Mathematical Model of Weaving 福田瑞季,小谷元子, MAHMOUDI Sonia (東北大学)

MAHMOUDI Sonia

Motivation

Carbon Nanotube Fabric

Spinning and twisting

CNT sheets

Weaving nto textile

- Current situation: Ph.D. student in mathematics (DC3), Tohoku University.
- Background: materials science and product engineering.

A **weave** is a structure made of multiple infinite threads interwoven with each other. Such entangled networks are useful in many scientific fields to <u>design innovative materials</u>.

This inspires new mathematical developments, since having a better understanding of the **geometry and topology** of the structure of a weave, that is often associated to the **physical and mechanical properties** could allow us to predict some functional features of a material.

Research Project's Goal

- Define, construct and classify weaves from a mathematical viewpoint.
- Understand the relation between the physical properties and the structure of woven materials.

Reference

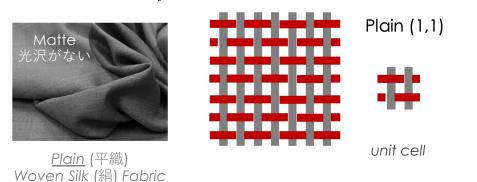
M. Fukuda, M. Kotani, S. Mahmoudi. Construction and Classification of Combinatorial Weaving Diagrams. arXiv:2108.09464

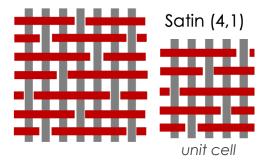
This work is supported by a Research Fellowship from JST CREST Grant Number JPMJCR17J4

Definition of Weaving Structures

Definitions: Let $\mathbb{X}^3 = \mathbb{E}^2 \times I$ be the ambient space with I = [-1, 1], and $\pi: \mathbb{X}^3 \to \mathbb{E}^2$, $(x, y, z) \mapsto (x, y, 0)$ a map.

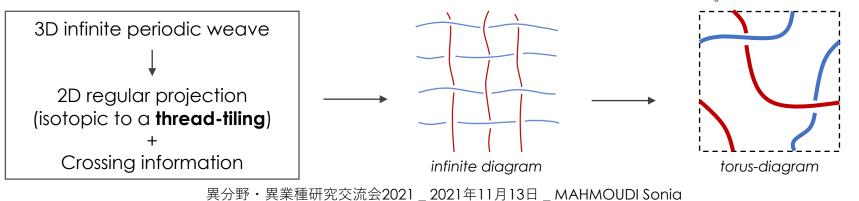
- A **thread** in X^3 is an open piecewise linear curve embedded in X^3 .
- Two threads belong to the same **sets of threads** if their projections by π are related by a translation of \mathbb{E}^2 .
- A **crossing** is an intersection between two distinct projected threads on \mathbb{E}^2 with an over/under information.
- The **crossing sequence** $C_{i,j} = (p,q)$ associated to two sets of threads T_i and T_j , is defined such that if one travels along any thread of T_i , then there are cyclically p crossings in which this thread is over the other threads of T_j , followed by q crossings in which it is under, and so forth.





<u>Satin</u> (サテン) Woven Silk (絹) Fabric

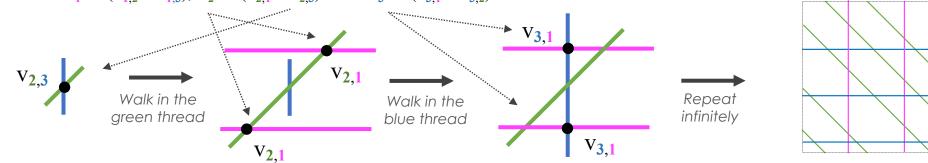
• A weave W is an embedding in X³ of infinitely many threads belonging to $N \ge 2$ disjoint sets of threads $\{T_1,...,T_N\}$ entangled to each other with respect to a set of crossing sequences $\{C_{i,j} | i, j \in (1,...,N), i \ne j\}$.



Construction of Weaving Diagrams

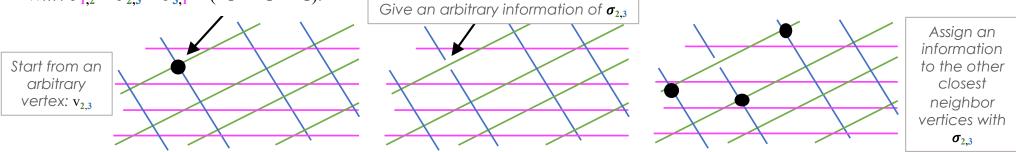
Proposition (Construction of a thread-tiling) Let $N \ge 2$ and let $\sigma_i' = (v_{i,j} \quad v_{i,k} \quad ... \quad v_{i,n})$ be a **vertex-cycle** where $v_{i,j} = t_i \cap t_j$ is a vertex between two threads from distinct sets T_i and T_j , for all $i, j, k, ..., n \in \{1, 2, ..., N\}$. If $\Sigma' = \{\sigma'_1, ..., \sigma'_N\}$ is a set of vertex-cycles, then Σ ' generates a **thread-tiling** with N sets of threads.

Example: construct a thread tiling with three sets of threads such that $\Sigma' = (\sigma_1, \sigma_2, \sigma_3)$, with $\sigma_1' = (v_{1,2} \quad v_{1,3}), \sigma_2' = (v_{2,1} \quad v_{2,3})$ and $\sigma_3' = (v_{3,1} \quad v_{3,2})$.



