l‘”) (.%'/ ch= h/’x// c h//)’

where ¢ : h’ — H' is the usual Cayley transform.

Let 35 denote the centralizer of b in gs. Then 3, = hPgl/, where g7 is the
Lie algebra of the group G” of isometries of the restriction of the form (,-)
to the 2(I — I’)-dimensional real vector space (Vg’O)L. Then h” is a Cartan
subalgebra of g”. The following lemma is a variation of Lemma 28 in the
present situation.

LEMMA 44. Suppose l > 1" and let pu be the Harish-Chandra parameter

of a genuine irreducible representation of 621+1. In terms of the decompo-
sition (165)

(243) € (@) b =2 (@), iy ()
= (£ @) 21 (@)) (€ gu(@o(@)) b 2N (@ gy (7))

where x = 2’ + 2" € h(g), with 2’ € b and 2" € §"". Moreover,

(244) / - su(@o(a”)) b 2 (@ Y gy (2”) d”
[»)ll

—C > sgugr (s oy (— (sl + 570,
s"eW (G i)

where C' is a constant, p” is one half times the sum of the positive roots for
(8¢ b¢) and Tygy s the indicator function of zero.

ProOF. Formula (243) is obvious, because m; /pg(z’ + 2") =
T sy (2"). We shall verify (244). By (C.8) applied to g” 2 b”,

mg iy () = CUA" (2o (a") 071y (2" e ),

where A" is the Weyl denominator for G”, see (168). Hence, the integral
(244) is a constant multiple of

/ € au(@o (") A (@(a")) ch 2 (a) da” = 29" / € au(h)A"(R) dh,
il eo(bh)
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where ¢ (") C H/0. We therefore obtain the right-hand side of (244) as in
the proof of Lemma 28. [

PROOF OF THEOREM 10. Similar computations as those done in sec-
tion 12 together with (242) and h(g) = hs imply that the left-hand side of
(97) is a constant multiple of

; D LL'_l e l‘_l A(/C\@(JT)) i (x
219) s Lo, O8G0 ) (2 0o
g i 0 [ () (6hw,) () e~

where ¢ (hs) is a dense subset of H(g)".

constant C7 such that

Lemma 24 shows that there is a

Tg. /v(e) (7) /W Xa(w) % |w, (w) dw

=C1//( Z

1) W (Z,5(0)) €W (G ,b(9))/ W (Zs,b(a))

X sgng o) (75, /(e (7 12)e PO Fua) | (y) dy,

where 35 C g5 is the centralizer of h = h’. By (224), for a suitable constant
Cy, for all w = Y\, @;J; € b with 2 # 0 for 1 < j <1,

A(ce(x)) = ~2(0) — 2211/, l ey
r/w(x)es( 5(2))ch2(z) = C; ch (z) jl;[lsg (z5)

Hence (245) is equal to a constant multiple of

. . !
S g [ cua@o@a @) <-H1 sgn(xj)>

uEW (G, b(g)

B
% > seng, /big ()75 /b0t 2)e® P Fue (y) dyda.
W (Zs D) EW (G, (@) /W (Zs. B(D)

Notice that for t € W(G, h(g)) = W(Gs, b(g)) and = € h(g),

l
(246) H sgn(tz;) = w H sgn(zx;) .

s8hg, /h(g) (t) 5]
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Interchanging the sums, changing the variable of integration x to tx and
using that ch(tz) = ch(x) and B(tz,ty) = B(z,y), we see that (245) is a
constant multiple of

> Y sengmg(u) sengng (1)
W (Zs,b(9) €W (Gs,b(9)/W (Zs,bh(g)) ueW (G,b(g))
/ / 1tCL')) Ch2l’—2l—1($)
b weg

H sen(z;) | 75, /6(q) (z)e!B@v) Fyc)y, (y) dy dz.

Now, replace u € W(G, h(g)) with tu, where t € W(Gs, b(g)) = W(G, h(g)).
Hence, (245) is a constant multiple of

(247) Z Sghg/p(g) (U / / Ey'eg w(Co(u “1)) ch2 21 (g)

ueW(G,h(g))

H sgn(zx;) T35/b(g) (m)eiB(z’y) F¢G\ws (y)dy dx .

Lemma 44, together with the identification (42) of b and b’, implies that
this last expression is a constant multiple of

> s 3 seng Loy ()l + ")

u€W (G,b(g)) u" €W (G",b"")

N RO ®
Jrrtoyren)
l

X (H Sgn(xj)) eiB(“”y)F¢G|WS (y) dy dx

j=1

I
(248) = Z S8Mg/1(g) (U /’E un(@o (@) b 7N (2) Hsgn(xj)
u€W(G,b(g)) J=t

(up)|grr=p"

(249) X //(hw) €iB(I’y)F¢G\wS (y) dy dzx .
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As in (227), for u € W(G,h(g)) and = € b/,

l
(250) Eu(@5 (@) ch® N (z) H sgn(z;)

l
= (1)l s T + )~ (1 — dag) P
j=1

where |up| = Z; (up); and ayj, by,; are as in (80). Hence, computations
as in the proof of Lemma 30 lead to the following equality, which holds in
the sense of distributions on 7/(h1"*) for every u € W(G, h(g)):

l

251 /g_uu Ch2l’ 20— 1 H x] eiB(a:,y) dx

4
! 4
up|+5 | | -2 j
- l Ml 2( Qo ]:buj 27Ty])>€ g=1 ‘y]‘7

where P, . p, . is defined in (D.4).

The sum on the right-hand side of (248) is over the elements u €
W(G,h(g)) for which (up)|pr = p”. By Corollary 29, this has two con-
sequences. The first is that this sum is 0 unless p satisfies plp: = p”. As
seen in the proof of Theorem 5, this means that the highest weight A = p—p
of II satisfies condition (a) of that theorem. The second consequence is that
for the p satisfying |y = p”, an element u € W(G, h(g)) can give a nonzero
contribution to the sum in (248) only if u|p = 1. The latter condition holds
for instance if ©u = 1.

Suppose in the following that p satisfies p|gr = p”. Consider first the
case u = 1. By Lemma 31,

(252) HP% b, (2my;) = (270)! HPa b, 2Q2my) e (y;) (=Y yJj el

has support equal to 7/(hy). Because of (251), we can proceed as in Lemma
34 to show that if u € W(G,h(g)) satisfies (up)|pr = p” and changes the
sign of some coordinates (i.e. y; — —y; for some j), then the corresponding
integral on the right-hand side of (248) is zero. Recalling that (uu)|pr =
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p” implies ulpr = 1, we see that all terms in this sum vanish but those

corresponding u € W(G',h") € W(G,h(g)). The sum is hence over u €
W (G, p’) and formula (248) becomes a constant multiple of

1
> sengy(u)(—1)ite

ueW(G",l)

_ v .
X/ - HPauJ,buJ, (2my;) | e "= =1 Wl Fe (y) dy.
U et

If u € W(G,§) then |uu| = |u|. Recall from (230) that (—1)k+z =
z(z+1)
(1) (=M.
By the W(G',b')-skew invariance of Fya,, (y) the above integral is
therefore a constant multiple of

(253) |W(G',p")|(—1) / <HPa .22y, ) e i il B (y) dy .
h,T‘GQ

It remains to show that, as a function of ¢, F #G|y, 1S a constant multiple of
here Fyc = Fy. This follows from the same argument used for (233) in the
case | = I’, using (A.3) and (I.2) instead of (I.1). (Notice that since G is
compact, the integral on G/Z is vol(Z)~! times the same integral over G.)
This concludes the proof of (97). O

REMARK 15. The factor (—1)M appearing on the right-hand side of
(97) in Theorem 10 turns out to be a constant multiple of x1(¢(0)), the
value at ¢(0) of the central character of IT, as in Theorems 6 and 5. However,
we do not have a proof of this fact independent of the known classification
of the representations occurring in Howe’s correspondence for the dual pair
(G,G) = (Og141,Spyy (R)), see e.g. [Prz96, Appendix (A.4)]. Assume the
classification. If [ > I, given A, there is a unique representation II of G
occurring in the correspondence with highest weight A. We see from [Prz96,
(A.4.2.1)] that the highest weight A\’ of the corresponding representation IT'
of G/ is of the form X =5+ ), where \” is integral and |\"| = |A|.

Let v # 0 be a highest weight vector of I’ and let ¢ : g/ — G’ be the lift of
the Cayley transform satisfying ¢/(0) = ¢(0) (Recall that ¢/(0) = —1 = ¢(0)
is in the center of the symplectic group and hence in G N G’.) Then

X (¢(0)v = I'(¢(0)v = & ((0))v,
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which implies that Yy (¢/(0)) = &x(¢/(0)). Since A has integral coordinates

& (@(0) = & (e(0) = ()T = ().
Hence
Ex(€(0)) = &(¢(0)éx(¢(0)) = & (< (0) (=M.
Since IT and II" agree on the center of the symplectic group, £x(c(0)) =
Ex(c(0)), yielding
E(@0)) = &(@0)) ()M,

where &,(¢(0)) is a constant independent of the representation II.
15. Proof of Corollary 12

We will distinguish two cases:
(@) 0<p<l=p+q,
(b) 0<p<li<p+aq.

In both cases, we shall prove that if
(254) | en@r@as £0.

then A\p11 < 552 and Ay > 2594, Here the second condition is empty if
[ <q.

Consider first case (a). Then a; +b; = —20+2=1forall 1 <j <I. So
Qa,p; = 0 for all 1 < j <, and hence, in the notation of (72),

l
(255) H Pi (i) + a5 (=9y,)d0(y;)) Fo(y (HP% ﬁyj) - é'=1|ij|1;1¢>(?/)~

Moreover, by Lemma D.1, for every 1 < j <, at most one between Py . o
and Py, 5, —2 can be nonzero. By [MPP20, Lemma 3.5] and because | > p =
l—qg>0,

l
(256) h N T(W) = W(G7 h){y = Zijj Y1, aymax(l—q,O) Z 0 Z Yp+1,--- ayl}
j=1
l
= {y = Z y;J; : p coordinates y; are > 0
j=1
and ¢ coordinates y; are < 0} .
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If (254) holds, then P, .o # 0 for p coordinates y; and P, 5, 2 # 0 for
q coordinates y;. The first condition is equivalent to b; > 1 for p values of
J. The second condition is equivalent to a; > 1, equivalently, b; < 0 for

q(= 1l — p) values of j. Since the b;’s are strictly decreasing, we conclude
that if (254) holds, then

by > >b,>0>bpp1 > >0
But, for 1 < j </,

l
bj:)\j+pj—6+1:)\j+§—j+1-

Hence b, > 0 is equivalent to A\, > Z%, and b,1 < 0 is equivalent to

Apt1 < p? This proves the claim in the case (a).

Let us now come to case (b). Then Qq;, # 0 for all 1 < j <[ because
a;j +bj = —26 +2 < 1. Recall the integral (72):

l
/hmT(W) E(pj(yj)+qj(—ayj)50(3/j)) Fy(y) dy .-

For v C {1,2,...,1}, let || denote its cardinality and set v¢ = {1,2,...,1}\
v. Clearly,

l
(257) 1T (i) + a3 (=0y,)é0(y;))
7=1
= > (TIeiw) (TTas(-0()0s)) -
~vC{1,2,...,I} jEV° Jjey

For s € W(G, ) let

(258) Y, = {y = Zng Ys1)s - - - > Ys(max(—q.0)) = 0 = Ys(pa1)s - Ys(t) J -

By (256), hnTt(W ) = Usew (q,p) Ys - Notice that Ys = Y if the permutations
s and s differ at most on the set {max(l —¢,0)+1,...,p}. Hence one may
choose a subset Wy(G, h) C W (G, h) such that the union

hnr(W)= |J v

SEW()(G,[))
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is disjoint. Hence the integral in (72) is a sum of the integrals over these
Yy’s. We consider each of them separately. Let then s € Wy(G, ) be fixed.
We see from (257) that the integral over Y is equal to

(259) > / H p;(y; )(H% 50(.%))F¢(?/) dy,
~vC{1,2,...,l JjEY© J€Y

where empty products are equal to 1.
As in case (a), by Lemma D.1, for every 1 < j <[, at most one between
58

Pa;p;2 and Py, p. 2 can be nonzero. By (2 ) if the integral (259) is
nonzero then

je{s(1),...,s(l —q)} N~ implies Py, p, 2 #0,i.e. by > 1 (for the [ > q case) ,
je{slp+ 1), .o.,8(1)} N® implies Py, p; 2 # 0, i.e. a; > 1.

For T' € {~¢,~}, define

i >0 for all j € {s(1),...,s(l — Nnr
Ys,r:{yrzzyﬂj:{ i = J {s(1) (I=a)} },

= yj<Oforallje{s(p+1),....,s()}NT

where the first line of conditions has to be omitted when [ < q. Then
Y =Y 4e X Y, and (259) becomes

(260) > / ( II s (y;) IR+ (w))

vC{1.2,.0) Yot je{s(1),...s(l—q) e

< ( II pi () ( IT P (45)Tg (47))

je{s(max(i=q,0)+1),...,5(p)} "7 JelspH1),s()} e
X (/ (H (= 50(%)) Fo(y) dyw) dy~e
TYey ey

= Y / < II s (Y3 Ir+ (?h‘))

{12, Yer®  je{s(1),...,s(l—q)}Nve

< ( II pi () ( I1 P (45) g (45))

j€{s(max(l—q,0)+1),...,s(p) }N~° J€{s(p+1),...,s(Y}Nve
<H q;(0 )|y3—0 JG’Y> dyne
jevy

where the first products are empty unless [ > ¢ and empty products are
equal to 1.
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Suppose that [ > ¢ and there is j, € {s(1),...,s(l—q)}N~y. Then every

y = 22:1 yjJ; with y; > 0 for j € {s(1),...,s(l —¢)} N ¢, y; < 0 for
je{s(p+1),...,5(l)} N~° and y; = 0 for j € v belongs to

z gy > 0 for all j € {s(1),....s(— )} \ (),
{v=""wds:{ w0 forallje {sp+1)....50)} }camnrwy),
j=1 Yi, =0

where 9(h N 7(W)) denotes the boundary of h N 7(W). For all 1 < j <1,
deg Qa; b, = —a; —bj =26 —2=p+q—1-1.

Hence, the term (Hjev qj(ﬁ(Jj))F¢(y)) ly;=0,je~ 18 zero on A(h N 7(W)) by
[MPP20, Theorem 3.5]. Choosing j = j,, we see that the integral corre-
sponding to 7 in (260) vanishes. Similarly (and not only in the case [ > q),
the integral corresponding to y vanishes if there is j, € {s(p+1),...,s({)} N
~. The sum in (260) therefore reduces to a sum over the  having no in-
tersection with {s(1),...,s(max(l —¢,0))} U{s(p+1),...,s(l)}. For these
v’s,

{s(1),...,s(max(l — ¢,0))} N~v° = {s(1),...,s(max(l — ¢,0))},
{s(p+1),....s()}N~={s(p+1),...,s()}.

Hence,

bs(jy = 1for 1 <j<l—gq,ifl>q,
as(j)21forp+1§j§l.

In particular, there are at least max(l — ¢,0) elements b; > 1. So bj_y > 1
if | > ¢. Similarly, there are at least | — p elements a; > 1. So ap41 > 1.
As in the case (a), we conclude that if the integral over Y corresponding to
this ~ is not zero, then A\;_y, > 252 (when [ > ¢ holds) and A\, < 554,

This applies to all v and all s. Hence, if (254) is satisfied, then A\;_, >
P54 (when I > ¢ holds) and \py; < %52, This concludes the proof of
Corollary 12.

16. Proof of Corollary 13

Before entering into the proof of Corollary 13, let us consider the dual
pair (G,G’) = (Sp;, O%,) with arbitrary [ < I’ Let II be an irreducible
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genuine representation of G. We want to prove that the intertwining dis-
tribution corresponding to II is nonzero. For this, it suffices to show that
the integral on the right-hand side of (72) is nonzero for suitable functions
¢ € S(W). The explicit expression of that integral depends on the values of
the parameters a; and b; constructed from the Harish-Chandra parameter
p1 > pg > - >y of I

The parameters of the pair (Sp;,0%,) are d =1, d =1, « = 1/2 and
hence 6§ = I’ —1. Notice that —a; —b; = 26 —2 = 2(I' =1 —1) does not depend
on j. No gj-term occurs in (72) if and only if —a; —b; < 0, i.e. if and only
if I =1'. Every g;-term is a constant multiple of a delta distribution if and
only if —aj —b; = 0, i.e. if and only if [+ 1 = I’. In all other cases, the
gj-terms are distributions and not measures.

As recalled in Appendix H, the highest weights of II are integers \;
satisfying A\; > Ao > -+ > N > 0 and the p-function for (g,h) is p =
Zé‘:l(l +1—j)ej. Hence aj = —pj —6+1 <0, ie. Py p,—2 =0, for all
1 < j <. On the other hand, the sign of

bj=p;—6+1=XN+((+1—j)-U'+1+1 (1<j5<I)

might depend on j. Recall that by > by > --- > b;. All the b; are positive
provided so is by, and by = A} +2+1—1U'>0ifand only if \; >I'—1—1. In
this case, Py, 2 # 0 (and hence p; # 0) for all 1 < j <. Notice that the
condition \; > I’ — [ — 1 is automatically satisfied when I’ — — 1 < 0, that
isl' e {l,1+1}.