Theorem (Construction of Combinatorial Weaving Diagrams) Let $N \ge 2$ and let $\sigma_{i,j} = (c_1 \dots c_n)$ be the **crossing-cycle** associated to the sets T_i and T_j , with crossing sequence (p, q), such that for all $k \in \{1, \dots, p\}$, $c_k = +1$ and for all $k \in \{p+1, \dots, q\}$, $c_k = -1$. Then, given a set of vertex-cycles $\Sigma' = \{\sigma'_1, \dots, \sigma'_N\}$ and a set of crossing-cycles $\Sigma = \{\sigma_{1,2}, \dots, \sigma_{1,N,\dots}, \sigma_{2,N,\dots}, \sigma_{N-1,N}\}$, the pair (Σ', Σ) generates a **weaving diagram**.

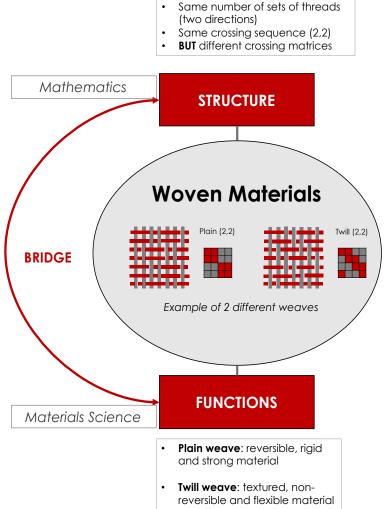
Example: assign to the thread-tiling a set of crossings sequences $\{(2,1)_3\}$ given by $\Sigma = (\sigma_{1,2}, \sigma_{2,3}, \sigma_{3,1})$, with $\sigma_{1,2} = \sigma_{2,3} = \sigma_{3,1} = (+1 + 1 - 1)$.



Equivalence of Weaves

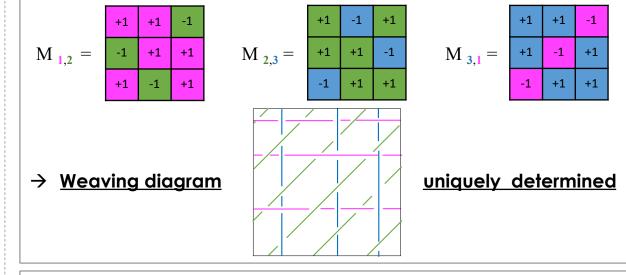
Problem: <u>different</u> weaving diagrams can be characterized by the <u>same</u> pair (Σ ', Σ) \rightarrow we must distinguish them.

Solution: extend the concept of *colored* square blocks existing for biaxial weaves, used in the textile industry and formalized by mathematicians (Grünbaum & Shephard), to weaves with more than two sets of threads (directions).



Example: 3 sets of threads and set of crossings squences: $\{(2,1)_3\}$

- Set of vertex-cycles: $\Sigma' = (\sigma_1, \sigma_2, \sigma_3)$ with $\sigma_1' = (v_{1,2} \quad v_{1,3}), \sigma_2' = (v_{2,1} \quad v_{2,3}), \sigma_3' = (v_{3,1} \quad v_{3,2})$
- Set of crossing-cycles: $\Sigma = (\sigma_{1,2}, \sigma_{2,3}, \sigma_{3,1})$ with $\sigma_{1,2} = \sigma_{2,3} = \sigma_{3,1} = (+1 + 1 - 1)$
- Set of crossing-matrices:



Theorem: Two weaving diagrams defined by a same pair (Σ ', Σ) are **equivalent** if and only if their crossing-matrices are equivalent.

Classification of Weaves

Classification table of weaves with relevant parameters for application in materials sciences and industry.

CLASSIFICATION SQUARE WEAVING DIAGRAMS: T = 2								
Name	Set of Crossing Sequences	Crossing Number (Writhe)	Minimal Diagram	Set of Crossing Matrices	Matrices	Symmetry	Minimal Energy	
Twill Square Weave (2,2)	(2,2)	4 (0)		$\left\{ \begin{pmatrix} +1 & +1 & -1 & -1 \\ -1 & +1 & +1 & -1 \\ -1 & -1 & +1 & +1 \\ +1 & -1 & -1 & +1 \end{pmatrix} \right\}$	Rank = 2 (Diagonal configuration)	Ş	Ś	
Plain Square Weave (2,2)	(2,2)	8 (0)		$\left\{ \begin{pmatrix} +1 & +1 & -1 & -1 \\ +1 & +1 & -1 & -1 \\ -1 & -1 & +1 & +1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \right\}$	Rank = 1 (Plain configuration)	Ş	Ş	
CLASSIFICATION KAGOME WEAVING DIAGRAMS: T = 3								
Kagome Weave (2,1) ₃	(2,1) (2,1) (2,1)	27 (3)		$\left\{ \begin{array}{cccc} \left(\begin{array}{c} +1 & +1 & -1 \\ -1 & +1 & +1 \\ +1 & -1 & +1 \\ \end{array} \right) \\ \left(\begin{array}{c} +1 & +1 & -1 \\ +1 & -1 & +1 \\ -1 & +1 & +1 \\ \end{array} \right) \\ \left(\begin{array}{c} +1 & -1 & +1 \\ +1 & -1 & +1 \\ +1 & +1 & -1 \\ -1 & +1 & +1 \end{array} \right) \right\}$	Rank = 3 Rank = 3 Rank = 3 (Diagonal configuration)	Ş	ģ	