PrOOF OF COROLLARY 13. The discussion preceeding this proof
shows that if \; > 1’ — 1 — 1 then, for 1 < j </,

(261) i (y;) = 27 Py b, 2(yj) IR (y;)e 2™l (y; € R),

where P, ;. 2 is a nonzero polynomial of degree b; — 1(> 0). Let Wo(G, b)
denote the subgroup of W (G, h) acting as permutations on the variables y;
of y = 22:1 yjJ; € h. Then

!
(262) mop(y) > sengp(t) [ Pas2((ty);))  (weD).
j=1

tEW()(Gub)

is a Wy(G, h)-invariant real-valued polynomial on h. It is nonzero because
deg(Pyy py2) > deg(Pagpy2) > -+ > deg(Py,p,2)- Let U be an open,
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nonempty, W (G, h)-invariant set with compact closure U C h™9. Observe
that UN7(hy"*?) is nonempty, open, Wy(G, h)-invariant and with compact
closure contained in 7(h7"*?). We choose such a U so that the polynomial
(262) has constant sign on U N 7(h").

By Lemma 1, we can choose a nonzero function ¢ € C2°(W)% such that
¢ > 0 and supp Fy C U. It follows, in particular, that Fy, as well as all
its partial derivatives, vanishes along the root hyperplanes y; = 0, where
1 < j <. For such a ¢, the right-hand side of (72) reduces to a constant
multiple of

(263) /hm Hpg ui) | - Fely) dy.

By (261), we can replace the domain of integration h N 7(W) with 7(h7"7).

Choose a smooth W (G, h)-invariant function oy on h which is equal to 1

on U and has compact support contained in h"®. Then % is a smooth

W (G, b)-skew-invariant function on h. Set

(2m)! ae(y)

P(y) =
W)= (G| o)
l
Cor S s
< sengy(® [T Pajwyal(ty)y) | el (yep).
teWO(Gvb) j=
This is a nonzero smooth Wy(G,h)-invariant function on h.  Since

ma/b(Y) Fy(y) is Wo(G, b)-invariant, the integral in (263) can be written as

(264) Ly, PO o)
y (49), (50) and (54),
s F0) = Clrip() [ ol dss)  y=r() = 7).

Like Fy, it is supported in U and is a nonzero constant multiple of a function
of constant sign. Moreover, by (262), ® is nonzero and with constant sign in
UN7(hy"*). Thus (264), and hence the intertwining distribution evaluated
at ¢, is nonzero.
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REMARK 16. Suppose that [ < I’ Among all dual pairs with one
member compact, (Sp;,03;) is the easiest for computing the intertwining
distributions, both because G = Sp; is connected and because there is only
one conjugacy class of Cartan subspaces in W. Still, establishing if the
integral giving the intertwining distribution is nonzero is problematic also
in this case as soon as there are nonconstant polynomials Qg »;. The reason
is that, at present, we do not have sufficient information on the derivatives
of the Cauchy—Harish-Chandra integrals. For the orbital integrals for the
adjoint action of a Lie group on it Lie algebra, the relevant information is
contained in Harish-Chandra’s work; see e.g. [Var89, Theorem 9, p. 37].

17. A Sketch of a Computation of the Wave Front Set of IT’

COROLLARY 45. For any representation 11 @ II' which occurs in the
restriction of the Weil representation to the dual pair (G,G'),

WEI) =7 (r40)).

Here WF(II') stands for the wave front of the character O at the
identity and 0 = W F(II) since II is finite dimensional.

The complete proof is rather lengthy but unlike the one provided in
[Prz91, Theorem 6.11], it is independent of [Vog78]. We sketch the main
steps below. The details may be found in [MPP24].

The variety 771(0) C W is the closure of a single GG’-orbit O; see e.g.
[Prz91, Lemma 2.16]. There is a positive GG'-invariant measure puo on this
orbit which defines a homogeneous distribution. We denote its degree by
deg po.

Recall that if V is a n-dimensional real vector space, t > 0 and Myv = tv
for v € V, then the pullback of u € §'(V) by M, is M;u € §'(V), defined
by

(Miu)(9) = ™ u(go Mys) (9 € S(V)).

In particular, for V=W
M;po = 4% g .
Define 7} : 8'(W) — S'(¢') by 7.(u)(10) = u(¢p o 7). Then, for t > 0,

(265) 24 I N o 7 = MWl o
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A rather lengthy but straightforward computation based on Theorems
4,5 and 7, shows that

(266) tAEO M frigmr — C o

as tempered distributions on W, where C' is a non-zero constant.
Let F indicate a Fourier transform on S’(g’). Then, for ¢ > 0,

267 MfoF =t~ MmIF oM.
( t t
Hence, in the topology of &'(g’),

(268) 12 deg“O/Mt*ngi(fn(gH/) t;))+ CFuor,

where C' # 0 and O’ = 7/(0).
There is an easy to verify inclusion WF(IT') C O, [Prz91, (6.14)] and a
formula for the character Oy in terms of F (7, (fusm)),

1 ~%
(269) o O =7(fnew),

where o is a smooth function, [Prz91, Theorem 6.7]. By combining this
with the following elementary lemma, one completes the argument.

LEMMA 46. Suppose f,u € S'(R™) and u is homogeneous of degree
d € C. Suppose

(270) M) 2 u@) (e SERY).
Then
(271) WFo(f) D suppu,

where the subscript 0 indicates the wave front set at zero and

fl@)= | flyem=vdy.
Rn
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Appendix A. Products of Positive Roots

Keep the notation introduced in section 3. Recall, in particular, that
Zé-:l yjJj € b2y, and Zé-:l yjJ; € b2y, are identified via (42). Here
" = min(l,1").

Suppose | < I’. We can choose the system of the positive roots of § in
gc so that their product is given by the formula

l
wan(O_uid5)
j=1
[icjona i(=y; + yr) it D=C,
_ Iicjara(= y; +ui) - H;:1(*2iy]’) it D=H,
H1§j<kgz(—y]2 +y?) if D=R and g = soy,

H1§j<k’§l(_y]2’ + i) - H;‘:l(_iyj) if D=R and g=50g.

Let 3 C ¢’ be the centralizer of . We may choose the order of roots of b in
gc/3c so that the product of all of them is equal to

[licjcncii(=yj +ur) - H] L (—iy;) —d

if :(C
l [Ticjcna(=y +yk) H 1(=y ) —d
if D=H,

sy (2 Y55 = e

(A.2) s (Zy ) icjoner(—92 +92) - TToy (=2iy,) - Ty (i) ¢

if D R and g = soy,

1 .
Thiejcnat (=02 +43) - Tl (< 2iy)) - TTj—y (—igy) ¥~
if D=R and g =s09;41 .

Suppose [ > I’. We can choose the system of the positive roots of h" in
gc so that their product is given by the formula

4 [Ti<jcn<r i(=y; + yr) if D=C,

(A~3) 7Tg’/h’(z ij;) = H1§j<kgl/(*y]2' + y;%) if D=H,
j= v . .

=t H1§j<k§l/(_yj2‘ + y,ﬁ) : szl(—%yj) if D=R.

Moreover, let 3 C g be the centralizer of h. We may choose the positive
roots of b in gc/3c so that their product is equal to

G
(A.4) WQ/Z’(Z ijj)

Jj=1
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( j v R

Ilssjeer iy + ) Tl (i)
if D=C,

v . v .

H1§j<k§l/(_yj2' + y,%) . szl(—szj) . szl(_y2)d d
if D=MH,

l/ . . 1/
[h<jerar (=03 +40) - Ty (—iy;)*?
U . I ) o
HlSj<kSl/<_yJQ' + y%) . szl(—zyj) . H]:l(_lyj)d d —1
if D:Randg:ggzurl.

Appendix B. The Jacobian of the Cayley Transform

Here we determine the Jacobian of the modified Cayley transform c_ :
g — G. A straightforward computation shows that for a fixed z € g,

c(ztyle(@) ' —1=(1-z-y "2yl +2)""  (yeg).
Hence the derivative (tangent map) is given by
(B.1) (ry=(1-z)""29(1-2)""  (yeg).

Recall that G is the isometry group of a hermitian form (-,-) on V. Hence
we have the adjoint

Endp(V) 3 g — ¢* € Endp(V)

defined by
(gu,v) = (u,g*v)  (w,v € V).

Let us view the Lie algebra g as a real vector space and consider the map
7: GLp(V) — GL(g), (9)(y) = gyg"-

Then det oy : GLp(V) — R* is a group homomorphism. Hence there is a
number s € R such that

det(y(g)) = (det(g)vg)” (g € GLp(V)),
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where the subscript R indicates that we are viewing V as a vector space
over R. On the other hand, for a fixed number a € R*,

det(y(aly)) = a®>¥™9 and  det(aly)yy = a®™VE

Hence,

2dim

2dim g
det(y(g)) = (det(g)vg) ™ V& (g9 € GLp(V)).
If x € g, then 1 £ 2 € GLp(V) and

(I1tz)*=1Fz and ((1 ix)*l)* =(1Fz) .

Hence

@y =201-2)"yQ+2) e—(z) =2(y(1—2) y)e_(z)  (y€ag).

Notice that |det(c_(z))| = 1 because ¢(g) C G. Therefore

2dim g

(B.2)  |det(c ()| = 28 det(1 — x)y "V = 20mech(z)">  (zeg),
where ch and r are as in (134) and (66), respectively.

Appendix C. The Weyl Denominator Lifted by the Cayley
Transform

Consider the orthogonal matrix group
G = Og41 = {g € GLo1(R); gg' =1} .
The spin group is a connected two-fold cover
Sping;; — SOg41

of the special orthogonal group. We identify

(1) a+@'b:<z ‘ab> (a,b € R).

Then
SO2(R) ={ueC; |u| =1}.
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Fix the diagonal Cartan subgroup
H = {diag(u1, us,...,u;, £1); u; € SO2(R), 1 < j <1} C Ogyyy .
Then the connected identity component of H is
H° = {diag(u1, u2, . ..,u,1); uj € SO2(R); 1 < j <1}.

Denote by HO C Sping;,; the preimage of H°. The Weyl group of (Sping, 1,
HO) is isomorphic to the Weyl group of (SO94 1, H?) and the covering

HO — HO

intertwines the action of these groups. As explained in [GW98, Lemma
6.3.4 and Theorem 6.3.5], one may realize HY as the quotient

ITIB = (SOQ)Z /K7

where K consists of all elements (z1,22,...,2) € (SO2)' such that each
zj = £1 and z122---2 = 1. The Weyl group is generated by the inverses
zj — z;l and permutations of the coordinates. It acts on the Lie algebra b
via the permutations and all sign changes. The covering map is realized as

HO 5 (21, 20,...,2)K — diag(2?, 23,...,2%,1) € H.

Let a € R and define 6, by a = tan (%‘1) Then

14 .
c_(—ia) = T ;Z = ¢ e
0 1 . . . . . . .
Set J = <_1 O>' Under the identification (C.1), J is identified with —i.
Hence,
(C.2) c_(aJ)= I+ aJ)I —aJ)™! = exp(6,.J)

Therefore the range of the Cayley transform

c—(h) = {diag(u1,u2, ...,u;, 1); uj # —1 for all j}
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is stable under the action of the Weyl group and c_ intertwines the action
of the Weyl group on the Lie algebra and on the group. Pick the following
branch of the complex square root,

Vrel? = \/reit (r>0,—7m<6<mn)
and set

o :c_(h) > diag(u1, uz, ..., u;, 1) — diag(y/u1, Vua, . .., yu)K € HO .

This is a section of the covering map which intertwines the Weyl group
actions. Define

(C.3) c(z)=olc-(z) (zeh).

Then ¢_ also intertwines the Weyl group actions. Explicitly,

c_(diag(z1J1, 2202, . . ., 11, 0)) = diag(y/ur, Vuz, . . ., VJu)K,

where )
1 —x;

Uj

In these terms, the usual choice of the positive roots e; £ e, with 1 < j <
k <1, and e;, with 1 < j <[ together with (131) gives

€e, (diag(ui, ug, ..., u;, 1)) = u;.

Hence,
€—€j+€k (diag(ul) U2,y ..., U, 1)) = uj_luk )
f—ej—ek (diag(ul, U2y« -5 UL, 1)) = ’U’j_lulzl )
§e;(diag(ur,ug,...,u;, 1)) = uj_1 ,
gp(diag(\/ UL, /U2, - - -, \/u_la 1)K) = ullilul272 e ul—lga
where

€= V... V.

We now verify the following formula

(C4) A(c_(x)) = Cimgyp(z) ch=241(z) (r €p),
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where where C; = 2°°. Tt is easy to check that

1+2z 14z
C.5 J — , 14z =/14+ziy/1+ 2z,
( ) 1—Zj m J J J
1/1—{—1‘]2-:\/1%—2“]'\/1—2]' (Zj:—il‘j,ﬂj‘jER).
We shall use the polynomial identity

©9 [T b= (1<) (%)
j=1 k=1

1<j<k<l

when either b; =1 or bj = a; for all 1 < j <. By (124) and (C.6),

-1 l

A (z)) = g( I] ugfﬂ') T o) — oyt JI0 - u) )

j=1 1<j<k<I j=1
l
=¢ H uj —up ') l—u] Uk Hl—u_l)
1<j<k<l j=1
By (C.5),
1 _ 14+2; 1—2z 2(z; + 21)
Uj — Uy, - = ’
Cl—z; 14z (1= 2)(1+2)
1_u._1u1€:1_1—2’j1—|—2:k: 2(zj—zk) 7
J 14+2j1—2, (T4 2)(1—2)
1—1[1:1—1_2]': 2Zj 2,2]'

j 1+2 1tz itz /l+z

Since & = H;‘:l /U5, we obtain by (C.5), (C.6) and (A.1),

1 1
1<k 1—22)(1—213)1:[‘/1—1—@-«/1—2]-
X H (25 + 21) (2 sz

1<j<k<l

l
:212 1 1
(]Hl (1 =2t ]Hl J1 +x§)wg/h

(x)  (zeh),
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which gives (C.4).
Recall from (219) that if z = diag(z1J1, z2Jo, ..., x1J;,0) € h = b, then
co(x) = diag(vy,ve, ..., v, 1) has coordinates
vj = c(xjly) = —e(23);) = —uy, (1<) <)
with |v;] = 1 and v; # 1 for all j. The identification (C.1) implies the
identification

i+ 1
Uj:—Uj:Z]+ ) (zj:—ixj71§j§l).
Zj = 1
On the subset where v; # £1 for all j define
(C.7) co(r) =0o(co(@) (veba;#0,1<j<]I).

We now prove the following equality:
!

(C.8) A(eo(x)) =Cn <H Sgn(iﬂj)> g b (@) ch (@) (web,z; £0,1<j <),

=1

where C5 = (2i)” and sgn(z;) = x;/|z;|. (Notice that A(co(z)) is singular
at x; = 0 because so is the fixed section o, which depends on our choice of
V) Tt is easy to check that

zi+1 7z +1
(C9) [ = Lo it l=zj+ 1z + 1,
J

Zj—l

zj — 1= —isgn(z;)\/1— 2z, —isgn(xj)y/1 +x? =z +1/z —1

(zj = —izj, x5 € R\ {0}).

As before,

!
=¢ H 1—1)] kaI—v

1<j<k<l

1 G+l oz -1 2(2j+zk)
TR T bl (25— ’
1, zj—lzk—i-l: 2(—zj + z1)
zi+1lz,—1  (z5+1)(z—1)
-1 2 2

; 1-— = = .
J Zj—i—l Zj—i-l 1/Zj+1\/2:j+1
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Since & = [])_, \/7j, we obtain by (C.5), (C.6) and (A.1),

A@ —?%II %+1ﬂ 1l Emyesy

<k<l

!
1
><< )( zji+z z—i—z))
jljlvzj+1vzj+l 1<1;];<:<l A

l

> zj+1 1 1
= <j_1 \/Zj—l\/zj+1\/zj+1)<HW)
x (=D (4 2z —%0

1<i<k<l

l

l
:iz(m)zﬁ(n zj—l\/—><H T 1) . /0, (%)

Jj=1 =1
_(Qi)ﬁ(l—lsgn(xj)')(' (H;)H)%/hs(@ (z €\ {0}),

which gives (C.8).

£

Appendix D. The Special Functions F,; and (),

For two integers a and b define the following functions in the real variable

£,

b-1 a(a+1)- (‘H'k 1)2—a—k£b—1—k ifb>1

(D.1)  Pupa(§) = { R=0 HI-1-k)!

0 if b <0,
a a—1 b(b b+k Cb—kea—1—
(— )+b12 1(+'1—(+k)!1)(_2)bk€ 1—k
(D.2) Pup—2(&) = ifa>1
0 if a <0,

where a(a+1)---(a+ k—1) =1if £k = 0. Notice that

(D.3) Pop—2(8§) = Ppa2(—8) (E€ER, a,beZ).
Set

(D.4) Pyp(€) T(Pap2(EIr+(§) + Pap,—2(§)IR-(§)

2 )
27 (Pa,p,2(E)Ir+ (§) + Poa2(—8) IR+ (=£))
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where g denotes the indicator function of the set S. Also, let

(D.5)  Qap(iy)
0 ifa+b>1,

I %Qfafk(l _ iy)kib if —a>b—1>0,
Sl %ﬁb‘%_l)g—b—k(l Figke i —b>a—120,
(14 dy) (1 —iy) ™" ifa<0andb<0.

=27

Observe also that

(DG) Pb,a(é.) = Pa,b(_g) and Qb,a(iy) = Qa,b<_iy> .

The following elementary fact will be crucial at several points.

LEmMMA D.1.  Suppose that a+b < 1. Then at most one between P,y 2
and P,y o can be non-zero. Hence Py is either 0 or the restriction of a
polynomial to a half line.

REMARK 17. Let I' denote the gamma function. If k is a nonnegative
integer, then
I'(a+ k)
I(a) -
which is often shortened by the Pochhammer symbol (a);. Another useful
formula is

ala+1)---(a+k—1)=

B B I'(—a+1)
ala+1)-- (a+k—1) = (=1)*(—=a)(—a—1) -+ (~a—k+1) = Fl)km :

In this notation, for an integer b > 1 and h=0,1,...,b—1,

(b—1—h) = O I(—a—b+2+h)=T(-a—b+2) (—a—b+2),.

(*b + 1)h
Hence
— T(—a+1) 1
— _1\k a—k¢eb—1—k
Fap2(6) _kZ:O( U ¥ ey s s s T
=T(-a+1) bi(—l)b‘l‘h ! ! gma=btltheh
P T(—a—b+2+h) (b—1—h)lh!

I'(—a+1) 2 (=b+ 1),

(26)"
N(—a—-b+2)(b—-1) 'h 0 a—b+2 nh!

— (71)177127(17174»1
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I'(—a+1)
T(—a—b+2)(b—1)
_ (_1)b_12_a_b+1L;_afb+1(25) ,

= (—1)btgma-b+d R (—b 41 —a— b+ 2;2€)

where 1 F} is the confluent hypergeometric function and L& (x) is a Laguerre
polynomial. See [Erd53, 6.9(36), §10.12].

ProrosiTioN D.2.  For any a, b € Z, the formula

(D7) t@ﬂ+wYﬂl—wr%@My (6 € S(R))

defines a tempered distribution on R. The restriction of the Fourier trans-
form of this distribution to R\ {0} is a function given by

(D.5) éuwwwuwwvﬁwzm&wﬂ

The right-hand side of (D.8) is an absolutely integrable function on the real
line and thus defines a tempered distribution on R. Furthermore,

1 . 1
(D.9)  (1+iy) (1 —iy) "= — [ Pup(&)e e dy + —Qup(iy)
27 Jr 2

and hence,

(D.10) /R (14 i) (1 — iy) e W dy = Pyy(€)e 1€ + Qa,b<—d%>6o(£> |

PROOF. Since, |1 +iy| = /1+y?, (D.7) is clear. The integral (D.8)
is equal to

(D.11) %/R@ +2)0(1 — 2) e d
= 21 (—Ip+ (€) res,—1 (1 + 2)7%(1 — 2) be™*¢
+ IR (&) res,——1 (1 + 2) 741 — 2) %)

The computation of the two residues is straightforward and (D.8) follows.

|t =),

0

Since
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we have

(D.12) /OOO Eme eV d¢ = (d(;ly))m (1 —idy)~t =m!(1 —iy) ™!

(m=0,1,2,...).
Thus, if b > 1, then

/ Pupal(€)e S de
0

§GG+1 (a+k— )2_“_k(1—iy)_b+k
k=0
bil —a —Qa — e (—a — k
— (1 _ iy)_bQ_a ( )( 1) o ( k + 1) <_%(1 o Zy)) )

i
o

Also, if a < 0, then

Tﬂ+wrﬂ=0—§u—w0azii(‘g)ﬂéu—wﬂk

Hence,

(D.13) /000 Pop2(&)e e de — (14 iy) (1 —iy) ™"

b—1

k
= (1 —iy)~b27@ Z —a—1) k'!'(_a_k—i_l) (—%(l—iy))

L (=a)(—a—1)---(—a—k+1 1 A\
_yCaaz ez hy )(2(1”})) )
k=0

Recall that P,; 2 = 0 if a < 0. Hence, (D.8) shows that (D.13) is the
inverse Fourier transform of a distribution supported at {0}, hence a poly-
nomial.

Suppose —a < b — 1. Then (D.13) is equal to

S (—3>k (- i,

b—1
o S Ole-D-

k!
k=—a+1
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which is zero because (—a)(—a—1)---(—a—k+1) =0 for k > —a+ 1. If
—a =b—1, then (D.13) is obviously zero.
Suppose —a > b — 1. Then (D.13) is equal to

—a

—Q —a — el —a — k
(D.14) —2—“2( X 1)k, S (—%) (1—iy)*".
k=b ’

As in (D.12) we have

/0 gmefe’fydg:( d )m(l—i—iy)_l=(—1)mm!(1+iy)_m_l (m=0,1,2,...).
S oo d(iy) Y

Suppose a > 1. Then

0
/ Py, —2(§)ece™ d¢

— 00

a—1
= (c1e Y b(b+1)- kgb +k—-1) (—2)=b=k(Z1)a= 4k (] 4 jy) otk
k=0 ’

a—1 k
= (1+1dy) 227" ;;) (=8)(=b—1) k' (zb—k+1) <—%(1 + z‘y)> .

Also, if b < 0, then

—b

k
(1 iy 3 VDD k) ()

k! 2
k=0

Hence,

0
(0:15) [ Papal@efevag - (1 +ip) (- i)
a—1

k
= (1+iy) 27" (Z (0= - 1) 0 (Fb—k+1) (—%(1 + iy))

k=0
_i(—b)(—b—l)-k-!-(_b—k—i—l) (_%(Hiy)) ) |
k=0

As before, we show that (D.15) is zero if —b < a — 1. If —b > a — 1, then
(D.15) is equal to

k
R C CERRC TS

!
— k! 2
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If a > 1 and b > 1, then our computations show that

0o 0
(D.16) / Popa(€)e™ eV de + / Pop—2(8)e eV d§ — (14 iy) (1 —iy) ™"
0 —00
is a polynomial which tends to zero if y goes to infinity. Thus (D.16) is
equal zero. This completes the proof of (D.9). The statement (D.10) is a
direct consequence of (D.9). O

The test functions which occur in Proposition D.2 need not be in the
Schwartz space. In fact the test functions we shall use in our applications are
not necessarily smooth. Therefore we shall need a more precise version of
the formula (D.10). This requires a definition and two well-known lemmas.

Following Harish-Chandra denote by S(R*) the space of the smooth
complex valued functions defined on R* whose all derivatives are rapidly
decreasing at infinity and have limits at zero from both sides. For ) € S(R*)
let

P(04) = lim ¢(§), $(0—)= lim (&), (o =1(0+)—¢(0-).

z—0+ z—0—

In particular the condition (1)) = 0 means that i extends to a continuous
function on R.

LEMMA D.3. Let ¢c=0,1,2,... and let ¢ € S(R*). Suppose
(D.17) (@o == @ D)=0.
(The condition (D.17) is empty if c =0.) Then

(D.18)

[ o€ de| < minga, b=yl 1D+ )

PRrROOF. Integration by parts shows that for z € C*

/R e dE = 2 (04) 2O 04) + 2 [ e (g,

R+

| ey de =~ (0-) — -2 00 1ot [ et g ae
"

R-
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_ Z—1<w>0 4ot Z—c<¢(c—1)>0 —I-Z_c_1<’(/J(C)>O + Z—c—l/ e—zgw(c—i-l)(g) d{

RX

and (D.18) follows. OJ

LEmMMA D.4. Under the assumptions of Lemma D.3, with 1 < c,

/ / (iy)*e e p(§) dgdy = 2mp™M(0)  (0<k<e—1),
R X
where each consecutive integral is absolutely convergent.

PROOF. Since
/ 1y min{1, Jy| 1} dy < oo,
R

the absolute convergence follows from Lemma D.3. Since the Fourier trans-
form of 1) is absolutely integrable and since 1 is continuous at zero, Fourier
inversion formula [Hor83, (7.1.4)] shows that

(D.19) / [ e ddy = 2mu(0).
Also, for 0 < k,

[t euyde = [ (=00 (1)) uie) ae
- /R (=00 ((z’y)k*e%é) () dé + /R (=0e) (i) 1e ) p(e) dg
= (i) 04) + [ (o)) de
— )10+ [ () () de
— (@) Mo+ [ () e (e de.
RX

Hence, by induction on k£ and by our assumption

[ e u© de = (i Hwho+ i) 2w+ o+ D),
s [ et dg
= [ e ac.
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Therefore our lemma follows from (D.19). O

The following proposition is an immediate consequence of Lemmas D.3,
D.4, and the formula (D.9).

ProrosiTiON D.5. Fix two integers a, b € Z and a function i €
S(R*). Let c= —a —b. If ¢ > 0 assume that

(D-20) (Yo =-- = () =0,
Then
(20 / / (i) (1 —iy) e VE (€ dE dy

— /XP b(£)e ¥ (€) dE + Qup(De) () le=o
_ /R (Pas(©e™ + Qua(~0)d0(€)) () de

where 6g denotes the Dirac delta at 0.
(Recall that Qqp = 0 if ¢ < 0 and Qqp is a polynomial of degree if c, if
c>0.)

Let S(R™) be the space of the smooth complex valued functions whose all
derivatives are rapidly decreasing at infinity and have limits at zero. Then
S(R*") may be viewed as the subspace of the functions in S(R*) which
are zero on R™. Similarly we define S(R™). The following propositions
are direct consequences of Proposition D.5. We sketch independent proofs
below.

PROPOSITION D.6. There is a seminorm p on the space S(R™) such
that

(D.22)

[ esvie d&] <minfL |2 Jp(w) (e S®Y), Rez>0),

and similarly for S(R™).
Fix integers a,b € Z with a +b > 1. Then for any function ¢» € S(RT),

(D.23) /R (1+iy) (1 — i)™ /R ) dedy =2 [ Pusa(@eu(e) de.

R
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and any function ¥ € S(R™),

(D.24) /R(1+iy)a(1 —iy)*b/ e EP(E) dfdy=27r/ Pap,—2()e*p(€) dé |

where each consecutive integral is absolutely convergent.

ProoF. Clearly

} / ez€¢<§>d5\s [ Swolde <l vl
R+ R+

Integration by parts shows that for z # 0,
| oeu@a=too v [ e de.
R+ R+

Hence (D.22) follows with p(¢0) = [¢(0)|+ || ¢ |1 + || ¥’ |]1-
Let a,b € Z be such that a + b > 1. Then the function

1+ =a7 [ o de

is continuous on Re z > 0 and meromorphic on Rez > 0 and (D.22) shows
that it is dominated by |z|~2. Therefore Cauchy’s Theorem implies that the
left-hand side of (D.23) is equal to

omres._ ((1 42— z)_b/

R+

() dg) .

The computation of this residue is straightforward. This verifies (D.23).
The proof of (D.24) is entirely analogous. [

Appendix E. The Covering G—G

In this appendix we recall some results about the splitting of the restric-
tions L — L of the metaplectic covering

(E.1) 1—{£1} — §IJ)(W) — Sp(W) — 1

to a subgroup L of the compact member G of a dual pair (G,G’) as in (2).
This is well known, but we could not find a reference sketching the proofs
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of the results we are using in this paper. We are therefore providing a short
and complete argument.

If K is a maximal compact subgroup of Sp(W), then K is a maximal
compact subgroup of éB(W) The group éIV)(W) is connected, noncompact,
semisimple and with finite center Z. (Since é?)(W) is a double cover of
Sp(W), only the connectedness needs to be commented. It follows from the
fact that the covering (E.1) does not split; see e.g. [AP14, Proposition 4.20]
or the original proof [Wei64, p. 199]). The maximal compact subgroup K is
therefore connected; see e.g. [Hel78, Chapter VI, Theorem 1.1]. Hence the
covering

(E.2) K—-K

does not split.
As is well known, K is isomorphic to a compact unitary group. In fact,
if W = R?" and

(0 I,
(©.3) m= (1),

then

(E.4)  Sp,,(R)2" = { (Z _ab> ; a,b € GL,(R), ab® = ba', aa' + bb' = In}

is a maximal compact subgroup of Sp,,, (R) and

a —b

(E:5) %menaQ a)aa+weun

is a Lie group isomorphism. Any two maximal compact subgroups of Sp(W)
are conjugate by an inner automorphism. Let K — Spy,, (R)”2" be the corre-
sponding isomorphism. Composition with (E.5) fixes then an isomorphism
¢: K — U,. Set

(E.6) K? = {(u,¢) € K x C*; det(¢(u)) = %}

Recall the bijection between equivalence classes of n-fold path-connected
coverings and the conjugacy classes of index-n subgroups of the fundamen-
tal group (see e.g. [Hat02, Theorem 1.38]). Then, up to an isomorphism of
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coverings, U, has only one connected double cover. Hence (E.2) is isomor-
phic to

(E.7) K?> (u,¢) »uckK.
Let L C K be any subgroup and
(E.8) L—L

the restriction of the covering (E.2) to L. Let L? be the preimage of L in
K?. Then (E.8) splits if and only if

(E.9) LY - L

splits, i.e. there is a group homomorphism L 3 g — ((g) € U; € C* such
that ((g)? = det(¢(g)) for all ¢ € L. For instance, if L is a connected
subgroup of K such that

(E.10) L C {u € K; det(p(u)) =1},

then (E.8) splits.

To fix ¢, let (V,(-,-)) and (V’,(-,-)") be the defining spaces of G and
G/, respectively, with dimpV = d and dimpV’ = d’. Realize W as V ®p
V', considered as a real symplectic space, with symplectic form (-,-) =
trp/r ((,-) @ (+,+)'), where trp g denotes the reduced trace; see [How79, §5]
and [Wei73, p. 169]. Then the group G is viewed as a subgroup of Sp(W)
via the identification G 3 ¢ — g ® 1 € Sp(W).! Similarly, G’ is viewed as a
subgroup of Sp(W) via the identification G’ 5 ¢’ — 1 ® ¢’ € Sp(W). Recall
that n-by-n-matrices over C can be identified with 2n-by-2n matrices over
R under the isomorphism

o M — (ReM —ImM) ‘

InM ReM

Moreover, n-by-n-matrices over H can be identified with 2n-by-2n matrices
over C under the isomorphism

L [ (M) —z2(M)

'Following the notation at the beginning of Section 3, one should identify g and
(g7 el
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Here, for v € H, we write v = z1(v) + jza(v) with 21(v), z2(v) € C, and we
similarly define z1(M) and 2zo(M) if M is a matrix over H.

Since G is compact, there is a compatible positive complex structure
J on W such that the maximal compact subgroup K = Sp(W)”’ of Sp(W)
contains G. Moreover, since G commutes with J, there is J' € G’ such that

_ / _ (I O

J=1®J". Set I,, = (0 _,
with respect to the standard basis of V ~ D¢ and of J with respect to the
standard basis of W ~ R?" are given as follows:

>. Then, the explicit expressions of J’

(G,G) J’ n 7
(Od’ Sp2m (]R)) J2m md JZmd

. 0 1

(Uda Up,q) _Z-[p,q d(p —+ q) < dp,dq)

_Idp,dq 0

1 J2pm 0

S ) *m —J1 2md

(Sp0-03) |~ ( : Jm)

Notice that in the (Ug, U, ,)-case we have SJS™! = Sod(prq) for S =

(Id(p—HI) X >7 in the (Spdaozm)_case7 TJT—l = J4pm for T =
0 Lap,aq

O O N~
~N o O
S N O
o O O

Hence, in all cases we can embed G in (E.4) from the

identification g — g ® 1 € Sp(W) followed by the isomorphism of Sp(W)’
and Sp,,,(R)”2" corresponding to the conjugations by S or 7', and then apply
(E.5). We obtain:

det(9)y  if (G, G') = (Ou, Span (R))
(E1)  det(élg)) = { det(g)l ! if (G,G) = (Uy,Upg) -
1 if (G,G’) = (Spy, 03,,)
where det(g)y denotes the determinant of ¢ as an element of G C GLp(V).

(The determinant of an n-by-n matrix over H can be reduced to a determi-
nant of a 2n-by-2n matrix over C via the isomorphism (. For elements of
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Sp(d), this notion of determinant coincides with other possible notions of
quaternionic determinants; see [Asl96] for additional information.)

PROPOSITION E.1. The covering G — G splits if and only if det(¢(g))
is a square. This happens for all pairs (G, G") different from (Og, Spoy,,(R))
with m odd and (Ug, Uy 4) with p + q odd. In these two non-splitting cases,
the covering G— G is isomorphic to the det1/2—cover2’ng

(E.12) VG3(g,¢) > geG
where
(E.13) VG ={(g,¢) € G x C*;¢* = det(g)v}-

Proofr. By (E.11) there is a group homomorphism G > g — ((g) €
U; C C* so that ((g)? = det(¢(g)) for all pairs (G, G’) except at most the
two cases listed in the statement of the Proposition.

Suppose that G’ = Sp,,,(R), and let ¢ : Oy — U; be a continuous group
homomorphism so that ((g)? = det(g){* = (£1)™. Then ((O4) C {£1, +i}
and it is a subgroup with at most two elements. So ((Og4) C {£1}. On the
other hand, if g € Oy \ SOy, then det(g)g = —1. Thus ((g)? # det(g)7 if
m is odd.

Suppose now that G’ = Up,, and let ¢ : Uy — U; be a continuous
group homomorphism so that ((g)? = det(g)y ?. Restriction to U; =
{diag(h,1...,1);h € U1} C Uy yields a continuous group homomorphism
h € Uy — ((h) € Uy. Thus, there is k € Z so that ((h) = h* for all h € Uy.
So h?k = ((h)? = det(diag(h,1,...,1))P~7 implies that p 4+ ¢ must be even.

For the last statement, consider for k € Z the covering My = {(g,() €
G x C*;¢% = det(g)?F™} of G. Then (g,¢) — (g,(#ﬂ) is a covering
isomorphism between My and Mq. [

REMARK 18. Keep the notation of (E.6) and let o : K? — K be the
isomorphism lifting ¢! : U, — K. Then, by [Fol89, Proposition 4.39] or
[Prz89, (1.4.17)], the map

(u,¢) — ¢ lwla(u,())

is independent of (.
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Appendix F. On the Nonoccurrence of the Determinant Char-
acter of Oy in Howe’s Correspondence

Consider the reductive dual pair (Og, Sp,y,(R)) where d > n. Let
Mg, (R) denote the space of d xn matrices with real coefficients and consider
the Schrédinger model for the Weil representation w, with space of smooth
vectors S = S(Mg,(R)). Moreover, let x4 be the character of Oy defined
in (81). As recalled on page 283, the representation w ® y;' descends to a
representation wy of Oy given by

(F.1) wo(g9)f(x) = flg7'x) (g€ 04, f €S, x€Mgu(R)).

In this appendix, we prove that, under the assumption that d > n, the deter-
minant character det does not occur in wg. This property is a consequence
of [Prz89, (C.43) Corollary]| (which considers the more general case of the
pseudo-orthogonal groups O, 4, where p + ¢ = d > n). However, the proof
in [Prz89] uses part of the classification of the K-types of representations
occurring in Howe’s correspondence, determined by [KV78]. The proof be-
low, which follows the p-adic case in [Ral84, p. 399], is classification-free.

ProrosiTioN F.1. Ifd > n, then det does not occur in wg. In other
words: if d > n, then there is no character o of Og4 occurring in Howe’s
correspondence such that U®X11 descends to the determinant character det

Of Od.

ProoOr. We argue by contradiction. Suppose fy € S is a non-zero
function satisfying

folg™'z) = det(g)fo(z) (g € Oa, € Mgn(R)).

Define Z = {z € Mg, (R) : 2 has maximal rank n}. Then Z is Og4-invariant
and, by the density of Z in Mg, (R), fo|z # 0. Decompose Z as a union of
Og-orbits O. Then there is an Og4-orbit O such that fo|o # 0. Set ¢ = folo.
Then

(F.2) plg ) = det(g)p(x) (9 €04,z €0).

Since O C Z, the centralizer of any element in O is isomorphic to Oy4_,,.
Hence O = 04/04—p, and ¢ € Indgj_n(l). By (F.2), det occurs in
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Indgji /(1). Frobenius’ reciprocity then implies that the character det |o,_,
contains 1, i.e. det|p, , = 1. This is clearly impossibile, and we have
reached a contradiction. Thus det cannot occur in wg. O

Appendix G. Tensor Product Decomposition of the Embedding
T over Complementary Invariant Symplectic Sub-
spaces of W

We keep the notation introduced in section 1. Let

_ e
o)

(Recall that x4 is not a character on é\f)(W), since éB(W) does not have
any nontrivial character. However, x1 becomes a character when restricted
to specific subgroups of Sp(W), such as Og; see (81).) By definition, see
(14),

(G.2) X2 @T@) = 10@)|xe(o)tg-—1yw (9 € SP(W))

descends to a distribution on Sp(W).

Let W = W& W3 be an orthogonal decomposition of W, and endow each
subspace W; (where j = 1,2) of the symplectic form (-,-); = (-, -)|w, xw;-
Suppose that g € Sp(W) preserves Wy and Wa. Let g1 and go respectively
denote the restrictions g|w, and g|w, of g to these subspaces. Suppose
we have chosen a complete polarization W = X & Y of W such that X =
X1®@Xoand Y = Y1 @ Yy, where Wiy = X; @Y1 and Wy = X9 @ Yo
are complete polarizations. Similarly, suppose that the compatible positive
complex structures J, Ji, Jo on W, W1, Wy, respectively, satisfy J = J; X Js.
Then J(X) = Y if and only if J(X;) = Y; and J(X2) = Yo, which we
assume.

Write Ty, Tw, and Ty, for the distributions corresponding to §f)(W),
é}v)(Wl), é{)(Wg), respectively. Similar notation will apply to other sym-
bols occurring in the computations below. For the tensor product of tem-

(G.1) x+(9) (9 € Sp(W))

pered distributions, we refer to [Tre67, Corollary of Theorem 51.6, especially
(51.7)].

LEMMA G.1. In the above notations,

1OW (9)[Xe(g)(g—1yw = [OW, (91)Xe(g1) (g1 —1)W1 @ [Ow,(92)1Xe(ga) H(ga—1)Ws -



SBOs for Dual Pairs with One Member Compact 389

Consequently, independently of the choice of the preimages g, g1 and gz of
g, g1 and g2 in Sp(W), Sp(W1), Sp(W2), respectively,

X\_}\Il,.;_(@TW(g) = X\?\/117+(L(}V1)TW1 (1) ® X\7V12,+(§2)TW2 (92) -

Hence, if the elements g, g1 and go respectively are chosen so that

X\?Vlﬁ (9) = X\?Vll A+ (91 )X\7V12,+ (92) »

then
Tw(9) = Tw,(91) ® Tw,(g2) -

PrOOF. Since W = W; & Wy and g1 = glw,, 92 = g|w,, we have
(g—1)W = (g1 — 1)W1 @ (g2 — 1)Wa. Recall from [AP14, Definitions 4.16,
4.18 and 4.23] that

0(9)*=0%(g) (g€ Sp(W)).

Thus |Ov(9)]? = |0%(g)| for V € {W, Wy, Wa}. It follows that |Ow(g)| =
|Ow, (91)]|®w,(g2)|, and this independently of the choice of the preimages

of g, g1 and gy in Sp(W), %(Wl), §f>(W2), respectively. Since the decom-
position W = W1 @& Wy is orthogonal,

(c(g)w, w) = (c(g1)wr, wi)1 +{c(g2)w2,w2)2  (w; € (g5 —1)W;, j = 1,2, w = w1 +wa),

where ¢ denotes the Cayley transform. Therefore x.5) = Xe(g1) @ Xe(go) OB
W = W; & Ws. Finally, the normalization of measures on subspaces of
W fixed at the beginning of section 1 is such that py_nw = pg,—1yw, @

H(g2—1)Wy- U

Appendix H. Highest Weights of Irreducible Genuine Represen-
tations of G

In this appendix we collect the roots and weights for the irreducible
genuine representations of (~}, where G is a compact member of a reductive
dual pair (G,G’). Let h be a fixed Cartan subalgebra of the Lie algebra
g of G. We denote by AT a choice of positive roots for (gc, hc) and by p
the one-half of their sum. Each genuine irreducible representation of G has
highest weight A\ = 22:1 Aje; listed below.
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(G,G) = (U, Upy), 121,g>p>0,p+q>1:
If I =1, then hc = ge. If | > 2, then:

l
I+1
AT ={ej—ep; 1<j<k<I}(type A1), p= Z( ) :
p—q j=1
)\—?-ﬁ-l/], vi €L, vi>ve>---2>1.
(G, G/) = (02l+17 Sle’(R))7 l Z 0, l/ 2 1:

Ifl =0, then g=0. If [ > 1, then:
l{egiek,1<J<k<l}U{€w1<J<l}(typeBz)
p= Z(+——J)€g> NE€Z, M=>X>---2>2X2>0.

There are two irreducible genuine representations of highest weight A.
(G,G") = (Sp;, 03), 1 > 1, 1" > 1 (for I’ =1 this is a degenerate pair):

T={ejter 1<j<k<1}U{2e; 1<) <1} (type (Y),
P:Z(H‘l—j)eja NE€ZL, M=>X>---2>2X2>0.
j=1
(GvG/) = (OQZ,SPQ[I(R)), l 2 17 l/ Z 1:
Ifl =1, then hc = gc. If I > 2, then:

l
At ={ejtep; 1<j<k<I}(type D), p=Y» (I—je,
7=1

)\jGZ, )\12)\2_"‘Z|>\l|-
The weights (A1,..., \_1,%);) yield the same representation of O if
A #£ 0.
If \; = 0, there are two irreducible genuine representations of highest
weight .

Appendix I. Integration on the Quotient Space S/STh

We retain the notation of sections 3 and 4. The purpose of this appendix
is to prove the following lemma.

LeEMMA 1.1.  Suppose first that G # Og1 with | < 1'. Then there are
positive constants C1 and Cy such that for all ¢ € C.(W) and w € h"®

sSPT) — | . 7 ifl<l
0 [ eswassm=cn [ [ od)wdgagn) i
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(1.2) / o(sw) d(s8™) = O / 6((g.g)w) d(gZ)dg  if 1> 1.
S/8"T a/zJar

Now, let G = Og 41 with | < I' and let wy € s1(V°) be a nonzero element.

Then there is a positive constant Cs such that for all ¢ € Co.(W) and w €
bTreg

(13) /S/S'yl'*'wo ¢(S(w + wo)) d(sShT+w0)
=C4 /G /'/Z'" #((g9,9").(w+wp)) dgd(g'Z' ™),

where Z'™ is the centralizer in Z' of n = 7/(wy).

Before proving Lemma 1.1, let us consider the special case of the dual
pair (G, G’) = (01, Spy,,(R)), which is not included in this lemma but will
be needed in its proof. In the notation of section 3, V = Vi @ Vg, where
dim Vg = 1 and dim V7 = 2n. We have the identifications

S=Gx G, = O(Va) X Sp(VT) y W = HOIII(VT, Va) .

Let 0 # wp € W. We shall describe Stabg/(wp), the stabilizer of wg in
G’ = Sp(Vy), as well as (O(Vg) x Sp(VT))wg and (O(Vg) x Sp(V1))™“°.

Since dimKerwy = dimW — 1, we see that dim(Kerwgy)® = 1. Let
X = (Kerwp)*. Since dimX = 1, this is an isotropic subspace of W.
Furthermore Ker wy = X*. Let Y € W be a subspace of dimension 1 such
that W = Kerwy ® Y. Set U = (X + Y)1. Then the restriction of the
symplectic form of W to U is non-degenerate and

(1.4) Vi=XaUaY.

Let Py C G’ be the parabolic subgroup preserving Y. Then we have an
isomorphism

Py = GL1(Y) x Sp(U) x N,

where N is the uniponent radical, isomorphic to a Heisenberg group. We
see from (I.4) that

(I.5) Stabg/(wg) = {1} x Sp(U) x N
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If wi,wy € s7(V) are non-zero and such that w? = w3, then wy =
+w;. Equivalently, let 7/ : W — g’ = sp(W) denote the unnormalized
moment map. Then 7/(wy) = 7/(ws) implies wo = Fwy, because O acts
transitively on the fibers of 7. Equivalently, if one thinks of W as My 2, (R)

0 1,
-1, 0
This is equivalent to wiw; = whws, which implies wy = +w;.

and setting w* = Juw' for J = ( ), one has that wjw; = wiws.

Now, one readily checks that ¢’ € Sp(Vy) 0 if and only if ¢'7/(wy)g' "' =

7'(wo). Since, for ¢’ € Sp(Vy),

—1 * —1 —1\x —1 —1
gt (wo)g' = gwiwog’ " = (wog' " ) (wog' ) = 7 (wog' ),

this is equivalent to T’(wog’fl) = 7' (wyp), i.e. wog' ' = Fwp. In turn, this
means that +¢’ € Stabg/(wp). Thus

(L.6) Sp(Vy) “8 = {&1} x Sp(U) x N..
It follows that

(L7)  (O(Vg) x Sp(Vp)™ = {£1} x ({£1} x Sp(U) x N)
and
(1.8)  (O(Vg) x Sp(V1))"" = {(g;e,m,n);e = £1, m € Sp(U), n € N}.

Notice that they do not depend on the choice of 0 # wg € W. Moreover,

(O(Vg) x Sp(VD))"8/(O(Vg) x Sp(VD)™ = ({1} x {£1})/{£(1,1)}
is a group isomorphic to Oj.

PrROOF OoF LEMMA I.1.  We now prove (I.1), excluding for the moment
the pair (G, G’) = (Oz41, Spy (R)).

If I <U, then b’ = hdbh”. Write 3 = h @ 3” and, for the corresponding
groups, Z' = H x Z". Then s —Hx 7.

Let A : H — G x G’ be defined by A(h) = (h,(h,1y_;)), where 1,
denotes the identity matrix of size r. Then SUr = A(H)({1;} x ({1;} x Z")).
Set

L =8%/S0 = (H x H x 2)/S" = (H x H x {1y_;})/A(H).
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Then L is a compact abelian group because so is H. It acts on S/ S? by
(9.9")S" - (h1, ha, 1p_)) A(H) = (gh1, g/ (ha, 1y—))S"r .

The action is proper and free. Hence the quotient space (S/ Sg) /L, i.e. the

space of orbits for this action, has a unique structure of smooth manifold
such that the canonical projection S/SPT — (S/SPT)/L is a principal fiber
bundle with structure group L. Since we have fixed a Haar measure on
H, we also have Haar measures on H x H x {1y_;} and A(H). This fixes
a quotient measure on L = (H x H x {1y_;})/A(H). Recall the notation
d(sSYr) for the quotient measure of S/ST. Then there is a unique measure
ds® on (S/SP1)/L such that for all ® € C,(S/S0r)

/ ®(sS"7) d(sS"T)
s/shT

B / (/ (I)((g7g/)(h17h271llfl>ShT)
(S/ShT)/L (HXHX{ll’fl})/A(H)

x d((h1, ha, 11'—1)A(H))> d(g,9")*

N , b e
= Vol(A) /<s/sm/L (/HH 2((9:9) (P, ha, 1e-0)S7)d (b, h2)) 40, 9)"

see e.g. [DKOO, §3.13, p. 183]. As a set,

(L9) (S/S%)/L = ((G X G')/s‘k) /<(H x H x Z"") /s“k)
=(GxG)/HxHxZ"
=(GxG)/HxZ)=G/HxG/Z,

where the second equality holds under the identification (g,¢')SVTL =
(9,¢)(H x H x Z"). Since the measure d(sSY) on S/SYT is invariant with
respect to the action of S by left-translation and this action commutes with
the right-action of L on S/SYT, the measure ds® is left S-invariant. By the
above identification, (G x G')/(H x Z') is endowed with an S-invariant mea-
sure, which must be a positive multiple of the quotient measure of those of
G x G’ and Hx Z'. Thus ds® is a positive multiple of the product measure of
the quotient measures of G/H and G’/Z’. In conclusion, there is a positive
constant C' such that for every ® € C,.(S/Shr)

/ B(sS77) d(s8%)
s/shr
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o[ ([ ()t )S T ) ) ) d(o'Z).
G/HxG’/Z' HxH
Suppose that ®(s) = ¢(s.w), where ¢ € C.(W) and w € h;"*®. Hence
d(sSIT.w) = ¢(s.w). Observe that
(9,9") (M1 ho, Ly —p)ow = ghyvw(hy ', 1r—y)g'™ = ghihy twg' ™ = (ghihy ™, g')w

Hence

/ ?((9,9")(h1, ha, 1y—;).w) d(h1, ho) //¢ (gh1,g').w) dhy dhs
HxH
—VOI /(]5 ghl, dhl

and

/ / 6((9.9') (ha. ha, 1y_1)w) d(ha, ho) d(gH) d(g'Z")
G/HxG'/Z' JHxH

= vol(H /G/H/’/Z’ /¢ (gh1, ¢’ dh1>d( H)d(¢'Z)
=volth) [ [ oo g)w) dgatg ).

In conclusion, there is a positive constant C' such that for all ¢ € C.(W)
and w € hy'*®

o) [ eswdssm=c [ [ olg.g)u dgale?).

Let us now consider the dual pair (G, G’) = (Og41,Spyy(R)) with 1 <
I < I'. We keep the notation introduced on page 287. In particular, V¥ =
V2o VO where dlmVQ = 1 and dlmVQ = 2(I' = 1). Each h € H° fixes
V8 and hence every h € H is of the form h = (he,&) where he € O(V1

Vé) ~ Oy and € € O(Vg) The elements he form a Cartan subgroup He
of O(V%@ . -Vla). At the group level, the decomposition b’ = h @ bh” arising
from the identification (42) corresponds to a decomposition H = He x H”
of the Cartan subgroup H' of G’.

If | = I, then h” = 0 and the equality 3 = b’ = b corresponds, at
the group level, to 7/ = H' = H,. Hence S% = H x 7 = H x Hy, =
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He x He x O(V9) and S = {(ha, €, ha); he € Ho} = A(H,) x O(VY), where

A(Hy) = {(h,h);h € H,}. Thus L = S%/Sbr = (H, x H,)/A(H,) is a
compact abelian group and, as a set,

(S/S"T)/L = ((G x G")/S") /((H x Z)/S") = G/H x G'/Z/

as in (1.9). Hence (I.1) follows as in the general case | <.

Let us now consider the dual pair (G, G") = (Og41,Spyy) with 1 <1 < I
Let 0 # wy € 51(V°) = Hom(V%7 Vg). We shall describe SOrtw0)* and its
subgroup Shitwo,

Since bt preserves the decomposition (34), we see that (b + wo)? =
b% + w% and hence
(L11) Srtwn)?® — ghrug — (Sb%)wg = H, x O(V]) x Hy x Sp(V))",

2

~ He x He X (O(V%) X Sp(V%))wO,
where O(Vg) = {£1} and Sp(V%)" is the centralizer of n = 7/(wg) in the
symplectic group Sp(V%). Notice that we can also write
(L12) Srtuwo)® — g 7™,
where Z'" is the centralizer of n in Z'. In the identification (I.11),
(I.13) ghrtwo — {(h, h,s);h € Hq, s € (O(V%) X Sp(V%))wO}

= A(H,) x (O(V9) x Sp(V9))™*.

The groups (O(V}) x Sp(V%))w8 and (O(VD) x Sp(VY))"™ are computed as
in (I.7) and (I1.8), respectively, with V replaced by V”. Then

L = §(brtwo)® /ghitwo ~ (1, x H,)/A(H,)

x (O(V2) x Sp(V2))"8/(O(V2) x Sp(V2))"°
~ (H, x Ha)/A(HL) x {£1},

which is a compact abelian group. By (I.12), we therefore obtain that, as a
set,

(S/Shrtwoy /L = (G x G')/(Hx Z'™) = G/H x G /7",
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and (L.3) follows as in the general case [ <[’

The proof of (I1.2) is similar to that of (I.1) and left to reader. O
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